National Library of Energy BETA

Sample records for research cloud-aerosol-precipitation interactions

  1. ARM Cloud Aerosol Precipitation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Precipitation Experiment a NOAA ship in the Pacific Ocean and on a DOE- sponsored plane over land and sea. These researchers will study: (1) water sources, evolution and structure of atmospheric rivers over the Pacific Ocean (2) long range transport of aerosols over the Pacific Ocean between Hawaii and the U.S. West Coast, and how aerosols interact with atmospheric rivers (3) the point where atmospheric rivers make landfall on the U.S. West Coast, especially how clouds form where

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions...

  3. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX) 2015.01.14 - 2015.02.12 Lead...

  4. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Aerial Observations 2015.01.14...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Exactly Do Metrics for Aerosol-Cloud Interactions Represent? Download a printable PDF Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Aerosol Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: McComiskey A and G Feingold. 2012. "The scale problem in quantifying aerosol indirect effects." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-1031-2012.

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Invisible Giants in the Sky Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Photo

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBL Cloud and CCN Properties Under Coupled and Decoupled Conditions Submitter: Dong, X., University of North Dakota Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Dong X, A Schwantes, B Xi, and P Wu. 2015. "Investigation of the marine boundary layer cloud and CCN properties under coupled and decoupled conditions over the Azores." Journal of Geophysical Research - Atmospheres, , 1-13. ONLINE. A

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulating the Impact of Aerosols on Tropical Deep Convection Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Morrison H and WW Grabowski. 2011. "Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment." Atmospheric Chemistry and Physics, 11(20),

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Aerosols Affect Cloud Properties in Arctic Mixed-Phase Stratocumulus Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Jackson RC, GM McFarquhar, AV Korolev, ME Earle, PS Liu, RP Lawson, S Brooks, M Wolde, A Laskin, and M Freer. 2012. "The dependence of ice microphysics on aerosol concentration in arctic mixed-phase

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Estimates of Cloud Condensation Nuclei Concentration Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Liu J and Z Li. 2014. "Estimation of cloud condensation nuclei concentration from aerosol optical quantities: influential factors and uncertainties." Atmospheric Chemistry and Physics, 14(1), doi:10.5194/acp-14-1-2014.

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observing Warm Clouds in 3D Using ARM Scanning Cloud Radars and a Novel Ensemble Method Download a printable PDF Submitter: Fielding, M. D., University of Reading Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Fielding MD, J Chiu, RJ Hogan, and G Feingold. 2014. "A novel ensemble method for retrieving properties of warm cloud in 3-D using ground-based scanning radar and zenith

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    KDP Columns: Characterizing Deep Thunderstorm Updrafts Using Polarimetric Radar Download a printable PDF Submitter: van Lier-Walqui, M., NASA Fridlind, A. M., NASA - Goddard Institute for Space Studies Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: van Lier-Walqui M, AM Fridlind, AS Ackerman, S Collis, J Helmus, DR MacGorman, K North, P Kollias, and DJ Posselt. 2015. "On polarimetric radar signatures

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mingling in the Sky-A View from the Earth Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Madhavan BL, Y He, Y Wu, B Gross, F Moshary, and S Ahmed. 2012. "Development of a ground based remote sensing approach for direct evaluation of aerosol-cloud interaction." Atmosphere, 3(4), doi:10.3390/atmos3040468. Two different types of

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predicting Arctic Sea Ice Loss Download a printable PDF Submitter: Liu, X., University of Wyoming Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Liu X, S Xie, J Boyle, SA Klein, X Shi, Z Wang, W Lin, SJ Ghan, M Earle, PS Liu, and A Zelenyuk. 2011. "Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations." Journal of Geophysical Research, 116, D00T11,

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Long-Term Impacts of Aerosols on the Vertical Development of Clouds and Precipitation Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Li Z, F Niu, J Fan, Y Liu, and D Rosenfeld. 2011. "The long-term impacts of aerosols on the vertical development of clouds and precipitation." Nature-Geoscience, 4, doi:10.1038/NGEO1313. Changes

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To Rain or Not to Rain...Aerosols May Be the Answer Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Niu F and Z Li. 2012. "Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-8491-2012. Cloud-top temperature (A, C) and

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds Re-gathered by Wind Shear Download a printable PDF Submitter: Yang, Q., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Yang Q, RC Easter, P Campuzano-Jost, JL Jimenez, JD Fast, SJ Ghan, H Wang, LK Berg, MC Barth, Y Liu, MB Shrivastava, B Singh, H Morrison, J Fan, CL Ziegler, M Bela, E Apel, GS Diskin, T Mikoviny, and A Wisthaler. 2015. "Aerosol transport and

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Yang F, M Ovchinnikov, and RA Shaw. 2014. "Microphysical consequences of the spatial...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud-Aerosol-Precipitation Interactions Journal Reference: Qian Y, MY Huang, B Yang, and LK Berg. 2013. "A modeling study of irrigation effects on surface fluxes and...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burning on the Prairies Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fog and Rain in the Amazon Download a printable PDF Submitter: Gentine, P., Columbia University Sobel, A., Columbia University Area of Research: Cloud-Aerosol-Precipitation...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution + Storm Clouds Warmer Atmosphere Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2007 Floods Not a Complete Washout in U.S. Great Plains Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Lamb PJ, DH Portis, and A Zangvil. 2012. "Investigation of Large-Scale Atmospheric Moisture Budget and Land Surface Interactions over U.S. Southern Great Plains including for CLASIC (June 2007)." Journal of

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Mixed-phase Clouds Persist with Little Help from the Local Surface Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Shupe MD, OG Persson, IM Brooks, M Tjernstrom, J Sedlar, T Mauritsen, S Sjogren, and C Leck. 2013. "Cloud and boundary layer interactions over the Arctic sea ice in late summer." Atmospheric Chemistry and Physics,

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Experiments to Improve the Treatment of Radiation in the Mid-to-Upper Troposphere Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Turner DD and EJ Mlawer. 2010. "The Radiative Heating in Underexplored Bands Campaigns (RHUBC)." Bulletin of the American

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cumuli Impact on Solar Radiation at Surface: Spectral Changes Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, J Barnard, LK Berg, CN Long, and C Flynn. 2011. "Shortwave spectral radiative forcing of cumulus clouds from surface observations." Geophysical Research Letters, 38, L07801,

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Heating Up Cold Clouds Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ovchinnikov M, A Korolev, and J Fan. 2011. "Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud." Journal of Geophysical Research - Atmospheres, 116, D00T06, doi:10.1029/2011JD015888. The mighty cloud

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Brass Ring of Climate Modeling Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ghan SJ, SJ Smith, M Wang, K Zhang, K Pringle, K Carslaw, J Pierce, S Bauer, and P Adams. 2013. "A simple model of global aerosol indirect effects." Journal of Geophysical Research - Atmospheres, 118, 1-20. The simple model of aerosol effects on clouds

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twenty Years Serving Climate Science Download a printable PDF Submitter: Mather, J. H., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mather JH and JW Voyles. 2013. "The ARM Climate Research Facility: a review of structure and capabilities." Bulletin of the American Meteorological Society, 94(3), doi:10.1175/BAMS-D-11-00218.1. A scanning ARM

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Ice Nuclei Recycling in the Maintenance of Cloud Ice in Arctic Mixed-phase Stratocumulus Download a printable PDF Submitter: Solomon, A., NOAA/ESRL/Physical Sciences Division Feingold, G., NOAA - Earth System Research Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle Journal Reference: Solomon A, G Feingold, and MD Shupe. 2015. "The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roles of Wind Shear at Different Vertical Levels in Cloud System Organization and Properties Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Chen Q, J Fan, S Hagos, W Gustafson, and L Berg. 2015. "Roles of wind shear at different vertical levels, Part I: Cloud system organization and properties." Journal of Geophysical Research -

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCN Activity and Mixing Rules of Isoprene Secondary Organic Aerosol (SOA) and Sulfate Download a printable PDF Submitter: Martin, S. T., Harvard University Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: King SM, T Rosenoern, JH Shilling, Q Chen, Z Wang, G Biskos, KA McKinney, U Poeschl, and ST Martin. 2010. "Cloud droplet activation of mixed organic-sulfate particles produced by the photooxidation of

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating the Ice Crystal Enhancement Factor in the Tropics Download a printable PDF Submitter: Zeng, X., Morgan State University GSFC, N., NASA GSFC Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Zeng X, W Tao, T Matsui, S Xie, S Lang, M Zhang, DO Starr, and X Li. 2011. "Estimating the ice crystal enhancement factor in the tropics." Journal of the

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Indirect Impact of Atmospheric Aerosols on an Ensemble of Deep Convective Clouds Download a printable PDF Submitter: Grabowski, W., NCAR Morrison, H. C., NCAR Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Grabowski WW and H Morrison. 2011. "Indirect impact of atmospheric aerosols in idealized simulations of convective-radiative quasi-equilibrium. Part II: Double-moment microphysics." Journal of

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding Ice Formation in Arctic Mixed-Phase Boundary-Layer Clouds During ISDAC Download a printable PDF Submitter: Ackerman, A., NASA - Goddard Institute for Space Studies Fridlind, A. M., NASA - Goddard Institute for Space Studies Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Avramov A, AS Ackerman, AM Fridlind, B van Diedenhoven, G Botta, K Aydin, J Verlinde, KV Alexei, W Strapp, GM McFarquhar, R

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trends in Downwelling Longwave Radiation over SGP Download a printable PDF Submitter: Gero, J., University of Wisconsin Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Gero P and DD Turner. 2011. "Long-term trends in downwelling spectral infrared radiance over the U.S. Southern Great Plains." Journal of Climate, 24(18),

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrally Invariant Approximation Within Atmospheric Radiative Transfer Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Marshak A, Y Knyazikhin, JC Chiu, and WJ Wiscombe. 2011. "Spectrally-invariant approximation within atmospheric radiative transfer." Journal of the Atmospheric Sciences, 68(12), doi:10.1175/JAS-D-11-060.1. Ratio of

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Rain Clouds Still a Challenge to Cloud-Resolving Models Download a printable PDF Submitter: Fridlind, A. M., NASA - Goddard Institute for Space Studies Ackerman, A., NASA - Goddard Institute for Space Studies Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Fridlind AM, AS Ackerman, J Chaboureau, J Fan, WW Grabowski, AA Hill, TR Jones, MM Khaiyer, G Liu, P Minnis, H Morrison, L Nguyen,

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diurnal Cycle of Monsoon Clouds, Precipitation, and Surface Radiation Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES May, P. T., Bureau of Meteorology Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: May PT, CN Long, and A Protat. 2012. "The diurnal cycle of the boundary layer, convection, clouds, and surface radiation in a coastal monsoon environment (Darwin

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measured Radiative Cooling from Reflective Roofs in India Download a printable PDF Submitter: Fischer, M. L., Lawrence Berkeley National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Salamanca F, S Tonse, S Menon, V Garg, KP Singh, M Naja, and ML Fischer. 2012. "Top-of-atmosphere radiative cooling with white roofs: Experimental verification and model-based evaluation."

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forecast Calls for Better Models: Examining the Core Components of Arctic Clouds to Clear Their Influence on Climate Download a printable PDF Submitter: Laskin, A., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Aerosol Life Cycle Journal Reference: Hiranuma N, SD Brooks, RC Moffet, A Glen, A Laskin, MK Gilles, P Liu, AM Macdonald, JW Strapp, and GM McFarquhar. 2013. "Chemical characterization of individual particles and

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turn Trash Into Treasure: Continental Warm Cloud Properties Derived from Unexploited Solar Background Signals Download a printable PDF Submitter: Chiu, J., University of Reading Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Chiu JC, JA Holmes, RJ Hogan, and EJ O'Connor. 2014. "The interdependence of continental warm cloud properties derived from unexploited solar background signals in

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Theory of Time-dependent Freezing and Its Application to Investigation of Formation of Hail Download a printable PDF Submitter: Khain, A., The Hebrew University of Jerusalem Phillips, V., University of Leeds Area of Research: Cloud Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Phillips VT, A Khain, N Benmoshe, E Ilotoviz, and A Ryzhkov. 2014. "Theory of time-dependent freezing. II: Scheme for freezing raindrops and simulations by a cloud model

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the Right Track for Tropical Clouds Download a printable PDF Submitter: Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Hagos SM, Z Feng, K Landu, and C Long. 2014. "Advection, moistening, and shallow-to-deep convection transitions during the initiation and propagation of Madden-Julian Oscillation." Journal of Advances in Earth System

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite Inference of Thermals and Cloud Base Updraft Speeds Download a printable PDF Submitter: Zheng, Y., University of Maryland Area of Research: Vertical Velocity Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Zheng Y, D Rosenfeld, and Z Li. 2015. "Satellite inference of thermals and cloud base updraft speeds based on retrieved surface and cloud base temperatures." Journal of the Atmospheric Sciences, , . ONLINE. Validation of satellite-estimated

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Precipitating Cumulus Congestus Observed by the ARM Radar Suite During the MC3E Field Campaign Download a printable PDF Submitter: Mechem, D. B., University of Kansas Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mechem DB, SE Giangrande, CS Wittman, P Borque, T Toto, and P Kollias. 2015. "Insights from modeling and observational evaluation of a precipitating continental cumulus event observed

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing and Evaluating Ice Cloud Parameterizations by Combining Radar and in Situ Observations Download a printable PDF Submitter: Maahn, M., University of Cologne Loehnert, U., University of Cologne Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Maahn M, U Löhnert, P Kollias, RC Jackson, and GM McFarquhar. 2015. "Developing and Evaluating Ice Cloud Parameterizations for Forward Modeling of Radar Moments

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Haze: Effect of Anthropogenic and Biomass Burning Aerosols Transported from Europe to the Arctic Download a printable PDF Submitter: Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Marelle L, J Raut, JL Thomas, KS Law, B Quennehen, G Ancellet, J Pelon, A Schwarzenboeck, and JD Fast. 2015. "Transport of anthropogenic and biomass burning aerosols from Europe to the

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deciphering Raindrop Collisions with Dual-polarization Radar Download a printable PDF Submitter: Kumjian, M., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Kumjian MR and OP Prat. 2014. "The impact of raindrop collisional processes on the polarimetric radar variables." Journal of the Atmospheric Sciences, 71(8), doi:10.1175/JAS-D-13-0357.1. (a) Changes in ZDR as a function

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Update on Unmanned Platforms at Oliktok Point Download a printable PDF Submitter: de Boer, G., University of Colorado, Boulder/CIRES Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: de Boer G, MD Ivey, B Schmid, S McFarlane, and R Petty. 2016. "Unmanned platforms monitor the Arctic atmosphere." EOS, 97, doi:10.1029/2016EO046441. Figure 1: Gijs de

  11. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    remote sensing for resolving and studying the above processes? (i.e., Satellite CalVal) We have recently added a fourth study focused on the transport and evolution of...

  12. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a distinctly different INP population in comparison to long range transported desert or urban and regional land-sourced INP, and that the layering of marine within other...

  13. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan

    SciTech Connect (OSTI)

    Leung, L. R.; Prather, K.; Ralph, R.; Rosenfeld, D.; Spackman, R.; DeMott, P.; Fairall, C.; Fan, J.; Hagos, S.; Hughes, M.; Long, C.; Rutledge, S.; Waliser, D.; Wang, H.

    2014-09-01

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associated with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.

  14. DOE/SC-ARM-14-030 ARM Cloud Aerosol Precipitation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Eddy correlation fluxes Near-surface meteorology Ocean mixed-layer structure, currents, turbulence and surface waves Balloon-borne vertical profiles of ...

  15. Fundamental Interactions - Research - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fundamental Interactions Production of 46V with MARS. Energy loss versus position on Y axis. The Standard Model, which unifies the strong, electromagnetic and weak forces, has been remarkably successful in describing the interactions of quarks and leptons. However, the model is incomplete, and it is the goal of this research program to sensitively probe its limits. Though in most cases we use the nucleus as a micro-laboratory for testing the Standard Model, the implications of the results extend

  16. 2010 Atomic & Molecular Interactions Gordon Research Conference

    SciTech Connect (OSTI)

    Todd Martinez

    2010-07-23

    The Atomic and Molecular Interactions Gordon Conferences is justifiably recognized for its broad scope, touching on areas ranging from fundamental gas phase and gas-condensed matter collision dynamics, to laser-molecule interactions, photophysics, and unimolecular decay processes. The meeting has traditionally involved scientists engaged in fundamental research in gas and condensed phases and those who apply these concepts to systems of practical chemical and physical interest. A key tradition in this meeting is the strong mixing of theory and experiment throughout. The program for 2010 conference continues these traditions. At the 2010 AMI GRC, there will be talks in 5 broadly defined and partially overlapping areas of intermolecular interactions and chemical dynamics: (1) Photoionization and Photoelectron Dynamics; (2) Quantum Control and Molecules in Strong Fields; (3) Photochemical Dynamics; (4) Complex Molecules and Condensed Phases; and (5) Clusters and Reaction Dynamics. These areas encompass many of the most productive and exciting areas of chemical physics, including both reactive and nonreactive processes, intermolecular and intramolecular energy transfer, and photodissociation and unimolecular processes. Gas phase dynamics, van der Waals and cluster studies, laser-matter interactions and multiple potential energy surface phenomena will all be discussed.

  17. Bridging Research Interactions Through Collaborative Development Grants in Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE Bridging Research Interactions through collaborative Development Grants in Energy (BRIDGE) program funds collaborative research teams to significantly lower the cost of solar energy systems...

  18. Research Challenge 4: Defect-Carrier Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4: Defect-Carrier Interactions - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  19. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) watch now The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on Approaches to Ultrahigh Efficiency Solar Energy Conversion. The LMI-EFRC is made up of world leaders creating new optical materials and innovative photonic designs that engineer and control light-material interactions, with the goal of

  20. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Program Hotel & Travel Presentations Event Photos Accelerating the Development of Earth-Abundant Thin-Film Photovoltaics Millikan Board Room [map] California Institute of Technology Pasadena, CA The Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Center (EFRC), the Resnick Sustainability Institute, and the Quantum Energy and Sustainable Solar Technologies (QESST) Energy Research Center (ERC) are offering a two-day workshop on Accelerating

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Refractive Index Design via Porous Etched Si as part of RG-3 research efforts (Chris Gladden, LBNL) The Scientific Vision of the "Light-Material Interactions in Energy Conversion Energy Frontier Research Center" (LMI-EFRC) is to tailor the morphology, complex dielectric structure, and electronic properties of matter so as to sculpt the flow of sunlight and heat, enabling light conversion to electrical and chemical energy with unprecedented efficiency. The

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Contact Secretary of Energy Steven Chu visits Caltech labs For more information or questions about the Light-Material Interactions in Energy Conversion Energy Frontier Research Center, please email lmi-efrc@caltech.edu or call LMI Administrator Tiffany Kimoto at 626-395-1566.

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Program Schedule Abstract Submission Hotel & Travel Register Event Photos Redefining the Limits of Photovoltaic Efficiency Sunday, July 29, 2012 California Institute of Technology Hameetman Auditorium at the Cahill Center [map] 8:30 am - 5:30 pm Co-organized by the Resnick Sustainability Institute and the Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Center this one-day workshop brings together leaders from industry, academia and

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) New approaches to full spectrum solar energy conversion California Institute of Technology Hall Auditorium, Gates-Thomas Laboratory [map] LIVE Internet Broadcast [watch recorded event online] [download flyer] watch now The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on New Approaches to Full

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) New approaches to full spectrum solar energy conversion California Institute of Technology Hall Auditorium, Gates-Thomas Laboratory [map] LIVE Internet Broadcast [download flyer] watch now The recorded presentations and panel discussion are now available for online viewing. The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on New Approaches to Full Spectrum Solar Energy Conversion.

