Sample records for research clean coal

  1. Clean Coal Research

    Broader source: Energy.gov [DOE]

    DOE's clean coal R&D isfocused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  2. Clean Coal Program Research Activities

    SciTech Connect (OSTI)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31T23:59:59.000Z

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  3. Obama Administration Announces Clean Coal Research Awards for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Coal Research Awards for Universities Across the Country Obama Administration Announces Clean Coal Research Awards for Universities Across the Country June 6, 2012 - 12:18pm...

  4. Clean Coal Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building AmericaEnergyandClassificationClean Coal Research

  5. FACT SHEET: Clean Coal University Research Awards and Project...

    Broader source: Energy.gov (indexed) [DOE]

    for research projects that will continue to support innovation and development of clean coal technologies. This fact sheet includes detailed project descriptions for each...

  6. Clean coal technologies: Research, development, and demonstration program plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  7. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2006-07-15T23:59:59.000Z

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  8. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B. (ed.)

    2007-01-30T23:59:59.000Z

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  9. Clean Coal Technology - From Research to Reality | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT § 309* §7609. PolicyClean Coal

  10. Clean Coal Projects (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

  11. Sandia National Laboratories: Clean Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ManagementClean Coal Clean Coal The term clean coal refers to a number of initiatives that seek to reduce or eliminate the hazardous emission or byproducts that result from using...

  12. Secretary of Energy and Rep. Chabot Highlight Clean Coal and...

    Energy Savers [EERE]

    Secretary of Energy and Rep. Chabot Highlight Clean Coal and Hydrogen Research and Tout America's Economic Growth in Ohio Secretary of Energy and Rep. Chabot Highlight Clean Coal...

  13. FACT SHEET: Clean Coal University Research Awards and Project...

    Energy Savers [EERE]

    power plants improve generation efficiency, use less coal and release less carbon pollution. The implementation of AUSC boilers requires materials with high-temperature...

  14. Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

  15. Clean coal today

    SciTech Connect (OSTI)

    none,

    1990-01-01T23:59:59.000Z

    This is the first issue of the Clean Coal Today publication. Each issue will provide project status reports, feature articles about certain projects and highlight key events concerning the US Clean Coal Technology Demonstration Program. Projects described in this publication include: Colorado-Ute Electric Association Circulating Fluidized Bed Combustor Project at Nucla, Colorado; Babcock and Wilcox coolside and limestone injection multistage burner process (dry sorbent injection); Coal Tech's Advanced Cyclone Combustor Project; and the TIDD pressurized fluidized bed combustor combined cycle facility in Brilliant, Ohio. The status of other projects is included.

  16. Clean Coal Power Initiative | Department of Energy

    Office of Environmental Management (EM)

    Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

  17. Clean Coal Power Initiative

    SciTech Connect (OSTI)

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31T23:59:59.000Z

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  18. Sustainable development with clean coal

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  19. CONSORTIUM FOR CLEAN COAL UTILIZATION

    E-Print Network [OSTI]

    Subramanian, Venkat

    CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

  20. Healy Clean Coal Project

    SciTech Connect (OSTI)

    None

    1997-12-31T23:59:59.000Z

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  1. Clean coal technology: The new coal era

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  2. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

    1994-12-31T23:59:59.000Z

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  3. Healy clean coal project

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and a heat recovery system with both high and low temperature emission control processes. Resulting emission levels of SO[sub 2], NO[sub x], and particulates are expected to be significantly better than the federal New source Performance standards. During this past quarter, engineering and design continued on the boiler, combustion flue gas desulfurization (FGD), and turbine/generator systems. Balance of plant equipment procurement specifications continue to be prepared. Construction activities commenced as the access road construction got under way. Temporary ash pond construction and drilling of the supply well will be completed during the next quarter.

  4. Clean coal technologies: A business report

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

  5. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31T23:59:59.000Z

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  6. Utility Generation and Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

  7. 4th Annual Clean Coal

    E-Print Network [OSTI]

    Ferriter John P

    Proceedings he emphasis of the Fourth Clean Coal Technology Conference wm the marketability of clean coal projects both domestically and abroad. The success rate of clean coal projects in the U.S. for coalfired electricity generation is a beacon to foreign governments that are working toward effectively using advanced NO, and SO2 technology to substantially reduce flue-gas emissions for a cleaner environment. There is a continuing dialogue between U.S. Government, North American private industry, and the electricity producing governmental ministries and the private sector abroad. The international community was well represented at this conference. The Administration is determined to move promising, near-term technologies from the public to the private sector a ~ well a8 into the international marketplace.

  8. Climate VISION: Events - Advanced Clean Coal Workshop

    Office of Scientific and Technical Information (OSTI)

    Secretary Kyle McSlarrow, DOE, and Jim Rogers, CEO Chairman, Cinergy 10:15 Break 10:30 Case Studies on Clean Coal Projects Case StudiesLessons Learned on Clean Coal Plants (to...

  9. Clean Coal Incentive Tax Credit (Kentucky)

    Broader source: Energy.gov [DOE]

    Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity....

  10. Repowering with clean coal technologies

    SciTech Connect (OSTI)

    Freier, M.D. [USDOE Morgantown Energy Technology Center, WV (United States); Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N. [Parsons Power Group, Inc., Reading, PA (United States)

    1996-02-01T23:59:59.000Z

    Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

  11. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    T.D. Wheelock

    1999-03-01T23:59:59.000Z

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  12. Coal Problems 1. Name two examples of clean coal technology and in what manner do they clean the coal?

    E-Print Network [OSTI]

    Bowen, James D.

    Coal Problems 1. Name two examples of clean coal technology and in what manner do they clean the coal? a. Coal Washing- Crushing coal then mixing it with a liquid to allow the impurities to settle. b burning coal altogether. With integrated gasification combined cycle (IGCC) systems, steam and hot

  13. Clean and Secure Energy from Coal

    SciTech Connect (OSTI)

    Smith, Philip; Davies, Lincoln; Kelly, Kerry; Lighty, JoAnn; Reitze, Arnold; Silcox, Geoffrey; Uchitel, Kirsten; Wendt, Jost; Whitty, Kevin

    2014-08-31T23:59:59.000Z

    The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues. The project included the following tasks: Oxy-Coal Combustion To ultimately produce predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. High-Pressure, Entrained-Flow Coal Gasification To ultimately provide a simulation tool for industrial entrained-flow integrated gasification combined cycle (IGCC) gasifier with quantified uncertainty. Chemical Looping Combustion (CLC) To develop a new carbon-capture technology for coal through CLC and to transfer this technology to industry through a numerical simulation tool with quantified uncertainty bounds. Underground Coal Thermal Treatment To explore the potential for creating new in-situ technologies for production of synthetic natural gas (SNG) from deep coal deposits and to demonstrate this in a new laboratory-scale reactor. Mercury Control To understand the effect of oxy-firing on the fate of mercury. Environmental, Legal, and Policy Issues To address the legal and policy issues associated with carbon management strategies in order to assess the appropriate role of these technologies in our evolving national energy portfolio. Validation/Uncertainty Quantification for Large Eddy Simulations of the Heat Flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility To produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers.

  14. Clean Coal Technology Programs: Program Update 2009

    SciTech Connect (OSTI)

    None

    2009-10-01T23:59:59.000Z

    The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nations energy security and reliability, while protecting the environment using the nations most abundant energy resourcecoal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

  15. Clean coal technology programs: program update 2006

    SciTech Connect (OSTI)

    NONE

    2006-09-15T23:59:59.000Z

    The purpose of the Clean Coal Technology Programs: Program Update 2006 is to provide an updated status of the DOE commercial-scale demonstrations of clean coal technologies (CCTs). These demonstrations are performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII) and the Clean Coal Power Initiative (CCPI). Program Update 2006 provides 1) a discussion of the role of clean coal technology demonstrations in improving the nation's energy security and reliability, while protecting the environment using the nation's most abundant energy resource - coal; 2) a summary of the funding and costs of the demonstrations; and 3) an overview of the technologies being demonstrated, with fact sheets for demonstration projects that are active, recently completed, withdrawn or ended, including status as of June 30 2006. 4 apps.

  16. Clean Coal Technology Demonstration Program. Program update 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This document describes activities of the U.S. Clean Coal Technology Program for the time of 1985-1995. Various clean coal technologies are described.

  17. Energy Systems Engineering 1 Clean Coal Technologies

    E-Print Network [OSTI]

    Banerjee, Rangan

    Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types of advanced coal technologies Supercritical Pulverised Combustion Circulating Fluidised Bed Combustion (CFBC

  18. Integrated coal cleaning, liquefaction, and gasification process

    DOE Patents [OSTI]

    Chervenak, Michael C. (Pennington, NJ)

    1980-01-01T23:59:59.000Z

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  19. Nel (2004), Clean Coal Conversion Options using Fischer-Tropsch

    E-Print Network [OSTI]

    Andre ? P. Steynberg; Herman G. Nel

    facilities producing these products individually. There may be good strategic reasons to use clean coal

  20. State perspectives on clean coal technology deployment

    SciTech Connect (OSTI)

    Moreland, T. [State of Illinois Washington Office, Washington, DC (United States)

    1997-12-31T23:59:59.000Z

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  1. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

    1998-09-30T23:59:59.000Z

    The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

  2. APEC experts` group on clean coal technology

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    The proceedings of the Asia-Pacific Economic Cooperation (APEC) Expert`s Group on Clean Coal Technology`s Technical Seminar held in Jakarta, Indonesia, from October 10-13, 1994 are presented. A total of 28 papers were presented at the seminar. These papers addressed issues of relevance to APEC member economies associated with the application of clean coal technologies (CCTs) and created a forum where information and ideas about CCTs and their application in the Asia-Pacific Region could be exchanged. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

  3. Milliken Clean Coal Technology Demonstration Project. Project performance summary, Clean Coal Technology Demonstration Program

    SciTech Connect (OSTI)

    none,

    2002-11-30T23:59:59.000Z

    The New York State Electric & Gas Corporation (NYSEG) demonstrated a combination of technologies at its Milliken Station in Lansing, New York, designed to: (1) achieve high sulfur dioxide (SO2) capture efficiency, (2) bring nitrogen oxide (NOx) emissions into compliance with Clean Air Act Amendments of 1990 (CAAA), (3) maintain high station efficiency, and (4) eliminate waste water discharge. This project is part of the U.S. Department of Energy?s (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advance coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of nine selected in January 1991 from 33 proposals submitted in response to the program?s fourth solicitation.

  4. advanced coal cleaning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 4th Annual Clean Coal CiteSeer Summary: Proceedings he emphasis of the Fourth Clean Coal Technology...

  5. EIS-0146: Programmatic for Clean Coal Technology Demonstration Program

    Broader source: Energy.gov [DOE]

    This programmatic environmental impact statement assesses the environmental impacts of continuing the Clean Coal Technology Demonstration Program involving the selection, for cost-shared federal funding, of one or more clean coal projects proposed by the private sector.

  6. Clean coal. U.S.-China cooperation in energy security

    SciTech Connect (OSTI)

    Wendt, D.

    2008-05-15T23:59:59.000Z

    This work discusses how coal fits into the strategies of the USA and China to attain energy security while avoiding adverse environmental impacts. It begins by describing China's policy choices for clean coal, before discussing the implications of a clean coal strategy for China. The U.S. choices in a coal-based strategy of energy security is then covered. Finally, a joint US-China clean coal strategy, including the technology sharing option, is discussed.

  7. Clean coal technology: Export finance programs

    SciTech Connect (OSTI)

    Not Available

    1993-09-30T23:59:59.000Z

    Participation by US firms in the development of Clean Coal. Technology (CCT) projects in foreign countries will help the United States achieve multiple national objectives simultaneously--addressing critical goals related to energy, environmental technology, industrial competitiveness and international trade. US participation in these projects will result in an improved global environment, an improvement in the balance of payments and an increase in US jobs. Meanwhile, host countries will benefit from the development of economically- and environmentally-sound power facilities. The Clean Air Act Amendments of 1990 (Public Law 101-549, Section 409) as supplemented by a requirement in the Energy Policy Act of 1992 (Public Law 102-486, Section 1331(f)) requires that the Secretary of Energy, acting through the Trade Promotion Coordinating Committee Subgroup on Clean Coal Technologies, submit a report to Congress with information on the status of recommendations made in the US Department of Energy, Clean Coal Technology Export Programs, Report to the United States Congress, February 1992. Specific emphasis is placed on the adequacy of financial assistance for export of CCTS. This report fulfills the requirements of the Act. In addition, although this report focuses on CCT power projects, the issues it raises about the financing of these projects are also relevant to other CCT projects such as industrial applications or coal preparation, as well as to a much broader range of energy and environmental technology projects worldwide.

  8. Stimulating Investment in Renewable Resources and Clean Coal Technology through a Carbon Tax:

    E-Print Network [OSTI]

    Nellie Zhao; Servia Rindfleish; Jay Foley; Jelena Pesic

    three tax rates. The substitution of clean coal technology for standard coal, which seems promising for

  9. Nine clean coal projects chosen by DOE

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    On July 25, 1986 the US Department of Energy announced the nine projects selected as DOE's top choices in their Clean Coal Technology Program. The projects are: pressurized fluidized bed combustion combined cycle utility retrofit; extended tests of limestone injection multi-stage burner plus sorbent duct injection; slagging combustor with sorbent injection into combustor; gas reburning and sorbent injection retrofit into 3 utility boilers; steeply dipping bed underground coal gasification integrated with indirect liquefaction; integrated coal gasification steam injection gas turbine demonstration plants (2) with hot gas cleanup; coal-oil coprocessing liquefaction; fluidized bed gasification with hot gas cleanup integrated combined cycle demonstration plant; and direct iron ore reduction to replace coke oven/blast furnace for steelmaking. A table lists the 14 runner-up projects any of which could be selected if cooperative agreements are not reached with any of the nine companies selected. Brief descriptions are given of the nine selected projects.

  10. Technical support for the Ohio Clean Coal Technology Program. Volume 2, Baseline of knowledge concerning process modification opportunities, research needs, by-product market potential, and regulatory requirements: Final report

    SciTech Connect (OSTI)

    Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L. [Battelle, Columbus, OH (United States)

    1989-08-28T23:59:59.000Z

    This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LR1 and comprises two volumes. Volume 1 presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume 2 consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

  11. Regional Effort to Deploy Clean Coal Technologies

    SciTech Connect (OSTI)

    Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

    2009-01-31T23:59:59.000Z

    The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

  12. Clean coal technology. Coal utilisation by-products

    SciTech Connect (OSTI)

    NONE

    2006-08-15T23:59:59.000Z

    The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

  13. Clean coal: Global opportunities for small businesses

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The parallel growth in coal demand and environmental concern has spurred interest in technologies that burn coal with greater efficiency and with lower emissions. Clean Coal Technologies (CCTs) will ensure that continued use of the world`s most abundant energy resource is compatible with a cleaner, healthier environment. Increasing interest in CCTs opens the door for American small businesses to provide services and equipment for the clean and efficient use of coal. Key players in most coal-related projects are typically large equipment manufacturers, power project developers, utilities, governments, and multinational corporations. At the same time, the complexity and scale of many of these projects creates niche markets for small American businesses with high-value products and services. From information technology, control systems, and specialized components to management practices, financial services, and personnel training methods, small US companies boast some of the highest value products and services in the world. As a result, American companies are in a prime position to take advantage of global niche markets for CCTs. This guide is designed to provide US small businesses with an overview of potential international market opportunities related to CCTs and to provide initial guidance on how to cost-effectively enter that growing global market.

  14. Healy Clean Coal Project: A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2003-09-01T23:59:59.000Z

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict environmental requirements. DOE provided $117,327,000 of the total project cost of $282,300,000, or 41.6 percent. Construction for the demonstration project was started in May 1995, and completed in November 1997. Operations were initiated in January 1998, and completed in December 1999. The evaluation contained herein is based primarily on information from the AIDEA's Final Report (Alaska Industrial Development and Export Authority, 2001), as well as other references cited.

  15. The Healy clean coal project: An overview

    SciTech Connect (OSTI)

    Olson, J.B.; McCrohan, D.V. [Alaska Industrial Development and Export Authority, Anchorage, AK (United States)

    1997-12-31T23:59:59.000Z

    The Healy Clean Coal Project, selected by the US Department of Energy under Round III of the Clean Coal Technology Program is currently in construction. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the US Department of Energy. Construction is scheduled to be completed in August of 1997, with startup activity concluding in December of 1997. Demonstration, testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of NOx, SO{sub 2} and particulates from this 50 megawatt plant are expected to be significantly lower than current standards. The project status, its participants, a description of the technology to be demonstrated, and the operational and performance goals of this project are presented.

  16. Introduction of clean coal technology in Japan

    SciTech Connect (OSTI)

    Takashi Kiga [Japan Coal Energy Center (JCOAL), Tokyo (Japan). R and D Department

    2008-01-15T23:59:59.000Z

    Coal is an abundant resource, found throughout the world, and inexpensive and constant in price. For this reason, coal is expected to play a role as one of the energy supply sources in the world. The most critical issues to promote utilization of coal are to decrease the environmental load. In this report, the history, outline and recent developments of the clean coal technology in Japan, mainly the thermal power generation technology are discussed. As recent topics, here outlined first is the technology against global warming such as the improvement of steam condition for steam turbines, improvement of power generation efficiency by introducing combined generation, carbon neutral combined combustion of biomass, and carbon dioxide capture and storage (CCS) technology. Also introduced are outlines of Japanese superiority in application technology against NOx and SO{sub 2} which create acid rain, development status of the technical improvement in the handling method for coal which is a rather difficult solid-state resource, and utilization of coal ash.

  17. Environmental issues affecting clean coal technology deployment

    SciTech Connect (OSTI)

    Miller, M.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-31T23:59:59.000Z

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  18. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  19. PFBC presents its clean coal credentials

    SciTech Connect (OSTI)

    Makansi, J. [Pearl Street Inc. (United States)

    2005-12-01T23:59:59.000Z

    Pressurized fluidized-bed combustion (PFBC) combined cycle deserves as much consideration as integrated gasification combined cycle as a foundation technology for advanced, clean coal-fired power generation. Although corporate issues and low natural gas prices stalled PFBC development for a time, technology at full scale has proved quite worthy in several respects in Europe and Japan over the past 10 years. The article describes how the PFBC system power cycle works, describes its competitive features and reports progress on development. 4 figs.

  20. Clean Coal Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCity ofInformationClaridgeClassicClayClean Coal

  1. The foul side of 'clean coal'

    SciTech Connect (OSTI)

    Johnson, J.

