Powered by Deep Web Technologies
Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Research | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Four Research Thrusts organizational chart of four research thrusts CMI has more than 30 projects focused in four areas. Project titles are available sorted by project...

2

The Critical Materials Research Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NOVEMBER 2012 NOVEMBER 2012 The Critical Materials Research Alliance About the Critical Materials Research Alliance The recent surge of interest in critical materials, including rare earth elements (REEs), stems from supply shortages and escalating prices of some REEs. In 2010, the United States' sole REE supplier was China-previously responsible for 97% of global REE production-but the Chinese government curtailed their export. Because REEs and other critical elements are used in renewable energy resources, energy storage, energy efficiency technologies, and national defense, a shortage in their supply impedes development of energy technologies and hinders U.S. defense industries. To address the challenges faced in revitalizing the rare earth industry, the National Energy Technology

3

Critical Materials Research in DOE Video (Text Version)  

Broader source: Energy.gov [DOE]

This is a text version of the "Critical Materials Research in DOE" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

4

Iowa lab gets critical materials research center  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

hub is set to be the largest R&D effort toward alleviating the global shortage of rare earth metals. T he newly created Critical Materials Institute at the Ames Laboratory has the...

5

Critical Materials:  

Office of Environmental Management (EM)

lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

6

Critical Materials Workshop  

Broader source: Energy.gov [DOE]

AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical materials, and the foundational aspects of Energy Innovation Hubs. Additionally, the workshop solicited input from the critical materials community on R&D gaps that could be addressed by DOE.

7

News Releases | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Releases CMI hosts EU, Japan to discuss global critical materials strategy, September 10, 2014 Five Critical Materials Institute researchers named Most Influential Scientific Minds...

8

Critical Materials Workshop  

Broader source: Energy.gov [DOE]

Presentations during the Critical Materials Workshop held on April 3, 2012 overviewing critical materials strategies

9

Post-Doc Researchers Needed | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Iowa State University, is anticipating a number of Postdoctoral Research Associate vacancies within 2014. Vacancies are anticipated in the following areas: Large scale density...

10

Critical Materials Institute  

ScienceCinema (OSTI)

Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

Alex King

2013-06-05T23:59:59.000Z

11

Timelines | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of interest to rare earths and critical materials, organized by those specific to rare earth elements, general chemistry and uses. Timelines of rare earth discovery: Discovery and...

12

Critical Materials Hub  

Broader source: Energy.gov [DOE]

Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

13

Critical Materials Strategy Summary  

Broader source: Energy.gov (indexed) [DOE]

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

14

Critical Materials Strategy Summary  

Broader source: Energy.gov (indexed) [DOE]

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

15

Electric Motors and Critical Materials  

Broader source: Energy.gov (indexed) [DOE]

EV, materials, and motor designers is missing * Achieving high volume July 24, 2012 Electric Motors and Critical Materials Breakout Session 2 - Discussion of Breakthroughs and...

16

Critical technologies research: Opportunities for DOE  

SciTech Connect (OSTI)

Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

Not Available

1992-12-01T23:59:59.000Z

17

Critical technologies research: Opportunities for DOE  

SciTech Connect (OSTI)

Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

Not Available

1992-12-01T23:59:59.000Z

18

Critical Materials Workshop Final Participant List  

Broader source: Energy.gov [DOE]

List of participants who attended the Critical Materials Workshop held on April 3, 2012 in Arlington, VA

19

2011 Critical Materials Strategy | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Critical Materials Strategy 1 Critical Materials Strategy 2011 Critical Materials Strategy This report examines the role that rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting. The report found that several clean energy technologies use materials at risk of supply disruptions in the short term, with risks generally decreasing in the medium and long terms. Supply challenges for five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium) may affect clean energy technology deployment in the years ahead. DOE_CMS2011_FINAL_Full.pdf DOE_CMS_2011_Summary.pdf More Documents & Publications 2010 Critical Materials Strategy ARPA-E Workshop on Rare Earth and Critical Materials

20

Critical Materials Hub | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010...

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Department of Energy Releases Strategy on Critical Materials |  

Broader source: Energy.gov (indexed) [DOE]

The Department of Energy Releases Strategy on Critical Materials The Department of Energy Releases Strategy on Critical Materials The Department of Energy Releases Strategy on Critical Materials December 15, 2010 - 12:00am Addthis The Department of Energy today released its Critical Materials Strategy. The strategy examines the role of rare earth metals and other materials in the clean energy economy, based on extensive research by the Department during the past year. The report focuses on materials used in four technologies - wind turbines, electric vehicles, solar cells and energy-efficient lighting. "Each day, researchers and entrepreneurs across the United States are working to develop and deploy clean energy technologies that will enhance our security, reduce carbon pollution and promote economic prosperity. This

22

Critical Materials For Sustainable Energy Applications  

E-Print Network [OSTI]

Critical Materials For Sustainable Energy Applications September 2011 Resnick Institute Report C in the generation, storage, transmission, conversion and conservation of energy. + Institute Leadership Harry://resnick.caltech.edu Pasadena, CA. USA + #12;Critical Materials For Sustainable Energy Applications California Institute

23

Critical Materials Institute List of Projects | Critical Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Lithium Extraction 1.1.3 Herbst, Scott INL Enhanced Separation of Adjacent Rare Earth Elements 1.2.1 Mishra, Brajendra CSM Conversion to Metal, Alloys, and Materials 1.2.2...

24

Focus Areas | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Focus Areas FA 1: Diversifying Supply FA 2: Developing Substitutes FA 3: Improving Reuse and Recycling FA 4: Crosscutting Research...

25

NETL: Advanced Research - Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Performance Materials > Chrome Oxide Refractory High Performance Materials > Chrome Oxide Refractory Advanced Research High Performance Materials Chrome Oxide Refractory One notable NETL success is the development of a chrome oxide refractory material capable of working in slagging gasifier conditions. In this project, researchers first determined that one of the major failure mechanisms for chrome oxide refractories exposed to the intense heat and corrosive environment was spalling, or the chipping or flaking of refractory material from an exposed face. They used this information to formulate a high-chrome oxide refractory composition that resists spalling, resulting in a refractory with a longer service life in the gasifier. Inside an ultrasupercritical (USC) pulverized coal power plant, materials are exposed to temperatures up to 760°C and pressures up to 5,000 psi. Operating a USC system can improve power plant efficiency up to 47% and reduce emissions. However, finding boiler and turbine materials that can hold up under extreme conditions requires new high-temperature metal alloys and ceramic coatings, as well as computational modeling research to optimize the processing of these materials. Advanced Research Materials Development program successes in this area include the following:

26

CMI Industry Survey | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in professional development or continuing education courses in these areas: Yes No Rare earth elements Yes No Other critical materials Yes No Converting rare earth ore to metal Yes...

27

CMI Grand Challenge Problems | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are among the most difficult elements to process, and the hardest to do without. Rare earth elements rank at the top of all lists of critical materials today, and the difficulty...

28

News about CMI Partners | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mining: Scientists extract rare earth materials from consumer products, March 7, 2013 UCDavis: Navrotsky Participates in DOE-funded Research Project, Led by Ames Lab,...

29

Electric Motors and Critical Materials | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Motors and Critical Materials Electric Motors and Critical Materials Presentation given at the EV Everywhere Grand Challenge Electric Drive (Power Electronics and Electric...

30

EV Everywhere Workshop: Electric Motors and Critical Materials...  

Broader source: Energy.gov (indexed) [DOE]

Electric Motors and Critical Materials Breakout Group Report EV Everywhere Workshop: Electric Motors and Critical Materials Breakout Group Report Presentation given at the EV...

31

Department of Energy Critical Materials Strategy Video (Text Version)  

Broader source: Energy.gov [DOE]

This is a text version of the "Department of Energy Critical Materials Strategy" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

32

Ideas for Transatlantic Cooperation on Critical Materials,Chairs...  

Broader source: Energy.gov (indexed) [DOE]

nCriticalMaterials.pptx More Documents & Publications Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Renzo Tomellini, EC...

33

Anne de Guibert, SAFT, Critical Materials and Alternatives for...  

Broader source: Energy.gov (indexed) [DOE]

Anne de Guibert, SAFT, Critical Materials and Alternatives for Storage Batteries Anne de Guibert, SAFT, Critical Materials and Alternatives for Storage Batteries...

34

Advanced Materials Research Highlights | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials | Research Highlights Research Highlights 1-10 of 93 Results Prev 12345 Next Single Supported Atoms Participate in Catalytic Processes December 04, 2014 -...

35

Research departments Materials Research Department  

E-Print Network [OSTI]

research reactor and X- radiation from the synchrotron facilities in Hamburg and Grenoble. In this con-parameter experiments in RERAF. Systems Analysis Department The objective of the research is to de- velop and apply are systems reliability, organisation, toxi- cology, informatics, simulation methods, work studies, economics

36

REACT: Alternatives to Critical Materials in Magnets  

SciTech Connect (OSTI)

REACT Project: The 14 projects that comprise ARPA-E’s REACT Project, short for “Rare Earth Alternatives in Critical Technologies”, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

None

2012-01-01T23:59:59.000Z

37

ORNL partners on critical materials hub | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ORNL partners on critical materials hub ORNL partners on critical materials hub January 01, 2013 The Critical Materials Institute builds on the Department of Energy's Critical Materials Strategy report, which addresses the use of rare earths and other critical materials in clean energy components, products, and processes. December 2011. Credit: U.S. DOE. ORNL wins big as part of a team led by Ames Labora-tory, which was selected for an Energy Innovation Hub to address shortages of critical materials, including rare earth metals. The award of up to $120 million over five years for the Critical Materials Institute involves four national labs, academia, and industrial partners. ORNL will play a key role in conducting the CMI's mis-sion to eliminate materials criticality as an impediment to the commercialization of clean

38

CMI hosts EU, Japan discuss global critical materials strategy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CMI hosts EU, Japan discuss global critical materials strategy Insider Finding ways to ensure the planet's supply of rare earths and other materials necessary for clean energy...

39

Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future December 3, 2010 Session A: Setting the Scene - Critical Materials for a Clean Energy Future Diana Bauer, Office of Policy and International Affairs, U.S. Department of Energy, Highlights of the DOE Critical Materials Strategy Antje Wittenberg, Directorate General for Enterprise and Industry, The EU Raw Materials Initiative and the Report of the Ad-hoc Group (tbc) Tom Lograsso, Ames Laboratory (Iowa State University), Future Directions in Rare Earth Research: Critical Materials for 21st Century Industry Derk Bol, Materials Innovation Institute M2i (Netherlands) M2i, Material

40

The Department of Energy's Critical Materials Strategy | Department of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Department of Energy's Critical Materials The Department of Energy's Critical Materials Strategy The Department of Energy's Critical Materials Strategy The U.S. Department of Energy (DOE) supports a proactive and comprehensive approach to address the challenges associated with the use of rare earth elements and other critical materials in clean energy technologies. In 2010 the Department developed its first-ever Critical Materials Strategy based on three strategic pillars: 1) diversifying global supply chains to mitigate supply risk; 2) developing material and technology substitutes; and 3) promoting recycling, reuse and more efficient use to significantly lower global demand for critical materials. In 2011 DOE updated its criticality assessments and provided in-depth market and technology analyses in response to important developments during the year. DOE will

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Critical and strategic materials proceedings of the laboratory study group meeting  

SciTech Connect (OSTI)

These Proceedings serve to identify the appropriate role for the DOE-BES-DMS Laboratory program concerning critical and strategic materials, identify and articulate high priority DOE-BES-DMS target areas so as to maximize programmatic responsiveness to national needs concerning critical and strategic materials, and identify research, expertise, and resources (including Collaborative Research Centers) that are relevant to critical and strategic materials that is either underway or in place under the DOE-BES-DMS Laboratory program. Laboratory statements of collaborative research are given.

Not Available

1983-06-01T23:59:59.000Z

42

Research Councils UK materials  

E-Print Network [OSTI]

£170 billion per annum and representing 15 per cent of GDP1 . Research is becoming increasingly focused and optoelectronics, energy storage and advanced structural composites. It could potentially revolutionise the semi. These eight are: Big Data and energy-efficient computing; Satellites and commercial applications of space

Berzins, M.

43

CMI Affiliate Members | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mineral exploration and development company focused on critical metals including Rare Earth Elements (REE's) and tungsten (W) in Scandinavia. Tasman is listed on the TSX Venture...

44

Mines Welcomes Middle School Students | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Science and Technology. The students spent the day at Mines to learn about Earth, energy, the environment, critical materials and mining. The students enjoyed a chemistry show...

45

NREL: Photovoltaics Research - Materials Applications and Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

about the scientists specializing in each area of PV research: National Center for Photovoltaics research staff Materials Applications and Performance research staff Materials...

46

Critical Materials for a Clean Energy Future | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future October 19, 2011 - 5:46pm Addthis David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs Why does it matter? Four clean energy technologies-wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting-use materials at risk of supply disruptions in the next five years. Earlier this month, United States, Japanese and European Union officials, along with a number of industry stakeholders, met for a "Trilateral Conference on Critical Materials for a Clean Energy Future." I had the opportunity to give a keynote address and discuss the role of critical materials in clean energy technologies with a wide range of experts.

47

Critical Materials for a Clean Energy Future | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future October 19, 2011 - 5:46pm Addthis David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs Why does it matter? Four clean energy technologies-wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting-use materials at risk of supply disruptions in the next five years. Earlier this month, United States, Japanese and European Union officials, along with a number of industry stakeholders, met for a "Trilateral Conference on Critical Materials for a Clean Energy Future." I had the opportunity to give a keynote address and discuss the role of critical materials in clean energy technologies with a wide range of experts.

48

2011 Critical Materials Strategy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting. The report found...

49

Department of Energy Releases its 2011 Critical Materials Strategy |  

Broader source: Energy.gov (indexed) [DOE]

its 2011 Critical Materials Strategy its 2011 Critical Materials Strategy Department of Energy Releases its 2011 Critical Materials Strategy December 22, 2011 - 12:33pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) today released the 2011 Critical Materials Strategy. The report examines the role that rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting. The report found that several clean energy technologies use materials at risk of supply disruptions in the short term, with risks generally decreasing in the medium and long terms. Supply challenges for five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium) may affect clean energy technology deployment in the years ahead.

50

Department of Energy Releases its 2011 Critical Materials Strategy |  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Releases its 2011 Critical Materials Strategy Department of Energy Releases its 2011 Critical Materials Strategy Department of Energy Releases its 2011 Critical Materials Strategy December 22, 2011 - 12:33pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) today released the 2011 Critical Materials Strategy. The report examines the role that rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting. The report found that several clean energy technologies use materials at risk of supply disruptions in the short term, with risks generally decreasing in the medium and long terms. Supply challenges for five rare earth metals (dysprosium, neodymium, terbium, europium and yttrium) may affect clean energy technology deployment in the years ahead.

51

Microsoft Word - TRILATERAL CRITICAL MATERIALS WORKSHOP Summary Report final 20111129  

Broader source: Energy.gov (indexed) [DOE]

TRILATERAL EU-JAPAN-U.S. CONFERENCE ON TRILATERAL EU-JAPAN-U.S. CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE Washington DC, 4-5 October 2011 Summary Report Introduction The conference convened officials and experts from the European Union, Japan and the United States, as well as guests from Australia and Canada, to discuss how best to ensure an adequate supply of critical materials for a clean energy future and how best to cooperate toward this end. A plenary seminar focused on strategic approaches to assuring critical materials supply. Two parallel technical workshops then examined opportunities for technology cooperation. Seminar on the Strategic Implications of Global Shortages in Critical Materials The seminar focused on a variety of strategic challenges that we face with respect to critical

52

Energy Department Releases New Critical Materials Strategy | Department of  

Broader source: Energy.gov (indexed) [DOE]

Critical Materials Strategy Critical Materials Strategy Energy Department Releases New Critical Materials Strategy December 15, 2010 - 1:30pm Addthis | Department of Energy Illustration | | Department of Energy Illustration | David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs The Department of Energy released a strategy on critical materials at an event this morning at the Center for Strategic & International Studies. The report examines the role of rare earth metals and other materials used in four clean energy technologies: wind turbines, electric vehicles, solar cells and energy-efficient lighting. You can download the full 171-page report and a 4-page executive summary here. The strategy analyzes 14 elements and identifies five specific rare earth

53

NREL: Photovoltaics Research - Materials Applications and Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photovoltaics Research Printable Version Materials Applications & Performance Staff The materials applications & performance staff members at the National Renewable Energy...

54

Older Public Presentations | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Recycling Tom Lograsso, leader for Crosscutting Research Alex King Describing rare earth elements in a TEDx talk (video link, 18:20), September 2013 Kiwanis Club, June 21,...

55

Critical challenges for EUV resist materials Patrick P. Naulleau,1  

E-Print Network [OSTI]

Critical challenges for EUV resist materials Patrick P. Naulleau,1 Christopher N. Anderson,1 Lorie of EUV resist materials. The major issue for the 22-nm half-pitch node remains simultaneously meeting photoresists. 2. STATUS OF RESIST MATERIALS FOR 22-NM HALF-PITCH Over the past few years, several chemically

56

Increasing Access to Materials Critical to the Clean Energy Economy |  

Broader source: Energy.gov (indexed) [DOE]

Access to Materials Critical to the Clean Energy Economy Access to Materials Critical to the Clean Energy Economy Increasing Access to Materials Critical to the Clean Energy Economy January 9, 2013 - 12:30pm Addthis Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Who will be partners?

57

Increasing Access to Materials Critical to the Clean Energy Economy |  

Broader source: Energy.gov (indexed) [DOE]

Increasing Access to Materials Critical to the Clean Energy Economy Increasing Access to Materials Critical to the Clean Energy Economy Increasing Access to Materials Critical to the Clean Energy Economy January 9, 2013 - 12:30pm Addthis Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Who will be partners?

58

Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement  

Broader source: Energy.gov (indexed) [DOE]

Critical Materials and Rare Futures: Ames Laboratory Signs a New Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research June 15, 2011 - 7:07pm Addthis The plasma torch in the Retech plasma furnace is one tool used in Materials Preparation Center to create ultra-high purity metal alloy samples, particularly rare-earth metals, located at the Ames Lab. | Photo Courtesy of the Ames Lab Flickr The plasma torch in the Retech plasma furnace is one tool used in Materials Preparation Center to create ultra-high purity metal alloy samples, particularly rare-earth metals, located at the Ames Lab. | Photo Courtesy of the Ames Lab Flickr Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science

59

NETL: Onsite Research: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metallography Metallography NETL has a state-of-the art metallographic facility staffed with world renowned experts with experience on a wide range of alloys and materials with the tools to get the job done. Our metallography staff works with their customers to reveal the microstructure contained within the specimens using sophisticated polishing, staining, and microscopic techniques to develop new techniques and improve upon old ones. An understanding of the microstructure is a useful tool in a wide range of situations from developing processing techniques on new material to evaluating the performance of new and existing materials after exposure to aggressive conditions. The information our staff obtains is an invaluable part of a research program. For example:

60

CMI in Research Publications | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

works on magnets for CMI, and leads the Reduced Rare Earth Content High Performance Magnet project. Canfield and CMI scientist Sergey Bud'ko are co-authors on several...

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Iowa lab gets critical materials research center  

Broader source: Energy.gov [DOE]

The DOE hub is set to be the largest R&D effort toward alleviating the global shortage of rare earth metals.

62

Magnesium Research in the Automotive Lightweighting Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the Automotive Lightweighting Materials Program Magnesium Research in the Automotive Lightweighting Materials Program Presentation from the U.S. DOE Office of Vehicle...

63

Research Using Human Subjects/Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Using Human SubjectsMaterials (taken in part from "Research on Human Specimens", National Institutes of Health) A 'human subject' is a living individual about whom an...

64

Materials Science and Engineering Onsite Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems. R&D 070, November 2011 Research facilities include the Severe Environment Corrosion Erosion Research Facility (SECERF) for assessing materials performance in a variety...

65

Challenges and Opportunities in Thermoelectric Materials Research...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanocomposites, plus Overview of Research on Thermoelectric Materials and Devices in China NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics...

66

Annular Core Research Reactor - Critical to Science-Based Weapons...  

National Nuclear Security Administration (NNSA)

Annular Core Research Reactor - Critical to Science-Based Weapons Design, Certification | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

67

Computing Criticality of Lines in Power Systems Computational Research Div.  

E-Print Network [OSTI]

Computing Criticality of Lines in Power Systems Ali Pinar Computational Research Div. Lawrence critical lines, failure of which can cause severe blackouts. Our method computes criticality measure for all lines at a time, as opposed to detecting a single vulnerability, providing a global view

Geddes, Cameron Guy Robinson

68

Energy Department Announces $3 Million to Lower Cost of Geothermal Energy and Boost U.S. Supply of Critical Materials  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $3 million for research and development to help grow U.S. low-to-moderate-temperature geothermal resources and support a domestic supply of critical materials, such as lithium carbonate and rare earth elements.

69

Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Research Groups in the Materials Science Division Condensed Matter Theory Carries out theoretical work on superconductivity, electronic structure and magnetism. Emerging Materials Emphasizes an integrated materials synthesis and science program that focuses on correlated electron transition metal oxides, chalcogenides with enhanced thermoelectric performance, and novel superconductors, including pnictides and cuprates. Energy Conversion and Storage The energy conversion and storage group focuses on charge-transfer processes, as well as the chemical environment in the vicinity of electrode surfaces. Magnetic Films Research to develop, characterize and investigate the properties of magnetic thin films and superlattices. Molecular Materials Synthesis and characterization of molecular materials that have novel

70

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

71

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 LBNL senior materials scientist and UC Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals and composites, Ritchie has illuminated groundbreaking cracking patterns and the underlying mechanistic processes using the x-ray synchrotron micro-tomography at ALS Beamline 8.3.2. Summary Slide ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter.

72

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Ceramics Materials Research ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last ten of them using the facilities at the ALS. From human bone to synthetic engineering materials such as shape-memory metals

73

Top 10 Things You Didn't Know About Critical Materials | Department of  

Broader source: Energy.gov (indexed) [DOE]

Top 10 Things You Didn't Know About Critical Materials Top 10 Things You Didn't Know About Critical Materials Top 10 Things You Didn't Know About Critical Materials January 18, 2013 - 10:15am Addthis Miss the Google+ Hangout on Critical Materials? Watch the video of it now. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More about critical materials: Check out the Department's 2011 Critical Materials Strategy report. Learn how the new Critical Materials Hub will address challenges across the entire lifecycle of materials critical to clean energy technologies. This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." Be sure to check back for more entries soon. 10. What are critical materials? Many clean energy technologies -- from

74

Top 10 Things You Didn't Know About Critical Materials | Department of  

Broader source: Energy.gov (indexed) [DOE]

Top 10 Things You Didn't Know About Critical Materials Top 10 Things You Didn't Know About Critical Materials Top 10 Things You Didn't Know About Critical Materials January 18, 2013 - 10:15am Addthis Miss the Google+ Hangout on Critical Materials? Watch the video of it now. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More about critical materials: Check out the Department's 2011 Critical Materials Strategy report. Learn how the new Critical Materials Hub will address challenges across the entire lifecycle of materials critical to clean energy technologies. This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." Be sure to check back for more entries soon. 10. What are critical materials? Many clean energy technologies -- from

75

EV Everywhere Grand Challenge - Electric Motors and Critical Materials Breakout  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Motors and Critical Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov Electric Drive Status and Targets Current Status* PHEV 40** AEV 100** AEV 300+ System Cost $/kW 20 ($1100) 5 ($600) 14 ($1680) 4 ($600) Motor Specific Power kW/kg 1.3 1.9 1.5 2 PE Specific Power kW/kg 10.5 16 12 16.7 System Peak Efficiency % 90 97 91 98 2022 EV Everywhere Targets Extremely Aggressive Targets Especially Challenging for the Electric Motor * 55kW system ** 120kW system + 150 kW system Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov

76

Nine Universities Begin Critical Turbine Systems Research | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nine Universities Begin Critical Turbine Systems Research Nine Universities Begin Critical Turbine Systems Research Nine Universities Begin Critical Turbine Systems Research July 20, 2011 - 1:00pm Addthis Washington, D.C. -- The U.S. Department of Energy announced the selection of ten projects at nine universities under the Office of Fossil Energy's (FE) University Turbine Systems Research (UTSR) Program. The projects will develop technologies for use in the new generation of advanced turbines that operate cleanly and efficiently using fuels derived from coal and containing high amounts of hydrogen. The selected universities - located in California, Connecticut, Indiana, Michigan, North Dakota, Ohio, Pennsylvania, Tennessee, and Texas - will direct their efforts toward enabling technologies for high-hydrogen-fueled

77

Nine Universities Begin Critical Turbine Systems Research | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nine Universities Begin Critical Turbine Systems Research Nine Universities Begin Critical Turbine Systems Research Nine Universities Begin Critical Turbine Systems Research July 20, 2011 - 1:00pm Addthis Washington, D.C. -- The U.S. Department of Energy announced the selection of ten projects at nine universities under the Office of Fossil Energy's (FE) University Turbine Systems Research (UTSR) Program. The projects will develop technologies for use in the new generation of advanced turbines that operate cleanly and efficiently using fuels derived from coal and containing high amounts of hydrogen. The selected universities - located in California, Connecticut, Indiana, Michigan, North Dakota, Ohio, Pennsylvania, Tennessee, and Texas - will direct their efforts toward enabling technologies for high-hydrogen-fueled

78

Chemistry and materials science research report  

SciTech Connect (OSTI)

The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

Not Available

1990-05-31T23:59:59.000Z

79

Los Alamos Lab: MPA: Materials Research Highlights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Research Highlights Materials Research Highlights Advances in fuel cells (pdf) R. Borup (MPA-11) Innovative materials physics and applications (pdf) Metallic nanolayered composites exhibit ultra-high strength and ductility (pdf) N.A. Mara (MST-6); D. Bhattacharyya (MPA-CINT); P. Dickerson (MST-6); J.K. Baldwin (MPA-CINT); R.G. Hoagland (MST-8); A. Misra (MPA-CINT) Frontiers in thermoacoustic refrigeration and mixture separation (pdf) S. Backhaus (MPA-10); D. Geller (AET-3); B. Ward (AET-6); G. Swift (MPA-10) Submicron resolution ferromagnetic resonance microscopy using scanned probe MRFM (pdf) E. Nazaretski and R. Movshovich (MPA-10) Nanowire technologies for radiation detection applications (pdf) G. Brown (MST-8); T. Picraux (MPA-CINT); M. Hoffbauer (C-ADI) Development of improved radiation detector materials (pdf)

80

Los Alamos Lab: MST: Materials Research Highlights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Research Highlights Materials Research Highlights Advances in fuel cells (pdf) R. Borup (MPA-11) Innovative materials physics and applications (pdf) Metallic nanolayered composites exhibit ultra-high strength and ductility (pdf) N.A. Mara (MST-6); D. Bhattacharyya (MPA-CINT); P. Dickerson (MST-6); J.K. Baldwin (MPA-CINT); R.G. Hoagland (MST-8); A. Misra (MPA-CINT) Frontiers in thermoacoustic refrigeration and mixture separation (pdf) S. Backhaus (MPA-10); D. Geller (AET-3); B. Ward (AET-6); G. Swift (MPA-10) Submicron resolution ferromagnetic resonance microscopy using scanned probe MRFM (pdf) E. Nazaretski and R. Movshovich (MPA-10) Nanowire technologies for radiation detection applications (pdf) G. Brown (MST-8); T. Picraux (MPA-CINT); M. Hoffbauer (C-ADI) Development of improved radiation detector materials (pdf)

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS...  

Broader source: Energy.gov (indexed) [DOE]

ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014 ANNUAL TRILATERAL U.S. - EU - JAPAN CONFERENCE ON CRITICAL...

82

NETL: News Release - Universities Begin Critical Turbine Systems Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

30, 2008 30, 2008 Universities Begin Critical Turbine Systems Research WASHINGTON, D.C. - The U.S. Department of Energy announced the selection of four projects under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program. The projects will develop technologies for use in the new generation of advanced turbines that operate cleanly and efficiently when fueled with coal-derived synthesis gas and hydrogen fuels. The overall goal of the Department of Energy's (DOE) Turbine Program is to provide high-efficiency, near-zero emissions and lower-cost turbines for coal-based stationary power systems. Developing turbine technology to operate on high hydrogen content (HHC) fuels derived from coal synthesis gas is critical to the development of advanced, near-zero-emission integrated gasification combined cycle (IGCC) power generation plants that separate and capture carbon dioxide (CO2).