  6. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Research Group 1 Research Group 2 Research Group 3 Research Group 4 Research Highlights Facilities Publications Lectures & Tutorials Authorship Tools Research Groups Research efforts in the LMI-EFRC are aligned with one or more of the following Research Groups (RGs): Complex Architecture and Self-Architected Absorbers Optics for Spontaneous Emission and Absorption Enhancement Full Spectrum Photon Conversion Transformation Optics for Photovoltaics

  7. 2012 ATOMIC AND MOLECULAR INTERACTIONS GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR, JULY 15-20, 2012

    SciTech Connect (OSTI)

    Zwier, Timothy

    2012-07-20

    At the 2012 Atomic and Molecular Interactions Gordon Conference, there will be talks in several broadly defined and partially overlapping areas: ? Intramolecular and single-collision reaction dynamics; ? Photophysics and photochemistry of excited states; ? Clusters, aerosols and solvation; ? Interactions at interfaces; ? Conformations and folding of large molecules; ? Interactions under extreme conditions of temperature and pressure. The theme of the Gordon Research Seminar on Atomic & Molecular Interactions, in keeping with the tradition of the Atomic and Molecular Interactions Gordon Research Conference, is far-reaching and involves fundamental research in the gas and condensed phases along with application of these ideas to practical chemical fields. The oral presentations, which will contain a combination of both experiment and theory, will focus on four broad categories: ? Ultrafast Phenomena; ? Excited States, Photoelectrons, and Photoions; ? Chemical Reaction Dynamics; ? Biomolecules and Clusters.

  8. Interactions of Highly Charged Ions With Matter - Research - Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Interactions of Highly Charged Ions With Matter Spectrum of K x rays from a vanadium The interaction of high-energy heavy-ions with matter is a topic of importance in many areas of science. For example, the mechanisms whereby highly ionized atoms de-excite and return to charge neutrality are of great concern in the design of thermonuclear fusion reactors, where energy transfer to impurity ions injected from the walls of the containment vessel can seriously affect the plasma

  9. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Alumni Alumni Dr. Ze'ev Abrams PhD 2012, UC Berkeley Founder and CEO, Strider Solar Inc. Dr. Bok Yeop Ahn Research Professor, Harvard University Ehsan Arbabi Caltech Dr. Kevin Arpin PhD 2013, UIUC Senior Development Engineer at Xerion Advanced Battery Dr. Ashwin Atre PhD 2015, Stanford Dr. Joseph Beardslee PhD 2014, Caltech Researcher at Kratos Michael Bell Harvard Dr. Audrey Bowen PhD 2011, UIUC Senior research engineer at Intel Eric Brueckner UIUC Dr. Stanley Burgos PhD

  10. Sandia Energy - Research Challenge 4: Defect-Carrier Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nonradiative carrier recombination might be realized, helping to overcome the blue-efficiency, RYG-gap, and functional-light technology challenges. research-challenge-4-defect-ca...

  11. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Mark Brongersma Mark Brongersma Mark Brongersma, Professor of Materials Science and Engineering Stanford University Mark Brongersma is a Professor in the Department of Materials Science and Engineering at Stanford University. He received his PhD from the FOM Institute in Amsterdam, The Netherlands, in 1998. From 1998-2001 he was a postdoctoral research fellow at the California Institute of Technology. His current research is directed towards the development and physical

  12. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Facilities Facilities, Capabilities, and Techniques of the LMI-EFRC These are available for use by all LMI researchers At Caltech Large-area vapor-liquid-solid microwire growth Cambridge Nanotech Atomic Layer Deposition Integrating sphere Ultrafast Pump-Probe System At LBL Nanocrystal synthesis Photoelectrochemical etching At UIUC Proximity field nano-patterning Direct ink writing Malvern Nano Zetasizer AJA e-beam evaporator DOE Center facilities National Energy Research

  13. 2012 ELECTRON DONOR-ACCEPTOR INTERACTIONS GORDON RESEARCH CONFERENCE, AUGUST 5-10, 2012

    SciTech Connect (OSTI)

    McCusker, James

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  14. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Events image Perovskite Solar Cells: Towards New Materials and New Applications Nripan Mathews, Nanyang Technological University, Singapore November 3, 2014, 11:15 am 101 Guggenheim Lab, Lees-Kubota Hall 2013 workshop Approaches to Ultrahight Efficiency Solar Energy Conversion We are excited to offer this FREE public webinar featuring presentations and an interactive panel discussion with LMI-EFRC photovoltaic experts! March 7, 2013, 8:30-10:30 am PST Hameetman Auditorium,

  15. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) UIUC Workshop Acknowledgements To be included as an LMI-EFRC publication, paper acknowledgements must be carefully worded. Please use the following as a guideline in preparing the "Acknowledgements" section in your manuscripts that include the LMI-EFRC as a source of support. For work solely funded by the LMI-EFRC At minimum, please use this wording: "This work was supported by the DOE 'Light-Material Interactions in Energy Conversion' Energy Frontier

  16. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Light Matters Video The LMI-EFRC Video "Light Matters" was the winner of the "Life at the Frontiers of Energy Research" video contest for striking photography and visual impact.

  17. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Partnerships Partners, collaborators and companies impacted by LMI-EFRC research and technology Alta Devices FOM Institute AMOLF DOW JCAP The Molecular Foundry MRL NERSC NCEM Northrop Grumman Resnick Institute If you are interested in partnering with the LMI-EFRC, email lmi-efrc@caltech.edu.

  18. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Fall Kickoff at Caltech September 23-24, 2014 [meeting details] The LMI-EFRC team gathered at Caltech to kickoff the renewal with a meeting full of presentations from LMI PIs and students, an in-room poster session, and research group breakout sessions. We welcomed Gregory Wilson from NREL's National Center for Photovoltaics as our keynote speaker, and several members of our External Advisory Board, including Richard King from Spectrolab, David Carlson formerly of BP Solar,

  19. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Malvern Nano Zetasizer The Malvern Nano Zetasizer measures particle and molecule size from below a nanometer to several microns using dynamic light scattering, zeta potential and electrophoretic mobility using electrophoretic light scattering, and molecular weight using static light scattering. This equipment is used to support several EFRC research projects that utilize colloidal and nanoparticle building blocks, including work based on colloidal crystal templating and

  20. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Jennifer Dionne Jennifer A. Dionne Jennifer Dionne, Assistant Professor of Materials Science and Engineering Stanford University Jennifer Dionne is an assistant professor in the department of Materials Science and Engineering at Stanford University. In 2009, she received her Ph. D. in Applied Physics at the California Institute of Technology, working with Professor Harry Atwater. In 2010, Dionne served as a postdoctoral research fellow in Chemistry, working with Professor

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Jennifer Lewis RG4 Leader Jennifer Lewis Jennifer Lewis, Hansjörg Wyss Professor of Biologically Inspired Engineering Harvard University Jennifer A. Lewis joined the faculty of the School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering at Harvard University in 2013. Prior to her appointment at Harvard, she served as the Director of the Frederick Seitz Materials Research Laboratory and the Hans Thurnauer Professor of

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Paul Braun RG-4 Leader Paul V. Braun Paul V. Braun, Ivan Racheff Professor of Materials Science and Engineering University of Illinois at Urbana-Champaign Professor Paul V. Braun is the Ivan Racheff Professor of Materials Science and Engineering, and an affiliate of the Frederick Seitz Materials Research Laboratory, the Beckman Institute forAdvanced Science and Technology, the Department of Chemistry, the Micro and Nanotechnology Laboratory and the Mechanical Science and

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Shanhui Fan RG3 Leader Shanhui Fan Shanhui Fan, Professor of Electrical Engineering Stanford University Shanhui Fan is a Professor of Electrical Engineering, and the Director of the Edward L. Ginzton Laboratory, at the Stanford University. He received his Ph. D in 1997 in theoretical condensed matter physics from MIT. His research interests are in nanophotonics. He has published over 350 refereed journal articles and has given over 270 invited talks, and was granted 53 US

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Get Involved The LMI-EFRC is a synergistic, engaged team of researchers devoted to light management for solar energy conversion. If you are interested in learning more about the LMI-EFRC and opportunities to get involved, please contact lmi-efrc@caltech.edu. Former governor Arnold Schwarzenegger and Austrian Chancellor Werner Faymann visit Caltech. Hollywood film director James Cameron visits Caltech

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) News lmi team Light Management in LSCs: A continuing collaboration between the Nuzzo and Alivisatos groups has demonstrated enhanced photon collection in luminescent solar concentrators, recently published in ACS photonics. [more] 02.05.16 lmi team Energy Performance on the Surface: LMI graduate researcher Nate Thomas publishes article in the January issue of the EFRC Newsletter Frontiers in Energy [more] 01.11.16 lmi team Alivisatos Awarded National Medal of Science The

  6. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Scientific Grand Challenge LMI researchers brainstorm spectrum splitting, Annual Meeting November 2011 The LMI-EFRC is dedicated to expanding the scientific knowledge base for fundamentally photonic principles and mechanisms in solar energy conversion. An important set of requirements of photonic materials for solar energy conversion are related to the characteristics of the sun as a light source - it is a broadband and unpolarized light source, and the achievable

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Recent Research Highlights nature materials cover nature materials cover nature materials cover advanced materials cover nature materials cover Luminescent Concentration of Diffuse Light Achieving 30X Concentration (Paul Alivisatos Group, LBNL and Ralph Nuzzo group, UIUC) September 2015 Controlling Thermal Emission with Graphene Metasurfaces (Atwater group, Caltech) August 2015 Engineering Light Absorption in Semiconductor Metafilms (Brongersma group, Stanford) June 2015

  8. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) EFRC Science in Ten Hundred and One Words The Ten Hundred and One Word Challenge invited the 46 Energy Frontier Research Centers to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. You can vote for your favorite entry from July 3-16, and the

  9. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Future Directions of the LMI-EFRC Proposal Contest Congratulations to winners Dennis Callahan (Caltech, Atwater Group), and Matt Lucas (LBL, Alivisatos Group) and Derek Le (UIUC, Nuzzo Group). At the Team Meeting on April 9, the winners of our "Future Directions of the LMI-EFRC" Proposal Contest were announced. LMI Group members were asked to prepare a 2-page proposal on a future research direction of the LMI-EFRC not currently being pursued. Team members were

  10. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) AJA E-Beam Evaporator A new e-beam evaporator was acquired in FY11; this evaporator is extensively used for EFRC supported research projects. In particular, e-beam evaporation is used to grow the conductive layers found in many of the devices fabricated by the Illinois EFRC team. These conductive layers are a critical element of any PV device, as they enable collection of photogenerated charge carriers. This evaporator has both a low base pressure, which is important for

  11. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - John A. Rogers RG2 Leader John A. Rogers John A. Rogers, Swanlund Chair, Professor of Materials Science and Engineering, Professor of Chemistry, Director, F. Seitz Materials Research Laboratory University of Illinois at Urbana-Champaign Professor John A. Rogers obtained BA and BS degrees in chemistry and in physics from the University of Texas, Austin, in 1989. From MIT, he received SM degrees in physics and in chemistry in 1992 and the PhD degree in physical chemistry in

  12. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Graduate Students Graduate Students Mikayla Anderson University of Illinois at Urbana-Champaign Mikayla Anderson is a graduate student in the Nuzzo group working on spectrum splitting in III-V photovoltaic devices, utilizing epitaxial lift-off to fabricate solar micro-cells. Daniel Bacon-Brown University of Illinois at Urbana-Champaign Daniel Bacon-Brown is a graduate student in the Braun research group at the University of Illinois, currently working on design and

  13. Atmospheric Rivers Coming to a Cloud Near You (Other) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Other: Atmospheric Rivers Coming to a Cloud Near You Citation Details In-Document Search Title: Atmospheric Rivers Coming to a Cloud Near You Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation. Authors: Leung, Ruby Publication Date: 2014-03-29 OSTI Identifier: 1133941 Resource Type: Other Research Org: PNNL (Pacific Northwest National

  14. Plasma-Surface Interaction Research At The Cambridge Laboratory Of Accelerator Studies Of Surfaces

    SciTech Connect (OSTI)

    Wright, G. M.; Barnard, H. S.; Hartwig, Z. S.; Stahle, P. W.; Sullivan, R. M.; Woller, K. B.; Whyte, D. G.

    2011-06-01

    The material requirements for plasma-facing components in a nuclear fusion reactor are some of the strictest and most challenging facing us today. These materials are simultaneously exposed to extreme heat loads (20 MW/m{sup 2} steady-state, 1 GW/m{sup 2} in millisecond transients) and particle fluxes (>10{sup 24} m{sup -2} s{sup -1}) while also undergoing high neutron irradiation (10{sup 18} neutrons/m{sup 2} s). At the Cambridge Laboratory of Accelerator Studies of Surfaces (CLASS), many of the most important issues in plasma-surface interaction research, such as plasma-driven material erosion and deposition, material transport and irradiation and hydrogenic retention are investigated with the use of a 1.7 MV tandem ion accelerator. Ion-Beam Analysis (IBA) is used to investigate and quantify changes in materials due to plasma exposure and ion irradiation is used as a proxy for neutron irradiation to investigate plasma-surface interactions for irradiated materials. This report will outline the capabilities and current research activities at CLASS.

  15. 2010 Electron Donor-Acceptor Interactions Gordon Research Conference, August 8 - 13, 2010.

    SciTech Connect (OSTI)

    Gerald Meyer

    2010-08-18

    The Gordon Research Conference on Electron Donor Acceptor Interactions (GRC EDAI) presents and advances the current frontiers in experimental and theoretical studies of Electron Transfer Processes and Energy Conversion. The fundamental concepts underpinning the field of electron transfer and charge transport phenomena are understood, but fascinating experimental discoveries and novel applications based on charge transfer processes are expanding the discipline. Simultaneously, global challenges for development of viable and economical alternative energy resources, on which many researchers in the field focus their efforts, are now the subject of daily news headlines. Enduring themes of this conference relate to photosynthesis, both natural and artificial, and solar energy conversion. More recent developments include molecular electronics, optical switches, and nanoscale charge transport structures of both natural (biological) and man-made origin. The GRC EDAI is one of the major international meetings advancing this field, and is one of the few scientific meetings where fundamental research in solar energy conversion has a leading voice. The program includes sessions on coupled electron transfers, molecular solar energy conversion, biological and biomimetic systems, spin effects, ultrafast reactions and technical frontiers as well as electron transport in single molecules and devices. In addition to disseminating the latest advances in the field of electron transfer processes, the conference is an excellent forum for scientists from different disciplines to meet and initiate new directions; for scientists from different countries to make contacts; for young scientists to network and establish personal contacts with other young scientists and with established scientists who, otherwise, might not have the time to meet young people. The EDAI GRC also features an interactive atmosphere with lively poster sessions, a few of which are selected for oral presentations.

  16. DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin; White, Jonathan

    2011-09-01

    The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

  17. Integrated analysis of particle interactions at hadron colliders Report of research activities in 2010-2015

    SciTech Connect (OSTI)

    Nadolsky, Pavel M.

    2015-08-31

    The report summarizes research activities of the project ”Integrated analysis of particle interactions” at Southern Methodist University, funded by 2010 DOE Early Career Research Award DE-SC0003870. The goal of the project is to provide state-of-the-art predictions in quantum chromodynamics in order to achieve objectives of the LHC program for studies of electroweak symmetry breaking and new physics searches. We published 19 journal papers focusing on in-depth studies of proton structure and integration of advanced calculations from different areas of particle phenomenology: multi-loop calculations, accurate long-distance hadronic functions, and precise numerical programs. Methods for factorization of QCD cross sections were advanced in order to develop new generations of CTEQ parton distribution functions (PDFs), CT10 and CT14. These distributions provide the core theoretical input for multi-loop perturbative calculations by LHC experimental collaborations. A novel ”PDF meta-analysis” technique was invented to streamline applications of PDFs in numerous LHC simulations and to combine PDFs from various groups using multivariate stochastic sampling of PDF parameters. The meta-analysis will help to bring the LHC perturbative calculations to the new level of accuracy, while reducing computational efforts. The work on parton distributions was complemented by development of advanced perturbative techniques to predict observables dependent on several momentum scales, including production of massive quarks and transverse momentum resummation at the next-to-next-to-leading order in QCD.

  18. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil target for proof-of-concept actinium-225 production In addition to our routine isotope products, the LANL Isotope Program is focused on developing the next suite of isotopes and services to meet the Nation's emerging needs. The LANL Isotope Program's R&D strategy is focused on four main areas (see

  19. Proceedings of RIKEN BNL Research Center Workshop: The Approach to Equilibrium in Strongly Interacting Matter. Volume 118

    SciTech Connect (OSTI)

    Liao, J.; Venugopalan, R.; Berges, J.; Blaizot, J. -P.; Gelis, F.

    2014-04-09

    The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National Laboratory*. It is funded by the ''Rikagaku Kenkyusho'' (RIKEN, The Institute of Physical and Chemical Research) of Japan and the U. S. Department of Energy’s Office of Science. The RBRC is dedicated to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics through the nurturing of a new generation of young physicists. The RBRC has theory, lattice gauge computing and experimental components. It is presently exploring the possibility of an astrophysics component being added to the program. The purpose of this Workshop is to critically review the recent progress on the theory and phenomenology of early time dynamics in relativistic heavy ion collisions from RHIC to LHC energies, to examine the various approaches on thermalization and existing issues, and to formulate new research efforts for the future. Topics slated to be covered include Experimental evidence for equilibration/isotropization, comparison of various approaches, dependence on the initial conditions and couplings, and turbulent cascades and Bose-Einstein condensation.

  20. Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

    SciTech Connect (OSTI)

    Karagiozis, A.N.

    2007-05-15

    This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

  1. Protocol for laboratory research on degradation, interaction, and fate of wastes disposed by deep-well injection: Final report

    SciTech Connect (OSTI)

    Collins, A.G.; Crocker, M.E.

    1987-12-01

    The objective of this research investigation was to develop a laboratory protocol for use in determining degradation, interaction, and fate of organic wastes disposed in deep subsurface reservoirs via disposal wells. Knowledge of the ultimate fate of deep-well disposed wastes is important because provisions of the Resource Conservation and Recovery Act (RCRA) require that by August 1988, the Environmental Protection Agency (EPA) must show that the disposal of specified wastes by deep-well injection is safe to human health and the environment, or the practice must be stopped. The National Institute for Petroleum and Energy Research (NIPER) developed this protocol primarily by transferring some of its expertise and knowledge of laboratory protocol relevant to improved recovery of petroleum. Phenol, because it is injected into deep, subsurface reservoirs for disposal, was selected for study by the EPA. Phenol is one waste product that has been injected into the Frio formation; therefore, a decision was made to use phenol and sedimentary rock from the Frio formation for a series of laboratory experiments to demonstrate the protocol. This study investigates the adsorption properties of a specific reservoir rock which is representative of porous sedimentary geologic formations used as repositories for hazardous organic wastes. The developed protocol can be used to evaluate mobility, adsorption, and degradation of an organic hazardous waste under simulated subsurface reservoir conditions. 22 refs., 13 figs., 16 tabs.

  2. Atmospheric Rivers Coming to a Cloud Near You

    SciTech Connect (OSTI)

    Leung, Ruby

    2014-03-29

    Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

  3. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fixed, mobile, and aerial observatories, ARM provides the global science community with free data about clouds, aerosols, precipitation, and radiative energy. Highlights for the...

  4. Atmospheric Rivers Coming to a Cloud Near You

    ScienceCinema (OSTI)

    Leung, Ruby

    2014-06-12

    Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

  5. Wind Turbine Interactions with Birds, Bats, and their Habitats: A Summary of Research Results and Priority Questions

    SciTech Connect (OSTI)

    National Wind Coordinating Collaborative

    2010-05-01

    This fact sheet summarizes what is known about bird and bat interactions with land-based wind power in North America, including habitat impacts, and what key questions and knowledge gaps remain.

  6. Collider Detector at Fermilab (CDF): Data from the QCD Group's Research into Properties of the Strong Interaction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ,

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The QCD group studies the properties of the strong interaction. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  7. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    SciTech Connect (OSTI)

    Allain, Jean Paul

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  8. Atmospheric Radiation Measurement (ARM) Data from Oliktok Point, Alaska (an AMF3 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARMs third and newest ARM Mobile Facility, or AMF3. The AMF3 is gathering data using about two dozen instruments that obtain continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. Site operators will also fly manned and unmanned aircraft over sea ice, drop instrument probes and send up tethered balloons. The combination of atmospheric observations with measurements from both the ground and over the Arctic Ocean will give researchers a better sense of why the Arctic sea ice has been fluctuating in fairly dramatic fashion over recent years. AMF3 will be stationed at Oliktok Point.

  9. Defining the Interactions of Cellobiohydrolase with Substrate through Structure Function Studies: Cooperative Research and Development Final Report, CRADA Number CRD-10-409

    SciTech Connect (OSTI)

    Beckham, G. T.; Himmel, M. E.