    2009-02-15T23:59:59.000Z

    As power plants face new air pollution control, ash piles and their environmental threats are poised to grow. Recent studies have shown that carcinogens and other contaminants in piles of waste ash from coal-fired power plants can leach into water supplies at concentrations exceeding drinking water standards. Last year an ash dam broke at the 55-year old power plant in Kingston, TN, destroying homes and rising doubts about clean coal. Despite the huge amounts of ash generated in the USA (131 mtons per year) no federal regulations control the fate of ash from coal-fired plants. 56% of this is not used in products such as concrete. The EPA has found proof of water contamination from many operating ash sites which are wet impoundments, ponds or reservoirs of some sort. Several member of Congress have show support for new ash-handling requirements and an inventory of waste sites. Meanwhile, the Kingston disaster may well drive utilities to consider dry handling. 3 photos.

  2. affecting clean coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    affecting clean coal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 CONSORTIUM FOR CLEAN COAL...

  3. annual clean coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    annual clean coal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 4th Annual Clean Coal CiteSeer...

  4. advanced clean coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    clean coal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 4th Annual Clean Coal CiteSeer Summary:...

  5. Clean Coal Technology Programs: Completed Projects (Volume 2)

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2003-12-01T23:59:59.000Z

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  6. Clean Coal Technology Programs: Program Update 2003 (Volume 1)

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2003-12-01T23:59:59.000Z

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  7. THE 3R ANTHRACITE CLEAN COAL TECHNOLOGY Economical Conversion of Browncoal to Anthracite Type Clean

    E-Print Network [OSTI]

    Edward Someus

    pac i ties. The 3R An thra cite Clean Coal end prod uct and tech nol ogy may ad van ta geously be in

  8. Modified approaches for high pressure filtration of fine clean coal

    SciTech Connect (OSTI)

    Yang, J.; Groppo, J.G.; Parekh, B.K. [Center for Applied Energy Research, Lexington, KY (United States)

    1995-12-31T23:59:59.000Z

    Removal of moisture from fine (minus 28 mesh) clean coal to 20% or lower level is difficult using the conventional vacuum dewatering technique. High pressure filtration technique provides an avenue for obtaining low moisture in fine clean coal. This paper describes a couple of novel approaches for dewatering of fine clean coal using pressure filtration which provides much lower moisture in fine clean coal than that obtained using conventional pressure filter. The approaches involve (a) split stream dewatering and (b) addition of paper pulp to the coal slurry. For Pittsburgh No. 8 coal slurry, split stream dewatering at 400 mesh provided filter cake containing 12.9% moisture compared to 24.9% obtained on the feed material. The addition of paper pulp to the slurry provided filter cake containing about 17% moisture.

  9. Milliken Clean Coal Demonstration Project: A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-08-15T23:59:59.000Z

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal-utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage.

  10. The Impact of the Clean Air Act Amendments of 1990 on Electric Utilities and Coal Mines: Evidence from the Stock Market

    E-Print Network [OSTI]

    Kahn, Shulamit; Knittel, Christopher R.

    2003-01-01T23:59:59.000Z

    administration would back clean-coal technology developmentwould pursue clean-coal technology rather than emissions

  11. The development of Clean Coal Technology in China

    SciTech Connect (OSTI)

    Jie, Z.; Chu, Z.X. [North China Electrical Power Design Inst., Beijing (China)

    1996-10-01T23:59:59.000Z

    The resource conditions and energy structures of China determine that coal will continue to play a key role in the development of the electrical power industry in the coming years, thus it is necessary to develop clean coal technology in order to control the high consumption rate of energy and to control serious pollution. Clean coal technology focuses on improving the utilization rate of energy and on the control and reduction of emissions. Considering the condition of China, PC-FGD, supercritical units, CFBC, IGCC and PFBC-CC can be applied and developed under different conditions and in different periods with these technologies developing simultaneously and helping each other forward to improve clean coal technologies. China has broad development prospects and a large market for clean coal technologies. The authors hope to strengthen international exchange and cooperation in this field for the development of CCTs markets in China.

  12. Self-scrubbing coal{sup TM}: An integrated approach to clean air. A proposed Clean Coal Technology Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This environmental assessment (EA) was prepared by the U.S.Department of Energy (DOE), with compliance with the National Environmental Policy Act (NEPA) of 1969, Council on Environmental Quality (CE) regulations for implementating NEPA (40 CFR 1500-1508) and DOE regulations for compliance with NEPA (10 CFR 1021), to evaluate the potential environmental impacts associated with a proposed demonstration project to be cost-shared by DOE and Custom Coals International (CCI) under the Clean Coal Technology (CCT) Demonstration Program of DOE`s Office of Fossil Energy. CCI is a Pennsylvania general partnership located in Pittsburgh, PA engaged in the commercialization of advanced coal cleaning technologies. The proposed federal action is for DOE to provide, through a cooperative agreement with CCI, cost-shared funding support for the land acquisition, design, construction and demonstration of an advanced coal cleaning technology project, {open_quotes}Self-Scrubbing Coal: An Integrated Approach to Clean Air.{close_quotes} The proposed demonstration project would take place on the site of the presently inactive Laurel Coal Preparation Plant in Shade Township, Somerset County, PA. A newly constructed, advanced design, coal preparation plant would replace the existing facility. The cleaned coal produced from this new facility would be fired in full-scale test burns at coal-fired electric utilities in Indiana, Ohio and PA as part of this project.

  13. Recovery and utilization of waste liquids in ultra-clean coal preparation by chemical leaching

    SciTech Connect (OSTI)

    Xu Zesheng; Shi Zhimin; Yang Qiaowen; Wang Xinguo [China Univ. of Mining and Technology, Beijing (China). Beijing Graduate School

    1997-12-31T23:59:59.000Z

    Coal with ash lower than 1%, being called an ultra-clean coal, has many potential applications, such as a substitute for diesel fuel, production of carbon electrodes, superior activated carbon and other chemical materials. It is difficult to reduce coal ash to such a level by conventional coal preparation technology. By means of chemical leaching with the proper concentration of alkali and acid solutions, any coal can be deeply deashed to 1% ash level. However, the cost of chemical methods is higher than that of physical ones, additionally, the waste liquids would give rise to environmental pollution if used on a large scale. If the waste liquids from chemical preparation of ultra-clean coal can be recovered and utilized, so as to produce salable by-products, the cost of chemical leaching will be reduced. This processing will also solve the pollution problem of these waste liquids. This paper describes recovery and utilization methods for these liquids used in chemical leaching, including the recoveries of alkali, silica, sodium-salt and aluminium-salt. A preliminary estimate was made regarding its economic benefits. It shows that this research solves the two problems in the chemical preparation of ultra-clean coal. One is the high-cost and the other is environmental pollution. This research demonstrates good potential for the production of ultra-clean coal on an industrial scale.

  14. CLEAN C O A L RESEARCH PROGRAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems 64 Hydrogen Turbines 69 Coal and Coal-Biomass to Liquids (Fuels) 75 Solid Oxide Fuel Cells 80 CROSSCUTTING RESEARCH 86 Plant Optimization Technologies 87 Coal Utilization...

  15. Ownership of Carbon Dioxide Captured by Clean Coal Project (Texas)

    Broader source: Energy.gov [DOE]

    This legislation stipulates that the Railroad Commission of Texas automatically acquires the title to any carbon dioxide captured by a clean coal project in the state. The Bureau of Economic...

  16. appalachian clean coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    appalachian clean coal First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 1 INTRODUCTION Appalachian coal...

  17. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

    2006-07-15T23:59:59.000Z

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  18. EIS-0186: Proposed Healy Clean Coal Project, Healy, AK

    Broader source: Energy.gov [DOE]

    This environmental impact statement analyzes two proposed technologies. Under the Department of Energy's third solicitation of the Clean Coal Technology Program, the Alaska Industrial Development and Export Authority conceived, designed, and proposed the Healy Clean Coal Project. The project, a coal-fired power generating facility, would provide the necessary data for evaluating the commercial readiness of two promising technologies for decreasing emissions of sulfur dioxide, oxides of nitrogen, and particulate matter. DOE prepared this statement to analyze potential impacts of their potential support for this project.

  19. Health effects of coal technologies: research needs

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  20. PNNL Coal Gasification Research

    SciTech Connect (OSTI)

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28T23:59:59.000Z

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  1. Sixth clean coal technology conference: Proceedings. Volume 1: Policy papers

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    The Sixth Clean Coal Technology Conference focused on the ability of clean coal technologies (CCTs) to meet increasingly demanding environmental requirements while simultaneously remaining competitive in both international and domestic markets. Conference speakers assessed environmental, economic, and technical issues and identified approaches that will help enable CCTs to be deployed in an era of competing, interrelated demands for energy, economic growth, and environmental protection. Recognition was given to the dynamic changes that will result from increasing competition in electricity and fuel markets and industry restructuring, both domestically and internationally. Volume 1 contains 38 papers arranged under the following topical sections: International business forum branch; Keynote session; Identification of the issues; CCTs--Providing for unprecedented environmental concerns; Domestic competitive pressures for CCTs; Financing challenges for CCTs; New markets for CCTs; Clean coal for the 21st century: What will it take? Conclusions and recommendations. The clean coal technologies discussed include advanced pulverized coal-fired boilers, atmospheric fluidized-bed combustion (FBC), pressurized FBC, integrated gasification combined-cycle systems, pressurized pulverized coal combustion, integrated gasification fuel cell systems, and magnetohydrodynamic power generation.

  2. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO[sub 2] per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO[sub 2] emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  3. Dewatering studies of fine clean coal. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research

    1992-10-01T23:59:59.000Z

    Physical cleaning of ultra-fine coal using an advanced froth flotation technique provides a low ash product, however, due to high surface area of particles the amount of water associated with clean coal is high. Economic removal of water to 20 percent or lower moisture level from the clean coal froth will be important for commercial applicability of advanced froth flotation processes. The main objective of the present research program is to study and understand the dewatering characteristics of ultra-fine clean coal and to develop process parameters to effectively reduce the moisture to less than 20 percent in the clean coal product. The research approach under investigation utilizes synergistic effect of metal ions and surfactant to lower the moisture of clean coal using a conventional vacuum dewatering technique. The studies have identified a combination of metal ions and surfactant found to be effective in providing a 22 percent moisture filter cake. During the third quarter, efforts were made to understand reagent adsorption mechanism. Adsorption studies indicated that the presence of metal ions enhanced adsorption of surfactant. It appears that metal ions induced floc formation at pH {approximately}7.0, which are hydrophilic in nature, however addition of surfactant restores the hydrophobicity. Organic polymers along with metal ions were found to be effective in dewatering of fine coal. Continuous filtration tests conducted using a drum filter provided a filter cake containing 24 percent moisture. Additional studies on mechanism of adsorption and continuous filtration using AC Electro-Coagulation will be conducted in the next quarter.

  4. Second annual clean coal technology conference: Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-09-09T23:59:59.000Z

    The Second Annual Clean Coal Technology Conference was held at Atlanta, Georgia, September 7--9, 1993. The Conference, cosponsored by the US Department of Energy (USDOE) and the Southern States Energy Board (SSEB), seeks to examine the status and role of the Clean Coal Technology Demonstration Program (CCTDP) and its projects. The Program is reviewed within the larger context of environmental needs, sustained economic growth, world markets, user performance requirements and supplier commercialization activities. This will be accomplished through in-depth review and discussion of factors affecting domestic and international markets for clean coal technology, the environmental considerations in commercial deployment, the current status of projects, and the timing and effectiveness of transfer of data from these projects to potential users, suppliers, financing entities, regulators, the interested environmental community and the public. Individual papers have been entered separately.

  5. Low-rank coal research

    SciTech Connect (OSTI)

    Weber, G. F.; Laudal, D. L.

    1989-01-01T23:59:59.000Z

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  6. Sixth clean coal technology conference: Proceedings. Volume 2: Technical papers

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    The Sixth Clean Coal Technology Conference focused on the ability of clean coal technologies (CCTs) to meet increasingly demanding environmental requirements while simultaneously remaining competitive in both international and domestic markets. Conference speakers assessed environmental, economic, and technical issues and identified approaches that will help enable CCTs to be deployed in an era of competing, interrelated demands for energy, economic growth, and environmental protection. Recognition was given to the dynamic changes that will result from increasing competition in electricity and fuel markets and industry restructuring, both domestically and internationally. Volume 2 contains 28 papers related to fluidized-bed combustion, coal gasification for combined cycle power plants, the Liquid Phase Methanol Process, use of coal in iron making, air pollution control of nitrogen oxides, coke making, and hot gas cleanup.

  7. Engineering design and analysis of advanced physical fine coal cleaning technologies

    SciTech Connect (OSTI)

    Gallier, P.W.

    1990-10-20T23:59:59.000Z

    The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cycloning, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level. The ASPEN PLUS process simulation package will be extended to handle coal cleaning applications. Algorithms for predicting the process performance, equipment size, and flowsheet economics of commercial coal cleaning devices and related ancillary equipment will be incorporated into the coal cleaning simulator. The work plan for the froth quarter called for completion of the washability interpolation routine, gravity separation models, and dewatering models. As these items were completed, work in the areas of size reduction, classification and froth flotation were scheduled to begin. As each model was completed, testing and validation procedures were scheduled to begin. Costing models were also planned to be implemented and tested as each of the gravity separation models were completed. 1 tab.

  8. Analysis of chemical coal cleaning processes. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

  9. New Clean Coal Cycle Optimized Using Pinch Technology

    E-Print Network [OSTI]

    Rossiter, A. P.; O'Donnell, J. J.

    NEW CLEAN COAL CYCLE OPTIMIZED USING PINCH TECHNOLOGY A. P. ROSSITER, Linnhoff March I 0'00 ' nc., Houston, TX J. J. NNELL, The M. W. Kellogg Company, Houston, TX High thermal efficiency and low levels of environmental emissions...~en incorporated in the present des1gn, some of them could be of use in later generations of the process. CONCLUSIONS The hybrid cycle is a very promising new clean coal power plant technology. Its benefits include: ? Very low NO and SOx emission levels...

  10. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOE Patents [OSTI]

    Burnet, George (Ames, IA); Gokhale, Ashok J. (College Station, TX)

    1990-07-10T23:59:59.000Z

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.

  11. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOE Patents [OSTI]

    Burnet, G.; Gokhale, A.J.

    1990-07-10T23:59:59.000Z

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.

  12. Pulverization Induced Charge: In-Line Dry Coal Cleaning

    SciTech Connect (OSTI)

    Schaefer, J.L.; Stencel, J.M.

    1997-05-13T23:59:59.000Z

    The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to boilers in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

  13. PULVERIZATION INDUCED CHARGE: IN-LINE DRY COAL CLEANING

    SciTech Connect (OSTI)

    JOHN M. STENCEL

    1998-07-01T23:59:59.000Z

    The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to burners in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

  14. Pulverization Induced Charge: In-Line Dry Coal Cleaning

    SciTech Connect (OSTI)

    John M. Stencel

    1998-05-26T23:59:59.000Z

    The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to burners in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

  15. Pulverization Induced Charge: In-Line Dry Coal Cleaning

    SciTech Connect (OSTI)

    John M. Stencel

    1998-01-21T23:59:59.000Z

    The technical feasibility of separating mineral matter and pyrite from coal as it is transported from pulverizers to burners in pulverized coal combustion units will be examined. The charge imparted on coal during pulverization and transport to pulverized coal (PC) burners in a utility boiler will be quantified. In addition to field charge measurements, an existing computational model will be extended to numerically simulate charged particle motion in a turbulent gas through an electric field. Results from the field tests and numerical modeling will be employed in design and construction of a laboratory scale pulverizer/classifier. This laboratory unit will be used to quantify the magnitude and differential charge imparted on bituminous and subbituminous coals during pulverization and classification at temperatures and with gaseous constituents typical to utility PC units. An electrostatic separator, designed for in-line operation between pulverizers and PC boilers, will be used to clean prepulverized coals. Theoretical and experimental data are to be used in preparing a preliminary design for a full-scale, (15 ton/hr) in-line, electrostatic coal cleaning device. Finally, the economic potential for application to PC units will be assessed.

  16. Clean Coal Technology Demonstration Program. Program update 1994

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  17. Studies on design of a process for organo-refining of coal to obtain super clean coal

    SciTech Connect (OSTI)

    Sharma, C.S.; Sharma, D.K. [Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies

    1999-08-01T23:59:59.000Z

    Organo-refining of coal results in refining the coal to obtain super clean coal and residual coal. Super clean coal may be used to obtain value added chemicals, products, and cleaner fuels from coal. In the present work, studies on the design of a semicontinuous process for organo-refining of one ton of coal have been made. The results are reported. This is only a cursory attempt for the design, and further studies may be required for designing this process for use in the development of a scaled-up process of organo-refining of coal.

  18. Clean Coal Technology Demonstration Program: Program Update 2001

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2002-07-30T23:59:59.000Z

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

  19. Clean Coal Technology Demonstration Program: Program Update 1998

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    1999-03-01T23:59:59.000Z

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  20. Clean Coal Technology Demonstration Program: Program Update 1999

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2000-04-01T23:59:59.000Z

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  1. Clean Coal Technology Demonstration Program: Program Update 2000

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2001-04-01T23:59:59.000Z

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  2. The reduced environmental liability of clean coal technologies

    SciTech Connect (OSTI)

    Leslie, A.C.D. [Energetics, Inc., Columbia, MD (United States); McMillen, M. [Energetics, Inc., Washington, DC (United States)

    1997-08-01T23:59:59.000Z

    In this paper the authors will discuss the waste stream minimization that future commercially operated clean coal technologies can effect. They will explore the ability of these now-beginning-to-mature technologies to reduce those aspects of the emission streams that have greatest potential for what the authors term as environmental liability. Environmental liability is manifested in a variety of forms. There are both current liabilities and future liabilities. In addition, uncertainties may reside in future anticipated regulatory compliance and the costs of such compliance. Exposure to liability translates into perceived risk which creates an air of uncertainty to the power industry and its lenders who provide the capital to build new power plants. In the context of electric power generation, newer, high efficiency power generation technologies developed in the course of the Clean Coal Technology Program of the US Department of Energy result in reduced waste stream emissions when compared against more aging conventional combustion technologies. This paper will discuss how the introduction of new clean coal technologies will help balance the conflict between adverse environmental impact and the global demand for increased energy. The authors will discuss how clean coal technologies will facilitate compliance with future air standards that may otherwise expose power producers to modification and cleanup costs, noncompliance penalties, or premature shut down.

  3. Fossil energy, clean coal technology, and FutureGen

    SciTech Connect (OSTI)

    Sarkus, T.A.

    2008-07-15T23:59:59.000Z

    Future fossil use will rely heavily on carbon sequestration. Clean coal technologies are being incorporated in the USA, including air pollution control, and will need to incorporate carbon capture and sequestration. The paper ends with an outline of the restructured FutureGen project. 7 figs.

  4. To continue the development of WISER's globally recognized program in Clean Coal Technology at Illinois

    E-Print Network [OSTI]

    Heller, Barbara

    Vision To continue the development of WISER's globally recognized program in Clean Coal Technology renewable energy. Goal The goals of the WISER Clean Coal Technology Program are to: Obtain the optimum stream Strengths The strengths of the WISER Clean Coal Technology program include a strong

  5. Ash reduction in clean coal spiral product circuits

    SciTech Connect (OSTI)

    Brodzik, P.