83

Materials Research Needs for Near-Term Nuclear Reactors  

Science Journals Connector (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Material

John R. Weeks

84

Die Materials for Critical Applications and Increased Production Rates  

SciTech Connect (OSTI)

Die materials for aluminum die-casting need to be resistant to heat checking, and have good resistance to washout and to soldering in a fast flow of molten aluminum. To resist heat checking, die materials should have a low coefficient of thermal expansion, high thermal conductivity, high hot yield strength, good temper softening resistance, high creep strength, and adequate ductility. To resist the washout and soldering, die materials should have high hot hardness, good temper resistance, low solubility in molten aluminum and good oxidation resistance. It is difficult for one material to satisfy with all above requirements. In practice, H13 steel is the most popular material for aluminum die casting dies. While it is not an ideal choice, it is substantially less expensive to use than alternative materials. However, in very demanding applications, it is sometimes necessary to use alternative materials to ensure a reasonable die life. Copper-base, nickel-base alloys and superalloys, titanium-,molybdenum-, tungsten-base alloys, and to some extent yttrium and niobium alloys, have all been considered as potential materials for demanding die casting applications. Most of these alloys exhibit superior thermal fatigue resistance, but suffer from other shortcomings.

David Schwam; John Wallace; Sebastian Birceanu

2002-11-30T23:59:59.000Z

85

First-Of-Its-Kind Search Engine Will Speed Materials Research | Department  

Broader source: Energy.gov (indexed) [DOE]

First-Of-Its-Kind Search Engine Will Speed Materials Research First-Of-Its-Kind Search Engine Will Speed Materials Research First-Of-Its-Kind Search Engine Will Speed Materials Research November 3, 2011 - 1:05pm Addthis Washington, D.C. - Researchers from the Department of Energy's (DOE's) Lawrence Berkeley National Laboratory (Berkeley Lab) and the Massachusetts Institute of Technology (MIT) jointly launched today a groundbreaking new online tool called the Materials Project, which operates like a "Google" of material properties, enabling scientists and engineers from universities, national laboratories and private industry to accelerate the development of new materials, including critical materials. "By accelerating the development of new materials, we can drive discoveries that not only help power clean energy, but also are used in

86

First-Of-Its-Kind Search Engine Will Speed Materials Research | Department  

Broader source: Energy.gov (indexed) [DOE]

First-Of-Its-Kind Search Engine Will Speed Materials Research First-Of-Its-Kind Search Engine Will Speed Materials Research First-Of-Its-Kind Search Engine Will Speed Materials Research November 3, 2011 - 1:05pm Addthis Washington, D.C. - Researchers from the Department of Energy's (DOE's) Lawrence Berkeley National Laboratory (Berkeley Lab) and the Massachusetts Institute of Technology (MIT) jointly launched today a groundbreaking new online tool called the Materials Project, which operates like a "Google" of material properties, enabling scientists and engineers from universities, national laboratories and private industry to accelerate the development of new materials, including critical materials. "By accelerating the development of new materials, we can drive discoveries that not only help power clean energy, but also are used in

87

Join Us Tuesday, Jan. 15 for a Google+ Hangout on Critical Materials |  

Broader source: Energy.gov (indexed) [DOE]

Us Tuesday, Jan. 15 for a Google+ Hangout on Critical Us Tuesday, Jan. 15 for a Google+ Hangout on Critical Materials Join Us Tuesday, Jan. 15 for a Google+ Hangout on Critical Materials January 14, 2013 - 3:23pm Addthis What are critical materials? We will be answering that question and more tomorrow during our first Google+ Hangout. | Infographic by Sarah Gerrity, Energy Department. What are critical materials? We will be answering that question and more tomorrow during our first Google+ Hangout. | Infographic by Sarah Gerrity, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs How can I participate? Tweet questions to @ENERGY with the hashtag #AskEnergy. Ask us on the Energy Department's Facebook and Google+ pages. Email questions to newmedia@hq.doe.gov.

88

Organic solar cells: Structure, materials, critical characteristics, and outlook  

Science Journals Connector (OSTI)

This review surveys recent advances in the field of photovoltaic devices based on organic photoactive materials and used for converting solar energy into electricity. Different architectures of organic photovolta...

P. A. Troshin; R. N. Lyubovskaya; V. F. Razumov

2008-06-01T23:59:59.000Z

89

Polymer Composites Research in the ALM Materials Program | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

merit08warren2.pdf More Documents & Publications Polymer Composites Research in the LM Materials Program Overview Structural Automotive Components from Composite Materials...

90

Hoagland selected as a new Materials Research Society Fellow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hoagland selected as Materials Research Society Fellow Hoagland selected as Materials Research Society Fellow Hoagland selected as a new Materials Research Society Fellow Hoagland has made notable contributions in both experimental and computational materials research. July 9, 2013 Richard G. Hoagland Richard G. Hoagland The Materials Research Society (MRS) is an organization of materials researchers that promotes the advancement of interdisciplinary materials research to improve the quality of life. Richard G. Hoagland of the Laboratory's Materials Science in Radiation and Dynamic Extremes group has been honored with the rank of Fellow by the Materials Research Society (MRS). Hoagland is cited for "outstanding contributions in fracture mechanics and atomistic modeling of dislocation mechanisms of deformation and fracture of metals, ceramics and nanolayered

91

Critical Infrastructure Interdependency Modeling: A Survey of U.S. and International Research  

SciTech Connect (OSTI)

The Nation’s health, wealth, and security rely on the production and distribution of certain goods and services. The array of physical assets, processes, and organizations across which these goods and services move are called "critical infrastructures".1 This statement is as true in the U.S. as in any country in the world. Recent world events such as the 9-11 terrorist attacks, London bombings, and gulf coast hurricanes have highlighted the importance of stable electric, gas and oil, water, transportation, banking and finance, and control and communication infrastructure systems. Be it through direct connectivity, policies and procedures, or geospatial proximity, most critical infrastructure systems interact. These interactions often create complex relationships, dependencies, and interdependencies that cross infrastructure boundaries. The modeling and analysis of interdependencies between critical infrastructure elements is a relatively new and very important field of study. The U.S. Technical Support Working Group (TSWG) has sponsored this survey to identify and describe this current area of research including the current activities in this field being conducted both in the U.S. and internationally. The main objective of this study is to develop a single source reference of critical infrastructure interdependency modeling tools (CIIMT) that could be applied to allow users to objectively assess the capabilities of CIIMT. This information will provide guidance for directing research and development to address the gaps in development. The results will inform researchers of the TSWG Infrastructure Protection Subgroup of research and development efforts and allow a more focused approach to addressing the needs of CIIMT end-user needs. This report first presents the field of infrastructure interdependency analysis, describes the survey methodology, and presents the leading research efforts in both a cumulative table and through individual datasheets. Data was collected from open source material and when possible through direct contact with the individuals leading the research.

Not Available

2006-08-01T23:59:59.000Z

92

NREL: Solar Research - Materials and Chemical Science and Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy and conducts theoretical studies and fundamental experimental research on optoelectronic materials. The center conducts research within three areas: Chemical and molecular...

93

Early detection of critical material degradation by means of electromagnetic multi-parametric NDE  

SciTech Connect (OSTI)

With an increasing number of power plants operated in excess of their original design service life an early recognition of critical material degradation in components will gain importance. Many years of reactor safety research allowed for the identification and development of electromagnetic NDE methods which detect precursors of imminent damage with high sensitivity, at elevated temperatures and in a radiation environment. Regarding low-alloy heat-resistant steel grade WB 36 (1.6368, 15NiCuMoNb5), effects of thermal and thermo-mechanical aging on mechanical-technological properties and several micromagnetic parameters have been thoroughly studied. In particular knowledge regarding the process of copper precipitation and its acceleration under thermo-mechanical load has been enhanced. Whilst the Cu-rich WB 36 steel is an excellent model material to study and understand aging effects related to neutron radiation without the challenge of handling radioactive specimens in a hot cell, actually neutron-irradiated reactor pressure vessel materials were investigated as well. The neutron fluence experienced and the resulting shift of the ductile-brittle transition temperature were determined electromagnetically, and it was shown that weld and base material can be distinguished from the cladded side of the RPV wall. Low-cycle fatigue of the austenitic stainless steel AISI 347 (1.4550, X6CrNiNb18-10) has been characterized with electromagnetic acoustic transducers (EMATs) at temperatures of up to 300 °C. Time-of-flight and amplitude of the transmitted ultrasound signal were evaluated against the number of load cycles applied and observed as an indication of the imminent material failure significantly earlier than monitoring stresses or strains.

Szielasko, Klaus; Tschuncky, Ralf; Rabung, Madalina; Altpeter, Iris; Dobmann, Gerd [Fraunhofer Institute for Nondestructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany); Seiler, Georg; Herrmann, Hans-Georg; Boller, Christian [Fraunhofer Institute for Nondestructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken, Germany and Saarland University, Chair of NDT and Quality Assurance, Campus E3 1, 66123 Saarbrücken (Germany)

2014-02-18T23:59:59.000Z

94

Research > The Energy Materials Center at Cornell  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research In This Section Analytical Resources Batteries & Fuel Cells Complex Oxides Theory & Computation Research Highlights Publications Authorship Tools Young Investigator...

95

Instructional Materials | Photosynthetic Antenna Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Instructional Materials Instructional Materials Solar Energy Learn about the quality of electromagnetic radiation produced by the sun and investigate on how this energy is captured...

96

Meet CMI Researcher Joni Barnes | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the investigation of microbial reduction of selenate, biodegradation of chlorinated solvents, bioconversion of nitrogen oxides, microbially catalyzed metal reduction,...

97

Meet CMI Researcher Tim McIntyre | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tim McIntyre leads the design and development of a low-cost, high-throughput magnet recycling system in focus area 3, improving reuse and recycling. Tim has 25 years experience...

98

Colorado School of Mines Researchers Win Patent | Critical Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oxine functionalized groups. The original work was focused on separating iron and gallium, but the technology may have future applicability to the separation of rare earth elements...

99

Transformed materials : a material research center in Milan, Italy  

E-Print Network [OSTI]

[Transformed Materials] is an exploration into today's design methodologies of architecture production. The emergence of architectural form is questioned in relation to the temporal state of design intent and the physical ...

Skerry, Nathaniel S. (Nathaniel Standish), 1971-

2002-01-01T23:59:59.000Z

100

AMIS Training Material 1 Institutional Research and Planning October 2012  

E-Print Network [OSTI]

AMIS Training Material 1 Institutional Research and Planning October 2012 University of Nebraska Panel" #12;AMIS Training Material 2 Institutional Research and Planning October 2012 University of Nebraska-Lincoln Page 2 of 9 Change View by: "Category" to "Small Icons" #12;AMIS Training Material 3

Farritor, Shane

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ris National Laboratory Materials Research Department  

E-Print Network [OSTI]

the exchange interaction between NiO nanoparticles 2 cells [14] and as an electrochromic material, where

102

Materials and Systems Research MSRI | Open Energy Information  

Open Energy Info (EERE)

and Systems Research MSRI and Systems Research MSRI Jump to: navigation, search Name Materials and Systems Research (MSRI) Place Salt Lake City, Utah Zip 84104 Product MSRI is a producer of solid oxide fuel cell and holds patents for new technologies in related areas of fuel cells. References Materials and Systems Research (MSRI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Materials and Systems Research (MSRI) is a company located in Salt Lake City, Utah . References ↑ "Materials and Systems Research (MSRI)" Retrieved from "http://en.openei.org/w/index.php?title=Materials_and_Systems_Research_MSRI&oldid=348671" Categories: Clean Energy Organizations Companies

103

Nanoscale Material Properties | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanotechnology Drives New Levels of Performance Nanotechnology Drives New Levels of Performance GE scientists are discovering new material properties at the nanoscale that drive...

104

Sandia National Laboratories: Research: Materials Science: About...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

our products will perform in demanding missions over time. We must understand the fundamentals of the materials involved - over time and in demanding environments....

105

Geothermal: Sponsored by OSTI -- Polymer materials basic research...  

Office of Scientific and Technical Information (OSTI)

Polymer materials basic research needs for energy applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

106

Hoagland selected as a new Materials Research Society Fellow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Research Society (MRS). Hoagland is cited for "outstanding contributions in fracture mechanics and atomistic modeling of dislocation mechanisms of deformation and...

107

NREL: Hydrogen and Fuel Cells Research - Advanced Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials The Advanced Materials group within NREL's Materials and Computational Sciences Center develops novel and optimized materials for energy-related applications that include sorption-based hydrogen storage, fuel cells, catalysts, photovoltaics, batteries, electrochromics, electronics, sensors, electricity conduction, and thermal management. These R&D efforts use first-principle models combined with state-of-the-art synthetic and characterization techniques to rationally design and construct advanced materials with new and improved properties. In addition to creating specific material properties tailored for the application of interest by understanding the underlying chemical and physical mechanisms involved, the research focuses on developing materials

108

Research | Center for Energy Efficient Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in August 2009 and focuses on fundamental research in the three key areas of photovoltaics, thermoelectrics, and solid-state lighting. These technologies are strongly...

109

Toughness Governs the Rupture of the Interfacial H-Bond Assemblies at a Critical Length Scale in Hybrid Materials  

Science Journals Connector (OSTI)

Toughness Governs the Rupture of the Interfacial H-Bond Assemblies at a Critical Length Scale in Hybrid Materials ... The supercomputer machines utilized in this work were supported in part by NIH award NCRR S10RR02950 and an IBM Shared University Research (SUR) Award in partnership with CISCO, Qlogic and Adaptive Computing, and in part by the Data Analysis and Visualization Cyber infrastructure funded by NSF under grant OCI-0959097. ... Minet, J.; Abramson, S.; Bresson, B.; Franceschini, A.; Van Damme, H.; Lequeux, N.Organic calcium silicate hydrate hybrids: a new approach to cement based nanocomposites J. Mater. ...

Navid Sakhavand; Prakash Muthuramalingam; Rouzbeh Shahsavari

2013-05-28T23:59:59.000Z

110

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical...

111

Energy and materials conservation: applying pioneering research and techniques to current non-energy materials conservation issues  

Science Journals Connector (OSTI)

...Ashby, Tim Gutowski and Ernst Worrell Energy and materials conservation: applying...research and techniques to current non-energy materials conservation issues Bruce Hannon...material production . The research of the Energy Research Group (ERG) at the University...

2013-01-01T23:59:59.000Z

112

Materials Research Department Annual Report 2003  

E-Print Network [OSTI]

activities within solid oxide fuel cells. In parallel with our development of new ma- terials for solid oxide with the company Haldor Topsøe A/S. In 2003 we increased our pro- duction capacity of solid oxide fuel cells-19 Fuel Cells and Materials Chemistry 20-23 24th Risø International Symposium 24 Finances 25 Staff 26

113

NREL: Photovoltaics Research - New Materials, Devices, and Processes for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Materials, Devices, and Processes for Advanced Concepts New Materials, Devices, and Processes for Advanced Concepts Computational Science and Theory We can use high-performance computing tools in modeling and simulation studies of semiconductor and other solar materials. We also determine the performance of solar devices. Theoretical studies can help us understand underlying physical principles or predict useful chemical compositions and crystalline structures. Scientific Computing Experimental Materials Science Solid-State Theory. NREL has strong complementary research capabilities in organic photovoltaic (OPV) cells, transparent conducting oxides (TCOs), combinatorial (combi) methods, and atmospheric processing. From fundamental physical studies to applied research relating to solar industry needs, we are developing the

114

2004 research briefs :Materials and Process Sciences Center.  

SciTech Connect (OSTI)

This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

Cieslak, Michael J.

2004-01-01T23:59:59.000Z

115

SC Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Surface Chemistry Research Overview The Surface Chemistry Group is a part of the Materials Science Division at Argonne National Laboratory. The focus of this group's work is the control surface species, composition, and structure at length scales that range from atomic level to micrometers. The group's expertise includes time-of-flight ion mass spectrometry, tunable laser spectroscopy, ion sputtering, laser-surface interactions, vapor phase deposition, electrical and electrochemical characterization, and device assembly. We have numerous collaborations within Argonne as well as with chemists, physicists, and materials scientists around the world. Research Directed Energy Interactions with Surfaces Nanostructured Thin Films Interfaces for Solar Energy Conversion

116

Critical Dimensions of Water-tamped Slabs and Spheres of Active Material  

DOE R&D Accomplishments [OSTI]

The magnitude and distribution of the fission rate per unit area produced by three energy groups of moderated neutrons reflected from a water tamper into one side of an infinite slab of active material is calculated approximately in section II. This rate is directly proportional to the current density of fast neutrons from the active material incident on the water tamper. The critical slab thickness is obtained in section III by solving an inhomogeneous transport integral equation for the fast-neutron current density into the tamper. Extensive use is made of the formulae derived in "The Mathematical Development of the End-Point Method" by Frankel and Goldberg. In section IV slight alterations in the theory outlined in sections II and III were made so that one could approximately compute the critical radius of a water-tamper sphere of active material. The derived formulae were applied to calculate the critical dimensions of water-tamped slabs and spheres of solid UF{sub 6} leaving various (25) isotope enrichment fractions. Decl. Dec. 16, 1955.

Greuling, E.; Argo, H.: Chew, G.; Frankel, M. E.; Konopinski, E.J.; Marvin, C.; Teller, E.

1946-08-06T23:59:59.000Z

117

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

will also be conducted in shale oil product material. 1979Publications and Reports d. Oil Shale Retort Components A.in Simulated In-Situ Oil Shale Retorts Research Plans for

Authors, Various

2013-01-01T23:59:59.000Z

118

Multimodal options for materials research to advance the basis for fusion energy in the ITER era  

Science Journals Connector (OSTI)

Well-coordinated international fusion materials research on multiple fundamental feasibility issues can serve an important role during the next ten years. Due to differences in national timelines and fusion device concepts, a parallel-track (multimodal) approach is currently being used for developing fusion energy. An overview is given of the current state-of-the-art of major candidate materials systems for next-step fusion reactors, including a summary of existing knowledge regarding operating temperature and neutron irradiation fluence limits due to high-temperature strength and radiation damage considerations, coolant compatibility information, and current industrial manufacturing capabilities. There are two inter-related overarching objectives of fusion materials research to be performed in the next decade: (1) understanding materials science phenomena in the demanding DT fusion energy environment, and (2) application of this knowledge to develop and qualify materials to provide the basis for next-step facility construction authorization by funding agencies and public safety licensing authorities. The critical issues and prospects for development of high-performance fusion materials are discussed along with recent research results and planned activities of the international materials research community.

S.J. Zinkle; A. Möslang; T. Muroga; H. Tanigawa

2013-01-01T23:59:59.000Z

119

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

http://www.msd.anl.gov/research-areas Sun, 12 Jan 2014 01:06:27 +0000 Joomla! 1.6 - Open Source Content Management en-gb Dynamics of Active Self-Assemble Materials http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials krajniak@anl.gov (Ken Krajniak) Fri, 13 May 2011 17:17:28 +0000 Elastic Relaxation and Correlation of Local Strain Gradients with Ferroelectric Domains in (001) BiFeO3 Nanostructures http://www.msd.anl.gov/research-areas/elastic-relaxation-and-correlation-of-local-strain-gradients-with-ferroelectric-domains-in-001-bifeo3-nanostructures http://www.msd.anl.gov/research-areas/elastic-relaxation-and-correlation-of-local-strain-gradients-with-ferroelectric-domains-in-001-bifeo3-nanostructures

120

Fossil Energy Advanced Research and Technology Development Materials Program  

SciTech Connect (OSTI)

Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

Cole, N.C.; Judkins, R.R. (comps.)

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SC Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research > Research Groups Research > Research Groups Research Groups Display # 5 10 15 20 25 30 50 100 All Title Research Groups CMT Personnel CMT Research CMT Links Condensed Matter Theory ECS Personnel ECS Research ECS Highlights Energy Conversion and Storage EM-Heating Effects EM- Electronic Valves EM-Breaking Up EM-Exploring Complexity EM-Narrow Phase Fields EM Pnictide Phase Diagram EM Molten Polysulfides EM Materials By Design EM Iron Pnictides EM Personnel EM D.J. Miller EM D.G. Hinks EM M.Grimsditch EM Tunneling EM Structural Features EM Seamless Joining EM Role of Reactive Elements EM Residual Strains EM Proximity Interactions EM Interface Roughness EM Growth Strains EM Grain Boundaries EM Extending the Phase EM Exploring the Mechanism EM Double Exchange EM Research EM Links EM Home IM Odin III

122

Evaluation of critical materials in five additional advance design photovoltaic cells  

SciTech Connect (OSTI)

The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. The Critical Materials Assessment Program (CMAP) screens the designs and their supply chains and identifies potential shortages which might preclude large-scale use of the technologies. The results of the screening of five advanced PV cell designs are presented: (1) indium phosphide/cadmium sulfide, (2) zinc phosphide, (3) cadmium telluride/cadmium sulfide, (4) copper indium selenium, and (5) cadmium selenide photoelectrochemical. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 Gwe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has a 5 GWe of peak capacity by the year 2000, so that the total online capacity for the five cells is 25 GWe. Based on a review of the preliminary baseline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. The CMAP methodology used to identify critical materials is described; and detailed characterizations of the advanced photovoltaic cell designs under investigation, descriptions of additional cell production processes, and the results are presented. (WHK)

Smith, S.A.; Watts, R.L.; Martin, P.; Gurwell, W.E.

1981-02-01T23:59:59.000Z

123

Protecting Vulnerable Research Subjects in Critical Care Trials: Enhancing the Informed Consent Process and Recommendations for Safeguards  

Science Journals Connector (OSTI)

Although critically ill patients represent a vulnerable group of individuals, guidelines in research ethics assert that ethically acceptable research may proceed with such vulnerable subjects if additional safeguards

Henry Silverman

2011-04-01T23:59:59.000Z

124

NXRS Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Neutron and X-Ray Scattering Research Vision Recent advances in neutron and x-ray scattering instrumentation at major DOE facilities such as the Spallation Neutron Source and Advanced Photon Source provide unprecedented insights into complex phenomena in bulk and interfacial materials. The vision of our group is to harness the complementarity of neutrons and x-rays to study how materials respond on a range of length and time scales to phase competition, so that we can learn to control emergent behavior and generate functional properties in materials that impact energy use. Mission Our mission is to use neutrons and x-rays to investigate the structure and dynamics of bulk and interfacial materials with properties that are useful for energy applications, such as superconductivity, magnetism and

125

Green Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials by  

E-Print Network [OSTI]

Green Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials also be considered. This project would examine the proposed solar cell materials and designs and create­2077). Given the proposed scales of PV adoption, the health and environmental impacts of PV technology should

Iglesia, Enrique

126

Long-Term Lightweight MaterialVehicle Technologies Office: Long-Term Lightweight Materials Researchs Research  

Broader source: Energy.gov [DOE]

In the long term, advanced materials such as magnesium and carbon fiber reinforced composites could reduce the weight of some components by 50-75 percent.

127

Researchers Devise New Stress Test for Irradiated Materials | Department of  

Broader source: Energy.gov (indexed) [DOE]

Researchers Devise New Stress Test for Irradiated Materials Researchers Devise New Stress Test for Irradiated Materials Researchers Devise New Stress Test for Irradiated Materials July 20, 2011 - 3:58pm Addthis Scientists conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects the mechanical properties of copper. By using a specialized in situ mechanical testing device in a transmission electron microscope at the National Center for Electron Microscopy, the team could examine — with nanoscale resolution — the localized nature of this deformation. | Courtesy of Lawrence Berkeley National Laboratory Scientists conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects

128

Researchers Devise New Stress Test for Irradiated Materials | Department of  

Broader source: Energy.gov (indexed) [DOE]

Researchers Devise New Stress Test for Irradiated Materials Researchers Devise New Stress Test for Irradiated Materials Researchers Devise New Stress Test for Irradiated Materials July 20, 2011 - 3:58pm Addthis Scientists conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects the mechanical properties of copper. By using a specialized in situ mechanical testing device in a transmission electron microscope at the National Center for Electron Microscopy, the team could examine — with nanoscale resolution — the localized nature of this deformation. | Courtesy of Lawrence Berkeley National Laboratory Scientists conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects

129

Metrology and Characterization Challenges for Emerging Research Materials and Devices  

SciTech Connect (OSTI)

The International Technology Roadmap for Semiconductors (ITRS) Emerging Research Materials (ERM) and Emerging Research Devices (ERD) Technology Workgroups have identified materials and devices that could enable continued increases in the density and performance of future integrated circuit (IC) technologies and the challenges that must be overcome; however, this will require significant advances in metrology and characterization to enable progress. New memory devices and beyond CMOS logic devices operate with new state variables (e.g., spin, redox state, etc.) and metrology and characterization techniques are needed to verify their switching mechanisms and scalability, and enable improvement of operation of these devices. Similarly, new materials and processes are needed to enable these new devices. Additionally, characterization is needed to verify that the materials and their interfaces have been fabricated with required quality and performance.

Garner, C. Michael; Herr, Dan [Semiconductor Research Corporation, P.O. Box 12053, Research Triangle Park, NC 27709 (United States); Obeng, Yaw [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (United States)

2011-11-10T23:59:59.000Z

130

Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues  

E-Print Network [OSTI]

Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical the deflagration-to-detonation transition DDT in granular explosives is critically reviewed. The continuum, analysis and numerical simulation of deflagration- to-detonation transition DDT in porous energetic

Kapila, Ashwani K.

131

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

http://www.msd.anl.gov http://www.msd.anl.gov 2014-01-12T01:06:27+00:00 Joomla! 1.6 - Open Source Content Management Dynamics of Active Self-Assemble Materials 2011-05-13T17:17:28+00:00 2011-05-13T17:17:28+00:00 http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials Ken Krajniak krajniak@anl.gov Self-assembly, a natural tendency of simple building blocks to organize into complex architectures is a unique opportunity for materials science. In-depth understanding of self-assembly paves the way for design of tailored smart materials for emerging energy technologies. However, self-assembled materials pose a formidable challenge: they are intrinsically complex, with an often hierarchical organization occurring on many nested length and time scales. This program

132

Low Cost Carbon Fiber Research in the LM Materials Program Overview...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Fiber Research in the LM Materials Program Overview Low Cost Carbon Fiber Research in the LM Materials Program Overview 2009 DOE Hydrogen Program and Vehicle Technologies...

133

The changing role of the National Laboratories in materials research  

SciTech Connect (OSTI)

The role of the National Laboratories is summarized from the era of post World War II to the present time. The U.S. federal government policy for the National Laboratories and its influence on their materials science infrastructure is reviewed with respect to: determining overall research strategies, various initiatives to interact with industry (especially in recent years), building facilities that serve the nation, and developing leading edge research in the materials sciences. Despite reductions in support for research in the U.S. in recent years, and uncertainties regarding the specific policies for R&D in the U.S., there are strong roles for materials research at the National Laboratories. These roles will be centered on the abilities of the National Laboratories to field multidisciplinary teams, the use of unique cutting edge facilities, a focus on areas of strength within each of the labs, increased teaming and partnerships, and the selection of motivated research areas. It is hoped that such teaming opportunities will include new alliances with China, in a manner similar, perhaps, to those recently achieved between the U.S. and other countries.

Wadsworth, J.; Fluss, M.

1995-06-02T23:59:59.000Z

134

SRS Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Synchrotron Radiation Studies Research Overview This program develops new capabilities using the nation's synchrotron radiation facilities and applies them to cutting-edge problems in materials science. In particular, we aim to play a leading scientific role at the Advanced Photon Source (APS). X-ray scattering studies take advantage of the high brilliance APS x-ray source for in-situ and time-resolved studies of surface and thin film structure. These include investigations of synthesis processes such as vapor-phase epitaxy and electrochemical deposition, and studies of electric-field-driven ferroelectric domain dynamics. High-resolution angle-resolved photoemission is used to understand the nature of superconductivity in the hi-Tc materials. New thrusts focus on exploring science enabled by future facilities such as

135

Major Facilities for Materials Research and Related Disciplines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities for Materials Research and Related Disciplines Major Materials Facilities Committee Commission on Physical Sciences, Mathematics, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, DC 1984 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee con- sisting of members of the National Academy of Sciences, the National

136

New Ion Beam Materials Laboratory for Materials Modification and Irradiation Effects Research  

SciTech Connect (OSTI)

A new multifunctional ion beam materials laboratory (IBML) has been established at the University of Tennessee, in partnership with Oak Ridge National Laboratory. The IBML is currently equipped with two ion sources, a 3 MV tandem accelerator, three beamlines and three endstations. The IBML is primarily dedicated to fundamental research on ion-solid interaction, ion beam analysis, ion beam modification, and other basic and applied research on irradiation effects in a wide range of materials. An overview of the IBML facility is provided, and experimental results are reported to demonstrate the specific capabilities.