    2013-07-01

    NREL researchers will use their expertise and skilled resources in numerical computational modeling to generate structure-function relationships for improved cellulase variant enzymes to support the development of cellulases with improved performance in biomass conversion.

  10. Report on activities and findings under DOE grant “Collaborative research. An Interactive Multi-Model for Consensus on Climate Change”

    SciTech Connect (OSTI)

    Duane, Gregory S.; Tsonis, Anastasios; Kocarev, Ljupco; Tribbia, Joseph

    2015-10-30

    The project takes a hierarchical approach. The supermodeling scheme was first studied exhaustively with simple systems of ordinary differential equations. Results were described in detail in the previous report. The principal findings were that 1) for highly non-linear systems, such as Lorenz-63, including systems which describe phenomena on very different (atmosphere/ocean) times scales, supermodeling is far superior to any form of output-averaging; 2) negative coefficients can be used to advantage in situations where all models err in the same way, but to different degrees; 3) an interesting variant of supermodeling, “weighted supermodeling”, is the limiting case where inter-model nudging coefficients in the originally conceived “connected supermodel” become infinite, but with fixed ratios, corresponding to a direct combination of the tendencies that appear in corresponding equations for the alternative models; 4) noise is useful for avoiding local optima in training the inter-model coefficients in the supermodel. The supermodeling scheme was then investigated with simple quasigeostrophic (QG) models. As described in the previous report, it was found that QG models on a sphere can be coupled most efficaciously by working in a basis which captures the most variance, rather than the most instability, a somewhat unexpected result that still deserves scrutiny in a broader context. Further studies (since the last report) with QG channel models addressed the central question of when supermodeling is superior to output averaging in situations where nonlinearites are less extreme than with the ODEs initially studied. It was found that for realistic variations in a parameter in the QG model, output averaging is sufficient to capture all but the most subtle quantitative and qualitative behavior. Supermodeling helps when qualitative differences between the models result from unrealistically large parameter differences, or when very detailed spatial structure of the modes of variability are of interest. Therefore, the scheme may still be useful in the case of full climate models with qualitatively different parametrization schemes. A supermodel was constructed from the intermediate-complexity SPEEDO model, a primitive equation model with ocean and land. Versions defined by different parameter choices, in a realistic range, were connected and the coefficients trained. Some improvement was found as compared to output averaging. The learning algorithm used thus far gives sub-optimal, but still useful results when the CO2 level and other parameters are varied. Spatial structure remains to be studied. The first use of supermodeling with full climate models has been with variants of the ECHAM model that use different convection schemes. As yet the models are only connected at the ocean-atmosphere interface, where weighted combinations of fluxes from the two atmospheres are passed to a common ocean, and the weights adapted during a training period. The supermodel was surprisingly successful at avoiding unrealistic features such as the double-ITCZ (Intertropical Convergence Zone), a problem that arises in both of the two models run separately. The supermodels constructed thus far have not identified dynamical regime shifts in future climate. Thus the planned connection with the work of Tsonis on the relationship between regime shifts and synchronization/de-synchronization among the major climate modes (see U. Wisconsin report) has not yet been made. However the network analysis of the climate system, in observations and models, that was done in conjunction with that study, shows that models differ strongly from one another and from observations in regard to the dynamical structure described by correlation networks [Steinhaeuser and Tsonis 2013], providing a further justification for supermodeling. Toward a general software framework for supermodeling, three versions of CAM (the Community Atmosphere Model) at NCAR were configured for inter-model nudging using the DART (Data Assimilation Research Testbed) capability to stop and re-start models in synchrony. It was clearly established that the inter-model nudging adds almost no computational burden to the runs, but there appears to be a problem with the re-initialization software that is still being debugged. Publications: Several papers were published on the basic idea of the interactive multi-model (supermodel) including demonstrations with low-order ODEs. The last of these, a semi-philosophical review paper on the relevance of synchronization generally, encountered considerable resistance but was finally published in Entropy [Duane 2015]. A paper on the ECHAM/COSMOS supermodel, containing the most promising results so far [Shen et al. 2015] is presently under review.

  11. Validation of seismic soil-structure interaction analysis methods: EPRI (Electric Power Research Institute)/NRC (Nuclear Regulatory Commission) cooperation in Lotung, Taiwan, experiments

    SciTech Connect (OSTI)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Tang, Y.K.; Kassawara, R.P.

    1986-10-31

    The cooperative program between NRC/ANL and EPRI on the validation of soil-structure interaction analysis methods with actual seismic response data is described. A large scale-model of a containment building has been built by EPRI/Taipower in a highly seismic region of Taiwan. Vibration tests were performed, first on the basemat before the superstructure was built and then on the completed structure. Since its completion, the structure has experienced many earthquakes. The site and structural response to these earthquakes have been recorded with field (surface and downhole) and structural instrumentation. The validation program involves blind predictions of site and structural response during vibration tests and a selected seismic event, and subsequent comparison between the predictions and measurements. The predictive calculations are in progress. The results of the correlation are expected to lead to the evaluation of the methods as to their conservatisms and sensitivities.

  12. Research Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Techniques Research Techniques Print Coming Soon

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed-Phase Cloud Vertical Velocities and Dynamical-Microphysical Interactions Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, P Kollias, M Poellot, and E Eloranta. 2008. "On deriving vertical air motions from cloud radar Doppler spectra." Journal of Atmospheric and Oceanic Technology 25: 547-557. Shupe, MD, P Kollias, POG Persson, and GM

  14. Interactive Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Jobs Interactive Jobs Interactive Batch Jobs The login nodes on Genepool should not be used for heavy interactive work. These login nodes are shared amoungst all Genepool users so heavy CPU or memory usage will affect other Genepool users. 10 nodes have been reserved on Genepool for high priority and interactive work. Each user can use up to 2 slots at a time in the high priority queue. Use the qlogin command to run jobs interactively. The example below shows how to request an

  15. Interactive Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The following command requests 2 nodes using the interactive queue. hopper% qsub -I -q debug -l mppwidth48 The -I flag specifies an interactive job. The -q flag specifies the...

  16. Interactive Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Jobs Interactive Jobs To run an interactive job on Hopper's compute nodes you must request the number of nodes you want and have the system allocate resources from the pool of free nodes. The following command requests 2 nodes using the interactive queue. hopper% qsub -I -q debug -l mppwidth=48 The -I flag specifies an interactive job. The -q flag specifies the name of the queue and -l mppwidth determines the number of nodes to allocate for your job, but not as you might expect. The

  17. Bridging Research Interactions Through Collaborative Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Accelerator Laboratory are developing and characterizing a transparent emitter layer for CIGS solar cells through synchrotron investigations. Principal Investigator: Dr. ...

  18. Interactive Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Jobs Interactive Jobs Overview To run interactive jobs on Cori, you must request the number of nodes you want and have the system allocate resources from the pool of free nodes. To request an interactive session, the salloc command must be issued. For example, the following command requests 2 nodes in the debug partition for 30 min. % salloc -N 2 -p debug -t 00:30:00 salloc may be issued with several options. For the complete list of all options for salloc, refer to the SLURM salloc

  19. The joint center for energy storage research: A new paradigm...

    Office of Scientific and Technical Information (OSTI)

    for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This...

  20. Interactive Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Jobs Interactive Jobs Serial Code or Commands Franklin is a massively parallel high-performance computing platform and is intended and designed to run large parallel codes. While it is possible to run serial jobs on Franklin, it is discouraged. Any code or command that is not preceeded by the aprun command will execute serially on a service (usually login) node. The login nodes are for executing general UNIX shell commands, building code, and submitting jobs intended to run on the

  1. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  2. Catalyst Support Interactions | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the reactivity of metal catalyst particles. The research team will also study the adhesion properties by simulating the interactions between metal particles of different sizes...

  3. Theoretical studies of molecular interactions

    SciTech Connect (OSTI)

    Lester, W.A. Jr.

    1993-12-01

    This research program is directed at extending fundamental knowledge of atoms and molecules including their electronic structure, mutual interaction, collision dynamics, and interaction with radiation. The approach combines the use of ab initio methods--Hartree-Fock (HF) multiconfiguration HF, configuration interaction, and the recently developed quantum Monte Carlo (MC)--to describe electronic structure, intermolecular interactions, and other properties, with various methods of characterizing inelastic and reaction collision processes, and photodissociation dynamics. Present activity is focused on the development and application of the QMC method, surface catalyzed reactions, and reorientation cross sections.

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Area of Research: Journal Reference: N/A

  5. Measuring the Monitoring User Interactive Experiences on Franklin Interactive Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Node Responsiveness Richard Gerber User Services Group National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory Berkeley, CA June 9, 2008 Introduction Anecdotal reports of slow interactive response on Franklin's login nodes have been documented via comments on the 2007 NERSC User Survey. Users report that sluggish command-line response at times makes it difficult to work. The cause, or causes, of the poor response time is unknown. In an attempt to

  6. Research Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Gallery Research Gallery Exhibits in this gallery capture Laboratory's leading-edge research in many areas of science and technology to help solve national problems related to energy, the environment, infrastructure, and health. August 18, 2014 Museum floor plan showing the Research Gallery Basic research conducted here enhances our national defense and global security missions. Science serving society The Laboratory conducts leading-edge research in many areas of science and technology

  7. Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for 2001-2006 Office of Science Abstracts Database Research Highlights Summaries Research Highlights Members of ARM's science team are major contributors to radiation and cloud research. ARM investigators publish about 150 refereed journal articles per year, and ARM data are used in many studies published by other scientific

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Terrestrial Radiation Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Area of Research: General Circulation and Single Column Models...

  9. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Research Projects Joint Los Alamos National LaboratoryUCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chinese Researchers Report Reliable Method for Monitoring Soil Moisture Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Surface Properties...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing and Comparing the Modified Anomalous Diffraction Approximation Submitter: Mitchell, D. L., Desert Research Institute Area of Research: Cloud DistributionsCharacterizations...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Program Research Improves Longwave Radiative Transfer Models Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: General Circulation and...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fog and Rain in the Amazon For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight The diurnal and seasonal...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Masters the Misunderstood Mixed-Phase Cloud Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research:...

  15. 2004 Progress in Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - March 31, 2004 INTRODUCTION R.E. Tribble, Director SECTION I: NUCLEAR STRUCTURE, FUNDAMENTAL INTERACTIONS AND ASTROPHYSICS SECTION II: HEAVY ION REACTIONS SECTION III: NUCLEAR THEORY SECTION IV: ATOMIC AND MOLECULAR SCIENCE SECTION V: SUPERCONDUCTING CYCLOTRON AND INSTRUMENTATION SECTION VI: PUBLICATIONS List of Papers Published SECTION VII: APPENDIX Talks Presented Research Personnel, Engineering Staff and Students Organizational Chart

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactions Working Group(s): Cloud Life Cycle Journal Reference: Yang F, M Ovchinnikov, and RV Shaw. 2013. "Minimalist model of ice microphysics in...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy balance due to aerosol-radiation interactions, but the effect depends on the dust optical properties assumed in the simulations without mineralogy. More importantly, the...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Daytime Precipitable Water Vapor from Vaisala Radiosonde Humidity Sensors Download a printable PDF Submitter: Cady-Pereira, K. E., Atmospheric and Environmental Research, Inc. Mlawer, E. J., Atmospheric & Environmental Research, Inc. Turner, D. D., National Oceanic and Atmospheric Administration Shephard, M. W., Atmospheric and Environmental Research, Inc. Clough, S. A., Atmospheric and Environmental Research, Inc. Area of Research: Atmospheric Thermodynamics and Vertical Structures

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPartICus Submitter: Mishra, S., DOE - SunShot Initiative, AAAS S&T Policy Fellow Mitchell, D. L., Desert Research Institute Area of Research: General Circulation and Single...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Thermodynamics Affect Radiative Impact of Deep Convective Cloud Systems Submitter: Jensen, M., Brookhaven National Laboratory Area of Research: Atmospheric...

  1. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LaboratoryNational Security Education Center Menu NSEC Educational Programs Los Alamos Dynamics Summer School Science of Signatures Advanced Studies Institute Judicial Science School SHM Data Sets and Software Research Projects Current Projects Past Projects Publications NSEC » Engineering Institute » Research Projects » Joint Los Alamos National Laboratory/UCSD research projects Past Research Projects Previous collaborations between Los Alamos National Laboratory and the University of

  2. Current Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Research The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and Analysis Computing Center (TRACC) features a state-of-the-art massively parallel computer system, advanced scientific visualization capability, high-speed network

  3. Research Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL Research Library: delivering essential knowledge services for national security sciences since 1947 About the Research Library Mission We deliver agile, responsive knowledge services, connecting people with information, technology and resources. Vision Essential knowledge services for national security sciences. The Research Library provides extensive collections of books, journals, databases, patents and technical reports and offers literature searching, training and outreach services. The

  4. Research Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    potential of nucleus-nucleus interactions at the LHC at CERN. PDSF Contact: Jeff Porter The Alice collaboration transfers data to PDSF for data analysis. ATLAS - A Toroid LHC...

  5. US DRIVE Grid Interaction Technical Team Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Interaction Technical Team Roadmap US DRIVE Grid Interaction Technical Team Roadmap PDF icon gitt_roadmap_june2013.pdf More Documents & Publications Grid Interaction Tech Team, and International Smart Grid Collaboration Grid Connectivity Research, Development & Demonstration Projects Vehicle Technologies Office Merit Review 2015: EV - Smart Grid Research & Interoperability Activities

  6. Research - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Viewing gamma ray spectra. The Institute research program focuses on the atomic nucleus, a many-body system of strongly interacting constituents bound together by the strongest forces known in nature. The properties investigated often can be described in terms of the motions of single nucleons (neutrons and protons), the correlated motions of several nucleons, and the collective motions of many nucleons. On a finer scale, they can be understood in terms of the degrees of freedom of

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Models Download a printable PDF Submitter: Iacono, M. J., Atmospheric & Environmental Research, Inc. Delamere, J. S., Tech-X Corporation Mlawer, E. J., Atmospheric & Environmental Research, Inc. Collins, W. D., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Radiative Processes Journal Reference: Iacono, MJ, JS Delamere, EJ

  8. Researchers - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our-Peopple-Hero_v2.jpg Researchers Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  9. Environmental Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dist. Category UC-l 1, 13 DE@ 010764 Health & Environmental Research Summary of Accomplishments Prepared by Office of Energy Research /U.S. Department of Energy Washington, D.C. 20585 Reprinted April 1984 Published by Technical Information Center/U.S. Department of Energy The purpose of this brief narrative is to foster an awareness of a publicly funded health and environmental research program chartered nearly forty years ago, of its contributions toward the national goal of safe and

  10. NETL Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL Research Research One of the U.S. Department of Energy's (DOE) three strategic goals contained in the DOE's 2014-2018 Strategic Plan is to advance foundational science, innovate energy technologies, and inform data driven policies that enhance US economic growth and job creation, energy security, and environmental quality. DOE's National Energy Technology Laboratory contributes to this strategic goal through cutting-edge research and development focused on efficient energy use and clean

  11. PNNL: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research at PNNL Research is our business With an unwavering focus on our missions, scientists and engineers at PNNL deliver science and technology. We conduct basic research that advances the frontiers of science. We translate discoveries into tools and technologies in science, energy, the environment and national security. For more than four decades, our experts have teamed with government, industry and academia to tackle some of the toughest problems facing our nation. The result: We're

  12. Research | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Researching energy systems and technologies-and the science behind them-for a future powered by clean energy. Subscribe Stay connected with the latest news and research breakthroughs from NREL. Sign up now Photo of the U.S. Department of Energy's Energy Systems Integration Facility at NREL. Energy Systems Integration Facility The only facility in the nation focused on utility-scale clean energy grid integration. Learn More National Bioenergy Center National Center for Photovoltaics

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Size Distributions with Help from Satellites Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute d'Entremont, R. P., Atmospheric and Environmental...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: NA...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Westwater, E. R., University of Colorado Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference:...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties, Radiative Processes...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Xie, S., Lawrence Livermore National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Modeling Journal Reference: Xie S,...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Xie, S., Lawrence Livermore National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Xie...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Sea Spray on the Thermodynamics of the Hurricane Boundary Layer Download a printable PDF Submitter: Khain, A., The Hebrew University of Jerusalem Area of Research:...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Differences Between Tropical and Trade-Wind Shallow Cumuli Download a printable PDF Submitter: Ghate, V. P., Argonne National Laboratory Area of Research: Vertical Velocity Working...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Research Facility located near Lamont, Oklahoma. Measurements from ARM Raman lidar and Doppler radar instruments were used to both initialize and evaluate the model. A...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the Doppler spectra. Over the North Slope of Alaska, researchers used cloud radar Doppler velocity spectra, lidar backscattering coefficients and depolarization ratios, and...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shallow Clouds Make the Case for Remote Sensing Instrumentation Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Cloud DistributionsCharacterizations...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying Error in the Radiative Forcing of the First Aerosol Indirect Effect Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research:...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Dust Composition on Cloud Droplet Formation Download a printable PDF Submitter: Chuang, C., Lawrence Livermore National Laboratory Area of Research: Aerosol Properties...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy budget of the atmospheric column. Researchers used measurements of atmospheric temperature and humidity profiles and ground-based retrievals of aerosol optical...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lovejoy, S., McGill University Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Lovejoy, S., D....

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    percent confidence intervals calculated from instrument uptime are given by the grey boundaries. The Atmospheric Radiation Measurement (ARM) Climate Research Facility has...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Method for Three-Dimensional Imaging of Cirrus Clouds Submitter: Liou, K., University of California, Los Angeles Area of Research: Cloud DistributionsCharacterizations Working...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cotton-Ball Clouds Contained Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and climate change. The study, funded in large part by DOE's Atmospheric System Research program and recently discussed in the Quarterly Journal of the Royal Meteorological...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of MBL Cloud Properties over the Azores Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Radiation Processes Working Group(s): Cloud...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Download a printable PDF Submitter: Maseyk, K. S., Universite Pierre et Marie Curie, Paris 6 Area of Research: Surface Properties Working Group(s):...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012. "Lateral entrainment rate in shallow cumuli: Dependence on dry air sources and probability density functions." Geophysical Research Letters, 39, L20812, doi:10.1029...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Cloud Forcing in the Tropical West Pacific Submitter: Kiehl, J., NCAR Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s):...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP Observations Help Validate Soil Temperature Simulations Download a printable PDF Submitter: Huang, M., Pacific Northwest National Laboratory Area of Research: Surface...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of CERES-MODIS Cloud Retrievals Using the Azores Data Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Cloud Processes Working...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kishcha, P., Tel-Aviv University Starobinets, B., Tel-Aviv University Kalashnikova, O., Jet Propulsion Laboratory Alpert, P., Tel-Aviv University Area of Research: Radiation...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zhang, Q., University of California, Davis Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Lose Download a printable PDF Submitter: Laskin, A., Pacific Northwest National Laboratory Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing the Birth of New Particles Download a printable PDF Submitter: Wang, J., Brookhaven National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Sites Enable Assessment of Cluster Analysis for Identifying Cloud Regimes Submitter: Jakob, C., Monash University Area of Research: Cloud DistributionsCharacterizations...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Campaign Resource Allocation Using Statistical Decision Analysis Download a printable PDF Submitter: Hanlon, C., Pennsylvania State University Area of Research: Cloud...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rosettes in Cirrus Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Radiation Processes...

  5. UNIRIB: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the University Radioactive Ion Beam (UNIRIB) consortium is to perform nuclear physics research, and provide training and education. UNIRIB member universities have gained...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black Carbon Aerosols and the Third Polar Ice Cap Submitter: Menon, S., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rain and Cloud Resistance Download a printable PDF Submitter: Flaherty, J., Pacific Northwest National Laboratory Area of Research: Cloud DistributionsCharacterizations Working...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying the Magnitude of Anomalous Solar Absorption Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Recent Evaluation of the MTCKD Model of Continuum Absorption Download a printable PDF Submitter: Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Life Cycle Journal Reference: Zhao Y, GG Mace, and JM Comstock. 2011. "The occurrence of particle ...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Life Cycle Journal Reference: NA Distributions of cloud optical depth from Aqua in four regions. The...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Geophysical Research - Atmospheres, 118(16), doi:10.1002jgrd.50711. SPADE's methodology complements a traditional workflow for identifying resolution dependence by...