    2007-04-15T23:59:59.000Z

    The article describes the Derrick Corporation's Stack Sizer{trademark} technology for high capacity fine wet cleaning with long-lasting high open-area urethane screen panels. After field trials, a Stack Sizer fitted with a 100-micron urethane panel is currently processing approximately 40 stph of clean coal spiral product having about 20% ash at McCoy-Elkhorn's Bevin Branch coal preparation plant in Kentucky, USA. Product yield is about 32.5 short tons per hour with 10% ash. The material is then fed to screen bowl centrifuges for further processing. At Blue Diamond Coal's Leatherwood preparation plant similar Stacker Sizers are achieving the same results. 2 figs., 3 tabs., 2 photo.

  6. University Coal Research | Department of Energy

    Energy Savers [EERE]

    Research University Coal Research University Coal Research Universities frequently win Fossil Energy research competitions or join with private companies to submit successful...

  7. Illinois SB 1987: the Clean Coal Portfolio Standard Law

    SciTech Connect (OSTI)

    NONE

    2009-01-15T23:59:59.000Z

    On January 12, 2009, Governor Rod Blagojevich signed SB 1987, the Clean Coal Portfolio Standard Law. The legislation establishes emission standards for new coal-fueled power plants power plants that use coal as their primary feedstock. From 2009-2015, new coal-fueled power plants must capture and store 50 percent of the carbon emissions that the facility would otherwise emit; from 2016-2017, 70 percent must be captured and stored; and after 2017, 90 percent must be captured and stored. SB 1987 also establishes a goal of having 25 percent of electricity used in the state to come from cost-effective coal-fueled power plants that capture and store carbon emissions by 2025. Illinois is the first state to establish a goal for producing electricity from coal-fueled power plants with carbon capture and storage (CCS). To support the commercial development of CCS technology, the legislation guarantees purchase agreements for the first Illinois coal facility with CCS technology, the Taylorville Energy Center (TEC); Illinois utilities are required to purchase at least 5 percent of their electricity supply from the TEC, provided that customer rates experience only modest increases. The TEC is expected to be completed in 2014 with the ability to capture and store at least 50 percent of its carbon emissions.

  8. Clean Coal Technology Programs: Program Update 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0Yellowstone-Teton Clean Energy

  9. Clean Coal Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCity ofInformationClaridgeClassicClayClean

  10. PROSPECTS FOR CLEAN COAL TECHNOLOGIES.... 1

    E-Print Network [OSTI]

    Vicente Solano Arrieia

    coal technologies (CCTs) to meet increasingly demanding environmental requirements while simultaneously remaining competitive in both international and domestic markets. Conference speakers assessed environmental, economic, and technical issues and identified approaches that will help enable CCTs to be deployed in an era of competing, interrelated demands for energy, economic growth, and environmental protection. Recognition was given to the dynamic changes that will result from increasing competition in electricity and fuel markets and industry restructuring, both domestically and internationally. Energy use, critical to economic growth, is growing quickly in many regions of the world. Much of this increased demand can be met by coal with technologies that achieve environmental goals while keeping the cost per unit of energy competitive. Private sector experience and results from the CCT Demonstration Program are providing information on economic, environmental, and market issues that will enable conclusions to be drawn about the competitiveness of the CCTs domestically and internationally., The industry/government partnership, cemented over the past 11 years, is

  11. Coal: world energy security. The Clearwater clean coal conference

    SciTech Connect (OSTI)

    Sakkestad, B. (ed.)

    2009-07-01T23:59:59.000Z

    Topics covered include: oxy-fuel (overview, demonstrations, experimental studies, burner developments, emissions, fundamental and advanced concepts); post-combustion CO{sub 2} capture; coal conversion to chemicals and fuels; advanced materials; hydrogen production from opportunity fuels; mercury abatement options for power plants; and carbon capture and storage in volume 1. Subjects covered in volume 2 include: advanced modelling; advanced concepts for emission control; gasification technology; biomass; low NOx technology; computer simulations; multi emissions control; chemical looping; and options for improving efficiency and reducing emissions.

  12. Studies on the production of ultra-clean coal by alkali-acid leaching of low-grade coals

    SciTech Connect (OSTI)

    Nabeel, A.; Khan, T.A.; Sharma, D.K. [Jamia Millia Islamia, New Delhi (India). Dept. of Chemistry

    2009-07-01T23:59:59.000Z

    The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents, keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.

  13. Clean Coal Technology Demonstration Program | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - April 2014ChristopherClassEnergyClean CoalClean

  14. Chemicals to help coal come clean

    SciTech Connect (OSTI)

    Thayer, A.M.

    2009-07-13T23:59:59.000Z

    Scrubbing methods to capture carbon from power plants are advancing to the demonstration phase. The article gives an update of projects around the world, and the goals and cost of CCS projects. BASF, together with RWE Power and Linde, are working to ensure state of the art integration of the carbon-capture process into a power plant to minimize the penalty in electrical output. A pilot project will test new solvents in an 'advanced amine' system at RWE's power station in Niederaussem, Germany. A pilot unit will soon capture CO{sub 2} from a coal-fired plant of Dow's in South Charleston, WV, USA and Dow has also agreed to build an amines demonstration facility in Belchatow, Poland. Other projects in the USA and Canada are reported. 1 fig.

  15. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-12-31T23:59:59.000Z

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

  16. DEVELOPMENT OF A NOVEL FINE COAL CLEANING SYSTEM

    SciTech Connect (OSTI)

    Manoj K. Mohanty

    2005-06-01T23:59:59.000Z

    The goal of the proposed project was to develop a novel fine coal separator having the ability to clean 1 mm x 0 size coal in a single processing unit. The novel fine coal separator, named as EG(Enhanced Gravity) Float Cell, utilizes a centrifugal field to clean 1 mm x 250 micron size coal, whereas a flotation environment to clean minus 250 micron coal size fraction. Unlike a conventional enhanced gravity concentrator, which rotates to produce a centrifugal field requiring more energy, the EG Float Cell is fed with a tangential feed slurry to generate an enhanced gravity field without any rotating part. A prototype EG Float Cell unit having a maximum diameter of 60 cm (24 inch) was fabricated during the first-half of the project period followed by a series of exploratory tests to make suitable design modification. Test data indicated that there was a significant concentration of coarse heavy materials in the coarse tailings discharge of the EG Float Cell. The increase in weight (%) of 1 mm x 250 micron (16 x 60 mesh) size fraction from 48.9% in the feed to 72.2% in the coarse tailings discharge and the corresponding increase in the ash content from 56.9% to 87.0% is indicative of the effectiveness of the enhanced gravity section of the EG Float Cell. However, the performance of the flotation section needs to be improved. Some of the possible design modifications may include more effective air sparging system for the flotation section to produce finer bubbles and a better wash water distributor.

  17. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    SciTech Connect (OSTI)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01T23:59:59.000Z

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  18. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    SciTech Connect (OSTI)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01T23:59:59.000Z

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  19. Fine coal cleaning via the micro-mag process

    DOE Patents [OSTI]

    Klima, Mark S. (Finleyville, PA); Maronde, Carl P. (McMurray, PA); Killmeyer, Richard P. (Pittsburgh, PA)

    1991-01-01T23:59:59.000Z

    A method of cleaning particulate coal which is fed with a dense medium slurry as an inlet feed to a cyclone separator. The coal particle size distribution is in the range of from about 37 microns to about 600 microns. The dense medium comprises water and ferromagnetic particles that have a relative density in the range of from about 4.0 to about 7.0. The ferromagnetic particles of the dense medium have particle sizes of less than about 15 microns and at least a majority of the particle sizes are less than about 5 microns. In the cyclone, the particulate coal and dense-medium slurry is separated into a low gravity product stream and a high gravity produce stream wherein the differential in relative density between the two streams is not greater than about 0.2. The low gravity and high gravity streams are treated to recover the ferromagnetic particles therefrom.

  20. Clean Coal Technology Demonstration Program: Program update 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

  1. Clean Energy Research Areas | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2 PermitClean Energy ManufacturingHorse

  2. Clean coal technology demonstration program: Program update 1996-97

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

  3. Regional trends in the take-up of clean coal technologies

    SciTech Connect (OSTI)

    Wootten, J.M. [Peabody Holding Co., Inc., St. Louis, MO (United States)

    1997-12-31T23:59:59.000Z

    Using surveys of the electricity industry taken in major OECD coal producing/coal consuming regions of North America, Europe, Southern Africa, and Asia/Pacific, this paper reports on the attitudes of power plant operators and developers toward clean coal technologies, the barriers to their use and the policies and measures that might be implemented, if a country or region desired to encourage greater use of clean coal technologies.

  4. Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

  5. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect (OSTI)

    R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

    2001-04-30T23:59:59.000Z

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would suffer from low throughput capacities and high maintenance requirements. In general, surface area-based separators (e.g., shaking tables, magnetic drum separator, electrodynamic separator, etc.) have lower throughput capacities than volume-based separators (e.g., flotation cell, dense-medium bath, cyclones, etc.) by an order of magnitude. Furthermore, the electrodes of the laboratory unit need to be cleaned frequently, creating a high maintenance requirement if it is scaled-up to a commercial unit. The bench-scale continuous TES unit developed at NETL, on the other hand, separates positively and negatively charged particles by splitting the gaseous stream containing these particles in an electric field by means of a flow splitter, so that the oppositely charged particles can be directed into different compartments. This device is fundamentally different from the laboratory unit in that the former is a surface area-based separator, while the latter is a volume-based separator. The bench-scale unit is referred to as an entrained flow separator by the in-house researchers at NETL. Thus, the entrained flow TES unit is a significant improvement over the laboratory unit with regard to throughput capacity. In the present work, the entrained flow separator concept will be utilized for developing a proof-of concept (POC) separator that can be scaled-up to commercial size units. To accomplish this, it is necessary to develop a bench-scale separator that can achieve high Btu recoveries while maintaining the high degree of separation efficiencies. It is the objective of the present investigation to develop an efficient separator by studying the mechanisms of triboelectrification and investigating better ways of separating the charged particles. An important criterion for developing efficient separators is that they not only provide high separation efficiencies but also have high throughput capacities, which are essential ingredients for successful commercialization.

  6. Innovative coal gas cleaning at Sparrows Point Coal Chemical Plant, Maryland for Bethlehem Steel Corporation

    SciTech Connect (OSTI)

    Antrobus, K.; Platts, M. (Davy/Still Otto, Pittsburgh, PA (US)); Harbold, L. (Bethlehem Steel Corp., PA (USA)); Kornosky, R. (Office of Clean Coal Technology, US DOE, Pittsburgh, PA (US))

    1990-01-01T23:59:59.000Z

    In response to the Clean Coal II solicitation, Bethlehem Steel Corporation (BSC) submitted a proposal to the DOE in May 1988. The proposal submitted by BSC describes a Unique integration of commercial technologies developed by Davy/Still Otto to clean coke oven gas being produced at its Sparrows Point, Maryland steel plant. This innovative coke oven gas cleaning system combines secondary gas cooling with hydrogen sulfide and ammonia removal, hydrogen sulfide and ammonia recovery, ammonia destruction and sulfur recovery to produce a cleaner fuel gas for plant use. The primary environmental benefit associated with employing this innovative coke oven gas cleaning system is realized when the fuel gas is burned within the steel plant. Emissions of sulfur dioxide are reduced by more than 60 percent. The removal, recovery and destruction of ammonia eliminates the disposal problems associated with an unmarketable ammonium sulfate by-product. Significant reduction in benzene and hydrogen cyanide emissions are also obtained.

  7. The 1986-93 Clean Coal Technology Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Begun in 1986, the Clean Coal Technology Program was the most ambitious government-industry initiative ever undertaken to develop environmental solutions for the Nation's abundant...

  8. Construction Begins on First-of-its-Kind Advanced Clean Coal...

    Broader source: Energy.gov (indexed) [DOE]

    "This groundbreaking represents a significant milestone in the President's Clean Coal Power Initiative, which aims to reduce emissions and improve the efficiency of...

  9. Clean coal technology deployment: From today into the next millennium

    SciTech Connect (OSTI)

    Papay, L.T.; Trocki, L.K.; McKinsey, R.R. [Bechtel Technology and Consulting, San Francisco, CA (United States)

    1997-12-31T23:59:59.000Z

    The Department of Energy`s clean coal technology (CCT) program succeeded in developing more efficient, cleaner, coal-fired electricity options. The Department and its private partners succeeded in the demonstration of CCT -- a major feat that required more than a decade of commitment between them. As with many large-scale capital developments and changes, the market can shift dramatically over the course of the development process. The CCT program was undertaken in an era of unstable oil and gas prices, concern over acid rain, and guaranteed markets for power suppliers. Regulations, fuel prices, emergency of competing technologies, and institutional factors are all affecting the outlook for CCT deployment. The authors identify the major barriers to CCT deployment and then introduce some possible means to surmount the barriers.

  10. International prospects for clean coal technologies (Focus on Asia)

    SciTech Connect (OSTI)

    Gallaspy, D.T. [Southern Energy, Inc., Atlanta, GA (United States)

    1997-12-31T23:59:59.000Z

    The purpose of this paper is to propose Asia as a focus market for commercialization of CCT`s; describe the principles for successful penetration of CCT`s in the international market; and summarize prospects for CCT`s in Asia and other international markets. The paper outlines the following: Southern Company`s clean coal commitment; acquisition of Consolidated Electric Power Asia (CEPA); the prospects for CCT`s internationally; requirements for CCT`s widespread commercialization; CEPA`s application of CCT`s; and gas turbine power plants as a perfect example of a commercialization driver.

  11. Clean Coal and Power Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSSDepartmentDepartment ofCity andClean Coal and Power

  12. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

  13. Clean coal technologies---An international seminar: Seminar evaluation and identification of potential CCT markets

    SciTech Connect (OSTI)

    Guziel, K.A.; Poch, L.A.; Gillette, J.L.; Buehring, W.A.

    1991-07-01T23:59:59.000Z

    The need for environmentally responsible electricity generation is a worldwide concern. Because coal is available throughout the world at a reasonable cost, current research is focusing on technologies that use coal with minimal environmental effects. The United States government is supporting research on clean coal technologies (CCTs) to be used for new capacity additions and for retrofits to existing capacity. To promote the worldwide adoption of US CCTs, the US Department of Energy, the US Agency for International Development, and the US Trade and Development Program sponsored a two-week seminar titled Clean Coal Technologies -- An International Seminar. Nineteen participants from seven countries were invited to this seminar, which was held at Argonne National Laboratory in June 1991. During the seminar, 11 US CCT vendors made presentations on their state-of-the-art and commercially available technologies. The presentations included technical, environmental, operational, and economic characteristics of CCTs. Information on financing and evaluating CCTs also was presented, and participants visited two CCT operating sites. The closing evaluation indicated that the seminar was a worthwhile experience for all participants and that it should be repeated. The participants said CCT could play a role in their existing and future electric capacity, but they agreed that more CCT demonstration projects were needed to confirm the reliability and performance of the technologies.

  14. Research Highlights | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearchMaking SenseTitleWorkingClean

  15. Energy and environmental research emphasizing low-rank coal: Task 3.4 -- Hot-gas cleaning. Topical report (includes semiannual report for January--June 1995)

    SciTech Connect (OSTI)

    Weber, G.F.; Swanson, M.L.

    1995-06-01T23:59:59.000Z

    This report summarizes the accomplishments of three subtasks completed in support of the current and future hot-gas cleanup activities at the Energy and Environmental Research Center (EERC). The overall objective of the EERC hot-gas cleanup task is to develop reliable methods to remove particulate matter from high-temperature, high-pressure gas streams produced from coal combustion and/or gasification. Near-term task objectives include (1) design, fabrication, and assembly of a high-temperature, high-pressure bench-scale filter vessel; (2) design, fabrication, and assembly of a high-temperature, high-pressure sampling train; and (3) the preliminary design of a pilot-scale high-temperature, high-pressure filter vessel and support systems. Bench-scale hot-gas filter research will be performed with the pressurized fluid-bed reactor (PFBR) or the continuous fluid-bed reactor (CFBR) and a hot-gas filter vessel. The objectives of future work with the bench-scale system will be to determine particulate and vapor-phase alkali degradation of candidate ceramic filter structures as well as filter performance relative to particulate collection efficiency, differential pressure, and filter cleanability. Construction of the high-temperature, high-pressure sampling system was intended to support bench- and pilot-scale activities with respect to conventional particulate sampling (total mass and particle-size distribution) and hazardous air pollutant (HAP) sampling. Finally, pilot-scale tests will be performed to evaluate filter performance and determine alkali corrosion of ceramic materials with a hot-gas filter vessel attached to the EERC Transport Reactor Development Unit (TRDU).

  16. Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific

    SciTech Connect (OSTI)

    Johnson, C.J.; Long, S.

    1991-11-22T23:59:59.000Z

    The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT's. However, there appears to be potential for introduction of CCT's in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT's introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT's in a number of countries.

  17. Assessing the environmental impact of energy generating clean coal technologies

    SciTech Connect (OSTI)

    Leslie, A.C.D.; McMillen, M. [Energetics, Inc., Columbia, MD (United States); Pell, J. [Department of Energy, Washington, DC (United States)

    1995-12-01T23:59:59.000Z

    The Clean Coal Technology (CCT) Program of the U.S. Department of Energy (DOE) is a partnership between government and industry designed for cleaner and more efficient use of coal, both for electric power generation and industrial applications. Approximately seven billion dollars have been committed to the CCT program (two and half-billion dollars from DOE and the rest by industry). The potential environmental effects of CCT projects are subject to review because a proposal by DOE to cost-share a CCT project constitutes a {open_quotes}major federal action{close_quotes} under section 102(2)(c) of NEPA. Consequently, by virtue of numerous NEPA impact evaluations of CCT projects, a great deal has been learned about environmental impact analyses for coal combustion sources. In the course of NEPA review of CCT projects, air quality is often a significant environmental issue. This paper focuses on CCT air quality issues from a NEPA perspective, including Prevention of Significant Deterioration, New Source Review, atmospheric visibility, global climate change, and acidic deposition. The analyses of the impacts of the proposed action, alternative actions, and cumulative effects will be examined. (It is a {open_quotes}given{close_quotes} that any action must comply with Federal and State requirements and the provision of the Clean Air Act and other regulatory statues.) NEPA is not a permitting process, but rather it is a process to provide decision makers with the information they require make an informed decision about the potential environmental consequences of undertaking an action. The NEPA review of environmental effects has been instrumental in effectuating beneficial changes in some past CCT projects-changes that have mitigated potentially adverse environmental impacts. Accordingly, NEPA has served as a constructive analytical tool, with similar implications for other actions related to the electric power generation industry that are subject to environmental review.

