Powered by Deep Web Technologies
Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Cloud Computing Operations Research  

Science Conference Proceedings (OSTI)

This paper argues that the cloud computing industry faces many decision problems where operations research OR could add tremendous value. To this end, we provide an OR perspective on cloud computing in three ways. First, we compare the cloud computing ... Keywords: cloud IT, cloud computing, green IT, operations research, supply chain

Ilyas Iyoob, Emrah Zarifoglu, A. B. Dieker

2013-06-01T23:59:59.000Z

2

BNL | Cloud Lifecycle Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to be one of the major sources of uncertainty in numerical simulations of climate and weather. Improvement of the representation of clouds in numerical models requires fundamental...

3

Web data processing on the cloud  

Science Conference Proceedings (OSTI)

Cloud computing is emerging as a highly scalable, fault-tolerant, and cost-effective way to process large amounts of information on the Web. Thanks in part to new data processing paradigms designed with the Cloud in mind (such as MapReduce[1], HDFS[2], ...

Shahan Khatchadourian; Mariano Consens; Jerome Simeon

2010-11-01T23:59:59.000Z

4

DOE Research and Development Accomplishments Tag Cloud  

Office of Scientific and Technical Information (OSTI)

Database Tag Cloud Database Tag Cloud This tag cloud is a specific type of weighted list that provides a quick look at the content of the DOE R&D Accomplishments database. It can be easily browsed because terms are in alphabetical order. With this tag cloud, there is a direct correlation between font size and quantity. The more times a term appears in the bibliographic citations, the larger the font size. This tag cloud is also interactive. Clicking on a term will activate a search for that term. Search results will then be received. absorption Accelerator Accelerators Acid Acids AEC air Alpha Analysis Angular Applications Applied Argonne Aspects atmospheric Atom Atomic atoms Background Basic Batteries Beam Beams Beta Biological Biology BNL Brookhaven Calculations Calvin Capture carbon Cells CH Change changes Chemical Chemistry CHLORINE climate Coal Collisions complex Complexes Compounds computed Computerized conditions Conservation Conversion Cosmic Cosmology Cross Crystal current cycle data Decay density design Detection detectors development Devices Diagnostic Diffraction Dioxide Discovery distribution DNA Effect Effects Efficiency Electric electricity Electromagnetic Electron Electrons Element elementary elements Emission Energy Environmental Equations even Exchange Experiment Experimental experiments Fermi field fields First Fission Fossil Free fuel fuels Fusion Future Gamma Gas Genome global greenhouse group Hadron Health heat Heating heavy high Historical history Human Hydrocarbons Hydrogen Imaging impacts important Information Institute Interaction Interactions International Invariance ion Ions Isotope Isotopes Kinetics large laser Lawrence LBL LBNL lepton level light Linear Lithium Livermore living LLNL long low Magnetic Mass material Materials mathematics Matter Measurement measurements Mechanics mechanism medical Medicine Mesons Metabolism Method methods Model Models Molecular Molecules momentum mu Nambu Neutral Neutrino Neutrinos Neutron neutrons Nuclear Nuclei Nucleon Odd Organic ORNL Oxides oxygen Particle Particles path PET Photosynthesis physical Physics pi Plants Plasma Plutonium Policy Polymers Positron Power problem processes production program Programs progress Properties Proton Protons Quantum Quark Radiation Radioactive Radioisotopes range Ratio ray Reaction Reactions Reactor Reactors Renewable report Research resolution Resonance results Review RTG scattering science Sciences scientific Seaborg Separation Solar Source Sources Space Spectra Spectroscopy spectrum Spin Stability state States storage Strong Structure Studies study supernovae symmetry Symposium Synthesis system Systems Tau technical Techniques technologies Technology Teller Temperature theoretical Theories Theory Therapy Thermal Thermoelectric Thin Time Tomography Top Tracer Transfer Transport type types Upton Uranium uses Velocity Water Weak Wigner yields

5

A Coordinated Effort to Improve Parameterization of High-Latitude Cloud and Radiation Processes  

SciTech Connect

The goal of this project is the development and evaluation of improved parameterization of arctic cloud and radiation processes and implementation of the parameterizations into a climate model. Our research focuses specifically on the following issues: (1) continued development and evaluation of cloud microphysical parameterizations, focusing on issues of particular relevance for mixed phase clouds; and (2) evaluation of the mesoscale simulation of arctic cloud system life cycles.

J. O. Pinto, A.H. Lynch

2005-12-14T23:59:59.000Z

6

A Cloud-Resolving Simulation Study on the Merging Processes and Effects of Topography and Environmental Winds  

Science Conference Proceedings (OSTI)

The cloud-resolving fifth-generation Pennsylvania State UniversityľNational Center for Atmospheric Research Mesoscale Model (MM5) was used to study the cloud interactions and merging processes in the real case that generated a mesoscale convective ...

Danhong Fu; Xueliang Guo

2012-04-01T23:59:59.000Z

7

Dynamic resource allocation for cloud-based media processing  

Science Conference Proceedings (OSTI)

As an economic and scalable solution of providing interactive and adaptive media content across different devices, cloud-based media processing has recently attracted lots of attention from both academic and industry. Within a media cloud, a large number ... Keywords: cloud-based media processing, machine learning, platform-as-a-service, quality of service, resource allocation

Krisantus Sembiring; Andreas Beyer

2013-02-01T23:59:59.000Z

8

The Effect of Stochastic Cloud Structure on the Icing Process  

Science Conference Proceedings (OSTI)

Current understanding of the icing process through collisions between a surface and supercooled cloud droplets is based upon two factors. First, for a given temperature, when the cloud liquid water content, W, exceeds a critical value, wc (the ...

A. R. Jameson; A. B. Kostinski

2000-09-01T23:59:59.000Z

9

Use of the ARM Measurement of Spectral Zenith Radiance For Better Understanding Of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction  

Science Conference Proceedings (OSTI)

Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the ├?┬ó├?┬?├?┬?solar-background├?┬ó├?┬?├?┬Ł mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM├?┬ó├?┬?├?┬?s zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS├?┬ó├?┬?├?┬? 1 Hz sampling to study the ├?┬ó├?┬?├?┬?twilight zone├?┬ó├?┬?├?┬Ł around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM├?┬ó├?┬?├?┬?s 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM├?┬ó├?┬?├?┬?s operational data processing.

D. Jui-Yuan Chiu

2010-10-19T23:59:59.000Z

10

The Queensland Cloud Seeding Research Program  

Science Conference Proceedings (OSTI)

As a response to extreme water shortages in southeast Queensland, Australia, brought about by reduced rainfall and increasing population, the Queensland government decided to explore the potential for cloud seeding to enhance rainfall. The Queensland ...

Sarah A. Tessendorf; Roelof T. Bruintjes; Courtney Weeks; James W. Wilson; Charles A. Knight; Rita D. Roberts; Justin R. Peter; Scott Collis; Peter R. Buseck; Evelyn Freney; Michael Dixon; Matthew Pocernich; Kyoko Ikeda; Duncan Axisa; Eric Nelson; Peter T. May; Harald Richter; Stuart Piketh; Roelof P. Burger; Louise Wilson; Steven T. Siems; Michael Manton; Roger C. Stone; Acacia Pepler; Don R. Collins; V. N. Bringi; M. Thurai; Lynne Turner; David McRae

2012-01-01T23:59:59.000Z

11

Exploring parameterization for turbulent entrainmentmixing processes in clouds  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring Exploring parameterization for turbulent entrainment-mixing processes in clouds Chunsong Lu, 1,2 Yangang Liu, 2 Shengjie Niu, 1 Steven Krueger, 3 and Timothy Wagner 4 Received 11 July 2012; revised 29 November 2012; accepted 5 December 2012; published 16 January 2013. [1] Different turbulent entrainment-mixing processes (e.g., homogeneous and inhomogeneous) occur in clouds; accurate representation of these processes is critical for improving cloud-related parameterizations in large-scale models, but poorly understood and quantified. Using in situ aircraft observations over the U. S. Department of Energy's Atmospheric Radiation Measurement Southern Great Plains site during the March 2000 Cloud Intensive Observation Period and numerical simulations with the Explicit Mixing Parcel Model (EMPM), here we explore the potential of using degree of homogeneous mixing

12

Diagnosis of the Warm Rain Process in Cloud-Resolving Models Using Joint CloudSat and MODIS Observations  

Science Conference Proceedings (OSTI)

This study examines the warm rain formation process in global and regional cloud-resolving models. Methodologies developed to analyze CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations are employed to ...

Kentaroh Suzuki; Graeme L. Stephens; Susan C. van den Heever; Takashi Y. Nakajima

2011-11-01T23:59:59.000Z

13

Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes  

Science Conference Proceedings (OSTI)

Using a global nonhydrostatic model with explicit cloud processes, upper-cloud changes are investigated by comparing the present climate condition under the perpetual July setting and the global warming condition, in which the sea surface ...

Masaki Satoh; Shin-ichi Iga; Hirofumi Tomita; Yoko Tsushima; Akira T. Noda

2012-03-01T23:59:59.000Z

14

State-of-the-art research study for green cloud computing  

Science Conference Proceedings (OSTI)

Although cloud computing has rapidly emerged as a widely accepted computing paradigm, the research on cloud computing is still at an early stage. Cloud computing suffers from different challenging issues related to security, software frameworks, quality ... Keywords: Cloud computing, Data center, Energy efficiency, IaaS, Virtualization

Si-Yuan Jing; Shahzad Ali; Kun She; Yi Zhong

2013-07-01T23:59:59.000Z

15

Nasa's Tropical Cloud Systems and Processes Experiment  

Science Conference Proceedings (OSTI)

In July 2005, the National Aeronautics and Space Administration investigated tropical cyclogenesis, hurricane structure, and intensity change in the eastern North Pacific and western Atlantic using its ER-2 high-altitude research aircraft. The ...

J. Halverson; M. Black; R. Rogers; S. Braun; G. Heymsfield; D. Cecil; M. Goodman; R. Hood; A. Heymsfield; T. Krishnamurti; G. McFarquhar; M. J. Mahoney; J. Molinari; J. Turk; C. Velden; D-L. Zhang; E. Zipser; R. Kakar

2007-06-01T23:59:59.000Z

16

The Experimental Cloud Lidar Pilot Study (ECLIPS) for CloudŚRadiation Research  

Science Conference Proceedings (OSTI)

The Experimental Cloud Lidar Pilot Study (ECLIPS) was initiated to obtain statistics on cloud-base height, extinction, optical depth, cloud brokenness, and surface fluxes. Two observational phases have taken place, in October-December 1989 and ...

C. M. Platt; S. A. Young; A. I. Carswell; S. R. Pal; M. P. McCormick; D. M. Winker; M. DelGuasta; L. Stefanutti; W. L. Eberhard; M. Hardesty; P. H. Flamant; R. Valentin; B. Forgan; G. G. Gimmestad; H. Jńger; S. S. Khmelevtsov; I. Kolev; B. Kaprieolev; Da-ren Lu; K. Sassen; V. S. Shamanaev; O. Uchino; Y. Mizuno; U. Wandinger; C. Weitkamp; A. Ansmann; C. Wooldridge

1994-09-01T23:59:59.000Z

17

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Nailing Down Ice in a Cloud Model Download a printable PDF Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s):...

18

Observational Study of the Entrainment-Mixing Process in Warm Convective Clouds  

Science Conference Proceedings (OSTI)

Thermodynamical and microphysical measurements collected in convective clouds are examined within the frame of the homogeneous/inhomogeneous mixing concept, to determine how entrainment-mixing processes affect cloud droplets, their number ...

FrÚdÚric Burnet; Jean-Louis Brenguier

2007-06-01T23:59:59.000Z

19

Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective  

Science Conference Proceedings (OSTI)

Current understanding and knowledge of the composition and structure of cirrus clouds are reviewed and documented in this paper. In addition, the radiative properties of cirrus clouds as they relate to weather and climate processes are described ...

Kuo-Nan Liou

1986-06-01T23:59:59.000Z

20

Aerosol Effects of the Condensation Process on a Convective Cloud Simulation  

Science Conference Proceedings (OSTI)

Using a nonhydrostatic model with a double-moment bulk cloud microphysics scheme, we introduce an aerosol effect on a convective cloud system by accelerating the condensation and evaporation processes (the aerosol condensational effect). To ...

Tatsuya Seiki; Teruyuki Nakajima

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Performance of a Triclass Parameterization for the CollisionľCoalescence Process in Shallow Clouds  

Science Conference Proceedings (OSTI)

Focusing on the formation of precipitation in marine stratiform clouds, a two-moment bulk parameterization for three liquid water classes (cloud, drizzle, and rain) is proposed to describe the process of collisionľcoalescence. Based on the ...

Vivek Sant; Ulrike Lohmann; Axel Seifert

2013-06-01T23:59:59.000Z

22

Parameterization and Impact of Ice initiation Processes Relevant to Numerical Model Simulations of Cirrus Clouds  

Science Conference Proceedings (OSTI)

An effort to improve descriptions of ice initiation processes of relevance to cirrus clouds for use in regional-scale numerical cloud models with bulk microphysical schemes is described. This is approached by deriving practical parameterizations ...

Paul J. DeMott; Michael P. Meyers; William R. Cotton

1994-01-01T23:59:59.000Z

23

COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION  

SciTech Connect

The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key step in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).

Somerville, Richard

2013-08-22T23:59:59.000Z

24

Simulation of Cloud Microphysical and Chemical Processes Using a Multicomponent Framework. Part I: Description of the Microphysical Model  

Science Conference Proceedings (OSTI)

A detailed microphysical and chemical cloud model has been developed to investigate the redistribution of atmospheric trace substances through cloud processes. A multicomponent categorization scheme is used to group cloud particles into different ...

Jen-Ping Chen; Dennis Lamb

1994-09-01T23:59:59.000Z

25

Illinois Precipitation Research: A Focus on Cloud and Precipitation Modification  

Science Conference Proceedings (OSTI)

At the heart of the 40-year atmospheric research endeavors of the Illinois State Water Survey have been studies to understand precipitation processes in order to learn how precipitation is modified purposefully and accidentally, and to measure ...

Stanley A. Changnon; Robert R. Czys; Robert W. Scott; Nancy E. Westcott

1991-05-01T23:59:59.000Z

26

Radiative Processes in Upper Tropospheric Mixed-Phase Clouds  

Science Conference Proceedings (OSTI)

The diffusional mass evolution of hydrometeors in upper tropospheric clouds for various radiative conditions in the cloud and for varying ambient moisture Supply is simulated using a time dependent microphysical model. Radiation can play an ...

Douglas A. Wesley; Stephen K. Cox

1988-11-01T23:59:59.000Z

27

Processes of Hydrometeor Development in Oklahoma Convective Clouds  

Science Conference Proceedings (OSTI)

This study employs in situ measurements to examine cloud conditions in which hydrometeors develop in mature Oklahoma convective clouds and to develop hypotheses as to how they formed. The measurements were made from penetrations on six days using ...

Andrew J. Heymsfield; Mark R. Hjelmfelt

1984-10-01T23:59:59.000Z

28

Researchers Describe Project to Merge Cloud Computing and Supercomputi...  

NLE Websites -- All DOE Office Websites (Extended Search)

DD project was to demonstrate a proof-of-concept capability for this novel high-performance computing (HPC) environment. The "traditional" cloud design approach often starts with...

29

Clouds  

NLE Websites -- All DOE Office Websites (Extended Search)

heated by the sun, produces rising columns of air in which the moisture condenses into tall fleecy white clouds At night, when the sky is clear, the earth cools to give those...

30

Evaluation of a 35 GHz Radar for Cloud Physics Research  

Science Conference Proceedings (OSTI)

A 1960 35 GHz radar has been modernized through the use of solid state electronics, Dopplerization and improved data-display capabilities. Radars of this frequency are particularly useful for observing the internal structures of clouds and for ...

Peter V. Hobbs; Nathan T. Funk; Richard R. Weiss Sr.; John D. Locatelli; Kumud R. Biswas

1985-03-01T23:59:59.000Z

31

The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment  

Science Conference Proceedings (OSTI)

The development of the polarization lidar field over the past two decades is reviewed, and the current cloud-research capabilities and limitations are evaluated. Relying on fundamental scattering principles governing the interaction of polarized ...

Kenneth Sassen

1991-12-01T23:59:59.000Z

32

Flexible Process-Based Applications in Hybrid Clouds  

Science Conference Proceedings (OSTI)

Cloud applications target large costumer groups to leverage economies of scale. To increase the number of customers, a flexible application design is of major importance. It enables customers to adjust the application to their individual needs in a self-service ... Keywords: application customization, self-service, orchestration, composite application, provisioning, cloud

Christoph Fehling; Frank Leymann; David Schumm; Ralf Konrad; Ralph Mietzner; Michael Pauly

2011-07-01T23:59:59.000Z

33

Droplet Spectra Broadening by Ripening Process. Part I: Roles of Curvature and Salinity of Cloud Droplets  

Science Conference Proceedings (OSTI)

The ôripening processö occurs due to thermodynamic instability of droplet size spectra in clouds. This instability results from the existence of droplets with different salinity and size in the droplet spectra. The ripening process is independent ...

Fikrettin ăelik; John D. Marwitz

1999-09-01T23:59:59.000Z

34

Scanning ARM Cloud Radars ľ Part II: Data Quality Control and Processing  

Science Conference Proceedings (OSTI)

The Scanning ARM Cloud Radars (SACRĺs) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated ...

Pavlos Kollias; Ieng Jo; Paloma Borque; Aleksandra Tatarevic; Katia Lamer; Nitin Bharadwaj; Kevin Widener; Karen Johnson; Eugene E. Clothiaux

35

Representation of Arctic Mixed-Phase clouds and the Wegener-Bergeron-Findeisen Process in Climate Models: Perspectives from a Cloud-Resolving Study  

SciTech Connect

Two types of Arctic mixed-phase clouds observed during the ISDAC and M-PACE field campaigns are simulated using a 3-dimensional cloud-resolving model (CRM) with size-resolved cloud microphysics. The modeled cloud properties agree reasonably well with aircraft measurements and surface-based retrievals. Cloud properties such as the probability density function (PDF) of vertical velocity (w), cloud liquid and ice, the regime of ice growth at the expense of liquid water (i.e., Wegener-Bergeron-Findeisen (WBF) process), and the inherent relationships among cloud properties/processes in the mixed-phase layers are examined to gain insights for improving the representation of the mixed-phase processes in General Circulation Models (GCMs). We find that, the WBF process only occurs in about 50% of the mixed-phase regime with the vast majority occurring in the downdrafts. In updrafts both liquid and ice grow simultaneously. But in GCMs, it is not necessary to treat the WBF process at the subgrid scale. Our CRM results produce a w distribution well represented by a Gaussian normal function, validating, at least for arctic clouds, the subgrid treatment used in GCMs. Our CRM results also support the assumption frequently used in GCMs that mixed phase clouds maintain water vapor very near liquid saturation. A Gamma function with a fixed variance does not accurately represent the subgrid variability of cloud liquid. The PDFs of cloud liquid and cloud ice can be fitted with Gamma functions, and a normal function can be used for total water, but the variance should not be fixed. The relationship between the ice depositional growth rate and cloud ice strongly depends on the capacitance of ice particles. The assumption for the capacitance of ice particles (e.g., 1.0 for spheres) used in GCMs could lead to a large deviation in ice depositional growth. At large sales, the maximum overlap assumption looks appropriate.

Fan, Jiwen; Ghan, Steven J.; Ovchinnikov, Mikhail; Liu, Xiaohong; Rasch, Philip J.; Korolev, Alexei

2011-09-20T23:59:59.000Z

36

IceľIce Collisions: An Ice Multiplication Process in Atmospheric Clouds  

Science Conference Proceedings (OSTI)

Ice in atmospheric clouds undergoes complex physical processes, interacting especially with radiation, which leads to serious impacts on global climate. After their primary production, atmospheric ice crystals multiply extensively by secondary ...

J.-I. Yano; V. T. J. Phillips

2011-02-01T23:59:59.000Z

37

A Numerical Study of the Warm Rain Process in Orographic Clouds  

Science Conference Proceedings (OSTI)

A technique for numerical simulation of a stationary, two-dimensional laminar flow process is described. Based on this technique, a model for warm rain microphysics in an orographic cloud was developed. The model includes condensation, ...

Naihui Song; John Marwitz

1989-11-01T23:59:59.000Z

38

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

M., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Morrison H, G de Boer, G Feingold, J Harrington, M Shupe, and...

39

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Del Genio, A. D., NASA Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Del Genio AD, J Wu, and Y Chen. 2012. "Characteristics of...

40

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Catch Aerosols in the Act Download a printable PDF Submitter: Wang, M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life...

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Millimeter-Wavelength Radars: New Frontier in Atmospheric Cloud and Precipitation Research  

Science Conference Proceedings (OSTI)

During the past 20 yr there has been substantial progress on the development and application of millimeter-wavelength (3.2 and 8.6 mm, corresponding to frequencies of 94 and 35 GHz) radars in atmospheric cloud research, boosted by continuous ...

P. Kollias; E. E. Clothiaux; M. A. Miller; B. A. Albrecht; G. L. Stephens; T. P. Ackerman

2007-10-01T23:59:59.000Z

42

Computer aided research in managing educational process  

Science Conference Proceedings (OSTI)

In the process of action research are trying to gather quantitative facts, as well as other empirical research. This, however, is basic and primary goal of action research. Action research is largely based on qualitative factors. Paradigm of action research ... Keywords: eduacation, informaiional technology, internet, management, physical education, research

Danimir Mandic; Veljko Bandjur; Nenad Lalic; Dragan Martinovic

2010-07-01T23:59:59.000Z

43

The Role of Cloud Top Entrainment in Cumulus Clouds  

Science Conference Proceedings (OSTI)

The entrainment process and its resultant effects on the microphysics and dynamics within cumuli are not yet clearly understood. This research was undertaken to discover the role which cloud top plays in the entrainment process and to determine ...

Joey F. Boatman; August H. Auer Jr.

1983-06-01T23:59:59.000Z

44

Simulation of Cloud Microphysical and Chemical Processes Using a Multicomponent Framework. Part II: Microphysical Evolution of a Wintertime Orographic Cloud  

Science Conference Proceedings (OSTI)

A detailed microphysical model is used to simulate the formation of wintertime orographic clouds in a two-dimensional domain under steady-state conditions. Mass contents and number concentrations of both liquid- and ice-phase cloud particles are ...

Jen-Ping Chen; Dennis Lamb

1999-07-01T23:59:59.000Z

45

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

The Apparent Bluing of Aerosols Near Clouds The Apparent Bluing of Aerosols Near Clouds Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marshak, A, G Wen, JA Coakley, LA Remer, NG Loeb, and RF Cahalan. 2008. "A simple model of the cloud adjacency effect and the apparent bluing of aerosols near clouds." Journal of Geophysical Research 113, D14S17, doi: 10.1029/2007JD009196. (upper panel) A schematic two-layer model of a broken cloud field and Rayleigh scatterers. (lower panel) An example of the Poisson distribution of broken cloud fields with cloud fraction Ac = 0.3 for a 10 by 10 km area. For a cloud vertical thickness of 1 km, the left lower panel has cloud

46

Stratocumulus Clouds  

Science Conference Proceedings (OSTI)

This paper reviews the current knowledge of the climatological, structural, and organizational aspects of stratocumulus clouds and the physical processes controlling them. More of Earthĺs surface is covered by stratocumulus clouds than by any ...

Robert Wood

2012-08-01T23:59:59.000Z

47

Basic Research of Metallurgical Process  

Science Conference Proceedings (OSTI)

Mar 13, 2012... process can be acquired and used for estimate of production status. ... Within the efforts of replacing the full water quench in gasificationá...

48

AltoStratus: A Collaboration Network Focused on the New Research Challenges and Opportunities in Cloud Computing  

Science Conference Proceedings (OSTI)

Cloud Computing is a new computing paradigm with the potential to radically change the way Internet applications and services are specified, developed, deployed, executed, managed, operated and evolved. Among the several benefits commonly associated ... Keywords: cloud computing, collaboration network, research challenges

Thais Batista; Nabor Mendonca; Americo Sampaio; Carlos Alberto Kamienski; Nelson Fonseca; Edmundo Madeira; Luciano Gaspary; Marinho Barcellos; Noemi Rodriguez; Karin Breitman; Djamel Sadok; Silvio Meira; Stenio Fernandes; Flßvia C. Delicato; Paulo F. Pires

2011-09-01T23:59:59.000Z

49

Adaptive Rate Stream Processing for Smart Grid Applications on Clouds  

E-Print Network (OSTI)

that the existing IT infrastructure of utilities and power systems researchers are not designed to handle prasanna@usc.edu ABSTRACT Pervasive smart meters that continuously measure power us- age by consumers within a smart (power) grid are providing utilities and power systems researchers with unprecedented

Prasanna, Viktor K.

50

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Survey over West Africa Reveals Climate Impact of Mid-Level Clouds Cloud Survey over West Africa Reveals Climate Impact of Mid-Level Clouds Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Bouniol D, F Couvreux, PH Kamsu-Tamo, M Leplay, F Guichard, F Favot, and EJ O'Connor. 2012. "Diurnal and seasonal cycles of cloud occurrences, types, and radiative impact over West Africa." Journal of Applied Meteorology and Climatology, 51(3), doi:10.1175/JAMC-D-11-051.1. Clouds occurring at different levels in the sky have varying impacts on Earth's energy budget. Clouds with bases between five and seven kilometers above the Earth's surface, also known as mid-level clouds, occur over West Africa all year-round and may have major impacts on the Earth's energy budget,

51

Processing Private Queries over Untrusted Data Cloud through Privacy Homomorphism  

E-Print Network (OSTI)

Tong, Hong Kong SAR, China {haibo,xujl,csren,bchoi}@comp.hkbu.edu.hk Abstract--Query processing directory and another on anti-diabetic drugs, together give a higher confidence that the user is probably

Xu, Jianliang

52

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

The Evolution and Distribution of Water Vapor and Microphysical Properties The Evolution and Distribution of Water Vapor and Microphysical Properties in Cirrus Clouds Download a printable PDF Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Comstock JM, R Lin, DO Starr, and P Yang. 2008. "Understanding ice supersaturation, particle growth, and number concentration in cirrus clouds." Journal of Geophysical Research - Atmospheres, 113, D23211, doi:10.1029/2008JD010332. Vertical velocity (Vm) derived from millimeter cloud radar (MMCR) Doppler velocity measurements in cirrus clouds observed over the ACRF SGP site. Cloud model simulations of cirrus clouds using large-scale forcing (left panel) and cloud-scale forcing (right panel).

53

DRAFT, Revised June 2012 Aerosol cloud-mediated radiative forcing: highly uncertain and  

E-Print Network (OSTI)

clouds is even lower than for the shallow clouds, as mixed phase and ice processes play an important role state of cloud and aerosol parameterizations, but intense research efforts aimed at improving. Respectively, the parameterization of these processes for GCMs is further away than for the low clouds

Daniel, Rosenfeld

54

An Unattended Cloud-Profiling Radar for Use in Climate Research  

Science Conference Proceedings (OSTI)

A new millimeter-wave cloud radar (MMCR) has been designed to provide detailed, long-term observations of nonprecipitating and weakly precipitating clouds at Cloud and Radiation Testbed (CART) sites of the Department of Energy's Atmospheric ...

Kenneth P. Moran; Brooks E. Martner; M. J. Post; Robert A. Kropfli; David C. Welsh; Kevin B. Widener

1998-03-01T23:59:59.000Z

55

Demonstrating the Potential for First-Class Research in Underdeveloped Countries: Research on Stratospheric Aerosols and Cirrus Clouds Optical Properties, and Radiative Effects in Cuba (1988ľ2010)  

Science Conference Proceedings (OSTI)

Optical properties of stratospheric aerosols and cirrus clouds and their radiative effects are currently important subjects of research worldwide. Those investigations are typical of developed countries, conducted by several highly specialized groups ...

Juan Carlos Antu˝a Marrero; RenÚ Estevan Arredondo; Boris Barja Gonzßlez

2012-07-01T23:59:59.000Z

56

The Atmospheric Radiation Measurement Program Cloud Profiling Radars: Second-Generation Sampling Strategies, Processing, and Cloud Data Products  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program operates millimeter-wavelength cloud radars in several climatologically distinct regions. The digital signal processors for these radars were recently upgraded and ...

Pavlos Kollias; Mark A. Miller; Edward P. Luke; Karen L. Johnson; Eugene E. Clothiaux; Kenneth P. Moran; Kevin B. Widener; Bruce A. Albrecht

2007-07-01T23:59:59.000Z

57

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Critical Role of Cloud Drop Effective Radius >14 Micron Radius in Rain Critical Role of Cloud Drop Effective Radius >14 Micron Radius in Rain Initiation Download a printable PDF Submitter: Rosenfeld, D., The Hebrew University of Jerusalem Wang, H., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Rosenfeld D, H Wang, and PJ Rasch. 2012. "The roles of cloud drop effective radius and LWP in determining rain properties in marine stratocumulus." Journal of Geophysical Research - Atmospheres, 39, doi:10.1029/2012GL052028. The dependence of rain rate on cloud drop effective radius (re) near cloud top. The color scale is for the median value of column maximum rain rate in each joint bin of CWP-re (cloud liquid water path and cloud-top re).

58

Liquid and Ice Cloud Microphysics in the CSU General Circulation Model. Part 1: Model Description and Simulated Microphysical Processes  

Science Conference Proceedings (OSTI)

Microphysical processes responsible for the formation and dissipation of water and ice clouds have been incorporated into the Colorado State University General Circulation Model in order to 1) yield a more physically based representation of the ...

Laura D. Fowler; David A. Randall; Steven A. Rutledge

1996-03-01T23:59:59.000Z

59

Other Locales Gulf Stream Locale -A Field Laboratory for Cloud Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Gulf Stream Locale -A Field Gulf Stream Locale -A Field Laboratory for Cloud Process S. Raman Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, NC 27695-8028 Clouds associated with the Gulf Stream Locale, (Figure 1) are in general due to the cyclogenesis or redevelopments of the storms off the east coast of the United States in winters, movement along the coast of the storms that are generated over the Gulf of Mexico in the spring and fall and mesoscale convective circulations present in all seasons. During the summer and early fall ,this region is also susceptible to hurricanes moving from the south. There have been several attempts to reproduce some of the observed synoptic and mesoscale features of these sys- tems (e.g., Krei1zberg and Perkey 1977; Holt et al. 1990;

60

Coupling Aerosol-Cloud-Radiative Processes in the WRF-Chem Model: Investigating the Radiative Impact of Elevated Point Sources  

Science Conference Proceedings (OSTI)

The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number) to an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs) and produced clouds of comparable thickness to observations at approximately the proper times and places. The model slightly overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest resolution model domain (the extent of which corresponds to the typical size of a single GCM grid cell) and temporally over a three day analysis period, total rainfall in the sensitivity simulation increased by 31% over that in the baseline simulation. Fewer optically thin clouds, arbitrarily defined as a cloud exhibiting an optical depth less than 1, formed in the sensitivity simulation. Domain-averaged AODs dropped from 0.46 in the baseline simulation to 0.38 in the sensitivity simulation. The overall net effect of additional aerosols attributable to primary particulates and aerosol precursors from point source emissions above the surface was a domain-averaged reduction of 5 W m-2 in mean daytime downwelling shortwave radiation.

Chapman, Elaine G.; Gustafson, William I.; Easter, Richard C.; Barnard, James C.; Ghan, Steven J.; Pekour, Mikhail S.; Fast, Jerome D.

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Retrieval of Thermal and Microphysical Variables in Observed Convective Storms. Part II: Sensitivity of Cloud Processes to Variation of the Microphysical Parameterization  

Science Conference Proceedings (OSTI)

The hydrometeor content and thermal fields in a thunderstorm are estimated from a three-dimensional kinematic cloud model employing Doppler wind fields and parameterized microphysical processes. The sensitivity of the cloud model calculations to ...

Conrad L. Ziegler

1988-03-01T23:59:59.000Z

62

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Clouds Brighten Up the Sky Near Them Clouds Brighten Up the Sky Near Them Download a printable PDF Submitter: Varnai, T., University of Maryland, Baltimore County/JCEST Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Varnai T and A Marshak. 2009. "MODIS observations of enhanced clear sky reflectance near clouds." Geophysical Research Letters, 36, L06807, doi:10.1029/2008GL037089. Figure 1. Illustration of clouds enhancing the brightness of sky in nearby clear areas. In cloud-free areas light is scattered mainly by air molecules, but aerosols also contribute. Figure 2. Top: Average increase in MODIS clear-sky reflectivity (R) near clouds. The difference between areas near illuminated and shadowy cloud

63

Research and application on ontology-based layered cloud simulation service description framework  

Science Conference Proceedings (OSTI)

Cloud simulation system improves the ability of current network-based M&S in on-demand simulation and massive-user service. The share of multi-granularity resources and dynamic establishment of simulation services in Cloud Simulation raise new challenges ... Keywords: cloud simulation, layered, ontology, owl-s, simulation service description framework

Tan Li, Xudong Chai, Baocun Hou, Bohu Li

2013-05-01T23:59:59.000Z

64

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Unique Properties of the Arctic Stratiform Cloud-Top Region Unique Properties of the Arctic Stratiform Cloud-Top Region Submitter: Shupe, M., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Sedlar J, MD Shupe, and M Tjernstr├Âm. 2011. "On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic." Journal of Climate, 25(7), doi:10.1175/JCLI-D-11-00186.1. Occurrence frequency of low-level, stratiform cloud cases used in the analysis (black), percentage of these cases where the cloud top was identified to occur within the inversion (CII, gray), and percentage where the cloud top was observed to be capped by the inversion (CCI, white) for the ASCOS, SHEBA, and Barrow locations. The total number of cases analyzed

65

The Atmospheric Radiation Measurement Program Cloud Profiling Radars: An Evaluation of Signal Processing and Sampling Strategies  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Atmospheric Radiation Measurements (ARM) program operates millimeter-wavelength cloud radars (MMCRs) in several specific locations within different climatological regimes. These vertically pointing cloud ...