  13. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production Flux of Sea-Spray Aerosol Download a printable PDF Submitter: Schwartz, S. E., Brookhaven National Laboratory Area of Research: Aerosol Properties Working Group(s):...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Northwest National Laboratory, researchers found that a significant increase in the amount of light scattered by the clouds was caused by the amount of pollution in the air. ...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMBE - a New ACRF Data Product for Climate Studies Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: Cloud Distributions...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosols Help Heat Up the Yangtze River Delta in China Download a printable PDF Submitter: Flynn, C. J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Lidar View of Clouds in Southeastern China Download a printable PDF Submitter: Li, Z., University of Maryland Cribb, M. C., University of Maryland Area of Research: Cloud...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Processes Make a Big Difference in Model Outcomes Submitter: Cole, J. N., Canadian Centre for Climate Modelling and Analysis Area of Research: General Circulation and Single...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid Water the Key to Arctic Cloud Radiative Closure Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud DistributionsCharacterizations...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observational Evidence of Changes in Water Vapor, Clouds, and Radiation Submitter: Dong, X., University of North Dakota Area of Research: Cloud DistributionsCharacterizations...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Comparison of Integrated Water Vapor Sensors: WVIOP-96 Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Accuracy in Liquid Water Path Retrievals Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Clouds with Low Optical Water Depths...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Water Vapor and Cloud Liquid Water at MCTEX Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at the Full Spectrum for Water Vapor Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress in Understanding Water Vapor's Role in Models Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation-Based Estimates of Cloud-Free Aerosol Radiative Forcing Across China Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Aerosol...

  8. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud-Radiation Effects on Sea Ice Loss Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud DistributionsCharacterizations...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mid-Level Cloud Formation at the ARM Darwin Site Download a printable PDF Submitter: Riihimaki, L., Pacific Northwest National Laboratory Area of Research: Cloud Distributions...

  11. Research | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Mission Statement The objective of PARC is to understand the basic scientific principles that underpin the efficient functioning of natural photosynthetic antenna systems as a basis for design of biohybrid and bioinspired architectures for next-generation systems for solar-energy conversion. Scientific Themes Through basic scientific research, PARC seeks to understand the principles of light harvesting and energy funneling as applied to The PARC Vision Graphic three

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Climate Models: Results from TC4 and ISDAC Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Mishra, S., DOE - SunShot Initiative, AAAS S&T...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wong M, M Ovchinnikov, and M Wang. 2015. "Evaluation of subgrid-scale hydrometeor transport...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using Tropical Warm Pool-International Cloud Experiment data." Journal of Geophysical Research - Atmospheres, 114, D14107, doi:10.10292008JD011220. Wang W and X Liu. 2009....

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C., Texas A&M University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lappen C and C Schumacher. 2014. "The role of tilted heating in the...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, X Dong, B Xi, S McFarlane, A Kennedy, B Lin, and P Minnis....

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s): Cloud Modeling Journal Reference: Ghan, S.J. and Leung, L.R., 1999: "A...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adoption of RRTMG in the NCAR CAM5 and CESM1 Global Climate Models Download a printable PDF Submitter: Iacono, M. J., Atmospheric & Environmental Research, Inc. Collins, W. D.,...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research - Atmospheres, 119(23), 10.10022014JD022038. a) Dependence of inversion cap on mean SSTs and b) dependence of low-level relative humidities on inversion cap based...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Modeling Journal Reference: Naud, C, A Del Genio, GG Mace, S Benson, EE Clothiaux, and P Kollias. ...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Journal Reference: Long CN, SA McFarlane, A Del Genio, P Minnis, TP Ackerman, J Mather, J Comstock, GG Mace, M Jensen, and C Jakob. 2013. "ARM research in the equatorial western ...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Properties Journal Reference: Wang X, KN Liou, SS Ou, GG Mace, and M Deng. 2009. "Remote sensing of ...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s): Cloud Life Cycle Journal Reference: Mace GG, S Houser, S Benson, SA Klein, and QL ...

  4. Research Facility,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McFarlane, S. A., U.S. Department of Energy Khain, A., The Hebrew University of Jerusalem Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geophysical Research Letters, , doi:10.10022015GL064009. ONLINE. A 14-minute sequence of cloud growth as observed by a camera located at the MAST Academy in Miami,...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Threshold Radar Reflectivity Separating Precipitating from Non-Precipitating Clouds Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Liu, Y, B Geerts, PH Daum, R McGraw, and M Miller. 2008. "Threshold radar reflectivity for drizzling clouds." Geophysical Research Letters 35, L03807, doi:10.1029/2007GL031201. Figure 1 shows the comparison of the

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Ice Crystals on Ice Sedimentation Rates in Cirrus Clouds and GCM Simulations Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Rasch, P., Pacific Northwest National Laboratory Ivanova, D., Embry-Riddle Aeronautical University McFarquhar, G., University of Illinois, Urbana Nousiainen, T. P., University of Helsinki Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Properties Journal Reference: Mitchell, DL, P

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Aerosol Study Flies By Download a printable PDF Submitter: Schmid, B., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: ARM Climate Research Facility Operations Update, April 30, 2008, Edition Preliminary screening and analysis of images from the time-resolved aerosol collector indicate particles laden with carbon and sulfur. These data were obtained on April 8, 2008. Image courtesy of Alexander Laskin, PNNL. Images

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Surprisingly Large Contribution of Small Marine Clouds to Cloud Fraction and Reflectance Download a printable PDF Submitter: Oreopoulos, L., NASA Feingold, G., NOAA - Earth System Research Laboratory Koren, I., Weizmann Institute of Science Remer, L., NASA - GSFC, Laboratory for Atmospheres Area of Research: Clouds with Low Optical [Water] Depths (CLOWD) Working Group(s): Cloud Properties Journal Reference: Koren, I, L Oreopoulos, G Feingold, LA Remer, and O Altaratz. 2008. "How small

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Aerosol Measurements on Cloudy Days: a New Method Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Kassianov, EI, and M Ovtchinnikov. 2008. "On reflectance ratios and aerosol optical depth retrieval in the presence of cumulus clouds." Geophysical Research Letters doi:10.1029/2008GL033231.

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieving Dust Optical Depth and Mineral Composition from Infrared Spectra Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Turner DD. 2008. "Ground-based retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel." Journal of Geophysical Research - Atmospheres, 113, D00E03,

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detection and Retrieval of Cirrus Clouds in the Tropics from AIRS: Validation from ARM Data Submitter: Yue, Q., Jet Propulsion Laboratory/California Institute of Technology Liou, K., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Yue Q and KN Liou. 2009. "Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra." Geophysical Research Letters, 36, L05810,

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Is In Download a printable PDF Submitter: Tomlinson, J., Pacific Northwest National Laboratory Long, C. N., NOAA Global Monitoring Division/CIRES Comstock, J. M., Pacific Northwest National Laboratory Ronfeld, D., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Properties Journal Reference: N/A The Twin Otter takes off to test the onboard instruments for the RACORO field campaign that began in January 2009. Researchers are gathering data

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds Brighten Up the Sky Near Them Download a printable PDF Submitter: Varnai, T., University of Maryland, Baltimore County/JCEST Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Varnai T and A Marshak. 2009. "MODIS observations of enhanced clear sky reflectance near clouds." Geophysical Research Letters, 36, L06807, doi:10.1029/2008GL037089. Figure 1. Illustration of clouds enhancing the

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Method for Retrieving Cloud Heights from Satellite Data Download a printable PDF Submitter: Chang, F., Science Systems and Applications, Inc. Minnis, P., NASA - Langley Research Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Chang F, P Minnis, B Lin, MM Khaiyer, R Palikonda, and DA Spangenberg. 2010. "A modified method for inferring cloud top height using GOES-12 imager 10.7- and 13.3-µm data." Journal of

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Summertime Radiative Forcing by Shallow Cumuli at the ARM SGP Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Berg LK, EI Kassianov, CN Long, and DL Mills. 2011. "Surface summertime radiative forcing by shallow cumuli at the ARM SGP." Journal of Geophysical Research - Atmospheres, 116, D01202, 10.1029/2010JD014593. Histogram of hourly average shortwave

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Ground-Based Spectral Observations of the Entire Infrared Band Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Turner DD, EJ Mlawer, G Bianchini, MP Cadeddu, S Crewell, JS Delamere, RO Knuteson, G Maschwitz, M Mlynzcak, S Paine, L Palchetti, and DC Tobin. 2012.

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Invisible" Giants in the Sky Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Daily averaged values of (a, b) the direct

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lord of the Wings: Elevated Particles a Rising Star Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, C Flynn, J Redemann, B Schmid, PB Russell, and A Sinyuk. 2012. "Initial assessment of the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)-based aerosol retrieval: Sensitivity study." Atmosphere, 3,

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Cloud Properties in Major Reanalyses Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Wu, W., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Wu W, YG Liu, and AK Betts. 2012. "Observationally based evaluation of NWP reanalyses in modeling cloud properties over the Southern Great Plains." Journal of Geophysical Research - Atmospheres, 117, D12202,

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Higher Clouds Retain Less Energy Download a printable PDF Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Qiu Y, Q Wang, and F Hu. 2012. "Shouxian aerosol radiative properties measured by DOE AMF and compared with CERES-MODIS." Advanced Materials Research, 518-523(2), doi:10.4028/www.scientific.net/AMR.518-523.1973. Clouds with bases at different altitudes.

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micropulse Lidar-Derived Aerosol Optical Depth Climatology at ARM Sites Worldwide Download a printable PDF Submitter: Kafle, D. N., NASA GSFC /ADNET Systems Coulter, R. L., Argonne National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Kafle DN and RL Coulter. 2013. "Micropulse lidar-derived aerosol optical depth climatology at ARM sites worldwide." Journal of Geophysical Research - Atmospheres, 118(13), 10.1002/jgrd.50536.

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of WRF Microphysics Schemes in Squall Line Simulations Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wu D, B Xi, Z Feng, A Kennedy, M Grenchen, G Matt, and T W-K. 2013. "The impact of various WRF single-moment microphysics parameterizations on squall line precipitation events." Journal of Geophysical Research - Atmospheres, 118, doi:10.1002/jgrd.50798.

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hemispherical Simulations Show Impact of Aerosols on Cloud Reflectivity Submitter: Rotstayn, L., Commonwealth Scientific and Industrial Research Organization Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Rotstayn, L., and Y. Liu, Sensitivity of the First Indirect Aerosol Effect to an Increase in Cloud Droplet Spectral Dispersion with Droplet Number Concentration, Journal of Climate: Vol. 16, No. 21, pp.3476-3481, May 2003. Figure 1. Measurements of the

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Overambitious Other Carbon Submitter: Church, J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Song C, M Gyawali, RA Zaveri, JE Shilling, and WP Arnott. 2013. "Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity." Journal of Geophysical Research - Atmospheres, 118, doi:10.1002/jgrd.50767. Time-dependent Mass Absorption

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observational Analysis of Land-Atmosphere Coupling for Climate Model Evaluation Download a printable PDF Submitter: Phillips, T. J., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: Phillips TJ and SA Klein. 2014. "Land-atmosphere coupling manifested in warm-season observations on the U.S. southern great plains." Journal of Geophysical Research -

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Revealing Look Inside Northern Australian Wet Season Precipitation Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, M Bartholomew, M Pope, S Collis, and MP Jensen. 2014. "A Summary of Precipitation Characteristics from the 2006-2011 Northern Australian Wet Seasons as Revealed by ARM Disdrometer Research Facilities (Darwin, Australia)." Journal of

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accuracy of GFS and ECMWF Hurricane Sandy Track Forecasts Dependent on Cumulus Parameterization Download a printable PDF Submitter: Bassill, N. P., University of Utah Zipser, E., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Bassill NP. 2014. "Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: Evidence for a dependence on cumulus parameterization." Geophysical Research Letters, ,

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Checking Up on Tropical Sunlight Download a printable PDF Submitter: Riihimaki, L., Pacific Northwest National Laboratory Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Riihimaki LD and CN Long. 2014. "Spatial variability of surface irradiance measurements at the Manus ARM site." Journal of Geophysical Research - Atmospheres, 119(9), 5475-5491. ACCEPTED. The radiometer system used at the

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Vapor Turbulence Statistics in the Convective Boundary Layer Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Turner DD, V Wulfmeyer, LK Berg, and JH Schween. 2014. "Water vapor turbulence profiles in stationary continental convective mixed layers." Journal of Geophysical Research - Atmospheres, 119,

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Novel Approach for Introducing 3D Cloud Spatial Structure Into 1D Radiative Transfer Download a printable PDF Submitter: Huang, D., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Huang D and Y Liu. 2015. "A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations." Environmental Research Letters, 9(12), 124022. An example of a 3D cloud liquid water content field

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Vertical Velocities in Cirrus Derived from Aircraft and Ground-based Radar Download a printable PDF Submitter: Muhlbauer, A., University of Washington Kalesse, H., Leibniz Institute for Tropospheric Research Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Muhlbauer A, H Kalesse, and P Kollias. 2014. "Vertical velocities and turbulence in midlatitude anvil cirrus: A comparison between in situ aircraft measurements and ground-based

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessing Impact of Shattered Artifacts on Measured Size Distributions Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A Figure 1. (a) Photograph of 2DC with standard tips; and (b) with modified tips installed on the left pod of the National Research Council of Canada Convair 580 during ISDAC. Figure 2. (a) Ratio of number concentration of particles

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieving Cloud and Aerosol Properties from the ARM Raman Lidar Download a printable PDF Submitter: Thorsen, T., NASA - Langley Research Center Fu, Q., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Thorsen TJ, Q Fu, RK Newsom, DD Turner, and JM Comstock. 2015. "Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, Part I: Feature detection." Journal of

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Changes Clouds' Ice Crystal Genesis Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Kulkarni GR, K Zhang, C Zhao, M Nandasiri, V Shutthanandan, X Liu, L Berg, and J Fast. 2015. "Ice formation on nitric acid-coated dust particles: Laboratory and modeling studies." Journal of Geophysical Research - Atmospheres, 120(15), doi:10.1002/2014JD022637.

  17. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Projects Joint Los Alamos National Laboratory/UCSD Research Projects Collaborations between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email "Since 2003, LANL has funded numerous collaborative

  18. Research Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Capabilities Research Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy, to supercomputing. thumbnail of Bioscience At Los Alamos, scientists and engineers are working to unlock many of the mechanisms found in nature to improve humanity's ability to battle diseases, create new forms of environmentally friendly and abundant

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Fire to Ice Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Kulkarni GR, M Nandasiri, A Zelenyuk, J Beranek, N Madaan, A Devaraj, V Shutthanandan, S Thevuthasan, and T Varga. 2015. "Effects of crystallographic properties on the ice nucleation properties of volcanic ash particles." Geophysical Research Letters, 42(8), doi:10.1002/2015GL063270. Tons of

  20. Wind Turbine Interactions with Birds, Bats, and their Habitats...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Results and Priority Questions This fact sheet summarizes what is known about bird and bat interactions with land-based wind power in North America, including habitat...

  1. Light-Material Interactions in Energy Conversion - Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Light-Material Interactions in Energy Conversion Energy Frontier Research Center (LMI-EFRC) is excited to offer this free public webinar on Approaches to Ultrahigh Efficiency ...

  2. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Laser User Facilities Program / Research Areas Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma

  3. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Laser Users' Facility Grant Program / Research Areas Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma

  4. Bartlesville Energy Research Center | Department of Energy

    Energy Savers [EERE]

    Bartlesville Energy Research Center Bartlesville Energy Research Center The Federal Government in Petroleum Research, 1918-1983 The following is a study of a single research facility, the Bartlesville Energy Research Center, and showcases how petroleum technology, petroleum policy, and national political priorities have interacted through seven decades of the twentieth century. PDF icon Download entire document PDF icon Introduction and Table of Contents PDF icon Chapter 2 - Search for a Role,

  5. RESEARCH QUARTERLY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESEARCH QUARTERLY First Quarter 2015 Th 90 Ac 89 Pa 91 U 92 Np 93 Pu 94 Am 95 Cm 96 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Lr 103 Glenn T. Seaborg Institute for Transactinium Science/Los Alamos National Laboratory Actinide Research Quarterly About the cover The crystalline structure of plutonium in its elemental form, and in molecules and compounds with other elements, is the basis for understanding the intriguing chemistry, physics, and engineering of plutonium molecules and compounds. Colored

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Measurements Validate New Satellite Multilayer Cloud Remote Sensing Method Submitter: Minnis, P., NASA - Langley Research Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Huang, J., P. Minnis, B. Lin, Y. Yi, T.-F. Fan, S. Sun-Mack, and J. K. Ayers, 2006: Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements. Geophys. Res. Lett., 33, L21801, 10.1029/2006GL027038. Minnis,

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM M-PACE Data Used to Evaluate and Improve Arctic Mixed-Phase Clouds Simulated in Climate Models Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Xie, S, J Boyle, SA Klein, X Liu, and S Ghan. 2008. "Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE." Journal of Geophysical Research 113,

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Term Observations of Convective Boundary Layer Using Insect Returns at SGP Download a printable PDF Submitter: Chandra, A. S., McGill University Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Chandra AS, P Kollias, SE Giangrande, and SA Klein. 2010. "Long-term observations of the convective boundary layer using insect radar returns at the SGP ARM Climate Research Facility." Journal of Climate, 23, 5699-5714. Example of time-height mapping

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving the Treatment of Radiation in Climate Models Download a printable PDF Submitter: Delamere, J. S., Tech-X Corporation Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Delamere JS, SA Clough, VH Payne, EJ Mlawer, DD Turner, and RR Gamache. 2010. "A far-infrared radiative closure study in the Arctic: Application to water vapor." Journal of Geophysical Research - Atmospheres, 115, D17106, 10.1029/2009JD012968. The

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effect of Dry Deposition of Condensable Organic Vapors on SOA Formation in the Urban Plume Download a printable PDF Submitter: Hodzic, A., NCAR Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Hodzic A, S Madronich, B Aumont, J Lee-Taylor, T Karl, M Camredon, and C Mouchel-Vallon. 2014. "Limited influence of dry deposition of semi-volatile organic vapors on secondary organic aerosol formation in the urban plume." Geophysical Research Letters,

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Warming Due to Soot and Smoke? Maybe Not. Submitter: Penner, J. E., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Penner, J.E., S.Y. Zhang, and C.C. Chuang, Soot and smoke aerosol may not warm climate, J. Geophys. Res., 108(D21), 4657, doi:10.1029/2003JD003409, 2003. New research results from the Department of Energy's Atmospheric Radiation Measurement (ARM) Program suggest that fossil fuel soot emissions and biomass smoke may

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Program Achieves Milestone in Global Cloud Properties Research Submitter: Revercomb, H. E., University of Wisconsin, Madison Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Knuteson, R.O., Best, F.A., Dedecker, R.G., Feltz, W.F., Revercomb, H.E., and Tobin, D.C., 2004: "10 Years of AERI Data from the DOE ARM Southern Great Plains Site," In Proceedings from the Fourteenth ARM Science Team Meeting, U.S. Department of Energy,Washington,

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dust Takes Detour on Ice-Cloud Journey Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kulkarni G, C Sanders, K Zhang, X Liu, and C Zhao. 2014. "Ice nucleation of bare and sulfuric acid-coated mineral dust particles and implication for cloud properties." Journal of Geophysical Research - Atmospheres, 119(16), doi:10.1002/2014JD021567. Cirrus clouds are

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DCS Ice Cloud Microphysical Properties Derived from Aircraft Data During MC3E Submitter: Dong, X., University of North Dakota Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wang J, X Dong, and B Xi. 2015. "Investigation of ice cloud microphysical properties of DCSs using aircraft in situ measurements during MC3E over the ARM SGP site." Journal of Geophysical Research - Atmospheres, 120(8), 3533-3552. Figure 1. The observed PSDs at different

  15. Errvironmentaf Research

    Office of Legacy Management (LM)

    online at www.sciencedirect.com Environmental Research 10 1 (2006) 3 4 4 1 Errvironmentaf Research Do scientists and fishermen collect the same size fish? Possible implications for exposure assessment Joanna urger^^^^', Michael ~ o c h f e l d ~ ~ ~ , Sean Christian W. ~ e i t n e r ~ . ~ , Stephen ~ e w e t t ~ , Daniel SnigarofP, Ronald snigarofff, Tim Starnrng, Shawn ~ a r ~ e f , Max ~ o b e r ~ * , Heloise chenelotd, Robert patrickh, Conrad D. volzi, James ~ e s t o d 'Division of Life

  16. Postdoctoral Research Awards Annual Research Meeting: Joseph...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joseph Mondloch Postdoctoral Research Awards Annual Research Meeting: Joseph Mondloch Postdoctoral Research Awards Annual Research Meeting: Joseph Mondloch poster presentation. PDF ...