Zhang, Yanwen [ORNL; Crespillo, Miguel L [University of Tennessee (UT); Xue, Haizhou [University of Tennessee, Knoxville (UTK); Jin, Ke [University of Tennessee, Knoxville (UTK); Chen, Chien-Hung [University of Tennessee, Knoxville (UTK); Fontana, Cristiano L [ORNL; Graham, Dr. Joseph T. [The University of Tennessee; Weber, William J [ORNL

2014-01-01T23:59:59.000Z

137

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanostructured Thin Films Nanostructured Thin Films Theme: The Nanostructured Thin Films program is focused on the synthesis, characterization, and modeling of dimensionally constrained materials systems in which a nano-scale trait of the material (e.g. grain size, film thickness, interfacial boundary, etc.) fundamentally determines its structure-property relationships. The work performed in this program falls primarily into two areas: (1) studies of thin-film growth phenomena and film properties, with emphasis on diamond and multicomponent oxides; and (2) first principles quantum-mechanical calculations that model thin film growth processes and electronic structure. Frequently, the experimental and theoretical efforts are coordinated on common scientific issues in a particular material system. Current research is devoted to (a) growth

138

EM Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Emerging Materials Recent Highlights Overview: This program emphasizes materials synthesis and processing, advanced characterizations and studies of materials properties, all aimed at a fundamental understanding of materials that have potential for applications. Currently the program concentrates on complex oxides with two connected goals: Understanding the complex interrelationship between charge and spin degrees of freedom and with crystal structure Understanding the proximity interactions which occur when an oxide shares a common boundary with a metal or other oxides. Recent highlights: Quantum Spins Mimic Refrigerator Magnets quantum spins October 11, 2012 The behavior of magnetic moments in metal oxides such as iridates is dominated by strong spin-orbit coupling effects. In layered compounds such as Sr3Ir2O7, the direction of these moments is controlled at the quantum level by dipolar interactions that are akin to those of classical bar magnets. From a functional standpoint, our findings suggest novel routes toward engineered structures that allow manipulation of moments without magnetic fields, a general strategy for future low-power electronics platforms.

139

MF Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Magnetic Films Research Vision: Our vision is to address the grand challenges in condensed matter and materials physics via the exploration of the realm of nanomagnetism. Nanomagnetism is connected to fundamental questions of how the energy demands of future generations will be met via the utilization of wind turbines as a viable alternate energy source, and electric vehicles as alternatives to continued fossil-fuel consumption. Nanomagnetism is connected to the question of how the information technology revolution will be extended via the advent of spintronics and the possibilities of communication by means of pure spin currents. Nanomagnetism provides deep issues to explore in the realms of nanoscale confinement, physical proximity, far-from-equilibrium phenomena, and ultrafast and emergent

140

Criticality Model  

SciTech Connect (OSTI)

The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality computational method will be used for evaluating the criticality potential of configurations of fissionable materials (in-package and external to the waste package) within the repository at Yucca Mountain, Nevada for all waste packages/waste forms. The criticality computational method is also applicable to preclosure configurations. The criticality computational method is a component of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). How the criticality computational method fits in the overall disposal criticality analysis methodology is illustrated in Figure 1 (YMP 2003, Figure 3). This calculation will not provide direct input to the total system performance assessment for license application. It is to be used as necessary to determine the criticality potential of configuration classes as determined by the configuration probability analysis of the configuration generator model (BSC 2003a).

A. Alsaed

2004-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Argonne CNM: Electronic and Magnetic Materials and Devices Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electronic & Magnetic Materials & Devices Electronic & Magnetic Materials & Devices Group Leader: Saw-Wai Hla The objective of the Electronic and Magnetic Materials and Devices (EMMD) group at the CNM is to discover, understand, and utilize new electron and spin-based materials and phenomena in constrained geometries. Potential benefits include reduced power dissipation, new medical imaging methods and therapies, improved efficiency of data storage by spin current and electrical field-assisted writing, and enhanced energy conversion in photovoltaic devices. Research Activities Understanding complex magnetic order and coupling phenomena: Magnetic nanostructures are prone to complex magnetic ordering phenomena that do not occur in the bulk and that will have strong impact on the further development of functional magnetic nanostructures. Basic science on the influence of demagnetizing effects, geometrical frustration, next-nearest neighbor exchange interactions, unusual anisotropy values, and the spin-orbit interaction at reduced dimensionality are performed with a special focus on temperature-dependent magnetic order-disorder transitions.

142

Research needs for material mixing at extremes: workshop overview & charge  

SciTech Connect (OSTI)

Workshop goals are: (1) Raise the general awareness of material mixing problems in extreme conditions; (2) Peer into the future (15 years) for mixing experiments/diagnostics, theory/modeling and simulation/predictions in relation to material mixing; (3) Identify priority research directions, capability opportunities (especially with respect to MaRIE), and projected capability needs (not just MaRIE); and (4) The production of a MaRIE report, a peer reviewed journal paper, and a proposal for a decadal study. The last 25 years has seen substantial progress with understanding material mixing in low energy environments, particularly with the development of high fidelity experimental multi-probe diagnostics, direct numerical simulations, and science based theories and mathematical models. We now need to move such advances to the high energy environment with a goal to increase our understanding and predictability, and raise our confidence in scientifically informed decision making. Thus, this workshop is charged to look to the future ({approx} 15 years), and explore opportunities to advance our current understanding of material mixing in extreme conditions.

Andrews, Malcolm John [Los Alamos National Laboratory

2011-01-06T23:59:59.000Z

143

NREL: Photovoltaics Research - III-V Multijunction Materials and Devices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

III-V Multijunction Materials and Devices R&D III-V Multijunction Materials and Devices R&D NREL has a strong research capability in III-V multijunction photovoltaic (PV) cells. The inverted metamorphic multijunction (IMM) technology, which is fundamentally a new technology path with breakthrough performance and cost advantages, is a particular focus. We invented and first demonstrated the IMM solar cell and introduced it to the PV industry. Our scientists earlier invented and demonstrated the first-ever multijunction PV cell-and then worked with industry to develop the industry-standard GaInP/Ga(In)As/Ge) technology. III-V multijunction cells, which address both space and terrestrial power needs, have achieved the highest energy conversion efficiencies of all PV cells, with the current record exceeding 40%.

144

Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CNMS USER RESEARCH CNMS USER RESEARCH Fluctuations and Correlations in Physical and Biological Nanosystems Michael L. Simpson and Peter T. Cummings Center for Nanophase Materials Science, Oak Ridge National Laboratory When components at one level (atoms, molecules, nanostructures, etc) are coupled together to form higher-level - mesoscale - structures, new collective phenomena emerge. Optimizing such systems requires embracing stochastic fluctuations in a manner similar to that found in nature. E.g., homeostasis - regulation of a cell's internal environment to maintain stability and function at the mesoscale (i.e., cell) in the face of an unpredictable environment - is maintained even though there is considerable noise at the nanoscale (protein, RNA, molecular motor). A recent ACS Nano

145

Critical Material and Process Issues for CO2 Separation from Coal-Powered Plants  

SciTech Connect (OSTI)

Concentrating CO2 from the dilute coal combustion or gasification gas stream to a level suitable for sequestration purposes represents a major cost factor to curtail CO2 emissions by capture and sequestration schemes. This paper provides a short review of CO2 capture incentives, current separation processes, and research progress of various new technologies. Technically, CO2 can be separated out of a gas mixture by all the methods discussed in this work, such as distillation, absorption, adsorption, gas/solid reaction, membrane, electrochemical pump, hydrate formation, etc. The challenge lies in determining which approach is the most practical or feasible, and ultimately the most cost-efficient. Important material issues and their impacts on the process viability will be discussed.

Liu, Wei; King, David L.; Liu, Jun; Johnson , Brad R.; Wang, Yong; Yang, Zhenguo

2009-04-30T23:59:59.000Z

146

Critical material and process issues for CO{sub 2} separation from coal-powered plants  

SciTech Connect (OSTI)

Concentrating CO{sub 2} from the dilute coal combustion or gasification gas stream to a level suitable for sequestration purposes represents a major cost factor to curtail CO{sub 2} emissions by capture and sequestration. This paper provides a short review of CO{sub 2} capture incentives, current separation processes, and research progress of various new technologies. Scientifically, CO{sub 2} can be separated from a gas mixture by all the methods reviewed in this work: distillation, absorption, adsorption, gas/solid reaction, membrane, electrochemical pump, hydrate formation, etc. The challenge lies in practical feasibility and ultimately the cost. Important material issues and their impacts to the process viability will be discussed.

Liu, W.; King, D.; Liu, J.; Johnson, B.; Wang, Y.; Yang, Z.G. [Pacific North West National Laboratory, Richland, WA (United States)

2009-04-15T23:59:59.000Z

147

Materials research and beam line operation utilizing NSLS. Progress report  

SciTech Connect (OSTI)

MATRIX, a participating research team of Midwest x-ray scattering specialists, continues to operate beam line X-18A at NSLS. Operations of this line now provides state-of-the-art capabilities to a wide range of people in the Materials Science and Engineering research community. Improvements of the beam line continue to be a focus of MATRIX. Throughout this past year the emphasis has been shifting towards improvement in ``user friendly`` aspects. Simplified control operations and a shift to single-user personal computer has been a major part of the effort. Over the past year all 232 operational days were fully utilized. Beam line tests coupled with MATRIX members combined to use 284 days. General user demand for use of the beam line continues to be strong and four groups were provided 48 operating days. Research production has been growing as NSLS and the beam line become a more stable type of operation. For 1992 the MATRIX group published six articles. To date, for 1993 the same group has published, submitted, or has in preparation nine articles. Recent research milestones include: the first quantitative structural information on the as-quenched and early stages of decomposition of supersaturated Al-Li alloys; the first quantitative diffuse scattering measurements on a complex system (Co substitute for Cu YBCO superconductor); demonstration of capabilities of a new UHV surface diffraction chamber with in-situ characterization and temperature control (30-1300K); feasibility of phasing structure factors in a quasicrystal using multiple Bragg scattering.

Liedl, G.L.

1993-06-01T23:59:59.000Z

148

Nuclear Criticality Safety | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Criticality Safety Criticality Safety SHARE Criticality Safety Nuclear Criticality Safety ORNL is the lead national laboratory responsible for supporting the National Nuclear Security Administration (NNSA) in managing the US Nuclear Criticality Safety Program. NCSP is chartered to maintain the technical infrastructure (integral experiments, computational tools, training, data, etc.) needed to support safe, efficient fissionable material operations. ORNL has extensive expertise in the area of nuclear criticality safety (NCS) based upon years of experience in the following areas: Operations Support: providing fissionable material operations support for enrichment, fabrication, production, and research; Critical Experiments: performing experiments at the Y-12 Critical Experiment Facility;

149

SciTech Connect: Energy Frontier Research Center Center for Materials...  

Office of Scientific and Technical Information (OSTI)

Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center...

150

Materials research and beam line operation utilizing NSLS  

SciTech Connect (OSTI)

MATRIX, a participating research team of Midwest x-ray scattering specialists, continues to operate beam line X-18A at NSLS. Operations of this line now provides state-of-the-art capabilities to a wide range of people in the Materials Science and Engineering research community. Improvements of the beam line continue to be a focus of MATRIX. Throughout this past year the emphasis has been shifting towards improvement in user friendly'' aspects. Simplified control operations and a shift to single-user personal computer has been a major part of the effort. Over the past year the full 242 operational days were utilized. Beam line test and evaluation consumed 21 days with eight MATRIX groups combining to use 170 days. General user demand for use of the beam line continues to be strong and three groups were provided 51 operating days. Research production has been growing as NSLS and the beam line become a more stable type of operation. For 1990 the MATRIX group published nine articles. To data for 1991 the same group has published, submitted, or has in preparation twelve articles. Among the milestones achieved last year on MATRIX member obtained the first data from a new ultra high vacuum chamber with low temperature capability. This is a unique capability at NSLS. Another member demonstrated grazing incidence small angle x-ray scattering capability for kinetic studies of film growth.

Liedl, G.L.

1991-10-01T23:59:59.000Z

151

Materials research and beam line operation utilizing NSLS. Progress report  

SciTech Connect (OSTI)

MATRIX, a participating research team of Midwest x-ray scattering specialists, continues to operate beam line X-18A at NSLS. Operations of this line now provides state-of-the-art capabilities to a wide range of people in the Materials Science and Engineering research community. Improvements of the beam line continue to be a focus of MATRIX. Throughout this past year the emphasis has been shifting towards improvement in ``user friendly`` aspects. Simplified control operations and a shift to single-user personal computer has been a major part of the effort. Over the past year the full 242 operational days were utilized. Beam line test and evaluation consumed 21 days with eight MATRIX groups combining to use 170 days. General user demand for use of the beam line continues to be strong and three groups were provided 51 operating days. Research production has been growing as NSLS and the beam line become a more stable type of operation. For 1990 the MATRIX group published nine articles. To data for 1991 the same group has published, submitted, or has in preparation twelve articles. Among the milestones achieved last year on MATRIX member obtained the first data from a new ultra high vacuum chamber with low temperature capability. This is a unique capability at NSLS. Another member demonstrated grazing incidence small angle x-ray scattering capability for kinetic studies of film growth.

Liedl, G.L.

1991-10-01T23:59:59.000Z

152

ANNUAL TRILATERAL U.S. – EU – JAPAN CONFERENCE ON CRITICAL MATERIALS FOR A CLEAN ENERGY FUTURE, SEPTEMBER 8-9, 2014  

Broader source: Energy.gov [DOE]

Agenda from the fourth meeting of the Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future

153

Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future, October 4-5, 2011  

Broader source: Energy.gov [DOE]

Agenda from the first meeting of the Annual Trilateral U.S. – EU – Japan Conference on Critical Materials for a Clean Energy Future

154

Abstract A29: Developing biospecimen and clinical research education materials for ethnic minorities and younger survivors.  

Science Journals Connector (OSTI)

...Retention/Adherence Research: Poster Presentations - Proffered...biospecimen and clinical research education materials for ethnic minorities...the development of BB and CT education material focusing on ethnic...2) An annual Community Education and Awareness forum was designed...

Sophia Yeung; Mayra Serrano; and Kimlin Ashing-Giwa

2012-10-01T23:59:59.000Z

155

Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

ScienceCinema (OSTI)

'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

Burns, Peter (Director, Materials Science of Actinides); MSA Staff

2011-11-03T23:59:59.000Z

156

Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

ScienceCinema (OSTI)

'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

2011-11-02T23:59:59.000Z

157

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transient-Mediated fate determination in a transcriptional circuit of HIV Transient-Mediated fate determination in a transcriptional circuit of HIV Leor S. Weinberger (University of California, San Diego), Roy D. Dar (University of Tennessee), and Michael L. Simpson (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory) Achievement One of the greatest challenges in the characterization of complex nanoscale systems is gaining a mechanistic understanding of underlying processes that cannot be directly imaged. Recent research at the CNMS1 explored a novel technique of discovering the details of these interactions through the measurement of the structure of stochastic fluctuations that occur in neighboring nanoscale system components that can be directly imaged. In this work [Nature Genetics, 40(4), 466-470 (2008)], in collaboration with a

158

Neutron Scattering Application of Polarized Solid Target in Materials Research  

SciTech Connect (OSTI)

Neutron scattering is one of the most important tools for materials research. However, neutrons are very expensive to produce. Even with the best sources, such as the newly completed Spallation Neutron Source at the Oak Ridge National Laboratory, most neutron scattering experiments are still flux limited. One way to improve the experimental data is polarized neutron scattering from polarized solid target: the strong spin-dependent neutron scattering cross-section can increase the coherent scattering and decrease the incoherent scattering at the same time, thereby significantly enhancing the signal to noise ratio. Hydrogen, abundant in most soft condensed matters, has a strong spin-dependent scattering cross-section. Early applications of polarized neutron scattering in biological soft condensed matters have already demonstrated the huge potential of this technique. Here we describe the polarized target program at the SNS. The program is under active construction and is aimed at serving neutron scattering at the SNS.

Zhao, Jinkui [ORNL

2008-09-01T23:59:59.000Z

159

Materials Research for Environment and Energy Hydrogen Embrittlement in Fe-Mn-C  

E-Print Network [OSTI]

Materials Research for Environment and Energy - 1 - Hydrogen Embrittlement in Fe-Mn-C High Strength. Dierk RAABE (MPIE) #12;Materials Research for Environment and Energy - 5 - High Mn austenitic steels twinning. #12;Materials Research for Environment and Energy - 9 - However, high Mn steels undergo premature

Cambridge, University of

160

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 5, MAY 2001 583 Critical Area Computation for Missing Material  

E-Print Network [OSTI]

diagrams was given in [16]. This paper extends the framework introduced in [16] with the ability to handle 2001 583 Critical Area Computation for Missing Material Defects in VLSI Circuits Evanthia Papadopoulou Abstract--We address the problem of computing critical area for missing material defects in a circuit

Papadopoulou, Evanthia

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

2013 Annual DOE-NE Materials Research Coordination Meeting | Department of  

Broader source: Energy.gov (indexed) [DOE]

2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2013 coordination meeting as a series of four web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote greater coordination among the various Office of Nuclear Energy (NE) programs. Currently, materials research is performed in several NE programs, including NE Advanced Modeling and Simulation (NEAMS), Fuel Cycle Research and Development (FCRD), Advanced Reactor Technologies

162

2013 Annual DOE-NE Materials Research Coordination Meeting | Department of  

Broader source: Energy.gov (indexed) [DOE]

2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting 2013 Annual DOE-NE Materials Research Coordination Meeting The Reactor Materials element of the Nuclear Energy Enabling Technologies (NEET) program conducted its FY 2013 coordination meeting as a series of four web-conferences to act as a forum for the nuclear materials research community. The purpose of this meeting was to report on current and planned nuclear materials research, identify new areas of collaboration and promote greater coordination among the various Office of Nuclear Energy (NE) programs. Currently, materials research is performed in several NE programs, including NE Advanced Modeling and Simulation (NEAMS), Fuel Cycle Research and Development (FCRD), Advanced Reactor Technologies

163

Institute for Critical Technology and Applied Science Seminar Series Silicone Materials for Sustainable  

E-Print Network [OSTI]

The Photovoltaic (PV) industry has aggressive goals to decrease $/kWh and lower the overall cost of ownership for Sustainable Energy: Emphasis on Photovoltaic Materials for Module Assembly and Installation with Ann Norris properties that make them excellent candidates for photovoltaic module encapsulants and other materials

Crawford, T. Daniel

164

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

of Materials in In-situ Oil Shale Retorting Environments,"of Materials in In-Situ Oil Shale Environments," 8thCorrosion of Metals in Oil Shale Retorting Environments,"

Authors, Various

2010-01-01T23:59:59.000Z

165

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

of Materials in In-situ Oil Shale Retorting Environments,"of Materials in In-Situ Oil Shale Environments," 8thUtilization of Metals in Oil Shale Retort Components Alan V.

Authors, Various

2010-01-01T23:59:59.000Z

166

Pushing Super Materials to the Limit | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the Limit this Spring Break SpringBreakIt - Pushing Super Materials to the Limit this Spring Break Joseph Vinciquerra 2014.04.23 I lead GE's Materials Processing and Testing...

167

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

charge injection in organic semiconducting materials for improving the optoelectronic properties of organic semiconductor devices. Publication " Spin injection from...

168

FY 2008 Progress Report for Lightweighting Materials- 12. Materials Crosscutting Research and Development  

Broader source: Energy.gov [DOE]

Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes.

169

CMI Presentations to Research Experience for Undergraduates at...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentations to Research Experience for Undergraduates at Colorado School of Mines Researchers with the Critical Materials Institute described the CMI to Research Experience for...

170

NASA Turns To Universities For Research In Space-Age Materials SPACE FORUMS  

E-Print Network [OSTI]

NASA Turns To Universities For Research In Space-Age Materials CHANNELS SPACE FORUMS SPACEDAILY TECH SPACE NASA Turns To Universities For Research In Space-Age Materials innovations as simple that can scale the canyons of Mars Chapel Hill - Sep 26, 2002 NASA has selected a consortium of research

Aksay, Ilhan A.

171

Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum  

SciTech Connect (OSTI)

'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

Bowers, John (Director, Center for Energy Efficient Materials ) [Director, Center for Energy Efficient Materials; CEEM Staff

2011-05-01T23:59:59.000Z

172

Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum  

ScienceCinema (OSTI)

'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

Bowers, John (Director, Center for Energy Efficient Materials ); CEEM Staff

2011-11-02T23:59:59.000Z

173

Research Areas, Condensed Matter Physics & Materials Science Department,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Areas Areas Studies of Nanoscale Structure and Structural Defects in Advanced Materials: The goal of this program is to study property sensitive structural defects in technologically-important materials such as superconductors, magnets, and other functional materials at nanoscale. Advanced quantitative electron microscopy techniques, such as coherent diffraction, atomic imaging, spectroscopy, and phase retrieval methods including electron holography are developed and employed to study material behaviors. Computer simulations and theoretical modeling are carried out to aid the interpretation of experimental data. Electron Spectroscopy Group's primary focus is on the electronic structure and dynamics of condensed matter systems. The group carries out studies on a range materials including strongly correlated systems and thin metallic films. A special emphasis is placed on studies of high-Tc superconductors and related materials.

174

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

More than a decade of hydrogen-air fuel cell research andand Hydrogen Utilization in an Acid Fuel Cell," Electrochem.

Authors, Various

2013-01-01T23:59:59.000Z

175

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1978  

E-Print Network [OSTI]

hydrogen-air fuel cell research and development has led to the general conclusion that the most cost-

Authors, Various

2011-01-01T23:59:59.000Z

176

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

hydrogen-air fuel cell research and development has led to the general conclusion that the most cost-

Authors, Various

2013-01-01T23:59:59.000Z

177

Managing Critical Materials with a Technology-Specific Stocks and Flows Model  

Science Journals Connector (OSTI)

The scenarios detail the fleets of internal combustion engine vehicles (ICEVs), plug-in hybrid electric vehicles (PHEVs), and fully electric vehicles (EVs). ... The trade-off between higher efficiency component remanufacturing and reuse and the lower efficiency, more flexible material recycling, that allows materials to be recycled between different technologies and infrastructures, could be extended in such a study to the reuse of components between different infrastructures, such as EV batteries reused for grid-attached storage. ... Renewable energy technologies, necessary for low-carbon infrastructure networks, are being adopted to help reduce fossil fuel dependence and meet carbon mitigation targets. ...

Jonathan Busch; Julia K. Steinberger; David A. Dawson; Phil Purnell; Katy Roelich

2013-12-11T23:59:59.000Z

178

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3Lashkaryov Institute for Semiconductor Physics, National Academy of Science of Ukraine; 4Department of Materials Science and Engineering, Pennsylvania State University...

179

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ridge, TN, 37831 2 Institute of Semiconductor Physics, National Academy of Science of Ukraine,41, pr. Nauki, 03028 Kiev, Ukraine 3 Institute for Problems of Materials Science,...

180

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

Principal Investigators James Evans Douglas FuerstenauCells. Professor James lV. Evans of the Materials Scienceinitiated by Professor James W. Evans in fiscal year 1979.

Authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSK, BR) and the Scientific User Facilities Division (XGZ, EAK, APL) and the Division of Materials Sciences and Engineering (DMN), U.S. Department of Energy. Citation for...

182

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

types of systems could be of central importance to develop future electronic and optoelectronic devices with high-quality active materials. Significance One of the great...

183

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

despite the proposed use of organic thin-film materials in energy-related optoelectronic devices such as solid state lighting and photovoltaic cells. Although...

184

Paul V. Braun and John A. Rogers Materials Research Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

epitaxy of high- performance III-V semiconductor materials. We have demonstrated optoelectronic functionality by fabricating a 3D photonic crystal LED, the rst- ever electrically...

185

Science as Art: Materials Characterization Art | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

bamboo plant to grow. A porous "composite" structure as seen in the image would help in engineering structural materials capable of carrying fluids or gases internally." However,...

186

Exporting, Importing, and Shipping Biological Research Materials Regulatory Review Checklist and Record  

E-Print Network [OSTI]

Exporting, Importing, and Shipping Biological Research Materials Regulatory Review Checklist and obtain the necessary government approvals. Plan ahead; government permits or special packaging may take

California at Irvine, University of

187

Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97  

SciTech Connect (OSTI)

This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

Newkirk, L.

1997-12-01T23:59:59.000Z

188

Bio-Based Phase Change Materials Research Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Based Phase Change Materials Research Based Phase Change Materials Research Project Bio-Based Phase Change Materials Research Project The Department of Energy is currently conducting research into the development of low cost, bio-based phase change materials for building envelopes. Because insulation keeps hot air out inside buildings during the summer and outside during the winter, developing low cost materials can both drive down the cost of insulation and reduce energy costs. Project Description This project seeks to develop a low cost manufacturing process for the production of phase change materials (PCMs), and to subsequently evaluate the PCM pellets produced to provide improved insulation in buildings. Project Partners Research is being undertaken between the Department of Energy, Oak Ridge

189

ECS Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Energy Conversion and Storage Research Energy conversion This work is a continuation of the successful work performed at Berkeley National Lab. Building on the research on Pt-alloy single crystals which was published in Science, research at Argonne focuses on a deeper understanding of the type of surface necessary to facilitate the Oxygen Reduction Reaction (ORR), the troubled cathode reaction of a fuel cell. The anode side of the fuel cell is not neglected and research on the Hydrogen Oxidation Reaction (HOR) and CO oxidation reactions is one of the group's core priorities. Efforts, however, do not end there. By investigating the effects of anything may be present at or near the electrode surface, such as anions, cations and ionomer, an insight into the mechanism behind

190

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atomistic Branching Mechanism for Carbon Nanotubes: Sulfur as the Triggering Agent Jose M. Romo-Herrera CNMS User, Institute for Scientific and Technological Research of San Luis...

191

MATERIALS AND MOLECULAR RESEARCH DIVISION Annual Report 1977.  

E-Print Network [OSTI]

Stainless Steel in Coal Gasification Environments, LBL-733Z.of Materials Used in Coal Gasification Plants, AGA- ERDA-MPCon ~hterials for the Gasification of Coal, presented to the

Authors, Various

2011-01-01T23:59:59.000Z

192

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

of Fe-Cr-Ni Alloys in Coal Gasifier Environments," OxidationStructural ~latorials in Coal Gasifier Atmospheres," UCLA,char parti- cles in coal gasifiers consist of materials with

Authors, Various

2013-01-01T23:59:59.000Z

193

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-temperature Exfoliation of Multilayer-Graphene Material from FeCl3 and CH3NO2 Co-intercalated Graphite Compound Wujun Fu,a Jim Kiggans,b Steven H. Overbury,a,c Viviane...

194

MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981  

E-Print Network [OSTI]

and total Immer­ sion 1n shale oil on the corrosion of steel1013 steel. Exposure to shale oil at 300 C for 100 hoursof Materials in In-situ Oil Shale Retorting Environments,"

Authors, Various

2010-01-01T23:59:59.000Z

195

Research and Devlopment Associate Center for Nanophase Materials Sciences Division  

E-Print Network [OSTI]

: i) selective conversion of biomass-derived compounds; ii) rechargeable metal-air batteries as next. · Heterogeneous catalysis and electrocatalysis on metals, metal compounds, and nano- materials. · Current focuses

Pennycook, Steve

196

FY 2009 Progress Report for Lightweighting Materials- 12. Materials Crosscutting Research and Development  

Broader source: Energy.gov [DOE]

The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

197

TDAG Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research TDAG Research Background information Originally Environmental Chemistry Team Started in early 90s Field or "On Site" Analytical Method Development Field GC & MS, Mobile Lab (at DOE & DOD sites) Portable XRF (Pb, Hg, As) Chemical Sensors Site Investigations Analysis of environmental samples Analytical Method Development Chemical agent determination (Projects at DPG, APG, RMA) Environmental analysis (EPA methods) Process analysis (CAMDS, AMTEX) Current Capabilities Neutron Activation Facility - Dedicated to NAUTICAS Project for the ONR, but may be available for other projects. (Homeland security, Catalysis studies) ICP/MS Lab - Perkin Elmer. Used for trace characterization of metals GC/MS Lab - Perkin Elmer Clarus 600 GC/MS system. Used for

198

Challenges and Opportunities in Thermoelectric Materials Research for Automotive Applications  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

199

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Publications and Reports d. Oil Shale Retort Components A.in Simulated In-Situ Oil Shale Retorts Research Plans forP. 1111ittle and A. V. Levy, "Oil Shale Eetort Components,"

Authors, Various

2013-01-01T23:59:59.000Z

200

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the support within the PhD fellowship grant SFRHBD223912005 and the FCT project PTDCFIS814422006. A.A.B. and Z.-G.Y. are grateful to the U.S. Office of Naval Research...