  18. Development and applications of clean coal fluidized bed technology

    SciTech Connect (OSTI)

    Eskin, N.; Hepbasli, A. [Ege University, Izmir (Turkey). Faculty of Engineering

    2006-09-15T23:59:59.000Z

    Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

  19. Jute fiber composites from coal, super clean coal, and petroleum vacuum residue-modified phenolic resin

    SciTech Connect (OSTI)

    Ahmaruzzaman, M.; Sharma, D.K. [Indian Institute of Technology, New Delhi (India). Center of Energy Studies

    2005-07-01T23:59:59.000Z

    Jute fiber composites were prepared with novolac and coal, phenolated-oxidized super clean coal (POS), petroleum vacuum residue (XVR)-modified phenol-formaldehyde (novolac) resin. Five different type of resins, i.e., coal, POS, and XVR-modified resins were used by replacing (10% to 50%) with coal, POS, and XVR. The composites thus prepared have been characterized by tensile strength, hardness, thermogravimetric analysis (TGA), Fourier-transfer infrared (FT-IR), water absorption, steam absorption, and thickness swelling studies. Twenty percent POS-modified novolac composites showed almost the same tensile strength as that of pure novolac composites. After 30% POS incorporation, the tensile strength decreased to 25.84MPa from 33.96MPa in the case of pure novolac resin composites. However, after 50% POS incorporation, the percent retention of tensile strength was appreciable, i.e., 50.80% retention of tensile strength to that of pure novolac jute composites. The tensile strength of coal and XVR-rnodified composites showed a trend similar to that shown by POS-modified novolac resin composites. However, composites prepared from coal and XVR-modified resin with 50% phenol replacement showed 25.4% and 42% tensile strength retention, respectively, compared to that of pure novolac jute composites. It was found that the hardness of the modified composites slightly decreased with an increase in coal, POS, and XVR incorporation in the resin. The XVR-modified composites showed comparatively lower steam absorption than did coal or POS-modified composites. The thermal stability of the POS-modified composites was the highest among the composites studied. The detailed results obtained are being reported.

  20. Illinois Coal Development Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

  1. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    SciTech Connect (OSTI)

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31T23:59:59.000Z

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage Transmission Line Route, and Natural Gas Pipeline Route Permits for a Large Electric Power Generating Plant to be located in Taconite, Minnesota. In addition, major pre-construction permit applications have been filed requesting authorization for the Project to i) appropriate water sufficient to accommodate its worst case needs, ii) operate a major stationary source in compliance with regulations established to protect public health and welfare, and iii) physically alter the geographical setting to accommodate its construction. As of the current date, the Water Appropriation Permits have been obtained.

  2. Sandia National Laboratories: U.S.-China Clean Energy Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -China Clean Energy Research Center-Clean Vehicles Consortium Sandia Participated in the 3rd Annual Technology Forum of the U.S.-China Clean Energy Research Center - Clean Vehicles...

  3. Cooperative research in coal liquefaction

    SciTech Connect (OSTI)

    Huffman, G.P.; Sendlein, L.V.A. (eds.)

    1991-05-28T23:59:59.000Z

    Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

  4. Clean coal reference plants: Atmospheric CFB. Topical report, Task 1

    SciTech Connect (OSTI)

    Rubow, L.N.; Harvey, L.E.; Buchanan, T.L.; Carpenter, R.G.; Hyre, M.R.; Zaharchuk, R.

    1992-06-01T23:59:59.000Z

    The Clean Coal Technology Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the US energy marketplace with a number of advanced, more efficient and environmentally responsive coal-using technologies. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which correspond to the center`s areas of technology development, including atmospheric fluidized bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. A measure of success in the CCT program will be the commercial acceptance of the new technologies being demonstrated. The dissemination of project information to potential users is being accomplished by producing a series of reference plant designs which will provide the users a basis for the selection of technologies applicable to their future energy requirements. As a part of DOE`s monitoring and evaluation of the CCT Projects, Gilbert/Commonwealth (G/C) has been contracted to assist in this effort by producing the design of a commercial size Reference Plant, utilizing technologies developed in the CCT Program. This report, the first in a series, describes the design of a 400 MW electric power plant, utilizing an atmospheric pressure, circulating fluidized bed combustor (ACFB) similar to the one which was demonstrated at Colorado-Ute`s Nucla station, funded in Round 1 of the CCT Program. The intent of the reference plant design effort was to portray a commercial power plant with attributes considered important to the utility industry. The logical choice for the ACFB combustor was Pyropower since they supplied the ACFB for the Nucla Project.

  5. Coal diesel combined-cycle project. Comprehensive report to Congress: Clean Coal Technology Program

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    One of the projects selected for funding is a project for the design, construction, and operation of a nominal 90 ton-per-day 14-megawatt electrical (MWe), diesel engine-based, combined-cycle demonstration plant using coal-water fuels (CWF). The project, named the Coal Diesel Combined-Cycle Project, is to be located at a power generation facility at Easton Utilities Commission`s Plant No. 2 in Easton, Talbot County, Maryland, and will use Cooper-Bessemer diesel engine technology. The integrated system performance to be demonstrated will involve all of the subsystems, including coal-cleaning and slurrying systems; a selective catalytic reduction (SCR) unit, a dry flue gas scrubber, and a baghouse; two modified diesel engines; a heat recovery steam generation system; a steam cycle; and the required balance of plant systems. The base feedstock for the project is bituminous coal from Ohio. The purpose of this Comprehensive Report is to comply with Public Law 102-154, which directs the DOE to prepare a full and comprehensive report to Congress on each project selected for award under the CCT-V Program.

  6. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Thomas Lynch

    2004-01-07T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  7. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    SciTech Connect (OSTI)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States); Hemenway, A. [USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States)

    1991-12-31T23:59:59.000Z

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

  8. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    SciTech Connect (OSTI)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States)); Hemenway, A. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States))

    1991-01-01T23:59:59.000Z

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

  9. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  10. Integrated production/use of ultra low-ash coal, premium liquids and clean char

    SciTech Connect (OSTI)

    Kruse, C.W.

    1991-01-01T23:59:59.000Z

    This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

  11. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    SciTech Connect (OSTI)

    Hoffman, G.P. [ed.

    1994-07-01T23:59:59.000Z

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  12. Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program

    Broader source: Energy.gov [DOE]

    DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems.

  13. EIS-0280: Proposed Clean Power from Integrated Coal/Ore Reduction Project (CPICOR) at Vineyard, Utah

    Broader source: Energy.gov [DOE]

    This EIS assesses the potential environmental and human health impacts of a proposed project under the Clean Coal Technology Program that would integrate the production of molten iron for steelmaking with the production of electricity.

  14. Chemical cleaning of coal by molten caustic leaching after pretreatment by low-temperature devolatilization

    DOE Patents [OSTI]

    Chriswell, Colin D. (Slater, IA); Kaushik, Surender M. (Socorro, NM); Shah, Navin D. (Houston, TX); Markuszewski, Richard (Ames, IA)

    1989-08-22T23:59:59.000Z

    Pretreatment of coal by devolatization at temperatures ranging from about 420.degree. C. to about 450.degree. C. for from about 10 minutes to about 30 minutes before leaching with molten caustic leads to a significant reduction in carbonate formation, greatly reducing the cost of cleaning coal on a per ton basis.

  15. An evaluation of the United Kingdom Clean Coal Power Generation Group`s air-blown gasification cycle

    SciTech Connect (OSTI)

    Wheeldon, J.M.; Brown, R.A. [Electric Power Research Inst., Palo Alto, CA (United States); McKinsey, R.R. [Bechtel Group, Inc., San Francisco, CA (United States); Dawes, S.G. [British Coal Corp., Cheltenham (United Kingdom)

    1996-12-31T23:59:59.000Z

    The Electric Power Research Institute (EPRI) is conducting an engineering and economic study of various pressurized fluidized-bed combustor (PFBC) designs. Studies have been completed on bubbling and circulating PFBC technologies and on an advanced PFBC power plant technology, in which the feed coal is partially gasified and the residual char burned in a PFBC. The United Kingdom Clean Coal Power Generation Group`s (CCPGG) air-blown gasification cycle (ABGC), known formerly as the British Coal Topping Cycle, also partially gasifies the feed coal, but uses a circulating atmospheric fluidized-bed combustor (AFBC) to burn the residual char. Although not a PFBC plant, the study was completed to effect a comparison with the advanced PFBC cycle.

  16. Energy Center Center for Coal Technology Research

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    Energy Center Center for Coal Technology Research http://www.purdue.edu/dp/energy/CCTR/ Consumption Production Gasification Power Plants Coking Liquid Fuels Environment Oxyfuels Byproducts Legislation, 500 Central Drive West Lafayette, IN 47907-2022 #12;INDIANA COAL REPORT 2009 Center for Coal

  17. New Clean Coal Cycle Optimized Using Pinch Technology

    E-Print Network [OSTI]

    Rossiter, A. P.; O'Donnell, J. J.

    1990-01-01T23:59:59.000Z

    transport reaction technology, developed originally for Fluid Catalytic Cracking plants, is used in the coal conversion steps; and pulverized limestone is circulated with the coal to capture the sulfur that is released during this process. Both gas turbines...

  18. Report to the United States Congress clean coal technology export markets and financing mechanisms

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country`s coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently.

  19. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Gary Harmond; Albert Tsang

    2003-03-14T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

  20. Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)

    SciTech Connect (OSTI)

    Conocophillips

    2007-09-30T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

  1. Through its Clean Coal Research Program, FE

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactive LiquidSavingsAugustPhase 2 Funding ||ofits

  2. 2005 clean coal and power conference. Conference proceedings

    SciTech Connect (OSTI)

    NONE

    2005-07-01T23:59:59.000Z

    The theme of the conference was 'The paradox: today's coal technologies versus tomorrow's promise'. The sessions covered: today's technologies, tomorrow's potential; economic stability; energy security; transition to sustainable energy future; new coal power technologies leading to zero emission coal; existing power plants - improved performance through use of new technology; and carbon capture and storage R & D - challenges and opportunities. Some of the papers only consist of the viewgraphs/overheads.

  3. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 16, July 1, 1992--September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  4. University Coal Research Program 2013 Selections

    Broader source: Energy.gov [DOE]

    Since the University Coal Research Program's inception in 1979, more than 728 research projects have been funded. With a combined value in excess of $132 million, these projects have provided new...

  5. Demonstration of Innovative Applications of Technology for the CT-121 FGD Process. Project performance summary, Clean Coal Technology Demonstration Project

    SciTech Connect (OSTI)

    none,

    2002-08-01T23:59:59.000Z

    This project is part of the U.S. Department of Energy?s (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advanced coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of sixteen selected from 55 proposals submitted in 1988 and 1989 in response to the CCTDP second solicitation.

  6. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 16, July--September, 1996

    SciTech Connect (OSTI)

    Shields, G.L.; Moro, N.; Smit, F.J.; Jha, M.C.

    1996-10-30T23:59:59.000Z

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. 28 refs., 13 figs., 19 tabs.

  7. Stabilization of coal cleaning wastes. Fossil Energy Program. Technical progress report, 1 April 1985-30 June 1985

    SciTech Connect (OSTI)

    Burnet, G.; Gokhale, A.

    1985-07-01T23:59:59.000Z

    This report describes research work in progress on the stabilization of waste from the mining and cleaning of coal. A survey of the literature in the area of coal refuse processing has been conducted using computerized searches of the Energy Data Base and Chemical Abstracts as well as manual scanning of the Chemical Abstracts, NTIS and Energy Research Abstracts. Relevant data from these sources are being assimilated to augment the present research efforts. The coal refuse material to be studied has been analyzed for major elements, Si, Al, Fe and Ca, using atomic absorption. Qualitative information on the mineralogy of the refuse has been obtained using x-ray diffraction. Small scale pelletization and sintering tests have been conducted on the coal refuse which had been ground to different levels of fineness. Water was used as a binding agent and, in the case of coarse refuse, fly ash was added in order to form pellets. The coal refuse had to be ground to about minus 30 mesh particle size to obtain intact pellets after sintering. A laboratory fixed bed reactor system has been designed and built for processing green pellets to simulate the treatment occurring in a traveling grate furnace. The reactor is heated electrically and sequentially exposes samples to drying, ignition, combustion, tempering and cooling. 12 refs., 4 figs., 6 tabs.

  8. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Doug Strickland; Albert Tsang

    2002-10-14T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the GEC and an Industrial Consortia are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  9. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14T23:59:59.000Z

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

  10. EIS-0357- Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale.

  11. Market effects of environmental regulation: coal, railroads, and the 1990 Clean Air Act

    SciTech Connect (OSTI)

    Busse, M.R.; Keohane, N.O. [University of California Berkeley, Berkeley, CA (United States)

    2007-01-01T23:59:59.000Z

    Many environmental regulations encourage the use of 'clean' inputs. When the suppliers of such an input have market power, environmental regulation will affect not only the quantity of the input used but also its price. We investigate the effect of the Title IV emissions trading program for sulfur dioxide on the market for low-sulfur coal. We find that the two railroads transporting coal were able to price discriminate on the basis of environmental regulation and geographic location. Delivered prices rose for plants in the trading program relative to other plants, and by more at plants near a low-sulfur coal source.

  12. A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation

    SciTech Connect (OSTI)

    Jiang, C.

    1993-12-31T23:59:59.000Z

    Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.

  13. 2004-05 Research Activities from the Office of the Vice President for Research

    E-Print Network [OSTI]

    Ginzel, Matthew

    are actively seeking answers to grid security and transmission control, researching clean coal technologies

  14. advanced coal liquefaction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

  15. advanced coal gasification: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

  16. advanced pressurized coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

  17. advanced direct coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

  18. advanced physical coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

  19. advanced fine coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

  20. Comparative analyses for selected clean coal technologies in the international marketplace

    SciTech Connect (OSTI)

    Szpunar, C.B.; Gillette, J.L.

    1990-07-01T23:59:59.000Z

    Clean coal technologies (CCTs) are being demonstrated in research and development programs under public and private sponsorship. Many of these technologies could be marketed internationally. To explore the scope of these international opportunities and to match particular technologies with markets appearing to have high potential, a study was undertaken that focused on seven representative countries: Italy, Japan, Morocco, Turkey, Pakistan, the Peoples' Republic of China, and Poland. The results suggest that there are international markets for CCTs and that these technologies can be cost competitive with more conventional alternatives. The identified markets include construction of new plants and refurbishment of existing ones, especially when decision makers want to decrease dependence on imported oil. This report describes potential international market niches for U.S. CCTs and discusses the status and implications of ongoing CCT demonstration activities. Twelve technologies were selected as representative of technologies under development for use in new or refurbished industrial or electric utility applications. Included are the following: Two generic precombustion technologies: two-stage froth-flotation coal beneficiation and coal-water mixtures (CWMs); Four combustion technologies: slagging combustors, integrated-gasification combined-cycle (IGCC) systems, atmospheric fluidized-bed combustors (AFBCs), and pressurized fluidized-bed combustors (PFBCs); and Six postcombustion technologies: limestone-injection multistage burner (LIMB) systems, gas-reburning sorbent-injection (GRSI) systems, dual-alkali flue-gas desulfurization (FGD), spray-dryer FGD, the NOXSO process, and selective catalytic reduction (SCR) systems. Major chapters of this report have been processed separately for inclusion on the data base.

  1. Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific. Final technical report

    SciTech Connect (OSTI)

    Johnson, C.J.; Long, S.

    1991-11-22T23:59:59.000Z

    The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT`s. However, there appears to be potential for introduction of CCT`s in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT`s introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT`s in a number of countries.

  2. Effect of Clean Air Act Amendments of 1990 on use of Midwestern coal

    SciTech Connect (OSTI)

    Davis, P.N. (Univ. of Missouri, Columbia, MO (United States). School of Law)

    1993-03-01T23:59:59.000Z

    The acid rain provisions of the Clean Air Act Amendments of 1990 (42 U.S.C. [section][section] 7,651--7651o) and implementing regulations of October 1992 will substantially modify use of high-sulfur coal by utilities during the next decade. The Act adopts a market-based approach, allowing utilities to meet those emission levels by (1) installing scrubbers, low-emission boilers, or coal-cleaning technology, (2) switching to lower-sulfur coal, or (3) purchasing emission allowances to cover excess emissions. Those allowances will be sold by utilities which have reduced emissions below required levels. Initial allowances are distributed according to a statutory formula to existing plants based on 1985 outputs and to new plants beginning operation before 2000. Small utility plants and nonutility or industrial plants can opt into the allowance program. New plants beginning operation after 2000 must purchase allowances from then existing plants. Beginning in 1995, each plant can (1) operate at the level of its allowance, (2) reduce its emissions below the level of its allowance, either selling the balance or saving it for future expansion, (3) emit at a higher level than its allowance and purchasing extra allowances. Although the cost of scrubbers is declining, many utilities will elect to switch from high to low-sulfur coal. That will cause a closing of many high-sulfur coal mines in Missouri and throughout the midwest. Low-sulfur coal mines in the West will expand substantially. But reductions in scrubber costs, development of boiler and coal-cleaning technologies, and changes in transportation charges will affect comparative costs, and may enable continued use of some high-sulfur coal.

  3. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    SciTech Connect (OSTI)

    NONE

    2000-09-01T23:59:59.000Z

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.

  4. Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994

    SciTech Connect (OSTI)

    Huffman, G.P. [ed.

    1994-10-01T23:59:59.000Z

    Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterize a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.

  5. Clean Coal and Power Conference | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT § 309* §7609. PolicyClean

  6. Request for Proposals Wanger Institute for Sustainable Energy Research (WISER)

    E-Print Network [OSTI]

    Heller, Barbara

    research activities including clean coal technology, renewable energy and energy storage, smart grid, water

  7. Underground Coal Thermal Treatment Task 6 Topical Report, Utah Clean Coal Program

    SciTech Connect (OSTI)

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15T23:59:59.000Z

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coals carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325C showed less or similar capacity to the untreated coals.

  8. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    SciTech Connect (OSTI)

    Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

    1997-12-31T23:59:59.000Z

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  9. How can environmental regulations promote clean coal technology adoption in APEC developing economies?

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The study examines both existing and emerging regulatory frameworks in order to determine which type of regulations that would be most effective at promoting clean coal technology adoption in development Asia Pacific Economic Co-operation (APEC) economies and would be practical to implement. regulations targeting air emissions; regulations targeting water use; and regulations concerning coal combustion by-products. When considering the potential effect of existing and new environmental regulations on the adoption of clean coal the analysis of technologies was organised into three categories: environmental control technologies; high efficiency coal combustion technologies; and carbon dioxide capture and storage (CCS). To target the recommendations towards APEC economies that would benefit the most from this analysis, the study focused on developing and transition APEC economies that are expected to rely on coal for a large part of their future generating capacity. These economies include China, Indonesia, the Philippines, the Russian Federation, Thailand, and Vietnam. ACARP provided funding to this study, under Project C15078. 10 figs., 14 tabs., 10 apps.