  17. Postdoctoral Research Awards Annual Research Meeting: Padmaja...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Padmaja Gunda Postdoctoral Research Awards Annual Research Meeting: Padmaja Gunda Poster Presentation at 2012 EERE Annual Research Meeting, Postdoctoral Research Awards, from the ...

  18. Postdoctoral Research Awards Annual Research Meeting: Brandon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brandon Mercado Postdoctoral Research Awards Annual Research Meeting: Brandon Mercado Poster Presentation at 2012 EERE Annual Research Meeting, Postdoctoral Research Awards, from ...

  19. Light-Material Interactions in Energy Conversion (LMI) | U.S...

    Office of Science (SC) Website

    Light-Material Interactions in Energy Conversion (LMI) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events ...

  20. Fundamental Interactions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Fundamental Interactions Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Fundamental Interactions Print Text Size: A A A FeedbackShare Page Research emphasis is placed on structural and dynamical studies of atoms, molecules, and nanostructures, and the description of their

  1. ARM - Funded Research Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Proposals Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional &...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Vertical Structure of Cloud Radiative Forcing at the ACRF SGP Revealed by 8 Years of Continuous Measurements Submitter: Mace, G., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Accepted to Journal of Climate, 2007. Figure 1. Cloud occurrence, coverage, radiative forcing, and radiation effects over a composite annual cycle that is derived by averaging all observations collected during a

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Climatology of Midlatitude Continental Cloud Properties and Their Impact on the Surface Radiation Budget Submitter: Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Dong, X., P. Minnis, and B. Xi, 2005: A climatology of midlatitude continental clouds from ARM SGP site. Part I: Low-level Cloud Macrophysical, microphysical and radiative properties. J. Climate. 18, 1391-1410. Dong, X., B. Xi, and P.

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raman Lidar Observations of Aerosol Humidification Near Clouds Submitter: Ferrare, R. A., NASA LaRC Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Ferrare, R., et al., Evaluation of Daytime Measurements of Aerosols and Water Vapor Made by an Operational Raman Lidar over the Southern Great Plains, J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836, 2006. Relative humidity profiles derived from the Raman lidar during the ALIVE 2005 field experiment. Aerosol

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Matthews, S., J. M. Hacker, J. Cole, J. Hare, C. N. Long, and R. M. Reynolds, (2007): Modification of the atmospheric boundary layer by a small island: observations from Nauru, MWR, Vol. 135, No. 3, pages 891–905. Figure 1.

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate? Submitter: Prenni, A. J., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Prenni, A. J., J. Y. Harrington, M. Tjernstrom, P. J. DeMott, A. Avramov, C. N. Long, S. M. Kreidenweis, P. Q. Olsson, and J. Verlinde, (2006): Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate?, BAMS, Vol.88, Iss. 4; pg. 541-550. ACIA, 2004: Impacts of a Warming

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Aerosol Humidity Effects Using the ARM Measurements Submitter: Li, Z., University of Maryland Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Jeong, M.-J., Z. Li, E. Andrews, and S.-C. Tsay (2007). Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site, J. Geophys. Res., 112, D10202, doi:10.1029/2006JD007176. (a)-(j) Column-mean aerosol humidification factor as

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Doppler Radar to Characterize Cloud Parameters Download a printable PDF Submitter: Kogan, Y., University of Oklahoma - CIMMS Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Kogan, Y.L., Z. N. Kogan, and D. B. Mechem, 2007: Assessing the errors of microphysical retrievals in Marine Stratocumulus based on Doppler radar parameters, J. Hydrometeorol., GEWEX special issue, 8, 665-677. Figure 1. The errors of drizzle flux R retrieval

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Significance of Multilayer Cloud Systems in Tropical Convection Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Stephens, GL, and NB Wood. 2007. "Properties of tropical convection observed by millimeter-wave radar systems." Monthly Weather Review 135: 821-842. Storm classifications (derived from k-means clustering analysis) applied to MWR

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with SCAM, CAPT Forecasts and M-PACE Observations Download a printable PDF Submitter: Liu, X., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Liu, X, S Xie, and SJ Ghan. 2007. "Evaluation of a new mixed-Phase cloud microphysics parameterization with the NCAR single column climate model (SCAM) and ARM M-PACE

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Depth Measurements by Shadowband Radiometers and Their Uncertainties Download a printable PDF Submitter: Alexandrov, M. D., Columbia University Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Applied Optics, accepted Sept. 2007. Effective offset to measured optical depths due to tilt of 1-degree in different directions. Offset observed in C1 MFRSR AOD relative to Cimel and representative offset due to tilt. Appearance of shading failure and effect on

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Five-Year Statistics of Shallow Clouds at the ACRF SGP Site Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Kassianov, E., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Berg, LK, and EI Kassianov. 2008. "Temporal variability of fair-weather cumulus statistics at the ARM SGP site." Journal of Climate 21, 3344-3358. Figure 1. Five-year mean ARSCL VAP

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM QCRad Goes Global Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Long, CN, and Y Shi. 2008. "An automated quality assessment and control algorithm for surface radiation measurements." The Open Atmospheric Science Journal 2: 23-37, doi: 10.2174/1874282300802010023. Figure: QCRad downwelling (top) and upwelling (bottom) longwave (LW) comparison

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Mixed-Phase Clouds from the Ground: a Status Report Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, JS Daniel, G De Boer, EW Eloranta, P Kollias, E Luke, CN Long, DD Turner, and J Verlinde. 2008. "A focus on mixed-phase clouds: The status of ground-ba sed observational methods." Bulletin of the American Meteorological Society,

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Susceptibility Measures Potential Cloud Sensitivity to First Aerosol Indirect Effect Download a printable PDF Submitter: Oreopoulos, L., NASA Platnick, S., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Platnick, S, and L Oreopoulos. 2008. "Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 1. Theoretical analysis and examples from MODIS." Journal of

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of CloudSat Using ARM, AMF, and CloudNet Observations Download a printable PDF Submitter: Protat, A., Australian Bureau of Meterology May, P. T., Bureau of Meteorology O'Connor, E. J., University of Reading Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Submitted. PDF of cloud reflectivity (upper-left), cloud top height (upper-right), thickness (lower-left), and cloud base height (lower right) as measured by the Darwin

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Simple Algorithm to Find Cloud Optical Depth Applied to Thin Ice Clouds Download a printable PDF Submitter: Barnard, J., University of Nevada Reno Long, C. N., NOAA Global Monitoring Division/CIRES Kassianov, E., Pacific Northwest National Laboratory McFarlane, S. A., U.S. Department of Energy Comstock, J. M., Pacific Northwest National Laboratory Freer, M., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical Variation of Cloud Droplet Size Using Ship and Space-borne R/S Data Download a printable PDF Submitter: Li, Z., University of Maryland Chen, R., University of Maryland Wood, R., University of Washington Chang, F., Science Systems and Applications, Inc. Ferraro, R., NOAA/NESDIS, WWBG Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Chen, R, R Wood, Z Li, R Ferraro, and F Chang. 2008. "Studying the vertical variation of

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forcing Boundary Layer Cloud Systems with Multi-Dimensional Radiation Download a printable PDF Submitter: Mechem, D. B., University of Kansas Kogan, Y., University of Oklahoma - CIMMS Ovchinnikov, M., Pacific Northwest National Laboratory Davis, A. B., Jet Propulsion Laboratory Evans, F., University of Colorado Ellingson, R. G., Florida State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling, Radiative Processes Journal Reference: Mechem, DB, YL

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Significant Decadal Brightening over the Continental United States Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Dutton, E. G., NOAA/OAR/ESRL Augustine, J., National Oceanic and Atmospheric Administration Wiscombe, W. J., Brookhaven National Laboratory Wild, M., Institute for Atmospheric and Climate Science - ETH Zurich McFarlane, S. A., U.S. Department of Energy Flynn, C. J., Pacific Northwest National Laboratory Area of Research: Radiation Processes

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continuous Clear-Sky Longwave from Surface Measurements Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Long, CN, and DD Turner. 2008. "A method for continuous estimation of clear-sky downwelling longwave radiative flux developed using ARM surface measurements." Journal of Geophysical

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microwave and Millimeter-Wave Radiometric and Radiosonde Observations in an Arctic Environment Download a printable PDF Submitter: Westwater, E. R., University of Colorado Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Mattioli V, ER Westwater, D Cimini, AJ Gasiewski, M Klein, and V Leuski. 2008. "Microwave and millimeter-wave radiometric and radiosonde observations in an arctic environment." Journal of Atmospheric and Oceanic Technology,

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Nuclei and Global Warming Download a printable PDF Submitter: Zeng, X., Morgan State University GSFC, N., NASA GSFC Zhang, M., Stony Brook University Hou, A., NASA - Goddard Space Flight Center Xie, S., Lawrence Livermore National Laboratory Lang, S. E., NASA - Goddard Space Flight Center Li, X., University of Maryland, Baltimore County Starr, D. O., NASA - Goddard Space Flight Center Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving the Numerical Simulation of Squall Lines Download a printable PDF Submitter: Morrison, H. C., NCAR Thompson, G., NCAR Tatarskii, V., Georgia Institute of Technology Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Morrison HC, G Thompson, and V Tatarskii. 2009. "Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes."

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanisms Affecting the Transition from Shallow to Deep Convection over Land Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Zhang Y and SA Klein. 2010. "Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Horizontal Resolution on Climate Model Simulations of Tropical Moist Processes Download a printable PDF Submitter: Boyle, J., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Boyle JS and SA Klein. 2010. "Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Method for Satellite/Surface Comparisons Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Cloud Properties, Radiative Processes Journal Reference: Zhang Y, CN Long, WB Rossow, and EG Dutton. 2010. "Exploiting diurnal variations to evaluate the ISCCP-FD flux calculations and radiative-flux-analysis-processed surface observations from BSRN, ARM, and SURFRAD." Journal of Geophysical

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increased Accuracy for Sky Imager Retrievals Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Long CN. 2010. "Correcting for circumsolar and near-horizon errors in sky cover retrievals from sky images." The Open Atmospheric Science Journal, 4, doi:10.2174/1874282301004010045. Long CN, JM Sabburg, J Calbo, and D Pages. 2006. "Retrieving

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Bulk Microphysical Scheme That Includes Riming Intensity and Temperature Dependent Ice Ch Download a printable PDF Submitter: Lin, Y., Geophysical Fluid Dynamics Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Lin Y and BA Colle. 2011. "A new bulk microphysical scheme that includes riming intensity and temperature dependent ice characteristics." Monthly Weather Review, 139(3),

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Clouds at Arctic Atmospheric Observatories Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Shupe MD, VP Walden, E Eloranta, T Uttal, JR Campbell, SM Starkweather, and M Shiobara. 2011. "Clouds at Arctic atmospheric observatories, part I: occurrence and macrophysical properties." Journal of Applied Meteorology and Climatology, 50(3), 626-644.

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Downwelling Infrared Radiance Climatology for the ARM Southern Great Plains Site Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Gero, J., University of Wisconsin Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Turner DD and PJ Gero. 2011. "Downwelling infrared radiance temperature climatology for the Atmospheric Radiation Measurement Southern Great Plains site." Journal of Geophysical

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of CRM Intercomparison Simulations Using TWP-ICE Observations, Part 1 Download a printable PDF Submitter: Varble, A., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Varble AC, AM Fridlind, EJ Zipser, AS Ackerman, J Chaboureau, J Fan, A Hill, SA McFarlane, J Pinty, and B Shipway. 2011. "Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Consistency Analysis of ARESE Aircraft Measurements Submitter: Li, Z., University of Maryland Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Li, Z., A.P. Trishchenko, H.W. Barker, G.L. Stephens, and P. Partain, 1999: "Analyses of Atmospheric Radiation Measurement (ARM) program's Enhanced Shortwave Experiment (ARESE) multiple data sets for studying cloud absorption," J. of Geophys. Res. 104(D16):19127-19134 Figure 1. Comparisons of TOA

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Snow Particle Observations in Arctic Clouds Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Morrison H, P Zuidema, GM McFarquhar, A Bansemer, and AJ Heymsfield. 2011. "Microphysical observations in shallow mixed-phase and deep frontal Arctic cloud systems." Quarterly Journal Royal Meteorological Society, 137(659), doi:10.1002/qj.840. Fitted size distribution intercept

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Dance of Aerosols Download a printable PDF Submitter: Song, C., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Song C, RA Zaveri, JE Shilling, ML Alexander, and M Newburn. 2011. "Effect of hydrophilic organic seed aerosols on secondary organic aerosol formation from ozonolysis of α-pinene." Environmental Science & Technology, 45(17), doi:10.1021/es201225c. The injection of alpha-pinene, a

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling the Sensitivity of Convection to Tropospheric Humidity Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Del Genio AD. 2011. "Representing the sensitivity of convective cloud systems to tropospheric humidity in general circulation models." Surveys in Geophysics, , doi:10.1007/s10712-011-9148-9.

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TOA Radiation Budget of Convective Core/Stratiform Rain/Anvil Clouds from Deep Convection Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, XQ Dong, BK Xi, C Schumacher, P Minnis, and M Khaiyer. 2011. "Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unraveling the Complexity of Arctic Mixed-Phase Clouds Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Morrison H, G de Boer, G Feingold, J Harrington, M Shupe, and K Sulia. 2011. "Resilience of persistent Arctic mixed-phase clouds." Nature Geoscience, 5, doi:10.1038/ngeo1332. A conceptual model that illustrates the primary processes and basic physical structure of persistent Arctic

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds Get in the Way: How Climate Models Calculate the Effects of Clouds on Earth's Warming Download a printable PDF Submitter: Qian, Y., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Qian Y, CN Long, H Wang, JM Comstock, SA McFarlane, and S Xie. 2012. "Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations."

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparing Global Atmospheric Model Simulations of Tropical Convection Download a printable PDF Submitter: Lin, Y., Geophysical Fluid Dynamics Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A Mean profiles of (first column) total precipitation normalized Q1, (second column) convective precipitation normalized convective heating, (third column) stratiform heating, and (fourth column) convective

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexico City Carbon-Containing Particle Composition Simulated Download a printable PDF Submitter: Zaveri, R., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Lee-Taylor J, S Madronich, B Aumont, M Camredon, A Hodzic, GS Tyndall, E Aperl, and RA Zaveri. 2012. "Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume." Atmospheric Chemistry and

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Influence of Regional Anthropogenic Emission Reductions on Aerosol Direct Radiative Forcing Download a printable PDF Submitter: Bergmann, D., Lawrence Livermore National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Yu H, M Chin, J West, C Atherton, N Bellouin, D Bergmann, I Bey, H Bian, T Diehl, G Forberth, P Hess, M Schulz, D Shindell, T Takemura, and Q Tan. 2012. "An HTAP multi-model assessment of the influence of regional

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Hitches Ride to Arctic Download a printable PDF Submitter: Zelenyuk-Imre, A., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Zelenyuk A, D Imre, J Beranek, E Abramson, J Wilson, and M Shrivastava. 2012. "Synergy between secondary organic aerosols and long-range transport of polycyclic aromatic hydrocarbons." Environmental Science & Technology, 46(22), doi:10.1021/es302743z. When airborne

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Clouds: from Jekyll to Hyde Submitter: Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Hagos SM and R Leung. 2012. "Large-scale environmental variables and transition to deep convection in cloud resolving model simulations: A vector representation." Journal of Advances in Modeling Earth Systems, 4(M11001), 2012MS000155, doi:10.1029/2012MS000155. The relationship

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling from a Tropical State of Mind Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Mrowiec AA, C Rio, AM Fridlind, AS Ackerman, AD Del Genio, OM Pauluis, AC Varble, and J Fan. 2012. "Analysis of cloud-resolving simulations of a tropical mesoscale convective system observed during TWP-ICE: Vertical fluxes and draft properties in convective and

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Validation of a Black Carbon Mixing State Resolved Three-Dimensional Model Download a printable PDF Submitter: Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Matsui H, M Koike, Y Kondo, N Moteki, JD Fast, and RA Zaveri. 2013. "Development and validation of a black carbon mixing state resolved three-dimensional model: Aging processes and radiative impact." Journal of

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High and Dry - Probing Greenland's Atmosphere and Clouds Download a printable PDF Submitter: Shupe, M., University of Colorado Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Shupe MD, DD Turner, VP Walden, R Bennartz, M Cadeddu, B Castellani, C Cox, D Hudak, M Kulie, N Miller, RR Neely, III, W Neff, and PM Rowe. 2013. "High and Dry: New observations of tropospheric and cloud properties

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Mixing State of Carbonaceous Aerosol Particles in Northern and Southern California Measured During CARES and CalNex Download a printable PDF Submitter: Zaveri, R., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Cahill JF, K Suski, JH Seinfeld, RA Zaveri, and KA Prather. 2012. "The mixing state of carbonaceous aerosol particles in Northern and Southern California measured during CARES and CalNex

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When Pollution Gets a Whiff of Trees Download a printable PDF Submitter: Shilling, J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Shilling JE, RA Zaveri, JD Fast, L Kleinman, M Alexander, MR Canagaratna, E Fortner, JM Hubbe, JT Jayne, A Sedlacek, A Setyan, S Springston, DR Worsnop, and Q Zhang. 2013. "Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign."

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Controls the Vertical Extent of Continental Shallow Cumulus? Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Zhang Y and SA Klein. 2013. "Factors controlling the vertical extent of fair-weather shallow cumulus clouds over land: investigation of diurnal-cycle observations collected at the ARM Southern Great Plains site." Journal of the Atmospheric Sciences,

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Ice Cloud Simulations Using Scripps Single Column Model (SCM) Reveal Range of Model Uncertainties Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: McFarquhar, G.M., S. Iacobellis, R.C.J. Somerville. SCM Simualtions of Tropical Ice Clouds Using Observationally Based Parameterizations of Microphysics, Journal of Climate: Vol 15, No. 11, pp.

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Application of Linear Programming Techniques to ARM Polarimetric Radar Processing Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, R McGraw, and L Lei. 2013. "An application of linear programming to polarimetric radar differential phase processing." Journal of Atmospheric and Oceanic Technology, , . ACCEPTED. C-band scanning ARM precipitation radar

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linking Ice Nucleation to Aerosols and Its Impact on CAM5 Simulated Arctic Clouds and Radiation Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Xie S, X Liu, C Zhao, and Y Zhang. 2013. "Sensitivity of CAM5 simulated arctic clouds and radiation to ice nucleation parameterization." Journal of Climate, 26(16),

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wildfires Lead to More Warming Than Climate Models Predict, a New Mexico Fire Study Reports Download a printable PDF Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: China S, C Mazzoleni, K Gorkowski, AC Aiken, and MK Dubey. 2013. "Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles." Nature Communications, 4, 2122, doi:10.1038/ncomms3122.

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is Cumulus Drag a Rayleigh Drag? Download a printable PDF Submitter: Romps, D., Lawrence Berkeley National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Romps DM. 2013. "Rayleigh damping in the free troposphere." Journal of the Atmospheric Sciences, , . ACCEPTED. Hovmoller diagrams of wind profiles in a large-eddy simulation of deep convection. Note the different damping rates and descent speeds for different wavelengths. In toy

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial Aerosol Concentration Is Key Contributor to Low-Level Cloud Reflectivity Submitter: Penner, J. E., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Penner, J., Dong, X., Chen. Y., Observational evidence of a change in radiative forcing due to the indirect aerosol effect, Nature, Vol. 427, 15 January 2004. Cloud optical depth, as determined from the parcel model, is indicated by the dots. Red lines show best fit data of cloud liquid

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Gridded SACR Reflectivity Observations and Vertical Doppler Velocity Retrievals Download a printable PDF Submitter: Lamer, K., Pennsylvania State University Kollias, P., Stony Brook University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Lamer K, A Taterevic, I Jo, and P Kollias. 2013. "Evaluation of gridded Scanning ARM Cloud Radar reflectivity observations and vertical Doppler velocity retrievals."