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An optimized nanoparticle separator enabled by elecron beam induced deposition J. D. Fowlkes,1 M. J. Doktycz2 and P. D. Rack1,3 1Nanofabricatin Research Laboratory, Center for...

202

The Spallation Neutron Source A Powerful Tool for Materials Research  

E-Print Network [OSTI]

The wavelengths and energies of thermal and cold neutrons are ideally matched to the length and energy scales in the materials that underpin technologies of the present and future: ranging from semiconductors to magnetic devices, composites to biomaterials and polymers. The Spallation Neutron Source (SNS) will use an accelerator to produce the most intense beams of neutrons in the world when it is complete at the end of 2005. The project is being built by a collaboration of six U.S. Department of Energy laboratories. It will serve a diverse community of users drawn from academia, industry, and government labs with interests in condensed matter physics, chemistry, engineering materials, biology, and beyond.

Mason, Thomas E; Crawford, R K; Herwig, K W; Klose, F; Ankner, J F

2000-01-01T23:59:59.000Z

203

Postdoctoral Research Associate Center for Nanophase Materials Sciences  

E-Print Network [OSTI]

that can lead us to design superior devices for various applications. 2. Design of high capacity energy of energy storage systems. #12;3. Catalysis properties of low-dimensional materials: Most of the catalysts are noble metals. Wide efforts are being made to replace or reduce the usage of noble metals. Low

Pennycook, Steve

204

Evaluation of critical materials for five advanced design photovoltaic cells with an assessment of indium and gallium  

SciTech Connect (OSTI)

The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. This report presents the results of the screening of the five following advanced PV cell designs: polycrystalline silicon, amorphous silicon, cadmium sulfide/copper sulfide frontwall, polycrystalline gallium arsenide MIS, and advanced concentrator-500X. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 GWe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has 5 GWe of peak capacity by the year 2000, so that the total online cpacity for the five cells is 25 GWe. Based on a review of the preliminary basline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. Earlier DOE sponsored work on the assessment of critical materials in PV cells conclusively identtified indium and gallium as warranting further investigation as to their availability. Therefore, this report includes a discussion of the future availability of gallium and indium. (WHK)

Watts, R.L.; Gurwell, W.E.; Jamieson, W.M.; Long, L.W.; Pawlewicz, W.T.; Smith, S.A.; Teeter, R.R.

1980-05-01T23:59:59.000Z

205

Panoramic View of Electrochemical Pseudocapacitor and Organic Solar Cell Research in Molecularly Engineered Energy Materials (MEEM)  

Science Journals Connector (OSTI)

Panoramic View of Electrochemical Pseudocapacitor and Organic Solar Cell Research in Molecularly Engineered Energy Materials (MEEM) ... His research group is engaged in a wide range of interdisciplinary research projects at the intersection between interfacial and transport phenomena, material science, and biology for sustainable energy conversion, storage, and efficiency technologies. ... Of these, carbon capture was phased out in the early stages of the project to concentrate available resources on the electrochemical pseudocapacitor and organic solar cell themes. ...

Jordan C. Aguirre; Amy Ferreira; Hong Ding; Samson A. Jenekhe; Nikos Kopidakis; Mark Asta; Laurent Pilon; Yves Rubin; Sarah H. Tolbert; Benjamin J. Schwartz; Bruce Dunn; Vidvuds Ozolins

2014-07-09T23:59:59.000Z

206

SM Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Superconductivity and Magnetism Research Vision The continuing discovery of novel superconductors outruns our ability to explain and control their behavior. Strong electron correlations in the cuprates give rise to unconventional pairing mechanisms and gap symmetries. The large anisotropy and high thermal energies generate novel pancake vortices, Abrikosov and Josephson vortices and a new liquid vortex phase. Furthermore, a succession of novel insulating, magnetic, non-Fermi liquid, and pseudo-gapped phases arises in the normal state. In addition, MgB2 and the iron pnictides add multiband behavior. Our vision is to understand the electronic and vortex properties of novel superconductors and to control their macroscopic behavior by adjusting their nanoscale

207

CMT Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Condensed Matter Theory Research Technical Progress Superconductivity Nobel Prize in physics awarded to Abrikosov at Stockholm ceremony: ARGONNE, Ill. (Dec. 10, 2003) Ñ The 2003 Nobel Prize in physics was awarded to Alexei A. Abrikosov of the U.S. Department of Energy's Argonne National Laboratory at a ceremony in Stockholm. Abrikosov shared the prize with two colleagues for theories about how matter can show bizarre behavior at extremely low temperatures. The Royal Swedish Academy of Sciences cited Abrikosov, Anthony J. Leggett and Vitaly L. Ginzburg for their work concerning two phenomena called superconductivity and superfluidity. ARPES spectra in the superconducting state of the cuprates are characterized by a low binding energy feature (quasiparticle peak), and a

208

Basic research needs and opportunities on interfaces in solar materials  

SciTech Connect (OSTI)

The workshop on research needs and recommended research programs on interfaces in solar energy conversion devices was held June 30-July 3, 1980. The papers deal mainly with solid-solid, solid-liquid, and solid-gas interfaces, sometimes involving multilayer solid-solid interfaces. They deal mainly with instrumental techniques of studying these interfaces so they can be optimized, so they can be fabricated with quality control and so changes with time can be forecast. The latter is required because a long lifetime (20 yrs is suggested) is necessary for economic reasons. Fifteen papers have been entered individually into EDB and ERA. (LTN)

Czanderna, A.W.; Gottschall, R.J. (eds.)

1981-04-01T23:59:59.000Z

209

Research in space-age materials takes off with support from NASA  

E-Print Network [OSTI]

Research in space-age materials takes off with support from NASA Steven Schultz Princeton NJ and reliable airplanes and spacecraft. NASA will fund the project with at least $3 million a year for up to 10 institute operated at the NASA Langley Research Center in Virginia. In addition to conducting basic research

Aksay, Ilhan A.

210

Productivity Techniques and Quality Aspects in the Criticality Safety Evaluation of Y-12 Type-B Fissile Material Packages  

SciTech Connect (OSTI)

The inventory of certified Type-B fissile material packages consists of ten performance-based packages for offsite transportation purposes, serving transportation programs at the Y-12 National Security Complex. The containment vessels range from 5 to 19 in. in diameter and from 17 to 58 in. in height. The drum assembly external to the containment vessel ranges from 18 to 34 in. in diameter and from 26 to 71 in. in height. The weight of the packaging (drum assembly and containment vessel) ranges from 239 to 1550 lb. The older DT-nn series of Cellotex-based packages are being phased-out and replaced by a new generation of Kaolite-based ('Y-12 patented insulation') packages capable of withstanding the dynamic crush test 10 CFR 71.73(c)(2). Three replacement packages are in various stages of development; two are in use. The U.S. Department of Transportation (DOT) 6M specification package, which does not conform to the U.S. Nuclear Regulatory Commission requirements for Type-B packages, is no longer authorized for service on public roads. The ES-3100 shipping package is an example of a Kaolite-based Type-B fissile material package developed as a replacement package for the DOT 6M. With expanded utility, the ES-3100 is designed and licensed for transporting highly enriched uranium and plutonium materials on public roads. The ES-3100 provides added capability for air transport of up to 7-kg quantities of uranium material. This paper presents the productivity techniques and quality aspects in the criticality safety evaluation of Y-12 packages using the ES-3100 as an example.

DeClue, J. F.

2011-06-28T23:59:59.000Z

211

Nuclear-Fuel-Cycle Research Program: availability of geotoxic material  

SciTech Connect (OSTI)

This report represents an analog approach to the characterization of the environmental behavior of geotoxic waste materials (toxic material emplaced in the earth's crust) as drawn from literature on the Oklo natural fission reactors and uranium ore deposits relative to radioactive wastes, and hydrothermal metal ore deposits relative to stable toxic wastes. The natural analog data were examined in terms of mobility and immobility of selected radioactive or stable waste elements and are presented in matrix relationship with their prime geochemical variables. A numerical system of ranking those relationships for purposes of hazard-indexing is proposed. Geochemical parameters (especially oxidation/reduction potential) are apparently more potent mobilizers/immobilizers than geological or hydrological conditions in many, if not most, geologic environments for most radioactive waste elements. Heavy metal wastes, by analogy to hydrothermal ore systems and geothermal systems, are less clear in their behavior but similar geochemical patterns do apply. Depth relationships between geochemical variables and waste element behavior show some surprises. It is significantly indicated that for waste isolation, deeper is not necessarily better geochemically. Relatively shallow isolation in host rocks such as shale could offer maximum immobility. This paper provides a geochemical outline for examining analog models as well as a departure point for improved quantification of geological and geochemical indexing of toxic waste hazards.

Wachter, B.G.; Kresan, P.L.

1982-09-01T23:59:59.000Z

212

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanoscale Measurements of Glass Transition Temperature and Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman Chemical Co.), and S.V. Kalinin Achievement We report a novel method for local measurements of glass transition temperatures and the temperature dependence of elastic and loss moduli of polymeric materials. The combination of Anasys Instruments' heated tip technology, ORNL-developed band excitation scanning probe microscopy, and a "freeze-in" thermal profile technique allows quantitative thermomechanical measurements at high spatial resolution on the order of ~100 nm. Here, we developed an experimental approach for local thermomechanical probing that reproducibly tracks changes in the mechanical properties of

213

Sandia National Labs: Materials Science and Engineering Center: Research &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accomplishments Accomplishments Patents PATENTS Method for Making Surfactant-Templated Thin Films, Jeff Brinker, Hongyou Fan, Patent #RE41612, issued 8/13/10 Dendritic Metal Nanostructures, John Shelnutt, Yujiang Song, Patent #7,785,391, issued 8/13/10 Metal Nanoparticles as a Conductive Catalyst, Eric Coker, Patent #7,767,610, issued 8/13/10 Water-Soluable Titanium Alkoxide Material, Timothy Boyle, Patent # 7,741,486 B1, issued 6/22/10 Microfabricated Triggered Vacuum Switch, Alex W. Roesler, Joshua M. Schare,Kyle Bunch, Patent #7,714,240, issued 5/11/10 Method of Photocatalytic Nanotagging, John Shelnutt, Craig Medforth, Yujiang Song, Patent #7,704,489, issued 4/27/10 Correlation Spectrometer, Michael Sinclair, Kent Pfeifer, Jeb Flemming, Gary D Jones, Chris Tigges, Patent #7,697,134, issued 4/13/10

214

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Metal-Directed Growth of Single-Crystal M-TCNQF4 Organic Understanding Metal-Directed Growth of Single-Crystal M-TCNQF4 Organic Nanowires K. Xiao, M. Yoon, A. J. Rondinone, E. A. Payzant, and D. B. Geohegan Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement Combined experimental and theoretical studies revealed the nucleation and growth mechanisms of M-TCNQF4 crystalline organic nanowires grown on different metals by vapor-solid chemical reaction (VSCR). Real-time x-ray diffraction was used to measure the growth kinetics of the nanowires, and a modified Avrami model of the data showed that growth proceeds via a 1D ion diffusion-controlled reaction at their tips. First principles atomistic calculations were used to understand how charge transfer interactions govern the reactivity of different metals in the growth process through the

215

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene glycol)-Grafted Polystyrene in Dilute Solutions: Effect of the Backbone Length Gang Cheng,1 Yuri B. Melnichenko,1 George D. Wignall,1 Fengjun Hua,2 Kunlun Hong,2 and Jimmy W. Mays2 1Neutron Scattering Sciences Division, Oak Ridge National Laboratory 2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement: The cooperative interactions among functional segments of biopolymers have led to attempts to create novel synthetic polymers, which are environmentally responsive to various stimuli, such as temperature or pH, in a controlled manner. Understanding the nanoscale conformational changes and phase behavior upon exposure of these polymers to external stimuli is

216

Analytical SuperSTEM for extraterrestrial materials research  

SciTech Connect (OSTI)

Electron-beam studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single-atomic-column resolution, liquids and implanted gases can be detected, and UV-VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved such that quantitative measurements of some extend to the sub-500 ppm level. Electron energy-loss spectroscopy (EELS) can be carried out with 0.10-0.20 eV energy resolution and atomic-scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy-dispersive x-ray spectroscopy (EDS) and energy-filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K-edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), x-ray elemental maps showing the nanometer-scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H{sub 2}O in vesicles and implanted H{sub 2} and He in irradiated mineral and glass grains.

Bradley, J P; Dai, Z R

2009-09-08T23:59:59.000Z

217

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry http://www.msd.anl.gov 2014-01-12T01:07:26+00:00 Joomla! Chemistry http://www.msd.anl.gov 2014-01-12T01:07:26+00:00 Joomla! 1.6 - Open Source Content Management Nanostructured Thin Films 2011-03-24T15:53:27+00:00 2011-03-24T15:53:27+00:00 http://www.msd.anl.gov/research-areas/nanostructured-thin-films Lacey Bersano lbersano@anl.gov Nanostructured Thin Films Staff Principal Investigator John A. Carlisle Larry A. Curtiss Dieter M. Gruen Postdoc Paola Bruno Chao Liu Nevin Naguib Bing Shi Michael Sternberg Jian

218

Vehicle Technologies Office: Short-Term Lightweight Materials Research (Advanced High-Strength Steel and Aluminum)  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports research into replacing heavy steel components with materials such as high-strength steel, aluminum, or glass fiber-reinforced polymer composites in vehicles, which can decrease component weight by 10-60 percent.

219

Sorbents and Carbon-Based Materials for Hydrogen Storage Research and Development  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's research and development on sorbents and carbon-based materials for hydrogen storage targets breakthrough concepts for storing hydrogen in high-surface-area sorbents...

220

Building Thermal Envelope Systems and Materials (BTESM) progress report for DOE Office of Buildings Energy Research  

SciTech Connect (OSTI)

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Research and development of novel advanced materials for next-generation collimators  

E-Print Network [OSTI]

The study of innovative collimators is essential to handle the high energy particle beams required to explore unknown territory in basic research. This calls for the development of novel advanced materials, as no existing metal-based or carbon-based material possesses the combination of physical, thermal, electrical and mechanical properties, imposed by collimator extreme working conditions. A new family of materials, with promising features, has been identified: metal-diamond composites. These materials are to combine the outstanding thermal and physical properties of diamond with the electrical and mechanical properties of metals. The best candidates are Copper-Diamond (Cu-CD) and Molybdenum-Diamond (Mo-CD). In particular, Mo-CD may provide interesting properties as to mechanical strength, melting temperature, thermal shock resistance and, thanks to its balanced material density, energy absorption. The research program carried out on these materials at CERN and collaborating partners is presented, mainly fo...

Bertarelli, A; Carra, F; Dallocchio, A; Gil Costa, M; Mariani, N

2011-01-01T23:59:59.000Z

222

CRITICAL MATERIALS INSTITUTE PROJECTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anisotropy in REE Systems and d -Impurities in Phosphors 4 4-1 4.1.2 Harrison, Stephen Simbol Improved Methods for Lithium Extraction 1 1-1 1.1.3 Herbst, Scott INL Enhanced...

223

CRITICAL MATERIALS INSTITUTE PROJECTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Separations 3 3-2 3.2.2 Riman, Richard Rutgers Fundamental Properties and Phase Diagrams 4 4-1 4.1.3 Harrison, Stephen Simbol Improved Methods for Lithium Extraction 1 1-1 1.1.3...

224

Disclaimers | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the United States Government or Iowa State University, and shall not be used for advertising or product endorsements purposes. COPYRIGHT STATUS: Ames Laboratory authored...

225

CRITICAL MATERIALS INSTITUTE PROJECTS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Future Opportunities 3 3-1 3.1.6 Herbst, Scott INL Enhanced Separation of Adjacent Rare Earth Elements 1 1-2 1.2.1 Fox, Bob INL Supercritical Fluid Beneficiation of Waste Streams 3...

226

Materials Corrosion and Mitigation Strategies for APT, Weapons Neutron Research Facility Experiments  

E-Print Network [OSTI]

Materials Corrosion and Mitigation Strategies for APT, Weapons Neutron Research Facility Experiments: The Effects of 800 MeV Proton Irradiation on the Corrosion of Tungsten, Tantalum, Stainless Steel, and Gold R. Scott Lillard, Darryl P. Butt Materials Corrosion & Environmental Effects Laboratory MST-6

227

Energy Frontier Research Centers | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Synthesis from Atoms to Systems Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Center for Defect Physics in Structural Materials Fluid Interface Reactions, Structure and Transport Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Energy Frontier Research Centers SHARE Energy Frontier Research Centers Advanced Materials research at ORNL is home to two Department of Energy-Office of Basic Energy Sciences' Energy Frontier Research Centers, the Fluid Interface Reaction, Structure, and Transport Center (FIRST), which focuses on understanding interfacial processes critical to electrical energy storage and catalysis, and the Center for Defect Physics, (CDP)

228

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect (OSTI)

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

229

Building thermal envelope systems and materials (BTESM) progress report for DOE Office of Buildings Energy Research  

SciTech Connect (OSTI)

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, and building diagnostics. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-10-01T23:59:59.000Z

230

Building Thermal Envelope Systems and Materials (BTESM) progress report for DOE Office of Buildings Energy Research  

SciTech Connect (OSTI)

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, and building diagnostics. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-12-01T23:59:59.000Z

231

Materials irradiation subpanel report to BESAC neutron sources and research panel  

SciTech Connect (OSTI)

The future success of the nuclear power option in the US (fission and fusion) depends critically on the continued existence of a healthy national materials-irradiation program. Consideration of the requirements for acceptable materials-irradiation systems in a new neutron source has led the subcommittee to identify an advanced steady-state reactor (ANS) as a better choice than a spallation neutron source. However, the subcommittee also hastens to point out that the ANS cannot stand alone as the nation`s sole high-flux mixed-spectrum neutron irradiation source in the next century. It must be incorporated in a broader program that includes other currently existing neutron irradiation facilities. Upgrading and continuing support for these facilities must be planned. In particular, serious consideration should be given to converting the HFIR into a dedicated materials test reactor, and long-term support for several university reactors should be established.

Birtcher, R.C. [Argonne National Lab., IL (United States); Goland, A.N. [Brookhaven National Lab., Upton, NY (United States); Lott, R. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center; Odette, G.R. [California Univ., Santa Barbara, CA (United States)

1992-09-10T23:59:59.000Z

232

Introduction Aerial surveys from aircraft are a critical component of many environmental research,  

E-Print Network [OSTI]

. For localized surveys, small Unmanned Air Vehicles (UAVs) equipped with color and near infrared cameras accuracy assessment and improvement of detection probabilities. Autonomous Unmanned Aerial Vehicle (UAV) for Ecological Research Franklin Percival1 , Leonard Pearlstine2 , Bon Dewitt3 , Scot Smith3 , Adam Watts1

Mazzotti, Frank

233

MATERIALS RESEARCH DEPARTMENT 2000 A n n u a l R e p o r t 2 0 0 0  

E-Print Network [OSTI]

Research Department Annual Report 2000 Published by Materials Research Department Risø National Laboratory technological materials 32 Materials chemistry: development of solid oxide fuel cells 35 FINANCES 36 STAFF 38 and the characteri- sation of amorphous alloys produced by rapid solidification. Within solid oxide fuel cells (SOFC

234

Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials Science, Nanotechnology  

E-Print Network [OSTI]

Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials and spacious clean room laboratories for nanofabrication of devices. Interested candidates are urged to submit. of Micro/Nanometer Sci. & Technology 800 Dongchuan Road, Shanghai, China 200240 e-mail:

Alpay, S. Pamir

235

Annual Report 2010 Page 1 PHYSICS AND MATERIALS SCIENCE RESEARCH UNIT (PHYMS)  

E-Print Network [OSTI]

chalcopyrites and kesterites, aiming at low cost and high efficiency. Fundamental semiconductor physicsMS comprises: Physics of Advanced Materials LPM, Soft Condensed Matter Physics TSCM and Photovoltaics LPV. Its of nanomagnets. TSCM, the group for Theory of Soft Condensed Matter, was built up in 2010. The topic of research

van der Torre, Leon

236

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.  

E-Print Network [OSTI]

in the common goal of maximizing access to critical research. Darwin's bark spider: giant prey in giant orb webs societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site holder. #12;Darwin's bark spider: giant prey in giant orb webs (Caerostris darwini, Araneae: Araneidae

Agnarsson, Ingi

237

Energy Department Announces Launch of Energy Innovation Hub for Critical  

Broader source: Energy.gov (indexed) [DOE]

Launch of Energy Innovation Hub for Launch of Energy Innovation Hub for Critical Materials Research Energy Department Announces Launch of Energy Innovation Hub for Critical Materials Research May 31, 2012 - 5:56pm Addthis WASHINGTON - U.S. Secretary of Energy Steven Chu today announced plans to invest up to $120 million over five years to launch a new Energy Innovation Hub, establishing a multidisciplinary and sustained effort to identify problems and develop solutions across the lifecycle of critical materials. Rare earth elements and other critical materials have unique chemical and physical characteristics, including magnetic, catalytic and luminescent properties, that are important for a growing number of energy technologies. These critical materials are also at risk for supply disruptions. The

238

Energy Department Announces Launch of Energy Innovation Hub for Critical  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Announces Launch of Energy Innovation Hub for Energy Department Announces Launch of Energy Innovation Hub for Critical Materials Research Energy Department Announces Launch of Energy Innovation Hub for Critical Materials Research May 31, 2012 - 5:56pm Addthis WASHINGTON - U.S. Secretary of Energy Steven Chu today announced plans to invest up to $120 million over five years to launch a new Energy Innovation Hub, establishing a multidisciplinary and sustained effort to identify problems and develop solutions across the lifecycle of critical materials. Rare earth elements and other critical materials have unique chemical and physical characteristics, including magnetic, catalytic and luminescent properties, that are important for a growing number of energy technologies. These critical materials are also at risk for supply disruptions. The

239

Design and Materials The Design area is a rapidly growing research area aimed at furthering the development of  

E-Print Network [OSTI]

Design and Materials Design The Design area is a rapidly growing research area aimed at furthering the development of competitive products and systems. Research in this department focuses on design theories, design methodologies

Calgary, University of

240

Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96  

SciTech Connect (OSTI)

This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

Chase, L.

1997-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1993 and research proposal for FY 1994  

SciTech Connect (OSTI)

The materials research laboratory program is about 30% of total Materials Science and Engineering effort on the Univ. of Illinois campus. Coordinated efforts are being carried out in areas of structural ceramics, grain boundaries, field responsive polymeric and organic materials, molecular structure of solid-liquid interfaces and its relation to corrosion, and x-ray scattering science.

Birnbaum, H.K.

1993-03-01T23:59:59.000Z

243

ESS 2012 Peer Review - Advanced Sodium Battery - Joonho Koh, Materials & Systems Research  

Broader source: Energy.gov (indexed) [DOE]

Sodium Battery Sodium Battery Joonho Koh (jkoh@msrihome.com), Greg Tao (gtao@msrihome.com), Neill Weber, and Anil V. Virkar Materials & Systems Research, Inc., 5395 W 700 S, Salt Lake City, UT 84104 Company Introduction History  Founded in 1990 by Dr. Dinesh K. Shetty and Dr. Anil V. Virkar  Currently 11 employees including 5 PhDs  10,000 ft² research facility in Salt Lake City, Utah MSRI's Experience of Na Batteries Status of the Na Batteries Overall Project Description Goal Develop advanced Na battery technology for enhanced safety, reduced fabrication cost, and high-power performance Approach  Innovative cell design using stronger structural materials  Reduction of the fabrication cost using a simple and reliable processing technique

244

The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

ScienceCinema (OSTI)

'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

2011-11-02T23:59:59.000Z

245

MATERIALS RESEARCH DEPARTMENT 2000 A n n u a l R e p o r t 2 0 0 0  

E-Print Network [OSTI]

resistant Fe- based matrix-ceramic composite materials. The formability of the materials has been28 MATERIALS RESEARCH DEPARTMENT 2000 A n n u a l R e p o r t 2 0 0 0 Highlights are as follows: i. Preparation of metal matrix composites with high wear resistance and satisfac- tory forgeability ii

246

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

247

CRITICALITY SAFETY (CS)  

Broader source: Energy.gov (indexed) [DOE]

OBJECTIVE CS.1 The LANL criticality safety program provides the required technical guidance and oversight capabilities to ensure a comprehensive criticality safety program for the storage of nuclear materials in SSTs. (Core Requirements 3, 4, 8) Criteria * The Criticality Safety Program is an administrative TSR and meets the General and * Specific Requirements of DOE O 420.1A, Section 4.3 Nuclear Criticality Safety. * All processes and operations involving significant quantities of fissile materials are * described in current procedures approved by line management. * Procedures contain approved criticality controls and limits, based on HSR-6 evaluations and recommendations. * Supervisors, operations personnel, and criticality safety officers have received

248

NREL: Photovoltaics Research - Silicon Materials and Devices R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Silicon Materials and Devices R&D Silicon Materials and Devices R&D R&D 100 Awards Since 2010, we have won three R&D 100 Awards. Flash Quantum Efficiency (Flash QE) System for Solar Cells Innovalight Silicon Ink Process Low-Cost Black Silicon Etching Process Graphic of three layers. The bottom layer, called inexpensive substrate, is white. Middle dark blue layer is called the seed. Top light blue layer has the text epi c-Si absorber. Schematic diagram of the film crystal silicon solar cell. A high-quality crystal silicon absorber is grown epitaxially on a seed layer applied to an inexpensive foreign substrate (e.g., display glass or rolled metal foil). At NREL, we are developing various emitter, back-surface field, and light-trapping strategies. NREL has world-leading research capabilities and expertise in silicon

249

Materializing Energy  

E-Print Network [OSTI]

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of materializing energy. Three critical themes are presented: the intangibility of energy, the undifferentiatedness of energy, and the availability of energy. Each theme is developed through combination of critical investigation and design exploration, including the development and deployment of several novel design artifacts: Energy Mementos and The Local Energy Lamp. A framework for interacting with energy-as-materiality is proposed involving collecting, keeping, sharing, and activating energy. A number of additional concepts are also introduced, such as energy attachment, energy engagement, energy attunement, local energy and energy meta-data. Our work contributes both a broader, more integrative design perspective on energy and materiality as well as a diversity of more specific concepts and artifacts that may be of service to designers and researchers of interactive systems concerned with sustainability and energy. Author Keywords Sustainability, energy, materiality, design, design theory

James Pierce; Eric Paulos

250

Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer progress report for DOE (Department of Energy) Office of Buildings Energy Research  

SciTech Connect (OSTI)

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-08-01T23:59:59.000Z

251

Collaborative research on amine borane regeneration and market analysis of hydrogen storage materials.  

SciTech Connect (OSTI)

Amine borane (AB) is a very high capacity hydrogen storage material that meets DOE gravimetric and volumetric targets for on-board delivery of hydrogen for fuel cell vehicles (FCVs). This research helped make process toward the ultimate goal of practical generation of spent AB and added to the understanding of materials and processes required to utilize AB in practical applications. In addition, this work helped to enhance our fundamental understanding of the properties of boron materials now being pursued for new frustrated Lewis pair catalyst systems for activation of hydrogen and carbon dioxide, of interest for carbon capture and fuels production. This project included four primary areas of investigation: (1) synthesis of borate esters for use as amine borane regeneration intermediates, (2) spent ammonia borane fuel generation and analysis, (3) spent fuel digestion for production of borate esters, and (4) worldwide borate resource analysis. Significant progress was made in each of these areas during the two-year course of this project, which involved extensive collaborations with partners in the Center of Excellence for Chemical Hydrogen Storage, and particularly with partners at the Pacific Northwest National Laboratory. Results of the boron resource analysis studies indicate that sufficient boron reserves exist within the United States to meet forecast requirements for a U.S. fleet of hydrogen FCVs and sufficient resources are available worldwide for a global fleet of FCVs.