  10. Joint United States and People`s Republic of China clean coal activities. Annual report, April 1994--December 1995

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The United States Department of Energy (U.S. DOE) and the Ministry of Coal Industry of the People`s Republic of China (China) signed a protocol in the field of fossil energy research and development in April 1985. An annex to this agreement, Annex IX, was signed in April 1994 for cooperation between the U.S. DOE and China`s State Science and Technology Commission (SSTC) in the area of clean coal utilization. Article III of Annex IX requires the United States and China jointly to prepare an annual report i describing the work performed and results achieved. This report, in compliance with Article III, is a description of the activities conducted under Annex IX during the period from April 1994 through December 1995. The report also contains the plans for future activities for the next 12 months, or through December 1996.

  11. Clean Coal Power Initiative Round III | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT § 309* §7609. Policy

  12. The Clean Coal Technology Demonstration Program is a $5-billion national

    E-Print Network [OSTI]

    unknown authors

    commitment, cost-shared by the Government and the private sector, to demonstrate economic and environmentally sound methods for using our Nation's most abundant energy resource. The Program will foster the energy efficient use of the Nation's vast coal resource base. By doing so, the Program will contribute significantly to the long-term energy security of the United States, will further the Nation's objectives for a cleaner environment, and will improve its competitive standing in the international energy market. The first three Clean Coal Technology solicitations were issued in 1986, 1988,

  13. Abstracts and research accomplishments of university coal research projects

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.

  14. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    NONE

    2005-05-01T23:59:59.000Z

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  15. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect (OSTI)

    Not Available

    1993-02-12T23:59:59.000Z

    The Department of Energy (DOE) awarded a contract entitled Engineering Development of Advanced Physical Fine Coal Cleaning Technology - Froth Flotation'', to ICF Kaiser Engineers with the following team members, Ohio Coal Development Office, Babcock and Wilcox, Consolidation Coal Company, Eimco Process Equipment Company, Illinois State Geological Survey, Virginia Polytechnic Institute and State University, Process Technology, Inc. This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  16. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

  17. EIS-0282: McIntosh Unit 4 TCFB Demonstration Project, Clean Coal Technology Program, Lakeland, Florida (also see EIS-0304)

    Broader source: Energy.gov [DOE]

    The proposed project, selected under DOEs Clean Coal Technology Program, would demonstrate both Pressurized Circulating Fluidized Bed (PCFB) and Topped PCFB technologies. The proposed project would involve the construction and operation of a nominal 238 MWe (megawatts of electric power) combined-cycle power plant designed to burn a range of low- to high-sulfur coals.

  18. advanced multi-product coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

  19. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    SciTech Connect (OSTI)

    Wiltsee, Jr., G. A.

    1983-01-01T23:59:59.000Z

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  20. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal

    SciTech Connect (OSTI)

    Blasing, T.J.; Miller, R.L.; McCold, L.N.

    1993-11-01T23:59:59.000Z

    The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

  1. Comprehensive report to Congress: Proposals received in response to the Clean Coal Technology V Program Opportunity Notice

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    This report is a comprehensive overview of all proposals received and the projects that were selected in response to the Program Opportunity Notice (PON) for the Clean Coal Technology V (CCT-V) Demonstration Projects (solicitation number DE-PS01-92FE62647). The Department of Energy (DOE) issued the solicitation on July 6, 1992. Through this PON, DOE solicited proposals to conduct cost-shared Clean Coal Technology (CCT) projects that advance significantly the efficiency and environmental performance of coal-using technologies and that are applicable to either new or existing facilities.

  2. Application of Derrick Corporation's stack sizer technology for slimes reduction in 6 inch clean coal hydrocyclone circuits

    SciTech Connect (OSTI)

    Brodzik, P.

    2009-04-15T23:59:59.000Z

    The article discusses the successful introduction of Derrick Corporation's Stack Sizer technology for removing minus 200 mesh slimes from 6-inch coal hydrocyclone underflow prior to froth flotation or dewatering by screen bowl centrifuges. In 2006, the James River Coal Company selected the Stack Sizer fitted with Derrick 150 micron and 100 micron urethane screen panels for removal of the minus 100 mesh high ash clay fraction from the clean coal spiral product circuits. After this application proved successful, Derrick Corporation introduced new 75 micron urethane screen panels for use on the Stack Sizer. Evaluation of feed slurry to flotation cells and screen bowl centrifuges showed significant amounts of minus 75 micron that could potentially be removed by efficient screening technology. Removal of the minus 75 micron fraction was sought to reduce ash and moisture content of the final clean coal product. Full-scale lab tests confirmed that the Stack Sizer fitted with Derrick 75 micron urethane screen panels consistently reduced the minus 75 micron percentage in coal slurry from 6-inch clean coal hydrocyclone underflow that is approximately 15 to 20% solid by-weight and 30 to 60% minus 75 micron to a clean coal fraction that is approximately 13 to 16% minus 75 micron. As a result total ash is reduced from approximately 36 to 38% in the hydrocyclone underflow to 14 to 16% in the oversize product fraction form the Stack Sizers. 1 fig., 2 tabs., 5 photos.

  3. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The design criteria for each unit operation have been developed based upon a number of variables. These variables, at this time, are based upon the best engineering design information available to industry. A number of assumptions utilized in the design criteria are uncertain. The uncertainties of inert atmospheres for grinding and flotation as well as pyrite depressants were answered by the Surface Control Project. It was determined that inerting was not required and no new'' reagents were presented that improved the flotation results. In addition, Tasks 5 and 6 results indicated the required reagent dosage for conventional flotation and advanced flotation. Task 5 results also indicated the need for a clean coal,thickener, the flocculent dosages for both the clean coal and refuse thickeners, and final dewatering requirements. The results from Tasks 5 and 6 and summarized in Task 7 indicate several uncertainties that require continuous long duration testing. The first is the possibility of producing a grab product for both the Pittsburgh and Illinois No. 6 coals in conventional flotation. Second what does long-term recirculation of clarified water do to the product quality The verification process and real data obtained from Tasks 5 and 6 greatly reduced the capital and operating costs for the process. This was anticipated and the test work indeed provided confirming data.

  4. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

  5. Micro-agglomerate flotation for deep cleaning of coal. Quarterly progress report, April 1--June 30, 1993

    SciTech Connect (OSTI)

    Chander, S.; Hogg, R.

    1993-07-01T23:59:59.000Z

    The goals of this research program are to demonstrate the technical and economic feasibility of a micro-agglomerate flotation process and to establish the essential criteria for reagent selection and system design and operation. The development of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 10 {mu}m) needed to achieve adequate liberation of the mineral matter from the coal matrix. It is generally recognized that surface-based separation processes such as froth flotation or selective agglomeration offer considerable potential for such applications but there remain many problems in obtaining the required selectivity with acceptable recovery of combustible matter. In froth flotation, selectivity is substantially reduced at fine sizes due, primarily, to overloading of the froth phase which leads to excessive carryover of water and entrained mineral matter. Oil agglomeration, on the other hand, can provide good selectivity at low levels of oil addition but the agglomerates tend to be too fragile for separation by the screening methods normally used. The addition of larger amounts of oil can yield large, strong agglomerates which are easily separated but the selectivity is reduced and reagent costs can become excessive. We are investigating the use of a hybrid process -- Micro-agglomerate flotation -- which is a combination of oil agglomeration and froth flotation. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates.

  6. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 14, January--March 1996

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-04-30T23:59:59.000Z

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by June 1997. During Quarter 14 (January--March 1996), parametric testing of the 30-inch Microcel{trademark} flotation column at the Lady Dunn Plant continued under Subtask 3.2. Subtask 3. 3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter with parametric testing of the batch dewatering unit. Coal product moistures of 3 to 12 percent were achieved, with higher percent solids slurry feeds resulting in lower product moistures. For a given percent solids feed, the product moisture decreased with increasing butane to dry coal ratios. Stirring time, stirring rate, and settling time were all found to have little effect on the final moisture content. Continuing Subtask 6.4 work, investigating coal-water-fuel slurry formulation for coals cleaned by selective agglomeration, indicated that pH adjustment to 10 resulted in marginally better (lower viscosity) slurries for one of the two coals tested. Subtask 6.5 agglomeration bench-scale testing results indicate that the new Taggart coal requires a grind with a d{sub 80} of approximately 33 microns to achieve the 1 lb ash/MBtu product quality specification. Also under Subtask 6.5, reductions in the various trace element concentrations accomplished during selective agglomeration were determined. Work was essentially completed on the detailed design of the PDU selective agglomeration module under Task 7 with the issuing of a draft report.

  7. Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

  8. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10T23:59:59.000Z

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  9. PROSPECTS FOR CO-FIRING OF CLEAN COAL AND CREOSOTE-TREATED WASTE WOOD AT SMALL-SCALE POWER STATIONS

    E-Print Network [OSTI]

    Janis Zandersons; Aivars Zhurinsh; Edward Someus

    If a small-scale clean coal fu eled power plant is co-fu eled with 5 % of cre o-sote-treated used-up sleeper wood, the de con tam i na tion by carbonisation at 500 C in an in di rectly heated ro tary kiln with the di am e ter 1.7 m and ef fec-tive length 10 m can be real ised. It should be in cluded in the 3R Clean Coal Carbonisation Plant sys tem, which pro cesses coal. It will im prove the heat bal ance of the sys tem, since the carbonisation of wood will de liver a lot of high caloricity pyroligneous vapour to the joint fur nace of the 3R Clean Coal Carbonisation Plant. Pine wood sleeper sap wood con tains 0.25 % of sul phur, but the av er age pine sleeper wood (sap wood and heart wood) 0.05% of sul phur. Most of the sul phur is lost with the pyroligneous vapour and burned in the fur nace. Since the 3R Clean Coal Carbonisation Plant is equipped with a flue gases clean ing sys tem, the SO2 emis sion level will not ex-ceed 5 mg/m 3. The char coal of the sap wood por tion of sleep ers and that of the av er age sleeper wood will con tain 0.22 % and 0.035 % of sul phur, re spec-tively. The in crease of the carbonisation tem per a ture does not sub stan tially de crease the sul phur con tent in char coal, al though it is suf fi ciently low, and the char coal can be co-fired with clean coal. The con sid ered pro cess is suit-able for small power plants, if the bio mass in put in the com mon en ergy bal-ance is 5 to 10%. If the mean dis tance of sleep ers trans por ta tion for Cen tral and East ern Eu-rope is es ti mated not to ex ceed 200 km, the co-com bus tion of clean coal and carbonised sleep ers would be an ac cept able op tion from the en vi ron men tal and eco nomic points of view.

  10. Making Refinery Wastewater Clean | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Refinery Wastewater Clean Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on...

  11. Healy Clean Coal Project. Quarterly technical progress report number 27, July 1--September 30, 1997

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    The Healy Clean Coal Project, selected by the US Department of Energy under Round 3 of the Clean Coal Technology Program is currently in construction. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the US Department of Energy. Construction is 99.8% complete and scheduled for physical completion on November 15, 1997, with startup activity concluding in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides, sulfur dioxide, and particulates from this 50 megawatt plant are expected to be significantly lower than current standards. The primary objective of the project is to demonstrate a new power plant design which features the innovative integration of an advanced combustor and heat recovery system coupled with both high- and low-temperature emission control processes. Equipment includes entrained combustion slagging systems coupled with a boiler which will produce low NOx levels, and function as a limestone calciner and first-stage SO{sub 2} remover in addition to its heat recovery function; a single spray dryer absorber vessel for second-stage SO{sub 2} removal; a baghouse for third-stage SO{sub 2} and particulate removal; and a lime activation system which recovers unused reagent from particulate collected in the baghouse.

  12. Applying environmental externalities to US Clean Coal Technologies for Asia. [Including external environmental costs

    SciTech Connect (OSTI)

    Szpunar, C.B.; Gillette, J.L.

    1993-01-01T23:59:59.000Z

    The United States is well positioned to play an expanding role in meeting the energy technology demands of the Asian Pacific Basin, including Indonesia, Thailand, and the Republic of China (ROC-Taiwan). The US Department of Energy Clean Coal Technology (CCT) Demonstration Program provides a proving ground for innovative coal-related technologies that can be applied domestically and abroad. These innovative US CCTs are expected to satisfy increasingly stringent environmental requirements while substantially improving power generation efficiencies. They should also provide distinct advantages over conventional pulverized coal-fired combustors. Finally, they are expected to be competitive with other energy options currently being considered in the region. This paper presents potential technology scenarios for Indonesia, Thailand, and the ROC-Taiwan and considers an environmental cost-benefit approach employing a newly developed method of applying environmental externalities. Results suggest that the economic benefits from increased emission control can indeed be quantified and used in cost-benefit comparisons, and that US CCTs can be very cost effective in reducing emissions.

  13. Abstract and research accomplishments of University Coal Research Projects

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their respective projects in time for distribution at a conference on June 13--14, 1995 at Tennessee State University in Nashville, Tennessee. This book is a compilation of the material received in response to that request. For convenience, the 70 grants reported in this book are stored into eight technical areas, Coal Science, Coal Surface Science, Reaction Chemistry, Advanced Process Concepts, Engineering Fundamentals and Thermodynamics, Environmental Science, high Temperature Phenomena, and Special topics. Indexes are provided for locating projects by subject, principal investigators, and contracting organizations. Each extended abstract describes project objectives, work accomplished, significance to the Fossil Energy Program, and plans for the next year.

  14. THE 3R ANTHRACITE CLEAN COAL TECHNOLOGY Economical Conversion of Browncoal to Anthracite Type Clean Coal by Low Temperature Carbonization Pre-Treatment Process

    E-Print Network [OSTI]

    Edward Someus

    The pre ven tive pre-treat ment of low grade solid fu els is safer, faster, better, and less costly vs. the end-of-the-pipe post treat ment so lu tions. The 3R (Re cy cle-Re duce-Re use) in te grated en vi ron-ment con trol tech nol ogy pro vides pre ven tive pre-treat ment of low grade solid fu els, such as brown coal and con tam i nated solid fu els to achieve high grade cleansed fu els with an thra cite and coke com-pa ra ble qual ity. The goal of the 3R tech nol ogy is to pro vide cost ef fi cient and en vi ron men tally sus-tain able so lu tions by pre ven tive pre-treat ment means for ex tended op er a tions of the solid fuel com-bus tion power plants with ca pac ity up to 300 MWe power ca pac i ties. The 3R An thra cite Clean Coal end prod uct and tech nol ogy may ad van ta geously be in te grated to the oxyfuel oxy-fir ing, Fos ter Wheeler an thra cite arc-fired util ity type boiler and Heat Pipe Re former tech nol o gies in com bi na tion with CO2 cap ture and stor age pro grams. The 3R tech nol ogy is pat ented orig i nal so lu tion. Ad van tages. Feedstock flex i bil ity: ap pli ca tion of pre-treated multi fu els from wider fuel se lec tion and avail abil ity. Im proved burn ing ef fi ciency. Tech nol ogy flex i bil ity: ef fi cient and ad van ta geous inter-link to proven boiler tech nol o gies, such as oxyfuel and arc-fired boil ers. Near zero pol lut ants for haz ard ous-air-pol lut ants: pre ven tive sep a ra tion of halo gens and heavy met als into small vol ume streams prior uti li za tion of cleansed fu els. ?97 % or ganic sul phur re moval achieved by the 3R ther-

  15. Healy clean coal project. Technical quarterly progress report no. 6, April--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and a heat recovery system with both high and low temperature emission control processes. Resulting emission levels of SO{sub 2}, NO{sub x}, and particulates are expected to be significantly better than the federal New source Performance standards. During this past quarter, engineering and design continued on the boiler, combustion flue gas desulfurization (FGD), and turbine/generator systems. Balance of plant equipment procurement specifications continue to be prepared. Construction activities commenced as the access road construction got under way. Temporary ash pond construction and drilling of the supply well will be completed during the next quarter.

  16. Task 1.13 - Data Collection and Database Development for Clean Coal Technology By-Product Characteristics and Management Practices

    SciTech Connect (OSTI)

    Debra F. Pflughoeft-Hassett

    1998-02-01T23:59:59.000Z

    U.S. Department of Energy Federal Energy Technology Center-Morgantown (DOE FETC) efforts in the areas of fossil fuels and clean coal technology (CCT) have included involvement with both conventional and advanced process coal conversion by-products. In 1993, DOE submitted a Report to Congress on "Barriers to the Increased Utilization of Coal Combustion Desulfurization Byproducts by Governmental and Commercial Sectors" that provided an outline of activities to remove the barriers identified in the report. DOE charged itself with participation in this process, and the work proposed in this document facilitates DOE's response to its own recommendations for action. The work reflects DOE's commitment to the coal combustion by-product (CCB) industry, to the advancement of clean coal technology, and to cooperation with other government agencies. Information from DOE projects and commercial endeavors in fluidized-bed combustion (FBC) and coal gasification is the focus of this task. The primary goal is to provide an easily accessible compilation of characterization information on the by-products from these processes to government agencies and industry to facilitate sound regulatory and management decisions. Additional written documentation will facilitate the preparation of an updated final version of background information collected for DOE in preparation of the Report to Congress on barriers to CCB utilization.

  17. Ohio Coal Research and Development Program (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Coal Development Office invests in the development and implementation of technologies that can use Ohio's vast reserves of coal in an economical, environmentally sound manner. Projects are...

  18. Stimulating Investment in Renewable Resources and Clean Coal Technology through a Carbon Tax:

    E-Print Network [OSTI]

    Nellie Zhao; Servia Rindfleish; Jay Foley; Jelena Pesic

    Energy supply and demand in China and India will be of premier importance to both nations in upcoming years. Both nations have ambitious goals for development, involving the expansion of the electricity supply to rural regions, as well as an increase in GDP, which will be accompanied by an increased demand for energy. The current distribution of electrical energy supply in each nation raises many concerns about sustainability and environmental viability. Electricity generation in both China and India relies heavily on coal, which raises environmental concern. Although there are likely to be severe consequences for continuing with the current energy mixes in China and India, there is also considerable resistance to change related to the generating cost of renewable energy supplies as well as the initial capital investment involved in changing infrastructures. Because mitigating environmental damages and social costs associated with CO2 emissions is not immediately economically beneficial on its own, the possibility of a tax on CO2 is introduced at three rates which serves to both internalize the costs associated with carbon emissions and motivate the restructuring of the energy distributions in India and China with more supply being met by renewables. An optimization routine based on Monte Carlo sampling was written and applied to this problem of determining optimal energy mixes for India and China based on the three tax rates. The substitution of clean coal technology for standard coal, which seems promising for both countries, is also investigated using the same optimization routine. Projections of electrical energy demand in 2030 were used as reference points for the investigation.