Pavlos Kollias; Bruce A. Albrecht; Eugene E. Clothiaux; Mark A. Miller; Karen L. Johnson; Kenneth P. Moran

2005-07-01T23:59:59.000Z

66

Microphysical Processes Evident in Aerosol Forcing of Tropical Deep Convective Clouds  

Science Conference Proceedings (OSTI)

This study investigates the effects of aerosols on tropical deep convective clouds (DCCs). A series of large-scale, two-dimensional cloud-resolving model simulations was completed, differing only in the concentration of aerosols available to act ...

Rachel L. Storer; Susan C. van den Heever

2013-02-01T23:59:59.000Z

67

Marine Cloud Brightening  

Science Conference Proceedings (OSTI)

The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

2012-09-07T23:59:59.000Z

68

Research Highlights Sorted by Research Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Area Research Area Radiation Processes | Cloud Distributions/Characterizations | Surface Properties | General Circulation and Single Column Models/Parameterizations | Aerosol Properties | Atmospheric Thermodynamics and Vertical Structures | Clouds with Low Optical [Water] Depths (CLOWD) | Vertical Velocity | Broadband Heating Rate Profile (BBHRP) | Cloud-Aerosol-Precipitation Interactions | Cloud Processes | Aerosol Processes Radiation Processes Alexandrov, M. D. Optical Depth Measurements by Shadowband Radiometers and Their Uncertainties ARM Berg, L. Surface Summertime Radiative Forcing by Shallow Cumuli at the ARM SGP ARM Bergmann, D. The Influence of Regional Anthropogenic Emission Reductions on Aerosol Direct Radiative Forcing ASR Bhattacharya, A. Burning on the Prairies ARM

69

DRAFT, last update 5 January 2012 Aerosol cloud-mediated radiative forcing: highly uncertain and  

E-Print Network (OSTI)

phase and ice processes. Respectively, the parameterization of these processes for GCMs is further away and aerosol parameterizations, but intense research efforts aimed at improving the realism of cloud lower than for the shallow clouds, as the deep clouds are much more complicated, because mixed phase

Wood, Robert

70

Summary of research on microbiological processes  

DOE Green Energy (OSTI)

Storage of thermal energy in aquifers has obvious benefits of saving energy and decreasing the consumption of fossil fuels. However, aquifer thermal energy storage (ATES), which involves groundwater aquifers as the storage medium for heat or chill, impinges on the environment. A literature review of pertinent microbiology publications (Hicks and Stewart, 1988) identified the potential for the interaction of ATES systems and microbiological processes to create a source of infectious diseases and the potential for damage to the environment. In addition, the review identified a potential for microbiological processes to develop conditions that would interfere with the operation of an ATES system. As a result of this research effort, investigators from Finland, Germany, Switzerland, and the United States have examined several ATES systems in operation and have observed that the ATES systems studied do not contribute to infectious disease transmission, do not adversely affect the environment, and do not contribute significantly to biofouling or biocorrosion.

Winters, A.L.

1992-09-01T23:59:59.000Z

71

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

A Finer Mesh to Improve Cloud Representation in Climate Models? A Finer Mesh to Improve Cloud Representation in Climate Models? Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Boutle IA, SJ Abel, PG Hill, and CJ Morcrette. 2013. "Spatial variability of liquid cloud and rain: observations and microphysical effects." Quarterly Journal Royal Meteorological Society, , doi:10.1002/qj.2140. Different sizes of water droplets as well as varying water content dramatically alter cloud properties-often at a resolution finer than is currently in use by most climate models. Although clouds can extend for several kilometers, their properties-for example, liquid and rainwater content-can change dramatically over very

72

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Arctic Mixed-phase Clouds Persist with Little Help from the Local Surface Arctic Mixed-phase Clouds Persist with Little Help from the Local Surface Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Shupe MD, OG Persson, IM Brooks, M Tjernstrom, J Sedlar, T Mauritsen, S Sjogren, and C Leck. 2013. "Cloud and boundary layer interactions over the Arctic sea ice in late summer." Atmospheric Chemistry and Physics, 13, doi:10.5194/acp-13-9379-2013. Figure 1. Normalized profiles of (a) vertical velocity skewness and (b) variance, (c) turbulent dissipation rate, and (d) potential temperature. Black curves are all data, while red and green are for decoupled and coupled cases, respectively. Normalization is relative to the cloud top

73

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Shallow Clouds Make the Case for Remote Sensing Instrumentation Shallow Clouds Make the Case for Remote Sensing Instrumentation Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: McFarlane, S. A., and W. W. Grabowski (2007). Optical properties of shallow tropical cumuli derived from ARM ground-based remote sensing, Geophys. Res. Lett., 34, L06808, doi:10.1029/2006GL028767. In this figure, the lines indicate theoretical calculations of cloud droplet size for clouds with various droplet concentrations in which no mixing occurs. The cloud droplet size shows significant variability with height. Traditionally, observations of air mixing and cloud droplet size come from in situ aircraft probes, which collect data at very high horizontal

74

Liquid Water Cloud Measurements Using the Raman Lidar Technique: Current Understanding and Future Research Needs  

Science Conference Proceedings (OSTI)

This paper describes recent work in the Raman lidar liquid water cloud measurement technique. The range-resolved spectral measurements at the National Aeronautics and Space Administration Goddard Space Flight Center indicate that the Raman ...

Tetsu Sakai; David N. Whiteman; Felicita Russo; David D. Turner; Igor Veselovskii; S. Harvey Melfi; Tomohiro Nagai; Yuzo Mano

2013-07-01T23:59:59.000Z

75

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

TOA Radiation Budget of Convective Core/Stratiform Rain/Anvil Clouds from TOA Radiation Budget of Convective Core/Stratiform Rain/Anvil Clouds from Deep Convection Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, XQ Dong, BK Xi, C Schumacher, P Minnis, and M Khaiyer. 2011. "Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems." Journal of Geophysical Research - Atmospheres, 116, D23202, doi:10.1029/2011JD016451. An example of the hybrid classification process. (a) GOES IR temperature, (b) NEXRAD radar reflectivity at 2.5 km MSL, (c) cloud patch segmentation from GOES IR temperature (the color patches are identified as deep

76

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud-Resolving Model (CRM) Simulations: Robust Results for Use in Climate Cloud-Resolving Model (CRM) Simulations: Robust Results for Use in Climate Model Development Download a printable PDF Submitter: Fridlind, A. M., NASA - Goddard Institute for Space Studies Smith-Mrowiec, A. A., Columbia University/NASA Goddard Institute for Space Studies Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mrowiec AA, C Rio, AM Fridlind, AS Ackerman, AD Del Genio, OM Pauluis, AC Varble, and J Fan. 2012. "Analysis of cloud-resolving simulations of a tropical mesoscale convective system observed during TWP-ICE: Vertical fluxes and draft properties in convective and stratiform regions." Journal of Geophysical Research, 117, D19201, doi:10.1029/2012JD017759.

77

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring Parameterization for Turbulent Entrainment-Mixing Processes in Exploring Parameterization for Turbulent Entrainment-Mixing Processes in Clouds Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Lu, C., Brookhaven National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Lu C, S Niu, S Krueger, and T Wagner. 2013. "Exploring parameterization for turbulent entrainment-mixing processes in clouds." Journal of Geophysical Research - Atmospheres, 118(1), doi:10.1029/2012JD018464. Relationships between the three microphysical measures of homogeneous mixing degree (¤ł1, ¤ł2, ¤ł3) and the two transition scale numbers (NLa, NL0), respectively. The results shown here are from the EMPM simulations.

78

HIGH SPECTRAL RESOLUTION LIDAR EMULATION VIA DOPPLER CLOUD RADAR SPECTRUM PROCESSING AND ITS IMPLICATIONS FOR  

E-Print Network (OSTI)

targeting the liquid, and radar, the ice. Depolarization measurements can assist in resolving phase to identify liquid, ice, and mixed-phase clouds. __________ NOTICE: This manuscript has been authored IMPLICATIONS FOR CLOUD PHASE IDENTIFICATION E. Luke, P. Kollias, and M. Shupe Presented at the American

79

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Biases in Column Absorption for Fractal Clouds Biases in Column Absorption for Fractal Clouds Submitter: Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marshak, Alexander; Davis, Anthony; Wiscombe, Warren; Ridgway, William; Cahalan, Robert; 1998: "Biases in Shortwave Column Absorption in the Presence of Fractal Clouds," J. Climate 11(3):431-446. Figure 1: Water vapor transmission spectra for solar zenith angle of 60 degree. From the top: from TOA to 5 km, from TOA to 1 km, from TOA to 0.5 km and, finally, from TOA to surface. Figure 2: Fractional cloudiness N = 0.777. (a) Horizontal distribution of optical depth, the same for both models. (b) Horizontal distribution of cloud height for optical model. Constant cloud top and cloud base; thus

80

Aerosol Size Distribution, Particle Concentration, and Optical Property Variability near Caribbean Trade Cumulus Clouds: Isolating Effects of Vertical Transport and Cloud Processing from Humidification Using Aircraft Measurements  

Science Conference Proceedings (OSTI)

This paper examines the effect of trade wind cumulus clouds on aerosol properties in the near-cloud environment using data from the Rain in Cumulus over the Ocean (RICO) campaign. Aerosol size distributions, particle concentrations, and optical ...

Robert M. Rauber; Guangyu Zhao; Larry Di Girolamo; MarilÚ Colˇn-Robles

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosols Help Clouds Warm Up Arctic Aerosols Help Clouds Warm Up Arctic Submitter: Lubin, D., National Science Foundation Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Lubin, D., and A.M. Vogelmann, 2006: A climatologically significant aerosol longwave indirect effect in the Arctic, Nature, 439, 26 January, 453-456, doi:10.1038/nature04449 In a process known as the first aerosol indirect effect, enhanced aerosol concentrations cause the droplets in a cloud to be smaller and more numerous within a cloud of fixed water amount. This study found that this process can make many clouds more opaque and emit more thermal energy to the surface. The warming of the Arctic climate and decreases in sea ice area and thickness observed over recent decades are believed to result from

82

Entrainment in Cumulus Clouds  

Science Conference Proceedings (OSTI)

Entrainment of dry air into cumulus clouds influences the development of the clouds in a major way. The many aspects of the entrainment process are examined in this paper by critically reviewing the literature from the time when investigations ...

Alan M. Blyth

1993-04-01T23:59:59.000Z

83

An Automated Cirrus Cloud Detection Method for a Ground-Based Cloud Image  

Science Conference Proceedings (OSTI)

Cloud detection is a basic research for achieving cloud-cover state and other cloud characteristics. Because of the influence of sunlight, the brightness of sky background on the ground-based cloud image is usually nonuniform, which increases the ...

Jun Yang; Weitao Lu; Ying Ma; Wen Yao

2012-04-01T23:59:59.000Z

84

Numerical Investigations on the Influence of Subgrid-Scale Surface Heterogeneity on Evapotranspiration and Cloud Processes  

Science Conference Proceedings (OSTI)

Numerical experiments were performed with a meso-?-scale meteorological model to investigate the influence of subgrid-scale surface heterogeneity on the prediction of evapotranspiration, cloud, and precipitation formation. The results of ...

Nicole M÷lders; Armin Raabe

1996-06-01T23:59:59.000Z

85

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Putting the Pieces Together Putting the Pieces Together Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Fan J, S Ghan, M Ovchinnikov, X Liu, P Rasch, and A Korolev. 2011. "Representation of arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study." Journal of Geophysical Research - Atmospheres, 116, D00T07, doi:10.1029/2010JD015375. PNNL's Arctic mixed-phase cloud research was augmented with field observations from the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Northern Alaska. Photo courtesy of A. Korolev, Environment Canada. Vertical cross sections of (a) the vertical velocity (the contour lines)

86

ARRA-funded Cloud Radar Development for the Department of Energy's ARM Climate Research Facility  

E-Print Network (OSTI)

. Like many companies, ProSensing was expecting to experience a considerable reduction in orders in 2009 will keep a number of their technician employed for several months in mid-2010. In addition to the direct for similar cloud radar contracts for customers in India, China and Korea. By developing these complex radar

87

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

A Simple Stochastic Model for Generating Broken Cloud Optical Depth and A Simple Stochastic Model for Generating Broken Cloud Optical Depth and Cloud Top Height Fields Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Prigarin, S, and A Marshak. 2008. "A simple stochastic model for generating broken cloud optical depth and cloud top height fields." Journal of Atmospheric Sciences, in press. Fig. 1. A 68-km by 68-km region in Brazil centered at 17o S and 42o W collected on August 9, 2001, at 1015 local time. The solar zenith angle 410; the solar azimuth angle 23o (from the top). (a) moderate-resolution imaging spectroradiometer (MODIS) true color red, green, blue (RGB) 1-km

88

CHEMICAL PROCESS RESEARCH AND DEVELOPMENT PROGRAM  

E-Print Network (OSTI)

the fermentation and distillation processes have beensteam production. The distillation energy requirement islow energy costs to distillation column pressure. A second

Authors, Various

2013-01-01T23:59:59.000Z

89

The Impact of Aircraft Dropsonde and Satellite Wind Data on Numerical Simulations of Two Landfalling Tropical Storms during the Tropical Cloud Systems and Processes Experiment  

Science Conference Proceedings (OSTI)

Dropwindsonde, Geostationary Operational Environmental Satellite-11 (GOES-11) rapid-scan atmospheric motion vectors, and NASA Quick Scatterometer (QuikSCAT) near-surface wind data collected during NASAĺs Tropical Cloud Systems and Processes (TCSP)...

Zhaoxia Pu; Xuanli Li; Christopher S. Velden; Sim D. Aberson; W. Timothy Liu

2008-02-01T23:59:59.000Z

90

A Parameterization for LandľAtmosphere-Cloud Exchange (PLACE): Documentation and Testing of a Detailed Process Model of the Partly Cloudy Boundary Layer over Heterogeneous Land  

Science Conference Proceedings (OSTI)

This paper presents a general description of, and demonstrates the capabilities of, the Parameterization for LandľAtmosphereľCloud Exchange (PLACE). The PLACE model is a detailed process model of the partly cloudy atmospheric boundary layer and ...

Peter J. Wetzel; Aaron Boone

1995-07-01T23:59:59.000Z

91

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Susceptibility Measures Potential Cloud Sensitivity to First Aerosol Cloud Susceptibility Measures Potential Cloud Sensitivity to First Aerosol Indirect Effect Download a printable PDF Submitter: Oreopoulos, L., NASA Platnick, S., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Platnick, S, and L Oreopoulos. 2008. "Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 1. Theoretical analysis and examples from MODIS." Journal of Geophysical Research doi:10.1029/2007JD009654, in press. Oreopoulos, L., and S. Platnick. 2008. Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 2. Global analysis from MODIS, J. Geophys. Res., doi:10.1029/2007JD009655, in press. Theoretical calculations with a shortwave broadband radiative transfer

92

CHEMICAL PROCESS RESEARCH AND DEVELOPMENT PROGRAM  

E-Print Network (OSTI)

U.S. Dept. of Energy. Chemical Marketing Reporter, JanuaryUniv. of Calif. Dept. of Chemical Engineering (March 1977).Ergun et aL, "Analysis of Chemical Coal Cleaning Processes,"

Authors, Various

2013-01-01T23:59:59.000Z

93

EM Marks Milestone at Separations Process Research Unit | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marks Milestone at Separations Process Research Unit Marks Milestone at Separations Process Research Unit EM Marks Milestone at Separations Process Research Unit March 7, 2013 - 12:00pm Addthis Workers construct an enclosure for Building H2 at the Separations Process Research Unit Workers construct an enclosure for Building H2 at the Separations Process Research Unit NISKAYUNA, N.Y. - EM met a major regulatory milestone at the Separations Process Research Unit (SPRU) by completing construction of enclosures and ventilation systems required for cleanup. The SPRU project at the Knolls Atomic Power Laboratory reached the milestone last week in a consent order between DOE and the U.S. Environmental Protection Agency issued pursuant to the Clean Air Act. The Department has now accomplished all the requirements of the consent order.

94

A Calorimetric Jet Engine Technique for Estimating the Condensed Water Mixing Ratio in Cumulus Clouds for Cloud Physical and Weather Modification Research  

Science Conference Proceedings (OSTI)

A technique has been developed for deriving estimates of condensed water mixing ratio in cumulus clouds from measurements of potential temperature in the air in the compressor of a jet engine. Condensate that enters the engine at low temperatures ...

Griffith Morgan; Mark Schormann; Erika Botha; Graeme K. Mather

2000-11-01T23:59:59.000Z

95

Formation of Atlantic Hurricanes from Cloud Clusters and Depressions  

Science Conference Proceedings (OSTI)

The role of large scale eddy processes in the transformation of cloud clusters and depressions into hurricanes is investigated by using different initial conditions in numerical integrations of the Naval Research Laboratory limited-area hurricane ...

Malakondayya Challa; Richard L. Pfeffer

1990-04-01T23:59:59.000Z

96

Turbulent molecular clouds  

E-Print Network (OSTI)

Stars form within molecular clouds but our understanding of this fundamental process remains hampered by the complexity of the physics that drives their evolution. We review our observational and theoretical knowledge of molecular clouds trying to confront the two approaches wherever possible. After a broad presentation of the cold interstellar medium and molecular clouds, we emphasize the dynamical processes with special focus to turbulence and its impact on cloud evolution. We then review our knowledge of the velocity, density and magnetic fields. We end by openings towards new chemistry models and the links between molecular cloud structure and star--formation rates.

Hennebelle, Patrick

2012-01-01T23:59:59.000Z

97

NREL: Hydrogen and Fuel Cells Research - Thermochemical Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Printable Version Thermochemical Processes Photo of a researcher wearing a hardhat and examining a catalytic steam reformer. Catalytic steam reforming increases the overall yield of fuel gas from biomass. NREL's researchers have investigated the thermochemical conversion of renewable energy feedstocks since the lab's inception. Researchers are developing gasification and pyrolysis processes to convert biomass and its residues to hydrogen, fuels, chemicals, and power. Building on past successes, biomass is increasingly one of the best near-term options for renewable hydrogen production. Thermochemical Process R&D Research and development at NREL provides a fundamental understanding of the chemistry of biomass pyrolysis. This R&D includes stabilizing and

98

DOE - Office of Legacy Management -- Separations Process Research Unit -  

NLE Websites -- All DOE Office Websites (Extended Search)

Separations Process Research Unit - Separations Process Research Unit - 024 FUSRAP Considered Sites Site: Separations Process Research Unit (024) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This facility was constructed and operated by the Atomic Energy Commission as a pilot plant for developing and testing the chemical processes to extract both uranium and plutonium from irradiated fuel. Through Fiscal Year 1999 the Department of Energy's Office of Naval Reactors performed surveillance and maintenance activities. In Fiscal Year 2000, a contract was initiated to begin the characterization of the facilities. This will be

99

IC cloud: Enabling compositional cloud  

Science Conference Proceedings (OSTI)

Cloud computing has attracted great interest from both academic and industrial communities. Different paradigms, architectures and applications based on the concept of cloud have emerged. Although many of them have been quite successful, efforts are ... Keywords: Cloud computing, cloud elasticity, cloud service, compositional cloud, infrastructure as a service (IaaS)

Yi-Ke Guo; Li Guo

2011-08-01T23:59:59.000Z

100

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

The Role of Microphysics Parameterization in Simulating Tropical Mesoscale The Role of Microphysics Parameterization in Simulating Tropical Mesoscale Convective Systems Download a printable PDF Submitter: Van Weverberg, K., Brookhaven National Laboratory Vogelmann, A. M., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Van Weverberg K, AM Vogelmann, W Lin, EP Luke, AT Cialella, P Minnis, MM Khaiyer, ER Boer, and MP Jensen. 2013. "The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the Tropical Western Pacific." Journal of the Atmospheric Sciences, 70(4), doi:10.1175/JAS-D-12-0104.1. The spatial distribution of cloud types at 3 UTC on 27 December 2003 as observed by GOES-9 and as simulated by the three commonly used microphysics

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulating Mixed-Phase Clouds: Sensitivity to Ice Initiation Simulating Mixed-Phase Clouds: Sensitivity to Ice Initiation Download a printable PDF Submitter: Sednev, I., Lawrence Berkeley National Laboratory Menon, S., Lawrence Berkeley National Laboratory McFarquhar, G., University of Illinois, Urbana Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: I Sednev, S Menon, and G McFarquhar. 2008. "Simulating mixed-phase Arctic stratus clouds: Sensitivity to ice initiation mechanisms." Atmospheric Chemistry and Physics Discussion 8: 11755-11819. The vertical structure and radiative properties of persistent low-level Arctic clouds depend on their microphysics, and thus, estimation of the relative significance of the microphysical processes that occur in these

102

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite Constraints on Cloud-Top Phase, Ice Size, and Asymmetry Parameter Satellite Constraints on Cloud-Top Phase, Ice Size, and Asymmetry Parameter over Deep Convection Download a printable PDF Submitter: van Diedenhoven, B., NASA - Goddard Institute for Space Studies Fridlind, A. M., NASA - Goddard Institute for Space Studies Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: van Diedenhoven B, AM Fridlind, AS Ackerman, and B Cairns. 2012. "Evaluation of hydrometeor phase and ice properties in cloud-resolving model simulations of tropical deep convection using radiance and polarization measurements." Journal of the Atmospheric Sciences, 69(11), doi:10.1175/JAS-D-11-0314.1. Liquid index (LI) values are directly derived from multi-directional polarized reflectances. POLDER measurements (dashed line envelop) show

103

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Mixed-Phase Cloud Radiative Properties from M-PACE Microphysical Retrievals Mixed-Phase Cloud Radiative Properties from M-PACE Microphysical Retrievals Download a printable PDF Submitter: de Boer, G., University of Colorado, Boulder/CIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: de Boer G, WD Collins, S Menon, and CN Long. 2011. "Using surface remote sensors to derive radiative characteristics of mixed-phase clouds: An example from M-PACE." Atmospheric Chemistry and Physics, 11, doi: 10.5194/acp-11-11937-2011. Measured and retrieved cloud properties on 10 October 2004. Included are (top to bottom) AHSRL bacscatter cross-section, AHSRL depolarization ratio, MMCR reflectivity, and profiles of liquid water content (LWC), ice water content (IWC), and liquid (r_{e,liq}) and ice (r$_{e,ice}$) effective

104

Super Building Insulation by CO2 Foaming Process Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies ┬╗ Super Building Insulation by CO2 Foaming Emerging Technologies ┬╗ Super Building Insulation by CO2 Foaming Process Research Project Super Building Insulation by CO2 Foaming Process Research Project The Department of Energy is currently researching the development of building superinsulation through a carbon dioxide (CO2) foaming process. Project Description This project seeks to develop building super insulation through a carbon dioxide foaming process that does not use hydrofluorocarbons (HFCs), and which produces insulation with a high R-value. Project Partners Research is being undertaken between the Department of Energy and The Industrial Science & Technology Network. Project Goals The goal of this project is to develop advanced insulation without HFC, and to achieve a competitive processing cost for CO2 foaming technology.

105

Simulations of the Atmospheric General Circulation Using a Cloud-Resolving Model as a Superparameterization of Physical Processes  

Science Conference Proceedings (OSTI)

Traditionally, the effects of clouds in GCMs have been represented by semiempirical parameterizations. Recently, a cloud-resolving model (CRM) was embedded into each grid column of a realistic GCM, the NCAR Community Atmosphere Model (CAM), to ...

Marat Khairoutdinov; David Randall; Charlotte DeMott

2005-07-01T23:59:59.000Z

106

Nucleation Processes in Deep Convection Simulated by a Cloud-System-Resolving Model with Double-Moment Bulk Microphysics  

Science Conference Proceedings (OSTI)

A novel type of limited double-moment scheme for bulk microphysics is presented here for cloud-system-resolving models (CSRMs). It predicts the average size of cloud droplets and crystals, which is important for representing the radiative impact ...

Vaughan T. J. Philips; Leo J. Donner; Stephen T. Garner

2007-03-01T23:59:59.000Z

107

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing the Co-Existence of Water and Ice in Arctic Clouds Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud DistributionsCharacterizations...

108

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

On Thin Ice: Retrieval Algorithms for Ice Clouds Examined for Improvements Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions...

109

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Pollution + Storm Clouds Warmer Atmosphere Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation...

110

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Arctic Clouds Download a printable PDF Submitter: Earle, M., Environment Canada Liu, P., Environment Canada Area of Research: Cloud DistributionsCharacterizations...

111

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Boundary Detection and Analysis from Micro Pulse Lidar Submitter: Spinhirne, J., University of Arizona Area of Research: Cloud DistributionsCharacterizations Working...

112

A C-Band Coherent Polarimetric Radar for Propagation and Cloud Physics Research  

Science Conference Proceedings (OSTI)

At DFVLR in Oberpfaffenhofen, West Germany, a recently developed coherent polarimetric C-band radar is now in operation for research in atmospheric physics and radio wave propagation physics. Its capabilities provide opportunities to investigate ...

Arno C. Schroth; Madhukar S. Chandra; Peter F. Mesichner

1988-12-01T23:59:59.000Z

113

Cirrus Clouds. Part I: A Cirrus Cloud Model  

Science Conference Proceedings (OSTI)

A two-dimensional (x, z), time-dependent, numerical cloud model is developed for the purpose of investigating the role of various physical processes involved in the maintenance of cirriform clouds. In addition to accounting for dynamic and ...

David O'C. Starr; Stephen K. Cox

1985-12-01T23:59:59.000Z

114

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Shortwave Absorption in Tropical Clouds Shortwave Absorption in Tropical Clouds Download a printable PDF Submitter: McFarlane, S. A., U.S. Department of Energy Mather, J. H., Pacific Northwest National Laboratory Ackerman, T. P., University of Washington Liu, Z., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: McFarlane, SA, JH Mather, TP Ackerman, and Z Liu. 2008. "Effect of clouds on the vertical distribution of SW absorption in the Tropics." Journal of Geophysical Research, in press. Daily average all-sky and clear-sky calculated SW column absorption at Manus and Nauru. On average, there is little difference in absorption between the all-sky and clear-sky conditions because of the compensating

115

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Fractional Sky Cover from Spectral Measurements Estimating Fractional Sky Cover from Spectral Measurements Download a printable PDF Submitter: Long, C. N., Pacific Northwest National Laboratory Min, Q., State University of New York, Albany Wang, T., State University of New York, Albany Duan, M., Institute of Atmospheric Physics/Chinese Academy of Science Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Min Q, T Wang, CN Long, and M Duan. 2008. "Estimating fractional sky cover from spectral measurements." Journal of Geophysical Research - Atmospheres, 113, D20208, doi:10.1029/2008JD010278. Retrieved and observed cloud fractions and corresponding TSI cloud imagers on 8 July 2005 at Pt. Reyes. Scatterplot of retrieved cloud fraction from spectral ratio method and SW

116

DOE - Office of Legacy Management -- Processes Research Inc - OH 44  

Office of Legacy Management (LM)

Processes Research Inc - OH 44 Processes Research Inc - OH 44 FUSRAP Considered Sites Site: PROCESSES RESEARCH, INC (OH.44) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 2905 Vernon Place , Cincinnati , Ohio OH.44-1 Evaluation Year: 1991 OH.44-2 OH.44-3 Site Operations: Research and development of machining methods during the early 1950s; no indication of involvement with radioactive materials. OH.44-1 OH.44-3 Site Disposition: Eliminated - Potential for contamination considered remote based on nature of operations at the site OH.44-2 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None OH.44-3 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP

117

NREL: Photovoltaics Research - New Materials, Devices, and Processes for  

NLE Websites -- All DOE Office Websites (Extended Search)

New Materials, Devices, and Processes for Advanced Concepts New Materials, Devices, and Processes for Advanced Concepts Computational Science and Theory We can use high-performance computing tools in modeling and simulation studies of semiconductor and other solar materials. We also determine the performance of solar devices. Theoretical studies can help us understand underlying physical principles or predict useful chemical compositions and crystalline structures. Scientific Computing Experimental Materials Science Solid-State Theory. NREL has strong complementary research capabilities in organic photovoltaic (OPV) cells, transparent conducting oxides (TCOs), combinatorial (combi) methods, and atmospheric processing. From fundamental physical studies to applied research relating to solar industry needs, we are developing the

118

NREL: Biomass Research - Projects in Integrated Biorefinery Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Integrated Biorefinery Processes Projects in Integrated Biorefinery Processes A photo of a control room with four large computer screens. A man and a woman are looking at the screens. The Thermochemical Process Development Unit is equipped with sophisticated process monitoring and operation control systems. NREL is focused on integrating all the biomass conversion unit operations. With extensive knowledge of the individual unit operations, NREL is well-positioned to link these operations together at the mini-pilot and pilot scales. Among the integrated biorefinery projects are: Sorghum to Ethanol Research Initiative Sorghum shows promising characteristics as a feedstock for biofuel production. However, little basic research data exists. NREL is performing integrated research on sorghum by studying it at every step along the

119

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

An Affordable, Flexible, and More Accurate Method for Computing Radiative An Affordable, Flexible, and More Accurate Method for Computing Radiative Transfer Submitter: Pincus, R., NOAA - CIRES Climate Diagnostics Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Pincus, R., H.W. Barker, J.J. Morcrette, A fast, flexible approximate technique for computing radiative transfer in inhomogenous cloud fields, J. Geophys. Res., Vol. 108, No. D13, 4376, doi:10.1029/2002JD003322, 2003 Key Contributors: H.W. Barker, J.J. Morcrette Cloud radiative feedback-the amount of solar radiation that is absorbed by clouds before it reaches the earth and bounces back into the atmosphere-is the single most important effect determining the magnitude of possible climate responses to human activity. However, cloud properties

120

RELATE: a research training network on engineering and provisioning of service-based cloud applications  

Science Conference Proceedings (OSTI)

The RELATE Initial Training Network (ITN), funded by the EU in the Marie Curie Actions programme, is a multidisciplinary training network of European academic and industrial partners working together to train academic researchers and next generation ... Keywords: adaptation, mde, optimization, service-based applications

Samuel Kounev; Stamatia Rizou; Steffen Zschaler; Spiros Alexakis; Tomas Bures; Jean-Marc JÚzÚquel; Dimitrios Kourtesis; Stelios Pantelopoulos

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research  

SciTech Connect

Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

Speight, J.G.

1992-01-01T23:59:59.000Z

122

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectral Invariant Behavior of Zenith Radiance Around Cloud Edges Observed Spectral Invariant Behavior of Zenith Radiance Around Cloud Edges Observed by ARM SWS Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Knyazikhin, Y., Boston University Chiu, J., University of Reading Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marshak A, Y Knyazikhin, JC Chiu, and WJ Wiscombe. 2009. "Spectral invariant behavior of zenith radiance around cloud edges observed by ARM SWS." Geophysical Research Letters, 36, L16802, doi:10.1029/2009GL039366. (top) Time-wavelength color contour plot of ARM shortwave spectrometer (SWS) spectra measured from 21:35:24 to 21:40:24 UTC on 18 May 2007 at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) site in

123

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research  

SciTech Connect

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

1992-01-01T23:59:59.000Z

124

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

125

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

An Application of Linear Programming Techniques to ARM Polarimetric Radar An Application of Linear Programming Techniques to ARM Polarimetric Radar Processing Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, R McGraw, and L Lei. 2013. "An application of linear programming to polarimetric radar differential phase processing." Journal of Atmospheric and Oceanic Technology, , . ACCEPTED. C-band scanning ARM precipitation radar fields of radar reflectivity factor Z and processed specific differential phase KDP for a section of a Midlatitude Continental Convective Clouds Experiment (MC3E) convective event as output from LP methods implemented for the ARM PyART processing suite. Detailed microphysical insights from weather radar systems are in demand

126

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Classifying Cloud Phase Classifying Cloud Phase Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD. 2007. "A ground-based multisensory cloud phase classifier." Geophysical Research Letters 34, L22809, doi:10.1029/2007GL031008. Observations of (a) lidar backscatter, (b) lidar depolarization ratio, (c) radar reflectivity, (d) radar mean Doppler velocity, (e) radar Doppler spectrum width, (f) microwave radiometer-derived liquid water path, and (g) the resulting multisensor cloud-phase classification mask. Cloud phase identification is a necessary prerequisite to performing cloud property retrievals from remote sensor measurements. Most retrieval

127

Managing and tracing the traversal of process clouds with templates, agendas and artifacts  

Science Conference Proceedings (OSTI)

In many domains, we find tasks for which no strict process can be prescribed, but which require the expertise of case managers who work with information from a broad set of sources. To support case managers' highly individual work in such so-called "process ... Keywords: agenda items, artifacts, case management, templates

Marian Benner; Matthias Book; Tobias BrŘckmann; Volker Gruhn; Thomas Richter; Sema Seyhan

2012-09-01T23:59:59.000Z

128

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Tomography: a Novel Method for Determining 3D Cloud Liquid Water Cloud Tomography: a Novel Method for Determining 3D Cloud Liquid Water Distribution Download a printable PDF Submitter: Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Huang, D., Y. Liu, and W. Wiscombe, 2007a: Determination of cloud liquid water distribution using 3D cloud tomography. J. Geophys. Res., submitted. Cloud tomography is a novel method for determining cloud water distribution by measuring cloud microwave emission from multiple directions. The upper plot shows a 2D cross-sectional snapshot of the liquid water structure of a stratocumulus cloud simulated by a large-eddy model. It also shows the four scanning microwave radiometers used to retrieve the cloud liquid water

129

Convective cloud and rainfall processes over the Maritime Continent : simulation and analysis of the diurnal cycle  

E-Print Network (OSTI)

The Maritime Continent experiences strong moist convection, which produces significant rainfall and drives large fluxes of heat and moisture to the upper troposphere. Despite the importance of these processes to global ...