David Schubert

2010-12-06T23:59:59.000Z

252

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

253

Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels  

SciTech Connect (OSTI)

The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

Todd R. Allen, Director

2011-04-01T23:59:59.000Z

254

DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory  

SciTech Connect (OSTI)

The scientific programs of the FSMRL supported under the DOE A9024 Grant consisted of four interdisciplinary research clusters, as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and Engineering). The completed work followed a dominant theme--Nanoscale Materials Systems--and emphasized studies of complex phenomena involving surfaces, interfaces, complex materials, dynamics, energetics, and structures and their transformations. A summary of our key accomplishments is provided for each cluster.

Lewis, Jennifer A.

2009-03-24T23:59:59.000Z

255

Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993--March 31, 1995  

SciTech Connect (OSTI)

The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.

Carlson, P.T. [comp.

1995-04-01T23:59:59.000Z

256

Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993  

SciTech Connect (OSTI)

Objective of DOE's Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

Carlson, P.T. (comp.)

1993-01-01T23:59:59.000Z

257

Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993  

SciTech Connect (OSTI)

Objective of DOE`s Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

Carlson, P.T. [comp.

1993-05-01T23:59:59.000Z

258

Neutron scattering Materials research for modern life Almost all of the major changes in our society, the dramatic  

E-Print Network [OSTI]

Neutron scattering Materials research for modern life #12;Almost all of the major changes in our scattering experiments, materials are exposed to intense beams of neutrons inside specialised instruments that neutron scattering science contributes to our lives. Because of the collaborative nature of modern

Crowther, Paul

259

Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992  

SciTech Connect (OSTI)

Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

Cole, N.C.; Judkins, R.R. [comps.

1992-12-01T23:59:59.000Z

260

Energy and materials conservation: applying pioneering research and techniques to current non-energy materials conservation issues  

Science Journals Connector (OSTI)

...interest is in their low entropy content, the readily available energy in these materials. Clearly...reasons for the change in the energy content of the average GNP dollar, a kind of overall energy efficiency measure of the...

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)  

SciTech Connect (OSTI)

The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

J. K. Wright; R. N. Wright

2008-04-01T23:59:59.000Z

262

Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470  

SciTech Connect (OSTI)

This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

van Hest, M.

2013-08-01T23:59:59.000Z

263

Evaluation of the Benefits Attributable to Automotive Lightweight Materials Program Research and Development Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-237 -237 Evaluation of the Benefits Attributable to Automotive Lightweight Materials Program Research and Development Projects November 2001 Prepared by Sujit Das Oak Ridge National Laboratory Jean H. Peretz The University of Tennessee Bruce Tonn Oak Ridge National Laboratory DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov Web site: http://www.ntis.gov/support/ordernowabout.htm

264

EMSL Research and Capability Development Proposals Nonlinear Radiation Response and Transport Properties in Scintillating Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Figure 1. Time-of-Flight (TOF) versus light Figure 1. Time-of-Flight (TOF) versus light output (L) of CsI:Tl to He + ions. The inset is an example where L=263 is determined for particles with certainty energy (TOF=840). The energy resolution can be determined by ∆L/L = 45/263. The light-energy dependence and energy resolution can be observed as the difference in curvature and dispersive of the data. EMSL Research and Capability Development Proposals Nonlinear Radiation Response and Transport Properties in Scintillating Materials Project start date: Spring 2007 EMSL Lead Investigator: Yanwen Zhang Deposition and Microfabrication, EMSL, PNNL Co-investigators: Vaithiyalingam Shutthanandan Deposition and Microfabrication, EMSL, PNNL Scintillation response has wide applications in the field of astronomy, medical physics, high-energy

265

Center for Materials at Irradiation and Mechanical Extremes at LANL (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

ScienceCinema (OSTI)

'Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL' was submitted by CMIME to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegia Mellon University, the University of Illinois at Urbana Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

Michael Nastasi (Director, Center for Materials at Irradiation and Mechanical Extremes); CMIME Staff

2011-11-03T23:59:59.000Z

266

Microsoft PowerPoint - Siemens_materials workshop MIT EI_120310.ppt [Compatibility Mode]  

Broader source: Energy.gov (indexed) [DOE]

Critical Critical Materials and Substitutes Critical Materials and Substitutes Siemens Corporation Dr Madhav D Manjrekar Dr. Madhav D. Manjrekar Green Energy & Power Systems Dr. Thomas Scheiter & Dr. Gotthard Rieger Materials Substitution and Recycling Materials Substitution and Recycling Dr. Martin Zachau & Pamela Horner OSRAM Sylvania y Dr. Henrik Stiesdal Siemens Wind Power ©Siemens Corporation, Corporate Research, 2010. All rights reserved. ©Siemens Corporation, Corporate Research, 2010. All rights reserved. Agenda * Introduction Introduction * Application Requirements * Renewable Generation & Power Electronics * Lighting * Lighting * Discussion Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Hosted by the MIT Energy Initiative

267

Low Cost Solar Array Project cell and module formation research area. Process research of non-CZ silicon material. Final report, November 26, 1980-September 30, 1983  

SciTech Connect (OSTI)

The primary objective of the work reported was to investigate high-risk, high-payoff research areas associated with the Westinghouse process for producing photovoltaic modules using non-Czochralski sheet material. These tasks were addressed: technical feasibility study of forming front and back junctions using liquid dopant techniques, liquid diffusion mask feasibility study, application studies of antireflective material using a meniscus coater, ion implantation compatibility/feasibility study, and cost analysis. (LEW)

Campbell, R.B.

1983-01-01T23:59:59.000Z

268

FY 2008 Progress Report for Lightweighting Materials- 8. Polymer Composites Research and Development  

Broader source: Energy.gov [DOE]

Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes.

269

The Department of Mechanical and Materials Engineering, Faculty of Engineering and Applied Science, Queen's University invites applications for a Tier 2 Canada Research Chair (CRC),  

E-Print Network [OSTI]

candidate is expected to initiate a leading-edge research program that includes direct interaction, NSERC Industrial Research Chair in Nuclear Materials and Queen's Research Chair in Computational Fluid

Ellis, Randy

270

A Review of Vacuum Degradation Research and the Experimental Outgassing Research of the Core Material- Pu foam on Vacuum Insulation Panels  

Science Journals Connector (OSTI)

Vacuum Insulation Panels(VIPs) have been regarded as a super thermal insulation material with a thermal resistance of about 5-8 times higher than that of equally thick conventional polyurethane boards. In this paper, the researches on factors influencing interior pressure in VIPs, including gas and water vapor permeation through the barrier and outgassing of the core materials, were reviewed respectively. Following this, aiming at the outgassing from open cell PU foam, the specific outgassing rate of the core material is tested not only at room temperature but also at low and high temperatures by an orifice known-conductance method.

C.G. Yang; Y.J. Li; X. Gao; L. Xu

2012-01-01T23:59:59.000Z

271

What is a Critical Material??  

Broader source: Energy.gov (indexed) [DOE]

outreach Achievements * Ten invention disclosures, to date - Extraction of rare earth elements from phosphoric acid streams - Recovery of neodymium from neodymium iron...

272

Steam Oxidation of Fossil Power Plant Materials: Collaborative Research to Enable Advanced Steam Power Cycles  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Research into improved materials systems and associated manufacturing and reliability issues is a major part of initiatives to produce cleaner and cheaper energy systems in the UK and the USA. Under the auspices of a Memorandum of Understanding on Energy R&D, a work programme concerned with steam oxidation has been conducted. The focus was on the generation of definitive information regarding the oxidation behaviour in steam of current and developmental ferritic steels, austenitic steels, and nickelbased alloys required to enable advanced steam power cycles. The results were intended to provide a basis for quantifying the rate of metal loss expected under advanced steam cycle conditions, as well as understanding of the evolution of oxide scale morphologies with time and temperature to identify features that could influence scale exfoliation characteristics. This understanding and acquired data were used to develop and validate models of oxide growth and loss by exfoliation. This paper provides an overview of the activity and highlights a selection of the results coming from the programme.

A. T. Fry; I. G Wright; N. J Simms; B. McGhee; G. R. Holcomb

2013-11-19T23:59:59.000Z

273

What Is ToF-SIMS in Materials Characterization? | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What Is ToF-SIMS in Materials Characterization? What Is ToF-SIMS in Materials Characterization? Vin Smentkowski 2012.06.26 I am excited to announce and launch a new blog...

274

SCIENCE HIGHLIGHTS 2008 ANNUAL REPORT ORNL NEUTRON SCIENCES The Next Generation of Materials Research  

E-Print Network [OSTI]

and colleagues.They initially reported that an iron-based material can conduct electricity without resistance close to conducting electric- ity with zero resistance at room temperature. Such materials wouldSCIENCE HIGHLIGHTS 2008 ANNUAL REPORT ORNL NEUTRON SCIENCES The Next Generation of Materials

275

1Materials Research Society Symposium Proceedings 364, 59 (1995) A NEW APPROACH TO STUDY VACANCY DEFECTS IN HIGH-  

E-Print Network [OSTI]

1Materials Research Society Symposium Proceedings 364, 59 (1995) A NEW APPROACH TO STUDY VACANCY (PAC) is being applied to study defects in ordered intermetallic alloys. Vacancies on both Pd.15 at.% Pd, nearly equal site fractions were observed for Pd and In vacancies, indicating

Collins, Gary S.

276

FY 2009 Progress Report for Lightweighting Materials- 8. Polymer Composites Research and Development  

Broader source: Energy.gov [DOE]

The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

277

ELECTROCHEMICAL RESEARCH IN CHEMICAL HYDROGEN STORAGE MATERIALS: SODIUM BOROHYDRIDE AND ORGANOTIN HYDRIDES.  

E-Print Network [OSTI]

??Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane… (more)

McLafferty, Jason

2009-01-01T23:59:59.000Z

278

Carbon Based Nano-Materials Research, Development and Applications in Optoelectronics  

E-Print Network [OSTI]

Lett. Granqvist, C. G. Electrochromic Materials: Out of aA Feasibility Study of Electrochromic Windows in Vehicles.active layer in electrochromic smart windows. References:

Wang, Feihu

2012-01-01T23:59:59.000Z

279

Advanced process research and development to enhance metals and materials recycling.  

SciTech Connect (OSTI)

Innovative, cost-effective technologies that have a positive life-cycle environmental impact and yield marketable products are needed to meet the challenges of the recycling industry. Four materials-recovery technologies that are being developed at Argonne National Laboratory in cooperation with industrial partners are described in this paper: (1) dezincing of galvanized steel scrap; (2) material recovery from auto-shredder residue; (3) high-value-plastics recovery from obsolete appliances; and (4) aluminum salt cake recycling. These technologies are expected to be applicable to the production of low-cost, high-quality raw materials from a wide range of waste streams.

Daniels, E. J.

1997-12-05T23:59:59.000Z

280

Preliminary Investigation of Zircaloy-4 as a Research Reactor Cladding Material  

SciTech Connect (OSTI)

As part of a scoping study for the ATR fuel conversion project, an initial comparison of the material properties of Zircaloy-4 and Aluminum-6061 (T6 and O-temper) is performed to provide a preliminary evaluation of Zircaloy-4 for possible inclusion as a candidate cladding material for ATR fuel elements. The current fuel design for the ATR uses Aluminum 6061 (T6 and O temper) as a cladding and structural material in the fuel element and to date, no fuel failures have been reported. Based on this successful and longstanding operating history, Zircaloy-4 properties will be evaluated against the material properties for aluminum-6061. The preliminary investigation will focus on a comparison of density, oxidation rates, water chemistry requirements, mechanical properties, thermal properties, and neutronic properties.

Brian K Castle

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Experimental Research on Thermal Performance of Lightweight Envelope Integrated with Phase Change Material  

Science Journals Connector (OSTI)

Present relief camp built with lightweight envelope has obvious cold-house effect and poor indoor thermal environment. Advantage of phase change material provides one possible way to improve thermal...

Jun Wang; Long Xu; Enshen Long

2014-01-01T23:59:59.000Z

282

Progress In Electromagnetics Research B, Vol. 15, 197215, 2009 MODELING OF SHIELDING COMPOSITE MATERIALS  

E-Print Network [OSTI]

Progress In Electromagnetics Research B, Vol. 15, 197­215, 2009 MODELING OF SHIELDING COMPOSITE B. Archambeault IBM Co. Research Triangle Park, NC, USA Abstract--Composites containing conducting structures are studied, with both absorbing and reflecting composite layers. In this paper, fiber

Koledintseva, Marina Y.

283

Alexander A. Puretzky Research Professor, Department of Materials Science and Engineering  

E-Print Network [OSTI]

University of Tennessee, Knoxville, Tennessee P.O. Box 2008, Oak Ridge, Tennessee 37831-6056 (865) 574. 1995-1999 Research Scientist, Oak Ridge National Laboratory (ORAU), Oak Ridge, TN. 1992-1995 Visiting Scientists, Oak Ridge National Laboratory (ORAU), Oak Ridge, TN. 1971-1992 Research Scientist, Senior

Geohegan, David B.

284

Tougher than Kevlar: Researchers create new high-performance fiber Posted In: Editors Picks | R&D Daily | Carbon Nanotubes & Graphene | Materials Science |  

E-Print Network [OSTI]

and satellites. To create the new fiber, researchers began with carbon nanotubes--cylindrical-shaped carbonTougher than Kevlar: Researchers create new high-performance fiber Posted In: Editors Picks | R&D Daily | Carbon Nanotubes & Graphene | Materials Science | Nanotechnology | Engineering | Material

Espinosa, Horacio D.

285

Evaluation of irradiation facility options for fusion materials research and development  

Science Journals Connector (OSTI)

Successful development of fusion energy will require the design of high-performance structural materials that exhibit dimensional stability and good resistance to fusion neutron degradation of mechanical and physical properties. The high levels of gaseous (H, He) transmutation products associated with deuterium–tritium (D–T) fusion neutron transmutation reactions, along with displacement damage dose requirements up to 50–200 displacements per atom (dpa) for a fusion demonstration reactor (DEMO), pose an extraordinary challenge. One or more intense neutron source(s) are needed to address two complementary missions: (1) scientific investigations of radiation degradation phenomena and microstructural evolution under fusion-relevant irradiation conditions (to provide the foundation for designing improved radiation resistant materials), and (2) engineering database development for design and licensing of next-step fusion energy machines such as a fusion DEMO. A wide variety of irradiation facilities have been proposed to investigate materials science phenomena and to test and qualify materials for a DEMO reactor. Some of the key technical considerations for selecting the most appropriate fusion materials irradiation source are summarized. Currently available and proposed facilities include fission reactors (including isotopic and spectral tailoring techniques to modify the rate of H and He production per dpa), dual- and triple-ion accelerator irradiation facilities that enable greatly accelerated irradiation studies with fusion-relevant H and He production rates per dpa within microscopic volumes, D–Li stripping reaction and spallation neutron sources, and plasma-based sources. The advantages and limitations of the main proposed fusion materials irradiation facility options are reviewed. Evaluation parameters include irradiation volume, potential for performing accelerated irradiation studies, capital and operating costs, similarity of neutron irradiation spectrum to fusion reactor conditions, temperature and irradiation flux stability/control, ability to perform multiple-effect tests (e.g., irradiation in the presence of a flowing coolant, or in the presence of complex applied stress fields), and technical maturity/risk of the concept. Ultimately, it is anticipated that heavy utilization of ion beam and fission neutron irradiation facilities along with sophisticated materials models, in addition to a dedicated fusion-relevant neutron irradiation facility, will be necessary to provide a comprehensive and cost-effective understanding of anticipated materials evolution in a fusion DEMO and to therefore provide a timely and robust materials database.

Steven J. Zinkle; Anton Möslang

2013-01-01T23:59:59.000Z

286

Materials Under Extremes | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home | Science & Discovery | Advanced Materials | Research Areas | Materials Under Extremes SHARE Materials Under Extremes Materials that can withstand extreme conditions such...

287

Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber)  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports research into magnesium and carbon fiber reinforced composites, which could reduce the weight of some components by 50-75 percent in the long-term.

288

Evaluation of irradiation facility options for fusion materials research and development  

SciTech Connect (OSTI)

Successful development of fusion energy will require the design of high-performance structural materials that exhibit dimensional stability and good resistance to fusion neutron degradation of mechanical and physical properties. The high levels of gaseous (H, He) transmutation products associated with deuterium-tritium (D-T) fusion neutron transmutation reactions, along with displacement damage dose requirements up to 50-200 displacements per atom (dpa) for a fusion demonstration reactor (DEMO), pose an extraordinary challenge. The intense neutron source(s) is needed to address two complimentary missions: 1) Scientific investigations of radiation degradation phenomena and microstructural evolution under fusion-relevant irradiation conditions (to provide the foundation for designing improved radiation resistant materials), and 2) Engineering database development for design and licensing of next-step fusion energy machines such as a fusion DEMO. A wide variety of irradiation facilities have been proposed to investigate materials science phenomena and to test and qualify materials for a DEMO reactor. Currently available and proposed facilities include fission reactors (including isotopic and spectral tailoring techniques to modify the rate of H and He production per dpa), dual- and triple-ion accelerator irradiation facilities that enable greatly accelerated irradiation studies with fusion-relevant H and He production rates per dpa within microscopic volumes, D-Li stripping reaction and spallation neutron sources, and plasma-based sources. The advantages and limitations of the main proposed fusion materials irradiation facility options are reviewed. Evaluation parameters include irradiation volume, potential for performing accelerated irradiation studies, capital and operating costs, similarity of neutron irradiation spectrum to fusion reactor conditions, temperature and irradiation flux stability/control, ability to perform multiple-effect tests (e.g., irradiation in the presence of a flowing coolant, or in the presence of complex applied stress fields), and technical maturity/risk of the concept. Ultimately, it is anticipated that heavy utilization of ion beam and fission neutron irradiation facilities along with sophisticated materials models, in addition to a dedicated fusion-relevant neutron irradiation facility, will be necessary to provide a comprehensive and cost-effective understanding of anticipated materials evolution in a fusion DEMO and to therefore provide a timely and robust materials database.

Zinkle, Steven J [ORNL] [ORNL; Möslang, Anton [Karlsruhe Institute of Technology, Karlsruhe, Germany] [Karlsruhe Institute of Technology, Karlsruhe, Germany

2013-01-01T23:59:59.000Z

289

Carbon Resistive Random Access Memory Materials -CareRAMM An FP7 NMP Project led by the University of Exeter and in collaboration with IBM Research  

E-Print Network [OSTI]

Carbon Resistive Random Access Memory Materials - CareRAMM An FP7 NMP Project led by the University physical mechanism responsible for this resistive switching in carbon materials is not clear, with sp2 research and development of alternative data storage materials and concepts. The increasingly important

Mumby, Peter J.

290

Improving nickel metal hydride batteries through research in negative electrode corrosion control and novel electrode materials  

E-Print Network [OSTI]

electrode materials. In order to fully understand the processes involved in the corrosion study, tests were carried at Brookhaven National Laboratory using X-ray Absorption Near Edge Spectroscopy. These tests showed that Zn prevented the corrosion of Ni-a...

Alexander, Michael Scott

1997-01-01T23:59:59.000Z

291

Functional Materials for Energy | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

292

Integrating agile practices into critical software development  

E-Print Network [OSTI]

Integrating agile practices into critical software development Katarzyna Lukasiewicz, Janusz Górski. In this text we describe our research towards introducing agile practices into critical software development processes Keywords-- safety-critical software; agile practices; software development; process improvement

Boyer, Edmond

293

PISCES Program: Plasma-materials interactions and edge-plasma physics research  

SciTech Connect (OSTI)

This program investigates and characterizes the behavior of materials under plasma bombordment, in divertor regions. The PISCES facility is used to study divertor and plasma edge management concepts (in particular gas target divertors), as well as edge plasma turbulence and transport. The plasma source consists of a hot LaB[sub 6] cathode with an annular, water-cooled anode and attached drift tube. This cross sectional area of the plasma can be adjusted between 3 and 10 cm. A fast scanning diagnostic probe system was used for mapping plasma density profiles during biased limiter and divertor simulation experiments. Some experimental data are given on: (1) materials and surface physics, (2) edge plasma physics, and (3) a theoretical analysis of edge plasma modelling.

Conn, R.W.; Hirooka, Y.

1992-07-01T23:59:59.000Z

294

Amorphous and microcrystalline silicon technology--1997. Materials Research Society symposium proceedings, Volume 467  

SciTech Connect (OSTI)

This book was divided into the following parts: Staebler-Wronski and Fundamental Defect Studies in Amorphous Silicon; The Story of Hydrogen in Amorphous Silicon; Photoelectric Properties of Amorphous Silicon; Deposition and Properties of Microcrystalline Silicon; Deposition Studies for Amorphous Silicon and Related Materials; Solar Cells; Thin-Film Transistors; and Sensors and Novel Device Concepts. Separate abstracts were prepared for most of the papers in the volume.

Wagner, S.; Hack, M.; Schiff, E.A.; Schropp, R.; Shimizu, I. [eds.

1997-07-01T23:59:59.000Z

295

Functional Materials for Energy | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from...

296

Electromechanical coupling in free-standing AlGaNGaN planar structures Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force  

E-Print Network [OSTI]

Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433 and Semiconductor Research Center, Wright State University, Dayton, Ohio 45435 J. D. Albrecht Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 E. Pan Department of Civil Engineering

Pan, Ernie

297

Basic Research Needs for Materials Under Extreme Environments. Report of the Basic Energy Sciences Workshop on Materials Under Extreme Environments, June 11-13, 2007  

SciTech Connect (OSTI)

To evaluate the potential for developing revolutionary new materials that will meet demanding future energy requirements that expose materials to environmental extremes.

Wadsworth, J.; Crabtree, G. W.; Hemley, R. J.; Falcone, R.; Robertson, I.; Stringer, J.; Tortorelli, P.; Gray, G. T.; Nicol, M.; Lehr, J.; Tozer, S. W.; Diaz de la Rubia, T.; Fitzsimmons, T.; Vetrano, J. S.; Ashton, C. L.; Kitts, S.; Landson, C.; Campbell, B.; Gruzalski, G.; Stevens, D.

2008-02-01T23:59:59.000Z

298

Fusion materials science and technology research opportunities now and during the ITER era  

SciTech Connect (OSTI)

Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

2014-10-01T23:59:59.000Z

299

Fusion Materials Science and Technology Research Opportunities now and during the ITER Era  

SciTech Connect (OSTI)

Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: 1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, Technology Readiness Levels >3), 2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and 3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

Zinkle, Steven J.; Blanchard, James; Callis, Richard W.; Kessel, Charles E.; Kurtz, Richard J.; Lee, Peter J.; Mccarthy, Kathryn; Morley, Neil; Najmabadi, Farrokh; Nygren, Richard; Tynan, George R.; Whyte, Dennis G.; Willms, Scott; Wirth, Brian D.

2014-02-22T23:59:59.000Z

300

Critical Subcriticals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technology magazine Latest Issue:August 2014 All Issues submit Critical Subcriticals Nuclear weapons testing with real plutonium and real experiments-but no yield April 1,...

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

302

Proceedings of 2009 NSF Engineering Research and Innovation Conference, Honolulu, Hawaii Grant #0423484 Separation and Energy Use Performance of Material Recycling Systems  

E-Print Network [OSTI]

#0423484 Separation and Energy Use Performance of Material Recycling Systems Timothy Gutowski Malima I Abstract: This paper outlines current research on the performance of recycling processes and systems of recycling processes. Descriptive terminology for separation performance is presented. The goal

Gutowski, Timothy

303

There has been a considerable research interest in materials, especially nanomaterials, in recent years and several novel materials have been developed for various  

E-Print Network [OSTI]

for measuring the elastic constants. Thermoelectric Materials: It has been reported that the quantum confinement 14 nm. One important application of such a material is in the making of excellent thermoelectric materials as the thermoelectric efficiency of Bi nanorods increases upon decreasing its diameter. In order

Preyer, Norris

304

Materials Research Lab -California Alliance for Minority Participation http://www.mrl.ucsb.edu/mrl/outreach/educational/CAMP/interns09.html[5/10/12 9:20:49 AM  

E-Print Network [OSTI]

Materials Research Lab - California Alliance for Minority Participation http For Teachers Education Contacts News California Alliance for Minority Participation California Alliance & Events Webmail #12;Materials Research Lab - California Alliance for Minority Participation http

Bigelow, Stephen

305

Materials Research Lab -California Alliance for Minority Participation http://www.mrl.ucsb.edu/mrl/outreach/educational/CAMP/interns08.html[5/10/12 9:24:45 AM  

E-Print Network [OSTI]

Materials Research Lab - California Alliance for Minority Participation http For Teachers Education Contacts News California Alliance for Minority Participation California Alliance Facilities Education People News & Events Webmail #12;Materials Research Lab - California Alliance

Bigelow, Stephen

306

Criticality Calculations for Step?2 GPHS Modules  

Science Journals Connector (OSTI)

The Multi?Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version referred to as the Step?2 GPHS Module has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of 238 Pu in the oxide form as the primary source of heat and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step?2 version. The Monte Carlo N?Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand the configuration is extremely sub?critical; k eff is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close?spaced stack to approach criticality ( k eff ?=?1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Ronald J. Lipinski; Danielle L. Hensen

2008-01-01T23:59:59.000Z

307

Criticality Calculations for Step-2 GPHS Modules  

SciTech Connect (OSTI)

The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Lipinski, Ronald J. [Advanced Nuclear Concepts Department, Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States); Hensen, Danielle L. [Risk and Reliability Department Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States)

2008-01-21T23:59:59.000Z

308

Criticality calculations for Step-2 GPHS modules.  

SciTech Connect (OSTI)

The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Hensen, Danielle Lynn; Lipinski, Ronald J.

2007-08-01T23:59:59.000Z

309

Critical State of Superconducting Solenoids  

Science Journals Connector (OSTI)

The critical state is a term introduced by Bean [1] to describe the magnetic properties of a bulk type II superconductor. In this state every region of the superconducting material carries the maximum induced cri...

M. S. Lubell

1966-01-01T23:59:59.000Z

310

National Academies Criticality Methodology and Assessment Video (Text Version)  

Broader source: Energy.gov [DOE]

This is a text version of the "National Academies Criticality Methodology and Assessment" video presented at the Critical Materials Workshop, held on April 3, 2012 in Arlington, Virginia.

311

Tansmutation Research program  

SciTech Connect (OSTI)

Six years of research was conducted for the United States Department of Energy, Office of Nuclear Energy between the years of 2006 through 2011 at the University of Nevada, Las Vegas (UNLV). The results of this research are detailed in the narratives for tasks 1-45. The work performed spanned the range of experimental and modeling efforts. Radiochemistry (separations, waste separation, nuclear fuel, remote sensing, and waste forms) , material fabrication, material characterization, corrosion studies, nuclear criticality, sensors, and modeling comprise the major topics of study during these six years.

Paul Seidler

2011-07-31T23:59:59.000Z

312

Propulsion Materials Research Update  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

313

Materials Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear fuel storage. This work is important to validate the safety case for long-term waste storage. Karen A. Moore, Senior Staff Engineer Ms. Moore has been performing project...

314

Ames Laboratory to Lead New Research Effort to Address Shortages in Rare  

Broader source: Energy.gov (indexed) [DOE]

Laboratory to Lead New Research Effort to Address Shortages in Laboratory to Lead New Research Effort to Address Shortages in Rare Earth and Other Critical Materials Ames Laboratory to Lead New Research Effort to Address Shortages in Rare Earth and Other Critical Materials January 9, 2013 - 12:13pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The U.S. Department of Energy announced today that a team led by Ames Laboratory in Ames, Iowa, has been selected for an award of up to $120 million over five years to establish an Energy Innovation Hub that will develop solutions to the domestic shortages of rare earth metals and other materials critical for U.S. energy security. The new research center, which will be named the Critical Materials Institute (CMI), will bring together leading researchers from academia, four Department of Energy

315

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.  