  19. Clean Coal Technology Program: Completing the mission. Comprehensive report to Congress

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    With its roots in the acid rain debate of the 1980`s, the Clean Coal Technology Demonstration Program initially emphasized acid rain abatement technologies in its early phases. With the subsequent passage of the Clean Air Act Amendments and growing concern with global climate change, the emphasis of the Program shifted in the later rounds to highly efficient technologies. This report is divided into six chapters. Chapter 1 introduces the report. Chapter 2 provides a background of the CCT Program including the legislative history, the projects currently in the program, and the lessons that have been learned from the five rounds to date. Chapter 3 discusses the commercial potential of the technologies represented in the program and is based on a continuing series of interviews that have been conducted by the Department of Energy to solicit the views of senior management in those companies and organizations that will be making or affecting commercial decisions on the use of these technologies. Chapter 4 provides an accounting of the funds that have been appropriated for the CCT Program. Chapter 5 presents the options available for the Government to further assist in the commercial implementation of these technologies. Chapter 6 presents a discussion of these options with recommendations.

  20. Access to Clean Water | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA couldAboutClean Water Innovations Click to

  1. Clean Power Research | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClay ElectricClean Edge Inc

  2. Integrated production/use of ultra low-ash coal, premium liquids and clean char. [Quarterly] report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Kruse, C.W. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-08-01T23:59:59.000Z

    The first step in the integrated, mufti-product approach for utilizing Illinois coal is the production of ultra low-ash coal. Subsequent steps convert low-ash coal to high-value, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

  3. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    application of new clean coal technologies with near zeroapplication of new clean coal technologies with near zero

  4. JV Task 6 - Coal Ash Resources Research Consortium Research

    SciTech Connect (OSTI)

    Debra Pflughoeft-Hassett; Tera Buckley; Bruce Dockter; Kurt Eylands; David Hassett; Loreal Heebink; Erick Zacher

    2008-04-01T23:59:59.000Z

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of coal combustion by-products (CCBs). CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCB utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program (JSRP), which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCB performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 1998 to 2007 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCBs. CARRC topical reports were prepared on several completed tasks. Specific CARRC 1998B2007 accomplishments included: (1) Development of several ASTM International Standard Guides for CCB utilization applications. (2) Organization and presentation of training courses for CCB professionals and teachers. (3) Development of online resources including the Coal Ash Resource Center, Ash from Biomass in Coal (ABC) of cocombustion ash characteristics, and the Buyer's Guide to Coal-Ash Containing Products. In addition, development of expanded information on the environmental performance of CCBs in utilization settings included the following: (1) Development of information on physical properties and engineering performance for concrete, soil-ash blends, and other products. (2) Training of students through participation in CARRC research projects. (3) Participation in a variety of local, national, and international technical meetings, symposia, and conferences by presenting and publishing CCB-related papers.

  5. aligned-research-programs | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to remove environmental concerns related to coal use. For this purpose, NETL's Clean Coal Research Program (CCRP) is developing a portfolio of innovative technologies,...

  6. Clean coal technology and emissions trading: Is there a future for high-sulfur coal under the Clean Air Act Amendments of 1990?

    SciTech Connect (OSTI)

    Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States); McDermott, K.A. [Argonne National Lab., IL (United States)]|[Illinois State Univ., Normal, IL (United States)

    1991-12-31T23:59:59.000Z

    The near-term and long-term fate of high-sulfur coal is linked to utility compliance plans, the evolution of emission allowance trading, state and federal regulation, and technological innovation. All of these factors will play an implicit role in the demand for high-sulfur coal. This paper will explore the potential impact that emissions trading will have on high-sulfur coal utilization by electric utilities. 28 refs., 6 figs., 4 tabs.

  7. Clean coal technology and emissions trading: Is there a future for high-sulfur coal under the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Bailey, K.A.; South, D.W. (Argonne National Lab., IL (United States)); McDermott, K.A. (Argonne National Lab., IL (United States) Illinois State Univ., Normal, IL (United States))

    1991-01-01T23:59:59.000Z

    The near-term and long-term fate of high-sulfur coal is linked to utility compliance plans, the evolution of emission allowance trading, state and federal regulation, and technological innovation. All of these factors will play an implicit role in the demand for high-sulfur coal. This paper will explore the potential impact that emissions trading will have on high-sulfur coal utilization by electric utilities. 28 refs., 6 figs., 4 tabs.

  8. Heavy Truck Clean Diesel Cooperative Research Program

    SciTech Connect (OSTI)

    Milam, David

    2006-12-31T23:59:59.000Z

    This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

  9. JV Task 120 - Coal Ash Resources Research Consortium Research

    SciTech Connect (OSTI)

    Debra Pflughoeft-Hassett; Loreal Heebink; David Hassett; Bruce Dockter; Kurt Eylands; Tera Buckley; Erick Zacher

    2009-03-28T23:59:59.000Z

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') is the core coal combustion product (CCP) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCPs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCP utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program, which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCP performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 2007 to 2009 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCPs. The tasks were included in four categories: (1) Environmental Evaluations of CCPs; (2) Evaluation of Impacts on CCPs from Emission Controls; (3) Construction and Product-Related Activities; and (4) Technology Transfer and Maintenance Tasks. All tasks are designed to work toward achieving the CARRC overall goal and supporting objectives. The various tasks are coordinated in order to provide broad and useful technical data for CARRC members. Special projects provide an opportunity for non-CARRC members to sponsor specific research or technology transfer consistent with CARRC goals. This report covers CARRC activities from January 2007 through March 2009. These activities have been reported in CARRC Annual Reports and in member meetings over the past 2 years. CARRC continues to work with industry and various government agencies with its research, development, demonstration, and promotional activities nearing completion at the time of submission of this report. CARRC expects to continue its service to the coal ash industry in 2009 and beyond to work toward the common goal of advancing coal ash utilization by solving CCP-related technical issues and promoting the environmentally safe, technically sound, and economically viable management of these complex and changing materials.

  10. Integrated production/use of ultra low-ash coal, premium liquids and clean char. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect (OSTI)

    Kruse, C.W.

    1991-12-31T23:59:59.000Z

    This integrated, multi-product approach for utilizing Illinois coal starts with the production of ultra low-ash coal and then converts it to high-vale, coal-derived, products. The ultra low-ash coal is produced by solubilizing coal in a phenolic solvent under ChemCoal{trademark} process conditions, separating the coal solution from insoluble ash, and then precipitating the clean coal by dilution of the solvent with methanol. Two major products, liquids and low-ash char, are then produced by mild gasification of the low-ash coal. The low ash-char is further upgraded to activated char, and/or an oxidized activated char which has catalytic properties. Characterization of products at each stage is part of this project.

  11. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. The conceptual flowsheet will be revised based on the results of the bench scale testing and areas will be identified that need further larger scale design data verification, to prove out the design.

  12. Utilization of coal associated minerals. Quarterly report No. 11, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Slonaker, J. F.; Akers, D. J.; Alderman, J. K.

    1980-08-29T23:59:59.000Z

    The purpose of this research program is to examine the effects of coal mineral materials on coal waste by-product utilization and to investigate new and improved methods for the utilization of waste by-products from cleaning, combustion and conversion processing of coal. The intermediate objectives include: (1) the examination of the effects of cleaning, gasification and combustion on coal mineral materials; and (2) the changes which occur in the coal wastes as a result of both form and distribution of mineral materials in feed coals in conjunction with the coal treatment effects resulting from coal cleaning or either gasification or combustion.

  13. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect (OSTI)

    James T. Cobb, Jr.

    2003-09-12T23:59:59.000Z

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  14. Report to Congress: Expressions of interest in commercial clean coal technology projects in foreign countries

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This report was prepared in response to the guidance provided by the Congress in the course of the Fiscal Year 1995 appropriations process for the Department of Energy`s (DOE) Office of Fossil Energy (FE). As described in detail below, DOE was directed to make the international dissemination of Clean Coal Technologies (CCTs) an integral part of its policy to reduce greenhouse gas emissions in developing countries. Congress directed DOE to solicit ``Statements of Interest`` in commercial projects employing CCTs in countries projected to have significant growth in greenhouse gas emissions. Additionally, DOE was asked to submit to the Congress a report that analyzes the information contained in the Statements of Interest, and that identifies the extent to which various types of Federal incentives would accelerate the commercial availability of these technologies in an international context. In response to DOE`s solicitation of 18 November 1994, 77 Statements of Interest were received from 33 companies, as well as five additional materials. The contents of these submittals, including the requested Federal incentives, the CCTs proposed, the possible host countries, and the environmental aspects of the Statements of Interest, are described and analyzed in the chapters that follow.

  15. Milliken Clean Coal Technology Demonstration Project. Environmental monitoring report, July--September 1996

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    New York State Electric and Gas Corporation (NYSEG) has installed and is presently operating a high-efficiency flue gas desulfurization (FGD) system to demonstrate innovative emissions control technology and comply with the Clean Air Act Amendments of 1990. The host facility for this demonstration project is NYSEG`s Milliken Station, in the Town of Lansing, New York. The primary objective of this project is to demonstrate a retrofit of energy-efficient SO{sub 2} and NO{sub x} control systems with minimal impact on overall plant efficiency. The demonstration project has added a forced oxidation, formic acid-enhanced wet limestone FGD system, which is expected to reduce SO{sub 2} emissions by at least 90 percent. NYSEG also made combustion modifications to each boiler and plans to demonstrate selective non-catalytic reduction (SNCR) technology on unit 1, which will reduce NO{sub x} emissions. Goals of the proposed demonstration include up to 98 percent SO{sub 2} removal efficiency while burning high-sulfur coal, 30 percent NO{sub x} reductions through combustion modifications, additional NO{sub x} reductions using SNCR technology, production of marketable commercial-grade gypsum and calcium chloride by-products to minimize solid waste disposal, and zero wastewater discharge.

  16. Micro-agglomerate flotation for deep cleaning of coal. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Chander, S.; Hogg, R.

    1995-07-01T23:59:59.000Z

    The development, of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 10 mm) needed to achieve adequate liberation of the mineral matter from the coal matrix. In froth flotation, selectivity is substantially reduced at fine sizes due, primarily, to overloading of the froth phase which leads to excessive carryover of water and entrained mineral matter. Oil agglomeration, on the other hand, can provide good selectivity at low levels of oil addition but the agglomerates tend to be too fragile for separation by the screening methods normally used. This project is concerned with a hydrid process, micro-agglomerate flotation, which is a combination of oil agglomeration and froth flotation.

  17. Portfolio evaluation of advanced coal technology : research, development, and demonstration

    E-Print Network [OSTI]

    Naga-Jones, Ayaka

    2005-01-01T23:59:59.000Z

    This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

  18. Northwestern University Facility for Clean Catalytic Process Research

    SciTech Connect (OSTI)

    Marks, Tobin Jay [Northwestern University

    2013-05-08T23:59:59.000Z

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  19. Research Facilities & Centers | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipal InvestigatorsResearchNational

  20. Research on fundamental aspects of inorganic vapor and particle deposition in coal-fired systems

    SciTech Connect (OSTI)

    Rosner, D.E.

    1992-03-01T23:59:59.000Z

    In September 1990 DOE-PETC initiated at the Yale HTCRE Laboratory a systematic three-year research program directed toward providing engineers with the fundamentally-based design/optimization tools'' foreconomically predicting the dynamics of net deposit growth, and thermophysical properties of the resulting microparticulate deposits in coal-fired systems. The goal of our research in the area of mineral mattertransport is to advance the capability of making reliable engineering predictions of the dynamics of net deposit growth for surfaces exposed to the particle-laden products of coal combustion. To accomplish thisfor a wide variety of combustor types, coal types, and operating conditions, this capability must be based on a quantitative understanding of each of the important mechanisms of mineral matter transport, as well as the nature of the interactions between these substances and the prevailing fireside'' surface of deposits. This level of understanding and predictive capability could be translated into very significant cost reductions for coal-fired equipment design, development and operation. It is also expected that this research activity will not only directly benefit the ash deposition R D community -- but also generically closely related technologies of importance to DOE (e.g. hot-gas clean-up, particulate solids handling,...).

  1. {open_quotes}Methods for the determination of the Clean Air Act Title III metallic HAPS in coal

    SciTech Connect (OSTI)

    Snider, J. [Standard Laboratories, Inc., Evansville, IN (United States)

    1995-08-01T23:59:59.000Z

    The Clean Air Act was amended in 1990 and additional requirements were added to Title III {open_quotes}Air Toxics.{close_quotes} Title III identified one hundred eighty-nine hazardous air pollutants (HAPS) and Congress directed the EPA to study the effects of emissions of these HAPS on public health and the environment. EPA is to report to Congress in the fall of 1995 concerning their findings and make recommendations regarding fossil fuel fired combustion units. The outcome of the EPA recommendations will be of great interest to coal producers and users. Of the one hundred eighty-nine listed HAPS, eleven are trace metals found in coal. The producers and users may be required to analyze coal for these HAPS, to determine if selective mining and/or beneficiation can lower their occurrence, to determine their fate in the combustion process, etc. Indeed many coal companies have begun to study their reserves to aid the EPA investigation. Currently there are no EPA promulgated test methodologies for these elements in coal. Moreover, the American Society for Testing Materials (ASTM) does not provide standards for the analyses of all of the eleven HAPS either. In view of this lack of standardized analytical protocols the commercial laboratory is left with finding the best methods for meeting these analytical needs. This paper describes how Standard Laboratories, Inc. as a whole and particularly its Environmental Laboratory Division has met this need.

  2. Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains

    SciTech Connect (OSTI)

    Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

    1987-04-01T23:59:59.000Z

    Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

  3. FACT SHEET: Clean Coal University Research Awards and Project Descriptions

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt |Exelon GenerationExtraction Utility792 206FISCAL

  4. Obama Administration Announces Clean Coal Research Awards for Universities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No.ofUse |EfficiencyEfficiency

  5. Obama Administration Announces Clean Coal Research Awards for Universities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-BasedDecember 23,MiscChallenge |Across the Country

  6. FACT SHEET: Clean Coal University Research Awards and Project Descriptions

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: Final EnvironmentalCounties,UnitedCommunication,1] Windows212-2012;' F=Q ~ 1 FACT

  7. FACT SHEET: Clean Coal University Research Awards and Project Descriptions

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn Chapter 42.15 -Transformation ofMedia Contact;' F=Q ~FISCAL|

  8. DOE Announces Funding for U.S.-India Joint Clean Energy Research...

    Office of Environmental Management (EM)

    for U.S.-India Joint Clean Energy Research and Development Center DOE Announces Funding for U.S.-India Joint Clean Energy Research and Development Center May 16, 2011 - 12:00am...

  9. U.S.-China Clean Energy Research Center Issues Solicitation to...

    Energy Savers [EERE]

    U.S.-China Clean Energy Research Center Issues Solicitation to Address the Energy-Water Nexus U.S.-China Clean Energy Research Center Issues Solicitation to Address the...

  10. Powder River Basin coalbed methane: The USGS role in investigating this ultimate clean coal by-product

    SciTech Connect (OSTI)

    Stricker, G.D.; Flores, R.M.; Ochs, A.M.; Stanton, R.W.

    2000-07-01T23:59:59.000Z

    For the past few decades, the Fort Union Formation in the Powder River Basin has supplied the Nation with comparatively clean low ash and low sulfur coal. However, within the past few years, coalbed methane from the same Fort Union coal has become an important energy by-product. The recently completed US Geological Survey coal resource assessment of the Fort Union coal beds and zones in the northern Rocky Mountains and Great Plains (Fort Union Coal Assessment Team, 1999) has added useful information to coalbed methane exploration and development in the Powder River Basin in Wyoming and Montana. Coalbed methane exploration and development in the Powder River Basin has rapidly accelerated in the past three years. During this time more than 800 wells have been drilled and recent operator forecasts projected more than 5,000 additional wells to be drilled over the next few years. Development of shallow (less than 1,000 ft. deep) Fort Union coal-bed methane is confined to Campbell and Sheridan Counties, Wyoming, and Big Horn County, Montana. The purpose of this paper is to report on the US Geological Survey's role on a cooperative coalbed methane project with the US Bureau of Land Management (BLM), Wyoming Reservoir Management Group and several gas operators. This paper will also discuss the methodology that the USGS and the BLM will be utilizing for analysis and evaluation of coalbed methane reservoirs in the Powder River Basin. The USGS and BLM need additional information of coalbed methane reservoirs to accomplish their respective resource evaluation and management missions.

  11. Process for clean-burning fuel from low-rank coal

    DOE Patents [OSTI]

    Merriam, Norman W. (Laramie, WY); Sethi, Vijay (Laramie, WY); Brecher, Lee E. (Laramie, WY)

    1994-01-01T23:59:59.000Z

    A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

  12. Fossil Energy R&D at Oak Ridge National Laboratory The Oak Ridge National Laboratory's Fossil Energy Program conducts research and development that

    E-Print Network [OSTI]

    ARM program conducts research into materials critical to the development of clean coal power systems Sustainable Production and Utilization Research ORNL supports R&D in FE's Clean Coal & Natural Gas Power

  13. Characteristics of American coals in relation to their conversion into clean-energy fuels. Final report. [1150 samples of US coals

    SciTech Connect (OSTI)

    Spackman, W.; Davis, A.; Walker, P.L.; Lovell, H.L.; Vastola, F.J.; Given, P.H.; Suhr, N.H.; Jenkins, R.G.

    1982-06-01T23:59:59.000Z

    To further characterize the Nation's coals, the Penn State Coal Sample Bank and Data Base were expanded to include a total of 1150 coal samples. The Sample Bank includes full-seam channel samples as well as samples of lithotypes, seam benches, and sub-seam sections. To the extent feasible and appropriate basic compositional data were generated for each sample and validated and computerized. These data include: proximate analysis, ultimate analysis, sulfur forms analysis, calorific value, maceral analysis, vitrinite reflectance analysis, ash fusion analysis, free-swelling index determination, Gray-King coke type determination, Hardgrove grindability determination, Vicker's microhardness determination, major and minor element analysis, trace element analysis, and mineral species analysis. During the contract period more than 5000 samples were prepared and distributed. A theoretical and experimental study of the pyrolysis of coal has been completed. The reactivity of chars, produced from all ranks of American coals, has been studied with regard to reactivity to air, CO/sub 2/, H/sub 2/ and steam. Another area research has concerned the catalytic effect of minerals and various cations on the gasification processes. Combustion of chars, low volatile fuels, coal-oil-water-air emulsions and other subjects of research are reported here. The products of this research can be found in 23 DOE Technical Research Reports and 49 published papers. As another mechanism of technology transfer, the results have been conveyed via more than 70 papers presented at a variety of scientific meetings. References to all of these are contained in this report.

  14. Utilization ROLE OF COAL COMBUSTION

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    , materials left after combustion of coal in conventional and/ or advanced clean-coal technology combustors and advanced clean-coal technology combustors. This paper describes various coal combustion products produced (FGD) products from pulverized coal and advanced clean-coal technology combustors. Over 70% of the CCPs

  15. Address Allocation ModelsAddress Allocation Models Clean Slate Research "Agenda"

    E-Print Network [OSTI]

    Guerin, Roch

    ----------------------------------------- Clean Slate Research "Agenda" R G iR. Guerin University of Pennsylvania 1 Some Level Setting What does "clean slate research" have to do with allocation of IP addresses? Learn from past mistakes and try As a matter of fact the IPv6 vs. IPv4 story holds many lessons that clean slate proposals can benefit from

  16. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quartery report, August 1994--November 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This first quarterly report describes work during the first three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSO and the Center for Hazardous Materials Research (CHMR)). The report states the goals of the project - both general and specific - and then describes the activities of the project team during the reporting period. All of this work has been organizational and developmental in nature. No data has yet been collected. Technical details and data will appear for the first time in the second quarterly report and be the major topic of subsequent reports.