Gianotti, Rebecca L. (Rebecca Louise)

2013-01-01T23:59:59.000Z

130

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Different Strokes for Different Folks-Not Any More, Say Scientists at the Different Strokes for Different Folks-Not Any More, Say Scientists at the UK Met Office Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Morcrette CJ, EJ O'Connor, and JC Petch. 2012. "Evaluation of two cloud parametrization schemes using ARM and Cloud-Net observations." Quarterly Journal Royal Meteorological Society, 138(665), doi:10.1002/qj.969. Integrating different metrics-and their errors and biases-used in weather and climate models may improve predictions by both types of models. What works for the weather models does not for climate models. Devising a common language, which translates into integrating the slew of metrics that the weather and climate science community uses, could be a way to improve

131

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of Longwave Radiative Transfer Models for 3D Cloud Fields Performance of Longwave Radiative Transfer Models for 3D Cloud Fields Download a printable PDF Submitter: Kablick III, G. P., University of Maryland Ellingson, R. G., Florida State University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Kablick III GP, RG Ellingson, EE Takara, and J Gu. 2011. "Longwave 3D benchmarks for inhomogeneous clouds and comparisons with approximate methods." Journal of Climate, 24, doi:10.1175/2010JCLI3752.1. The respective flux and heating rate errors (model-3DMC) for (a),(b) ATEX and (c),(d) GATE A. The error profiles in (a) and (c) are to be interpreted as ICA, solid lines; MRO, dashed lines; RO, dotted lines. (b) and (d) also show the differences between MRO and RO. The horizontal lines are the

132

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Modification of the Atmospheric Boundary Layer by a Small Island: Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru Submitter: Long, C. N., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Matthews, S., J. M. Hacker, J. Cole, J. Hare, C. N. Long, and R. M. Reynolds, (2007): Modification of the atmospheric boundary layer by a small island: observations from Nauru, MWR, Vol. 135, No. 3, pages 891┬ľ905. Figure 1. Illustration of daytime heating producing a thermal internal boundary layer effect over Nauru, which in turn produces cumulous clouds above the boundary layer. Figure 2. Illustration of Nauru heat-island produced by convective rolls forming cloud streets. Figure 3. Satellite images of Nauru on December 13, 2000 showing the cloud

133

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement of Convective Entrainment Using Lagrangian Particles Measurement of Convective Entrainment Using Lagrangian Particles Download a printable PDF Submitter: Romps, D., University of California, Berkeley Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Yeo K and DM Romps. 2013. "Measurement of convective entrainment using Lagrangian particles." Journal of the Atmospheric Sciences, 70(1), doi:10.1175/JAS-D-12-0144.1. Trajectories of seven particles that are entrained at the cloud base and transported to the cloud top. Colors denote the mixing ratio of condensed water. Previous work by Romps (2010) found large entrainment rates of ~100% per kilometer for deep convection using a new technique for large-eddy simulations (LES) called "Eulerian direct measurement". These results

134

NREL: Biomass Research - Capabilities in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities in Biomass Process and Sustainability Analyses Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four men, all wearing hard hats and looking into a large square bin of dried corn stover. One man is using a white scoop to pick up some of the material and another man holds some in his hand. Members of Congress visit NREL's cellulosic ethanol pilot plant. A team of NREL researchers uses biomass process and sustainability analyses to bridge the gap between research and commercial operations, which is critical for the scale-up of biomass conversion technology. Among NREL's biomass analysis capabilities are: Life cycle assessments Technoeconomic analysis Sensitivity analysis Strategic analysis. Life Cycle Assessments Conducting full life cycle assessments is important for determining the

135

Parameterizing Size Distribution in Ice Clouds  

SciTech Connect

PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 Ám) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 Ám), known as the ôsmall modeö. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 Ám wavelength relative to 11 Ám wavelength due to the process of wave resonance or photon tunneling more active at 12 Ám. This makes the 12/11 Ám absorption optical depth ratio (or equivalently the 12/11 Ám Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

DeSlover, Daniel; Mitchell, David L.

2009-09-25T23:59:59.000Z

136

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Millimeter Wave Scattering from Ice Crystals and Their Aggregates Millimeter Wave Scattering from Ice Crystals and Their Aggregates Download a printable PDF Submitter: Botta, G., Pennsylvania State University Verlinde, J., Pennsylvania State University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Botta G, K Aydin, J Verlinde, A Avramov, A Ackerman, A Fridlind, M Wolde, and G McFarquhar. 2011. "Millimeter wave scattering from ice crystals and their aggregates: Comparing cloud model simulations with X- and Ka-band radar measurements." Journal of Geophysical Research - Atmospheres, 116, D00T04, doi:10.1029/2011JD015909. Observational data sets are needed to drive and evaluate results from cloud-resolving model (CRM) simulations in order to improve parameterizations of the physical processes. Radar is one of the few

137

Evaluating Mesoscale Model Predictions of Clouds and Radiation with SGP ARM Data over a Seasonal Timescale  

Science Conference Proceedings (OSTI)

This study evaluates the predictions of radiative and cloud-related processes of the fifth-generation Pennsylvania State UniversityľNational Center for Atmospheric Research (PSUľNCAR) Mesoscale Model (MM5). It is based on extensive comparison of ...

Franšoise Guichard; David B. Parsons; Jimy Dudhia; James Bresch

2003-05-01T23:59:59.000Z

138

On the Global Variation of Precipitating Layer Clouds  

Science Conference Proceedings (OSTI)

The aim of the Global Energy and Water Cycle Experiment Cloud System Study (GCSS) is to promote the description and understanding of key cloud system processes, with the aim of developing and improving the representation of cloud processes in ...

B. F. Ryan

1996-01-01T23:59:59.000Z

139

ISCCP Cloud Data Products  

Science Conference Proceedings (OSTI)

The operational data collection phase of the International Satellite Cloud Climatology Project (ISCCP) began in July 1983. Since then, visible and infrared images from an international network of weather satellites have been routinely processed ...

William B. Rossow; Robert A. Schiffer

1991-01-01T23:59:59.000Z

140

Can Cloud Computing Address the Scientific Computing Requirements...  

NLE Websites -- All DOE Office Websites (Extended Search)

Can Cloud Computing Address the Scientific Computing Requirements for DOE Researchers? Well, Yes, No and Maybe Can Cloud Computing Address the Scientific Computing Requirements for...

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

The Vertical Structure of Cloud Radiative Forcing at the ACRF SGP Revealed The Vertical Structure of Cloud Radiative Forcing at the ACRF SGP Revealed by 8 Years of Continuous Measurements Submitter: Mace, G., Utah State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Accepted to Journal of Climate, 2007. Figure 1. Cloud occurrence, coverage, radiative forcing, and radiation effects over a composite annual cycle that is derived by averaging all observations collected during a particular month for all years. a) cloud occurrence in 100 mb vertical bins, b) cloud coverage, c) infrared cloud radiative forcing in 100 mb vertical bins, d) solar cloud radiative forcing, e) net cloud radiative forcing, f,g,h) solar (dotted), IR (solid), and net (dashed) cloud radiative effect for TOA (f), atmosphere (g), and

142

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research  

SciTech Connect

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-01-01T23:59:59.000Z

143

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Observations at Niamey During the AMF Deployment Cloud Observations at Niamey During the AMF Deployment Submitter: Kollias, P., McGill University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Kollias, P. and M. A. Miller, 2007: Cloud and Precipitation Observations at Niamey During the 2006 ARM Mobile Facility Deployment. Submitted to Geophysical Research Letters. Daily observed cloud fraction in Niamey during the AMF deployment. The cloud fraction is derived using measurements from the 94-GHz radar, the MPL, and the ceilometer. The vertical resolution is 260 m, and a 5-day temporal filter is applied to the daily cloud fraction profiles. (a) Monthly-averaged cloud and precipitation fraction. The monthly mean and standard deviation of cirrus cloud top (white line), middle cloud tops

144

ARM - Measurement - Cloud extinction  

NLE Websites -- All DOE Office Websites (Extended Search)

extinction extinction ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud extinction The removal of radiant energy from an incident beam by the process of cloud absorption and/or scattering. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments NEPHELOMETER : Nephelometer Field Campaign Instruments CEP : Cloud Extinction Probe CLDAEROSMICRO : Cloud and Aerosol Microphysical Properties EC-CONVAIR580-BULK : Environment Canada Convair 580 Bulk Parameters

145

BNL | Atmospheric Systems Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric System Research is a DOE observation-based research program Atmospheric System Research is a DOE observation-based research program created to advance process-level understanding of the key interactions among aerosols, clouds, precipitation, radiation, dynamics, and thermodynamics, with the ultimate goal of reducing the uncertainty in global and regional climate simulations and projections. General areas of research at BNL under this program include studies of aerosol and cloud lifecycles, and cloud-aerosol-precipitation interactions. Contact Robert McGraw, 631.344.3086 aerosols Aerosol Life Cycle The strategic focus of the Aerosol Life Cycle research is observation-based process science-examining the properties and evolution of atmospheric aerosols. Observations come from both long-term studies conducted by the

146

Simulations of Arctic Mixed-Phase Clouds in Forecasts with CAM3 and AM2 for M-PACE  

SciTech Connect

Simulations of mixed-phase clouds in short-range forecasts with the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed under the DOE CCPP-ARM Parameterization Testbed (CAPT), which initializes the climate models with analysis data produced from numerical weather prediction (NWP) centers. It is shown that CAM3 significantly underestimates the observed boundary layer mixed-phase clouds and cannot realistically simulate the variations with temperature and cloud height of liquid water fraction in the total cloud condensate based an oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer clouds while its clouds contain much less cloud condensate than CAM3 and the observations. Both models underestimate the observed cloud top and base for the boundary layer clouds. The simulation of the boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used. The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes in CAM3. It is shown that the Bergeron-Findeisen process, i.e., the ice crystal growth by vapor deposition at the expense of coexisting liquid water, is important for the models to correctly simulate the characteristics of the observed microphysical properties in mixed-phase clouds. Sensitivity tests show that these results are not sensitive to the analysis data used for model initializations. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. Ice crystal number density has large impact on the model simulated mixed-phase clouds and their microphysical properties and needs to be accurately represented in climate models.

Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Liu, Xiaohong; Ghan, Steven J.

2008-02-29T23:59:59.000Z

147

Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations  

SciTech Connect

Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m{sup -2}. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5 C to -40 C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.

Liu X.; Lin W.; Xie, S.; Boyle, J.; Klein, S. A.; Shi, X.; Wang, Z.; Ghan, S. J.; Earle, M.; Liu, P. S. K.; Zelenyuk, A.

2011-12-24T23:59:59.000Z

148

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, The vertical cloud structure of the West African monsoon  

E-Print Network (OSTI)

of the West African monsoon: A four-year climatology using CloudSat and CALIPSO T. H. M. Stein,1 D. J. Parker Abstract. The West African summer monsoon (WAM) is an important driver of the global climate and locally. Introduction The West African summer monsoon (WAM) controls the climate of the countries of sub-Saharan West

Hogan, Robin

149

Cloud computing: Its history of development, modern state, and future considerations  

Science Conference Proceedings (OSTI)

In this article, the author describes the history of the development, modern state, and future considerations of cloud (diffused) computing as one of the modern innovative technologies. The models of cloud computing and its advantages and disadvantages ... Keywords: cloud computing, cloud data processing, community cloud, information technology, innovative technology, operating system, private cloud, public cloud

V. V. Arutyunov

2012-07-01T23:59:59.000Z

150

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Entrainment Rate in Shallow Cumuli: Probabilistic Distribution and Entrainment Rate in Shallow Cumuli: Probabilistic Distribution and Dependence on Dry Air Sources Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Lu, C., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lu C, Y Liu, S Niu, and AM Vogelmann. 2012. "Lateral entrainment rate in shallow cumuli: Dependence on dry air sources and probability density functions." Geophysical Research Letters, 39, L20812, doi:10.1029/2012GL053646. Probability density functions (PDFs) of entrainment rate (╬╗) for different dry air sources in eight cumulus flights. The rate at which cloud engulfs dry air (entrainment rate) has proven to be one of the strongest controls on the climate sensitivity of climate models;

151

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Program Achieves Milestone in Global Cloud Properties Research ARM Program Achieves Milestone in Global Cloud Properties Research Submitter: Revercomb, H. E., University of Wisconsin, Madison Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Knuteson, R.O., Best, F.A., Dedecker, R.G., Feltz, W.F., Revercomb, H.E., and Tobin, D.C., 2004: "10 Years of AERI Data from the DOE ARM Southern Great Plains Site," In Proceedings from the Fourteenth ARM Science Team Meeting, U.S. Department of Energy,Washington, D.C. Figure 1 Figure 2 From the unassuming farmlands of north-central Oklahoma comes a milestone for the global climate research community. March 2004 marked the 10-year anniversary for an instrument that now holds the prestigious distinction of providing the longest set of continuous atmospheric interferometer data

152

Advanced computational research in materials processing for design and manufacturing  

DOE Green Energy (OSTI)

The computational requirements for design and manufacture of automotive components have seen dramatic increases for producing automobiles with three times the mileage. Automotive component design systems are becoming increasingly reliant on structural analysis requiring both overall larger analysis and more complex analyses, more three-dimensional analyses, larger model sizes, and routine consideration of transient and non-linear effects. Such analyses must be performed rapidly to minimize delays in the design and development process, which drives the need for parallel computing. This paper briefly describes advanced computational research in superplastic forming and automotive crash worthiness.

Zacharia, T. [Oak Ridge National Lab., TN (United States). Metals and Ceramics

1994-12-31T23:59:59.000Z

153

2004 research briefs :Materials and Process Sciences Center.  

Science Conference Proceedings (OSTI)

This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

Cieslak, Michael J.

2004-01-01T23:59:59.000Z

154

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Buffering of Ice Crystal Number Concentration to Ice Nucleus Abundance Buffering of Ice Crystal Number Concentration to Ice Nucleus Abundance Above Arctic Stratus Download a printable PDF Submitter: Fridlind, A. M., NASA - Goddard Institute for Space Studies Ackerman, A., NASA - Goddard Institute for Space Studies Area of Research: Cloud Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Fridlind AM, B van Diedenhoven, AS Ackerman, A Avramov, A Mrowiec, H Morrison, P Zuidema, and MD Shupe. 2012. "A FIRE-ACE/SHEBA case study of mixed-phase Arctic boundary-layer clouds: Entrainment rate limitations on rapid primary ice nucleation processes." Journal of the Atmospheric Sciences, 69(1), doi:10.1175/JAS-D-11-052.1. Observed and simulated histograms of MMCR radar reflectivity (left) and

155

A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes  

Science Conference Proceedings (OSTI)

Observations of long-lived mixed-phase Arctic boundary layer clouds on 7 May 1998 during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)ľArctic Cloud Experiment (ACE)/Surface Heat Budget of the Arctic ...

Ann M. Fridlind; Bastiaan van Diedenhoven; Andrew S. Ackerman; Alexander Avramov; Agnieszka Mrowiec; Hugh Morrison; Paquita Zuidema; Matthew D. Shupe

2012-01-01T23:59:59.000Z

156

Climate-Weather Modeling Studies Using a Prototype Global Cloud-System  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate-Weather Modeling Studies Using a Prototype Global Cloud-System Resolving Model Climate-Weather Modeling Studies Using a Prototype Global Cloud-System Resolving Model Climate-Weather Modeling Studies Using a Prototype Global Cloud-System Resolving Model PI Name: Venkatramani Balaji PI Email: balaji@princeton.edu Institution: Geophysical Fluid Dynamics Laboratory Allocation Program: ESP Allocation Hours at ALCF: 150 Million Year: 2010 to 2013 Research Domain: Earth Science We expect our understanding of the role of clouds in climate to undergo a qualitative change as the resolutions of global models begin to encompass clouds. At these resolutions, non-hydrostatic dynamics become significant and deep convective processes are resolved. We are poised at the threshold of being able to run global scale simulations that include direct, non-parameterized, simulations of deep convective clouds. The goal of this

157

Racoro Extended-Term Aircraft Observations of Boundary Layer Clouds  

Science Conference Proceedings (OSTI)

A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in situ statistical characterization of continental boundary layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the ...

Andrew M. Vogelmann; Greg M. McFarquhar; John A. Ogren; David D. Turner; Jennifer M. Comstock; Graham Feingold; Charles N. Long; Haflidi H. Jonsson; Anthony Bucholtz; Don R. Collins; Glenn S. Diskin; Hermann Gerber; R. Paul Lawson; Roy K. Woods; Elisabeth Andrews; Hee-Jung Yang; J. Christine Chiu; Daniel Hartsock; John M. Hubbe; Chaomei Lo; Alexander Marshak; Justin W. Monroe; Sally A. McFarlane; Beat Schmid; Jason M. Tomlinson; Tami Toto

2012-06-01T23:59:59.000Z

158

Cloud Clearing over the Ocean in the Processing of Data from the Along-Track Scanning Radiometer (ATSR)  

Science Conference Proceedings (OSTI)

Infrared radiometric measurements of surface parameters are prone to error if clouds are present in the observation path. The along-track scanning radiometer (ATSR) with its novel dual-view feature is able to correct for absorption effects in the ...

Albin M. Zßvody; Christopher T. Mutlow; David T. Llewellyn-Jones

2000-05-01T23:59:59.000Z

159

Cloud Chmabers  

NLE Websites -- All DOE Office Websites (Extended Search)

Video - (Requires Windows Media Player) Build your own cloud chamber - Instructions Project Contact: Tom Jordan Web Maintainer: qnet-webmaster@fnal.gov Last Update: May 31, 2011...

160

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Effective Diameter in Ice Clouds and Its Application to Terrestrial Radiation Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Area of Research:...

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Enabling cloud interoperability with COMPSs  

Science Conference Proceedings (OSTI)

The advent of Cloud computing has given to researchers the ability to access resources that satisfy their growing needs, which could not be satisfied by traditional computing resources such as PCs and locally managed clusters. On the other side, such ... Keywords: PaaS, cloud computing, data mining, parallel programming models

Fabrizio Marozzo; Francesc Lordan; Roger Rafanell; Daniele Lezzi; Domenico Talia; Rosa M. Badia

2012-08-01T23:59:59.000Z

162

Cellular clouds  

Science Conference Proceedings (OSTI)

This paper progresses an analysis of what it means to be a cellular network operator and what form the ownership and control of future cellular networks may take. Alternative modes of ownership may allow for the creation of more flexible cellular networking ... Keywords: Cellular Cloud, Cellular network, Cloud Computing, Cognitive radio, DSA, LTE, MVNO, Services, Utility Cellular Network

Tim Forde; Linda Doyle

2013-03-01T23:59:59.000Z

163

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

New Method Simulates 3D Ice Crystal Growth Within Clouds New Method Simulates 3D Ice Crystal Growth Within Clouds Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Harrington JY, K Sulia, and H Morrison. 2013. "A method for adaptive habit prediction in bulk microphysical models. Part I: theoretical development." Journal of the Atmospheric Sciences, 70(2), doi:10.1175/JAS-D-12-040.1. Harrington JY, K Sulia, and H Morrison. 2013. "A method for adaptive habit prediction in bulk microphysical models. Part II: parcel model corroboration." Journal of the Atmospheric Sciences, 70(2), doi:10.1175/JAS-D-12-0152.1. A close-up of ice crystals. Ever noticed the different shapes of snowflakes sticking on the windowpane

164

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

All Mixed Up-Probing Large and Small Scale Turbulence Structures in All Mixed Up-Probing Large and Small Scale Turbulence Structures in Continental Stratocumulus Clouds Download a printable PDF Submitter: Fang, M., University of Miami Albrecht, B. A., University of Miami Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Fang M, BA Albrecht, VP Ghate, and P Kollias. 2013. "Turbulence in continental stratocumulus, Part I: External forcings and turbulence structures." Boundary-Layer Meteorology, 149(454), doi:10.1007/s10546-013-9873-3. Coherent structures of the vertical velocity (left panels) and the energy dissipation rate (right panels) in updraft region during the day (a, b), night (c, d), and for entire 16 hours (e, f) of continental stratocumulus. Continental stratocumulus clouds are frequently observed in the cold side

165

ARM - Measurement - Cloud droplet size  

NLE Websites -- All DOE Office Websites (Extended Search)

droplet size droplet size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud droplet size Linear size (e.g. radius or diameter) of a cloud particle Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments CPI : Cloud Particle Imager CVI-AIR : Counterflow Virtual Impactor MIRAI : JAMSTEC Research Vessel Mirai PDI : Phase Doppler Interferometer UAV-PROTEUS-MICRO : Proteus Cloud Microphysics Instruments SPEC-CPI : Stratton Park Engineering Company - Cloud particle imager

166

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Seasonal Variation of the Physical Properties of Marine Boundary Clouds Seasonal Variation of the Physical Properties of Marine Boundary Clouds Download a printable PDF Submitter: Zhang, M., Stony Brook University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Lin W, M Zhang, and NG Loeb. 2009. "Seasonal variation of the physical properties of marine boundary layer clouds off the California coast." Journal of Climate, 22(10), doi:10.1175/2008JCLI2478.1. Image (a). Seasonal contrast of marine boundary-layer clouds between (a) summer (above) and (b) winter (below) off the California coast. Shown are cloud amount in the shaded box, cloud top and base heights and lifting condensation level (LCL) to the left, and cloud thickness and adiabatic

167

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Five-Year Statistics of Shallow Clouds at the ACRF SGP Site Five-Year Statistics of Shallow Clouds at the ACRF SGP Site Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Kassianov, E., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Berg, LK, and EI Kassianov. 2008. "Temporal variability of fair-weather cumulus statistics at the ARM SGP site." Journal of Climate 21, 3344-3358. Figure 1. Five-year mean ARSCL VAP values of cloud fraction (black), cloud-base height (orange circles), cloud-top height (red), cloud thickness (blue), and cloud-chord length (green), and their average daily bias for each year (B) and low-altitude moisture (C). While fair-weather clouds (FWC) are small in size, they are ubiquitous,

168

An Automated Cloud-Edge Detection Algorithm Using Cloud Physics and Radar Data  

Science Conference Proceedings (OSTI)

An automated cloud-edge detection algorithm was developed and extensively tested. The algorithm uses in situ cloud physics data measured by a research aircraft coupled with ground-based weather radar measurements to determine whether the aircraft ...

Jennifer G. Ward; Francis J. Merceret

2004-05-01T23:59:59.000Z

169

GEWEX Cloud System Study (GCSS) Working Group 4: Precipitating Convective Cloud Systems  

Science Conference Proceedings (OSTI)

The authors present the objectives of the working group on precipitating convective cloud systems. These center on developing physically based parameterizations for global models in which basic research into the large-scale role of cloud systems ...

Mitchell W. Moncrieff; Steven K. Krueger; David Gregory; Jean-Luc Redelsperger; Wei-Kuo Tao

1997-05-01T23:59:59.000Z

170

Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)  

DOE Green Energy (OSTI)

The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

Not Available

2009-01-01T23:59:59.000Z

171

Cloud service selection based on variability modeling  

Science Conference Proceedings (OSTI)

The selection among Cloud services is a recent problem in research and practice. The diversity of decision-relevant criteria, configurability of Cloud services and the need to involve human decision-makers require holistic support through models, methodologies ... Keywords: cloud service selection, decision-making, feature modeling, variability modeling

Erik Wittern; J÷rn Kuhlenkamp; Michael Menzel

2012-11-01T23:59:59.000Z

172

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Ice Heating Up Cold Clouds Ice Heating Up Cold Clouds Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ovchinnikov M, A Korolev, and J Fan. 2011. "Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud." Journal of Geophysical Research - Atmospheres, 116, D00T06, doi:10.1029/2011JD015888. The mighty cloud ice crystal appears deceptively delicate but has the power to tip the balance between ice and water in Arctic clouds. This image of an ice crystal was obtained from a Cloud Particle Imager during ISDAC. The imager was mounted on aircraft flying through clouds at a speed of 100 m/s.

173

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

The Surprisingly Large Contribution of Small Marine Clouds to Cloud The Surprisingly Large Contribution of Small Marine Clouds to Cloud Fraction and Reflectance Download a printable PDF Submitter: Oreopoulos, L., NASA Feingold, G., NOAA - Earth System Research Laboratory Koren, I., Weizmann Institute of Science Remer, L., NASA - GSFC, Laboratory for Atmospheres Area of Research: Clouds with Low Optical [Water] Depths (CLOWD) Working Group(s): Cloud Properties Journal Reference: Koren, I, L Oreopoulos, G Feingold, LA Remer, and O Altaratz. 2008. "How small is a small cloud?" Atmospheric Chemistry and Physics Journal, in press Cloud mask for a sparse cumulus cloud field as inferred by using the same threshold at four different spatial resolutions. The upper-left panel is for the original Landsat resolution and the lower-right panel is for a

174

Collisional processes of interest in MFE plasma research  

DOE Green Energy (OSTI)

Research on this grant is devoted to the calculation of heavy particle collision cross sections needed for diagnostic studies of magnetic fusion plasmas. This work requires the development and testing of new theoretical methods, with the implementation of benchmarked techniques to collisions pertinent to fusion reactors. Within the last context, we have provided charge-exchange-recombination cross sections to specific n,l-levels for diagnostic studies on TFTR and for major compilations for the IAEA. We have also completed a cross section study related to the planned neutral beam current drive for ITER. In addition, calculations were made to assess the use of He neutral atom angular scattering measurements for JT-60. Also, new theoretical methods have been developed to more accurately calculate cross sections involving either He or H{sub 2} targets and partially stripped multiply-charged ions. Our most recent work concentrates on alpha particle diagnostics and collision processes of helium ash'' in burning reactors. Here, we are providing atomic cross section data for the carbon pellet alpha particle diagnostic work at General Atomics and the neutral He beam alpha particle diagnostic under study by the IAEA.

Olson, R.E.

1991-04-24T23:59:59.000Z

175

RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS  

SciTech Connect

This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of the extraction products indicated that they had the requisite properties of viable carbon-product precursors.

Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

2002-03-31T23:59:59.000Z

176

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Water Vapor Continuum Absorption and Its Impact on a GCM Improving Water Vapor Continuum Absorption and Its Impact on a GCM Simulation Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Turner DD, A Merrelli, D Vimont, and EJ Mlawer. 2012. "Impact of modifying the longwave water vapor continuum absorption model on community Earth system model simulations." Journal of Geophysical Research, 117, D04106, doi:10.1029/2011JD016440. The mean difference profiles (experiment minus control) for clear-sky longwave radiative heating (QRLC); shortwave clear-sky radiative heating (QRSC); the longwave cloud radiative forcing (QRLCF); the precipitation

177

Thin Cloud Length Scales Using CALIPSO and CloudSat Data  

E-Print Network (OSTI)

Thin clouds are the most difficult cloud type to observe. The recent availability of joint cloud products from the active remote sensing instruments aboard CloudSat and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) facilitates the study of these clouds. Using one of these joint cloud products, 2B-GEOPROF-Lidar, and a post-processing algorithm designed to find horizontally continuous thin clouds within the cloud product, the locations, length scales, and vertical distributions by length of thin clouds are determined. It is found that thin clouds vary in length from a few km to over 2900 km and tend to be longer in the tropical upper troposphere than lower in the atmosphere and at higher latitudes. In the upper troposphere between 0░ and 40░N, over 20% of all thin cloud measurements in the 2B-GEOPROF-Lidar product are contributed by thin clouds that are longer than 500 km. In fact, in this latitude range, over 65% of all thin cloud measurements are contributed by clouds longer than 100 km. Also, thin cloud length and frequency differ between the four seasons in the year of data used here.

Solbrig, Jeremy E.

2009-08-01T23:59:59.000Z

178

Technical Sessions Parameterization of Convective Clouds, Mesoscale...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Convective-Generated Clouds W. R. Cotton Department of Atmospheric Science Colorado State University Fort Collins, CO 80523 This presentation is a summary of research...

179

Efficient Mushroom Cloud Simulation on GPU  

Science Conference Proceedings (OSTI)

In this paper, we present a method to simulate the Mushroom Cloud efficient on GPU using advanced particle system, and our particle system is a state-preserving simulation system. We provide the visual-only model of Mushroom Cloud and we divide the Mushroom ... Keywords: Floating Point Textures, GPU (Graphics Processing Unit), Mushroom Cloud simulation, particle system, state-preserving simulation

Xingquan Cai; Jinhong Li; Zhitong Su

2008-06-01T23:59:59.000Z

180

Long-Term Behavior of Cloud Systems in TOGA COARE and Their Interactions with Radiative and Surface Processes. Part I: Two-Dimensional Modeling Study  

Science Conference Proceedings (OSTI)

Two-dimensional cloud-resolving modeling of tropical cloud systems was performed for a 39-day period (5 December 1992 through 12 January 1993) during the Tropical Ocean Global Atmosphere (TOGA) Coupled OceanľAtmosphere Response Experiment (COARE)...

Xiaoqing Wu; Wojciech W. Grabowski; Mitchell W. Moncrieff

1998-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Towards a Generic Security Framework for Cloud Data Management Environments  

Science Conference Proceedings (OSTI)

Providing an adequate security level in Cloud Environments is currently an extremely active research area. More specifically, malicious behaviors targeting large-scale Cloud data repositories e.g., Denial of Service attacks may drastically degrade the ... Keywords: Cloud Computing, Cloud Storage Service, Denial of Service, Policy Enforcement, Security

Alexandra Carpen-Amarie; Alexandru Costan; Catalin Leordeanu; Cristina Basescu; Gabriel Antoniu

2012-01-01T23:59:59.000Z

182

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Island-Induced Cloud Plumes Influence Tropical Atmospheric Measurements, Island-Induced Cloud Plumes Influence Tropical Atmospheric Measurements, Surface Radiation Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: McFarlane, S.A., Long, C.N., and Flynn, D., Nauru Island Effect Study, Fourteenth ARM Science Team Meeting, March 22 to 26, 2004, Albuquerque, New Mexico. Nauru Island, about 1,200 miles northeast of Papua New Guinea in the western South Pacific, is one of three instrumented island sites that comprise ARM's Tropical Western Pacific locale. A key objective of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program is to identify interactions between the processes that determine the radiative properties of an atmospheric column, including

183

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrieving Cloud Characteristics from Ground-Based Daytime Color All-Sky Retrieving Cloud Characteristics from Ground-Based Daytime Color All-Sky Images Submitter: Long, C. N., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Long, C. N., J. M. Sabburg, J. Calbo, and D. Pages, (2006): Retrieving Cloud Characteristics from Ground-based Daytime Color All-sky Images, JTech, 23, No. 5, 633┬ľ652. Long, C. N., J. M. Sabburg, J. Calbo, and D. Pages, (2006): Papers of Note: Retrieving Cloud Characteristics from Ground-based Daytime Color All-sky Images, BAMS, 87, No. 6, 743┬ľ744. Figure 1. Sky image (left) from 1300 LST Sept 4, 2004, and corresponding cloud decision image (right) denoting originally retrieved clear sky (blue), thin cloud (gray), and opaque cloud (white). Black denotes masked

184

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

a Cloud-Resolving Model to Identify the Role of Aerosols on Clouds a Cloud-Resolving Model to Identify the Role of Aerosols on Clouds and Precipitation Download a printable PDF Submitter: Tao, W., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Aerosol, Cloud Modeling Journal Reference: Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophy. Res., (accepted). Zeng, X., W.-K. Tao, S. Lang, A. Y. Hou, M. Zhang, and J. Simpson, 2007: On the sensitivity of atmospheric ensemble states to cloud microphyics in long-term cloud-resolving model simulations. J. Meteor. Soc. Jpn., (submitted). Figure 1. Dirty environment (or high CCN) enhances precipitation in a

185

How Representative are the Cloud Regimes at the TWP Sites? ┬ů An ISCCP Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

How Representative are the Cloud Regimes at the How Representative are the Cloud Regimes at the TWP Sites? - An ISCCP Perspective C. Jakob Bureau of Meteorology Research Centre Melbourne, Australia G. Tselioudis National Aeronautic and Space Administration Goddard Institute for Space Studies Columbia University New York Introduction The Atmospheric Radiation Measurement (ARM) Program has established comprehensive cloud and radiation observatories in various locations across the globe with the aim of collecting measurements and developing models to better understand the processes that control solar and thermal infrared radiative transfer in clouds and at the surface. The locales of the individual ARM sites were chosen because they represent typical cloud regimes occurring in various climate regimes (Stokes and Schwartz

186

Experimental Investigations of Ice in Supercooled Clouds. Part 1: System Description and Growth of Ice by Vapor Deposition  

Science Conference Proceedings (OSTI)

A continuous flow cloud chamber system was constructed for studies of microphysical and chemical processes in supercooled clouds. An important feature of the cloud chamber was the generation of the components of the supercooled clouds external to ...