E-Print Network [OSTI]

of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited phylogenetics, cancer biology, microarray analysis, graph theory, and computer program- ming. Each. Research in synthetic biology has impor- tant applications in medicine, technology, energy

Campbell, A. Malcolm

316

Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Areas Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Directionally Solidified Materials Using high-temperature optical floating zone furnace to produce monocrystalline molybdenum alloy micro-pillars Home | Science & Discovery | Advanced Materials Advanced Materials | Advanced Materials SHARE ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of advanced materials for energy generation, storage, and use. We have core strengths in three main areas: materials synthesis, characterization, and theory. In other words, we discover and make new materials, we study their structure,

317

Nuclear criticality safety: 300 Area  

SciTech Connect (OSTI)

This Standard applies to the receipt, processing, storage, and shipment of fissionable material in the 300 Area and in any other facility under the control of the Reactor Materials Project Management Team (PMT). The objective is to establish practices and process conditions for the storage and handling of fissionable material that prevent the accidental assembly of a critical mass and that comply with DOE Orders as well as accepted industry practice.

Not Available

1991-07-31T23:59:59.000Z

318

209-E Critical Mass Laboratory - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and controlled. Criticality experiments, where a nuclear chain reaction becomes self-sustaining, were also conducted. In addition, 209-E was a research facility where methods of...

319

NEWTON's Material Science References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

320

Materials Research Lab -California Alliance for Minority Participation http://www.mrl.ucsb.edu/mrl/outreach/educational/CAMP/interns07.html[5/10/12 9:34:47 AM  

E-Print Network [OSTI]

Materials Research Lab - California Alliance for Minority Participation http For Teachers Education Contacts News California Alliance for Minority Participation California Alliance Research Lab - California Alliance for Minority Participation http

Bigelow, Stephen

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MATERIALS RESEARCH DEPARTMENT 2000 A n n u a l R e p o r t 2 0 0 0  

E-Print Network [OSTI]

with Danish wind energy companies Properties of Composite Materials The activities on composite materials fo through detailed design of the microstruc- ture is used to optimise properties for given applications and Europe. Several techniques are in progress to develop intermediate products, e.g. fibre mats

322

Joint Center for Energy Storage Research  

SciTech Connect (OSTI)

The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

Eric Isaacs

2012-11-30T23:59:59.000Z

323

Critical Materials Institute Affiliates Program MEMBER AGREEMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

affiliate funds. Foreign Entities may or may not be eligible for the DOE Patent Class Waiver dependent on DOE approval. 7. Publishing The Parties acknowledge and agree that the...

324

CMI Membership Benefits | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Required Optional 1Members from foreign entitites must receive DOE approval for the class waiver. For the definition of "foreign entity" please e-mail CMIaffiliates@ameslab.gov....

325

Material efficiency: rare and critical metals  

Science Journals Connector (OSTI)

...obvious in the case of hydrocarbons. But we do not contemplate the recycling of hydrocarbons except perhaps in terms...destructive uses, such as combustion of hydrocarbons, the service is usually...chemical potential, heat (or light) that is...

2013-01-01T23:59:59.000Z

326

CMI Recent Presentations | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and outreach: CMI Education and Outreach Programs CMI Director Alex King describes rare earth elements for the Iowa State University Osborn Club, March 2014 Link to some older...

327

Material efficiency: rare and critical metals  

Science Journals Connector (OSTI)

...PhD thesis, Fakulteit Scheikunde, University of Utrecht, Utrecht, The Netherlands. 12 Karlsson, S , C Azar, G Bernedes...gas emissions. PhD thesis, Fakultgeit Scheikunde, Utrecht University, Utrecht, The Netherlands. 18 Matthews...

2013-01-01T23:59:59.000Z

328

Tank farm nuclear criticality review  

SciTech Connect (OSTI)

The technical basis for the nuclear criticality safety of stored wastes at the Hanford Site Tank Farm Complex was reviewed by a team of senior technical personnel whose expertise covered all appropriate aspects of fissile materials chemistry and physics. The team concluded that the detailed and documented nucleonics-related studies underlying the waste tanks criticality safety basis were sound. The team concluded that, under current plutonium inventories and operating conditions, a nuclear criticality accident is incredible in any of the Hanford single-shell tanks (SST), double-shell tanks (DST), or double-contained receiver tanks (DCRTS) on the Hanford Site.

Bratzel, D.R., Westinghouse Hanford

1996-09-11T23:59:59.000Z

329

Industry-Government-University Cooperative Research Program for the Development of Structural Materials from Sulfate-Rich FGD Scrubber Sludge  

SciTech Connect (OSTI)

The main aim of our project was to develop technology, which converts flue gas desulfurization (FGD) sulfate-rich scrubber sludge into value-added decorative materials. Specifically, we were to establish technology for fabricating cost effective but marketable materials, like countertops and decorative tiles from the sludge. In addition, we were to explore the feasibility of forming siding material from the sludge. At the end of the project, we were to establish the potential of our products by generating 64 countertop pieces and 64 tiles of various colors. In pursuit of our above-mentioned goals, we conducted Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) measurements of the binders and co-processed binders to identify their curing behavior. Using our 6-inch x 6-inch and 4-inch x 4-inch high pressure and high temperature hardened stainless steel dies, we developed procedures to fabricate countertop and decorative tile materials. The composites, fabricated from sulfate-rich scrubber sludge, were subjected to mechanical tests using a three-point bending machine and a dynamic mechanical analyzer (DMA). We compared our material's mechanical performance against commercially obtained countertops. We successfully established the procedures for the development of countertop and tile composites from scrubber sludge by mounting our materials on commercial boards. We fabricated more than 64 pieces of countertop material in at least 11 different colors having different patterns. In addition, more than 100 tiles in six different colors were fabricated. We also developed procedures by which the fabrication waste, up to 30-weight %, could be recycled in the manufacturing of our countertops and decorative tiles. Our experimental results indicated that our countertops had mechanical strength, which was comparable to high-end commercial countertop materials and contained substantially larger inorganic content than the commercial products. Our moisture sensitivity test suggested that our materials were non-water wettable and did not disintegrate on submerging the product in water for at least two months. Countertop polishing techniques were also established.

V. M. Malhotra; Y. P. Chugh

2003-08-31T23:59:59.000Z

330

A model for materials scientists: Water runs off the surface of a lotus leaf without a trace. Researchers  

E-Print Network [OSTI]

to the annoying smears on window panes, it could also make it possible to produce self-cleaning solar panels the annoying smeary film that gets left behind. Reliably self-cleaning MATERIAL & TECHNOLOGY

331

A material's multiple personalities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Press Releases Feature Stories In the News Experts Guide Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Internship The brightness and energy of X-ray beams are critical properties for research. The APS Upgrade will make our X-ray beams brighter, meaning more X-rays can be focused onto a smaller, laser-like spot, allowing researchers to gather more data in greater detail in less time. A material's multiple personalities By Jared Sagoff * September 11, 2013 Tweet EmailPrint ARGONNE, Ill. - Just like people, materials can sometimes exhibit "multiple personalities." This kind of unusual behavior in a certain class of materials has compelled researchers at the U.S. Department of Energy's Argonne National Laboratory to take a closer look at the precise

332

Structural Biological Materials: Critical Mechanics-Materials Connections  

Science Journals Connector (OSTI)

...Bending, Torsion, and Buckling—Shells and Foams Resistance...referred to as Euler's buckling equation, calculates...compressive load at which global buckling of a column takes place...applied to reduce drag in pipelines (49) and aircraft...

Marc André Meyers; Joanna McKittrick; Po-Yu Chen

2013-02-15T23:59:59.000Z

333

264 Chapter 4 Applications of Impedance Spectroscopy London (1979-1984) and the Fuel Cells Group, Materials Research Department,  

E-Print Network [OSTI]

displays, energy storage in capacitors, sensors, and even bionics. Because the electrical response of ionic have usually been investigated by analyzing the frequency response of the mate rial over a wide range RESPONSE OF HIGH RESISTIVITY IONIC AND DIELECTRIC SOLID MATERIALS BY IMMITTANCE SPECTROSCOPY J. Ross

Macdonald, James Ross

334

Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials Research Program  

E-Print Network [OSTI]

, Livermore, CA 94551. 6 University of Wisconsin, Madison, WI 53706. 7 Columbia University, New York, NY 10027Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials.S. Department of Energy (DOE) Fusion Energy Sciences Advisory Committee Panel on the Review of the Fusion

Abdou, Mohamed

335

PISCES Program: Plasma-materials interactions and edge-plasma physics research. Progress report, 1991--1992  

SciTech Connect (OSTI)

This program investigates and characterizes the behavior of materials under plasma bombordment, in divertor regions. The PISCES facility is used to study divertor and plasma edge management concepts (in particular gas target divertors), as well as edge plasma turbulence and transport. The plasma source consists of a hot LaB{sub 6} cathode with an annular, water-cooled anode and attached drift tube. This cross sectional area of the plasma can be adjusted between 3 and 10 cm. A fast scanning diagnostic probe system was used for mapping plasma density profiles during biased limiter and divertor simulation experiments. Some experimental data are given on: (1) materials and surface physics, (2) edge plasma physics, and (3) a theoretical analysis of edge plasma modelling.

Conn, R.W.; Hirooka, Y.

1992-07-01T23:59:59.000Z

336

Refractory Research Group - U.S. DOE, Albany Research Center [Institution Profile  

SciTech Connect (OSTI)

The refractory research group at the Albany Research Center (ARC) has a long history of conducting materials research within the U.S. Bureau of Mines, and more recently, within the U.S. Dept. of Energy. When under the U.S. Bureau of Mines, research was driven by national needs to develop substitute materials and to conserve raw materials. This mission was accomplished by improving refractory material properties and/or by recycling refractories using critical and strategic materials. Currently, as a U.S. Dept of Energy Fossil Energy field site, research is driven primarily by the need to assist DOE in meeting its vision to develop economically and environmentally viable technologies for the production of electricity from fossil fuels. Research at ARC impacts this vision by: • Providing information on the performance characteristics of materials being specified for the current generation of power systems; • Developing cost-effective, high performance materials for inclusion in the next generation of fossil power systems; and • Solving environmental emission and waste problems related to fossil energy systems. A brief history of past refractory research within the U.S. Bureau of Mines, the current refractory research at ARC, and the equipment and capabilities used to conduct refractory research at ARC will be discussed.

Bennett, James P.

2004-09-01T23:59:59.000Z

337

Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization  

SciTech Connect (OSTI)

Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

Henghu Sun; Yuan Yao

2012-06-29T23:59:59.000Z

338

Materials - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Coatings & Lubricants * Coatings & Lubricants * Nanofluids * Deformation Joining * Recycling * Catalysts * Assessment * Illinois Center for Advanced Tribology Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Materials ring on liner reciprocating tester Tribology Lab: Ring-on-liner reciprocating tester. Argonne National Laboratory plays an important role in the Department of Energy's (DOE's) efforts to develop advanced materials for transportation. The materials are developed with DOE support from the EERE Office of Vehicle Technology and Office of Hydrogen, Fuel Cells, and Infrastructure Technologies in collaboration with worldwide industrial partners. Examples

339

Addressing the Critical Link between Fossil Energy and Water „ the Department of Energys Water-Related Research and Developme  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Technology Laboratory's Water-Energy Interface Research Program: December 2010 Update December 1, 2010 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

340

Evaluation of Alternate Materials for Coated Particle Fuels for the Gas-Cooled Fast Reactor. Laboratory Directed Research and Development Program FY 2006 Final Report  

SciTech Connect (OSTI)

Candidate ceramic materials were studied to determine their suitability as Gas-Cooled Fast Reactor particle fuel coatings. The ceramics examined in this work were: TiC, TiN, ZrC, ZrN, AlN, and SiC. The studies focused on (i) chemical reactivity of the ceramics with fission products palladium and rhodium, (ii) the thermomechanical stresses that develop in the fuel coatings from a variety of causes during burnup, and (iii) the radiation resiliency of the materials. The chemical reactivity of TiC, TiN, ZrC, and ZrN with Pd and Rh were all found to be much lower than that of SiC. A number of important chemical behaviors were observed at the ceramic-metal interfaces, including the formation of specific intermetallic phases and a variation in reaction rates for the different ceramics investigated. Based on the data collected in this work, the nitride ceramics (TiN and ZrN) exhibit chemical behavior that is characterized by lower reaction rates with Pd and Rh than the carbides TiC and ZrC. The thermomechanical stresses in spherical fuel particle ceramic coatings were modeled using finite element analysis, and included contributions from differential thermal expansion, fission gas pressure, fuel kernel swelling, and thermal creep. In general the tangential stresses in the coatings during full reactor operation are tensile, with ZrC showing the lowest values among TiC, ZrC, and SiC (TiN and ZrN were excluded from the comprehensive calculations due to a lack of available materials data). The work has highlighted the fact that thermal creep plays a critical role in the development of the stress state of the coatings by relaxing many of the stresses at high temperatures. To perform ion irradiations of sample materials, an irradiation beamline and high-temperature sample irradiation stage was constructed at the University of Wisconsin’s 1.7MV Tandem Accelerator Facility. This facility is now capable of irradiating of materials to high dose while controlling sample temperature up to 800ºC.

Paul A. Demkowicz; Karen Wright; Jian Gan; David Petti; Todd Allen; Jake Blanchard

2006-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nuclear criticality safety guide  

SciTech Connect (OSTI)

This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

Pruvost, N.L.; Paxton, H.C. [eds.] [eds.

1996-09-01T23:59:59.000Z

342

A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

1991-09-01T23:59:59.000Z

343

LANL | Physics | Hydrodynamic Material Instabilities at extremes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding hydrodynamic material instabilities at extremes Understanding hydrodynamic material instabilities at extremes The National Nuclear Security Administration science-based stockpile stewardship program funds research that will improve critical physics-based dynamic materials models. Los Alamos National Laboratory and Lawrence Livermore National Laboratory, as nuclear weapon design laboratories, are mandated to predict the reliability and durability of the nuclear weapons stockpile. This is done using state-of-the-art supercomputers and computer codes. It is also important to have state-of-the-art physics models in these codes. Los Alamos has theory experts in dynamic materials, thus creating powerful working groups when combined with experimental experts in Physics Division and elsewhere. Key to the science-based stockpile stewardship program is making

344

EV Everywhere Grand Challenge - Electric Motors and Critical...  

Broader source: Energy.gov (indexed) [DOE]

Electric Motors and Critical Materials Breakout Laura Marlino Oak Ridge National Laboratory Iver Anderson Ames Laboratory Facilitators July 24, 2012 EV Everywhere Grand Challenge...

345

Materials Synthesis from Atoms to Systems | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Porous Materials Thin Film Deposition Single Crystal Growth Texture Control Additive Manufacturing Nanomaterials Synthesis Designer Organic Molecules Related Research Materials...

346

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Materials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project On May 22,...

347

NREL: Energy Sciences - Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Materials Science Learn about our...

348

Materials/Condensed Matter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials/Condensed Matter Print Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating properties (structural, physical, chemical, electrical, magnetic, optical, etc.). Increasingly, the frontiers of materials research include materials that are "strongly correlated," characterized by strong coupling between a material's electrons with other electrons, magnetism, or the material lattice itself. This coupling often results in novel behavior, such as superconductivity, that may lead to technologically important applications.

349

Earth-Abundant Materials  

Broader source: Energy.gov [DOE]

DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. Below are a list...

350

LANL: Materials Science Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

351

Research Highlights | ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Superconducting Research for ITER Superconducting Research for ITER Materials Engineering Research at SNS Helps International Collaboration on Fusion Energy Research Contact: Xun-Li Wang May 2011, Written by Deborah Counce Scientists and engineers at ORNL are working with the ITER Organization and the Japanese Atomic Energy Agency to resolve issues with a critical component of ITER's experimental fusion reactor. ITER is the international research facility in southeastern France whose mission is to demonstrate the feasibility of fusion as a practical long-term energy source. VULCAN VULCAN, engineering diffractometer at SNS. The VULCAN Engineering Diffractometer at SNS is being used to examine superconducting cables for ITER's central solenoid magnet, which induces the electrical current needed to confine and shape the plasma inside the

352

NREL Highlights SCIENCE Research provides insight for exploring use of Earth-  

E-Print Network [OSTI]

NREL Highlights SCIENCE Research provides insight for exploring use of Earth- abundant quaternary, it is critical to find new material that is Earth abundant and easily manufactured. Previous experimental studies This research provides insight for exploring use of Earth-abundant quaternary semiconductors for large

353

Research Highlights > Research > The Energy Materials Center...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High Performance Alkaline Fuel Cell Membranes Improving Fuel Cell...

354

Research on polycrystalline thin-film submodules based on CuInSe{sub 2} materials. Final technical report, 14 December 1995--31 December 1996  

SciTech Connect (OSTI)

This report describes the progress made at Solarex for both device and module efficiencies from the inception of the CIS research program to the present. A rapid improvement in efficiency is apparent, culminating in the fabrication of a 15.5%-efficient device (total area) and a 13%-efficient submodule (aperture area). The device represents the highest efficiency device measured by NREL for any industrial source at that time. The module represented a new world record for any thin-film module at the time of its measurement. The factors leading to these results included improvements in absorber layer quality, transparent contacts, scribing and module formation processes. Other elements critical to the commercialization of CIS-based photovoltaics were also successfully attacked, including reduction of absorber deposition times into the range of 10 to 20 minutes and the successful scale-up of the absorber deposition process to greater than 500 cm{sup 2}. Other requisite processes saw continued development, such as a rapid, low-cost method for transparent window deposition. Subsequent to the demonstration of 13% module efficiency, scribing techniques were further improved that resulted in a reduction in shunt losses and higher module fill factor. This improvement, and the concomitant gain in fill factor, would yield efficiencies approaching 14% on modules having a short-circuit and open-circuit voltage comparable to the record module.

Arya, R.; Fogleboch, J.; Kessler, J.; Russell, L.; Skibo, S.; Wiedeman, S. [Solarex Corp., Newtown, PA (United States)] [Solarex Corp., Newtown, PA (United States)

1997-04-01T23:59:59.000Z

355

Critical Mission Support Through Energy Secuirty  

Broader source: Energy.gov (indexed) [DOE]

Critical Mission Support Critical Mission Support Through Energy Security Development of an Army Energy Security Assessment Model FUPWG Mr. Chuck Tremel, CTC 21 October 2010 2 2 Purpose * Provide an overview of the Army Energy Security Assessment (ESA) methodology - Being developed by Concurrent Technologies Corporation - Monitored by the US Army Corps of Engineers (USACE), Engineering Research and Development-Construction Engineering Research Laboratory (ERDC-CERL) * Engage Utility and Government Stakeholders 3 3 Overall Program Objectives * Develop/enhance the draft ESA methodology demonstrated under the Army Power and Energy Initiative (APEI) - Leverage existing processes (e.g., Anti-terrorism/Force Protection) - Critical Mission focused * Validate the methodology at an Army installation

356

Architecture for high critical current superconducting tapes  

DOE Patents [OSTI]

Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.

Jia, Quanxi (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

2002-01-01T23:59:59.000Z

357

PRECLOSURE CRITICALITY ANALYSIS PROCESS REPORT  

SciTech Connect (OSTI)

This report describes a process for performing preclosure criticality analyses for a repository at Yucca Mountain, Nevada. These analyses will be performed from the time of receipt of fissile material until permanent closure of the repository (preclosure period). The process describes how criticality safety analyses will be performed for various configurations of waste in or out of waste packages that could occur during preclosure as a result of normal operations or event sequences. The criticality safety analysis considers those event sequences resulting in unanticipated moderation, loss of neutron absorber, geometric changes, or administrative errors in waste form placement (loading) of the waste package. The report proposes a criticality analyses process for preclosure to allow a consistent transition from preclosure to postclosure, thereby possibly reducing potential cost increases and delays in licensing of Yucca Mountain. The proposed approach provides the advantage of using a parallel regulatory framework for evaluation of preclosure and postclosure performance and is consistent with the U.S. Nuclear Regulatory Commission's approach of supporting risk-informed, performance-based regulation for fuel cycle facilities, ''Yucca Mountain Review Plan, Final Report'', and 10 CFR Part 63. The criticality-related criteria for ensuring subcriticality are also described as well as which guidance documents will be utilized. Preclosure operations and facilities have significant similarities to existing facilities and operations currently regulated by the U.S. Nuclear Regulatory Commission; therefore, the design approach for preclosure criticality safety will be dictated by existing regulatory requirements while using a risk-informed approach with burnup credit for in-package operations.

A.E. Danise

2004-10-25T23:59:59.000Z

358

CRITICALITY SAFETY (CS)  

Broader source: Energy.gov (indexed) [DOE]

Objective CS.1 - A criticality safety program is established, sufficient numbers of qualified personnel are provided, and adequate facilities and equipment are available to ensure criticality safety support services are adequate for safe operations. (Core Requirements 1, 2, and 6) Criteria * Functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented. * Operations support personnel for the criticality safety area are adequately staffed and trained. Approach Record Review: Review the documentation that establishes the Criticality Safety Requirements (CSRs) for appropriateness and completeness. Review for adequacy and completion the criticality safety personnel training records that indicate training on facility procedures and systems under

359

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20, 2013, in CINT, Facilities, Grid Integration, Infrastructure Security, Materials Science, Partnership, Research & Capabilities, Transmission Grid Integration The nation's...

360

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2013, in Capabilities, Customers & Partners, Energy, Energy Efficiency, Materials Science, News, News & Events, Office of Science, Partnership, Research & Capabilities,...

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Department Completes Salt Coolant Material Transfer to Czech  

Broader source: Energy.gov (indexed) [DOE]

Completes Salt Coolant Material Transfer to Czech Completes Salt Coolant Material Transfer to Czech Republic for Advanced Reactor Research Energy Department Completes Salt Coolant Material Transfer to Czech Republic for Advanced Reactor Research May 20, 2013 - 12:52pm Addthis News Media Contact (202) 586-4940 PRAGUE, CZECH REPUBLIC - The U.S. Department of Energy recently joined with the U.S. Embassy in Prague and the Czech Republic's Ministry of Industry and Trade to complete the transfer of 75 kilograms of fluoride salt from the Department's Oak Ridge National Laboratory (ORNL) to the Czech Nuclear Research Institute Řež for experiments at Řež's critical test facility. This partnership builds on a strong history of U.S.-Czech energy collaboration and follows President Obama's speech in Prague in April 2009, where he laid out the importance of international

362

Critical insulation thickness for maximum entropy generation  

Science Journals Connector (OSTI)

Critical insulation thickness is known to refer to the insulation thickness that maximises the rate of heat transfer in cylindrical and spherical systems. The same analogy is extended to the rate of entropy generation in the present study. The possible critical insulation thickness that yields a maximum rate of entropy generation is investigated. Entropy generation is related to heat transfer through and temperature distribution within the insulation material. It is found that there exists a critical insulation thickness for maximising the rate of entropy generation that is a function of the Bi number and the surface to ambient temperature ratio. The solution of such critical thickness is formulated analytically for both cylindrical and spherical geometries. It is also found that the critical insulation thickness for the rate of entropy generation does not coincide with that for the rate of heat transfer.

Ahmet Z. Sahin

2012-01-01T23:59:59.000Z

363

HM-ACCESS Project (Framework for the Use of Electronic Shipping Papers for the Transport of Hazardous Materials)  

Broader source: Energy.gov (indexed) [DOE]

Pipeline and Hazardous Materials Pipeline and Hazardous Materials Safety Administration Pipeline and Hazardous Materials Safety Administration HM-ACCESS Initiative James Simmons Acting Chief, Research and Development Office of Hazardous Materials Safety Engineering and Research Division May 2012 U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration 2 H-azardous M-aterials A-utomated C-argo C-ommunication for E-fficient and S-afe S-hipments U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Background Purpose: To identify and eliminate barriers to the use of paperless hazard communication technologies to improve the delivery of critical hazardous materials (HM) safety information throughout the transportation chain.

364

Intelligent Assistants for Filling Critical Gaps in GIS  

E-Print Network [OSTI]

Intelligent Assistants for Filling Critical Gaps in GIS A Research Program April 1992 David Lanter, Intelligent Assistants for Filling Critical Gaps In GIS, was sponsored by Southern California Edison Company: · An analysis of critical gaps in current geographic information systems (GIS) that impede their use for spatial

California at Santa Barbara, University of

365

Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual...  

Energy Savers [EERE]

materials technologies that are critical in improving the efficiency of advanced engines by providing enabling materials support for combustion, hybrid, and power electronics...

366

Vehicle Technologies Office: Propulsion Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

367

Steve Duclos, Chief Scientist, GE Global Research, Research Priorities...  

Broader source: Energy.gov (indexed) [DOE]

essionC3Duclos-GE.pdf More Documents & Publications Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Iowa lab gets critical...

368

Waste and Materials Disposition Information | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste and Materials Disposition Waste and Materials Disposition Information Waste and Materials Disposition Information Waste and Materials Disposition Information As the Office of Environmental Management (EM) fulfills its mission, waste and materials disposition plays a vital role in the cleanup of radioactive waste and the environmental legacy of nuclear weapons production and nuclear energy research. Disposal of waste frequently falls on the critical path of cleanup projects. Significant planning resources are spent to identify alternatives and find a path that is cost-effective and in the best interest of the Federal government. In many instances, waste disposition, (processing, treatment and disposal) is part of cleanup agreements and is of interest to stakeholders and requires the oversight of regulators.

369

2010 New Mexico Water Research Symposium August 3, 2010 E-1 Photocatalytic Decontamination of Wastewater with Porous Material HNb3O8  

E-Print Network [OSTI]

characterized by BET, XRD, UV-Vis, SEM and TEM. Porous photocatalytic materials can have the combined qualities of Wastewater with Porous Material HNb3O8 Maryam Zarei Chaleshtori, University of Texas at El Paso, Center

Johnson, Eric E.

370

Research Conduct Policies  

Office of Science (SC) Website

Research Conduct Policies Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB)...

371

Chemical and Materials Sciences Building | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

372

ARM - Public Information Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govPublicationsPublic Information Materials govPublicationsPublic Information Materials Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Public Information Materials The ARM Climate Research Facility develops public information materials to communicate the purpose and objectives of the program to general audiences. These materials are designed to increase awareness of ARM Climate Research Facility goals and to document its scientific results to a lay audience. Public information materials include fact sheets, brochures, CDs, videos, press releases, and information packets. Approved materials are made

373

Materialism and materiality  

Science Journals Connector (OSTI)

Accountants and auditors in recent financial scandals have been pictured as materialistic, simply calculating consequences and ignoring duties. This paper potentially explains this apparently materialistic behaviour in what has historically been a truthtelling profession. Materiality, which drives audit priorities, has been institutionalised in accounting and auditing standards. But a materiality focus inherently implies that all amounts that are not 'materially' misstated are equally true. This leads to habitual immaterial misstatements and promotes the view that auditors do not care about truth at all. Auditors' lack of commitment to truth undermines their claim to be professionals in the classic sense.

Michael K. Shaub

2005-01-01T23:59:59.000Z

374

STEM Education Opportunities: Grads & Researchers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

STEM Education Opportunities: Grads & Researchers STEM Education Opportunities: Grads & Researchers STEM Education Opportunities: Grads & Researchers Graduate Automotive Technology Education This DOE program helps universities sponsor student fellowships and develop graduate-level curricula, with accompanying research, in five critical technology areas: fuel cells, hybrid drive trains and control systems, lightweight materials, direct-injection engines, and advanced energy storage. In 2005, DOE began held a second competition to form new, or expand, existing GATE Centers of Excellence. Award recipients receive funds to support graduate fellowships and to establish and/or upgrade and expand course study work and laboratory work to support a graduate engineering degree with a focus or certificate

375

Tank farms criticality safety manual  

SciTech Connect (OSTI)

This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type.

FORT, L.A.

2003-03-27T23:59:59.000Z

376

Comprehensive Nuclear Materials  

SciTech Connect (OSTI)

This book encompasses a rich seam of current information on the vast and multidisciplinary field of nuclear materials employed in fission and prototype fusion systems. Discussion includes both historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds leading scientists and engineers. Synthesizes pertinent current science to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

Konings, Dr. Rudy J. M. [European Commission Joint Research Centre; Allen, Todd R. [University of Wisconsin, Madison; Stoller, Roger E [ORNL; Yamanaka, Prof. Shinsuke [Osaka University

2012-01-01T23:59:59.000Z

377

Review of activities in USA on HTS materials  

SciTech Connect (OSTI)

Rapid progress in attaining practical applications of High Temperature Superconductors (HTS) has been made since the discovery of these new materials. Many critical parameters influencing HTS powder synthesis and wire processing have been identified through a combination of fundamental exploration and applied research. The complexity of these novel materials with regard to phase behavior and physical properties has become evident as a result of these careful studies. Achieving optimal mechanical and superconducting properties in wires and tapes will require further understanding and synergy among several different technical disciplines. Highlights of efforts towards producing practical superconductors for electric power applications based on rare earth-, bismuth-, and thallium-based systems are reviewed.