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reality Check: Estimates for Human-Caused Methane Emissions in the U.S. Appear Off by 50% Download a printable PDF Submitter: Biraud, S. C., Lawrence Berkeley National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Miller SM, SC Wofsy, AM Michalak, EA Kort, AE Andrews, SC Biraud, EJ Dlugokencky, J Elszkeiwicz, ML Fischer, G Janssens-Maenhout, BR Miller, JB Miller, SA Montzka, T Nehrkorn, and C Sweeney. 2013. "Anthropogenic emissions

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multi-scale Variations of Decade-long Cloud Fractions from Six Different Platforms over the SGP Download a printable PDF Submitter: Wu, W., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Wu W, Y Liu, MP Jensen, T Toto, MJ Foster, and CN Long. 2014. "A comparison of multiscale variations of decade-long cloud fractions from six different platforms over the Southern Great Plains in the United

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulent Entrainment-Mixing Processes in Cumuli Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lu C, Y Liu, and S Niu. 2014. "Entrainment mixing parameterization in shallow cumuli and effects of secondary mixing events." Chinese Science Bulletin, 59(9), doi:10.1007/s11434-013-0097-1. Relationships between homogeneous mixing degree (ψ3) and two transition scale numbers

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists Uncover Combustion Mechanism to Better Predict Warming by Wildfires Download a printable PDF Submitter: Dubey, M. K., Los Alamos National Laboratory Donahue, N., Carnegie Mellon University Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Saleh R, E Robinson, D Tkacik, A Ahern, S Liu, A Aiken, R Sullivan, A Presto, M Dubey, R Yokelson, N Donahue, and A Robinson. 2014. "Brownness of organics in aerosols from biomass burning linked to

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase State and Physical Properties of Ambient and Lab Generated Aerosols: X-ray Microscopy Download a printable PDF Submitter: OBrien, R. E., Lawrence Berkeley National Laboratory Gilles, M., Lawrence Berkeley National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: O'Brien RE, A Neu, SA Epstein, AC MacMillan, B Wang, ST Kelly, SA Nizkorodov, A Laskin, RC Moffet, and MK Gilles. 2014. "Physical properties of ambient and

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parameterization of Vertical Velocity in Shallow Convections Download a printable PDF Submitter: Zhang, M., Stony Brook University Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Wang X and M Zhang. 2014. "Vertical velocity in shallow convection for different plume types." Journal of Advances in Modeling Earth Systems, 6(2), doi:10.1002/2014MS000318. Mean profiles of vertical velocity in convective cores (red); convective updrafts (blue); and

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of Climate Model Ice Cloud Properties Download a printable PDF Submitter: Eidhammer, T., NCAR Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Eidhammer T, H Morrison, A Bansemer, A Gettelman, and AJ Heymsfield. 2014. "Comparison of ice cloud properties simulated by the Community Atmosphere Model (CAM5) with in situ observations." Atmospheric Chemistry and Physics, 14(18), doi:10.5194/acp-14-10103-2014. Mass weighted terminal fall

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tall Clouds from Tiny Raindrops Grow Download a printable PDF Submitter: Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Hagos S, Z Feng, CD Burleyson, KS Lim, CN Long, D Wu, and T Greg. 2014. "Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian Oscillation using data collected during the AMIE/DYNAMO field campaign." Journal of Geophysical

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Relative Humidity on Aerosols-Implications for Climate Submitter: Lacis, A. A., NASA - Goddard Institute for Space Studies Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: "Refractive Indices of Three Hygroscopic Aerosols and their Dependence on Relative Humidity," October 2001. Sponsored by the DOE Atmospheric Radiation Measurement (ARM) Program, science collaborators at the National Aeronautics and Space Administration (NASA) Goddard

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding the Causes for Consistently Low Biased Stratiform Rainfall in Models Submitter: Varble, A., University of Utah Zipser, E., University of Utah Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Varble A, EJ Zipser, AM Fridlind, P Zhu, AS Ackerman, J Chaboureau, J Fan, A Hill, B Shipway, and C Williams. 2014. "Evaluation of cloud-resolving and limited area model simulations using TWP-ICE observations. 2. Precipitation microphysics." Journal of

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Even at High Humidity, Aerosols Stick Around: Slowly Evaporating Particles Refute Assumption Download a printable PDF Submitter: Zelenyuk-Imre, A., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Wilson J, D Imre, J Beránek, M Shrivastava, and A Zelenyuk. 2014. "Evaporation kinetics of laboratory-generated secondary organic aerosols at elevated relative humidity." Environmental Science & Technology,

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single Particle Database of Natural Ice Crystals: Dimensions and Aspect Ratios Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Um J, GM McFarquhar, Y Hong, S Lee, C Jung, R Lawson, and Q Mo. 2015. "Dimensions and aspect ratios of natural ice crystals." Atmospheric Chemistry and Physics, 15,

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regime Analysis to Identify the Contribution of Clouds to Surface Temperature Errors in GCMs Submitter: Van Weverberg, K., Met Office Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Van Weverberg K, CJ Morcrette, H Ma, SA Klein, and JC Petch. 2015. "Using regime analysis to identify the contribution of clouds to surface temperature errors in weather and climate models." Quarterly Journal Royal

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Radiance Assimilation" Correction Method Improves Water Vapor Radiosonde Observations in the Upper Troposphere Submitter: Soden, B. J., University of Miami Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Soden, B.J., D.D. Turner, B.M. Lesht, and L.M. Miloshevich (2004), An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parameterizing the Mixing State of Complex Submicron Aerosols Using Chemical Imaging Download a printable PDF Submitter: Moffet, R., University of the Pacific Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: O'Brien RE, B Wang, A Laskin, N Riemer, M West, Q Zhang, Y Sun, X Yu, P Alpert, DA Knopf, MK Gilles, and RC Moffet. 2015. "Chemical imaging of ambient aerosol particles: Observational constraints on mixing state parameterization." Journal

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Double-moment Microphysical Parameterization with Observations During MC3E Download a printable PDF Submitter: Pu, Z., University of Utah Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Pu Z and C Lin. 2015. "Evaluation of double-moment representation of ice hydrometeors in bulk microphysical parameterization: comparison between WRF numerical simulations and UND-Citation data during MC3E." Geoscience Letters, 2(11),

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Out with the Old, in with the New: McICA to Replace Traditional Cloud Overlap Assumptions Submitter: Pincus, R., NOAA - CIRES Climate Diagnostics Center Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Modeling Journal Reference: Pincus, R., R. Hemler, and S.A. Klein, 2006: Using Stochastically Generated Subcolumns to Represent Cloud Structure in a Large-Scale Model. Mon. Wea. Rev., 134, 3644-3656. As shown by the difference between the two panels, the

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Estimates of Cloud Optical Thickness, Simple Equation Is Good Enough Submitter: Barnard, J., University of Nevada Reno Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Barnard, J. C., and C. N. Long, (2004): A Simple Empirical Equation to Calculate Cloud Optical Thickness Using Shortwave Broadband Measurement, JAM, 43, 1057-1066. Distributions of cloud optical thickness reveal that the empirical method (dashed line) closely

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A "Little" Respect: Droplet Nucleation Finally Included in Global Climate Model Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Reflection of sunlight by clouds simulated with predicted droplet number with (dark blue) and without (green) the autoconversion feedback agrees remarkably well with the reflection

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Regulation Strikes a Balance Between Hydrological Cycle, Radiation Processes, and Intraseasonal Dynamic Variations Submitter: Stephens, G. L., Colorado State University Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Stephens, Graeme L., Webster, Peter J., Johnson, Richard H., Engelen, Richard, L'Ecuyer, Tristan. 2004: Observational Evidence for the Mutual Regulation of the Tropical Hydrological Cycle and Tropical

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth Lightens Up Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Wild, M., H. Gilgen, A. Roesch, A. Ohmura, C. N. Long, E. G. Dutton, B. Forgan, A. Kallis, V. Russak, and A. Tsvetkov, (2005): From dimming to brightening: Decadal changes in solar radiation at the Earth's surface, Science, 308, Issue 5723, 847-850, [DOI:10.1126/science.1103215] Global distribution of surface observation

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Experiment Results Featured in Technical Journal Submitter: Sheridan, P., U.S. Department of Commerce/NOAA Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Sheridan, P, W Arnott, J Ogren, E Andrews, D Atkinson, D Covert, H Moosmuller, A Petzold, B Schmid, A Strawa, R Varma, and A Virkkula. 2005. "The Reno Aerosol Optics Study: An evaluation of aerosol absorption measurement methods." Aerosol Science and Technology 39(1):1-16. This magnification

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Correction Method for Infrared Detector Confirmed; Error in Clear Sky Bias Condition Remains Unresolved Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: N/A AERI data from January 2004 at the ARM North Slope of Alaska locale shows the observed radiance for two AERI systems with significantly different hot blackbody temperatures. Residuals are within 1% of the ambient radiance

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosols Help Clouds Warm Up Arctic Submitter: Lubin, D., National Science Foundation Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Lubin, D., and A.M. Vogelmann, 2006: A climatologically significant aerosol longwave indirect effect in the Arctic, Nature, 439, 26 January, 453-456, doi:10.1038/nature04449 In a process known as the first aerosol indirect effect, enhanced aerosol concentrations cause the droplets in a cloud to be smaller and more

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Albedo Observations in the Southern Great Plains Submitter: Lamb, P. J., University of Oklahoma Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Journal of Applied Meteorology and Climatology, Vol. 45, 2006, pp. 210-235. Figure 1 Figure 2 Because surface reflection of solar radiation plays a fundamental role in the surface energy budget, knowledge of its spatial and temporal variability is important for understanding the weather and climate of a

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tackling Tropical Convection in Climate Models Submitter: Zhang, G., University of California, San Diego Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Zhang, G. J., and H. Wang, 2006. Toward mitigating the double ITCZ problem in NCAR CCSM3, Geophys. Res. Lett., 33, L06709, doi:10.1029/2005GL025229 (23 March 2006). Figure 1. Climate models commonly suffer from a problem known as the double-ITCZ, which is

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Forecasts Help to Understand Climate Model Biases Submitter: Klein, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Klein, Stephen A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U. S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33,

  5. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Research Projects Composite-to-Steel Joint Integrity Monitoring and Assessment Collaboration between Los Alamos National Laboratory and the University of California at San Diego (UCSD) Jacobs School of Engineering Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff Assistant Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505) 665-8899 Email UCSD Faculty and Graduate Students Professor

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Model for Liquid Water Absorption Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Cadeddu, M. P., Argonne National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Turner DD, S Kneifel, and MP Cadeddu. 2016. "An improved liquid water absorption model at microwave frequencies for supercooled liquid water clouds." Journal of Atmospheric and Oceanic Technology, 33(1),

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative and Thermodynamic Responses to Uncertainty in Aerosol Extinction Profiles Download a printable PDF Submitter: Feng, Y., Argonne National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Feng Y, R Kotamarthi, R Coulter, C Zhao, and M Cadeddu. 2016. "Radiative and Thermodynamic Responses to Aerosol Extinction Profiles during the Pre-monsoon Month over South Asia." Atmospheric Chemistry and Physics, 16(1), 247-264. WRF-Chem

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Download a printable PDF Submitter: Albrecht, B. A., University of Miami Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Albrecht B, M Fang, and V Ghate. 2016. "Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Cloud Radar Observations." Journal of the Atmospheric Sciences, 73(2), 10.1175/JAS-D-15-0147.1.

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds' Role in Sunlight Stopping Download a printable PDF Submitter: Burleyson, C. D., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Burleyson CD, CN Long, and JM Comstock. 2015. "Quantifying diurnal cloud radiative effects by cloud type in the Tropical Western Pacific." Journal of Applied Meteorology and Climatology, , doi:10.1175/JAMC-D-14-0288.1. ONLINE. Sunlight streaks through clouds over the

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Dark Side of Cold Clouds Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: China S, G Kulkarni, BV Scarnato, N Sharma, M Pekour, JE Shilling, J Wilson, A Zelenyuk, D Chand, S Liu, AC Aiken, MK Dubey, A Laskin, RA Zaveri, and C Mazzoleni. 2015. "Morphology of diesel soot residuals from supercooled water droplets and ice crystals: implications for optical

  11. Research Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities /collaboration/_assets/images/icon-collaboration.jpg Research Opportunities Partnering with respected universities, LANL Centers provide exceptional educational opportunities and support staff recruitment, revitalization, and retention. Center for Nonlinear Studies» Quantum Institute» Energy Security Center» Seaborg Institute» Center for Space and Earth Science» TOP STORIES - highlights of our science, people, technologies close Bulging Van Allen Belts Learn about the Van

  12. Plasma theory and simulation research

    SciTech Connect (OSTI)

    Birdsall, C.K.

    1989-01-01

    Our research group uses both theory and simulation as tools in order to increase the understanding of instabilities, heating, diffusion, transport and other phenomena in plasmas. We also work on the improvement of simulation, both theoretically and practically. Our focus has been more and more on the plasma edge (the sheath''), interactions with boundaries, leading to simulations of whole devices (someday a numerical tokamak).

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tests of Single-Column Models with ARM Data Submitter: Randall, D. A., Colorado State University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Figure 1 Figure 2 One of the primary goals of ARM is to collect observations that can be used to test models of cloud formation and radiative transfer in the atmosphere. One class of such models, called "single-column models," is designed to predict the

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Assessment of the ECMWF Model over the Arctic Land Using Observations from the Mixed-Phase Arctic Cloud Experiment Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Xie, S., S. A. Klein, J. J. Yio, A. C. M. Beljaars, C. N. Long, and M. Zhang, (2006): An Assessment of the ECMWF Model over the Arctic Land Using Observations from the ARM Mixed-Phase Arctic

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieving Cloud Characteristics from Ground-Based Daytime Color All-Sky Images Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Long, C. N., J. M. Sabburg, J. Calbo, and D. Pages, (2006): Retrieving Cloud Characteristics from Ground-based Daytime Color All-sky Images, JTech, 23, No. 5, 633–652. Long, C. N., J. M. Sabburg, J. Calbo, and D. Pages, (2006): Papers of Note:

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations of Microphysical Properties of Single Layer Stratocumulus During the Mixed-Phase Arctic Cloud Experiment Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Fridlind, A.M., A.S. Ackerman, G.M. McFarquhar, G. Zhang, M.R. Poellot, P.J. DeMott, A.J. Prenni and A.J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using ARM Cloud Data to Evaluate the Effect of a Land Surface on Clouds Download a printable PDF Submitter: GSFC, N., NASA GSFC Area of Research: Cloud Distributions/Characterizations Working Group(s): Aerosol, Cloud Modeling Journal Reference: Zeng, X., W.-K. Tao, M. Zhang, C. Peters-Lidard, S. Lang, J. Simpson, S. Kumar, S. Xie, J. L. Eastman, C.-L. Shie, and J. V. Geiger, 2007: Evaluating clouds in long-term cloud-resolving model simulations with observational data. J. Atmos. Sci. (in press).

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theoretical Formulation for Cloud-to-Rain Transition Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Liu, Y., P. H. Daum, R. McGraw, M. Miller, and S. Niu, 2007: Theoretical formulation for autoconversion rate of cloud droplet concentration. Geophys. Res. Lett., 34, L116821, doi:10.1029/2007GL030389. The "typical drop radius" r* as a function of the mean volume radius r3

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Regimes in the TWP and Their Evolution over the MJO Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Chen, Y, and AD Del Genio. 2008. "Evaluation of tropical cloud regimes in observations and a general circulation model." Climate Dynamics doi:10.1007/s00382-008-0386-6. Mean highest cloud-top vertical profiles from ARSCL

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Effects on Liquid-Water Path of Thin Stratocumulus Clouds Download a printable PDF Submitter: Penner, J. E., University of Michigan Lee, S., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: n/a Thin clouds with mean liquid-water path (LWP) of ~ 50 g m-2 cover 27.5% of the globe and thus play an important role in the Earth's radiation budget. Radiative fluxes at the Earth's surface and top of atmosphere (TOA) are very sensitive to

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preview of TWP MFRSR Data Submitter: Chuang, C., Lawrence Livermore National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: N/A Figure 1. MFRSR data from the TWP site (97/09/10) Figure 2. Aerosol optical depth and Angstrom exponent Figure 3. Water vapor derived from MFRSR and MWR Key contributors to this work are Jim Barnard and Will Shaw. The Multi-Filter Rotating Shadowband Radiometer (MFRSR) is a ground-based radiometer that uses

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed-Phase Cloud Radiative Properties from M-PACE Microphysical Retrievals Download a printable PDF Submitter: de Boer, G., University of Colorado, Boulder/CIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: de Boer G, WD Collins, S Menon, and CN Long. 2011. "Using surface remote sensors to derive radiative characteristics of mixed-phase clouds: An example from M-PACE." Atmospheric Chemistry and Physics, 11, doi: 10.5194/acp-11-11937-2011.

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seasonal and Interannual Variability in 13C of Ecosystem Carbon Fluxes from 2002-2009 Submitter: Torn, M. S., Lawrence Berkeley National Laboratory Area of Research: Surface Properties Working Group(s): Aerosol Life Cycle Journal Reference: Torn MS, SC Biraud, CJ Still, WJ Riley, and JA Berry. 2011. "Seasonal and inter-annual variability in δ13C of net ecosystem carbon exchanges from 2002-2009 in the U.S. Southern Great Plains." Tellus, 63(2), 10.1111/j.1600-0889.2010.00519.x. Time

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K-Distribution Method for a SW Radiative Transfer Model Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Kato, S., Ackerman, T.P., Mather, J.H., and Clothiaux, E.E., 1999: "The K-distribution Method and Correlated-k Approximation for a Shortwave Radiative Transfer Model," Journal of Quantitative Spectroscopy & Radiative Transfer, 62(1):109-121.

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Memo from Real World to Cumulus Parameterizations: Get Organized! Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Del Genio AD, J Wu, and Y Chen. 2012. "Characteristics of mesoscale organization in WRF simulations of convection during TWP-ICE." Journal of Climate, 25(17), 5666, doi:10.1175/JCLI-D-11-00422.1. Properties of cold pool air (solid

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Complexity of Arctic Clouds Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Morrison H, G de Boer, G Feingold, J Harrington, M Shupe, and K Sulia. 2011. "Resilience of persistent Arctic mixed-phase clouds." Nature Geoscience, 5, doi:10.1038/ngeo1332. Arctic climate feedbacks: The processes that allow mixed-phased clouds to persist in the Arctic are surprisingly complex and

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Like Shades of Gray: the Effects of Black Carbon in Aerosols Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Cappa CD, TB Onasch, P Massoli, DR Worsnop, TS Bates, ES Cross, P Davidovits, J Hakala, KL Hayden, BT Jobson, KR Kolesar, DA Lack, BM Lerner, SM Li, D Mellon, I Nuaaman, JS Olfert, T Petaja, PK Quinn, C Song, R Subramanian, EJ Williams, and RA Zaveri. 2012.