Naihui Song; Dennis Lamb

1994-01-01T23:59:59.000Z

187

Droplet Growth in Warm Water Clouds Observed by the A-Train. Part II: A Multisensor View  

Science Conference Proceedings (OSTI)

Hydrometeor droplet growth processes are inferred from a combination of Aqua/Moderate Resolution Imaging Spectroradiometer (MODIS) cloud particle size observations and CloudSat/Cloud Profiling Radar (CPR) observations of warm water clouds. This ...

Takashi Y. Nakajima; Kentaroh Suzuki; Graeme L. Stephens

2010-06-01T23:59:59.000Z

188

Determining the Susceptibility of Cloud Albedo to Changes in Droplet Concentration with the Advanced Very High Resolution Radiometer  

Science Conference Proceedings (OSTI)

Combustion Processes that Produce greenhouse gases also increase cloud condensation nuclei (CCN) concentrations, which in turn increase cloud droplet concentrations and thereby cloud albedo. A calculation of cloud susceptibility, defined in this ...

S. Platnick; S. Twomey

1994-03-01T23:59:59.000Z

189

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM M-PACE Data Used to Evaluate and Improve Arctic Mixed-Phase Clouds ARM M-PACE Data Used to Evaluate and Improve Arctic Mixed-Phase Clouds Simulated in Climate Models Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Xie, S, J Boyle, SA Klein, X Liu, and S Ghan. 2008. "Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE." Journal of Geophysical Research 113, D04211, doi:10.1029/2007JD009225. Time-height cross sections of active remote sensing cloud layer (ARSCL) cloud frequency (a) and modeled cloud fraction (b) CAM3, (c) AM2, and (d) CAM3LIU at Barrow during M-PACE. The unit is %. Liquid fraction as a function of cloud height. (a) UND citation data, (b)

190

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

New Method for Three-Dimensional Imaging of Cirrus Clouds New Method for Three-Dimensional Imaging of Cirrus Clouds Submitter: Liou, K., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Liou, K.N, S.C. Ou, Y. Takano, J. Roskovensky, G.G. Mace, K. Sassen, and M. Poellot, 2002: "Remote sensing of three-dimensional inhomogeneous cirrus clouds using satellite and mm-wave cloud radar data," Geophysical Research Letters 29(9): 1360. Figure 1 ARM Data Enables the Development and Verification of a New Method for Three-Dimensional Imaging of Cirrus Clouds to Improve Climate Predictions Cirrus clouds cover about 30% of the Earth's surface. Because ice crystals both reflect sunlight and absorb thermal energy emitted from the earth

191

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Clouds Get in the Way: How Climate Models Calculate the Effects of Clouds Clouds Get in the Way: How Climate Models Calculate the Effects of Clouds on Earth's Warming Download a printable PDF Submitter: Qian, Y., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Qian Y, CN Long, H Wang, JM Comstock, SA McFarlane, and S Xie. 2012. "Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations." Atmospheric Chemistry and Physics, 12(4), doi:10.5194/acp-12-1785-2012. Clouds get in the way of the dawn light, perfectly framing the Raman lidar instrument at the ARM Climate Research Facility Southern Great Plains site. This ground-based laser is a remote sensing instrument used for measuring

192

Data refinement in a market research applications' data production process  

Science Conference Proceedings (OSTI)

In this contribution, we will show how empirically collected field data for a market research application are refined in a stepwise manner and enriched into end-user market reports and charts. The collected data are treated by selections, transformations, ...

Thomas Ruf; Thomas Kirsche

2005-01-01T23:59:59.000Z

193

Coal liquefaction process research, Mobil M-Gasoline process. R and D interim report No. 1  

DOE Green Energy (OSTI)

This report summarizes the projected economic potential for the methanol-to-gasoline (M-Gasoline) process under development by Mobil Research and Development Corporation. The potential was reviewed by developing a preliminary economic estimation of the design, construction, and operation of a commercial-sized facility to produce 50,000 barrels per day (BPD) of gasoline. The review included a preliminary definition of facilities and projected economics for the production of methanol utilizing synthesis gas produced by the gasification of coal. The limited time and effort allotted for completion of the study permitted moderate, but not exhaustive, optimization of the conceptual industrial complex. A summary of more recent data was received following completion of the study. Preliminary analysis of this more recent information indicated that it would not significantly alter the preliminary economic conclusions. At the direction of the Department of Energy, therefore, the conceptual design and economic evaluations were not revised to incorporate this later information. The primary objective of the study was to project the economic potential of the process. A secondary objective was to develop recommendations for improvements. Preliminary engineering was performed as required to define the basis for plant design and economic estimates.

Not Available

1978-06-01T23:59:59.000Z

194

Vale-Cytec-University Research Consortium on Processing Low ...  

Science Conference Proceedings (OSTI)

Incremental Scale Up of IsasmeltÖ - The Key to Its Success Ě Keynote: Implementing New Technology in Metallurgical Processes: Building Plants that Work.

195

Cloud computing beyond objects: seeding the cloud  

Science Conference Proceedings (OSTI)

Cloud computing is an emerging computing milieu which dynamically enables scalable and virtually unlimited resources. This panel will discuss emerging tools, skills and technologies that will ""seed the cloud"" - enabling improved interoperability, security, ... Keywords: cloud computing, skills, technologies, tools

Steven Fraser; Robert Biddle; Scott Jordan; Kate Keahey; Bob Marcus; E. Michael Maximilien; Dave Thomas

2009-10-01T23:59:59.000Z

196

The Outlook for U.S. Meteorological Research in a Commercializing World: Fair Early, but Clouds Moving in?  

Science Conference Proceedings (OSTI)

In many respects, the prospects for U.S. meteorological research have never been brighter. Knowledge is advancing rapidly, as are supporting observing and information technologies. The accuracy, timeliness, and information content of forecasts ...

Rebecca E. Morss; William H. Hooke

2005-07-01T23:59:59.000Z

197

Ground-based Microwave Cloud Tomography  

NLE Websites -- All DOE Office Websites (Extended Search)

Microwave Cloud Tomography Microwave Cloud Tomography Experiment, SGP, May 15-June 15, 2009 Lead Scientist Dong Huang, BNL Co-Investigators Al Gasiewski, UC Boulder Maria Cadeddu, ANL Warren Wiscombe, BNL Radiation Processes Working Group March 30, 2009 multiple radiometers All good cloud radiation modelers should close their airplane window shades so as not to be corrupted by the spectacle of real 3D clouds. - Roger Davies In case you forget to do this, you see 3/30/2009 ARM RPWG 2 Effects of cloud structure on radiation 3/30/2009 ARM RPWG 3 Typical climate model - Cloud fraction & mean water content - Horizontally uniform clouds, no side radiation - Assumption on overlap Courtesy of Bernhard Mayer Cloud structure important to radiation - Cumulus (Benner & Evans 2001, Pincus et al. 2005), deep convection (DiGiuseppe &

198

A Community Atmosphere Model with Superparameterized Clouds  

SciTech Connect

In 1999, National Center for Atmospheric Research (NCAR) scientists Wojciech Grabowski and Piotr Smolarkiewicz created a "multiscale" atmospheric model in which the physical processes associated with clouds were represented by running a simple high-resolution model within each grid column of a lowresolution global model. In idealized experiments, they found that the multiscale model produced promising simulations of organized tropical convection, which other models had struggled to produce. Inspired by their results, Colorado State University (CSU) scientists Marat Khairoutdinov and David Randall created a multiscale version of the Community Atmosphere Model (CAM). They removed the cloud parameterizations of the CAM, and replaced them with Khairoutdinov's high-resolution cloud model. They dubbed the embedded cloud model a "super-parameterization," and the modified CAM is now called the "SP-CAM." Over the next several years, many scientists, from many institutions, have explored the ability of the SP-CAM to simulate tropical weather systems, the day-night changes of precipitation, the Asian and African monsoons, and a number of other climate processes. Cristiana Stan of the Center for Ocean-Land-Atmosphere Interactions found that the SP-CAM gives improved results when coupled to an ocean model, and follow-on studies have explored the SP-CAM's utility when used as the atmospheric component of the Community Earth System Model. Much of this research has been performed under the auspices of the Center for Multiscale Modeling of Atmospheric Processes, a National Science Foundation (NSF) Science and Technology Center for which the lead institution is CSU.

Randall, David; Branson, Mark; Wang, Minghuai; Ghan, Steven J.; Craig, Cheryl; Gettelman, A.; Edwards, Jim

2013-06-18T23:59:59.000Z

199

Improvements in Representations of Cloud Microphysics for BBHRP and Models using Data Collected during M-PACE and TWP-ICE  

SciTech Connect

In our research we proposed to use data collected during the 2004 Mixed-Phase Arctic Cloud Experiment (MPACE) and the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) to improve retrievals of ice and mixed-phase clouds, to improve our understanding of how cloud and radiative processes affect cloud life cycles, and to develop and test methods for using ARM data more effectively in model. In particular, we proposed to: 1) use MPACE in-situ data to determine how liquid water fraction and cloud ice and liquid effective radius (r{sub ei} and r{sub ew}) vary with temperature, normalized cloud altitude and other variables for Arctic mixed-phase clouds, and to use these data to evaluate the performance of model parameterization schemes and remote sensing retrieval algorithms; 2) calculate rei and size/shape distributions using TWP-ICE in-situ data, investigate their dependence on cirrus type (oceanic or continental anvils or cirrus not directly traced to convection), and develop and test representations for MICROBASE; 3) conduct fundamental research enhancing our understanding of cloud/radiative interactions, concentrating on effects of small crystals and particle shapes and sizes on radiation; and 4) improve representations of microphysical processes for models (fall-out, effective density, mean scattering properties, rei and rew) and provide them to ARM PIs. In the course of our research, we made substantial progress on all four goals.

Greg M. McFarquhar

2010-02-22T23:59:59.000Z

200

Chemical Characterization of Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Aircraft in the ISDAC 2008 Study  

Science Conference Proceedings (OSTI)

Although it has been shown that size of atmospheric particles has a direct correlation with their ability to act as cloud droplet and ice nuclei, the influence of composition of freshly emitted and aged particles in nucleation processes is poorly understood. In this work we combine data from field measurements of ice nucleation with chemical imaging of the sampled particles to link aerosol composition with ice nucleation ability. Field measurements and sampling were conducted during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, Alaska, in the springtime of 2008. In-situ ice nucleation measurements were conducted using a Continuous Flow Diffusion Chamber (CFDC). Measured number concentrations of ice nuclei (IN) varied from frequent values of 0.01 per liter to more than 10 per liter. Residuals of airborne droplets and ice crystals were collected through a counterflow virtual impactor (CVI). The compositions of individual atmospheric particles and the residuals were studied using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis (CCSEM/EDX) and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (STXM/NEXAFS). Chemical analysis of cloud particle residuals collected during an episode of high ice nucleation suggests that both size and composition may influence aerosol's ability to act as IN. The STXM/NEXAFS chemical composition maps of individual residuals have characteristic structures of either inorganic or black carbon cores coated by organic materials. In a separate flight, particle samples from a biomass burning plume were collected. Although it has previously been suggested that episodes of biomass burning contribute to increased numbers of highly effective ice nuclei, in this episode we observed that only a small fraction were effective ice nuclei. Most of the particles from the biomass plume episode were smaller in size and were composed of homogeneous organic material without identifiable cores.

Hiranuma, Naruki; Brooks, Sarah D.; Moffet, Ryan C.; Glen, Andrew; Laskin, Alexander; Gilles, Marry K.; Liu, Peter; MacDonald, A. M.; Strapp, J. Walter; McFarquhar, Greg

2013-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing and Comparing the Modified Anomalous Diffraction Approximation Testing and Comparing the Modified Anomalous Diffraction Approximation Submitter: Mitchell, D. L., Desert Research Institute Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Mitchell, D.L., A.J. Baran, W.P. Arnott, C. Schmitt, 2006: Testing and comparing the anomalous diffraction approximation. J. Atmos. Sci., 63, 2948-2962. Comparison of MADA and T-matrix with measured Qext. Regions without data were contaminated by water vapor or CO2 absorption. MADA and T-matrix calculations are based on the measured PSD of hexagonal columns having an effective diameter of 14 microns. Comparison of the PSD weighted Qabs predicted by FDTD and MADA for a tunneling efficiency corresponding to aggregates. Cirrus clouds play a large role in the Earth's radiation budget and the way

202

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Science Applications of AERI Measurements ARM Science Applications of AERI Measurements Submitter: Smith, W. L., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Cloud Modeling Journal Reference: DeSlover, D. H. 1996. Analysis of Visible and Infrared Cirrus Cloud Optical Properties Using High Spectral Resolution Remote Sensing, M.S. Thesis, University of Wisconsin - Madison. Ho, S.-P. 1997. Atmospheric Profiles From Simultaneous Observations of Upwelling and Downwelling Spectral Radiance, Ph.D. Thesis, University of Wisconsin - Madison. Knuteson, R. O., F. A. Best, H. B. Howell, P. Minnett, H. E. Revercomb, W. L. Smith. 1997. "High Spectral Resolution Infrared Observations at the Ocean-Atmosphere Interface in the Tropical Western Pacific using a Marine

203

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

The Short and the Long of Storms: Tracing a Deep Convective System's Life The Short and the Long of Storms: Tracing a Deep Convective System's Life in the Midlatitude Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, X Dong, B Xi, S McFarlane, A Kennedy, B Lin, and P Minnis. 2012. "Life cycle of midlatitude deep convective systems in a Lagrangian framework." Journal of Geophysical Research - Atmospheres, 117(D23), D23201, doi:10.1029/2012JD018362. The life cycle of a convective system tracked by the automated tracking algorithm in the study domain. Time increases from the top left to the bottom right, and each image represents an hour. The colors represent regions given by the hybrid classification.

204

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving the Treatment of Radiation in Climate Models Improving the Treatment of Radiation in Climate Models Download a printable PDF Submitter: Delamere, J. S., Tech-X Corporation Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Delamere JS, SA Clough, VH Payne, EJ Mlawer, DD Turner, and RR Gamache. 2010. "A far-infrared radiative closure study in the Arctic: Application to water vapor." Journal of Geophysical Research - Atmospheres, 115, D17106, 10.1029/2009JD012968. The mean AERI-ER radiances for a select set of cloud-free cases at NSA in 2007 are presented in the top panel. The bottom panel presents mean spectral differences between the measurements and model calculations. The red line demonstrates the differences when using the pre-RHUBC version of

205

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Campaign Resource Allocation Using Statistical Decision Analysis Field Campaign Resource Allocation Using Statistical Decision Analysis Download a printable PDF Submitter: Hanlon, C., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Hanlon CJ, JB Stefik, AA Small, J Verlinde, and GS Young. 2013. "Statistical decision analysis for flight decision support: The SPartICus campaign." Journal of Geophysical Research - Atmospheres, , . ACCEPTED. In many atmospheric science field campaigns, investigators are budgeted some number of flight hours to collect data under specific, imperfectly forecastable atmospheric conditions. In such field campaigns, investigators must assess atmospheric conditions each day and make a resource-allocation decision: are conditions good enough to use some of our scarce flight hours

206

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Measured Radiative Cooling from Reflective Roofs in India Measured Radiative Cooling from Reflective Roofs in India Download a printable PDF Submitter: Fischer, M. L., Lawrence Berkeley National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Salamanca F, S Tonse, S Menon, V Garg, KP Singh, M Naja, and ML Fischer. 2012. "Top-of-atmosphere radiative cooling with white roofs: Experimental verification and model-based evaluation." Environmental Research Letters, 7(4), 044007, doi:10.1088/1748-9326/7/4/044007. True color image of light (PW1, PW2) and unpainted tar (PD1), and concrete (PD2) roofs at the Pantnagar, India site taken on October 21, 2011. We note that the concrete roof is considerably more reflective than the tar roof

207

An overview of an illuminator of opportunity passive radar research project and its signal processing research directions  

Science Conference Proceedings (OSTI)

In this paper, an overview of an Illuminator Of Opportunity (IOO) passive radar research project being conducted at DSTO is presented, with a specific focus on the signal processing research directions that are being investigated. The overview provides ... Keywords: Bistatic radar, Passive coherent location

J. Palmer; S. Palumbo; A. Summers; D. Merrett; S. Searle; S. Howard

2011-09-01T23:59:59.000Z

208

Research & Development Opportunities in Electrosynthesis and Electrochemical Manufacturing Processes  

Science Conference Proceedings (OSTI)

This scoping study is a follow-up to the Electrochemical Synthesis Workshop cosponsored by EPRI and the National Science Foundation (NSF) to identify areas of research and development (R&D) that fit EPRI's charter. Participants identified several R&D opportunities. This report discusses some of those opportunities.

1997-12-31T23:59:59.000Z

209

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Into Radiative Transfer in Cloudy Conditions Submitter: Min, Q., State University of New York, Albany Area of Research: Cloud DistributionsCharacterizations Working Group(s):...

210

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Altering Cloud Microphysics and Precipitation Submitter: Min, Q., State University of New York, Albany Area of Research: Aerosol Properties Working Group(s): Aerosol Journal...

211

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

A., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference:...

212

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

A., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions...

213

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Contributor to Low-Level Cloud Reflectivity Submitter: Penner, J. E., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference:...

214

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Stratocumulus Clouds Download a printable PDF Submitter: Penner, J. E., University of Michigan Lee, S., University of Michigan Area of Research: Aerosol Properties Working...

215

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Ice Crystals on Ice Sedimentation Rates in Cirrus Clouds and GCM Simulations Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Rasch, P., Pacific...

216

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Predicting Arctic Sea Ice Loss Download a printable PDF Submitter: Liu, X., University of Wyoming Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s):...

217

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

A Consistency Analysis of ARESE Aircraft Measurements A Consistency Analysis of ARESE Aircraft Measurements Submitter: Li, Z., University of Maryland Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Li, Z., A.P. Trishchenko, H.W. Barker, G.L. Stephens, and P. Partain, 1999: "Analyses of Atmospheric Radiation Measurement (ARM) program's Enhanced Shortwave Experiment (ARESE) multiple data sets for studying cloud absorption," J. of Geophys. Res. 104(D16):19127-19134 Figure 1. Comparisons of TOA albedos inferred from measurements made by TSBR, GOES-8, and SSP. Two sets of GOES-based estimates are shown for an aircraft along the Egrett's flight path: one for an aircraft skimming the cloud tops (dotted lines); and another for one at 14 km (thin solid lines).

218

Emerging Methods in Research Participation and Empowerment Processes in Nepal  

E-Print Network (OSTI)

rise in oil prices. The prioritisation of the ecological dimension also promoted examination of value systems and thus, the cultural dimension of development (Cameron, 1994:76). According to Cameron, these concerns altered the agenda for North... as there was little local, academic resources upon which to draw. As late as the mid-1970's, sociological research in Nepal was often described as "patchy and sketchy" (Bista, 1972). Speaking at a conference in 1973, Bista remarked that up to the mid-1970's...

Tanner, Philip

2001-01-01T23:59:59.000Z

219

Crowdsourcing research opportunities: lessons from natural language processing  

Science Conference Proceedings (OSTI)

Although the field has led to promising early results, the use of crowdsourcing as an integral part of science projects is still regarded with skepticism by some, largely due to a lack of awareness of the opportunities and implications of utilizing these ... Keywords: crowdsourcing, games with a purpose, natural language processing, resource acquisition

Marta Sabou; Kalina Bontcheva; Arno Scharl

2012-09-01T23:59:59.000Z

220

RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds  

SciTech Connect

A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in-situ statistical characterization of boundary-layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that supports modeling studies and enables evaluating a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about two-thirds of the cloud flights occurred in May and June, boundary-layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 75% of the flights occurring in cumulus and stratocumulus. Preliminary analyses show how these data are being used to analyze cloud-aerosol relationships, determine the aerosol sizes that are responsible for nucleating cloud drops, characterize the horizontal variability of the cloud radiative impacts, and evaluate air-borne and surface-based cloud property retrievals. We discuss how conducting an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.

Vogelmann, A. M.; McFarquhar, Greg; Ogren, John A.; Turner, David D.; Comstock, Jennifer M.; Feingold, G.; Long, Charles N.; Jonsson, Haf; Bucholtz, Anthony; Collins, Donald R.; Diskin, G. S.; Gerber, H.; Lawson, Paul; Woods, Roy; Andrews, Elizabeth; Yang, Hee-Jung; Chiu, Christine J.; Hartsock, Daniel; Hubbe, John M.; Lo, Chaomei; Marshak, A.; Monroe, Justin; McFarlane, Sally A.; Schmid, Beat; Tomlinson, Jason M.; Toto, Tami

2012-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Regimes in the TWP and Their Evolution over the MJO Cloud Regimes in the TWP and Their Evolution over the MJO Download a printable PDF Submitter: Del Genio, A. D., NASA Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Chen, Y, and AD Del Genio. 2008. "Evaluation of tropical cloud regimes in observations and a general circulation model." Climate Dynamics doi:10.1007/s00382-008-0386-6. Mean highest cloud-top vertical profiles from ARSCL (solid) and ISCCP (dashed) for each ISCCP cloud regime at Manus. Relative frequency of occurrence of each cloud regime as a function of lag in pentads relative to the MJO peak for eight MJO events covering November-April of 1999-2003. Red = deep convective, orange = anvil, yellow = congestus, green = thin cirrus, blue = shallow cumulus, violet =

222

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing Mixed-Phase Clouds from the Ground: a Status Report Characterizing Mixed-Phase Clouds from the Ground: a Status Report Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, JS Daniel, G De Boer, EW Eloranta, P Kollias, E Luke, CN Long, DD Turner, and J Verlinde. 2008. "A focus on mixed-phase clouds: The status of ground-based observational methods." Bulletin of the American Meteorological Society, accepted for publication in October 2008 issue. Figure 1. Retrieved cloud properties for 9 October 2004 at Barrow: (a) Multisensor cloud phase classification, (b) radar Doppler spectra cloud phase classification, (c) ice water content, (d) ice particle effective radius, (e) adiabatic liquid water content scaled to the microwave

223

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing Clouds at Arctic Atmospheric Observatories Characterizing Clouds at Arctic Atmospheric Observatories Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Shupe MD, VP Walden, E Eloranta, T Uttal, JR Campbell, SM Starkweather, and M Shiobara. 2011. "Clouds at Arctic atmospheric observatories, part I: occurrence and macrophysical properties." Journal of Applied Meteorology and Climatology, 50(3), 626-644. Shupe MD. 2011. "Clouds at Arctic atmospheric observatories, part II: thermodynamic phase characteristics." Journal of Applied Meteorology and Climatology, 50(3), 645-661. Figure 1: (a) Annual cycles of monthly mean cloud occurrence fraction at six Arctic atmospheric observatories. The average cloud fraction for all

224

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

New Technique Successful for Measuring Thickness of Broken Clouds New Technique Successful for Measuring Thickness of Broken Clouds Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Marshak, A, Y Knyazikhin, K.D. Evans, and W.J. Wiscomb, (2004): The "RED versus NIR" Plane to Retrieve Broken-Cloud Optical Depth from Ground-Based Measurements, Journal of Atmospheric Sciences , 61, 1911-1925. In the "lookup table," vertical lines within the curves show calculated values of cloud optical depth. Observed data points show actual RED and NIR values; the cloud cover and optical depth are read from the overlaid lines. Cloud optical depth (or thickness) is a fundamental property for calculating the amount of solar radiation entering and leaving earth's

225

Evaluating cloud retrieval algorithms with the ARM BBHRP framework  

SciTech Connect

Climate and weather prediction models require accurate calculations of vertical profiles of radiative heating. Although heating rate calculations cannot be directly validated due to the lack of corresponding observations, surface and top-of-atmosphere measurements can indirectly establish the quality of computed heating rates through validation of the calculated irradiances at the atmospheric boundaries. The ARM Broadband Heating Rate Profile (BBHRP) project, a collaboration of all the working groups in the program, was designed with these heating rate validations as a key objective. Given the large dependence of radiative heating rates on cloud properties, a critical component of BBHRP radiative closure analyses has been the evaluation of cloud microphysical retrieval algorithms. This evaluation is an important step in establishing the necessary confidence in the continuous profiles of computed radiative heating rates produced by BBHRP at the ARM Climate Research Facility (ACRF) sites that are needed for modeling studies. This poster details the continued effort to evaluate cloud property retrieval algorithms within the BBHRP framework, a key focus of the project this year. A requirement for the computation of accurate heating rate profiles is a robust cloud microphysical product that captures the occurrence, height, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP) and the North Slope of Alaska (NSA) sites. These retrieval methods span a range of assumptions concerning the parameterization of cloud location, particle density, size, shape, and involve different measurement sources. We will present the radiative closure results from several different retrieval approaches for the SGP site, including those from Microbase, the current 'reference' retrieval approach in BBHRP. At the NSA, mixed-phase clouds and cloud with a low optical depth are prevalent; the radiative closure studies using Microbase demonstrated significant residuals. As an alternative to Microbase at NSA, the Shupe-Turner cloud property retrieval algorithm, aimed at improving the partitioning of cloud phase and incorporating more constrained, conditional microphysics retrievals, also has been evaluated using the BBHRP data set.

Mlawer,E.; Dunn,M.; Mlawer, E.; Shippert, T.; Troyan, D.; Johnson, K. L.; Miller, M. A.; Delamere, J.; Turner, D. D.; Jensen, M. P.; Flynn, C.; Shupe, M.; Comstock, J.; Long, C. N.; Clough, S. T.; Sivaraman, C.; Khaiyer, M.; Xie, S.; Rutan, D.; Minnis, P.

2008-03-10T23:59:59.000Z

226

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

How Aerosols Affect Cloud Properties in Arctic Mixed-Phase Stratocumulus How Aerosols Affect Cloud Properties in Arctic Mixed-Phase Stratocumulus Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Jackson RC, GM McFarquhar, AV Korolev, ME Earle, PS Liu, RP Lawson, S Brooks, M Wolde, A Laskin, and M Freer. 2012. "The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE." Journal of Geophysical Research - Atmospheres, 117, D15207, doi:10.1029/2012JD017668. Cloud mean ice crystal concentration Nice(D Ôëą 50 micrometers) versus mean aerosol concentration (NPCASP) above cloud for all 41 vertical profiles

227

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Minimalist Approach to Modeling Complex Arctic Clouds Minimalist Approach to Modeling Complex Arctic Clouds Download a printable PDF Submitter: Shaw, R. A., Michigan Technological University - Physics Department Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle Journal Reference: Yang F, M Ovchinnikov, and RV Shaw. 2013. "Minimalist model of ice microphysics in mixed-phase stratiform clouds." Geophysical Research Letters, 40(14), doi:10.1002/grl.50700. Nordic winter landscape. Mixed-phase stratiform clouds are common features in the Arctic environment. They contain a mix of ice and "supercooled" water that, despite the freezing temperatures, remains in liquid form. Scientists aren't sure why these clouds exist in the Arctic for long periods of time, even while steadily losing ice particles through precipitation.

228

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Measurements Validate New Satellite Multilayer Cloud Remote Sensing ARM Measurements Validate New Satellite Multilayer Cloud Remote Sensing Method Submitter: Minnis, P., NASA - Langley Research Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Huang, J., P. Minnis, B. Lin, Y. Yi, T.-F. Fan, S. Sun-Mack, and J. K. Ayers, 2006: Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements. Geophys. Res. Lett., 33, L21801, 10.1029/2006GL027038. Minnis, P., J. Huang, B. Lin, Y. Yi, R. F. Arduini, T.-F. Fan, J. K. Ayers, and G. G. Mace, 2007: Ice cloud properties in ice-over-water cloud systems using TRMM VIRS and TMI data. J. Geophys. Res., 112, D06206, doi:10.1029/2006JD007626. Figure 1. Comparison of the VISST and MCRS retrievals with simultaneous

229

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud-Radiation Effects on Sea Ice Loss Cloud-Radiation Effects on Sea Ice Loss Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Kay, JE, T L'Ecuyer, A Gettelman, G Stephens, and C O'Dell. "The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum." To appear in Geophysical Research Letters. Clouds and downwelling radiation 2007-2006 differences (June 15-Sept 15). a. Total cloud fraction differences based on radar and lidar data. b. Downwelling SW radiative flux difference. c. Downwelling LW radiative flux difference. The Western Arctic Ocean is outlined in brown. ARM ground-based radiation observations at Barrow, Alaska.

230

Final Report - Independent Verification Survey Activities at the Seperations Process Research Unit Sites, Niskayuna, New York  

SciTech Connect

The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.

Evan Harpenau

2011-03-15T23:59:59.000Z

231

Clearing up some concerns about cloud computing and genomics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Clearing up some concerns about cloud computing and genomics research October 7, 2013 Tweet EmailPrint Cloud computing has become a popular option for scientists wanting on-demand...

232

Use of Holography for Airborne Cloud Physics Measurements  

Science Conference Proceedings (OSTI)

The use of the holographic cloud particle imaging system developed by the Cloud Physics Branch of the Meteorological Office and carried on the C-130 Hercules aircraft of the Meteorological Research Flight (MRF) has hitherto been limited by the ...

Philip R. A. Brown

1989-04-01T23:59:59.000Z

233

Development and Testing of a Life Cycle Model and a Parameterization of Thin Mid-level Stratiform Clouds  

SciTech Connect

We used a cloud-resolving model (a detailed computer model of cloud systems) to evaluate and improve the representation of clouds in global atmospheric models used for numerical weather prediction and climate modeling. We also used observations of the atmospheric state, including clouds, made at DOE's Atmospheric Radiation Measurement (ARM) Program's Climate Research Facility located in the Southern Great Plains (Kansas and Oklahoma) during Intensive Observation Periods to evaluate our detailed computer model as well as a single-column version of a global atmospheric model used for numerical weather prediction (the Global Forecast System of the NOAA National Centers for Environmental Prediction). This so-called Single-Column Modeling approach has proved to be a very effective method for testing the representation of clouds in global atmospheric models. The method relies on detailed observations of the atmospheric state, including clouds, in an atmospheric column comparable in size to a grid column used in a global atmospheric model. The required observations are made by a combination of in situ and remote sensing instruments. One of the greatest problems facing mankind at the present is climate change. Part of the problem is our limited ability to predict the regional patterns of climate change. In order to increase this ability, uncertainties in climate models must be reduced. One of the greatest of these uncertainties is the representation of clouds and cloud processes. This project, and ARM taken as a whole, has helped to improve the representation of clouds in global atmospheric models.

Krueger, Steven K.

2008-03-03T23:59:59.000Z

234

In Situ Observations of the Microphysical Properties of Wave, Cirrus, and Anvil Clouds. Part I: Wave Clouds  

Science Conference Proceedings (OSTI)

The microphysical properties of wave clouds based on data collected during 17 missions flown by a Learjet research aircraft are presented and discussed. This extensive dataset expands upon previous aircraft studies of wave clouds and introduces ...

Brad A. Baker; R. Paul Lawson

2006-12-01T23:59:59.000Z

235

In Situ Observations of the Microphysical Properties of Wave, Cirrus, and Anvil Clouds. Part II: Cirrus Clouds  

Science Conference Proceedings (OSTI)

A Learjet research aircraft was used to collect microphysical data, including cloud particle imager (CPI) measurements of ice particle size and shape, in 22 midlatitude cirrus clouds. The dataset was collected while the aircraft flew 104 ...

R. Paul Lawson; Brad Baker; Bryan Pilson; Qixu Mo

2006-12-01T23:59:59.000Z

236

The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the ôSeeder-Feederö Process in Warm-Frontal Rainbands  

Science Conference Proceedings (OSTI)

Previous field studies have indicated that warm-frontal rainbands form when ice particles from a ôseederö cloud grow as they fall through a lower-level ôfeederö cloud. In this paper we present results from a parameterized numerical model of the ...

Steven A. Rutledge; Peterv Hobbs

1983-05-01T23:59:59.000Z

237

An Ultralight Aircraft as Platform for Research in the Lower Troposphere: System Performance and First Results from Radiation Transfer Studies in Stratiform Aerosol Layers and Broken Cloud Conditions  

Science Conference Proceedings (OSTI)

The ultraviolet actinic radiation flux governing the photochemical reactions in the atmosphere is dependent on the optical properties of atmospheric aerosols and reflective surfaces of ground and clouds. Theoretical models exist for horizontal ...

Wolfgang Junkermann

2001-06-01T23:59:59.000Z

238

CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate  

E-Print Network (OSTI)

The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. ...

Rosenfeld, Daniel

239

Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data  

Science Conference Proceedings (OSTI)

A global survey of cloud particle size variations can provide crucial constraints on how cloud processes determine cloud liquid water contents and their variation with temperature, and further, may indicate the magnitude of aerosol effects on ...

Qingyuan Han; William B. Rossow; Andrew A. Lacis

1994-04-01T23:59:59.000Z

240

CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate  

Science Conference Proceedings (OSTI)

The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. The Intergovernmental Panel on ...