Peterson, D.E.

1995-02-01T23:59:59.000Z

378

Materials Science Division - Argonne National Laboratories, Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home About MSD Information Awards Visit MSD Administrative Staff Division Personnel Research Research Groups Condensed Matter Theory Emerging Materials Energy Conversion and Storage Magnetic Films Molecular Materials Neutron and X-ray Scattering Superconductivity and Magnetism Surface Chemistry Synchrotron Radiation Studies Threat Detection and Analysis Group Research Areas Careers in MSD Internal Sites Search Front Slide 1 November 2013 - Patricia Dehmer (second from right), Deputy Director of Science Programs, DOE Office of Science, joined Argonne Director Eric Isaacs(left) and Associate Laboratory Director for Physical Sciences and Engineering Peter Littlewood(second from left) to tour the recently-opened Energy Sciences Building. Among Dehmer's stops was the crystal growth

379

DOE Nuclear Criticality Safety Program - Nuclear Engineering Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Nuclear Criticality Safety Program DOE Nuclear Criticality Safety Program Nuclear Criticality Safety Overview Experience Analysis Tools Current NCS Activities Current R&D Activities DOE Criticality Safety Support Group (CSSG) Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr The DOE Nuclear Criticality Safety Program Bookmark and Share J. Morman and R. Bucher load J. Morman and R. Bucher load samples into the ZPR-6 critical assembly for material worth measurements. Click on image to view larger image. The DOE Nuclear Criticality Safety Program (NCSP) is focused on maintaining fundamental infrastructure that enables retention of DOE capabilities and expertise in nuclear criticality safety necessary to support line

380

Materials Preparation Center | Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Preparation Center Materials Preparation Center Materials Preparation Center The Materials Preparation Center (MPC) is a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences & Engineering specialized research center located at the Ames Laboratory. MPC operations are primarily funded by the Materials Discovery, Design, & Synthesis team's Synthesis & Processing Science core research activity. MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: Rare earth metals [learn about rare earths] Single crystal growth Metal Powders/Atomization Alkaline-earth metals [learn more, wikipedia] External Link Icon Refractory metal [learn more, wikipedia] External Link Icon

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

SC e-journals, Materials Science  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Acta Materialia Advanced Composite Materials Advanced Energy Materials Advanced Engineering Materials Advanced Functional Materials Advanced Materials Advanced Powder Technology Advances in Materials Science and Engineering - OAJ Annual Review of Materials Research Applied Composite Materials Applied Mathematical Modelling Applied Mathematics & Computation Applied Physics A Applied Physics B Applied Surface Science Archives of Computational Materials Science and Surface Engineering - OAJ Archives of Materials Science and Engineering - OAJ Carbohydrate Polymers Carbon Catalysis Science & Technology Cellulose Cement and Concrete Research Ceramic Engineering and Science Proceedings Ceramics International Chalcogenide Letters - OAJ Chemical and Petroleum Engineering

382

Research Program of a Super Fast Reactor  

SciTech Connect (OSTI)

Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is not breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)

Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie; Terai, Takayuki; Nagasaki, Shinya; Muroya, Yusa; Abe, Hiroaki [Nuclear Professional School / Department of Nuclear Engineering and Management, The University of Tokyo, Tokaimura, Naka-gun, Ibaraki, 319-1188 (Japan); Mori, Hideo [Department of Mechanical Engineering, Kyushu University (Japan); Akiba, Masato; Akimoto, Hajime; Okumura, Keisuke; Akasaka, Naoaki [Japan Atomic Energy Agency (Japan); GOTO, Shoji [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

383

Tailored Porous Materials  

SciTech Connect (OSTI)

Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

1999-11-09T23:59:59.000Z

384

Selection of the InGaAs/InP as the Single TPV Diode Material System for NR Research and Development  

SciTech Connect (OSTI)

Advanced Concepts has focused on developing two material systems (InGaAs/InP and InGaAsSb/GaSb) over the past several years. This work summarizes a scientific evaluation of both material systems to determine which material has the greatest potential for high-efficiency (27%) and power density (0.8W/cm{sup 2}) TPV energy conversion. Lockheed Martin, KAPL Inc. and Bechtel Bettis have issued a joint recommendation to focus all diode development efforts in the future on InGaAs/InP TPV diodes, based on it's potential to acquire the required performance.

M Dashiell

2004-12-08T23:59:59.000Z

385

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Areas Print Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

386

Carbon Materials Breakout Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Breakout Group Process Materials Breakout Group Process * Day 2, Thursday - Review results of Day 1 and modify if needed - Identify critical R&D needs - Outline R&D plan with key milestones - Report results to plenary Carbon Materials Breakout Group * Key Results - Target: get the science right to engineer carbon materials for hydrogen storage * Integrate theory, experiment, engineering * Understand mechanisms, effects, and interactions ranging from physisorption to chemisorption - Theory * Provide "directional" guidance for experiments (and vice- versa) * Provide baseline theory to elucidate parameters affecting the number and type of binding sites and the heat of their interaction with H2 (∆H ) for a broad range of (highly) modified carbon materials

387

(Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source)  

SciTech Connect (OSTI)

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-01-01T23:59:59.000Z

388

[Research at and operation of the material science x-ray absorption beamline (X-11) at the National Synchrotron Light Source]. Progress report  

SciTech Connect (OSTI)

This report discusses three projects at the Material Science X-Ray Absorption Beamline. Topics discussed include: XAFS study of some titanium silicon and germanium compounds; initial XAS results of zirconium/silicon reactions; and low angle electron yield detector.

Not Available

1992-08-01T23:59:59.000Z

389

Geological carbon sequestration: critical legal issues  

E-Print Network [OSTI]

Geological carbon sequestration: critical legal issues Ray Purdy and Richard Macrory January 2004 Tyndall Centre for Climate Change Research Working Paper 45 #12;1 Geological carbon sequestration an integrated assessment of geological carbon sequestration (Project ID code T2.21). #12;2 1 Introduction

Watson, Andrew

390

Sandia National Laboratories: Advanced Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Laboratory Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy...

391

Sandia National Laboratories: energy storage materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

392

Sandia National Laboratories: Materials Science and Engineering...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

itiesCapabilitiesMaterials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project Materials...

393

High Temperature Materials Laboratory (HTML) - PSD Directorate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

filler A National Resource for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions....

394

Chemistry & Physics at Interfaces | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Chemistry and Physics at Interfaces SHARE Chemistry and Physics at Interfaces Chemical...

395

Advanced Materials and Manufacturing | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and characterization of ceramic materials for energy-related applications Process Development and Scale-up Program Argonne's Materials Synthesis and Manufacturing Research and...

396

DOE launches rare earth metals research hub  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ATL011113_hub ATL011113_hub 01/11/2013 DOE launches rare earth metals research hub Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. Photo courtesy of the Ames Laboratory. High Resolution Image The Department of Energy has launched a research hub that focuses on solutions to the domestic shortages of rare earth metals and other materials critical for U.S. energy security. Housed at Ames Laboratory in Iowa, Lawrence Livermore has been involved in establishing this Energy Innovation Hub since its conception more than two years ago. In 2010, on behalf of DOE, LLNL hosted the first U.S.-Japan

397

Vehicle Technologies Office: Long-Term Lightweight Materials...  

Energy Savers [EERE]

Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) In the long...

398

Long-Term Lightweight MaterialVehicle Technologies Office: Long...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lightweight Materials Researchs Research In the long term, advanced materials such as magnesium and carbon fiber reinforced composites could reduce the weight of some components by...

399

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Critical Evaluation of the ICARUS Portion of the ISCCP Simulator Using ARM Critical Evaluation of the ICARUS Portion of the ISCCP Simulator Using ARM Data Download a printable PDF Submitter: Mace, G., Utah State University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Mace GG, S Houser, S Benson, SA Klein, and QL Min. 2011. "Critical evaluation of the ISCCP simulator using ground-based remote sensing data." Journal of Climate, 24(6), doi:10.1175/2010JCLI3517.1. Figure 1. Comparison of actual cloud top pressure from ARM remote sensors compared to ISCCP (top) and after the ICARUS algorithm has been used to convert the measured cloud top pressures to ISCCP-like quantities (bottom). Figure 2. Comparison of various measures of optical depth. Top left shows

400

Laboratory Technology Research: Abstracts of FY 1996 projects  

SciTech Connect (OSTI)

The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

NONE

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Sandia National Laboratories: materials science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of microsystems-enabled PV (MEPV) technology and ... Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating...

402

Center for Nanophase Materials Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the functionality of nanoscale materials and interacting assemblies * Research on optoelectronic, ferroelectric, ionic and electronic transport, and catalytic phenomena at the...

403

Su-Huai Wei - Research Fellow | NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

American Physical Society and The Materials Research Society. Research Interests Optoelectronic properties of photovoltaic and light-emitting materials Defect physics in...

404

Photovoltaic Materials  

SciTech Connect (OSTI)

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

405

INL Cyber Security Research (2008) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

INL Cyber Security Research (2008) INL Cyber Security Research (2008) Cybersecurity research at INL will help protect critical infrastructure control system computers against worms...

406

Reference Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy...

407

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

408

Only critical information was scanned  

Office of Legacy Management (LM)

Only critical information was scanned. Entire document is available upon request - Click here to email a...

409

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Critical Role of Cloud Drop Effective Radius >14 Micron Radius in Rain Critical Role of Cloud Drop Effective Radius >14 Micron Radius in Rain Initiation Download a printable PDF Submitter: Rosenfeld, D., The Hebrew University of Jerusalem Wang, H., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Rosenfeld D, H Wang, and PJ Rasch. 2012. "The roles of cloud drop effective radius and LWP in determining rain properties in marine stratocumulus." Journal of Geophysical Research - Atmospheres, 39, doi:10.1029/2012GL052028. The dependence of rain rate on cloud drop effective radius (re) near cloud top. The color scale is for the median value of column maximum rain rate in each joint bin of CWP-re (cloud liquid water path and cloud-top re).

410

NREL: Photovoltaics Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photo of Photovoltaic Solar Panels. Photo of Photovoltaic Solar Panels. Solar Installer Surveys DOE needs your input to reduce the "soft costs" of solar PV installations that impact your business. Complete the residential survey and commercial survey today! Photovoltaic (PV) research at the National Renewable Energy Laboratory (NREL) focuses on boosting solar cell conversion efficiencies, lowering the cost of solar cells, modules, and systems, and improving the reliability of PV components and systems. NREL's PV effort contributes to these goals through fundamental research, advanced materials and devices, and technology development. Our scientists are pursuing critical activities that will help to accomplish the goal of the U.S. Department of Energy's SunShot Initiative-to make large-scale solar energy systems cost-competitive with

411

Benchmarking of Graphite Reflected Critical Assemblies of UO2  

SciTech Connect (OSTI)

A series of experiments were carried out in 1963 at the Oak Ridge National Laboratory Critical Experiments Facility (ORCEF) for use in space reactor research programs. A core containing 93.2% enriched UO2 fuel rods was used in these experiments. The first part of the experimental series consisted of 253 tightly-packed fuel rods (1.27 cm triangular pitch) with graphite reflectors [1], the second part used 253 graphite-reflected fuel rods organized in a 1.506 cm triangular pitch [2], and the final part of the experimental series consisted of 253 beryllium-reflected fuel rods with a 1.506 cm triangular pitch. [3] Fission rate distribution and cadmium ratio measurements were taken for all three parts of the experimental series. Reactivity coefficient measurements were taken for various materials placed in the beryllium reflected core. The first part of this experimental series has been evaluated for inclusion in the International Reactor Physics Experiment Evaluation Project (IRPhEP) [4] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbooks, [5] and is discussed below. These experiments are of interest as benchmarks because they support the validation of compact reactor designs with similar characteristics to the design parameters for a space nuclear fission surface power systems. [6

Margaret A. Marshall; John D. Bess

2011-11-01T23:59:59.000Z

412

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Areas Areas Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

413

Shale Gas and the Environment: Critical Need for a  

E-Print Network [OSTI]

Shale Gas and the Environment: Critical Need for a Government­University­Industry Research Initiative P O L I C Y M A K E R G U I D E #12;Shale gas production is increasing at a rapid rate initiative is needed to fill critical gaps in knowledge at the interface of shale gas development

McGaughey, Alan

414

Inhomogeneous critical Ising model  

Science Journals Connector (OSTI)

The spectrum of the transfer matrix of a semi-infinite two-dimensional Isin model with marginally inhomogeneous couplings has been determined exactly in the finite-size-scaling limit at the bulk critical point. Depending on the local temperature at the boundary the surface phase transition of this system is either of first order or of second order with nonuniversal critical exponents. For a second-order transition, the excitation energies of the transfer matrix are inversely proportional to the linear size (N) of the system, but the levels are not equidistantly spaced. On the other hand, for a first-order transition the lowest gap vanishes algegraically, but faster than 1/N.

Ferenc Iglói

1990-06-18T23:59:59.000Z

415

Center for Nanophase Materials Sciences - Newsletter January...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Nanophase Materials Sciences Oak Ridge National Laboratory is a collaborative nanoscience user research facility for the synthesis, characterization, theorymodeling...

416

Applicability of ZPR critical experiment data to criticality safety  

SciTech Connect (OSTI)

More than a hundred zero power reactor (ZPR) critical assemblies were constructed, over a period of about three decades, at the Argonne National Laboratory ZPR-3, ZPR-6, ZPR-9 and ZPPR fast critical assembly facilities. To be sure, the original reason for performing these critical experiments was to support fast reactor development. Nevertheless, data from some of the assemblies are well suited to form the basis for valuable, new criticality safety benchmarks. The purpose of this paper is to describe the ZPR data that would be of benefit to the criticality safety community and to explain how these data could be developed into practical criticality safety benchmarks.

Schaefer, R.W.; Aumeier, S.E.; McFarlane, H.F.

1995-12-31T23:59:59.000Z

417

The erosion resistance of infrared transparent materials  

Science Journals Connector (OSTI)

...research-article The erosion resistance of infrared transparent materials E.J. Coad C.S...discussed. erosion resistance|infrared materials|liquid impact...Keywords: erosion resistance; infrared materials; liquid impact...

1998-01-01T23:59:59.000Z

418

NREL: Photovoltaics Research - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Staff Research Staff Our silicon group members have backgrounds in physics, chemistry, mathematics, materials science, and electrical engineering. Russell Bauer Howard Branz Sachit Grover Vincenzo LaSalvia Benjamin Lee William Nemeth Matt Page Lorenzo Roybal Pauls Stradins, (Acting Group Manager) Charles Teplin Qi Wang David Young Hao-Chih Yuan Photo of 21 people standing in front of a building with a silver, cylinder-shaped structure on one side. Photo of Pauls Stradins Pauls Stradins Senior Scientist II Group Manager Primary Research Interests High-efficiency silicon photovoltaics: advanced passivation techniques and industrially-relevant processes Interfacing Si cell with other materials for high-efficiency tandem Nanostructured semiconductor materials for photovoltaics: Si quantum

419

Criticality Safety Basics for INL FMHs and CSOs  

SciTech Connect (OSTI)

Nuclear power is a valuable and efficient energy alternative in our energy-intensive society. However, material that can generate nuclear power has properties that require this material be handled with caution. If improperly handled, a criticality accident could result, which could severely harm workers. This document is a modular self-study guide about Criticality Safety Principles. This guide's purpose it to help you work safely in areas where fissionable nuclear materials may be present, avoiding the severe radiological and programmatic impacts of a criticality accident. It is designed to stress the fundamental physical concepts behind criticality controls and the importance of criticality safety when handling fissionable materials outside nuclear reactors. This study guide was developed for fissionable-material-handler and criticality-safety-officer candidates to use with related web-based course 00INL189, BEA Criticality Safety Principles, and to help prepare for the course exams. These individuals must understand basic information presented here. This guide may also be useful to other Idaho National Laboratory personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. This guide also includes additional information that will not be included in 00INL189 tests. The additional information is in appendices and paragraphs with headings that begin with 'Did you know,' or with, 'Been there Done that'. Fissionable-material-handler and criticality-safety-officer candidates may review additional information at their own discretion. This guide is revised as needed to reflect program changes, user requests, and better information. Issued in 2006, Revision 0 established the basic text and integrated various programs from former contractors. Revision 1 incorporates operation and program changes implemented since 2006. It also incorporates suggestions, clarifications, and additional information from readers and from personnel who took course 00INL189. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that fissionable material handlers and criticality safety officers must understand. The reorganization is based on and consistent with changes made to course 00INL189 due to a review of course exam results and to discussions with personnel who conduct area-specific training.

V. L. Putman

2012-04-01T23:59:59.000Z

420

Materials Sciences Division 1990 annual report  

SciTech Connect (OSTI)

This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Materials Sciences Division 1990 annual report  

SciTech Connect (OSTI)

This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-12-31T23:59:59.000Z

422

Advanced Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ductility EnhancEmEnt of molybDEnum Ductility EnhancEmEnt of molybDEnum PhasE by nano-sizED oxiDE DisPErsions Description Using computational modeling techniques, this research aims to develop predictive capabilities to facilitate the design and optimization of molybdenum (Mo), chromium (Cr), and other high-temperature structural materials to enable these materials to withstand the harsh environments of advanced power generation systems, such as gasification-based systems. These types of materials are essential to the development of highly efficient, clean energy technologies such as low-emission power systems that use coal or other fossil fuels.

423

Human Resources at Colorado School of Mines | Critical Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Colorado School of Mines Employment at Colorado School of Mines Office of Human Resources: 1500 Illinois St., Suite 110 Golden, CO 80401 (303) 273-3250 (303) 384-2025 FAX Mike...

424

Critical Materials and Rare Futures: Ames Laboratory Signs a...  

Energy Savers [EERE]

and lasers, as well as clean-energy technologies such as electric vehicles and wind turbines. For example, the best magnets for efficient electric motors - which can be found...

425

What would we do without rare earths? | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are a big part of our modern world. They are in clean energy technologies like wind turbines and solar cells and in many things we use every day -- cars, cell phones,...

426

CMI Education and Outreach in 2014 | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Colorado School of Mines, including the geology museum. Mines experts described rare earth elements as they relate to the middle school world and renewable energy. Colorado...

427

CMI Unique Facility: Filtration Test Facility | Critical Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and it addresses the grand challenge of developing technologies for separating the rare earth elements. For more information, and to explore using the filtration test facility,...

428

News about Rare Earths, New or Critical Materials, and Their...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

14, 2014 Could magnets in helmets reduce football concussions?, November 2014 The Rare-Earth Elements -- Vital to Modern Technologies and Lifestyles, November 2014 Energy Report:...

429

CMI Education Resources for K-12 | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in the activity guide available online. David Pogue also did a PBS NOVA video "Rare Earth Elements" howtosmile.org claims to have all the best science and math activities. Try...

430

U.S. Department of Energy - Critical Materials Strategy  

Broader source: Energy.gov (indexed) [DOE]

Rare Earth Surcharge for FCC Catalysts and Additives." August 25. http:www.grace.comMediaNewsItem.aspx?id1463179. China Daily. 2009. "China Mulls Plans to Curb Rare Earth...

431

Critical Care Medicine: Nutrition in the Acute Phase of Critical Illness  

Science Journals Connector (OSTI)

...illness might be explained by their suppressive effects on pathways of cell-damage removal that recycle substrates from clearing debris, more research is needed to unravel the exact underlying mechanisms. In addition, research focusing on biomarkers and on scoring systems should aim to identify patients... This review covers current knowledge related to the initiation of enteral or parenteral feeding among critically ill patients in the ICU.

Casaer M.P.; Van den Berghe G.

2014-03-27T23:59:59.000Z

432

Ohio State's researchers to collaborate on three new Ohio Third Frontier photovoltaics grants Ohio State's Institute for Materials Research (IMR) is the central collaborator on three Ohio Third Frontier Photovoltaics  

E-Print Network [OSTI]

Ohio State's researchers to collaborate on three new Ohio Third Frontier photovoltaics grants Ohio Photovoltaics Program (PVP) projects recommended for funding by the Ohio Third Frontier Commission. The goal of the PVP is to accelerate the development and growth of the photovoltaics industry in Ohio by supporting

433

Critical Skills Master's Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Skills Master's Program Skills Master's Program (CSMP): The Critical Skills Master's Program (CSMP) provides exceptional bachelor's-level candidates with the opportunity to pursue a fully funded Master's of Science degree. Successful applicants will become regular full-time Sandia employees and join multidisciplinary teams that are advancing the frontiers of science and technology to solve the world's greatest challenges. Program Requirements: * Apply to a minimum of 3 nationally accredited universities. * Successfully complete the GRE as required by the universities of interest. * Complete a master's degree within:

434

Critical exponent for viscosity  

Science Journals Connector (OSTI)

We have measured the critical exponent y characterizing the divergence of the viscosity ???T-Tc?-y for carbon dioxide and xenon. The values of y for both fluids fall within the range y=0.041±0.001 and are consistent with the range y=0.042±0.002 spanned by our earlier data for four binary liquid mixtures. This agreement is the strongest evidence that pure fluids and binary liquids are in the same dynamic universality class; however, the results for y are inconsistent with the recent theoretical value of 0.032.

Robert F. Berg and Michael R. Moldover

1990-12-15T23:59:59.000Z

435

Mercury-Related Materials Studies  

E-Print Network [OSTI]

. Pawel, "Assessment of Cavitation-Erosion Resistance of Potential Pump Impeller Materials for MercuryMercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010 ­ updated Feb 3, 2010 #12;ORNL Material Reports Reviewed · IDS-NF requested ORNL research any past SNS

McDonald, Kirk

436

Argonne TDC: Material Transfer Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Transfer Agreements Material Transfer Agreements Materials produced by researchers at Argonne National Laboratory are often of interest to the private sector. Depending on the circumstances under which the material was developed, such material may be transferred to industry for a number of reasons (e.g., testing, feasibility studies, etc.). This transfer is usually temporary and can initiate a more formal working arrangement. At this time, TDC, in conjunction with Argonne's Legal Department, provides such agreements on an as-needed basis. If you would like to acquire material produced by Argonne researchers during the course of a federally funded research project, please contact TDC or fill out a Material Transfer Agreement request form. Printed or electronically downloaded copies may become obsolete. Before using such a copy for work direction, employees must verify that it is current by comparing its revision number with that of the online version. Obsolete forms will be rejected.

437

Innovative Materials, Processes, and Tools Improve Performance, Quality of White LEDs  

Broader source: Energy.gov [DOE]

Lumileds Lighting joined forces with Sandia National Laboratories to investigate critical materials issues related to solid-state lighting technology.

438

Materializing energy  

Science Journals Connector (OSTI)

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of ... Keywords: design, design theory, energy, materiality, sustainability

James Pierce; Eric Paulos

2010-08-01T23:59:59.000Z

439

research 1..8  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Accounts of Chemical Research virtual special issue "2D Nanomaterials beyond 3 Graphene". 4 Michael Naguib and Yury Gogotsi* , 5 Materials Science and Technology...

440

NREL: Photovoltaics Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For archived editions of the NCPV Hotline. See also PV events. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NREL: Photovoltaics Research - Webmaster  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reply. Your name: Your email address: Your message: Send Message Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

442

Experiment Operations Plan for a Loss-of-Coolant Accident Simulation in the National Research Universal Reactor Materials Tests 1 and 2  

SciTech Connect (OSTI)

A loss of Coolant Accident (LOCA) simulation program is evaluating the thermal-hydraulic and mechanical effects of LOCA conditions on pressurized water reactor test fuel bundles. This experiment operation plan for the second and third experiments of the program will provide peak fuel cladding temperatures of up to 1172K (1650{degree}F) and 1061K (1450{degree}) respectively. for a long enough time to cause test fuel cladding deformation and rupture in both. Reflood coolant delay times and the reflooding rates for the experiments were selected from thermal-hydraulic data measured in the National Research Universal (NRU) reactor facilities and test train assembly during the first experiment.

Russcher, G. E.; Wilson, C. L.; Marshall, R, K.; King, L. L.; Parchen, L. J.; Pilger, J. P.; Hesson, G. M.; Mohr, C. L.

1981-09-01T23:59:59.000Z

443

Nuclear Engineering Nuclear Criticality Safety  

E-Print Network [OSTI]

Nuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear, and neutron spectra. The NE nuclear criticality safety (NCS) capabilities are based on a staff with decades

Kemner, Ken

444

NREL: Energy Sciences - Theoretical Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computational Materials Science Solid-State Theory Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Theoretical Materials Science Learn about our research staff including staff profiles, publications, and contact information. Using modern computational techniques, the Theoretical Materials Science Group, within NREL's Chemical and Materials Science Center, applies quantum mechanics to complex materials, yielding quantitative predictions to guide and interact with experimental explorations. Current research focuses on the following efforts: Design new photovoltaic materials that can improve solar cell efficiency and reduce its cost. Explain the underlying physics of new

445

Criticality Safety Basics for INL Emergency Responders  

SciTech Connect (OSTI)

This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …).

INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

Valerie L. Putman

2012-08-01T23:59:59.000Z

446

Commercialization of Bulk Thermoelectric Materials for Power Generation  

Broader source: Energy.gov [DOE]

Critical aspects of technology commercialization of preproduction high performance thermoelectric materials available for device developers, data analysis, and future plans are discussed

447

Work of the All-Russian Scientific Research Institute of Automatics with the U.S. laboratory-to-laboratory program for cooperation on nuclear materials protection, control, and accounting  

SciTech Connect (OSTI)

The All-Russian Scientific Research Institute of Automatics (VNIIA) is one of the scientific research institutes participating in the US/Russian Laboratory-to-Laboratory Program in Nuclear Materials Protection, Control, and Accounting (MPC and A). The Institute has provided instrumentation and measurement techniques to the Russian defense program and to the medical, gas and oil, and manufacturing industries. VNIIA is improving MPC and A in Russia by providing support to the Russian institutes and enterprises in the Ministry of Atomic Energy. VNIIA has a primary role in determining the requirements and specifications and developing procedures for testing and certification of MPC and A equipment, and is instrumental in strengthening the Russian infrastructure for supplying MPC and A equipment. Contracts have been placed with VNIIA by Russian suppliers to test, certify, and prepare for manufacturing hand-held special nuclear material detection equipment they have developed. A contract also is in place with VNIIA to test and evaluate a US-manufactured pedestrian portal monitor. Work for 1996 includes certifying these portal monitors and portable radiation detection equipment for use in Russian facilities, testing and evaluating a US active well coincidence counter and gamma-ray isotopic measurement methods, and developing guidelines for statistical evaluation methods used in MPC and A. This paper reviews the status of this effort and describes the plans for continuing this work in 1996.

Griggs, J.R.; Smoot, J.L. [Pacific Northwest National Lab., Richland, WA (United States); Hoida, Hiroshi [Los Alamos National Lab., NM (United States)] [and others

1996-12-31T23:59:59.000Z

448

Ultra Thin Quantum Well Materials  

SciTech Connect (OSTI)

This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

Dr Saeid Ghamaty

2012-08-16T23:59:59.000Z

449

Proceedings of the sixth Japan--US workshop on high-field superconducting materials and standard procedures for high-field superconducting materials testing  

SciTech Connect (OSTI)

High critical current densities and high magnetic fields are needed for most important energy application of both conventional and high-Tc superconductors. This workshop brought together those engaged research on high-field superconductors in Japan and the US to present recent research results on performance of new high-field superconducting materials and to discuss the most promising directions for research, specifically as it relates to the fusion energy needs of both countries. Topics covered included critical currents, irradiation effects, ac losses, magnetization properties, and new fabrication processes for conventional superconductors. An entire session was devoted to presentations on the properties of Nb{sub 3}Al superconductors. Large magnet research programs for energy applications were reviewed, including the tokamak fusion machine at JAERI, the joint US-Japan Nb{sub 3}Sn poloidal-field-coll development program, and the proposed International Thermonuclear Experimental Reactor (ITER) project. Results were also presented on the VAMAS round robin in three areas; J{sub c}, stress effects, and ac losses. Finally, some current research results on experimental high-{Tc} superconductors were reviewed, with particular emphasis on new fabrication processes and the factors limiting the critical current in high-current conductors. Separate abstracts have been prepared.