  17. Process for clean-burning fuel from low-rank coal

    DOE Patents [OSTI]

    Merriam, N.W.; Sethi, V.; Brecher, L.E.

    1994-06-21T23:59:59.000Z

    A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

  18. ADVANCED COAL & ENERGY RESEARCH FACILITY (ACERF) Washington University in St. Louis

    E-Print Network [OSTI]

    Subramanian, Venkat

    ADVANCED COAL & ENERGY RESEARCH FACILITY (ACERF) Washington University in St. Louis Overview The Advanced Coal and Energy Research Facility provides for pilot-scale research and development of new b d Ongoing Research Activities Oxy-coal combustion faculty and students within the U.S. and abroad

  19. Low-rank coal research. Quarterly report, January--March 1990

    SciTech Connect (OSTI)

    Not Available

    1990-08-01T23:59:59.000Z

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  20. Micro-agglomerate flotation for deep cleaning of coal. Quarterly progress report, July 1--September 30, 1993

    SciTech Connect (OSTI)

    Chander, S.; Hogg, R.

    1993-10-01T23:59:59.000Z

    The development of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 1 {mu}m) needed to achieve adequate liberation of the mineral matter from the coal matrix. It is generally recognized that surface-based separation processes such as froth flotation or selective agglomeration offer considerable potential for such applications but there remain many problems in obtaining the required selectivity with acceptable recovery of combustible matter. In froth flotation, selectivity is substantially reduced at fine sizes due, primarily, to overloading of the froth phase which leads to excessive carryover of water and entrained mineral matter. Oil agglomeration, on the other hand, can provide good selectivity at low levels of oil addition but the agglomerates tend to be too fragile for separation by the screening methods normally used. The addition of larger amounts of oil can yield large, strong agglomerates which are easily separated but the selectivity is reduced and reagent costs can become excessive.

  1. Partnerships for Clean Development and Climate: Business and Technology Cooperation Benefits

    E-Print Network [OSTI]

    Sathaye, Jayant A.; Price, Lynn; Kumar, Satish; de la Rue du Can, Stephane; Warfield, Corina; Padmanabhan, S.

    2006-01-01T23:59:59.000Z

    on renewable energy and clean coal development, is a coreentrepreneurs in India. The Clean Coal Business Development

  2. Panel discussion: The Clean Air Act: It`s impact on the coal testing industry The act itself: A summary and overview

    SciTech Connect (OSTI)

    King, R.

    1995-08-01T23:59:59.000Z

    The Clean Air Act was first enacted in 1970. It was re-enacted in both 1977 and 1991. The original act covered air quality standards (NAAQS) for SO{sub 2}, NO{sub x}, CO and O{sub 3}. Pb was added in 1978 by court order and particulate matter (TSP) was added in 1987. A discussion of the impact of the Clean Air Act on the coal industry is presented.

  3. WARPnet: Clean Slate Research on Deployed Wireless Siddharth Gupta, Chris Hunter, Patrick Murphy and Ashutosh Sabharwal

    E-Print Network [OSTI]

    WARPnet: Clean Slate Research on Deployed Wireless Networks Siddharth Gupta, Chris Hunter, Patrick to allow clean-slate prototyping of real-time wireless networks, which can both be tested in the lab clean-slate programmability of any subset of nodes in the network. Second, the platform should have ex

  4. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Demonstrations Major Demonstrations Since 1985, we have helped fund commercial-scale clean coal technology demonstration projects. ICCS | CCPI | PPII | CCTDP | FutureGen...

  5. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    Clean Coal Produced, * T/D (Dry Basis) Installed Plant Cost,Plant Cost, MM$ Net Operating Cost, $/T (Clean Coal Basis)Cost increments fora 25246 ton coal per day SRC plant are

  6. A centurial history of technological change and learning curves or pulverized coal-fired utility boilers

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.

    2007-01-01T23:59:59.000Z

    International Energy Agencys Clean Coal Centre CoalPower5Press; 2002. [25] IEA Clean Coal Centre. CoalPower5 (CD-from fossil fuels. In: IEA clean coal conference, Sardinia,

  7. Development of the Ultra-Clean Dry Cleanup Process for Coal-Based Syngases

    SciTech Connect (OSTI)

    Newby, R.A.; Slimane, R.B.; Lau, F.S.; Jain, S.C.

    2002-09-20T23:59:59.000Z

    The Siemens Westinghouse Power Corporation (SWPC) has proposed a novel scheme for polishing sulfur species, halides, and particulate from syngas to meet stringent cleaning requirements, the ''Ultra-Clean syngas polishing process.'' The overall development objective for this syngas polishing process is to economically achieve the most stringent cleanup requirements for sulfur species, halide species and particulate expected for chemical and fuel synthesis applications (total sulfur species < 60 ppbv, halides < 10 ppbv, and particulate < 0.1 ppmw). A Base Program was conducted to produce ground-work, laboratory test data and process evaluations for a conceptual feasibility assessment of this novel syngas cleaning process. Laboratory testing focused on the identification of suitable sulfur and halide sorbents and operating temperatures for the process. This small-scale laboratory testing was also performed to provide evidence of the capability of the process to reach its stringent syngas cleaning goals. Process evaluations were performed in the Base Program to identify process alternatives, to devise process flow schemes, and to estimate process material & energy balances, process performance, and process costs. While the work has focused on sulfur, halide, and particulate control, considerations of ammonia, and mercury control have also been included.

  8. Research Summary RECOAL: Reintegration of coal ash disposal sites and mitigation

    E-Print Network [OSTI]

    Research Summary RECOAL: Reintegration of coal ash disposal sites and mitigation of pollution being used for coal ash deposits. Pollutants present in the ash can contaminate water resources and soil its research on the thermo-electric plant (TEP) and associated coal ash sites at Tuzla, Bosnia

  9. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect (OSTI)

    Not Available

    1993-02-12T23:59:59.000Z

    Work completed produced the criteria for additional engineering analysis, computation and detailed experimental benchscale testing for areas of uncertainty. The engineering analysis, computation, bench-scale testing and component development was formulated to produce necessary design information to define a commercially operating system. In order to produce the required information by means of bench-scale testing and component development, a uniform coal sample was procured. After agreement with DOE, a selected sample of coal from those previously listed was secured. The test plan was developed in two parts. The first part listed procedures for engineering and computational analyses of those deficiencies previously identified that could be solved without bench scale testing. Likewise, the second part prepared procedures for bench-scale testing and component development for those deficiencies previously identified in Task 3.

  10. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    In order to develop additional confidence in the conceptual design of the advanced froth flotation circuit, a 2-3 TPH Proof-of-Concept (POC) facility was necessary. During operation of this facility, the ICF KE team will demonstrate the ability of the conceptual flowsheets to meet the program goals of maximum pyritic sulfur reduction coupled with maximum energy recovery on three DOE specified coals. The POC circuit was designed to be integrated into the Ohio Coal Development's facility near Beverly, Ohio. OCDO's facility will provide the precleaning unit operations and ICF KE will add the advanced froth flotation circuitry. The work in this task will include the POC conceptual design, flowsheet development, equipment list, fabrication and construction drawings, procurement specifications and bid packages and a facilities.

  11. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II

    SciTech Connect (OSTI)

    Unknown

    2002-02-08T23:59:59.000Z

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.

  12. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  13. Illinois Clean Coal Institute 2005 annual report. Final technical report for the period September 1st, 2004, through August 31, 2005 on projects funded by the Illinois Department of Commerce and Economic Opportunity

    SciTech Connect (OSTI)

    NONE

    2005-11-08T23:59:59.000Z

    This final technical report contains the abstracts and executive summaries of projects funded through the Illinois Clean Coal Institute solicitation entitled 'Request for proposals No. 04-1(ICCI/RFP04-1)'. Support of these projects is by the Office of Coal Development and Department of Commerce and Economic Opportunity. The projects fall into the following categories: advanced coal mining technologies; coal preparation and coal production business practice; management of coal combustion byproducts; commercialization and technology transfer. Final project extensions are also recorded.

  14. assessing coal combustion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  15. advanced coal combustion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  16. apec coal flow: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  17. alkaline coal ash: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  18. advanced slagging coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  19. Arco's research and development efforts in underground coal gasification

    SciTech Connect (OSTI)

    Bell, G.J.; Bailey, D.W.; Brandenburg, C.F.

    1983-01-01T23:59:59.000Z

    Arco has studied underground coal gasification (UCG) since the mid-1970's in an attempt to advance the technology. This paper is a review of past and present UCG research and development efforts, starting with Arco's Rocky Hill No. 1 test. Although this first experiment gave Arco invaluable experience for conducting UCG in the deep, wet, thick coal resources of the Powder River Basin in Wyoming, many formidable questions remain to be addressed with the operation of a larger-scale, multi-well test. Unresolved issues include such items as site selection, well design, well linking, overburden subsidence, ground water protection, surface treatment of product gas, and the interaction of simultaneously operating modules.

  20. VIRGINIA CENTER FOR COAL & ENERGY RESEARCH WINTER 1998-99 / VOL. XVIII, NO. 1 Global Warming

    E-Print Network [OSTI]

    VIRGINIA CENTER FOR COAL & ENERGY RESEARCH WINTER 1998-99 / VOL. XVIII, NO. 1 Global Warming Our the opinion. Can the VCCER with its mandated interests in coal and energy be any different? Well, we do try QUARTERLY COAL PRODUCTION STATISTICS 5 GAS PRODUCTION STATISTICS 6 1840 1860 1880 1900 1920 1940 1960 1980

  1. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  2. RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS

    SciTech Connect (OSTI)

    Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

    2002-03-31T23:59:59.000Z

    This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of the extraction products indicated that they had the requisite properties of viable carbon-product precursors.

  3. Clean Coal Technology: Reduction of NO{sub x} and SO{sub 2} using gas reburning, sorbent injection, and integrated technologies. Topical report No. 3, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program), is a unique government/industry cost-shared effort to develop these advanced coal-based technologies. The CCT Program provides numerous options for addressing a wide range of energy and environmental issues, including acid rain, global climate change, improved energy efficiency, energy security, and environmental qualitiy. It is intended to demonstrate a new generation of full-scale, ``showcase`` facilities built through the United States. Gas Reburning, Sorbent Injection and Integrated Technologies -- the subject of this Topical Report -- are one such set of promising innovative developments. In addition to discussing the technologies involved, this report will describe two specific projects, results to date, and the commercial promise of these processes. The objectives of Gas Reburning and Sorbent Injection were to have a 60% reduction in NO{sub x} emissions and a 50% reduction in SO{sub 2} emissions. These objectives have been achieved at the tangentially-fired boiler at the Hennepin site of Illinois Power and at the cyclone-fired boiler operated by City Water, Light and Power in Springfield, Illinois. The other project, Gas Reburning and Low NO{sub x} Burners had the goal of a 70% NO{sub x} reduction from the wall-fired boiler operated by Public Service of Colorado at Denver. In early preliminary testing, this goal was also achieved. Energy and Environmental Research (EER) is now ready to design and install Gas Rebunting and Sorbent Injection systems, and Gas Reburning-Low NO{sub x}, Burner systems for any utility or industrial application. These technologies are offered with performance and emission control guarantees.

  4. Composition and chemistry of particulates from the Tidd Clean Coal Demonstration Plant pressurized fluidized bed combustor, cyclone, and filter vessel

    SciTech Connect (OSTI)

    Smith, D.H.; Grimm, U.; Haddad, G.

    1995-12-31T23:59:59.000Z

    In a Pressurized Fluidized Bed Combustion (PFBC)/cyclone/filter system ground coal and sorbent are injected as pastes into the PFBC bed; the hot gases and entrained fine particles of ash and calcined or reacted sorbent are passed through a cyclone (which removes the larger entrained particles); and the very-fine particles that remain are then filtered out, so that the cleaned hot gas can be sent through a non-ruggedized hot-gas turbine. The 70 MWe Tidd PFBC Demonstration Plant in Brilliant, Ohio was completed in late 1990. The initial design utilized seven strings of primary and secondary cyclones to remove 98% of the particulate matter. However, the Plant also included a pressurized filter vessel, placed between the primary and secondary cyclones of one of the seven strings. Coal and dolomitic limestone (i.e, SO{sub 2} sorbent) of various nominal sizes ranging from 12 to 18 mesh were injected into the combustor operating at about 10 atm pressure and 925{degree}C. The cyclone removed elutriated particles larger than about 0.025 mm, and particles larger than ca. 0.0005 mm were filtered at about 750{degree}C by ceramic candle filters. Thus, the chemical reaction times and temperatures, masses of material, particle-size distributions, and chemical compositions were substantially different for particulates removed from the bed drain, the cyclone drain, and the filter unit. Accordingly, we have measured the particle-size distributions and concentrations of calcium, magnesium, sulfur, silicon, and aluminum for material taken from the three units, and also determined the chemical formulas and predominant crystalline forms of the calcium and magnesium sulfate compounds formed. The latter information is particularly novel for the filter-cake material, from which we isolated the ``new`` compound Mg{sub 2}Ca(SO{sub 4}){sub 3}.

  5. IGCC repowering project clean coal II project public design report. Annual report, October 1992--September 1993

    SciTech Connect (OSTI)

    NONE

    1993-10-01T23:59:59.000Z

    Combustion Engineering, Inc. (CE) is participating in a $270 million coal gasification combined cycle repowering project that was designed to provide a nominal 60 MW of electricity to City, Water, Light and Power (CWL&P) in Springfield, Illinois. The Integrated Gasification Combined Cycle (IGCC) system consists of CE`s air-blown entrained flow two-stage gasifier; an advanced hot gas cleanup system; a combustion turbine adapted to use low-BTU gas; and all necessary coal handling equipment, The project is currently completing the second budget period of five. The major activities to date are: (1) Establishment of a design, cost, and schedule for the project; (2) Establishment of financial commitments; (3) Acquire design and modeling data; (4) Establishment of an approved for design (AFD) engineering package; (5) Development of a detailed cost estimate; (6) Resolution of project business issues; (7) CWL&P renewal and replacement activities; and (8) Application for environmental air permits. A Project Management Plan was generated, The conceptual design of the plant was completed and a cost and schedule baseline for the project was established in Budget Period One. This information was used to establish AFD Process Flow Diagrams, Piping and Instrument Diagrams, Equipment Data Sheets, material take offs, site modification plans and other information necessary to develop a plus or minus 20% cost estimate. Environmental permitting activities were accomplished, including the Air Permit Application, completion of the National Environmental Policy Act process, and the draft Environmental Monitoring Plan. At the end of 1992 the DOE requested that Duke Engineering and Services Inc., (DESI) be used to complete the balance of plant cost estimate. DESI was retained to do this work, DESI completed the material take off estimate and included operations, maintenance, and startup in the estimate.

  6. VIDEO: Secretary Moniz Dedicates Clean Energy Research Center

    Broader source: Energy.gov [DOE]

    Watch Secretary Moniz's remarks at the opening of the new Energy Systems Integration Facility -- a site aimed at overcoming generation, transmission and distribution issues that will help support clean, renewable energy technologies.

  7. Cooperative research in coal liquefaction. Final report, May 1, 1990-- April 30, 1991

    SciTech Connect (OSTI)

    Huffman, G.P. [ed.

    1992-02-15T23:59:59.000Z

    The Consortium for Fossil Fuel Liquefaction Science (CFFLS) is currently engaged in a three year contract with the US Department of Energy investigating a range of research topics dealing with direct coal liquefaction. This report summarizes the results of this program in its second year, from May 1, 1990 to April 30, 1991. Accomplishments for this period are presented for the following tasks: Iron-based catalysts for coal liquefaction, exploratory research on coal conversion, novel coal liquefaction concepts, and novel catalysts for coal liquefaction.

  8. Education at KIC InnoEnergy KIC InnoEnergy consists of 30+ shareholders and additional 50+ partners companies, research institutes,

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    D studies in the respective thematic area: CLEAN COAL Clean Coal Technologies EMINE European Master

  9. Zevenhoven & Kilpinen CROSS EFFECTS, TOTAL SYSTEM LAY-OUT 13.6.2001 10-1 Figure 10.1 Typical pulverised coal combustion and gas clean-up system: dry scrubber +

    E-Print Network [OSTI]

    Zevenhoven, Ron

    pulverised coal combustion and gas clean-up system: dry scrubber + baghouse filter for SO2 and particulate For a conventional pulverised coal-fired power plant a set-up is shown in Figure 10.1, with a gas clean-up system scrubber (pH ~ 6) 60 - 70 7 Re-heater 350 - 400 8 SCR DeNOx 300 - 400 9 Active coke bed 100 - 150 Figure 10

  10. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The construction of the DOE POC at the OCDO facility continued through this entire quarter. By the end of the quarter approximately 90% of all of the construction had been completed. All equipment has beeninstalled, checked for mechanical and installation and operated from a local pushbutton. During this quarter a review of items to be completed for start-up was compiled. This information was then presented to the construction subcontractors and agreement was concluded that all items will be completed and operational for processing coal by February 1, 1993. There are still several items that were not on site for installation during this quarter. These items are the flocculant controls supplied by Westec Engineering, Inc., and the discharge valve for the hyperbaric filter supplied by KHD. Neither of these items will prevent start-up. The flocculants can be manually controlled and provisions are all ready provided to bypass the hyperbaric filter to the Sharpels high-G centrifuge. Both of these items are scheduled for delivery in mid-January.

  11. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 15, April 1, 1992--June 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-02-12T23:59:59.000Z

    The Department of Energy (DOE) awarded a contract entitled ``Engineering Development of Advanced Physical Fine Coal Cleaning Technology - Froth Flotation``, to ICF Kaiser Engineers with the following team members, Ohio Coal Development Office, Babcock and Wilcox, Consolidation Coal Company, Eimco Process Equipment Company, Illinois State Geological Survey, Virginia Polytechnic Institute and State University, Process Technology, Inc. This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  12. Low-rank coal research semiannual report, January 1992--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This semiannual report is a compilation of seventeen reports on ongoing coal research at the University of North Dakota. The following research areas are covered: control technology and coal preparation; advanced research and technology development; combustion; liquefaction and gasification. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  13. air cleaning conference: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    related to coal-fired power-generating plants could limit its effectiveness. New clean coal technologies will allow coal to meet emission requirements established by the Fossil...

  14. air cleaning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    related to coal-fired power-generating plants could limit its effectiveness. New clean coal technologies will allow coal to meet emission requirements established by the Fossil...