Nilton O. Rennˇ; Earle Williams; Daniel Rosenfeld; David G. Fischer; JŘrgen Fischer; Tibor Kremic; Arun Agrawal; Meinrat O. Andreae; Rosina Bierbaum; Richard Blakeslee; Anko Boerner; Neil Bowles; Hugh Christian; Ann Cox; Jason Dunion; Akos Horvath; Xianglei Huang; Alexander Khain; Stefan Kinne; Maria C. Lemos; Joyce E. Penner; Ulrich P÷schl; Johannes Quaas; Elena Seran; Bjorn Stevens; Thomas Walati; Thomas Wagner

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Turbulence, Condensation, and Liquid Water Transport in Numerically Simulated Nonprecipitating Stratocumulus Clouds  

Science Conference Proceedings (OSTI)

Condensation and turbulent liquid water transport in stratocumulus clouds involve complicated interactions between turbulence dynamics and cloud microphysical processes, and play essential roles in defining the cloud structure. This work aims at ...

Shouping Wang; Qing Wang; Graham Feingold

2003-01-01T23:59:59.000Z

242

Drizzle in Stratiform Boundary Layer Clouds. Part I: Vertical and Horizontal Structure  

Science Conference Proceedings (OSTI)

Detailed observations of stratiform boundary layer clouds on 12 days are examined with specific reference to drizzle formation processes. The clouds differ considerably in mean thickness, liquid water path (LWP), and droplet concentration. Cloud-...

R. Wood

2005-09-01T23:59:59.000Z

243

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993  

SciTech Connect

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-05-01T23:59:59.000Z

244

Towards a Characterization of Arctic Mixed-Phase Clouds  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards a Characterization of Arctic Mixed-Phase Clouds Towards a Characterization of Arctic Mixed-Phase Clouds Shupe, Matthew CIRES/NOAA/ETL Kollias, Pavlos Brookhaven National Laboratory Category: Cloud Properties Mixed-phase clouds play a unique role in the Arctic, where the delicate balance of phases in these clouds can have a profound impact on the surface radiation balance and various cloud-atmosphere-radiation-surface feedback processes. A better understanding of these clouds is clearly important and has been a recent objective of the ARM program. To this end, multiple sensors including radar, lidar, and temperature soundings, have been utilized in an automated cloud type classification scheme for clouds observed at the North Slope of Alaska site. The performance of this new algorithm at identifying mixed-phase cloud conditions is compared with an

245

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrally Invariant Approximation Within Atmospheric Radiative Transfer Spectrally Invariant Approximation Within Atmospheric Radiative Transfer Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Marshak A, Y Knyazikhin, JC Chiu, and WJ Wiscombe. 2011. "Spectrally-invariant approximation within atmospheric radiative transfer." Journal of the Atmospheric Sciences, 68(12), doi:10.1175/JAS-D-11-060.1. Ratio of reflectance R╬╗ plus transmittance T╬╗ over single scattering albedo ¤ë0╬╗ plotted against the sum R╬╗+T╬╗ for two cloud optical depths: 5 and 10. The aerosol optical depth at 0.55 ╬╝m is 0.2 (rural type of aerosol). Different dots correspond to different wavelengths from 0.4 to

246

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Scattering Properties of Aggregates of Plates Single-Scattering Properties of Aggregates of Plates Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Um J and GM McFarquhar. 2009. "Single-scattering properties of aggregates of plates." Quarterly Journal Royal Meteorological Society, 135(639), 10.1002/qj.378. Aggregates of plates imaged by Cloud Particle Imager (left panel) and idealized geometry of aggregates of plates with AI=0.61 (right panel). Asymmetry parameter (g) at ╬╗=0.55 ╬╝m of 80 different aggregates of seven 100 ╬╝m plates attached together, as functions of (a) AI, (b) 1-AR, and (c) An. The correlation coefficient and constants for a fitting equation,

247

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale Shows True Weight of Aerosol Effects on Clouds Scale Shows True Weight of Aerosol Effects on Clouds Download a printable PDF Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: McComiskey A and G Feingold. 2012. "The scale problem in quantifying aerosol indirect effects." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-1031-2012. Differing values: Values derived from aircraft and surface observations, which represent disaggregated data, differ from those derived from satellite-based data, which represent data aggregated at a range of levels. Currently, many climate change models treat the two types of data the same. Aerosols-tiny airborne particles from sources like pollution or desert

248

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Accuracy in Liquid Water Path Retrievals Improved Accuracy in Liquid Water Path Retrievals Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Clouds with Low Optical [Water] Depths (CLOWD) Working Group(s): Radiative Processes Journal Reference: Turner, D.D., 2007: Improved ground-based liquid water path retrievals using a combined infrared and microwave approach. J. Geophys. Res., 112, D15204, doi:10.1029/2007JD008530. Turner, D.D., A.M. Vogelmann, R. Austin, J.C. Barnard, K. Cady-Pereira, C. Chiu, S.A. Clough, C.J. Flynn, M.M. Khaiyer, J.C. Liljegren, K. Johnson, B. Lin, C.N. Long, A. Marshak, S.Y. Matrosov, S.A. McFarlane, M.A. Miller, Q. Min, P. Minnis, W. O'Hirok, Z. Wang, and W. Wiscombe, 2007: Thin liquid water clouds: Their importance and our challenge. Bull. Amer. Meteor. Soc.,

249

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

When It Rains, It Doesn't Always Pour When It Rains, It Doesn't Always Pour Download a printable PDF Submitter: Penide, G., Laboratoire d\\\'Optique Atmospherique Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Penide G, V Kumar, A Protat, and P May. 2013. "Statistics of drop size distribution parameters and rain rates for stratiform and convective precipitation during the North Australian wet season." Monthly Weather Review, 141(9), 10.1175 /mwr-d-12-00262.1. Measurements from the Atmospheric Radiation Measurement facility at Darwin, Australia, helped scientists determine how drop size distribution and rain rates are affected by larger-scale weather patterns. Rainfall comes in a variety of forms: mist, drizzle, showers, downpours. The type and frequency of rainfall usually depends on the season and

250

Cloud Condensation Nuclei  

Science Conference Proceedings (OSTI)

The state of knowledge of the particles upon which liquid droplets condense to form atmospheric water clouds is presented. The realization of cloud condensation nuclei (CCN) as a distinct aerosol subset originated with the cloud microphysical ...

James G. Hudson

1993-04-01T23:59:59.000Z

251

Forecasting of Supercooled Clouds  

Science Conference Proceedings (OSTI)

Using parameterizations of cloud microphysics, a technique to forecast supercooled cloud events is suggested. This technique can be coupled on the mesoscale with a prognostic equation for cloud water to improve aircraft icing forecasts. The ...

AndrÚ Tremblay; Anna Glazer; Wanda Szyrmer; George Isaac; Isztar Zawadzki

1995-07-01T23:59:59.000Z

252

Stratocumulus Cloud Field Reflected Fluxes: The Effect of Cloud Shape  

Science Conference Proceedings (OSTI)

Reflected fluxes are calculated for stratocumulus cloud fields as a function of sky cover, cloud aspect ratio, and cloud shape. Cloud liquid water volume is held invariant as cloud shape is varied so that the results can be utilized more ...

R. M. Welch; B. A. Wielicki

1984-11-01T23:59:59.000Z

253

Clouds, Aerosols and Precipitation in  

NLE Websites -- All DOE Office Websites (Extended Search)

the Marine Boundary Layer (CAP-MBL) Graciosa Island, Azores, NE Atlantic Ocean Graciosa Island, Azores, NE Atlantic Ocean May 2009-December 2010 May 2009-December 2010 Rob Wood, University of Washington Rob Wood, University of Washington AMF Deployment Team Thanks to Mark Miller: AMF Site Scientist Mark Miller: AMF Site Scientist Kim Nitschke: AMF Site Manager CAP-MBL Proposal Team Importance of Low-Clouds for Climate Imperative that we understand the processes controlling the formation, maintenance and dissipation of low clouds in order to formation, maintenance and dissipation of low clouds in order to improve their representation in climate models. Which clouds matter for climate sensitivity? Cli t F db k

254

Nailing Down Ice in a Cloud Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Nailing Down Ice in a Cloud Model Nailing Down Ice in a Cloud Model For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight A research team led by scientists at Pacific Northwest National Laboratory identified specific strengths and weaknesses of four different ice cloud retrieval algorithms. Their comparisons tested the ability of the algorithms to obtain cloud properties from radar and lidar observational measurements. The team noted the sometimes large variances in heating/cooling measurements compared to the observed data. Identifying specific weaknesses will help scientists improve our understanding of cloud properties in the atmosphere, which can be used for climate model development and evaluation. "Measuring the effective size and mass of ice crystals impacts our understanding

255

A Numerical Study of Cirrus Clouds. Part I: Model Description  

Science Conference Proceedings (OSTI)

This article, the first of a two-part series, presents a detailed description of a two-dimensional numerical cloud model directed toward elucidating the physical processes governing the evolution of cirrus clouds. The two primary scientific ...

Hui-Chun Liu; Pao K. Wang; Robert E. Schlesinger

2003-04-01T23:59:59.000Z

256

Radiation Properties and Emissivity Parameterization of High Level Thin Clouds  

Science Conference Proceedings (OSTI)

To parameterize emissivity of clouds at 11 ?m, a study has been made in an effort to understand the radiation field of thin clouds. The contributions to the intensity and flux from different sources and through different physical processes are ...

Man-Li C. Wu

1984-07-01T23:59:59.000Z

257

The Origin of Ice in Mountain Cap Clouds  

Science Conference Proceedings (OSTI)

Ice crystal development in relatively simple layer clouds was studied using airborne instrumentation. The patterns in the development of ice in those clouds suggest that the ice originates in association with the initial condensation process, ...

William A. Cooper; Gabor Vali

1981-06-01T23:59:59.000Z

258

Measuring Clustering in Clouds Using Non-Rayleigh Signal Statistics  

Science Conference Proceedings (OSTI)

The clustering or clumping of droplets appears to be nearly ubiquitous in clouds. Clustering likely plays roles in a number of different physical processes, from the growth of hail, to snow aggregation, to the growth of raindrops, to cloud ...

A. R. Jameson

2005-04-01T23:59:59.000Z

259

Parameterization of Radiative Flux Profiles within Layer Clouds  

Science Conference Proceedings (OSTI)

The vertical structure of radiative flux profiles within clouds can have a significant impact on the thermodynamic processes that maintain and dissipate the clouds, particularly in the case of marine stratus and stratocumulus. However, dynamic ...

Howard P. Hanson; Vernon E. Derr

1987-11-01T23:59:59.000Z

260

Cloud Clusters and Superclusters over the Oceanic Warm Pool  

Science Conference Proceedings (OSTI)

Infrared satellite images of the oceanic warm-pool region (8O░E-160░W) have been objectively processed to reveal tropical ôcloud clustersö with temperature colder than a given threshold. Cloud clusters span a somewhat lognormal distribution of ...

Brain E. Mapes; Robert A. Houze Jr.

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Rates of Entrainment and Detrainment of Momentum of Cumulus Clouds  

Science Conference Proceedings (OSTI)

The horizontal momentum exchange process between cumulus clouds and their environment are examined. A general formula is also derived for the rates of entrainment and detrainment of momentum of a cumulus cloud ensemble. These general entrainment ...

Han-Ru Cho

1985-11-01T23:59:59.000Z

262

A Cloud Climatology of the Southern Great Plains ARM CART  

Science Conference Proceedings (OSTI)

Cloud amount statistics from three different sources were processed and compared. Surface observations from a National Centers for Environmental Prediction dataset were used. The data (Edited Cloud Report; ECR) consist of synoptic weather reports ...

Steven M. Lazarus; Steven K. Krueger; Gerald G. Mace

2000-05-01T23:59:59.000Z

263

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Continuous Dataset of Water Vapor Measurements Throws Water on Assumptions Continuous Dataset of Water Vapor Measurements Throws Water on Assumptions of Cirrus Cloud Formation Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Comstock, J. M., T. P. Ackerman, and D. D. Turner, 2004: Evidence of high ice supersaturation in cirrus clouds using ARM Raman lidar measurements. Geophys. Res. Letters, doi:10.1029/2004GL019705. To illustrate their findings, a continuous nine-hour segment of Raman lidar measurements showed upper tropospheric RHI measurements ranging from 120% near cloud tops and decreasing to about 70% at cloud base. To study the link between water vapor, cirrus cloud formation (homogenous and heterogenous) mechanisms, and their potential climatic impacts,

264

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation of CERES-MODIS Cloud Properties Using ARM Data Validation of CERES-MODIS Cloud Properties Using ARM Data Submitter: Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Dong, X., P. Minnis, B. Xi, S. Sun-Mack, and Y. Chen, 2007: Validation of CERES-MODIS stratus cloud properties using ground-based measurements at the DOE ARM SGP site. Accepted by J. Geophys. Res. Wielicki, B. A. and Co-authors (2000), CERES Validation Plan Overview, Release 4, 10/20/00, 58 pp. (Available at http://asd-www.larc.nasa.gov/ceres/validation/ ceresval_r4.0_over.pdf) Figure 1. Time series of surface-derived cloud-base and -top heights and temperatures (1-hour average) and matched MODIS-derived effective cloud heights and temperatures (30-km x 30-km box) for daytime single-layer and

265

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Clouds: from Jekyll to Hyde Tropical Clouds: from Jekyll to Hyde Submitter: Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Hagos SM and R Leung. 2012. "Large-scale environmental variables and transition to deep convection in cloud resolving model simulations: A vector representation." Journal of Advances in Modeling Earth Systems, 4(M11001), 2012MS000155, doi:10.1029/2012MS000155. The relationship between the mean 400hPa heating (Khr-1437 ) at time = 0 and the projection onto the favorable large-scale moisture profile at time = -1 hr. From Jekyll to Hyde, this anvil cloud is an example of tropical clouds that evolve from fair-weather to stormy. Scientists at PNNL used observational

266

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Profiling Capability of High-Resolution Oxygen A-band Spectroscopy for Profiling Capability of High-Resolution Oxygen A-band Spectroscopy for Stratus Cloud Cover Submitter: Davis, A. B., Jet Propulsion Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Davis AB, IN Polonsky, and A Marshak. 2009. Space-Time Green Functions for Diffusive Radiation Transport, in Application to Active and Passive Cloud Probing. In Light Scattering Reviews, Volume 4, pp. 169-292. Ed. by A.A. Kohkanovsky, Heidelberg, Germany: Springer. Transmission: (a) Ratio of mean path ╬Ą to cloud thickness ╬Ś times (1-g)¤ä plotted versus cosine of SZA ╬╝0 and cloud optical depth ¤ä; asymmetry factor g was set to 0.85, then delta-rescaled to 0.46. Given this ratio (>1/2) and ╬Ś or ¤ä, one can infer the other cloud parameter.

267

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

To Rain or Not to Rain...Aerosols May Be the Answer To Rain or Not to Rain...Aerosols May Be the Answer Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Niu F and Z Li. 2012. "Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-8491-2012. Cloud-top temperature (A, C) and ice water path (B, D) as functions of AI/AOT for warm (blue dots) and cold (red dots) base mixed-phase clouds and liquid clouds (green dots) over the ocean (upper panels) and land (lower panels). The right-hand axes of (A) and (C) are for liquid clouds. Precipitation rate as a function of AI for mixed-phase (blue dots) and

268

Glossary Term - Cloud Chamber  

NLE Websites -- All DOE Office Websites (Extended Search)

Ceres Previous Term (Ceres) Glossary Main Index Next Term (Composition of the Earth's Atmosphere) Composition of the
Earth's Atmosphere Cloud Chamber A cloud chamber showing the...

269

ARM - Measurement - Cloud phase  

NLE Websites -- All DOE Office Websites (Extended Search)

property that captures the state o f the hydrometeors within a cloud (liquid, ice, or mixed-phase). This is distinct from cloud type that involves property descriptors...

270

A study of pricing for cloud resources  

Science Conference Proceedings (OSTI)

We present a study of pricing cloud resources in this position paper. Our objective is to explore and understand the interplay between economics and systems designs proposed by recent research. We develop a general model that captures the resource needs ... Keywords: capacity right-sizing, cloud computing, economics, performance guarantees, pricing, throttling

Hong Xu; Baochun Li

2013-04-01T23:59:59.000Z

271

Particle Growth and Drop Collection Efficiency of Warm Clouds as Inferred from Joint CloudSat and MODIS Observations  

Science Conference Proceedings (OSTI)

This study describes an approach for combining CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations to investigate the microphysical processes of warm clouds on the global scale. MODIS column optical thickness ...

Kentaroh Suzuki; Takashi Y. Nakajima; Graeme L. Stephens

2010-09-01T23:59:59.000Z

272

Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instruments and Data Processing  

Science Conference Proceedings (OSTI)

Atmospheric radiative forcing, surface radiation budget, and top-of-the-atmosphere radiance interpretation involve knowledge of the vertical height structure of overlying cloud and aerosol layers. During the last decade, the U.S. Department of ...

James R. Campbell; Dennis L. Hlavka; Ellsworth J. Welton; Connor J. Flynn; David D. Turner; James D. Spinhirne; V. Stanley Scott III; I. H. Hwang

2002-04-01T23:59:59.000Z

273

The Roles of Dry Convection, Cloud-Radiation Feedback Processes and the Influence of Recent Improvements in the Parameterization of Convection in the GLA GCM  

Science Conference Proceedings (OSTI)

The sensitivity of the simulated July circulation to modifications in the parameterization of dry and moist convection, evaporation from failing raindrops, and cloud-radiation interaction is examined with the GLA (Goddard Laboratory for ...

Y. Sud; A. Molod

1988-11-01T23:59:59.000Z

274

Multiscale Interactions in the Life Cycle of a Tropical Cyclone Simulated in a Global Cloud-System-Resolving Model. Part II: System-Scale and Mesoscale Processes  

Science Conference Proceedings (OSTI)

The life cycle of Tropical Storm Isobel was simulated reasonably well in the Nonhydrostatic Icosahedral Atmospheric Model (NICAM), a global cloud-system-resolving model. The evolution of the large-scale circulation and the storm-scale structure ...

Hironori Fudeyasu; Yuqing Wang; Masaki Satoh; Tomoe Nasuno; Hiroaki Miura; Wataru Yanase

2010-12-01T23:59:59.000Z

275

Effects of Image Charges on the Scavenging of Aerosol Particles by Cloud Droplets and on Droplet Charging and Possible Ice Nucleation Processes  

Science Conference Proceedings (OSTI)

Previous calculations of the rate at which falling droplets in clouds collide with aerosols have led to the conclusion that except in thunderclouds any electrical charges on the aerosols or droplets have little effect on the collision rate. ...

B. A. Tinsley; R. P. Rohrbaugh; M. Hei; K. V. Beard

2000-07-01T23:59:59.000Z

276

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Method for Satellite/Surface Comparisons A New Method for Satellite/Surface Comparisons Download a printable PDF Submitter: Long, C. N., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Properties, Radiative Processes Journal Reference: Zhang Y, CN Long, WB Rossow, and EG Dutton. 2010. "Exploiting diurnal variations to evaluate the ISCCP-FD flux calculations and radiative-flux-analysis-processed surface observations from BSRN, ARM, and SURFRAD." Journal of Geophysical Research - Atmospheres, 115, D00K11, 10.1029/2009JD012812. Figure 1: Scatter plot for the column aerosol optical depth (AOD) at 550 nm, measured at the surface (PSO) and used as input for the ISCCP-FD calculations (FD) at 10 ARM/SURFRAD/BSRN stations. The robust linear regression line is also shown.

277

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Vertical Variation of Cloud Droplet Size Using Ship and Space-borne R/S Vertical Variation of Cloud Droplet Size Using Ship and Space-borne R/S Data Download a printable PDF Submitter: Li, Z., University of Maryland Chen, R., University of Maryland Wood, R., University of Washington Chang, F., Science Systems and Applications, Inc. Ferraro, R., NOAA/NESDIS, WWBG Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Chen, R, R Wood, Z Li, R Ferraro, and F Chang. 2008. "Studying the vertical variation of cloud droplet effective radius using ship and space-borne remote sensing data." Journal of Geophysical Research 113, doi:10.1029/2007JD009596. Figure 1. Coincident images of C-band radar reflectivity and MODIS cloud profile at UTC 15:55, Oct. 18, 2001. a) RHB C-band radar reflectivity

278

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

CCN and Vertical Velocity Influences CCN and Vertical Velocity Influences Submitter: Hudson, J. G., Desert Research Institute Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Hudson JG and S Noble. 2013. "CCN and vertical velocity influences on droplet concentrations and supersaturations in clean and polluted stratus clouds." Journal of the Atmospheric Sciences, , . ACCEPTED. Figure 1. Effective cloud supersaturation (Seff) against CCN concentration at 1% S (N1%) for horizontal cloud penetrations, 50 for MASE and 34 for POST. Seff is the S for which nearby below cloud CCN spectra, NCCN(S), equals mean droplet concentration (Nc). Figure 2. One second droplet concentration, Nc, and vertical velocity

279

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Desert Dust Determines Aerial Spread of Thunderstorm Clouds Desert Dust Determines Aerial Spread of Thunderstorm Clouds Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Zeng X, W Tao, SW Powell, RA Houze, P Ciesielski, N Guy, H Pierce, and T Matsui. 2013. "A comparison of the water budgets between clouds from AMMA and TWP-ICE." Journal of the Atmospheric Sciences, 70(2), doi:10.1175/JAS-D-12-050.1. The sun, seen through a dusty atmosphere, sets at Niamey, the capital of Niger, which is located in the African Sahara. Anvil clouds that accompany thunderstorms. Contrasts often provide unique perspectives, and scientists seize any such opportunity-when it arises. In a new research paper, published in the Journal of Atmospheric Sciences,

280

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Strong Impacts of Vertical Velocity on Cloud Microphysics and Implications Strong Impacts of Vertical Velocity on Cloud Microphysics and Implications for Aerosol Indirect Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Lu, C., Brookhaven National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Lu C, Y Liu, S Niu, and AM Vogelmann. 2012. "Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects." Geophysical Research Letters, 39, L21808, doi:10.1029/2012GL053599. Joint probability density functions (PDF) of relative dispersion (╬Á) versus vertical velocity (w) along horizontal aircraft legs for each cumulus flight (date given in legend). The red lines denote weighted least

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Global Simulations of Ice nucleation and Ice Supersaturation with an Improved Cloud Scheme in the Community Atmosphere Model  

Science Conference Proceedings (OSTI)

A process-based treatment of ice supersaturation and ice-nucleation is implemented in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). The new scheme is designed to allow (1) supersaturation with respect to ice, (2) ice nucleation by aerosol particles and (3) ice cloud cover consistent with ice microphysics. The scheme is implemented with a 4-class 2 moment microphysics code and is used to evaluate ice cloud nucleation mechanisms and supersaturation in CAM. The new model is able to reproduce field observations of ice mass and mixed phase cloud occurrence better than previous versions of the model. Simulations indicate heterogeneous freezing and contact nucleation on dust are both potentially important over remote areas of the Arctic. Cloud forcing and hence climate is sensitive to different formulations of the ice microphysics. Arctic radiative fluxes are sensitive to the parameterization of ice clouds. These results indicate that ice clouds are potentially an important part of understanding cloud forcing and potential cloud feedbacks, particularly in the Arctic.

Gettelman, A.; Liu, Xiaohong; Ghan, Steven J.; Morrison, H.; Park, Sungsu; Conley, Andrew; Klein, Stephen A.; Boyle, James; Mitchell, David; Li, J-L F.

2010-09-28T23:59:59.000Z

282

Evaluation of Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Sa...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Type Occurrences Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Satellite and Cloud Radar Y. Luo and S. K. Krueger University of Utah Salt Lake City, Utah Introduction Because of both the various effects clouds exert on the earth-atmospheric system and the cloud feedback, correct representations of clouds in numerical models are critical for accurate climate modeling and weather forecast. Unfortunately, determination of clouds and their radiative feedback processes is still the weakest component of current general circulation models (e.g., Senior and Mitchell 1993, Cess et al. 1996). Using radiative fluxes at the top of atmosphere (TOA) available from satellite observations made by the Earth Radiation Budget Experiment (ERBE; Barkstrom 1984), one could assess cloud radiative effects

283

DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT  

SciTech Connect

During the period, March 1997 ľ February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

Minnis, Patrick [NASA Langley Research Center, Hampton, VA

2013-06-28T23:59:59.000Z

284

The Mixed-Phase Arctic Cloud Experiment  

Science Conference Proceedings (OSTI)

The Mixed-Phase Arctic Cloud Experiment (M-PACE) was conducted from 27 September through 22 October 2004 over the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) on the North Slope of Alaska. The ...

J. Verlinde; J. Y. Harrington; V. T. Yannuzzi; A. Avramov; S. Greenberg; S. J. Richardson; C. P. Bahrmann; G. M. McFarquhar; G. Zhang; N. Johnson; M. R. Poellot; J. H. Mather; D. D. Turner; E. W. Eloranta; D. C. Tobin; R. Holz; B. D. Zak; M. D. Ivey; A. J. Prenni; P. J. DeMott; J. S. Daniel; G. L. Kok; K. Sassen; D. Spangenberg; P. Minnis; T. P. Tooman; M. Shupe; A. J. Heymsfield; R. Schofield

2007-02-01T23:59:59.000Z

285

Berkeley Lab Selects IBM Technology to Power Cloud Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy (DOE). The Magellan system will be a testbed for National Energy Research Scientific Computing Center (NERSC) scientists to explore the effectiveness of cloud computing...

286

Modification of Precipitation from Warm CloudsŚA Review  

Science Conference Proceedings (OSTI)

This review is begun with a brief summary of the current status of our understanding of the physics of precipitation in warm clouds. The impact of warm-cloud precipitation processes on the evolution of the ice phase in supercooled clouds also is ...

William R. Cotton

1982-02-01T23:59:59.000Z

287

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with SCAM, CAPT Forecasts and M-PACE Observations Download a printable PDF Submitter: Liu, X., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Liu, X, S Xie, and SJ Ghan. 2007. "Evaluation of a new mixed-Phase cloud microphysics parameterization with the NCAR single column climate model (SCAM) and ARM M-PACE observations." Geophysical Research Letters 34, L23712, doi:10.1029/2007GL031446. Xie, S, J Boyle, SA Klein, X Liu and S Ghan. 2008. "Simulations of arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE." Journal of Geophysical Research, in press.

288

Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights Highlights Thermochemical conversion technologies convert biomass and its residues to fuels and chemicals using gasification and pyrolysis. Gasification entails heating biomass and results in a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis, which is heating biomass in the absence of oxygen, produces liquid pyrolysis oil. Both syngas and pyrolysis oil can be chemically converted into clean, renewable transportation fuels and chemicals. The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass. Thermochemical processes include gasification and pyrolysis-processes used to convert

289

Research Input Form  

NLE Websites -- All DOE Office Websites (Extended Search)

HighlightsSubmit HighlightsSubmit Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for 2001-2006 Biological and Environmental Research Abstracts Database Research Highlights Summaries Research Highlight Submittal Form Tell us about your research! This form is designed to collect summary information about working group research results. If you have any questions or comments, please contact the administrators. Journal or Book Reference(s) (if applicable): Look Up Your reference from the Publications Database. Limit two references. If you have not submitted the references, please Add it now. Area of Research: Radiation Processes Cloud Distributions/Characterizations Surface Properties General Circulation and Single Column

290

Managing Data Access on Clouds: A Generic Framework for Enforcing Security Policies  

Science Conference Proceedings (OSTI)

Providing an adequate security level in Cloud Environments is currently an extremely active research area. More specifically, malicious behaviors targeting large-scale Cloud data repositories (e.g. Denial of Service attacks) may drastically degrade the ... Keywords: Cloud computing, Cloud storage service, security, policy enforcement, Denial of Service

Cristina Basescu; Alexandra Carpen-Amarie; Catalin Leordeanu; Alexandru Costan; Gabriel Antoniu

2011-03-01T23:59:59.000Z

291

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Measurements Help to Evaluate Radiation Codes Used in Global Modeling ARM Measurements Help to Evaluate Radiation Codes Used in Global Modeling Download a printable PDF Submitter: Oreopoulos, L., NASA Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Oreopoulos L, E Mlawer, J Delamere, T Shippert, J Cole, B Fomin, M Iacono, Z Jin, J Li, J Manners, P Raisanen, F Rose, Y Zhang, MJ Wilson, and WB Rossow. 2012. "The Continual Intercomparison of Radiation Codes: results from Phase I." Journal of Geophysical Research - Atmospheres, 117, doi:10.1029/2011JD016821. The total error of each participating radiation code for all LW (left) and SW (right) cases in the CIRC intercomparison. The identity of each participating code can be found in the paper; codes built due to ARM

292

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing the "Light Precipitation Problem" in the ECMWF Global Model Addressing the "Light Precipitation Problem" in the ECMWF Global Model Download a printable PDF Submitter: Ahlgrimm, M., European Centre for Medium-Range Weather Forecasts Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Ahlgrimm M and R Forbes. 2013. "Improving the representation of low clouds and drizzle in the ECMWF model based on ARM observations from the Azores." Monthly Weather Review, , . ACCEPTED. Monthly mean cloud and precipitation occurrence from observations (red), the control version of the single column model (green) and the SCM experiment (blue). (a) Total cloud occurrence. (b) Low cloud (solid) and deep boundary layer (dashed) cloud occurrence. (c) Precipitation occurrence

293

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Simulation of Boundary Layer Clouds Improved Simulation of Boundary Layer Clouds Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1. Comparison of Boundary Layer Clouds Schemes in Climate Models with Satellite Observations Key Contributors: James McCaa, as part of his Ph.D. dissertation at University of Washington Chris Bretherton, University of Washington Dennis Hartmann, University of Washington Steven Ghan, Pacific Northwest National Laboratory Marine boundary layer clouds are among the most difficult clouds to represent in climate models. A team of atmospheric scientists from the University of Washington (UW) and the Pacific Northwest National Laboratory

294

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Sub-Grid Scale Cloud Variability Affects Vertical Structure of Clouds and Sub-Grid Scale Cloud Variability Affects Vertical Structure of Clouds and Radiative Heating Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: McFarlane, S. A., J. H. Mather, and T. P. Ackerman (2007), Analysis of tropical radiative heating profiles: A comparison of models and observations, J. Geophys. Res., 112, D14218, doi:10.1029/2006JD008290. Comparison of the distributions of cloud condensate for the ACRF TWP site at Manus using a) retrievals from the ACRF remote sensors, b) the CAM, c) all MMF columns, and d) MMF columns that do not contain precipitation. Note that the ARM observations do not include precipitation. Each panel consists

295

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulating the Impact of Aerosols on Tropical Deep Convection Simulating the Impact of Aerosols on Tropical Deep Convection Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Morrison H and WW Grabowski. 2011. "Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment." Atmospheric Chemistry and Physics, 11(20), doi:10.5194/acp-11-10503-201. Profiles of ensemble- and horizontally averaged a) cloud water mixing ratio, b) rain mixing ratio, c) ice mixing ratio, d) cloud droplet concentration, e) rain number concentration, and f) ice number concentration, Ni, for pristine (blue), polluted (green), and highly

296

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Copulas to Model Complex Clouds Using Copulas to Model Complex Clouds Download a printable PDF Submitter: Oreopoulos, L., NASA Norris, P. M., NASA - GMAO/UMBC - GEST Hou, A., NASA - Goddard Space Flight Center Tao, W., NASA - Goddard Space Flight Center Zeng, X., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Norris PM, L Oreopoulos, AY Hou, WK Tao, and X Zeng. 2008. "Representation of 3D heterogeneous cloud fields using copulas: Theory for water clouds." Quarterly Journal Royal Meteorological Society, 134(636), doi:10.1002/qj.321. Contours containing (brown-80%, orange-60%, cyan-40%, and blue-20%) of the joint inter-layer S probability, such that the probability densities within each contour are larger than those outside. Thick contours are from the GCE

297

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Out with the Old, in with the New: McICA to Replace Traditional Cloud Out with the Old, in with the New: McICA to Replace Traditional Cloud Overlap Assumptions Submitter: Pincus, R., NOAA - CIRES Climate Diagnostics Center Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Modeling Journal Reference: Pincus, R., R. Hemler, and S.A. Klein, 2006: Using Stochastically Generated Subcolumns to Represent Cloud Structure in a Large-Scale Model. Mon. Wea. Rev., 134, 3644-3656. As shown by the difference between the two panels, the standard way (AM2, top panel) of mixing solar reflection and transmission differs systematically from the Independent Column Approximation approach. Because cloud-radiation interactions depend critically on the vertical amount of clouds, different assumptions about how this alignment occurs

298

Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds  

SciTech Connect

A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmospheric emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.

McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Mengistu; Brooks, Sarah D.; Cziczo, Daniel J.; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor J.; Gultepe, Ismail; Hubbe, John M.; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. R.; Liu, Peter S.; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, A. M.; Moffet, Ryan C.; Morrison, H.; Ovchinnikov, Mikhail; Shupe, Matthew D.; Turner, David D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matthew; Glen, Andrew

2011-02-01T23:59:59.000Z

299

Statistical representation of clouds in climate models  

NLE Websites -- All DOE Office Websites (Extended Search)

novel approach for representing novel approach for representing ice microphysics in bin and bulk schemes: Application to TWP-ICE deep convection Hugh Morrison and Wojciech Grabowski National Center for Atmospheric Research ARM STM, Monday, April 1, 2009 -1) Uncertainty of ice initiation processes -2) Wide range of ice particle characteristics (e.g., shape, effective density) -3) No clear separation of physical processes for small and large crystals The treatment of ice microphysics has a large impact on model simulations, e.g., precipitation, interactions with dynamics, radiation, etc. However, it is complicated by: Pristine ice crystals, grown by diffusion of water vapor Snowflakes, grown by aggregation Pruppacher and Klett Rimed ice crystals (accretion of supercooled cloud water) Graupel (heavily

300

ARM - Field Campaign - Boundary Layer Cloud IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsBoundary Layer Cloud IOP govCampaignsBoundary Layer Cloud IOP Campaign Links Campaign Images Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Boundary Layer Cloud IOP 2005.07.11 - 2005.08.07 Lead Scientist : William Shaw For data sets, see below. Description Investigators from Pacific Northwest National Laboratory, in collaboration with scientists from a number of other institutions, carried out a month of intensive measurements at the ARM Climate Research Facility on the North Slope of Alaska in the summer of 2005. The purpose of these measurements was to determine how much the arctic land surface modifies the way low clouds reflect, absorb, and transmit solar and infrared radiation. This is an important problem because arctic clouds play a prominent role in

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Global Circuit Model with Clouds  

Science Conference Proceedings (OSTI)

Cloud data from the International Satellite Cloud Climatology Project (ISCCP) database have been introduced into the global circuit model developed by Tinsley and Zhou. Using the cloud-top pressure data and cloud type information, the authors ...

Limin Zhou; Brian A. Tinsley

2010-04-01T23:59:59.000Z

302

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Power in the Vertical: Using Wind Profiler Data to Study Precipitation Power in the Vertical: Using Wind Profiler Data to Study Precipitation Download a printable PDF Submitter: Kollias, P., McGill University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Tridon F, A Battaglia, P Kollias, E Luke, and C Williams. 2013. "Signal post-processing and reflectivity calibration of the Atmospheric Radiation Measurement Program 915 MHz wind profilers." Journal of Atmospheric and Oceanic Technology, 30(6), doi:10.1175/JTECH-D-12-00146.1. Because ARM's wind profilers (foreground) can take vertical as well as horizontal measurements, the instruments can be used with appropriate processing and calibration to help study rainfall. For more than two decades, radar wind profilers of the U.S. Department of

303

Marketing research for EE G Mound Applied Technologies' heat treatment process of high strength materials  

Science Conference Proceedings (OSTI)

This report summarizes research conducted by ITI to evaluate the commercialization potential of EG G Mound Applied Technologies' heat treatment process of high strength materials. The remainder of the report describes the nature of demand for maraging steel, extent of demand, competitors, environmental trends, technology life cycle, industry structure, and conclusion. (JL)

Shackson, R.H.

1991-10-09T23:59:59.000Z

304

Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan, Rev. 1  

Science Conference Proceedings (OSTI)

This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report.

Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

2001-12-10T23:59:59.000Z

305

Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan  

Science Conference Proceedings (OSTI)

This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report

Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

2001-10-31T23:59:59.000Z

306

Cloud Microphysics of the Giant Planets  

Science Conference Proceedings (OSTI)

The predominant cloud microphysical processes for the atmospheres of the giant planets are determined by a comparison of their characteristic time constants. These results are an extension of the earlier microphysical modeling by Rossow to other ...

Barbara E. Carlson; William B. Rossow; Glenn S. Orton

1988-07-01T23:59:59.000Z

307

On the Spatial Distribution of Cloud Particles  

Science Conference Proceedings (OSTI)

Recent studies have led to the statistical characterization of the spatial (temporal) distributions of cloud (precipitation) particles as a doubly stochastic Poisson process. This paper arrives at a similar conclusion (larger-than-Poissonian ...

A. B. Kostinski; A. R. Jameson

2000-04-01T23:59:59.000Z

308

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantifying the Impact of Dust on Ice Generation in Supercooled Stratiform Quantifying the Impact of Dust on Ice Generation in Supercooled Stratiform Clouds Download a printable PDF Submitter: Wang, Z., University of Wyoming Zhang, D., University of Wyoming Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Zhang D, Z Wang, A Heymsfield, J Fan, D Liu, and M Zhao. 2012. "Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds." Journal of Geophysical Research - Atmospheres, 39, L18805, doi:10.1029/2012GL052831. An example of dusty MSSC: (a) CALIOP TAB profiles at 532nm; (b) CALIOP depolarization profiles at 532nm; (c) CloudSat CPR radar reflectivity profiles; (d) Identified dust layers and MSSC; (e) Global distribution of

309

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Wide Angle Imaging Lidar: Active Optical Sensor Technology for Ground-Based Wide Angle Imaging Lidar: Active Optical Sensor Technology for Ground-Based Probing of Dense Clouds Download a printable PDF Submitter: Davis, A. B., Jet Propulsion Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Davis, AB. 2008. "Multiple-scattering lidar from both sides of the clouds: Addressing internal structure." Journal of Geophysical Research 113, D14S10, doi:10.1029/2007JD009666. Figure 1. Lidar observations of a dense cloud. Left: standard (single-scattering/on-beam) lidar. Right: multiple-scattering/off-beam lidar. Note the extreme narrowness of the FOV in the standard case, as is required to restrict as much as possible the signal to a single backscatter. Also note the weak penetration, O(1) MFP, of the two-way

310

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding Ice Formation in Arctic Mixed-Phase Boundary-Layer Clouds Understanding Ice Formation in Arctic Mixed-Phase Boundary-Layer Clouds During ISDAC Download a printable PDF Submitter: Ackerman, A., NASA - Goddard Institute for Space Studies Fridlind, A. M., NASA - Goddard Institute for Space Studies Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Avramov A, AS Ackerman, AM Fridlind, B van Diedenhoven, G Botta, K Aydin, J Verlinde, KV Alexei, W Strapp, GM McFarquhar, R Jackson, SD Brooks, A Glen, and M Wolde. 2011. "Towards ice formation closure in Arctic mixed-phase boundary layer clouds during ISDAC." Journal of Geophysical Research - Atmospheres, 116, D00T08, doi:10.1029/2011JD015910. Ice number size distributions as simulated (dendrites in red, aggregates in

311

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Hemispherical Simulations Show Impact of Aerosols on Cloud Reflectivity Hemispherical Simulations Show Impact of Aerosols on Cloud Reflectivity Submitter: Rotstayn, L., Commonwealth Scientific and Industrial Research Organization Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Rotstayn, L., and Y. Liu, Sensitivity of the First Indirect Aerosol Effect to an Increase in Cloud Droplet Spectral Dispersion with Droplet Number Concentration, Journal of Climate: Vol. 16, No. 21, pp.3476-3481, May 2003. Figure 1. Measurements of the relation between the relative dispersion of the cloud droplet spectrum and the cloud droplet number concentration (N). The lower, middle, and upper curves show the parameterizations used in the LOWER, MIDDLE, and UPPER simulations, respectively. A recent study by DOE Atmospheric Radiation Measurement (ARM) Program

312

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Probabilistic Approach Useful for Evaluating Cloud System Models Probabilistic Approach Useful for Evaluating Cloud System Models Submitter: Jakob, C., Monash University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Jakob, C., R. Pincus, C. Hannay, and K.M. Xu (2004). Use of cloud radar observations for model evaluation: A probabilistic approach, J. Geophys. Res., 109, D03202, doi:10.1029/2003JD003473. In evaluating climate models, time and space represent key challenges when extrapolating observations into simulations. Researchers supported by DOE's Atmospheric Radiation Measurement (ARM) Program have explored an alternative method based on "point series data" to arrive at model cloud predictions. Point series data are obtained over time through measurements

313

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Remote Sensing of Cirrus Cloud Vertical Size Profile Using MODIS Data Remote Sensing of Cirrus Cloud Vertical Size Profile Using MODIS Data Download a printable PDF Submitter: Ou, S., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Wang X, KN Liou, SS Ou, GG Mace, and M Deng. 2009. "Remote sensing of cirrus cloud vertical size profile using MODIS data." Journal of Geophysical Research - Atmospheres, 114, D09205, doi:10.1029/2008JD011327. (a) MODIS true color composite images for March 6, 2001 at 1736UTC, (b) retrieved ╬Ąc; (c) retrieved Dt for selected domain; (d) retrieved Db for selected domain; (e) scatter plot for retrieved ╬Ąc versus MODIS ╬Ąc for selected domain; (f) scatter plot for retrieved De versus MODIS De for

314

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cumuli Impact on Solar Radiation at Surface: Spectral Changes Cumuli Impact on Solar Radiation at Surface: Spectral Changes Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, J Barnard, LK Berg, CN Long, and C Flynn. 2011. "Shortwave spectral radiative forcing of cumulus clouds from surface observations." Geophysical Research Letters, 38, L07801, doi:10.1029/2010GL046282. Figure 1. Normalized total cloud radiative forcing and its direct and diffuse components as a function of wavelength. Typically, under cloudy conditions, radiative transfer parameterizations in climate models have been evaluated by calculating the total cloud impact on

315

Research prioritization using the Analytic Hierarchy Process: basic methods. Volume 1  

SciTech Connect

This report describes a systematic approach for prioritizing research needs and research programs. The approach is formally called the Analytic Hierarchy Process which was developed by T.L. Saaty and is described in several of his texts referenced in the report. The Analytic Hierarchy Process, or AHP for short, has been applied to a wide variety of prioritization problems and has a good record of success as documented in Saaty's texts. The report develops specific guidelines for constructing the hierarchy and for prioritizing the research programs. Specific examples are given to illustrate the steps in the AHP. As part of the work, a computer code has been developed and the use of the code is described. The code allows the prioritizations to be done in a codified and efficient manner; sensitivity and parametric studies can also be straightforwardly performed to gain a better understanding of the prioritization results. Finally, as an important part of the work, an approach is developed which utilizes probabilistic risk analyses (PRAs) to systematically identify and prioritize research needs and research programs. When utilized in an AHP framework, the PRA's which have been performed to date provide a powerful information source for focusing research on those areas most impacting risk and risk uncertainty.

Vesely, W.E.; Shafaghi, A.; Gary, I. Jr.; Rasmuson, D.M.

1983-08-01T23:59:59.000Z

316

Cloud Computing Forum & Workshop II  

Science Conference Proceedings (OSTI)

Cloud Computing Forum & Workshop II. Purpose: On May 20, 2010, NIST hosted the first Cloud Computing Forum & Workshop. ...

2013-08-07T23:59:59.000Z

317

ISCCP Cloud Algorithm Intercomparison  

Science Conference Proceedings (OSTI)

The International Satellite Cloud Climatology Project (ISCCP) will provide a uniform global climatology of satellite-measured radiances and derive an experimental climatology of cloud radiative properties from these radiances. A pilot study to ...

W. B. Rossow; F. Mosher; E. Kinsella; A. Arking; M. Desbois; E. Harrison; P. Minnis; E. Ruprecht; G. Seze; C. Simmer; E. Smith

1985-09-01T23:59:59.000Z

318

Automated cloud resource orchestration  

Science Conference Proceedings (OSTI)

Realizing Infrastructure-as-a-Service (IaaS) cloud requires a control platform for orchestrating the provisioning, configuration, management and decommissioning of a distributed set of diverse cloud resources (i.e., compute, storage, network) serving ...

Changbin Liu / Boon Thau Loo

2012-01-01T23:59:59.000Z

319

ARM - Measurement - Cloud type  

NLE Websites -- All DOE Office Websites (Extended Search)

type ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud type Cloud type such as...

320

Clouds in Tropical Cyclones  

Science Conference Proceedings (OSTI)

Clouds within the inner regions of tropical cyclones are unlike those anywhere else in the atmosphere. Convective clouds contributing to cyclogenesis have rotational and deep intense updrafts but tend to have relatively weak downdrafts. Within ...

Robert A. Houze Jr.

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

North Australian Cloud Lines  

Science Conference Proceedings (OSTI)

A satellite classification and climatology of propagating mesoscale cloud fines in northern Australia is presented. These cloud fines range from long, narrow lines of shallow convection to extensive deep convective squall lines with mesoscale ...

W. Drosdowsky; G. J. Holland

1987-11-01T23:59:59.000Z

322

Clouds in Tropical Cyclones  

Science Conference Proceedings (OSTI)

Clouds within the inner regions of tropical cyclones are unlike those anywhere else in the atmosphere. Convective clouds contributing to cyclogenesis have rotational and deep intense updrafts but tend to have relatively weak downdrafts. Within the ...

Robert A. Houze Jr.

2010-02-01T23:59:59.000Z

323

SecLaaS: secure logging-as-a-service for cloud forensics  

Science Conference Proceedings (OSTI)

Cloud computing has emerged as a popular computing paradigm in recent years. However, today's cloud computing architectures often lack support for computer forensic investigations. Analyzing various logs (e.g., process logs, network logs) plays a vital ... Keywords: cloud forensics, cloud security, forensic investigation, logging-as-a-service

Shams Zawoad, Amit Kumar Dutta, Ragib Hasan

2013-05-01T23:59:59.000Z

324

Final Report for Research Conducted at The Scripps Institution of Oceanography, University of California San Diego from 2/2002 to 8/2003 for ''Aerosol and Cloud-Field Radiative Effects in the Tropical Western Pacific: Analyses and General Circulation Model Parameterizations''  

SciTech Connect

OAK-B135 Final report from the University of California San Diego for an ongoing research project that was moved to Brookhaven National Laboratory where proposed work will be completed. The research uses measurements made by the Atmospheric Radiation Measurement (ARM) Program to quantify the effects of aerosols and clouds on the Earth's energy balance in the climatically important Tropical Western Pacific.

Vogelmann, A. M.

2004-01-27T23:59:59.000Z

325

Phenomenological Description of Tropical Clouds Using CloudSat Cloud Classification  

Science Conference Proceedings (OSTI)

Two years of tropical oceanic cloud observations are analyzed using the operational CloudSat cloud classification product and CloudľAerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar. Relationships are examined between ...

Ali Behrangi; Terry Kubar; Bjorn Lambrigtsen

2012-10-01T23:59:59.000Z

326

Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels  

Science Conference Proceedings (OSTI)

This study proposes a novel technique for computing cloud feedbacks using histograms of cloud fraction as a joint function of cloud-top pressure (CTP) and optical depth (?). These histograms were generated by the International Satellite Cloud ...

Mark D. Zelinka; Stephen A. Klein; Dennis L. Hartmann

2012-06-01T23:59:59.000Z

327

Cloud Computing at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Computing Energy Efficient Computing Exascale Computing Performance & Monitoring Tools Petascale Initiative Science Gateway Development Storage and IO Technologies Testbeds...

328

ARM - Research Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

CenterResearch Highlights CenterResearch Highlights Media Contact Lynne Roeder lynne-dot-roeder-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes89 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 BAECC 1 BBOP 4 MAGIC 12 MC3E 17 SGP 2 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field Notes Blog feed Events feed Employment Research Highlights Data Announcements Education News Archive What's this? Social Media Guidance Research Highlights Research Highlights Archive ┬╗ Forecast Calls for Better Models: Examining the Core Components of Arctic Clouds to Clear Their Influence on Climate Jan 07, 2014 Predicting how atmospheric aerosols influence cloud formation and the resulting feedback to climate is a challenge that limits the accuracy of atmospheric models. This is especially true in the Arctic, where mixed-phase (both ice- and liquid-based) clouds are frequently observed, but the processes that determine their composition are poorly understood. To obtain a closer look [...]

329

ARM - Field Campaign - MASRAD: Pt. Reyes Stratus Cloud and Drizzle...  

NLE Websites -- All DOE Office Websites (Extended Search)

which in combination with aircraft in-situ measurements aid in determining the modification of aerosols by cloud processes. In addition the sodar and profiler provide...

330

Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility  

SciTech Connect

The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

2003-02-26T23:59:59.000Z

331

Rope Cloud over Land  

Science Conference Proceedings (OSTI)

Satellite imagery is used to document several rope clouds over the southeastern Unites States. Surface and upper-air data are examined for one of the rope clouds and possible reasons for the development and maintenance of this type cloud line are ...

Von S. Woods

1983-03-01T23:59:59.000Z

332

User Centric Community Clouds  

Science Conference Proceedings (OSTI)

With the evolution in cloud technologies, users are becoming acquainted with seamless service provision. Nevertheless, clouds are not a user centric technology, and users become completely dependent on service providers. We propose a novel concept for ... Keywords: Cloud infrastructure, Identity management, User-centric systems

JoŃo Paulo Barraca; Alfredo Matos; Rui L. Aguiar

2011-05-01T23:59:59.000Z

333

Cumulus Cloud Field Morphology and Spatial Patterns Derived from High Spatial Resolution Landsat Imagery  

Science Conference Proceedings (OSTI)

Detailed observations of cumulus cloud scales and processes are an essential ingredient in models that deal with (i) high spatial resolution cumulus ensembles; and (ii) parameterization of cloud radiative processes. The present investigation ...

S. K. Sengupta; R. M. Welch; M. S. Navar; T. A. Berendes; D. W. Chen

1990-12-01T23:59:59.000Z

334

Homogeneous and Inhomogeneous Mixing in Cumulus Clouds: Dependence on Local Turbulence Structure  

Science Conference Proceedings (OSTI)

The helicopter-borne instrument payload known as the Airborne Cloud Turbulence Observation System (ACTOS) was used to study the entrainment and mixing processes in shallow warm cumulus clouds. The characteristics of the mixing process are ...

Katrin Lehmann; Holger Siebert; Raymond A. Shaw

2009-12-01T23:59:59.000Z

335

Influence of Rain-Rate Initialization, Cloud Microphysics, and Cloud Torques on Hurricane Intensity  

Science Conference Proceedings (OSTI)

This study examines the impact of rain-rate initialization (RINIT), microphysical modifications, and cloud torques (in the context of angular momentum) on hurricane intensity forecasts using a mesoscale model [the Advanced Research Weather ...

S. Pattnaik; C. Inglish; T. N. Krishnamurti

2011-02-01T23:59:59.000Z

336

ARM - Publications: Science Team Meeting Documents: Cloud Radiative Forcing  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Radiative Forcing at the ARM Climate Research Facility: Part 2. The Cloud Radiative Forcing at the ARM Climate Research Facility: Part 2. The Vertical Redistribution of Radiant Energy by Clouds. Mace, Gerald University of Utah Benson, Sally University of Utah Kato, Seiji Hampton University/NASA Langley Research Center Documentation with data of the effects of clouds on the radiant energy balance of the surface and atmosphere represent a critical shortcoming in the set of observations that are needed to ascertain the validity of model simulations of the earth's climate. While clouds are known to cool the climate system from TOA radiation budget studies, the redistribution of energy between the surface and atmosphere and within the atmosphere by clouds has not been examined in detail. Using data collected at the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP)

337

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Science Applications of AERI Measurements: 1997 Progress ARM Science Applications of AERI Measurements: 1997 Progress Submitter: Smith, W. L., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Cloud Modeling Journal Reference: N/A Figure 1. Figs. 1a and 1b contain rms differences from 72 radiosondes for AERI retrievals (blue), GOES retrievals (black), and AERI+GOES retrievals (red) for temperature and mixing ratio respectively during the 1997 Water Vapor IOP. A measure of meteorological the variability of the temperature and water vapor is indicated by the green line. Figs. 1c and 1d show the TPW for the same cases from GOES, AERI+GOES, radiosonde, and the ARM SGP CART microwave radiometer and relative percent differences in TPW amounts. Figure 2. Four consecutive radiosonde, GOES, and AERI+GOES comparisons from

338

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Experiments to Improve the Treatment of Radiation in the Mid-to-Upper Field Experiments to Improve the Treatment of Radiation in the Mid-to-Upper Troposphere Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Turner DD and EJ Mlawer. 2010. "The Radiative Heating in Underexplored Bands Campaigns (RHUBC)." Bulletin of the American Meteorological Society, 91, doi:10.1175/2010BAMS2904.1. (a) Atmospheric transmittance at 1 cm-1 resolution in the far-infrared for three atmospheres that are representative of the ARM SGP site, NSA site, and RHUBC-II site in the Chajnantor plateau (CJC). (b) The transmittance

339

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Development and Recent Evaluation of the MT_CKD Model of Continuum Development and Recent Evaluation of the MT_CKD Model of Continuum Absorption Download a printable PDF Submitter: Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi: 10.1098/rsta.2011.0295. For seven AERI cases with 4-6 cm PWV: (a) average AERI radiances (black) and corresponding calculations using radiation code with previous version of MT_CKD continuum model (red); (b) residuals between AERI and calculations with older model; (c) residuals after the CO2 continuum in

340

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

A Downwelling Infrared Radiance Climatology for the ARM Southern Great A Downwelling Infrared Radiance Climatology for the ARM Southern Great Plains Site Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Gero, J., University of Wisconsin Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Turner DD and PJ Gero. 2011. "Downwelling infrared radiance temperature climatology for the Atmospheric Radiation Measurement Southern Great Plains site." Journal of Geophysical Research - Atmospheres, 116, D08212, doi:10.1029/2010JD015135. The distribution of downwelling 10-micron infrared radiance observed at the SGP site by the AERI from June 1996 to May 2010, separated into all-sky (all samples) and the three distinct sky classifications.

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Burning on the Prairies Burning on the Prairies Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Fischer ML, MS Torn, DP Billesbach, G Doyle, B Northup, and SC Biraud. 2012. "Carbon, water, and heat flux responses to experimental burning and drought in a tallgrass prairie." Agricultural and Forest Meteorology, 166, doi:10.1016/j.agrformet.2012.07.011. Pasture burning during the beginning of the experiment at the USDA Grazing Lands Research Laboratory in March 2005. What does it mean for the carbon cycle? The deep drought in the United States that fueled wildfires and damaged crops in 2012 has now continued well into 2013. However, long before the droughts and fires wreaked havoc, a team of

342

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Summertime Radiative Forcing by Shallow Cumuli at the ARM SGP Surface Summertime Radiative Forcing by Shallow Cumuli at the ARM SGP Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Berg LK, EI Kassianov, CN Long, and DL Mills. 2011. "Surface summertime radiative forcing by shallow cumuli at the ARM SGP." Journal of Geophysical Research - Atmospheres, 116, D01202, 10.1029/2010JD014593. Histogram of hourly average shortwave CRF (black) and longwave CRF (red) for all periods with shallow cumuli. (a) Hourly average shortwave CRF (circles), binned shortwave CRF (squares); (b) total number of hourly averages for each sky cover bin; and (c) the change in shortwave TED as a function of sky cover for all hours with

343

Collisional processes of interest in MFE plasma research. Progress report No. 3, February 1, 1981-March 31, 1981  

DOE Green Energy (OSTI)

Research on our contract can be divided into two general topics: (1) H/sup -/formation collision processes, and (2) the determination of scattering cross sections used to diagnose plasma properties. Research progress during the last two months is presented.

Olson, R.E.

1981-03-31T23:59:59.000Z

344

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993  

DOE Green Energy (OSTI)

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-09-01T23:59:59.000Z

345

Automated solar cell assembly teamed process research. Semiannual subcontract report, December 6, 1993--June 30, 1994  

DOE Green Energy (OSTI)

This is the second Semiannual Technical Progress Report for the program titled `Automated Solar Cell Assembly Teamed Process Research` funded under National Renewable Energy Laboratory (NREL) subcontract No. ZAG-3-11219-01. This report describes the work done on Phase II of the program in the period from December 6, 1993 to June 30, 1994. Spire`s objective in this program is to develop high throughput (5 MW/yr) automated processes for interconnecting thin (200 {mu}m) silicon solar cells. High yield will be achieved with these fragile cells through the development of low mechanical stress and low thermal stress processes. For example, a machine vision system is being developed for cell alignment without mechanically contacting the cell edges, while a new soldering process is being developed to solder metal interconnect ribbons simultaneously to a cells` front and back contacts, eliminating one of the two heating steps normally used for soldering each cell.

Nowlan, M. [Spire Corp., Bedford, MA (United States)

1995-01-01T23:59:59.000Z

346

Geothermal: Sponsored by OSTI -- COLLABORATIVE RESEARCH:USING...  

Office of Scientific and Technical Information (OSTI)

COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION Geothermal Technologies Legacy...

347

The DOE Center of Excellence for the Synthesis and Processing of Advanced Materials: Research briefs  

Science Conference Proceedings (OSTI)

This publication is designed to inform present and potential customers and partners of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials about significant advances resulting from Center-coordinated research. The format is an easy-to-read, not highly technical, concise presentation of the accomplishments. Selected accomplishments from each of the Center`s seven initial focused projects are presented. The seven projects are: (1) conventional and superplastic forming; (2) materials joining; (3) nanoscale materials for energy applications; (4) microstructural engineering with polymers; (5) tailored microstructures in hard magnets; (6) processing for surface hardness; and (7) mechanically reliable surface oxides for high-temperature corrosion resistance.

NONE

1996-01-01T23:59:59.000Z

348

Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992  

SciTech Connect

Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

Speight, J.G.

1992-12-31T23:59:59.000Z

349

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Using the ACRF Shortwave Spectrometer to Study the Transition Between Clear Using the ACRF Shortwave Spectrometer to Study the Transition Between Clear and Cloudy Regions Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Chiu, J., University of Reading Knyazikhin, Y., Boston University Pilewskie, P., University of Colorado Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Chiu C, A Marshak, Y Knyazikhin, P Pilewskie, and W Wiscombe. 2009. "Physical interpretation of the spectral radiative signature in the transition zone between cloud-free and cloudy regions." Atmospheric Chemistry and Physics, 9(4), 1419-1430. (a) Total sky images on 18 May 2007, and (b) plot of SWS normalized zenith radiances. In (b), arrows pointed at the time axis correspond to the times

350

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Parameterizing the Ice Fall Speed in Climate Models: Results from TC4 and Parameterizing the Ice Fall Speed in Climate Models: Results from TC4 and ISDAC Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Mishra, S., NOAA - Coop. Inst. for Mesoscale Meteorological Studies Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mitchell DL, S Mishra, and RP Lawson. 2011. "Representing the ice fall speed in climate models: Results from Tropical Composition, Cloud and Climate Coupling (TC4) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC)." Journal of Geophysical Research - Atmospheres, 116, D00T03, doi:10.1029/2010JD015433. Relationship between De and Vm for all tropical cirrus cloud types (solid

351

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Modified Climate Model Better Replicates Global Rainfall Modified Climate Model Better Replicates Global Rainfall Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Song X, GJ Zhang, and JF Li. 2012. "Evaluation of microphysics parameterization for convective clouds in the NCAR Community Atmosphere Model CAM5." Journal of Climate, 25(24), doi:10.1175/JCLI-D-11-00563.1. Rainfall in the tropics. By improving an existing, sophisticated, global climate model, scientists can now simulate cloud and rainfall more accurately. Supported by the U.S. Department of Energy's Atmospheric System Research program, a research team from the Scripps Institution of Oceanography and

352

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Ground-Based Cloud Measurements Utilized to Evaluate the Simulation of Ground-Based Cloud Measurements Utilized to Evaluate the Simulation of Arctic Clouds in CCSM4 Download a printable PDF Submitter: de Boer, G., University of Colorado, Boulder/CIRES Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: de Boer G, W Chapman, JE Kay, B Medeiros, MD Shupe, S Vavrus, and JE Walsh. 2011. "A characterization of the present-day Arctic atmosphere in CCSM4." Journal of Climate, 25(8), doi:10.1175/JCLI-D-11-00228.1. Time-height cross-sections of simulated (top) and observed (second row) cloud phase at Barrow, Alaska. The difference between the frequencies of occurrence of each phase is indicated in the third row. Monthly distributions of liquid (dark) and ice (light) water paths at

353

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamics and Atmospheric State on Cloud Vertical Overlap Dynamics and Atmospheric State on Cloud Vertical Overlap Download a printable PDF Submitter: Naud, C. M., Columbia University/NASA Goddard Institute for Space Studies Del Genio, A. D., NASA Mace, G., Utah State University Benson, S., Utah State University Clothiaux, E. E., Pennsylvania State University Kollias, P., McGill University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Naud, C, A Del Genio, GG Mace, S Benson, EE Clothiaux, and P Kollias. "Impact of dynamics and atmospheric state on cloud vertical overlap." Journal of Climate 218: 1758-1770. Mean overlap parameter ╬▒ as a function of separation: (a,b) at SGP for all winter months of 2002-2004 and for 4 subsets of increasing 500 mb ¤ë such

354

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Indirect Impact of Atmospheric Aerosols on an Ensemble of Deep Convective Indirect Impact of Atmospheric Aerosols on an Ensemble of Deep Convective Clouds Download a printable PDF Submitter: Grabowski, W., NCAR Morrison, H. C., NCAR Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Grabowski WW and H Morrison. 2011. "Indirect impact of atmospheric aerosols in idealized simulations of convective-radiative quasi-equilibrium. Part II: Double-moment microphysics." Journal of Climate, 24, 1897-1912. This paper extends the previous cloud-resolving modeling study concerning the impact of cloud microphysics on convective-radiative quasi-equilibrium (CRQE) over a surface with fixed characteristics and prescribed solar input, both mimicking the mean conditions on Earth. The current study

355

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

The Significance of Multilayer Cloud Systems in Tropical Convection The Significance of Multilayer Cloud Systems in Tropical Convection Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Stephens, GL, and NB Wood. 2007. "Properties of tropical convection observed by millimeter-wave radar systems." Monthly Weather Review 135: 821-842. Storm classifications (derived from k-means clustering analysis) applied to MWR observations from (a) Manus during MJO, (b) Manus during MJO transition, (c) Indian Ocean (JASMINE experiment) during monsoon, and (d) tropical convection off the Florida coast (CRYSTAL-FACE experiment) of cloud and precipitation echo top heights. The relative frequencies of

356

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Observational Evidence of Changes in Water Vapor, Clouds, and Radiation Observational Evidence of Changes in Water Vapor, Clouds, and Radiation Submitter: Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Dong, X., B. Xi, and P. Minnis, 2006: Observational Evidence of Changes in Water vapor, Clouds, and Radiation at the ARM SGP site. Geophys. Res. Lett., 33, L19818,doi:10.1029/2006GL027132. Figure 1. This plot shows that atmospheric precipitable water vapor and downwelling infrared radiation decreased, but solar radiation increased at the SGP site from 1997 to 2004. The amount of water vapor, the dominant greenhouse gas, has a greater effect on infrared radiation than on solar. Figure 2. This plot shows that solar radiation at the surface increased

357

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cirrus Cloud Bimodal Size Distributions from ARM Remote Sensing Data Cirrus Cloud Bimodal Size Distributions from ARM Remote Sensing Data Download a printable PDF Submitter: Mace, G., Utah State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Zhao Y, GG Mace, and JM Comstock. 2011. "The occurrence of particle size distribution bimodality in midlatitude cirrus as inferred from ground-based remote sensing data." Journal of the Atmospheric Sciences, 68(6), doi:10.1175/2010JAS3354.1. Figure 1. Frequency distribution of ice water content (top), effective radius (middle), and crystal concentration (bottom) derived from 313 h of cloud property retrievals using the bimodal algorithm. The distributions are shown as a function of the layer-mean temperature shown in the legend.

358

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Variability of Mesoscale Convective System Anvil Structure from Global Variability of Mesoscale Convective System Anvil Structure from A-train Satellite Data Submitter: Yuan, J., University of Washington Houze, R., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Yuan J and RA Houze. 2010. "Global variability of mesoscale convective system anvil structure from A-train satellite data." Journal of Climate, 23, 5864-5888. Figure. 1 Annual mean (2007) climatology of anvil clouds associated with (a) small separated MCSs (<12000 km^2, the smallest 25%), (b) large separated MCSs (>40000 km^2, the largest 25%), and (c) connected MCSs. The color indicates percentage of area covered by MCS anvil clouds for each 5┬░x5┬░ grid. In the tropics, upper-level clouds containing ice and mixtures of ice and

359

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Cloud and Rainfall Parameters in a Vertical Column Above the Estimating Cloud and Rainfall Parameters in a Vertical Column Above the ACRF SGP Site Download a printable PDF Submitter: Matrosov, S. Y., CIRES/NOAA/ESRL/University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: N/A An example of MMCR (a) and WACR (b) ARM radar measurements of a stratiform precipitating event and the corresponding estimates of mean rain rate (c) and cloud IWP and LWP (d). A comprehensive characterization of all hydrometeors in the vertical column is an important task, which is crucial for model parameterization and validation purposes. For many years, the remote sensing efforts within the Atmospheric Radiation Measurement (ARM) Program were focused primarily on either non-precipitating or only weakly-precipitating (e.g., drizzling)

360

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

A Bulk Parameterization of Giant Cloud Condensation Nuclei A Bulk Parameterization of Giant Cloud Condensation Nuclei Download a printable PDF Submitter: Kogan, Y., University of Oklahoma - CIMMS Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Mechem, D. B., and Y. L. Kogan, 2007: A bulk parameterization of giant CCN. J. Atmos. Sci., conditionally accepted. Mean quantities as a function of GCCN concentration for polluted (squares) and clean (diamonds) background CCN conditions. Radiative quantities as a function of GCCN concentration for polluted and clean background CCN conditions shown in (a) optical depth; (b) albedo; (c) susceptibility; and (d) susceptibility relative to the control simulations without GCCN. A parameterization for giant cloud condensation nuclei (GCCN), suitable for

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Cloud Forcing in the Tropical West Pacific Modeling Cloud Forcing in the Tropical West Pacific Submitter: Kiehl, J., NCAR Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Petch, J.C., and J.T. Kiehl, 1997: "Investigating Cloud Radiative Forcing in the Tropical West Pacific Using a Single Column Model." In Proceedings from the Seventh ARM Science Team Meeting, U.S. Department of Energy, Washington, D.C. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Here is summary of the poster "Investigating Cloud Radiative Forcing in the Tropical West Pacific Using a Single Column Model" (Petch and Kiehl) presented at the ARM 7th Science Team Meeting in San Antonio, Texas, March 1997. SCCM3, a single-column version of CCM3, has been forced with TOGA-COARE

362

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite Retrievals of Mixed-phase Cloud Properties Satellite Retrievals of Mixed-phase Cloud Properties Download a printable PDF Submitter: Ou, S., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Ou SS, KN Liou, XJ Wang, A Dybdahl, M Mussetto, LD Carey, J Niu, JA Kankiewicz, S Kidder, and TH Von der Haar. 2009. "Retrievals of mixed-phase cloud properties during the National Polar-Orbiting Operational Environmental Satellite System." Applied Optics, 48(8), 1452-1462. Images of mixed-phase retrieved (a) ¤äi, (b) De, (c) ¤äw, and (d) re for the Terra/MODIS scene of 14 October 2001 over North Platte, Nebraska. Also shown are (e) retrieved ¤äi and ¤äw versus MODIS ¤ä within the pink box and (f) retrieved De and re versus MODIS re within the pink box.