Tachikawa, K. [ed.] [Tokai Univ., Kanagawa (Japan). Faculty of Engineering; Yamafuji, K. [ed.] [Kyushu Univ., Fukuoka (Japan). Dept. of Electronics; Wada, H. [ed.] [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan); Ekin, J.W. [ed.] [National Inst. of Standards and Technology, Boulder, CO (United States); Suenaga, M. [ed.] [Brookhaven National Lab., Upton, NY (United States)

1989-12-31T23:59:59.000Z

450

Proceedings of the sixth Japan--US workshop on high-field superconducting materials and standard procedures for high-field superconducting materials testing  

SciTech Connect (OSTI)

High critical current densities and high magnetic fields are needed for most important energy application of both conventional and high-Tc superconductors. This workshop brought together those engaged research on high-field superconductors in Japan and the US to present recent research results on performance of new high-field superconducting materials and to discuss the most promising directions for research, specifically as it relates to the fusion energy needs of both countries. Topics covered included critical currents, irradiation effects, ac losses, magnetization properties, and new fabrication processes for conventional superconductors. An entire session was devoted to presentations on the properties of Nb[sub 3]Al superconductors. Large magnet research programs for energy applications were reviewed, including the tokamak fusion machine at JAERI, the joint US-Japan Nb[sub 3]Sn poloidal-field-coll development program, and the proposed International Thermonuclear Experimental Reactor (ITER) project. Results were also presented on the VAMAS round robin in three areas; J[sub c], stress effects, and ac losses. Finally, some current research results on experimental high-[Tc] superconductors were reviewed, with particular emphasis on new fabrication processes and the factors limiting the critical current in high-current conductors. Separate abstracts have been prepared.

Tachikawa, K. (ed.) (Tokai Univ., Kanagawa (Japan). Faculty of Engineering); Yamafuji, K. (ed.) (Kyushu Univ., Fukuoka (Japan). Dept. of Electronics); Wada, H. (ed.) (National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)); Ekin, J.W. (ed.) (National Inst. of Standards and Technology, Boulder, CO (United States)); Suenaga, M. (ed.) (Brookhaven National Lab., Upton, NY (United States))

1989-01-01T23:59:59.000Z

451

Materials Science & Engineering | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Clean Energy Materials Theory and Simulation Neutron Science Nuclear Forensics Nuclear Science Supercomputing Theory, Modeling and Simulation Mathematics Physics More Science Home | Science & Discovery | More Science | Materials Science and Engineering SHARE Materials Science and Engineering ORNL's core capability in applied materials science and engineering directly supports missions in clean energy, national security, and industrial competitiveness. A key strength of ORNL's materials science program is the close coupling of basic and applied R&D. Programs building on this core capability are focused on (1) innovations and improvements in materials synthesis, processing, and design; (2) determination and manipulation of critical structure-property relationships, and (3)

452

Sensitivity relationships in energetic materials  

SciTech Connect (OSTI)

In searching for new explosives one is most concerned with performance (detonation velocity and pressure), thermal properties, and sensitivity. Whether a new candidate explosive is ultimately widely used may well be determined by other factors, such as cost, toxicity, melting point, etc., but the initial research effort is guided by the trinity of performance, thermal stability, and sensitivity. This presents a difficult multifactoral problem in assessing the various molecular properties that contribute to each of these principal selection criteria. For instance, detonation velocity is affected by density, elemental composition, and heat of formation. These factors must be varied together in such a way as to maximize the combined effect on performance. We have shown a relationship between impact and shock sensitivity and illustrated how a sensitivity index based on oxygen balance can be used to estimate sensitivity in closely related series of molecules. It is shown that the critical temperature of an explosive calculated by the Frank-Kamenetskii equation correlated fairly well with the shock sensitivity of the material. This supports the idea that the shock or impact initiation of an explosive is primarily a thermal event and not dominated by pressure driven chemistry. The concept of the ''trigger linkage'' in explosives is discussed and it is pointed out that insensitive explosives will require early chemistry that is thermomechanically neutral or endothermic and leads to the build-up of later strongly exothermic chemistry.

Storm, C.B.; Stine, J.R.; Kramer, J.F.

1989-01-01T23:59:59.000Z

453

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

454

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

455

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

456

Scintillator material  

DOE Patents [OSTI]

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

457

Automatic whole core depletion and criticality calculations by MCNPX 2.7.0  

SciTech Connect (OSTI)

Different approaches to perform automatic whole core criticality and depletion calculations in a research reactor using MCNPX 2.7.0 are presented. An approximate method is to use the existing symmetries of the burned fuel material distribution in the core, i.e., the axial, radial and azimuth symmetries around the core center, in order to significantly reduce the computation time. In this case it is not necessary to give a unique material number to each burn up cell. Cells having similar burn up and power, achieved during similar irradiation history at same initial fuel composition, will experience similar composition evolution and can therefore be given the same material number. To study the impact of the number of unique burn up materials on the computation time and utilized RAM memory, several MCNPX models have been developed. The paper discusses the accuracy of the model on comparison with measurements of BR2 operation cycles in function of the number of unique burn up materials and the impact of the used Q-value (MeV/fission) of the recoverable fission energy. (authors)

Kalcheva, S.; Koonen, E. [SCKCEN, BR2 Reactor Dept., Boeretang 200, 2400 Mol (Belgium)

2012-07-01T23:59:59.000Z

458

Approval of the Critical Decision 4.  

Office of Legacy Management (LM)

SUBJECT: ACTION: Approval of the Critical Decision 4 for the Closeout SUBJECT: ACTION: Approval of the Critical Decision 4 for the Closeout of the General Atomics (GA) Hot Cell Facility (HCF) Decontamination and Decommissioning (D&D) Project, Project Baseline Summary VL-GA-0012, and the Transfer for the GA Project Files to the Office of Legacy Management (LM) ISSUE: None BACKGROUND: Activities associated with the cleanup of the GA HCF and surrounding site were completed on September 28,2003. The GA site has been remediated to negotiated cleanup standards and released by the U. S. Nuclear Regulatory Commission (NRC) and the State of California Department of Health Services Radiological Health Branch (CAL-RHB) to unrestricted use. All project generated waste and legacy spent fuel materials have been dispositioned. GAts Special Nuclear

459

Advanced Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

460

Criticality prevention during postaccident decontamination of TMI-2 (Three Mile Island Unit 2) plant systems  

SciTech Connect (OSTI)

Following the accident at Three Mile Island Unit 2 (TMI-2), the likelihood of a criticality outside of the reactor coolant system (RCS) during the plant cleanup was very small. Given the consequence of any possible critical event in the TMI-2 systems, However, it was always necessary to ensure that all steps were taken to prevent criticality. Therefore, engineered controls were developed to ensure that decontamination of plant systems containing fuel material could be conducted in a manner that precluded criticality.

Palau, G. L.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Preliminary Criticality Safety Evaluation for In Situ Grouting in the Subsurface Disposal Area  

SciTech Connect (OSTI)

A preliminary criticality safety evaluation is presented for in situ grouting in the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory. The grouting materials evaluated are cement and paraffin. The evaluation determines physical and administrative controls necessary to preclude criticality and identifies additional information required for a final criticality safety evaluation. The evaluation shows that there are no criticality concerns with cementitious grout but a neutron poison such as boron would be required for the use of the paraffin matrix.

Slate, Lawrence J; Taylor, Joseph Todd

2000-08-01T23:59:59.000Z

462

Preliminary Criticality Safety Evaluation for In Situ Grouting in the Subsurface Disposal Area  

SciTech Connect (OSTI)

A preliminary criticality safety evaluation is presented for in situ grouting in the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory. The grouting materials evaluated are cement and paraffin. The evaluation determines physical and administrative controls necessary to preclude criticality and identifies additional information required for a final criticality safety evaluation. The evaluation shows that there are no criticality concerns with cementitious grout but a neutron poison such as boron would be required for the use of the paraffin matrix.

Slate, L.J.; Taylor, J.T.

2000-08-31T23:59:59.000Z

463

Experimental Study of Plasma Materials' Interaction in Plasma Focus “Dena”  

Science Journals Connector (OSTI)

It is widely recognized that plasma material interaction in fusion devices is a critical issue that affects the overall machine performance. The process of material selection with a low degradation effect on the ...

M. V. Roshan; M. Mahmoodi Darian

2003-03-01T23:59:59.000Z

464

NMR imaging of materials  

SciTech Connect (OSTI)

Interest in the area of NMR imaging has been driven by the widespread success of medical imaging. John M. Listerud of the Pendergrass Diagnostic Research Laboratories, Steven W. Sinton of Lockheed, and Gary P. Drobny of the University of Washington describe the principal image reconstruction methods, factors limiting spatial resolution, and applications of imaging to the study of materials.

Listerud, J.M.; Sinton, S.W.; Drobny, G.P.

1989-01-01T23:59:59.000Z

465

Criticality safety assessment of tank 241-C-106 remediation  

SciTech Connect (OSTI)

A criticality safety assessment was performed in support of Project 320 for the retrieval of waste from tank 241-C-106 to tank 241-AY-102. The assessment was performed by a multi-disciplined team consisting of expertise covering the range of nuclear engineering, plutonium and nuclear waste chemistry,and physical mixing hydraulics. Technical analysis was performed to evaluate the physical and chemical behavior of fissile material in neutralized Hanford waste as well as modeling of the fluid dynamics for the retrieval activity. The team has not found evidence of any credible mechanism to attain neutronic criticality in either tank and has concluded that a criticality accident is incredible.

Waltar, A.E., Westinghouse Hanford

1996-07-19T23:59:59.000Z

466

Directionally solidified materials | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Clean Energy National Security Neutron Science Nuclear Science Supercomputing and Computation More Science Hubs, Centers and Institutes US ITER Home | Science & Discovery | Advanced Materials SHARE Directionally solidified materials May 15, 2013 A false-color image of molybdenum pillars, formed as a grid of nearly defect-free single crystal rods, sticking out of a silicon carbide matrix. Through a process known as directional solidification, ORNL researchers have grown materials with micrometer-sized nearly-perfect "pillars." When they tested these materials, they found that the pillars had strength

467

Cryogenic structural materials for superconducting magnets  

SciTech Connect (OSTI)

This paper reviews research in the United States and Japan on structural materials for high-field superconducting magnets. Superconducting magnets are used for magnetic fusion energy devices and for accelerators that are used in particle-physics research. The cryogenic structural materials that we review are used for magnet cases and support structures. We expect increased materials requirements in the future.

Dalder, E.N.C.; Morris, J.W. Jr.

1985-02-22T23:59:59.000Z

468

FAQS Reference Guide – Criticality Safety  

Broader source: Energy.gov [DOE]

This reference guide addresses the competency statements in the April 2009 edition of DOE-STD-1173-2009, Criticality Safety Functional Area Qualification Standard.

469

Future Applications Monitor Critical Structures  

E-Print Network [OSTI]

Future Applications · Monitor Critical Structures ­ Bridges, dams, pipelines, power integrity for rescue efforts ­ Expendable for unstable conditions ­ Power system repair ­ Firefighting

Huston, Dryver R.

470

Criticality Safety | Department of Energy  

Office of Environmental Management (EM)

at Department of Energy Non Reactor Nuclear Facilities DOE-STD-1135-99, Guidance for Nuclear Criticality Safety Engineer Training and Qualification Contact Garrett Smith...

471

Oxide materials for electronics Inorganic Materials and Ceramics Research Group  

E-Print Network [OSTI]

, battery cycling, total scattering. HoMnO3 upon in situ change of atmosphere @ 1623 K. J. Solid State Chem Ferroelectric nanorods Electronic nanomaterials in the Ceramics group Quantum dots Batteries, SOFC, proton

472

An assessment of criticality safety at the Department of Energy Rocky Flats Plant, Golden, Colorado, July--September 1989  

SciTech Connect (OSTI)

This is a report on the 1989 independent Criticality Safety Assessment of the Rocky Flats Plant, primarily in response to public concerns that nuclear criticality accidents involving plutonium may have occurred at this nuclear weapon component fabrication and processing plant. The report evaluates environmental issues, fissile material storage practices, ventilation system problem areas, and criticality safety practices. While no evidence of a criticality accident was found, several recommendations are made for criticality safety improvements. 9 tabs.

Not Available

1989-09-01T23:59:59.000Z

473

Accident Performance of Light Water Reactor Cladding Materials  

SciTech Connect (OSTI)

During a loss of coolant accident as experienced at Fukushima, inadequate cooling of the reactor core forces component temperatures ever higher where they must withstand aggressive chemical environments. Conventional zirconium cladding alloys will readily oxidize in the presence of water vapor at elevated temperatures, rapidly degrading and likely failing. A cladding breach removes the critical barrier between actinides and fission products and the coolant, greatly increasing the probability of the release of radioactivity in the event of a containment failure. These factors have driven renewed international interest in both study and improvement of the materials used in commercial light water reactors. Characterization of a candidate cladding alloy or oxidation mitigation technique requires understanding of both the oxidation kinetics and hydrogen production as a function of temperature and atmosphere conditions. Researchers in the MST division supported by the DOE-NE Fuel Cycle Research and Development program are working to evaluate and quantify these parameters across a wide range of proposed cladding materials. The primary instrument employed is a simultaneous thermal analyzer (STA) equipped with a specialized water vapor furnace capable of maintaining temperatures above 1200 C in a range of atmospheres and water vapor contents. The STA utilizes thermogravimetric analysis and a coupled mass spectrometer to measure in situ oxidation and hydrogen production of candidate materials. This capability is unprecedented in study of materials under consideration for reactor cladding use, and is currently being expanded to investigate proposed coating techniques as well as the effect of coating defects on corrosion resistance.

Nelson, Andrew T. [Los Alamos National Laboratory

2012-07-24T23:59:59.000Z

474

Sandeman-012113 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandeman-012113 Sandeman-012113 JOINT PSE/MSD SEMINAR SPEAKER: Karl G. Sandeman Department of Physics TITLE: "(Tri)critical Phase Transitions in Magnetocaloric Materials " DATE: Monday, January 21, 2013 TIME: 3:00 p.m. PLACE: Building 223 / S-105 HOST: Seungbum Hong ABSTRACT: Much of today's research in so-called functional materials is driven by the quest for technologies that use energy more efficiently and reduce our impact on the environment. Such pressures drive a renewed investigation of some of the most fundamental properties of condensed matter. Solid-state phase transitions are one good example. In order to find an energy efficient solution to the problem of reducing our use of HFCs in a variety of cooling applications, a new field has been defined.

475

material consolidation  

National Nuclear Security Administration (NNSA)

nuclear facilities. MCCS has supported MPC&A upgrades at 19 sites throughout Russia, including research institutes and fuel fabrications facilities.

  • 476

    Digital materials for digital fabrication  

    E-Print Network [OSTI]

    This thesis introduces digital materials by analogy with digital computation and digital communications. Traditional fabrication techniques include pick-and-place, roll-to-roll, molding, patterning and more. Current research ...

    Popescu, George A

    2007-01-01T23:59:59.000Z

    477

    Critical Infrastructure and Internal Controls  

    Science Journals Connector (OSTI)

    Critical refers to infrastructure that provides an essential support for economic and social well-being, for public safety and for the functioning of key government responsibilities. According to Resolution of the National Security Strategy of the Republic ... Keywords: Risk management,Process control,Government,Standards,Security,Uncertainty,internal controls,critical infrastructure,risk,risk management

    Iztok Podbregar; Mojca Ferjancic Podbregar

    2012-08-01T23:59:59.000Z

    478

    Complex Materials  

    SciTech Connect (OSTI)

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

    Cooper, Valentino

    2014-04-17T23:59:59.000Z

    479

    Complex Materials  

    ScienceCinema (OSTI)

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

    Cooper, Valentino

    2014-05-23T23:59:59.000Z

    480

    Materials - Coatings & Lubricants - Illinois Center for Advanced Tribology  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illinois Center for Advanced Tribology Illinois Center for Advanced Tribology ICAT brochure cover TRI - BOL*O*GY (N) -- the science and technology of friction, wear, and lubrication of interacting surfaces in relative motion. The Illinois Center for Advanced Tribology (ICAT) is a virtual center that brings together the skills and talents of multiple investigators and unique facilities from Argonne National Laboratory and three partnering universities to resolve critical friction, wear, and lubrication issues in biomedical implants, alternative energy technologies, and extreme environments. The Center's tribology experts work closely with industry, and with state and federal agencies through jointly funded research projects, to perform leading-edge research on the impact of materials, coatings, and fluids on

    Note: This page contains sample records for the topic "research critical materials" from the National Library of EnergyBeta (NLEBeta).
    While these samples are representative of the content of NLEBeta,
    they are not comprehensive nor are they the most current set.
    We encourage you to perform a real-time search of NLEBeta
    to obtain the most current and comprehensive results.


    481

    The Relationships of Media, Task, Spatial Presence, and Critical Thinking, in an Online Tutorial Designed to Teach Art Criticism  

    E-Print Network [OSTI]

    THE RELATIONSHIPS OF MEDIA, TASK, SPATIAL PRESENCE, AND CRITICAL THINKING, IN AN ONLINE TUTORIAL DESIGNED TO TEACH ART CRITICISM A Dissertation by NANCY OSTERBERG WOOD Submitted to the Office of Graduate and Professional Studies of Texas A... in an online research tutorial. The four conditions comprised two levels of two factors: Media and Task. The two Media were Static, represented by a linked jpeg image of the artwork; and Dynamic Manipulation represented by an interactive Adobe Flash version...

    Wood, Nancy O

    2013-11-08T23:59:59.000Z

    482

    Nano Research Facility Lab Safety Manual Nano Research Facility  

    E-Print Network [OSTI]

    1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer rules and procedures (a) Accidents and spills for chemicals Not containing Nano-Materials Spills of non for chemicals Containing Nano-Materials In a fume hood small spills of nano-materials in a liquid may

    Subramanian, Venkat

    483

    The Department of Materials Science and Engineering  

    E-Print Network [OSTI]

    The Department of Materials Science and Engineering 325 Woolf Hall · Box 19031 · 817-272-2398 www.uta.edu/mse Overview The interdisciplinary field of materials science and engineering has become critical to many emerging areas of science and advanced technology. As a result, there is a growing demand for engineers

    Texas at Arlington, University of

    484

    2014 Annual Merit review Results Report - Materials Technologies...  

    Energy Savers [EERE]

    review Results Report - Materials Technologies 2014 Annual Merit review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities...

    485

    Ames Lab 101: Improving Materials with Advanced Computing  

    ScienceCinema (OSTI)

    Ames Laboratory's Chief Research Officer Duane Johnson talks about using advanced computing to develop new materials and predict what types of properties those materials will have.

    Johnson, Duane

    2014-06-04T23:59:59.000Z

    486

    Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI  

    Broader source: Energy.gov [DOE]

    Reviews work in engineered thin-film nanoscale thermoelectric materials and nano-bulk materials with high ZT undertaken by RTI in collaboration with its research partners

    487

    Light-Material Interactions in Energy Conversion - Energy Frontier...  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Leader John A. Rogers John A. Rogers, Swanlund Chair, Professor of Materials Science and Engineering, Professor of Chemistry, Director, F. Seitz Materials Research Laboratory...

    488

    Field of Expertise Materials Science  

    E-Print Network [OSTI]

    structure-property relationships through the characterisation of diverse materials to process optimisation and international research partners in order to keep Austrian high-technology industry, scientific production semiconductors Paper and physical chemistry principles of paper strength Metallic materials for energy applica

    489

    Materials Science Graduate Student Handbook  

    E-Print Network [OSTI]

    Materials Science Program Graduate Student Handbook Fall 2010 #12;1 http://www.engr.wisc.ede/interd/msp/handbook year are eligible to run for office. This handbook was written by materials science graduate students Assistance (page 5): How does research funding work? Course Registration (page 7): What classes should I

    Evans, Paul G.

    490

    Critical behaviour in the elastic response of hydrogels  

    E-Print Network [OSTI]

    Highly responsive, or 'smart' materials are abundant in Nature; individual cells, for instance, can adapt their mechanical properties to the local surroundings through small changes in their internal structure. An effective method to enhance the responsiveness of synthetic materials is to operate near a critical point, where small variations lead to large changes in material properties. Recent theories have suggested that fibre/polymer networks can show critical behaviour near and below the point of marginal connectivity that separates rigid and floppy states [1-4]. To date, however, experimental evidence for criticality in such networks has been lacking. Here, we demonstrate critical behaviour in the stress response of synthetic hydrogels at low concentrations of order 0.1% volume fraction. We show, using computer simulations, that the observed response to stress can be understood by considering the influence of a zero-temperature critical point, i.e. the Maxwell isostatic point [5], together with the intrinsically nonlinear stretch response of semi-flexible polymer strands in the gel.

    M. Dennison; M. Jaspers; P. H. J. Kouwer; C. Storm; A. E. Rowan; F. C. MacKintosh

    2014-07-01T23:59:59.000Z

    491

    SILENE Benchmark Critical Experiments for Criticality Accident Alarm Systems  

    SciTech Connect (OSTI)

    In October 2010 a series of benchmark experiments was conducted at the Commissariat a Energie Atomique et aux Energies Alternatives (CEA) Valduc SILENE [1] facility. These experiments were a joint effort between the US Department of Energy (DOE) and the French CEA. The purpose of these experiments was to create three benchmarks for the verification and validation of radiation transport codes and evaluated nuclear data used in the analysis of criticality accident alarm systems (CAASs). This presentation will discuss the geometric configuration of these experiments and the quantities that were measured and will present some preliminary comparisons between the measured data and calculations. This series consisted of three single-pulsed experiments with the SILENE reactor. During the first experiment the reactor was bare (unshielded), but during the second and third experiments it was shielded by lead and polyethylene, respectively. During each experiment several neutron activation foils and thermoluminescent dosimeters (TLDs) were placed around the reactor, and some of these detectors were themselves shielded from the reactor by high-density magnetite and barite concrete, standard concrete, and/or BoroBond. All the concrete was provided by CEA Saclay, and the BoroBond was provided by Y-12 National Security Complex. Figure 1 is a picture of the SILENE reactor cell configured for pulse 1. Also included in these experiments were measurements of the neutron and photon spectra with two BICRON BC-501A liquid scintillators. These two detectors were provided and operated by CEA Valduc. They were set up just outside the SILENE reactor cell with additional lead shielding to prevent the detectors from being saturated. The final detectors involved in the experiments were two different types of CAAS detectors. The Babcock International Group provided three CIDAS CAAS detectors, which measured photon dose and dose rate with a Geiger-Mueller tube. CIDAS detectors are currently in use at Y-12 in the newly constructed Highly Enriched Uranium Materials Facility. The second CAAS detector used a {sup 6}LiF TLD to absorb neutrons and a silicon detector to count the charge particles released by these absorption events. Lawrence Livermore National Laboratory provided four of these detectors, which had formerly been used at the Rocky Flats facility in the United States.

    Miller, Thomas Martin [ORNL] [ORNL; Reynolds, Kevin H. [Y-12 National Security Complex] [Y-12 National Security Complex

    2011-01-01T23:59:59.000Z

    492

    Nanometer Particles: Modern Methods of Research  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanometer Particles: Modern Methods of Research Nanometer Particles: Modern Methods of Research Speaker(s): Rashid Mavliev Date: August 10, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro "Nanometer particles" (with diameter below 50 - 100 nm) have attracted attention during recent years because of their increasing role in industries such as powder technology and semiconductors. They also play a critical role in atmospheric processes. At this size range the properties of particles are different from those of bulk materials and single molecules. This promises new technological innovations and potential scientific discoveries. At the same time it makes the detection and characterization of such particles imperative. Optical methods, which allow for simultaneous measurement of size and concentration of particles

    493

    Modeling and Design of Material Separation Systems with Applications to Recycling  

    E-Print Network [OSTI]

    Material separation technology is critical to the success of the material recycling industry. End-of-life products, post-consumer waste, industrial excess, or otherwise collected materials for reuse are typically mixed ...

    Wolf, Malima Isabelle, 1981-

    2011-01-01T23:59:59.000Z

    494

    Magnetic Critical Solutions in Holography  

    E-Print Network [OSTI]

    The AdS/CFT correspondence is a realization of the holographic principle in the context of string theory. It is a map between a quantum field theory and a string theory living in one or more extra dimensions. Holography provides new tools to the study of strongly coupled systems. It has important applications in quantum chromodynamics (QCD) and condensed matter (CM) systems, which are usually complicated and strongly coupled. Quantum critical CM theories have scaling symmetries and can be connected to higher-dimensional scale invariant space-times. The Effective Holographic Theory paradigm may be used to describe the low-energy (IR) holographic dynamics of quantum critical systems at the two-derivative level by the Einstein-Maxwell-Dilaton (EMD) theory. We find the magnetic critical scaling solutions of an EMD theory containing an extra parity-odd term $F\\wedge F$. Previous studies in the absence of magnetic fields have shown the existence of quantum critical lines separated by quantum critical points. We find this is also true in the presence of a magnetic field. The critical solutions are characterized by the triplet of critical exponents ($\\theta,z,\\zeta$), the first two describing the geometry, while the latter describes the charge density.

    N. Angelinos

    2014-11-03T23:59:59.000Z

    495

    Ion beam processing of advanced electronic materials  

    SciTech Connect (OSTI)

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01T23:59:59.000Z

    496

    Experimental Criticality Benchmarks for SNAP 10A/2 Reactor Cores  

    SciTech Connect (OSTI)

    This report describes computational benchmark models for nuclear criticality derived from descriptions of the Systems for Nuclear Auxiliary Power (SNAP) Critical Assembly (SCA)-4B experimental criticality program conducted by Atomics International during the early 1960's. The selected experimental configurations consist of fueled SNAP 10A/2-type reactor cores subject to varied conditions of water immersion and reflection under experimental control to measure neutron multiplication. SNAP 10A/2-type reactor cores are compact volumes fueled and moderated with the hydride of highly enriched uranium-zirconium alloy. Specifications for the materials and geometry needed to describe a given experimental configuration for a model using MCNP5 are provided. The material and geometry specifications are adequate to permit user development of input for alternative nuclear safety codes, such as KENO. A total of 73 distinct experimental configurations are described.

    Krass, A.W.

    2005-12-19T23:59:59.000Z

    497

    Submersion Criticality Safety Analysis of Tungsten-Based Fuel for Nuclear Power and Propulsion Applications  

    SciTech Connect (OSTI)

    The Center for Space Nuclear Research (CSNR) is developing tungsten-encapsulated fuels for space nuclear applications. Aims to develop NTP fuels that are; Affordable Low impact on production and testing environment Producible on a large scale over suitable time period Higher-performance compared to previous graphite NTP fuel elements Space nuclear reactors remain subcritical before and during launch, and do not go critical until required by its mission. A properly designed reactor will remain subcritical in any launch abort scenario, where the reactor falls back to Earth and becomes submerged in terrestrial material. Submersion increases neutron reflection and thermalizes the neutrons, which typically increases the reactivity of the core. This effect is usually very significant for fast-spectrum reactors. This research provided a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor. Determine the submersion behavior of a reactor fueled by tungsten-based fuel. Considered fuel compositions with varying: Rhenium content (wt% rhenium in tungsten) Fuel loading fractions (UO2 vol%)

    A.E. Craft; R. C. O'Brien; S. D. Howe; J. C. King

    2014-07-01T23:59:59.000Z

    498

    EMSL: Science: Energy Materials and Processes  

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Materials & Processes Energy Materials & Processes Energy Materials logo TEM image In situ transmission electron microscopy at EMSL was used to study structural changes in the team’s new anode system. Real-time measurements show silicon nanoparticles inside carbon shells before (left) and after (right) lithiation. Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination of critical molecular-level information along with predictive modeling of interfaces and their unique properties EMSL helps enable the design and development of practical, efficient, environmentally

    499

    Production Materials  

    Science Journals Connector (OSTI)

    It is obvious that we must bring a number of things into our controlled environment besides clean conditioned air, equipment, and ultrapure water. If we are to do any production work, or research involving the pr...

    M. Kozicki; S. Hoenig; P. Robinson

    1991-01-01T23:59:59.000Z

    500

    Henning Friis Poulsen Materials Research Department  

    E-Print Network [OSTI]

    Diffraction spots: Where: Position of voxel + Symmetry + Orientation + Elastic strain Intensity: ~ volume.E. Offerman et al. (2004). Acta Mater. 52, 4757. Phase Transformations in Carbon Steel Work with T.U. Delft (sec) #12;Grain Maps: grain by grain Grain map algorithms: Filtered back-projection Algebraic