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unique Properties of the Arctic Stratiform Cloud-Top Region Submitter: Shupe, M., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Sedlar J, MD Shupe, and M Tjernström. 2011. "On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic." Journal of Climate, 25(7), doi:10.1175/JCLI-D-11-00186.1. Occurrence frequency of low-level, stratiform cloud cases used in the analysis

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single-Column Modeling, GCM Parameterizations and ARM Data Submitter: Somerville, R. C., Scripps Institution of Oceanography Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Randall, D.A., K.-M. Xu, R.C.J. Somerville, and S. Iacobellis, 1996: "Single-Column Models and Cloud Ensemble Models as Links between Observations and Climate Models," J. Climate 9(8)1683-1697. Figure 1 Figure 2 Figure 3 Figure 4

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drizzle in the Making Download a printable PDF Submitter: Luke, E., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Luke EP and P Kollias. 2013. "Separating cloud and drizzle radar moments during precipitation onset using Doppler spectra." Journal of Atmospheric and Oceanic Technology, 30(8), http://dx.doi.org/10.1175/JTECH-D-11-00195.1. This image shows droplet motion measured by a cloud profiling radar, with the

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dust in the Wind... and the Clouds... and the Atmosphere Submitter: Sassen, K., University of Alaska, Fairbanks Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Sassen, K., P.J. DeMott, J.M. Propsero, and M.R. Poellot, Saharan Dust Storms and Indirect Aerosol Effects on Clouds: CRYSTAL-FACE Results, Geophys. Res. Ltt., 30(12), 1633, doi:10/1029/2003GL017371, 2003. PDL linear depolarization ratio (color scale on top) and relative returned power (in gray scale) of

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Mixed-layer Heights from Airborne HSRL and WRF-Chem During CARES Download a printable PDF Submitter: Scarino, A. J., Science Systems and Applications, Inc. Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Scarino AJ, MD Obland, JD Fast, SP Burton, RA Ferrare, CA Hostetler, LK Berg, B Lefer, C Haman, JW Hair, RR Rogers, C Butler, AL Cook, and DB Harper. 2014. "Comparison of mixed layer heights from airborne high spectral resolution

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Shapes and Phases of Small Particles in Mixed-Phase Clouds Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: McFarquhar GM, J Um, and R Jackson. 2013. "Small cloud particle shapes in mixed-phase clouds." Journal of Applied Meteorology and Climatology, 52(5), doi:10.1175/JAMC-D-12-0114.1. Figure 1. Magnified images of four particles imaged

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Two Faces of Aerosols Download a printable PDF Submitter: Ovink, J., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Berg LK, M Shrivastava, RC Easter, JD Fast, EG Chapman, Y Liu, and RA Ferrare. 2015. "A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud Processes on Aerosol and Trace Gases in Parameterized Cumuli." Geoscientific Model Development, 8, doi:10.5194/gmd-8-409-2015. A new

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Data Used to Evaluate Reanalysis Results Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Dolinar E, X Dong, and B Xi. 2015. "Evaluation and intercomparison of clouds, precipitation, and radiation budgets in recent reanalyses using satellite-surface observations." Climate Dynamics, , DOI 10.1007/s00382-0, 10.1007/s00382-0. Figure 1. Monthly means of CF (a), SWDNsfc

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulating the MJO: Everybody Into the (Cold) Pool! Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Del Genio AD, J Wu, AB Wolf, Y Chen, M Yao, and D Kim. 2015. "Constraints on cumulus parameterization from simulations of observed MJO events." Journal of Climate, 28(16), doi:10.1175/JCLI-D-14-00832.1.

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Successful for Measuring Thickness of Broken Clouds Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Marshak, A, Y Knyazikhin, K.D. Evans, and W.J. Wiscomb, (2004): The "RED versus NIR" Plane to Retrieve Broken-Cloud Optical Depth from Ground-Based Measurements, Journal of Atmospheric Sciences , 61, 1911-1925. In the "lookup table," vertical

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Roobik" Is Part of the Answer, Not a Puzzle Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: N/A Taking place during the arid Arctic winter, the RHUBC will obtain measurements in the far-infrared (15-40 microns), when the so-called "Arctic" infrared window between 16 and 40 microns is semi-transparent. Between February and March 2007 at the ACRF North Slope

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Entrainment Rate Parameterization Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lu C, Y Liu, GJ Zhang, X Wu, S Endo, L Cao, Y Li, and X Guo. 2016. "Improving parameterization of entrainment rate for shallow convection with aircraft measurements and large-eddy simulations." Journal of the Atmospheric Sciences, 73(2), doi:10.1175/JAS-D-15-0050.1. Relationships

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storm Clouds Take Rain on Rollercoaster Ride Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wong M, M Ovchinnikov, and M Wang. 2015. "Evaluation of subgrid-scale hydrometeor transport schemes using a high-resolution cloud-resolving model." Journal of the Atmospheric Sciences, 72(9), doi:10.1175/JAS-D-15-0060.1. Strong updrafts within the cloud propel their

  1. Research Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software & Tools Development Network R&D Software-Defined Networking (SDN) Experimental Network Testbeds Performance (perfSONAR) Software & Tools Development Data for Researchers Partnerships Publications Workshops Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Software & Tools Development Over the years, ESnet

  2. Using Light to Control How X Rays Interact with Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Light to Control How X Rays Interact with Matter Print Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the visible-light regime where an optical control pulse influences how an optical probe pulse interacts with a medium. This approach has opened new research directions in fields like quantum computing and nonlinear optics, while also spawning entirely new research areas, such as electromagnetically induced transparency and slow

  3. Using Light to Control How X Rays Interact with Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Light to Control How X Rays Interact with Matter Print Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the visible-light regime where an optical control pulse influences how an optical probe pulse interacts with a medium. This approach has opened new research directions in fields like quantum computing and nonlinear optics, while also spawning entirely new research areas, such as electromagnetically induced transparency and slow

  4. Simulations Yield Clues to How Cells Interact With Surroundings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulations Yield Clues to How Cells Interact With Surroundings Simulations Yield Clues to How Cells Interact With Surroundings Berkeley Lab research has implications for cancer, atherosclerosis research March 21, 2013 Dan Krotz, dakrotz@lbl.gov NMA2.gif Click on this image to to see how integrin's transmembrane and extracellular domains swing about a hinge-like region that links them. (Credit: Mofrad lab) Your cells are social butterflies. They constantly interact with their surroundings,

  5. Using Light to Control How X Rays Interact with Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Light to Control How X Rays Interact with Matter Print Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the visible-light regime where an optical control pulse influences how an optical probe pulse interacts with a medium. This approach has opened new research directions in fields like quantum computing and nonlinear optics, while also spawning entirely new research areas, such as electromagnetically induced transparency and slow

  6. Using Light to Control How X Rays Interact with Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Light to Control How X Rays Interact with Matter Print Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the visible-light regime where an optical control pulse influences how an optical probe pulse interacts with a medium. This approach has opened new research directions in fields like quantum computing and nonlinear optics, while also spawning entirely new research areas, such as electromagnetically induced transparency and slow

  7. Using Light to Control How X Rays Interact with Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Light to Control How X Rays Interact with Matter Print Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the visible-light regime where an optical control pulse influences how an optical probe pulse interacts with a medium. This approach has opened new research directions in fields like quantum computing and nonlinear optics, while also spawning entirely new research areas, such as electromagnetically induced transparency and slow

  8. Running Interactive Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Batch Jobs Running Interactive Batch Jobs You cannot login to the PDSF batch nodes directly but you can run an interactive session on a batch node using either qlogin or qsh. This can be useful if you are doing something that is potentially disruptive or if the interactive nodes are overloaded. qlogin will give you an interactive session in the same window as your original session on PDSF, however, you must have your ssh keys in place. You can do this locally on PDSF by following

  9. Interactive (login) Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive (login) Nodes Interactive (login) Nodes There are 3 interactive nodes at PDSF, pdsf[6-8].nersc.gov, that should be accessed via ssh to pdsf.nersc.gov. These are the gateways to accessing the rest of PDSF. Users can submit batch jobs as well as view and manipulate their files and directories from the interactive nodes. The configuration of the interactive nodes is shown in the table below. Processor Clock Speed (GHz) Architecture Cores Total Memory (GB) Scratch Space (GB) Intel Xeon

  10. Layered Atlantic Smoke Interactions with Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Layered Atlantic Smoke Interactions with Clouds Island in the South Atlantic Ocean. Warm African winds combine with the cool sea surface temperatures and form a large stratocumulus deck, transitioning to year-round trade-wind shallow cumulus at the location of Ascension Island. These clouds and myriad aerosol-cloud-radiation interactions will be studied. Using a portable observatory, or ARM Mobile Facility (AMF), that contains some of most advanced atmospheric research instrumentation for cloud,

  11. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Recordings of the presentations and panel discussions are available here for online viewing. Detailed abstracts of the presentations and bios for the speakers can be found here. Harry Atwater Photonic Design Principles for Ultrahigh-Efficiency Photovoltaics Harry Atwater, California Institute of Technology John Rogers Microscale Solar Cells for Macroscale Power Generation John Rogers, University of Illinois at Urbana-Champaign Eli Yablonovitch The Multi-Spectral

  12. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Approaches to ultrahigh efficiency solar energy conversion webinar watch now The recorded presentations and panel discussion are now available for online viewing. Sign up is now closed

  13. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) New approaches to full spectrum solar energy conversion California Institute of Technology Hall Auditorium, Gates-Thomas Laboratory [map] LIVE Internet Broadcast [download flyer] Recordings of the presentations and panel discussions are available here for online viewing. Detailed abstracts for the presentations can be found here. Paul Alivisatos Quantum Dot Luminescent Concentrators Paul Alivisatos, Lawrence Berkeley National Laboratory Shanhui Fan Control of Thermal

  14. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) On Sunday, July 29, 2012, the Resnick Sustainability Institute and the LMI-EFRC at Caltech co-organized a one-day workshop on Redefining the Limits of Photovoltaic Efficiency. Leaders from industry, academia and government gathered together and discussed new technologies for redefining the limits of solar energy conversion efficiency. The program featured invited talks, a poster session, and topically-focused breakout sessions in the afternoon. Invited speakers included

  15. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) 3 LMI-EFRC Team Meeting March 7-8, 2013 California Institute of Technology Pasadena, CA [map] Our 2013 Annual Meeting will be at Caltech on Thursday-Friday, March 7-8, 2013. This year, we will kick off the meeting with our first-ever free public webinar on Approaches to Ultrahigh Efficiency Solar Energy Conversion featuring presentations and a panel discussion with some of our expert faculty investigators. The remainder of the meeting will be devoted primarily to student-

  16. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) 4 LMI-EFRC Kickoff September 23-24, 2014 California Institute of Technology Pasadena, CA [map] [event photos] Our 2014 LMI-EFRC Kickoff Meeting will be at Caltech on Tuesday-Wednesday, September 23-24, 2014. This meeting will gather the PIs, students, and postdocs from the five institutions (Caltech, Harvard, LBL, Stanford, and UIUC) for a combination of scientific presentations, breakout discussions, and poster sessions. Each attendee is expected to participate in an

  17. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Fall Meeting September 3-4, 2015 California Institute of Technology Pasadena, CA [map] Our 2015 LMI-EFRC Fall Meeting will be at Caltech on Thursday-Friday, September 3-4, 2015. Our meeting this year will start with a public webinar on New Approaches to Full Spectrum Solar Energy Conversion featuring some of our LMI experts. This meeting will gather the PIs, students, and postdocs from the five institutions (Caltech, Harvard, LBL, Stanford, and UIUC) for a combination of

  18. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Luminescent LED-type solar cell design breaks efficiency records Professor Eli Yablonovitch's breakthrough result that enabled Alta Device's record solar cell efficiency is highlighted at physorg.com, semiconductor-today.com, and CleanTechnica.com. PhysOrg, "The solar cell that also shines: Luminescent 'LED-type' design breaks efficiency record," April 19, 2012 Semiconductor Today, "Luminescent 'LED-type' solar cell design breaks efficiency record,"

  19. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) 9, 2012 The LMI-EFRC Group gathered in San Francisco for a team meeting that included presentations by students, LMI PI/Caltech Professor Oskar Painter, and an invited talk by Professor Yi Cui of Stanford University and the Bay Area Photovoltaic Consortium. Students and post-docs also participated in an in-room poster session. image image image

  20. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) 21, 2014 The LMI-EFRC Group gathered in San Francisco for a team meeting that included presentations by guest Mark Brongersma (Stanford), LMI PI Xiang Zhang (Berkeley), Caltech graduate student Emily Kosten (Atwater group), and UIUC Postdoc Xing Sheng (Rogers group). Students and post-docs also participated in a lively poster session. image image

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Lectures from the LMI-EFRC "Fundamental Challenges in Solar Energy Conversion" Workshop, July 7, 2010, Caltech Harry Atwater Introduction to the Workshop on Fundamental Challenges in Solar Energy Conversion Harry A. Atwater, Caltech Eli Yablonovitch Fundamental Limits to Light Absorption and Efficiency in Photovoltaics Eli Yablonovitch, University of California, Berkeley Richard Swanson Efficiency Limits and Cost Challenges in Photovoltaics Richard Swanson,

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Download Links Template for monthly DOE highlights (pptx) LMI-EFRC Slide Template (pptx) LMI-EFRC Logo (Logo 300dpi | Logo 2.5 inch 300dpi)

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Cambridge Nanotech Atomic Layer Deposition A Cambridge Nanotech (USA) Savannah S200 atomic layer deposition (ALD) system was purchased for conformal growth of metal oxide films. ALD is the growth of films by sequential, self-limiting, surface chemical reactions and thus allows for precise thickness control. This system is capable of depositing nearly any metal oxide (e.g., TiO2, Al2O3) and is upgradable for metal sulfide deposition. This tool is housed in N. Lewis

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Photoelectrochemical Etching Coming soon

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Integrating Sphere The integrating sphere allows for angularly and wavelength resolved reflection and transmission measurements. Coupled to a Fianium white laser, reflection and transmission of light can be measured across the solar spectrum. Furthermore, motorized stages allow for angular variation across two axes in transmission mode and one axis in reflection mode. This characterization tool has been particularly useful for characterizing microwire arrays. Specifically,

  6. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Nanocrystal Synthesis The Alivisatos group has end-to-end nanocrystal synthesis and characterization capabilities. These include eight fume hoods with schlenk lines for synthesis, four gloveboxes for air-free manipulation, centrifuges and HPLC for cleaning, as well as x-ray diffraction and transmission electron microscopy for characterization. Further characterization is possible with a variety of optical absorption and fluorescence spectrometers, electrical measurements,

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Proximity field nano-patterning Prof. John Rogers and Prof. Paul Braun at UIUC developed "proximity field nanopatterning" (PnP), a fabrication technique that relies on a conformable phase mask with sub-wavelength features of relief embossed onto its surface. The approach is intrinsically simple because all of the optics are built into this single element. Soft lithographic procedures of casting and curing of elastomers based on polydimethylsiloxanes (PDMS) or

  8. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Ultrafast Pump-Probe System The Minnich Lab is equipped with an ultrafast pump-probe system centered around a Coherent Mira oscillator. Together with a delay stage, this system is capable of resolving ultrafast phenomena with subpicosecond time resolution and up to 13 ns total delay time. The system of also capable of modulated CW operation at frequencies up to 25 MHz. Using continuous flow cryostats we can access temperatures from 3-500 K. The Minnich Lab is also fortunate

  9. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) 1: New Light Management Mechanisms RG Leader: Eli Yablonovitch Affiliated PIs: Harry Atwater, Paul Braun, Mark Brongersma, Jennifer Dionne, Shanhui Fan, Andrei Faraon, John Rogers, and Xiang Zhang image Large-area nanostructured plasmonic solar cells in amorphous silicon (H. Atwater, Caltech & P. Alivisatos, LBNL The RG1 team is establishing light management principles that challenge historical scientific ideas about solar energy conversion efficiency limits. RG1 is a

  10. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) 2: Solar Spectrum Control and Conversion RG Leader: John Rogers Affiliated PIs: Paul Alivisatos, Harry Atwater, Paul Braun, Mark Brongersma, Jennifer Dionne, Shanhui Fan, Ralph Nuzzo, Eli Yablonovitch, and Xiang Zhang Downshifting luminescent concentrator with micro solar cells (J. Rogers & R. Nuzzo, UIUC) The most substantial near-term opportunity for increase in solar energy conversion efficiency is via exploitation of the full solar spectrum. As first discussed by

  11. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Andrei Faraon Principal Investigator Andrei Faraon Andrei Faraon, Assistant Professor of Applied Physics and Material Science California Institute of Technology Bio coming soon.

  12. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Austin Minnich Principal Investigator Austin Minnich Austin Minnich, Assistant Professor of Mechanical Engineering California Institute of Technology Austin Minnich is an Assistant Professor of Mechanical Engineering and Applied Physics at the California Institute of Technology. He received his Bachelor's degree from UC Berkeley in Engineering Science in 2006, followed by a Masters and PhD from MIT in Mechanical Engineering in 2011. His thesis focused on creating new

  13. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Eli Yablonovitch RG1 Leader Eli Yablonovitch Eli Yablonovitch, Director of the NSF Center for Energy Efficient Electronics Science (E 3S) Lawrence Berkeley National Laboratory Eli Yablonovitch is the RG1 Leader in the LMI-EFRC. After a career in industry and in Universities, he is now Professor of Electrical Engineering and Computer Sciences at UC Berkeley, where he holds the James & Katherine Lau Chair in Engineering. He is also Director of the NSF Center for Energy

  14. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Harry Atwater Associate Director Harry Atwater Harry Atwater, Howard Hughes Professor and Professor of Applied Physics and Materials Science; Director, Joint Center for Articificial Photosynthesis California Institute of Technology Professor Harry Atwater is the Howard Hughes Professor of Applied Physics and Materials Science at the California Institute of Technology. Professor Atwater currently serves as Director of the Joint Center for Artificial Photosynthesis. He

  15. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Jennifer Blankenship Administrator Jennifer Blankenship Jennifer Blankenship California Institute of Technology Jennifer Blankenship is the LMI EFRC Administrator, providing administrative support to Director Harry Atwater and Assistant Director Carrie Hofmann. She is also responsible for conference and meeting coordination, report assembly, and website maintenance.

  16. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Nate Lewis Pricipal Investigator Nate Lewis Nate Lewis, George L. Argyros Professor of Chemistry California Institute of Technology Dr. Nathan Lewis, the George L. Argyros Professor of Chemistry, has been on the faculty at the California Institute of Technology since 1988 and has served as Professor since 1991. He has also served as the Principal Investigator of the Beckman Institute Molecular Materials Resource Center at Caltech since 1992, and is the Scientific Director

  17. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Paul Alivisatos Principal Investigator Paul Alivisatos Paul Alivisatos, Director of Lawrence Berkeley National Laboratory; Samsung Distinguished Professor of Nanoscience and Nanotechnology and Professor of Chemistry and Materials Science & Engineering Lawrence Berkeley National Laboratory Dr. Paul Alivisatos is Director of the Lawrence Berkeley National Laboratory (Berkeley Lab) and is the University of California (UC) Berkeley's Samsung Distinguished Professor of

  18. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Ralph G. Nuzzo Director Ralph G. Nuzzo Ralph G. Nuzzo, G. L. Clark Professor of Chemistry; Director, LMI-EFRC; Visiting Associate in Applied Physics and Materials Science, Caltech University of Illinois at Urbana-Champaign and California Institute of Technology Ralph G. Nuzzo is the Director of the LMI-EFRC, appointed in 2015. He is the G. L. Clark Professor of Chemistry at the University of Illinois at Urbana-Champaign, a faculty he joined in 1991 and where he also holds

  19. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Tiffany Kimoto Administrator Jennifer Blankenship Tiffany Kimoto California Institute of Technology Tiffany Kimoto is the LMI EFRC Administrator, providing administrative support to Director Ralph Nuzzo and Assistant Director Carrie Hofmann. She is also responsible for conference and meeting coordination, report assembly, and website maintenance

  20. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Xiang Zhang Principal Investigator Xiang Zhang Xiang Zhang, Ernest S. Kuh Endowed Chaired Professor of Mechanical Engineering and LBNL Materials Sciences Division Director Lawrence Berkeley National Laboratory Professor Xiang Zhang is the inaugural Ernest S. Kuh Endowed Chaired Professor at UC Berkeley and Director of NSF Nano-scale Science and Engineering Center. He is the Director of the Materials Sciences Division at Lawrence Berkeley National Laboratory, and a member

  1. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Acknowledgements Downloads Authorship Tools Here is the necessary information for LMI-EFRC authors. Acknowledgements Downloads

  2. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Lectures & Tutorials Lectures from the LMI-EFRC "New Approaches to Full Spectrum Solar Energy Conversion" Webinar, September 3, 2015, Caltech Harry A. Atwater Quantum Dot Luminescent Concentrators Paul Alivisatos, Lawrence Berkeley National Laboratory John Rogers Control of Thermal Radiation Using Photonic Structures for Energy Applications Shanhui Fan, Stanford University Eli Yablonovitch Printing Functional Materials Jennifer Lewis, Harvard lmi logo Panel

  3. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) 2016 2015 2014 2013 2012 2011 2010 Lectures & Tutorials Authorship Tools Publications 2016 image Design, Fabrication, and Characterization of a Proposed Microchannel Water Electrolyzer M.E. Oruc, A.V. Desai, R.G. Nuzzo, P.J.A. Kenis Journal of Power Sources 107, 122-128 (2016) DOI: 10.1016/j.jpowsour.2015.12.062 image Active Thermal Extraction of Near-Field Thermal Radiation D. Ding, T. Kim, and A.J. Minnich Phys. Rev. B 93, 081402(R) (2016) DOI:

  4. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Center Organization Center Organization

  5. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Postdoctoral Scholars Postdoctoral Scholars Noah Bronstein Lawrence Berkeley National Laboratory Dr. Noah Bronstein is a postdoc in the Alivisatos Group at UC Berkeley. He is developing a new nanoparticle solar cell design in collaboration with Professor Yablonovitch. Additionally, he is collaborating with Derek Le and Lanfang Li (Nuzzo Group) on photoluminescent concentrator solar cells. Carissa Eisler Lawrence Berkeley National Laboratory Dr. Carissa Nicole Eisler is a

  6. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) - Staff Assistant Director Carrie Hofmann Carrie Hofmann California Institute of Technology Administrator Jennifer Blankenship Tiffany Kimoto California Institute of Technology

  7. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Abstract submission is closed. Registered workshop attendees are encouraged to submit an abstract for the poster session. You will be notified via email if selected. A cash prize will be awarded for the Best Poster presented during the workshop!