363

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

General Formulation for Representing Cloud-to-Rain Transition in General Formulation for Representing Cloud-to-Rain Transition in Atmospheric Models Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol, Cloud Modeling, Cloud Properties Journal Reference: Liu, Y., P. H. Daum, R. McGraw, M. Miller, and S. Niu, 2007: Theoretical formulation for autoconversion rate of cloud droplet concentration. Geophys. Res. Lett., 34, L116821, doi:10.1029/2007GL030389 Figure 1. The typical drop radius r* as a function of the volume-mean radius r3 derived from the new theoretical formulation. Note that a constant r* corresponds to the commonly used assumption that the autoconversion rate for droplet concentration is linearly proportional to

364

The role of clouds and oceans in global greenhouse warming. Final report  

SciTech Connect

This research focuses on assessing connections between anthropogenic greenhouse gas emissions and global climatic change. it has been supported since the early 1990s in part by the DOE ``Quantitative Links`` Program (QLP). A three-year effort was originally proposed to the QLP to investigate effects f global cloudiness on global climate and its implications for cloud feedback; and to continue the development and application of climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by clouds and oceans. It is well-known that cloud and ocean processes are major sources of uncertainty in the ability to predict climatic change from humankind`s greenhouse gas and aerosol emissions. And it has always been the objective to develop timely and useful analytical tools for addressing real world policy issues stemming from anthropogenic climate change.

Hoffert, M.I.

1996-10-01T23:59:59.000Z

365

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993  

SciTech Connect

Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

1993-09-01T23:59:59.000Z

366

Polarimetric Radar Analysis of Raindrop Size Variability in Maritime and Continental Clouds  

Science Conference Proceedings (OSTI)

During the Queensland Cloud Seeding Research Program, the ôCP2ö polarimetric radar parameter differential radar reflectivity Zdr was used to examine the raindrop size evolution in both maritime and continental clouds. The focus of this paper is to ...

James W. Wilson; Charles A. Knight; Sarah A. Tessendorf; Courtney Weeks

2011-09-01T23:59:59.000Z

367

Explicit Cloud-Scale Models for Operational Forecasts: A Note of Caution  

Science Conference Proceedings (OSTI)

As computational capacity has increased, cloud-scale numerical models are slowly being modified from pure research tools to forecast tools. Previous studies that used cloud-scale models as explicit forecast tools, in much the same way as a ...

Kimberly L. Elmore; David J. Stensrud; Kenneth C. Crawford

2002-08-01T23:59:59.000Z

368

Field Intercomparison of Ground-Based Cloud Physics Instruments at Whitetop Mountain, Virginia  

Science Conference Proceedings (OSTI)

In May 1987 a two-week field intercomparison study of ground-based cloud liquid water content (LWC) and cloud detector instruments was performed at the Tennessee Valley Authority research station at the summit of Whitetop Mountain, Virginia. The ...

R. J. Valente; R. K. A. M. Mallant; S. E. McLaren; R. S. Schemenauer; R. E. Stogner

1989-06-01T23:59:59.000Z

369

Relationships of Biomass-Burning Aerosols to Ice in Orographic Wave Clouds  

Science Conference Proceedings (OSTI)

Ice concentrations in orographic wave clouds at temperatures between ?24░ and ?29░C were shown to be related to aerosol characteristics in nearby clear air during five research flights over the Rocky Mountains. When clouds with influence from ...

Cynthia H. Twohy; Paul J. DeMott; Kerri A. Pratt; R. Subramanian; Gregory L. Kok; Shane M. Murphy; Traci Lersch; Andrew J. Heymsfield; Zhien Wang; Kim A. Prather; John H. Seinfeld

2010-08-01T23:59:59.000Z

370

Cloud displays for mobile users in a display cloud  

Science Conference Proceedings (OSTI)

The display cloud model allows users to select local and remote programmable displays, and add them to a user specific cloud display where the user can arrange them freely. On a cloud display, the abstraction representing remote graphical content is ... Keywords: cloud displays, display clouds, ubiquitous displays

Lars Tiede; John Markus Bj°rndalen; Otto J. Anshus

2013-02-01T23:59:59.000Z

371

Cloud Properties Working Group Low Clouds Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Properties Working Group Cloud Properties Working Group Low Clouds Update Low Clouds Update Jennifer Comstock Jennifer Comstock Dave Turner Dave Turner Andy Andy Vogelmann Vogelmann Instruments Instruments 90/150 GHz microwave radiometer 90/150 GHz microwave radiometer Deployed during COPS AMF Deployed during COPS AMF Exploring calibration w/ DPR ( Exploring calibration w/ DPR ( Crewell Crewell & & L L ├ ├ hnert hnert ) ) See COPS Breakout, Wednesday evening See COPS Breakout, Wednesday evening 183 GHz (GVR) deployed at the NSA 183 GHz (GVR) deployed at the NSA Neural network algorithm to retrieve PWV & LWP (Maria Neural network algorithm to retrieve PWV & LWP (Maria Cadeddu Cadeddu ) ) Potential VAP candidate (RPWG) Potential VAP candidate (RPWG)

372

Tanks Focus Area Alternative Salt Processing Research and Development Program Plan  

SciTech Connect

In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA) to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

Harmon, Harry D.

2000-11-30T23:59:59.000Z

373

Tanks Focus Area Alternative Salt Processing Research and Development Program Plan  

Science Conference Proceedings (OSTI)

In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA)to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

Harmon, Harry D.

2000-05-15T23:59:59.000Z

374

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992  

SciTech Connect

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

1992-12-01T23:59:59.000Z

375

Study of ice cloud properties using infrared spectral data  

E-Print Network (OSTI)

The research presented in this thesis involves the study of ice cloud microphysical and optical properties using both hyperspectral and narrowband infrared spectral data. First, ice cloud models are developed for the Infrared Atmospheric Sounding Interferometer (IASI) instrument onboard the METOP-A satellite, which provide the bulk-scattering properties of these clouds for the 8461 IASI channels between 645 and 2760 cm-1. We investigate the sensitivity of simulated brightness temperatures in this spectral region to the bulk-scattering properties of ice clouds containing individual ice crystal habits as well as for one habit distribution. The second part of this thesis describes an algorithm developed to analyze the sensitivity of simulated brightness temperatures at 8.5 and 11.0 Ám to changes in effective cloud temperature by adjusting cloud top height and geometric thickness in a standard tropical atmosphere. Applicability of using these channels in a bi-spectral approach to retrieve cirrus cloud effective particle size and optical thickness is assessed. Finally, the algorithm is applied to the retrieval of these ice cloud properties for a case of single-layered cirrus cloud over a tropical ocean surface using measurements from the Moderate Resolution Infrared Spectroradiometer (MODIS). Cloud top height and geometric thickness in the profile are adjusted to assess the influence of effective cloud temperature on the retrieval.

Garrett, Kevin James

2007-08-01T23:59:59.000Z

376

Systematic Flights Obtain Long-Term Data Set of Cloud Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

Systematic Flights Obtain Long-Term Data Set of Cloud Properties Systematic Flights Obtain Long-Term Data Set of Cloud Properties Beginning in January 2009, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is sponsoring the first-of-its-kind long-term airborne research campaign to obtain data from low-level clouds above its Southern Great Plains (SGP) site. The five-month campaign is centered near Lamont, Oklahoma, a mid-latitude region that experiences a wide range of cloud types, including the "thin" clouds that are the focus of the campaign. Thin clouds contain so little water that the sun can be seen through them. Scientists refer to such clouds as "clouds with low-optical water depth," or CLOWD. Because these clouds are often tenuous and scattered, even some of the best

377

Cloud Top Mixing in Small Cumuli  

Science Conference Proceedings (OSTI)

On 28 August 1978 a series of flights was made into small cumuli using the Desert Research Institutes B-26 research aircraft. The low values for the liquid water mixing ratio obtained in cloud indicate considerable entrainment of clear air. A ...

Robert G. LaMontagne; James W. Telford

1983-09-01T23:59:59.000Z

378

Interim report: Manipulation of natural subsurface processes: Field research and validation.  

SciTech Connect

Often the only alternative for treating deep subsurface contamination is in situ manipulation of natural processes to change the mobility or form of contaminants. However, the complex interactions of natural subsurface physical, chemical, and microbial processes limit the predictability of the system-wide impact of manipulation based on current knowledge. This report is a summary of research conducted to examine the feasibility of controlling the oxidation-reduction (redox) potential of the unconfined aquifer at the Hanford Site in southeastern Washington State by introducing chemical reagents and microbial nutrients. The experiment would allow the testing of concepts and hypotheses developed from fundamental research in the US Department of Energy`s (DOE`s) Subsurface Science Program. Furthermore, the achievement of such control is expected to have implications for in situ remediation of dispersed aqueous contaminants in the subsurface environment at DOE sites nationwide, and particularly at the Hanford Site. This interim report summarizes initial research that was conducted between July 1990 and October 1991.

Fruchter, J.S.; Spane, F.A.; Amonette, J.E. [and others

1994-11-01T23:59:59.000Z

379

Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parmaterizations in Large-Scale Models  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Cloud-Resolving Model Simulations Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory Princeton, New Jersey R. Pincus National Oceanic and Atmospheric Administration Cooperative Institute for Research in Environmental Science Climate Diagnostics Center Boulder, Colorado K. -M. Xu National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Abstract Cloud parameterizations in large-scale models struggle to address the significant non-linear effects of radiation and precipitation that arise from horizontal inhomogeneity in cloud properties at scales smaller than the grid box size of the large-scale models. Statistical cloud schemes provide an attractive

380

Storm Peak Lab Cloud Property Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Storm Peak Lab Cloud Storm Peak Lab Cloud Property Validation Experiment (STORMVEX) Operated by the Atmospheric Radiation Measurement (ARM) Climate Research Facility for the U.S. Department of Energy, the second ARM Mobile Facility (AMF2) begins its inaugural deployment November 2010 in Steamboat Springs, Colorado, for the Storm Peak Lab Cloud Property Validation Experiment, or STORMVEX. For six months, the comprehensive suite of AMF2 instruments will obtain measurements of cloud and aerosol properties at various sites below the heavily instrumented Storm Peak Lab, located on Mount Werner at an elevation of 3220 meters. The correlative data sets that will be created from AMF2 and Storm Peak Lab will equate to between 200 and 300 in situ aircraft flight hours in liquid, mixed phase, and precipitating

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Misers gold dust collection and cloud characterization  

SciTech Connect

MISERS GOLD was a surface detonation of 2445 tons of ammonium nitrate-fuel oil blasting agent conducted by the Defense Nuclear Agency for a variety of research purposes. This report presents the results of an experiment designed to study the dust cloud over the 24-hour period following the detonation. The cloud was sampled by aircraft to obtain material needed to characterize the quantity of dust lofted, the source regions of the cloud, and the size, shape, and mineralogical characteristics of the particles. Elemental tracers and organic dyes were emplaced in the charge and in surrounding areas. Analyses were done by instrumental neutron activation analysis (INAA), fluorimetry, scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS). Tracer data define the source regions of the dust cloud. Extensive particle size distribution data were obtained. 12 figs.

Mason, A.S.; Finnegan, D.L.; Bayhurst, G.K.; Raymond, R. Jr.; Hagan, R.C.; Luedemann, G.; Wohletz, K.H.

1991-01-01T23:59:59.000Z

382

Testing a New Cirrus Cloud Parameterizaton  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing a New Cirrus Cloud Parameterization Testing a New Cirrus Cloud Parameterization in NCAR CCM3 D. Zurovac-Jevtic, G. J. Zhang, and V. Ramanathan Center for Atmospheric Sciences Scripps Institute of Oceanography La Jolla, California Introduction Cirrus cloud cover and ice water content (IWC) are the two most important properties of cirrus clouds. However, in general circulation models (GCMs), their treatment is very crude. For example, in the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3), IWC is prescribed as a function of column-integrated water vapor and height (Hack 1998). The in situ observations in the tropics indicate that the cirrus IWC is an order of magnitude larger than what is prescribed in the model (McFarquhar and Heymsfield 1996). The comparison with the International

383

BNL | Cloud Lifecycle Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Life Cycle Infrastructure Cloud Life Cycle Infrastructure An important component of any long-term atmospheric measurement program is the quality control and maintenance of the datastreams from instrument systems. Further, the raw measurements from atmospheric remote sensing instrumentation are not directly useable by the majority of the scientific community. These raw measurements must be interpreted and converted to geophysical quantities that can be more readily used by a greater number of scientists to address important questions regarding the Earth's climate system. The cloud life cycle infrastructure group at BNL is led by Dr. Michael Jensen and is responsible for the development and production of cloud-related value-added products (VAPs). The cloud life cycle infrastructure group also provides mentorships for the millimeter cloud

384

Observed Microphysical Structure ofObserved Microphysical Structure of MidMid--Level, MixedLevel, Mixed--Phase CloudsPhase Clouds  

E-Print Network (OSTI)

Level, Mixed--Phase CloudsPhase Clouds DOD Center for Geosciences/ Atmospheric Research Colorado State understood, but they cover ~ 22% of globe. Mixed-Phase Structure of Clouds Unknown. 30% are mixed-phase --- i.e. contain both ice and liquid. We need to know ice structure for weather and climate forecasts, e

385

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993  

SciTech Connect

Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

1993-09-01T23:59:59.000Z

386

Research Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights Highlights Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for 2001-2006 Biological and Environmental Research Abstracts Database Research Highlights Summaries Research Highlights Members of ARM's science team are major contributors to radiation and cloud research. ARM investigators publish about 150 refereed journal articles per year, and ARM data are used in many studies published by other scientific organizations. These documented research efforts represent tangible evidence of ARM's contribution to advances in almost all areas of atmospheric radiation and cloud research. Below is a selection of summaries highlighting recently-published ARM research. The entire collection of ARM

387

Research on the pyrolysis of hardwood in an entrained bed process development unit  

DOE Green Energy (OSTI)

An atmospheric flash pyrolysis process, the Georgia Tech Entrained Flow Pyrolysis Process, for the production of liquid biofuels from oak hardwood is described. The development of the process began with bench-scale studies and a conceptual design in the 1978--1981 timeframe. Its development and successful demonstration through research on the pyrolysis of hardwood in an entrained bed process development unit (PDU), in the period of 1982--1989, is presented. Oil yields (dry basis) up to 60% were achieved in the 1.5 ton-per-day PDU, far exceeding the initial target/forecast of 40% oil yields. Experimental data, based on over forty runs under steady-state conditions, supported by material and energy balances of near-100% closures, have been used to establish a process model which indicates that oil yields well in excess of 60% (dry basis) can be achieved in a commercial reactor. Experimental results demonstrate a gross product thermal efficiency of 94% and a net product thermal efficiency of 72% or more; the highest values yet achieved with a large-scale biomass liquefaction process. A conceptual manufacturing process and an economic analysis for liquid biofuel production at 60% oil yield from a 200-TPD commercial plant is reported. The plant appears to be profitable at contemporary fuel costs of $21/barrel oil-equivalent. Total capital investment is estimated at under $2.5 million. A rate-of-return on investment of 39.4% and a pay-out period of 2.1 years has been estimated. The manufacturing cost of the combustible pyrolysis oil is $2.70 per gigajoule. 20 figs., 87 tabs.

Kovac, R.J.; Gorton, C.W.; Knight, J.A.; Newman, C.J.; O'Neil, D.J. (Georgia Inst. of Tech., Atlanta, GA (United States). Research Inst.)

1991-08-01T23:59:59.000Z

388

Midlatitude Continental Convective Clouds Experiment (MC3E)  

SciTech Connect

Convective processes play a critical role in the Earthĺs energy balance through the redistribution of heat and moisture in the atmosphere and subsequent impacts on the hydrologic cycle. Global observation and accurate representation of these processes in numerical models is vital to improving our current understanding and future simulations of Earthĺs climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales that are associated with convective and stratiform precipitation processes; therefore, they must turn to parameterization schemes to represent these processes. In turn, the physical basis for these parameterization schemes needs to be evaluated for general application under a variety of atmospheric conditions. Analogously, space-based remote sensing algorithms designed to retrieve related cloud and precipitation information for use in hydrological, climate, and numerical weather prediction applications often rely on physical ôparameterizationsö that reliably translate indirectly related instrument measurements to the physical quantity of interest (e.g., precipitation rate). Importantly, both spaceborne retrieval algorithms and model convective parameterization schemes traditionally rely on field campaign data sets as a basis for evaluating and improving the physics of their respective approaches. The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the AprilľMay 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administrationĺs (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors, and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation, and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall retrieval algorithms over land that have never before been available. Several different components of convective cloud and precipitation processes tangible to both the convective parameterization and precipitation retrieval algorithm problem are targeted, such as preconvective environment and convective initiation, updraft/downdraft dynamics, condensate transport and detrainment, precipitation and cloud microphysics, spatial and temporal variability of precipitation, influence on the environment and radiation, and a detailed description of the large-scale forcing.

Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

2010-04-01T23:59:59.000Z

389

Summary of research on microbiological processes. International Energy Agency Subtask D, final report  

DOE Green Energy (OSTI)

Storage of thermal energy in aquifers has obvious benefits of saving energy and decreasing the consumption of fossil fuels. However, aquifer thermal energy storage (ATES), which involves groundwater aquifers as the storage medium for heat or chill, impinges on the environment. A literature review of pertinent microbiology publications (Hicks and Stewart, 1988) identified the potential for the interaction of ATES systems and microbiological processes to create a source of infectious diseases and the potential for damage to the environment. In addition, the review identified a potential for microbiological processes to develop conditions that would interfere with the operation of an ATES system. As a result of this research effort, investigators from Finland, Germany, Switzerland, and the United States have examined several ATES systems in operation and have observed that the ATES systems studied do not contribute to infectious disease transmission, do not adversely affect the environment, and do not contribute significantly to biofouling or biocorrosion.

Winters, A.L.

1992-09-01T23:59:59.000Z

390

Dispersion of Cloud Droplet Size Distributions, Cloud Parameterization...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory Upton, New York Introduction Most studies of the effect of aerosols on cloud radiative properties have considered only changes in the cloud droplet...

391

Cloud Classification Before Luke Howard  

Science Conference Proceedings (OSTI)

A brief outline of the history of cloud painting prior to the first cloud classification schemes of Luke Howard and Lamarck is presented. It is shown that European painters had accurately represented most of the different cloud forms between ...

Stanely David Gedzelman

1989-04-01T23:59:59.000Z

392

Radar Reflectivity of Cumulus Clouds  

Science Conference Proceedings (OSTI)

The relationships between the radar reflectivity factor Z and significant physical cloud parameters are studied from a dataset collected with an instrumented aircraft in non- or very weakly precipitating warm clouds. The cloud droplet populations ...

Henri Sauvageot; Jilani Omar

1987-06-01T23:59:59.000Z

393

Evaluation of Scalar Advection Schemes in the Advanced Research WRF Model Using Large-Eddy Simulations of AerosolľCloud Interactions  

Science Conference Proceedings (OSTI)

In the Advanced Research Weather Research and Forecasting Model (ARW), versions 3.0 and earlier, advection of scalars was performed using the RungeľKutta time-integration scheme with an option of using a positive-definite (PD) flux limiter. Large-...

Hailong Wang; William C. Skamarock; Graham Feingold

2009-08-01T23:59:59.000Z

394

A Satellite-Based Parameter to Monitor the Aerosol Impact on Convective Clouds  

Science Conference Proceedings (OSTI)

A method to monitor the aerosol impact on convective clouds using satellite data is presented. The impacts of forest fires and highly polluting megacities on cloud precipitation formation processes are quantified by the vertical extent above ...

Itamar M. Lensky; Ron Drori

2007-05-01T23:59:59.000Z

395

Competition between Sea Salt and Sulfate Particles as Cloud Condensation Nuclei  

Science Conference Proceedings (OSTI)

The influence of sea salt on the cloud droplet activation of sulfate particles is investigated using a size-resolving model of the aerosol activation process. The authors found that the total number concentration of activated cloud droplets ...

Steven J. Ghan; Gina Guzman; Hayder Abdul-Razzak

1998-11-01T23:59:59.000Z

396

Limitations of the WegenerľBergeronľFindeisen Mechanism in the Evolution of Mixed-Phase Clouds  

Science Conference Proceedings (OSTI)

Phase transformation and precipitation formation in mixed-phase clouds are usually associated with the WegenerľBergeronľFindeisen (WBF) process in which ice crystals grow at the expense of liquid droplets. The evolution of mixed-phase clouds, ...

Alexei Korolev

2007-09-01T23:59:59.000Z

397

Competition of Precipitation Particles in a Model with Parameterized Cloud Microphysics  

Science Conference Proceedings (OSTI)

The nonlinear open system cloud is analyzed in this basic study in the context of the theory of self-organization. Emphasis is placed on the microphysical processes of riming, accretion, and sedimentation in a supercooled cloud containing several ...

Ulrike Wacker

1995-07-01T23:59:59.000Z

398

Interactions between Cloud Microphysics and Cumulus Convection in a General Circulation Model  

Science Conference Proceedings (OSTI)

In the Colorado State University general circulation model, cumulus detrainment of cloud water and cloud ice has been, up to now, the only direct coupling between convective and large-scale condensation processes. This one-way interaction from ...

Laura D. Fowler; David A. Randall

2002-11-01T23:59:59.000Z

399

Characteristics of Cloud Ice and Precipitation during Wintertime Storms over the Mountains of Northern Colorado  

Science Conference Proceedings (OSTI)

This article describe cloud ice and precipitation process in 17 wintertime storm systems that occurred over the mountains of northwestern Colorado. Surface, remote sensing and aircraft measurements are used to study cloud and precipitation ...

Robert M. Rauber

1987-04-01T23:59:59.000Z

400

Statistical Analysis of Aerosol Effects on Simulated Mixed-Phase Clouds and Precipitation in the Alps  

Science Conference Proceedings (OSTI)

Increasing the aerosol number in warm-phase clouds is thought to decrease the rain formation rate, whereas the physical processes taking place in mixed-phase clouds are more uncertain. Increasing number concentrations of soluble aerosols may ...

Elias M. Zubler; Ulrike Lohmann; Daniel LŘthi; Christoph Schńr; Andreas Muhlbauer

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Cloud Computing Forum & Workshop IV  

Science Conference Proceedings (OSTI)

Cloud Computing Forum & Workshop IV. ... NIST announces the Cloud Computing Forum & Workshop IV to be held on November 2, 3 and 4, 2011. ...

2013-08-07T23:59:59.000Z

402

BNL | Aerosol, Cloud, Precipitation Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud-Aerosol-Precipitation Interactions Cloud-Aerosol-Precipitation Interactions Atmospheric aerosols exert important "indirect effects" on clouds and climate by serving as cloud condensation nuclei (CCN) and ice nuclei that affect cloud radiative and microphysical properties. For example, an increase in CCN increases the number concentration of droplets enhances cloud albedo, and suppresses precipitation that alters cloud coverage and lifetime. However, in the case of moist and strong convective clouds, increasing aerosols may increase precipitation and enhance storm development. Although aerosol-induced indirect effects on climate are believed to have a significant impact on global climate change, estimating their impact continues to be one of the most uncertain climate forcings.

403

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectral Invariant Properties of Single-Scattering Albedo for Water Spectral Invariant Properties of Single-Scattering Albedo for Water Droplets and Ice Crystals Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Marshak A, Y Knyazikhin, JC Chiu, and WJ Wiscombe. 2012. "On spectral invariance of single scattering albedo for water droplets and ice crystals at weakly absorbing wavelengths." Journal of Quantitative Spectroscopy & Radiative Transfer, 113, 715-720. The ratio of ¤ë0╬╗(r)/¤ë0╬╗(r0) plotted against ¤ë0╬╗(r) for four wavelengths, ╬╗=0.86, 1.65, 2.13 and 3.75 um. An example for the aggregates ice crystal habits is shown (see Yang et al. 2000. "Parameterization of

404

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Self-Regulation Strikes a Balance Between Hydrological Cycle, Radiation Self-Regulation Strikes a Balance Between Hydrological Cycle, Radiation Processes, and Intraseasonal Dynamic Variations Submitter: Stephens, G. L., Colorado State University Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Stephens, Graeme L., Webster, Peter J., Johnson, Richard H., Engelen, Richard, L'Ecuyer, Tristan. 2004: Observational Evidence for the Mutual Regulation of the Tropical Hydrological Cycle and Tropical Sea Surface Temperatures. Journal of Climate: Vol. 17, No. 11, pp. 2213-2224. The "humidistat" feedback mechanism suggests that the hydrological cycle and sea surface temperatures mutually regulate each other in phases: the destabilization phase, the convective phase, and the restoring phase. These

405

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

A Tall Order: Climate Models Fall Short in Predicting African Sahel A Tall Order: Climate Models Fall Short in Predicting African Sahel Rainfall Download a printable PDF Submitter: Roehrig, R., Meteo-France CNRM/GMME/MOANA Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Roehrig R, D Bouniol, F Guichard, F Hourdin, and JL Redelsperger. 2013. "The present and future of the West African Monsoon: A process-oriented assessment of CMIP5 simulations along the AMMA transect." Journal of Climate, 26(17), doi:10.1175/jcli-d-12-00505.1. The wealth of data available from field campaigns between the Gulf of Guinea and the Sahara Desert allowed scientists to evaluate the ability of climate models to accurately predict rainfall in the area.

406

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Detangling Convective Oscillations at ARM Tropical Western Pacific Site: Detangling Convective Oscillations at ARM Tropical Western Pacific Site: Manus Submitter: Wang, Y., Department of Geography Long, C. N., Pacific Northwest National Laboratory Mather, J. H., Pacific Northwest National Laboratory Liu, X., Institute of Earth Environment Area of Research: Radiation Processes Working Group(s): Cloud Properties Journal Reference: Wang Y, C Long, J Mather, and X Liu. 2010. "Convective signals from surface measurements at ARM Tropical Western Pacific site: Manus." Climate Dynamics, , doi:10.1007/s00382-009-0736-z. Figure 1: (A) The time series includes the clear-sky shortwave (SW) flux (blue) and the all-sky SW flux (black) over Manus. The green line indicates a 60-day running mean. (B) Wavelet power (WP) of CRF (color shading) with

407

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Heating Up the Arctic: Most Complete Data Set Ever Collected Helps Heating Up the Arctic: Most Complete Data Set Ever Collected Helps Scientists Understand Aerosol Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: McFarquhar GM, S Ghan, J Verlinde, A Korolev, JW Strapp, B Schmid, JM Tomlinson, M Wolde, SD Brooks, D Cziczo, MK Dubey, JW Fan, C Flynn, I Gultepe, J Hubbe, MK Gilles, A Laskin, P Lawson, WR Leaitch, P Liu, XH Liu, D Lubin, C Mazzoleni, AM Macdonald, RC Moffet, H Morrison, M Ovchinnikov, MD Shupe, DD Turner, SC Xie, A Zelenyuk, K Bae, M Freer, and A Glen. 2011. "Indirect and Semi-Direct Aerosol Campaign: the impact of Arctic aerosols on clouds." Bulletin of the American Meteorological

408

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimal Method to Determine Orientation Average of Scattering Properties of Optimal Method to Determine Orientation Average of Scattering Properties of Ice Crystals Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Um J and GM McFarquhar. 2013. "Optimal numerical methods for determining the orientation averages of single-scattering properties of atmospheric ice crystals." Journal of Quantitative Spectroscopy & Radiative Transfer, 127, doi:10.1016/j.jqsrt.2013.05.020. Fig.1. Idealized shapes of ice crystals used in this study: (a) Gaussian random sphere (GS), (b) droxtal (DX), (c) budding Bucky ball (3B), and (d) column (COL). All models are visualized with dipoles. For (b), (c), and (d)

409

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Looking at the Full Spectrum for Water Vapor Looking at the Full Spectrum for Water Vapor Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi: 10.1098/rsta.2011.0295. Radiative cooling across the full infrared spectrum: The far-infrared (the left half of the figure, from 15 to 1000 microns) plays a key role in heat transfer in the atmosphere, but scientists could not measure it, and model calculations were consequently very uncertain. Field observations from

410

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Microwave Radiometer Performance in Alaska Evaluation of Microwave Radiometer Performance in Alaska Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties, Radiative Processes Journal Reference: N/A Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 In order to determine the extent to which the ARM microwave radiometers would need to be modified to accommodate Arctic operations, an instrument designed for the Tropical Western Pacific was deployed at the University of Alaska at Fairbanks and continuously operated from 14 December 1995 through 20 June 1996 with the assistance of North Slope Site Scientist Knut Stamnes and Deputy Site Scientist Abdul Alkezweeny. Time series plots of the data are presented in Figure 1.

411

Parameterization and Analysis of 3-D Solar Radiative Transfer in Clouds: Final Report  

Science Conference Proceedings (OSTI)

This document reports on the research that we have done over the course of our two-year project. The report also covers the research done on this project during a 1 year no-cost extension of the grant. Our work has had two main, inter-related thrusts: The first thrust was to characterize the response of stratocumulus cloud structure and dynamics to systematic changes in cloud infrared radiative cooling and solar heating using one-dimensional radiative transfer models. The second was to couple a three-dimensional (3-D) solar radiative transfer model to the Large Eddy Simulation (LES) model that we use to simulate stratocumulus. The purpose of the studies with 3-D radiative transfer was to examine the possible influences of 3-D photon transport on the structure, evolution, and radiative properties of stratocumulus. While 3-D radiative transport has been examined in static cloud environments, few studies have attempted to examine whether the 3-D nature of radiative absorption and emission influence the structure and evolution of stratocumulus. We undertook this dual approach because only a small number of LES simulations with the 3-D radiative transfer model are possible due to the high computational costs. Consequently, LES simulations with a 1-D radiative transfer solver were used in order to examine the portions of stratocumulus parameter space that may be most sensitive to perturbations in the radiative fields. The goal was then to explore these sensitive regions with LES using full 3-D radiative transfer. Our overall goal was to discover whether 3-D radiative processes alter cloud structure and evolution, and whether this may have any indirect implications for cloud radiative properties. In addition, we collaborated with Dr. Tamas Varni, providing model output fields for his attempt at parameterizing 3-D radiative effects for cloud models.

Jerry Y. Harrington

2012-09-21T23:59:59.000Z

412

Cirrus Cloud Properties from a Cloud-Resolving Model Simulation Compared to Cloud Radar Observations  

Science Conference Proceedings (OSTI)

Cloud radar data collected at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains site were used to evaluate the properties of cirrus clouds that occurred in a cloud-resolving model (CRM) simulation of the 29-day summer ...

Yali Luo; Steven K. Krueger; Gerald G. Mace; Kuan-Man Xu

2003-02-01T23:59:59.000Z

413

CONTRIBUTED Green Cloud Computing  

E-Print Network (OSTI)

widely dis- cussed, the shift in energy usage in a cloud computing model has received little attention cloud computing services typically operate. We consider energy consumption models of the transport of energy per bit also allows the results to be easily scaled to any usage level. We consider both public

Tucker, Rod

414

Cryptographic cloud storage  

Science Conference Proceedings (OSTI)

We consider the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer. We describe, at a high level, several architectures that combine recent and ...

Seny Kamara; Kristin Lauter

2010-01-01T23:59:59.000Z

415

The Origin and Concentration of Ice Crystals in Clouds  

Science Conference Proceedings (OSTI)

Ice crystals in supercooled clouds may form upon ice nuclei, or they may arise through secondary processes. Two of these secondary ice ômultiplicationö mechanisms are discussed in some detail: the rime-splintering process and the mechanical ...

S. C. Mossop

1985-03-01T23:59:59.000Z

416

Posters Sensitivity of Cirrus Cloud Radiative  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Posters Sensitivity of Cirrus Cloud Radiative Properties to Ice Crystal Size and Shape in General Circulation Model Simulations D. L. Mitchell Desert Research Institute Reno, Nevada J. E. Kristjánsson Department of Geophysics University of Oslo, Norway M. J. Newman Los Alamos National Laboratory Los Alamos, New Mexico Introduction Recent research (e.g., Mitchell and Arnott 1994) has shown that the radiative properties of cirrus clouds (i.e., optical depth, albedo, emissivity) depend on the shapes and sizes of ice crystals. For instance, the cloud albedo may vary by a factor of two, depending on whether hexagonal columns or bullet rosette ice crystals are assumed for a given ice water path (IWP). This variance occurs primarily because, at sizes characteristic of cirrus

417

Taking value-networks to the cloud services: security services, semantics and service level agreements  

Science Conference Proceedings (OSTI)

Cloud services have become an emerging solution for organizations striving to address today's need for agility, but little research has addressed transitioning multiple, collaborating organizations to what can be referred to as a "value-network cloud." ... Keywords: Cloud service broker, Collaboration, Resource virtualization, Security services, Service level agreement, Trust, Value chain, Value networks, Web 2.0, Web 3.0

Haluk Demirkan; Michael Goul

2013-03-01T23:59:59.000Z

418

Small Cloud Particle Shapes in Mixed-Phase Clouds  

Science Conference Proceedings (OSTI)

The shapes of cloud particles with maximum dimensions Dmax between 35 and 60 ?m in mixed-phase clouds were studied using high-resolution particle images collected by a cloud particle imager (CPI) during the Mixed-Phase Arctic Cloud Experiment (M-...

Greg M. McFarquhar; Junshik Um; Robert Jackson

2013-05-01T23:59:59.000Z

419

The Design-Build Process for the Research Support Facility (RSF), Energy Efficiency & Renewable Energy (EERE)  

NLE Websites -- All DOE Office Websites (Extended Search)

Design-Build Process for Design-Build Process for the Research Support Facility An in-depth look at how the U.S. Department of Energy and the National Renewable Energy Laboratory used a performance-based design-build contract process to build one of the most energy efficient office buildings in the world. Table of Contents The Design-Build Process for the Research Support Facility | 1 Table of Contents Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Building Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Owner Roles and Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Acquisition Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Defining Performance Objectives . . . . . . . . . . . . . . . . . . . . . . . .

420

Collisional processes of interest in MFE plasma research. Annual report, October 1, 1980-September 30, 1981  

DOE Green Energy (OSTI)

Research on this contract can be divided into two general topics: (1) D/sup -/ formation collision processes, and (2) the determination of scattering cross sections used to diagnose properties of magnetically-confined plasmas. For topic (1) during last year, we completed theoretical calculations on the differential (angular) scattering of H/sup 0/ and D/sup 0/ on Cs, and determined the mechanisms and trends in the electron detachment cross sections for collisions of H/sup -/ and D/sup -/ on He, Ne, and the alkali and heavy alkaline earth atom systems. On topic (2) a major accomplishment was the determination of the electron capture and ionization cross sections for the C/sup 5 +/, N/sup 5 +/, and O/sup 6 +/ + H systems in the energy range from 13 eV/amu to 2.1 MeV/amu.

Olson, R.E.

1981-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Research and Engineering Division semiannual report. KK process development and technology, November 1, 1974--April 30, 1975  

SciTech Connect

Research and engineering activities with the goal of improving the performance of the plutonium processing and waste management programs being operated by the Atlantic Richfield Hanford Company are reported. (auth)

Fox, R.D. (ed.)

1975-08-01T23:59:59.000Z

422

Making winners for both education and research: Verification and validation process improvement practice in a software engineering course  

Science Conference Proceedings (OSTI)

An empirical study is provided on teaching Verification & Validation (V&V) process practice in a real-client graduate level software engineering course which makes students and researchers mutual winners. From our observation and experiences during the ...

Qi Li; Barry W. Boehm

2011-05-01T23:59:59.000Z

423

Accelerating and democratizing science through cloud-based services.  

SciTech Connect

Many businesses today save time and money, and increase their agility, by outsourcing mundane IT tasks to cloud providers. The author argues that similar methods can be used to overcome the complexities inherent in increasingly data-intensive, computational, and collaborative scientific research. He describes Globus Online, a system that he and his colleagues are developing to realize this vision. he scientific community today has unprecedented opportunities to effect transformational change in how individuals and teams engage in discovery. The driving force is a set of interrelated new capabilities that, when harnessed, can enable dramatic acceleration in the discovery process: greater availability of massive data, exponentially faster computers, ultra-high-speed networks, and deep interdisciplinary collaboration. The opportunity - and challenge - is to make these capabilities accessible not just to a few 'big science' projects but to every researcher at every level. Here, I argue that the key to seizing this opportunity is embracing software delivery methods that haven't been widely adopted in research, notably software as a service (SaaS) - a technology that forms an important part of what people refer to as the cloud. I also describe projects in the Computation Institute at the University of Chicago and Argonne National Laboratory that aim to realize this vision, focusing initially on data movement and management.

Foster, I. (CLS-CI); ( MCS)

2011-05-01T23:59:59.000Z

424

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Water Vapor and Cloud Liquid Water at MCTEX Integrated Water Vapor and Cloud Liquid Water at MCTEX Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Integrated water vapor and cloud liquid water measurements were obtained during the Maritime Continent Thunderstorm Experiment (MCTEX) by Eugene Clothiaux and Tom Ackerman of Penn State University using an ARM microwave radiometer. The radiometer was deployed at Pularumpi, Melville Island (11.55 S, 130.56 E) off the north coast of Australia for November-December 1995. Time series of these results are shown in Figure 1. Time series of integrated or "precipitable" water vapor (PWV) and liquid

425

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Influence of Humidified Aerosols on Lidar Depolarization Below Influence of Humidified Aerosols on Lidar Depolarization Below Ice-Precipitating Arctic Clouds Download a printable PDF Submitter: Fridlind, A. M., NASA - Goddard Institute for Space Studies van Diedenhoven, B., NASA - Goddard Institute for Space Studies Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: van Diedenhoven B, AM Fridlind, and AS Ackerman. 2011. "Influence of humidified aerosol on lidar depolarization measurements below ice-precipitating Arctic stratus." Journal of Applied Meteorology and Climatology, 50(10), doi:10.1175/JAMC-D-11-037.1. Correlated MMCR radar reflectivities and DABUL lidar depolarizations below cloud base calculated with a reasonably low number of large, coarse-mode

426

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Dust in the Wind... and the Clouds... and the Atmosphere Dust in the Wind... and the Clouds... and the Atmosphere Submitter: Sassen, K., University of Alaska, Fairbanks Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Sassen, K., P.J. DeMott, J.M. Propsero, and M.R. Poellot, Saharan Dust Storms and Indirect Aerosol Effects on Clouds: CRYSTAL-FACE Results, Geophys. Res. Ltt., 30(12), 1633, doi:10/1029/2003GL017371, 2003. PDL linear depolarization ratio (color scale on top) and relative returned power (in gray scale) of height versus time displays obtained on July 29, 2002, during the CRYSTAL-FACE experiment. Depicted are strong depolarizing upper tropospheric clouds (~10km), aerosols (╬┤ ~.10 to .15) extending up to ~5.5km, and at lower right (scale adjusted to account for signal

427

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Properties Journal Reference: Turner, D.D., S.A. Ackerman, B.A. Baum, H.E. Revercomb, and P. Yang, 2003: "Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA," Journal of Applied Meteorology 42(6):701-715. The SHEBA experiment in Barrow, Alaska used data collected by the ground-based radiation observations from the Atmospheric Emitted Radiance Interferometer (AERI). (Photo Credit: SHEBA Project Office) Key Contributors: S.A. Ackerman, B.A. Baum, H.E. Revercomb, P. Yang, In the frigid environs of the Acrtic, ARM scientists at the North Slope of

428

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud-Top Humidity Inversions and the Maintenance of Arctic Mixed-Phase Cloud-Top Humidity Inversions and the Maintenance of Arctic Mixed-Phase Stratocumulus Submitter: Solomon, A., NOAA/ESRL/Physical Sciences Division Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Solomon A, MD Shupe, O Persson, and H Morrison. 2011. "Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion." Atmospheric Chemistry and Physics, 11, doi:10.5194/acp-11-10127-2011. Soundings of mid-day decoupled stratocumulus at Barrow, Alaska. (A) Measured 17:34Z 8 April 2008 at (71.33N,156.61W). (B) 50-m LES simulation 20Z 8 April 2008 at (71.33N,156.91W). Gray shading marks the extent of the

429

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Case Closed on Nauru Island Effect Case Closed on Nauru Island Effect Download a printable PDF Submitter: Long, C. N., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Long CN and SA McFarlane. 2012. "Quantification of the impact of Nauru Island on ARM measurements." Journal of Applied Meteorology and Climatology, 51(3), 628-636. McFarlane SA, CN Long, and DM Flynn. 2005. "Impact of island-induced clouds on surface measurements: analysis of the ARM Nauru Island Effect Study data." Journal of Applied Meteorology, 44, 1045-1065. Conceptual model of the Nauru Island Effect and production of cloud plume. Approximate ARM Nauru site location is shown on the western side of the

430

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Increased Accuracy for Sky Imager Retrievals Increased Accuracy for Sky Imager Retrievals Download a printable PDF Submitter: Long, C. N., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Long CN. 2010. "Correcting for circumsolar and near-horizon errors in sky cover retrievals from sky images." The Open Atmospheric Science Journal, 4, doi:10.2174/1874282301004010045. Long CN, JM Sabburg, J Calbo, and D Pages. 2006. "Retrieving cloud characteristics from ground-based daytime all-sky images." Journal of Atmospheric and Oceanic Technology, 23, 633-652. Sample sky image (left) and corresponding cloud decision image (right) showing an example of the over-estimating problem. White and gray in the

431

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Intercomparison of Longwave Radiative Heating Algorithms Intercomparison of Longwave Radiative Heating Algorithms Submitter: Baer, F., University of Maryland Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Baer, F., N. Arsky, J. J. Charney, and R. G. Ellingson. 1996. "Intercomparison of Heating Rates Generated by Global Climate Model Longwave Radiation Codes." J. Geoph. Res., 101, D21, 26589-26603. 30 levels of longwave heating rates for all algorithms tested at the five locations for the high cloud Same as Figure 1 but with the clouds removed (clear sky assumption). Same as Figure 1 but a different view. Averaged heating rates and heating rates of averaged. Same as Figure 3 but with the clouds removed (clear sky assumption).

432

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Moistening by Clouds Sustains Madden-Julian Oscillation Atmospheric Moistening by Clouds Sustains Madden-Julian Oscillation Download a printable PDF Submitter: Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: N/A Outgoing longwave radiation (OLR Wm-2) signals in the tropics averaged between 10┬░S and 10┬░N from (a) a regional simulation with moisture constrained by observations and (b) NOAA-CPC satellite observations. The lines mark the eastward MJO propagation speed of 4 m/s. The constrained model is able to reproduce the key OLR features in the observations. Originating over the Indian Ocean, the Madden-Julian Oscillation (MJO) is an equatorial planetary-scale envelope of complex multi-scale cloud systems

433

A Process Study of the Dependence of Ice Crystal Absorption on Particle Geometry: Application to Aircraft Radiometric Measurements of Cirrus Cloud in the Terrestrial Window Region  

Science Conference Proceedings (OSTI)

The processes that contribute to the absorption of infrared radiation by atmospheric ice crystals are studied. The processes are separated into the geometric optics (i.e., refraction, internal, and external reflection) and above-edge (i.e., the ...

A. J. Baran; P. N. Francis; P. Yang

2003-01-01T23:59:59.000Z

434

[Treatment of cloud radiative effects in general circulation models  

SciTech Connect

This is a renewal proposal for an on-going project of the Department of Energy (DOE)/Atmospheric Radiation Measurement (ARM) Program. The objective of the ARM Program is to improve the treatment of radiation-cloud in GCMs so that reliable predictions of the timing and magnitude of greenhouse gas-induced global warming and regional responses can be made. The ARM Program supports two research areas: (I) The modeling and analysis of data related to the parameterization of clouds and radiation in general circulation models (GCMs); and (II) the development of advanced instrumentation for both mapping the three-dimensional structure of the atmosphere and high accuracy/precision radiometric observations. The present project conducts research in area (I) and focuses on GCM treatment of cloud life cycle, optical properties, and vertical overlapping. The project has two tasks: (1) Development and Refinement of GCM Radiation-Cloud Treatment Using ARM Data; and (2) Validation of GCM Radiation-Cloud Treatment.

Wang, W.C.

1993-11-01T23:59:59.000Z

435

Cloud Computing Forensic Science Workshop  

Science Conference Proceedings (OSTI)

Cloud Computing Forensic Science Workshop. Purpose: The New Frontiers in IT and Measurement Science Rapid advances ...

2013-09-05T23:59:59.000Z

436

A marketplace for cloud resources  

Science Conference Proceedings (OSTI)

Cloud computing is an emerging paradigm aimed to offer users pay-per-use computing resources, while leaving the burden of managing the computing infrastructure to the cloud provider. We present a new programming and pricing model that gives the cloud ... Keywords: cloud computing, iaas, large-scale scheduling, pricing models, worst-case execution time

Thomas A. Henzinger; Anmol V. Singh; Vasu Singh; Thomas Wies; Damien Zufferey

2010-10-01T23:59:59.000Z

437

Indian Summer Monsoon Drought 2009: Role of Aerosol and Cloud Microphysics  

SciTech Connect

Cloud dynamics played a fundamental role in defining Indian summer monsoon (ISM) rainfall during drought in 2009. The anomalously negative precipitation was consistent with cloud properties. Although, aerosols inhibited the growth of cloud effective radius in the background of sparse water vapor, their role is secondary. The primary role, however, is played by the interactive feedback between cloud microphysics and dynamics owing to reduced efficient cloud droplet growth, lesser latent heating release and shortage of water content. Cloud microphysical processes were instrumental for the occurrence of ISM drought 2009.

Hazra, Anupam; Taraphdar, Sourav; Halder, Madhuparna; Pokhrel, S.; Chaudhari, H. S.; Salunke, K.; Mukhopadhyay, P.; Rao, S. A.

2013-07-01T23:59:59.000Z

438

A comparison of cloud microphysical quantities with forecasts from cloud prediction models  

SciTech Connect

Numerical weather prediction models (ECMWF, NCEP) are evaluated using ARM observational data collected at the Southern Great Plains (SGP) site. Cloud forecasts generated by the models are compared with cloud microphysical quantities, retrieved using a variety of parameterizations. Information gained from this comparison will be utilized during the FASTER project, as models are evaluated for their ability to reproduce fast physical processes detected in the observations. Here the model performance is quantified against the observations through a statistical analysis. Observations from remote sensing instruments (radar, lidar, radiometer and radiosonde) are used to derive the cloud microphysical quantities: ice water content, liquid water content, ice effective radius and liquid effective radius. Unfortunately, discrepancies in the derived quantities arise when different retrieval schemes are applied to the observations. The uncertainty inherent in retrieving the microphysical quantities using various retrievals is estimated from the range of output microphysical values. ARM microphysical retrieval schemes (Microbase, Mace) are examined along with the CloudNet retrieval processing of data from the ARM sites for this purpose. Through the interfacing of CloudNet and ôARMö processing schemes an ARMNET product is produced and employed as accepted observations in the assessment of cloud model predictions.

Dunn, M.; Jensen, M.; Hogan, R.; OĺConnor, E.; Huang, D.

2010-03-15T23:59:59.000Z

439

Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report  

Science Conference Proceedings (OSTI)

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particlesĺ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2009-03-05T23:59:59.000Z

440

An Approach to Data Confidentiality Protection in Cloud Environments  

Science Conference Proceedings (OSTI)

In current cloud computing systems, because users' data is stored and processed by computing systems managed and operated by various service providers, users are concerned with the risks of unauthorized usage of their sensitive data by various entities, ... Keywords: Anonymization of User Identities, Cloud Environments, Data Confidentiality, Data Obfuscation, Service Providers

Stephen S. Yau; Ho G. An; Arun Balaji Buduru

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A novel algorithm for segmenting fruit from unorganized point clouds  

Science Conference Proceedings (OSTI)

This paper proposes an efficient and robust four-step process to extracting fruit shape from background. At first, point clouds is divided into octree cells by an adaptive subdivision; Second, converting teach octree cell into a splat and approximating ... Keywords: MLS, PCA, covariance analysis, point cloud, segmentation, splat

Hui-jun Yang; Dong-jian He; Zhi-yi Zhang; Xin Wang

2011-12-01T23:59:59.000Z

442

EVALUATING CLOUD RETRIEVAL ALGORITHMS WITH THE ARM BBHRP FRAMEWORK  

E-Print Network (OSTI)

of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties, including those from Microbase, the current `reference' retrieval approach in BBHRP. At the NSA, mixed-phase

443

Web data indexing in the cloud: efficiency and cost reductions  

Science Conference Proceedings (OSTI)

An increasing part of the world's data is either shared through the Web or directly produced through and for Web platforms, in particular using structured formats like XML or JSON. Cloud platforms are interesting candidates to handle large data repositories, ... Keywords: cloud computing, monetary cost, query processing, web data management

Jes˙s Camacho-RodrÝguez; Dario Colazzo; Ioana Manolescu

2013-03-01T23:59:59.000Z

444

A Survey on Database Performance in Virtualized Cloud Environments  

Science Conference Proceedings (OSTI)

Cloud Computing emerged as a major paradigm over the years. Major challenges it poses to computer science are related to latency, scale, and reliability issues. It leverages strong economical aspects and provides sound answers to questions like energy ... Keywords: Cloud Computing, Database Management Systems DBMS, Online Transaction Processing OLTP, Performance, Virtualization

Alejandro Buchmann; Todor Ivanov; Ilia Petrov

2012-07-01T23:59:59.000Z

445

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992  

SciTech Connect

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-12-31T23:59:59.000Z

446

Satellite and Surface Data Synergy for Developing a 3D Cloud Structure and Properties Characterization Over the ARM SGP. S...  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite and Surface Data Synergy for Developing Satellite and Surface Data Synergy for Developing a 3D Cloud Structure and Properties Characterization Over the ARM SGP Site Stage 1: Cloud Amounts, Optical Depths, and Cloud Heights Reconciliation I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington P. W. Heck Analytical Services & Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction One of the primary Atmospheric Radiation Measurement (ARM) Program objectives is to obtain measurements applicable to the development of models for better understanding of radiative processes in the atmosphere. We address this goal by building a three-dimensional (3D) characterization of the

447

Impact of Dynamics and Atmospheric State on Cloud Vertical Overlap  

Science Conference Proceedings (OSTI)

The observation and representation in general circulation models (GCMs) of cloud vertical overlap are the objects of active research due to their impacts on the earthĺs radiative budget. Previous studies have found that vertically contiguous ...

Catherine M. Naud; Anthony Del Genio; Gerald G. Mace; Sally Benson; Eugene E. Clothiaux; Pavlos Kollias

2008-04-01T23:59:59.000Z

448

Influence of cloud-radiative forcing on tropical cyclone structure  

Science Conference Proceedings (OSTI)

We demonstrate how and why cloud-radiative forcing (CRF), the interaction of hydrometeors with longwave and shortwave radiation, can influence tropical cyclone structure through ôsemi-idealizedö integrations of the Hurricane Weather Research and ...

Yizhe Peggy Bu; Robert G. Fovell; Kristen L. Corbosiero

449

95-GHz Polarimetric Radar Measurements of Orographic Cap Clouds  

Science Conference Proceedings (OSTI)

The use of millimeter-wavelength radars for cloud microphysical research was investigated in experiments at the Elk Mountain Observatory near Laramie, Wyoming, between April 1990 and March 1992. The 95-GHz polarimetric radar used in these ...

Andrew Pazmany; James Mead; Robert McIntosh; Mark Hervig; Robert Kelly; Gabor Vali

1994-02-01T23:59:59.000Z

450

Antarctic Clouds and Radiation within the NCAR Climate Models  

Science Conference Proceedings (OSTI)

To evaluate and improve the treatment of clouds and radiation by the climate models of the National Center for Atmospheric Research (NCAR), simulations by the NCAR Community Climate Model version 3 (CCM3), as well as the recently released ...

Keith M. Hines; David H. Bromwich; Philip J. Rasch; Michael J. Iacono

2004-03-01T23:59:59.000Z

451

Estimation of Cloud Content by W-Band Radar  

Science Conference Proceedings (OSTI)

W-band (3.2-mm) radars are seeing increasing utilization as a result of improving microwave technologies and the increased research emphasis being given to nonprecipitating clouds. This niche is exemplified by the study of the radiatively ...

Kenneth Sassen; Liang Liao

1996-06-01T23:59:59.000Z

452

CDIAC Cloud Data Sets  

NLE Websites -- All DOE Office Websites (Extended Search)

Period of Record A Gridded Climatology of Clouds over Land (1971-1996) and Ocean (1954-2008) from Surface Observations Worldwide (CDIAC NDP-026E) C.J. Hahn and S.G. Warren...

453

3. New Cloud Climatology  

NLE Websites -- All DOE Office Websites (Extended Search)

New Cloud Climatology New Cloud Climatology Computed for the summers (May-Au- gust) 2000 through 2004 (Berg and Kassianov 2008). Uses ARSCL VAP, Total Sky Imager, and radar wind profiler. * * Initial Evaluation of the Cumulus Potential Scheme at the ACRF SGP Site Larry Berg, William Gustafson, and Evgueni Kassianov Pacific Northwest National Laboratory 1. Motivation Shallow clouds are poorly predicted by current global and regional scale models. A new parameterization has been devel- oped that links the boundary-layer turbu- lence and the shallow clouds. 2. The CuP Parameterization The Cumulus Potential (CuP) param- eterization uses Probability Density Functions (PDFs) of temperature and moisture to represent the subgrid scale

454

Cloud Transmissivities for Canada  

Science Conference Proceedings (OSTI)

Transmissivities are determined for different cloud types using nine years of hourly irradiance measurements under overcast skies at six Canadian stations. Values for individual stations and for pooled data using irradiances uncorrected for ...

J. A. Davies; M. Abdel-Wahab; J. E. Howard

1985-03-01T23:59:59.000Z

455

Cirrus Clouds and the Large-Scale Atmospheric State: Relationships Revealed by Six Years of Ground-Based Data  

Science Conference Proceedings (OSTI)

The properties of cirrus clouds observed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) in Oklahoma are documented from a nearly continuous 6-yr record of 35-GHz cloud radar data. Cirrus frequency over the ACRF is ...

Gerald G. Mace; Sally Benson; Erik Vernon

2006-07-01T23:59:59.000Z

456

ARM - Midlatitude Continental Convective Clouds  

Science Conference Proceedings (OSTI)

Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

Mike Jensen; Mary Jane Bartholomew; Anthony Del Genio; Scott Giangrande; Pavlos Kollias

2012-01-19T23:59:59.000Z

457

ARM - Midlatitude Continental Convective Clouds  

DOE Data Explorer (OSTI)

Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

Mike Jensen; Mary Jane Bartholomew; Anthony Del Genio; Scott Giangrande; Pavlos Kollias

458

Investigation to implicate data on clouds  

E-Print Network (OSTI)

Cloud computing can and does mean different things to different people. The common characteristics most shares are on-demand secure access to metered services from nearly anywhere and dislocation of data from inside to outside the organization. Vision of cloud computing as a new IT procurement model. The system lifecycle, risks that are identified must be carefully balanced against the security and privacy controls available and the expected benefits from their utilization. Too many controls can be inefficient and ineffective, if the benefits outweigh the costs and associated risks. In this micro research, we characterize the problems related to security challenges.

Bansal, Nidhi

2012-01-01T23:59:59.000Z

459

FORMATION OF MASSIVE MOLECULAR CLOUD CORES BY CLOUD-CLOUD COLLISION  

SciTech Connect

Recent observations of molecular clouds around rich massive star clusters including NGC 3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by cloud-cloud collision. We find that the massive molecular cloud cores have large effective Jeans mass owing to the enhancement of the magnetic field strength by shock compression and turbulence in the compressed layer. Our results predict that massive molecular cloud cores formed by the cloud-cloud collision are filamentary and threaded by magnetic fields perpendicular to the filament.

Inoue, Tsuyoshi [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258 (Japan); Fukui, Yasuo, E-mail: inouety@phys.aoyama.ac.jp [Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

2013-09-10T23:59:59.000Z

460

Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA  

E-Print Network (OSTI)

Mixed-phase clouds are an understudied component of global cloudiness and are thus poorly represented in models at all scales, which typically partition cloud phase as a function of temperature. The proper partitioning of cloud phase is particularly important considering the unique radiative properties of liquid droplets and ice particles, the impact of phase on precipitation processes, and the sensitivity of phase

M. D. Shupe; S. Y. Matrosov; T. Uttal

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The Influence of Solar Zenith Angle and Cloud Type on Cloud Radiative Forcing at the Surface in the Arctic  

Science Conference Proceedings (OSTI)

Measurements of the long- and shortwave incident radiation taken from the USCGC Polar Sea during a research cruise to the Northeast Water Polynya during the summer of 1993 are analyzed together with observations of cloud type and amount to ...

Peter J. Minnett

1999-01-01T23:59:59.000Z

462

RACORO aerosol data processing  

Science Conference Proceedings (OSTI)

The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

Elisabeth Andrews

2011-10-31T23:59:59.000Z

463

Environmental research program: FY 1987, annual report  

SciTech Connect

This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. The Program's Annual Report contains summaries of research performed during FY 1987 in the areas of atmospheric aerosols, flue gas chemistry, combustion, membrane bioenergetics, and analytical chemistry. The main research interests of the Atmospheric Aerosol Research group concern the chemical and physical processes that occur in haze, clouds, and fogs. For their studies, the group is developing novel analytical and research methods for characterizing aerosol species. Aerosol research is performed in the laboratory and in the field. Studies of smoke emissions from fires and their possible effects on climatic change, especially as related to nuclear winter, are an example of the collaboration between the Atmospheric Aerosol Research and Combustion Research Groups.

Not Available

1988-03-01T23:59:59.000Z

464

The Magellan Final Report on Cloud Computing  

Science Conference Proceedings (OSTI)

The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources.

,; Coghlan, Susan; Yelick, Katherine

2011-12-21T23:59:59.000Z

465

Thin Film Materials and Processing Techniques for a Next Generation Photovoltaic Device: Cooperative Research and Development Final Report, CRADA Number CRD-12-470  

DOE Green Energy (OSTI)

This research extends thin film materials and processes relevant to the development and production of a next generation photovoltaic device.

van Hest, M.

2013-08-01T23:59:59.000Z

466

Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluate the Diurnal Cycle in the Multiscale Modeling Framework Using Evaluate the Diurnal Cycle in the Multiscale Modeling Framework Using Satellite and ARM Data Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Zhang, Y, SA Klein, C Liu, B Tian, RT Marchand, JM Haynes, RB McCoy, Y Zhang, and TP Ackerman. 2008. "On the diurnal cycle of deep convection, high-level cloud, and upper troposphere water vapor in the Multiscale Modeling Framework." Journal of Geophysical Research 113, D16105, doi:10.1029/2008JD009905. Figure 1: Diurnal anomalies for tropical (left) ocean and (right) land: (top) the precipitation index (PI), high-level cloud (CLD) and upper

467

Overview of Arctic Cloud and Radiation Characteristics  

Science Conference Proceedings (OSTI)

To provide a background for ARM's activities at the North Slope of Alaska/Adjacent Arctic Ocean sites, an overview is given of our current state of knowledge of Arctic cloud and radiation properties and processes. The authors describe the Arctic ...

Judith A. Curry; Julie L. Schramm; William B. Rossow; David Randall

1996-08-01T23:59:59.000Z

468

Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow  

DOE Green Energy (OSTI)

With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350░C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350░C). Aluminum is the third most abundant element in the earthĺs crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earthĺs crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and/or injected fluids is critical to predict important chemical behaviors affecting fluid flow, such as mineral precipitation/dissolution reactions. We successfully achieved the project goal and objectives by demonstrating the ability of our modeling technology to correctly predict the complex pH dependent solution chemistry of the Al3+ cation and its hydrolysis species: Al(OH)2+, Al(OH)2+, Al(OH)30, and Al(OH)4- as well as the solubility of common aluminum hydroxide and aluminosilicate minerals in aqueous brines containing components (Na, K, Cl) commonly dominating hydrothermal fluids. In the sodium chloride system, where experimental data for model parameterization are most plentiful, the model extends to 300░C. Determining the stability fields of aluminum species that control the solubility of aluminum-containing minerals as a function of temperature and composition has been a major objective of research in hydrothermal chemistry.

Moller, Nancy; Weare J. H.

2008-05-29T23:59:59.000Z

469

On the Use of Cloud Forcing to Estimate Cloud Feedback  

Science Conference Proceedings (OSTI)

Uncertainty in cloud feedback is the leading cause of discrepancy in model predictions of climate change. The use of observed or model-simulated radiative fluxes to diagnose the effect of clouds on climate sensitivity requires an accurate ...

Brian J. Soden; Anthony J. Broccoli; Richard S. Hemler

2004-10-01T23:59:59.000Z

470

MATERIALS, COATINGS AND PROCESSES FOR IMPROVED ...  

Science Conference Proceedings (OSTI)

... was investigated by performing high temperature compression, bending, and .... sensitivity of vapor cloud chemistry to fluctuations in processing parameters.

471

Comparisons of CCN with Supercooled Clouds  

Science Conference Proceedings (OSTI)

More than 140 supercooled clouds were compared with corresponding out-of-cloud cloud condensation nuclei (CCN) measurements. In spite of significant differences in altitude, temperature, distances from cloud base, updraft velocity (W), ...

James G. Hudson; Stephen Noble; Vandana Jha

2010-09-01T23:59:59.000Z

472

Effects of CCN Concentrations on Stratus Clouds  

Science Conference Proceedings (OSTI)

Comparisons between cloud-base CCN concentrations and cloud droplet concentrations in stratus clouds over San Diego and 100 km out to sea showed a positive correlation. The supersaturation in these clouds, as derived from the matching of the CCN ...

James G. Hudson

1983-02-01T23:59:59.000Z

473

Aerosols and clouds in chemical transport models and climate models.  

Science Conference Proceedings (OSTI)

Clouds exert major influences on both shortwave and longwave radiation as well as on the hydrological cycle. Accurate representation of clouds in climate models is a major unsolved problem because of high sensitivity of radiation and hydrology to cloud properties and processes, incomplete understanding of these processes, and the wide range of length scales over which these processes occur. Small changes in the amount, altitude, physical thickness, and/or microphysical properties of clouds due to human influences can exert changes in Earth's radiation budget that are comparable to the radiative forcing by anthropogenic greenhouse gases, thus either partly offsetting or enhancing the warming due to these gases. Because clouds form on aerosol particles, changes in the amount and/or composition of aerosols affect clouds in a variety of ways. The forcing of the radiation balance due to aerosol-cloud interactions (indirect aerosol effect) has large uncertainties because a variety of important processes are not well understood precluding their accurate representation in models.

Lohmann,U.; Schwartz, S. E.

2008-03-02T23:59:59.000Z

474

Production of Ice in Tropospheric Clouds: A Review  

Science Conference Proceedings (OSTI)

Ice in the troposphere affects a variety of processes, including the formation of precipitation, and cloud lifetime, albedo, dynamics, and electrification. A lack of understanding of the ways in which ice is created and multiplied hampers ...

Will Cantrell; Andrew Heymsfield

2005-06-01T23:59:59.000Z

475

Observations of Cloud Microstructure at the Centimeter Scale  

Science Conference Proceedings (OSTI)

Current conceptual models of the processes that modify the droplet spectrum in convective clouds starts with entrainment of environmental air followed by turbulent mixing of these parcels into progressively finer filaments. Thus, one would expect,...

Jean-Louis Brenguier

1993-04-01T23:59:59.000Z

476

Modeling Entrainment and Finescale Mixing in Cumulus Clouds  

Science Conference Proceedings (OSTI)

A model used to study entrainment and mixing of thermodynamic properties in the stratus-topped boundary layer has been extended to represent these processes in cumulus clouds. The new model, called the ôexplicit mixing parcel modelö (EMPM), ...

Steven K. Krueger; Chwen-Wei Su; Patrick A. McMurtry

1997-12-01T23:59:59.000Z

477

Generation of Infrasound by Evaporating Hydrometeors in a Cloud Model  

Science Conference Proceedings (OSTI)

The dynamical core of the Regional Atmospheric Modeling System has been tailored to simulate the infrasound of vortex motions and diabatic cloud processes in a convective storm. Earlier studies have shown that the customized model (c-RAMS) ...

David A. Schecter; Melville E. Nicholls

2010-04-01T23:59:59.000Z

478

Prospects of the WSR-88D Radar for Cloud Studies  

Science Conference Proceedings (OSTI)

Sounding of nonprecipitating clouds with the 10-cm wavelength Weather Surveillance Radar-1988 Doppler (WSR-88D) is discussed. Readily available enhancements to signal processing and volume coverage patterns of the WSR-88D allow observations of a ...

Valery M. Melnikov; Dusan S. Zrni?; Richard J. Doviak; Phillip B. Chilson; David B. Mechem; Yefim L. Kogan

2011-04-01T23:59:59.000Z

479

Tracer Study of Vertical Exchange by Cumulus Clouds  

Science Conference Proceedings (OSTI)

This paper examines the exchange of material by convective cloud processes between the mixed layer and the overlying free troposphere. It describes results of a field experiment that was conducted in Lexington, Kentucky, during the period from 20 ...

J. K. S. Ching; A. J. Alkezweeny

1986-11-01T23:59:59.000Z

480

A Comparison of Ground and Satellite Observations of Cloud Cover  

Science Conference Proceedings (OSTI)

A processing scheme that determines cloud height and amount based on radiances from the Visible Infrared Spin Scan Radiometer Atmospheric Sounder (VAS) using a CO2 absorption technique has been installed on the National Environmental Satellite ...

Anthony J. Schreiner; Kathy I. Strabala; David A. Unger; W. Paul Menzel; Gary P. Ellrod; Jackson L. Pellet

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "research cloud processes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.