  8. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Harry Atwater welcome presentation Professor Harry Atwater gives the introductory presentation workshop audience Workshop participants in the Hameetman Auditorium Geoffrey Kinsey presentation Dr. Geoffrey Kinsey explores concentrator photovoltaics for high-efficiency photovoltaics. workshop Dr. Wladek Walukiewicz speaks with workshop participants. best poster award Lanfang Li, a Ph.D. Candidate in Prof. Ralph Nuzzo's group at UIUC and a member of the LMI-EFRC, won the Best

  9. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Workshop Agenda 7:30-8:30am On-Site Registration and Check-In Cahill Lobby 8:30-9:00am Welcome and Introduction Harry Atwater, California Institute of Technology Hameetman Auditorium 9:00-9:40am The DOE SunShot Initiative: Revitalizing American Competitiveness in Solar Energy Minh Le, U.S. Department of Energy Hameetman Auditorium 9:40-10:20am Advancing Efficiency and Scale in Concentrating Photovoltaics Geoffrey Kinsey, Fraunhofer CSE Hameetman Auditorium 10:20-10:40am

  10. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Hotel & Travel The "Redefining the Limits of Photovoltaic Efficiency" Workshop will be held at the Hameetman Auditorium in the Cahill Center at the California Institute of Technology in Pasadena, CA on Sunday, July 29, 2012. Map and Directions California Institute of Technology Hameetman Auditorium at the Cahill Center 1216 California Boulevard Pasadena, CA 91125 Caltech is located 16 miles from Bob Hope Burbank Airport and 25 miles from LAX International

  11. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) nuzzo LMI Deputy Director and UIUC Professor Ralph Nuzzo welcomes the audience. hofmann LMI Assistant Director Dr. Carrie Hofmann introduces the first speaker, LMI Director Prof. Harry Atwater. atwater Harry Atwater's presentation "Photonic Design Principles for Ultrahigh Efficiency Photovoltaics" John Rogers' presentation "Microscale Solar Cells for Macroscale Power Generation" eli Eli Yablonovitch's presentation "The Multi-Spectral Opto-Electronic

  12. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Sign up is now closed.

  13. Light-Material Interactions in Energy Conversion - Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (LMI-EFRC) Event photos coming soon. Caltech LMI

  14. Using Light to Control How X Rays Interact with Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Light to Control How X Rays Interact with Matter Using Light to Control How X Rays Interact with Matter Print Wednesday, 27 January 2010 00:00 Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the visible-light regime where an optical control pulse influences how an optical probe pulse interacts with a medium. This approach has opened new research directions in fields like quantum computing and nonlinear optics, while also spawning

  15. Research | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Home Below are images. Click on the image to see a larger view. Nanostructural Bulk Chalcogenides TEM image High resolution TEM image showing spinodally decomposed regions in PbTe-16%PbS. TEM image TEM images showing dispersed nanoparticles in samples of: (A) PbTe-Sb(2%) (B) PbTe-Sb(4%) (C) PbTe-Sb(8%) and (D) PbTe-Sb(16%). A pulsed-laser enhanced 3-D LEAP tomograph involves replacing electric pulses with picosecond laser pulses, indicated by incident red wave in left-hand figure.

  16. Staff Research Physicist (Experimental Research, FLARE) | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Research, FLARE) Department: Research Staff: RM 02 Requisition Number: 1500503 The Princeton Plasma Physics Laboratory seeks to fill a staff research physicist...

  17. Research Affiliate Program | Photosynthetic Antenna Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Affiliate Program Research Affiliate Program Research Affiliates are collaborators who are not current PARC principal investigators andor who are from academic or...

  18. Agricultural Research Service (ARS) Research Participation Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home About USDA ARS About ORISE Current Research Opportunities Site Map Contact ORISE Facebook Twitter Applicants Welcome to the Agricultural Research Service (ARS) Research...

  19. NREL: Photovoltaics Research - Solar Energy Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Research Facility Photo of the Solar Energy Research Facility. The exterior stepped clerestory of the Solar Energy Research Facility. Photovoltaics (PV) and basic ...

  20. Research Teams - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Teams Research Teams Associates Greg Smith, Senior Research Chemist, SRI ... Colin Smith, Thermal Engineer, Jet Propulsion Laboratory Previously co-sponsored by ...

  1. High-energy cosmic ray interactions

    SciTech Connect (OSTI)

    Engel, Ralph; Orellana, Mariana; Reynoso, Matias M.; Vila, Gabriela S.

    2009-04-30

    Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

  2. New Staff Research Physicists at PPPL | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gain in future fusion reactors, such as ITER. Diallo ... the interaction between fast ions and a particular class ... his research on a liquid-sodium dynamo experiment, and ...

  3. Paul V. Braun and John A. Rogers Materials Research Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    potential for unique designs which enhance light-matter interaction in unexpected ways. September 2011 Research Highlight E. Nelson, et al., Nature Materials 10, 676-681 (2011)...

  4. Supporting collaborative computing and interaction

    SciTech Connect (OSTI)

    Agarwal, Deborah; McParland, Charles; Perry, Marcia

    2002-05-22

    To enable collaboration on the daily tasks involved in scientific research, collaborative frameworks should provide lightweight and ubiquitous components that support a wide variety of interaction modes. We envision a collaborative environment as one that provides a persistent space within which participants can locate each other, exchange synchronous and asynchronous messages, share documents and applications, share workflow, and hold videoconferences. We are developing the Pervasive Collaborative Computing Environment (PCCE) as such an environment. The PCCE will provide integrated tools to support shared computing and task control and monitoring. This paper describes the PCCE and the rationale for its design.

  5. Learning from Semantic Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning from Semantic Interactions Most machine learning tools used in geospatial mapping can only learn from labels. Learning from Semantic Interactions LANL's new machine learning tools can learn from semantic user interactions to produce more accurate mappings Point of Contact: Reid Porter, ISR Division, 665-7508, rporter@lanl.gov Current Phase - LDRD: * Develop theory and algorithms for tools and demonstrate impact in image analysis applications in materials microscopy. Phase 2 - Geospatial

  6. Weak Interaction | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weak Interaction February 22, 2011 Jefferson Lab has an accelerator designed to do incisive medium energy physics. This program is dominated by experiments aimed at developing our...

  7. ERHIC INTERACTION REGION DESIGN.

    SciTech Connect (OSTI)

    MONTAG,C.PARKER,B.PTITSYN,V.TEPIKIAN,S.WANG,D.WANG,F.

    2003-10-13

    This paper presents the current interaction region design status of the ring-ring version of the electron-ion collider eRHIC (release 2.0).

  8. Nerve-pulse interactions

    SciTech Connect (OSTI)

    Scott, A.C.

    1982-01-01

    Some recent experimental and theoretical results on mechanisms through which individual nerve pulses can interact are reviewed. Three modes of interactions are considered: (1) interaction of pulses as they travel along a single fiber which leads to velocity dispersion; (2) propagation of pairs of pulses through a branching region leading to quantum pulse code transformations; and (3) interaction of pulses on parallel fibers through which they may form a pulse assembly. This notion is analogous to Hebb's concept of a cell assembly, but on a lower level of the neural hierarchy.

  9. CMI Organizational Interactions | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Organizational Interactions CMI Affiliates: CMI Affiliates will be informed about CMI research outcomes and provide intput to CMI. Affiliates pay an annual fee based on the organization type, and sign a Membership Agreement. CMI Affiliates may become Team members or sponsor research in other ways with different levels of financial commitment and ownership of intellectual property. CMI Associates: CMI Associates may use the unique capabilities and expertise of CMI via DOE-approved contractual

  10. Research Groups - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Groups Research Group Homepages: Nuclear Theory Group Dr. Sherry Yennello's Research Group Dr. Dan Melconian's Research Group Dr. Cody Folden's Group...

  11. ASU EFRC - Center researchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center researchers Chad Simmons Academic Professional Gerdenis Kodis Research Assistant Professor Raimund Fromme Faculty Research Associate Yuichi Terazono Faculty Research Associate

  12. ARM - Research Themes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govScienceResearch Themes Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global...

  13. Elementary particle interactions

    SciTech Connect (OSTI)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Ward, B.F.L.; Close, F.E.; Christophorou, L.G.

    1990-10-01

    This report discusses freon bubble chamber experiments exposed to {mu}{sup +} and neutrinos, photon-proton interactions; shower counter simulations; SLD detectors at the Stanford Linear Collider, and the detectors at the Superconducting Super Collider; elementary particle interactions; physical properties of dielectric materials used in High Energy Physics detectors; and Nuclear Physics. (LSP)

  14. Steven Weinberg, Weak Interactions, and Electromagnetic Interactions

    Office of Scientific and Technical Information (OSTI)

    Steven Weinberg and Weak and Electromagnetic Interactions Resources with Additional Information Steven Weinberg Courtesy Dr. Steven Weinberg Steven "Weinberg is a professor of physics and astronomy at UT [The University of Texas] Austin and is founding director of the Theory Group in the College of Natural Sciences. [He is] well known for his development of a field theory that unifies the electromagnetic and weak nuclear forces, and for other major contributions to physics and cosmology ...

  15. Sandia National Laboratories: Research: Research Foundations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Foundations Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Foundations Leadership in innovation Integrating unique resources and technical excellence to benefit our nation. Certain research areas are considered key to the success of Sandia's national security programs. These areas - known as research foundations - underpin

  16. Summaries of FY 1993 geosciences research

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the DOE`s many missions. The Geosciences Research Program is supported by the Office of Energy Research. The participants in this program include DOE laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the DOE and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar-atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  17. Associate Research Physicist (Post Doc, Experimental Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Post Doc, Experimental Research, NSTX-U, Radio Frequency Waves) Department: Research Staff: RM1 Requisition Number: 1500421 The Princeton Plasma Physics Laboratory (PPPL) seeks to...

  18. Running Interactive Batch Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    if the node of choice is not immediately available Start an interactive session in the debug queue qsh -l debug1 -now no qlogin -l debug1 -now no This is useful when the cluster...

  19. Laser Plasma Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Plasma Interactions Laser Plasma Interactions Understanding and controlling laser produced plasmas for fusion and basic science Contact David Montgomery (505) 665-7994 Email John Kline (505) 667-7062 Email Thomson scattering is widely used to measure plasma temperature, density, and flow velocity in laser-produced plasmas at Trident, and is also used to detect plasma waves driven by unstable and nonlinear processes. A typical configuration uses a low intensity laser beam (2nd, 3rd, or 4th

  20. Human-machine interactions

    DOE Patents [OSTI]

    Forsythe, J. Chris (Sandia Park, NM); Xavier, Patrick G. (Albuquerque, NM); Abbott, Robert G. (Albuquerque, NM); Brannon, Nathan G. (Albuquerque, NM); Bernard, Michael L. (Tijeras, NM); Speed, Ann E. (Albuquerque, NM)

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  1. Research Input Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HighlightsSubmit Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for...

  2. Achromatic Interaction Point Design

    SciTech Connect (OSTI)

    Guimei Wang,, Yaroslav Derbenev, S.Alex Bogacz, P. Chevtsov, Andre Afanaciev, Charles Ankenbrandt, Valentin Ivanov, Rolland P. Johnson

    2009-05-01

    Designers of high-luminosity energy-frontier muon colliders must provide strong beam focusing in the interaction regions. However, the construction of a strong, aberration-free beam focus is difficult and space consuming, and long straight sections generate an off-site radiation problem due to muon decay neutrinos that interact as they leave the surface of the earth. Without some way to mitigate the neutrino radiation problem, the maximum c.m. energy of a muon collider will be limited to about 3.5 TeV. A new concept for achromatic low beta design is being developed, in which the interaction region telescope and optical correction elements, are installed in the bending arcs. The concept, formulated analytically, combines space economy, a preventative approach to compensation for aberrations, and a reduction of neutrino flux concentration. An analytical theory for the aberration-free, low beta, spatially compact insertion is being developed.

  3. Dike/Drift Interactions

    SciTech Connect (OSTI)

    E. Gaffiney

    2004-11-23

    This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses of the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1).

  4. History of Weak Interactions

    DOE R&D Accomplishments [OSTI]

    Lee, T. D.

    1970-07-01

    While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.

  5. Sandia National Labs: PCNSC: Research: Optical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Sciences The focus of the Optical Sciences thrust is to understand and exploit the elegant interaction between light and matter. Our research portfolio encompasses the generation, transmission, manipulation, and detection of light and the development of optical materials with user defined characteristics. We emphasize innovative work in laser and optical materials development, nonlinear optics, spectroscopy, remote sensing, and photon-material interactions. In partnership with our DOE,

  6. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, developing, and deploying computational and networking capabilities to analyze, model,...

  7. Research Affiliates | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Affiliates Research Affiliates Yan Mei Wang Yan Mei Wang Research Affiliate Read more about Yan Mei Wang Rienk van Grondelle Rienk van Grondelle Research Affiliate Read more about Rienk van Grondelle Jakub Pšenčík Jakub Pšenčík Read more about Jakub Pšenčík Hugh O'Neill Hugh O'Neill Research Affiliate Read more about Hugh O'Neill David Kramer David Kramer Research Affiliate Read more about David Kramer Cynthia Lo Cynthia Lo Research Affiliate Read more about Cynthia Lo Noam Adir Noam

  8. Wind Turbine Interactions with Birds, Bats, and their Habitats: A Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Research Results and Priority Questions | Department of Energy Turbine Interactions with Birds, Bats, and their Habitats: A Summary of Research Results and Priority Questions Wind Turbine Interactions with Birds, Bats, and their Habitats: A Summary of Research Results and Priority Questions This fact sheet summarizes what is known about bird and bat interactions with land-based wind power in North America, including habitat impacts, and what key questions and knowledge gaps remain. PDF

  9. Nucleon-nucleon interactions

    SciTech Connect (OSTI)

    Wiringa, R.B.

    1996-12-31

    Nucleon-nucleon interactions are at the heart of nuclear physics, bridging the gap between QCD and the effective interactions appropriate for the shell model. We discuss the current status of {ital NN} data sets, partial-wave analyses, and some of the issues that go into the construction of potential models. Our remarks are illustrated by reference to the Argonne {ital v}{sub 18} potential, one of a number of new potentials that fit elastic nucleon-nucleon data up to 350 MeV with a {Chi}{sup 2} per datum near 1. We also discuss the related issues of three-nucleon potentials, two-nucleon charge and current operators, and relativistic effects. We give some examples of calculations that can be made using these realistic descriptions of {ital NN} interactions. We conclude with some remarks on how our empirical knowledge of {ital NN} interactions may help constrain models at the quark level, and hence models of nucleon structure.

  10. Research Affiliates | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engel Gregory Engel Research Affiliate E-mail: gsengel@uchicago.edu Phone: 773.834.0818 Harry Frank Harry Frank Research Affiliate E-mail: harry.frank@uconn.edu Phone: 860.486.2844...

  11. Research Form | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Form Research Form Students may arrange to receive credit and/or choose to receive points toward the PARC/I-CARES certificate through research in a faculty-supervised laboratory. The student is expected to pursue studies or outside activities that are supervised by a faculty advisor or sponsor. Washington University schools and departments require their own separate forms to be completed by students seeking credit for a research project. Students are expected to obtain and complete

  12. GE Global Research Leadership | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About GE Global Research > Leadership Leadership GE Global Research Centers rely on the guidance of visionary leaders with deep technical knowledge on the ground at each of our sites. A photo of Vic Abate Vic Abate Chief Technology Officer GE Global Research As senior vice president and chief technology officer for GE, Vic is responsible for one of the world's largest and most diversified industrial research and technology organizations. Vic leads GE's 50,000 engineers and scientists and G...

  13. NREL: Concentrating Solar Power Research - Research Expertise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Expertise NREL's research expertise in concentrating solar power technologies includes managing and supporting parabolic trough research and development (R&D); using a systems-driven modeling and analysis approach; and developing advanced components and technologies. Managing and Supporting Parabolic Trough R&D NREL has lead responsibility for managing, directing, and supporting parabolic trough R&D activities. In-house and subcontracted research and development supports the

  14. BES Energy Storage Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Synthesis Scattering and Instrumentation Sciences Photochemistry and Biochemistry Fundamental Interactions Chemical Transformations Nanoscience and Electron...

  15. DockingShop: A Tool for Interactive Molecular Docking Ting-Cheng...

    Office of Scientific and Technical Information (OSTI)

    Genetics; I.3.6 Computer Graphics: Methodology and Techniques-Interaction Techniques; ... Institute for Quantitative Biomedical Research, Berkeley, California, tlu@lbl.gov, ...

  16. University Research | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Research Universities Universities Home Interactive Grants Map SC In Your State Science Highlights University Research News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 University Research Print Text Size: A A A Subscribe FeedbackShare Page GO 03.11.16University Research Down the Rabbit Hole: How Electrons Travel Through Exotic New Material External link Researchers at Princeton University have

  17. Sandia National Laboratories: Research: Research Foundations: Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Research Foundations Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Engineering Science The Engineering Science Research Foundation is leading engineering transitions in advanced, highly critical systems by integrating theory development, experimental discovery and diagnostics, modeling, and computational approaches to refine our

  18. Sandia National Laboratories: Research: Research Foundations: Geoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Geoscience Geoscience photo The Geoscience Research Foundation performs recognized world-class earth and atmospheric sciences research and development to support Sandia's national security missions. Why our work matters Knowledge of the Earth's subsurface properties, structure and

  19. Seismic modal analysis and system interaction

    SciTech Connect (OSTI)

    Lin, Chi Wen ); Wang, Chung Yi ); Chen, W.W. ); Gutierrez, B. . Savannah River Site)

    1993-01-01

    Separate abstracts were prepared for the technical papers presented at the American Society of Mechanical Engineers 1993 Pressure Vessels and Piping Conference on July 25--29 in Denver, Colorado. This volume contains sixteen papers presented under the session title of Modal Analysis and Systems Interactions Techniques. The intent of these sessions is to provide a common forum for the researchers to have a broad exchange of views on many pressing subjects concerning the design and analysis of nuclear and waste facilities.

  20. Intense Magnetized Plasma-Wall Interaction

    SciTech Connect (OSTI)

    Bauer, Bruno S.; Fuelling, Stephan

    2013-11-30

    This research project studied wall-plasma interactions relevant to fusion science. Such interactions are a critical aspect of Magneto-Inertial Fusion (MIF) because flux compression by a pusher material, in particular the metal for the liner approach to MIF, involves strong eddy current heating on the surface of the pusher, and probably interactions and mixing of the pusher with the interior fuel during the time when fusion fuel is being burned. When the pusher material is a metal liner, high-energy-density conditions result in fascinating behavior. For example, "warm dense matter" is produced, for which material properties such as resistivity and opacity are not well known. In this project, the transformation into plasma of metal walls subjected to pulsed megagauss magnetic fields was studied with an experiment driven by the UNR 1 MA Zebra generator. The experiment was numerically simulated with using the MHRDR code. This simple, fundamental high-energy-density physics experiment, in a regime appropriate to MIF, has stimulated an important and fascinating comparison of numerical modeling codes and tables with experiment. In addition, we participated in developing the FRCHX experiment to compress a field-reversed-configuration (FRC) plasma with a liner, in collaboration with researchers from Air Force Research Laboratory and Los Alamos National Lab, and we helped develop diagnostics for the Plasma Liner Experiment (PLX) at LANL. Last, but not least, this project served to train students in high-energy-density physics.