  15. air cleaning issues: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    related to coal-fired power-generating plants could limit its effectiveness. New clean coal technologies will allow coal to meet emission requirements established by the Fossil...

  16. Cooperative Research Program in Coal-Waste Liquefaction

    SciTech Connect (OSTI)

    Gerald Huffman

    2000-03-31T23:59:59.000Z

    The results of a feasibility study for a demonstration plant for the liquefaction of waste plastic and tires and the coprocessing of these waste polymers with coal are presented. The study was conducted by a committee that included nine representatives from the CFFS, six from the U.S. Department of Energy - Federal Energy Technology Center (FETC), and four from Burns and Roe, Inc. The study included: (1) An assessment of current recycling practices, particularly feedstock recycling in Germany; (2) A review of pertinent research, and a survey of feedstock availability for various types of waste polymers; and (3) A conceptual design for a demonstration plant was developed and an economic analysis for various feedstock mixes. The base case for feedstock scenarios was chosen to be 200 tons per day of waste plastic and 100 tons per day of waste tires. For this base case with oil priced at $20 per barrel, the return on investment (ROI) was found to range from 9% to 20%, using tipping fees for waste plastic and tires typical of those existing in the U.S. The most profitable feedstock appeared to waste plastic alone, with a plant processing 300 t/d of plastic yielding ROI's from 13 to 27 %, depending on the tipping fees for waste plastic. Feedstock recycling of tires was highly dependent on the price that could be obtained for recovered carbon. Addition of even relatively small amounts (20 t/d) of coal to waste plastic and/or coal feeds lowered the ROI's substantially. It should also be noted that increasing the size of the plant significantly improved all ROI's. For example, increasing plant size from 300 t/d to1200 t/d approximately doubles the estimated ROI's for a waste plastic feedstock.

  17. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    1975, p. 48. "Clean Energy from Coal Technology," Office ofClean Ways to Burn Coal Estimated Busbar Power Costs for Coal-Electric TechnologiesClean Fuels from Coal," Cochran, N. P. , Office of Science and Technology,

  18. Precipitation of jarosite-type double salts from spent acid solutions from a chemical coal cleaning process

    SciTech Connect (OSTI)

    Norton, G.

    1990-09-21T23:59:59.000Z

    The precipitation of jarosite compounds to remove Na, K, Fe, and SO{sub 4}{sup 2{minus}} impurities from spent acid solutions from a chemical coal cleaning process was studied. Simple heating of model solutions containing Fe{sub 2}(SO{sub 4}){sub 3}, Na{sub 2}SO{sub 4}, and K{sub 2}SO{sub 4} caused jarosite (KFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}) to form preferentially to natrojarosite (NaFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}). Virtually all of the K, about 90% of the Fe, and about 30% of the SO{sub 4}{sup 2{minus}} could be precipitated from those solutions at 95{degree}C, while little or no Na was removed. However, simple heating of model solutions containing only Fe{sub 2}(SO{sub 4}){sub 3} and Na{sub 2}SO{sub 4} up to 95{degree}C for {le}12 hours produced low yields of jarosite compounds, and the Fe concentration in the solution had to be increased to avoid the formation of undesirable Fe compounds. Precipitate yields could be increased dramatically in model solutions of Na{sub 2}SO{sub 4}/Fe{sub 2}(SO{sub 4}){sub 3} containing excess Fe by using either CaCO{sub 3}, Ca(OH){sub 2}, or ZnO to neutralize H{sub 2}SO{sub 4} released during hydrolysis of the Fe{sub 2}(SO{sub 4}){sub 3} and during the precipitation reactions. Results obtained from the studies with model solutions were applied to spent acids produced during laboratory countercurrent washing of coal which had been leached with a molten NaOH/KOH mixture. Results indicated that jarosite compounds can be precipitated effectively from spent acid solutions by heating for 6 hours at 80{degree}C while maintaining a pH of about 1.5 using CaCO{sub 3}.

  19. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

  20. Earth Sciences Division Research Summaries 2006-2007

    E-Print Network [OSTI]

    DePaolo, Donald

    2008-01-01T23:59:59.000Z

    and Clean Coal Fuels, National Energy Technology Laboratory,and Clean Coal Fuels, through the National Energy Technologyand Clean Coal Fuels, through the National Energy Technology

  1. Low-rank coal research, Task 5.1. Topical report, April 1986--December 1992

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    This document is a topical progress report for Low-Rank Coal Research performed April 1986 - December 1992. Control Technology and Coal Preparation Research is described for Flue Gas Cleanup, Waste Management, Regional Energy Policy Program for the Northern Great Plains, and Hot-Gas Cleanup. Advanced Research and Technology Development was conducted on Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Combustion Research is described for Atmospheric Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Fuels (completed 10/31/90), Diesel Utilization of Low-Rank Coals (completed 12/31/90), Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications (completed 10/31/90), Nitrous Oxide Emission, and Pressurized Fluidized-Bed Combustion. Liquefaction Research in Low-Rank Coal Direct Liquefaction is discussed. Gasification Research was conducted in Production of Hydrogen and By-Products from Coals and in Sulfur Forms in Coal.

  2. Coal log pipeline research at University of Missouri. 1. quarterly report for 1996, January 1--March 31, 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This project consists of the following nine tasks: Machine design for coal log fabrication; Very rapid compaction of coal logs; Rapid compaction of coal logs; Fast-track experiments on coal log compaction; Coal log fabrication using hydrophobic binders; Drag reduction in large diameter hydraulic capsule pipeline; Automatic control of coal log pipeline system; Hydraulics of CLP (Coal Log Pipeline); and Coal heating system research. The purpose of the task, the work accomplished during this report period, and work proposed for the next quarter are described for each task.

  3. Abstracts and research accomplishments of university coal research projects at historically black colleges and universities

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    The Principal Investigators of the grants supported by the University Coal Research Program at Historically Black Colleges and Universities were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference on June 25--27, 1991 at the Vista International Hotel, Pittsburgh PA. This book is a compilation of the material received in response to the request. The following topics are discussed: properties of coal, rheology, gasification, pyrolysis, combustion, synthesis of alcohols, cleanup of flue gas, and plasma seeding.

  4. Obama Announces Steps to Boost Biofuels, Clean Coal | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and Oil Research | DepartmentPublic Lands |Announces Steps

  5. Secretary of Energy and Rep. Chabot Highlight Clean Coal and Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory Board Follow UpResearch and Tout

  6. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 12, July 1, 1991--September 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    The design criteria for each unit operation have been developed based upon a number of variables. These variables, at this time, are based upon the best engineering design information available to industry. A number of assumptions utilized in the design criteria are uncertain. The uncertainties of inert atmospheres for grinding and flotation as well as pyrite depressants were answered by the Surface Control Project. It was determined that inerting was not required and no ``new`` reagents were presented that improved the flotation results. In addition, Tasks 5 and 6 results indicated the required reagent dosage for conventional flotation and advanced flotation. Task 5 results also indicated the need for a clean coal,thickener, the flocculent dosages for both the clean coal and refuse thickeners, and final dewatering requirements. The results from Tasks 5 and 6 and summarized in Task 7 indicate several uncertainties that require continuous long duration testing. The first is the possibility of producing a grab product for both the Pittsburgh and Illinois No. 6 coals in conventional flotation. Second what does long-term recirculation of clarified water do to the product quality? The verification process and real data obtained from Tasks 5 and 6 greatly reduced the capital and operating costs for the process. This was anticipated and the test work indeed provided confirming data.

  7. ccpi-multi-product-coal | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen Advanced Multi-Product...

  8. Engineering development of advanced physical fine coal cleaning technolgies: Froth flotation

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The Task 6 effort involves three main elements including column cell development, flotation circuit testing and flotation cell modeling. The work outlined is to research column designs and operation parameters in developing an optimized column flotation cell (OCFC) to meet the overall program objectives. Any design parameters that were not evaluated as part of the optimized column development work will be reviewed and tested so as to incorporate all possible scenarios in presenting DOE with the best available flotation process for use in the 2 to 3 ton per hour POC. Following development of the OCFC, various flotation circuit configurations will be evaluated determine the best'' circuit design for the 2 to 3 ton per hour POC. Single and multiple stage flotation, grab and run, rougher/scavenger/cleaner, etc., test circuits will be tested as part of this effort. Upon completion of this test work, the best'' possible flotation cell will have been tested in a number of possible flotation circuit designs to possibly provide the best'' flotation approach in meeting the design criteria. In conjunction with the flotation test effort, model development work will be conducted to provide a tool in evaluating the various flotation circuit configurations and in predicting flotation performance. The model will be useful in selecting operating conditions in the POC and in evaluating the performance of the POC.

  9. Clean Room Challenge: Nanoscientist Quiz 2 | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing: U.S. Competitiveness2 P r o j e cClean

  10. Assessment of Long-Term Research Needs for Coal-Liquefaction Technologies

    SciTech Connect (OSTI)

    Penner, S.S.

    1980-03-01T23:59:59.000Z

    The Fossil Energy Research Working Group (FERWG), at the request of J.M. Deutch (Under Secretary of DOE), E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has studied and reviewed currently funded coal-liquefaction technologies. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term development of coal-liquefaction technologies. This report summarizes the findings and research recommendations of FERWG.

  11. baepgig-clean | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Feb 2003) Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Program: Combustion Engineering IGCC Repowering Project, Clean Energy...

  12. advanced coal-combustion technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  13. advanced coal-combustion technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  14. Sensors & Measurement | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Electronics Systems Research Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Sensors &...

  15. Integrated production/use of ultra low-ash coal, premium liquids and clean char. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect (OSTI)

    Kruse, C.W.; Carlson, S.L. [Illinois State Geological Survey, Champaign, IL (United States); Snoeyink, V.L.; Feizoulof, C.; Assanis; Syrimis, M. [Illinois Univ., Urbana (United States); Fatemi, S.M. [Amoco, Naperville, IL (United States)

    1992-12-31T23:59:59.000Z

    The objective of this research is to invert the conventional scale of values for products of coal utilization processes by making coal chars (carbons) that, because of their unique properties, are the most valuable materials in the product slate. A unique type of coal-derived carbon studied in this project is oxidized activated coal char having both adsorptive and catalyst properties. Major program elements were (a) preparation and characterization of materials (b) characterization of carbons and catalyst testing (c) completion of diesel engine testing of low-ash coal and (d) initiation of a two-year adsorption study. Materials prepared were (a) two low-ash coal samples one via ChemCoal processing of IBC-109 and the other by acid dissolution of IBC-109`s mineral matter, (b) coal char (MG char), (c) activated low-ash carbon (AC), (d) oxidized activated carbon (OAC). Amoco continued its support with state-of-the art analytical capabilities and development of catalyst testing procedures. Diesel engine tests were made with low ash coal dispersed in diesel fuel at solid loadings of 20% and 35%. The slurry was successfully burned in cylinder 2 of a two-cylinder diesel engine, after modifications of the engine`s fuel injection system. The higher speed proved to be more favorable but the slurry burned with a slightly improved thermal and combustion efficiency at both speeds with respect to diesel fuel alone. Adsorption studies included preparation of seven base-line carbon samples and their characterization, including their N{sub 2} BET surface areas and apparent densities. Paranitrophenol (PNP) adsorption isotherms were determined for the six controls. Oxidation of carbon with nitric acid decreases activated carbon`s PNP adsorption capacity while air oxidation increases adsorption capacity.

  16. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Coal pyrite electrodes

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-01-01T23:59:59.000Z

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville [number sign]2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

  17. Impacts of the extended-weight coal haul road system. Final research report, December 1995

    SciTech Connect (OSTI)

    Pigman, J.; Crabtree, J.; Agent, K.; Graves, C.; Deacon, J.

    1995-12-01T23:59:59.000Z

    The Extended-Weight Coal Haul Road System, created by the Kentucky Legislature in 1986, consists of all roads which carry over 50,000 tons of coal in a calendar year. Trucks hauling coal on this system are authorized to exceed normal weight limits through the payment of an annual decal fee. A research study was initiated in July of 1992 to analyze the impacts of the extended-weight system. Analyses in this report are based on the following: historical data on coal production and transportation: data from coal decal applications; interviews of legislators, transportation officials, coal company representatives, and coal trucking representatives; newspaper articles; vehicle classification data; analyses of pavement costs; pavement rideability data; and accident data. Primary conclusions include; (1) The extended-weight system has apparently been somewhat successful in accomplishing the objective of enhancing the competitiveness and economic viability of the Kentucky coal industry; (2) Overall accident rates did not increase as a result of implementation of the extended-weight system, but the fatal accident injury rates were significantly higher on the extended-weight system and for trucks operating with the coal decal; (3) Advance-warning flashers have been evaluated and recommended as a means of reducing intersection accidents involving heavy/coal trucks; (4) The coal-decal fee structure results in a net annual loss in Road Fund revenue of approximately $2 million; (5) Forty percent of revenue from decal fees are allocated to counties even though county-maintained roads comprise only eight percent of the extended-weight system; (6) Heavier weights of coal-decal trucks add approximately $9 million annually to the pavement overlay costs; (7) Road users throughout the state are subsidizing the movement of Kentucky coal by participating in the cost of maintaining and improving the highway system; and (8) Possibly reflecting the increased funding of extended-weight roads.

  18. Cooperative research in coal liquefaction infratechnology and generic technology development: Final report, October 1, 1985 to December 31, 1986

    SciTech Connect (OSTI)

    Sendlein, L.V.A.

    1987-06-29T23:59:59.000Z

    During the first year of its research program, the Consortium for Fossil Fuel Liquefaction Science has made significant progress in many areas of coal liquefaction and coal structure research. Research topics for which substantial progress has been made include integrated coal structure and liquefaction studies, investigation of differential liquefaction processes, development and application of sophisticated techniques for structural analysis, computer analysis of multivariate data, biodesulfurization of coal, catalysis studies, co-processing of coal and crude oil, coal dissolution and extraction processes, coal depolymerization, determination of the liquefaction characteristics of many US coals for use in a liquefaction database, and completion of a retrospective technology assessment for direct coal liquefaction. These and related topics are discussed in considerably more detail in the remainder of this report. Individual projects are processed separately for the data base.

  19. Is clean coal feasible?

    SciTech Connect (OSTI)

    Tucker, P.

    2007-11-15T23:59:59.000Z

    Carbon capture and storage is being examined as way towards a cleaner energy future. Short communication.

  20. FE Clean Coal News

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexasManager FAQS Reference Guide -September 30,

  1. Status of health and environmental research relative to coal gasification 1976 to the present

    SciTech Connect (OSTI)

    Wilzbach, K.E.; Reilly, C.A. Jr. (comps.)

    1982-10-01T23:59:59.000Z

    Health and environmental research relative to coal gasification conducted by Argonne National Laboratory, the Inhalation Toxicology Research Institute, and Oak Ridge National Laboratory under DOE sponsorship is summarized. The studies have focused on the chemical and toxicological characterization of materials from a range of process streams in five bench-scale, pilot-plant and industrial gasifiers. They also address ecological effects, industrial hygiene, environmental control technology performance, and risk assessment. Following an overview of coal gasification technology and related environmental concerns, integrated summaries of the studies and results in each area are presented and conclusions are drawn. Needed health and environmental research relative to coal gasification is identified.

  2. Integrated production/use of ultra low-ash coal, premium liquids and clean char. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    Kruse, C.W.; Carlson, S.L. [Illinois State Geological Survey, Champaign, IL (United States); Snoeyink, V.L.; Feizoulof, C.; Assanis, D.N.; Syrimis, M. [Illinois Univ., Urbana, IL (United States); Fatemi, S.M. [Amoco Research Center, Naperville, IL (United States)

    1992-10-01T23:59:59.000Z

    The first step in the envisioned integrated, multi-product approach for utilizing Illinois coal is the production of ultra low-ash coal. Subsequent steps would convert low-ash coal to high-value products through mild gasification, char activation, and oxidation reactions. Approximately eight pounds of low-ash coal has been obtained from the crude reactor slurry produced for us at the University of North Dakota Energy and Environmental Research Center (UNDEERC). After treatment to remove the remaining meta-cresol, this material will be subjected to mild gasification. Low-ash mild gasification char will be activated and a catalyst surface will be added by oxidation. A 20% coal: 80% diesel fuel slurry was tested in cylinder two of a two-cylinder, diesel engine after the necessary modifications in the engine`s fuel injection system were made. Four tests indicated that the coal successfully substitutes for diesel fuel in the slurry. The fuel burns in the cylinder, with slightly improved thermal and combustion efficiency. The tests were performed at 1800 rpm and 2200 rpm and 75% load. The change in the surface properties of Calgon F-400 commercial activated carbon caused by several treatments were examined by X-ray Photoelectron Spectroscopy (XPS).

  3. Physico-chemical fracturing and cleaning of coal. [Treatment with CO/sub 2/ in water at high pressure

    DOE Patents [OSTI]

    Sapienza, R.S.; Slegeir, W.A.R.

    1983-09-30T23:59:59.000Z

    This invention relates to a method of producing a crushable coal and reducing the metallic values in coal represented by Si, Al, Ca, Na, K, and Mg, which comprises contacting a coal/water mix in a weight ratio of from about 4:1 to 1:6 in the presence of CO/sub 2/ at pressures of about 100 to 1400 psi and a minimum temperature of about 15/sup 0/C for a period of about one or more hours to produce a treated coal/water mix. In the process the treated coal/water mix has reduced values for Ca and Mg of up to 78% over the starting mix and the advantageous CO/sub 2/ concentration is in the range of about 3 to 30 g/L. Below 5 g/L CO/sub 2/ only small effects are observed and above 30 g/L no further special advantages are achieved. The coal/water ratios in the range 1:2 to 2:1 are particularly desirable and such ratios are compatible with coal water slurry applications.

  4. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Topical report, LNCFS Levels 1 and 3 test results

    SciTech Connect (OSTI)

    Not Available

    1993-08-17T23:59:59.000Z

    This report presents results from the third phase of an Innovative Clean Coal Technology (ICC-1) project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The purpose of this project was to study the NO{sub x} emissions characteristics of ABB Combustion Engineering`s (ABB CE) Low NO{sub x} Concentric Firing System (LNCFS) Levels I, II, and III. These technologies were installed and tested in a stepwise fashion at Gulf Power Company`s Plant Lansing Smith Unit 2. The objective of this report is to provide the results from Phase III. During that phase, Levels I and III of the ABB C-E Services Low NO{sub x} Concentric Firing System were tested. The LNCFS Level III technology includes separated overfire air, close coupled overfire air, clustered coal nozzles, flame attachment coal nozzle tips, and concentric firing. The LNCFS Level I was simulated by closing the separated overfire air nozzles of the LNCFS Level III system. Based upon long-term data, LNCFS Level HI reduced NO{sub x} emissions by 45 percent at full load. LOI levels with LNCFS Level III increased slightly, however, tests showed that LOI levels with LNCFS Level III were highly dependent upon coal fineness. After correcting for leakage air through the separated overfire air system, the simulated LNCFS Level I reduced NO{sub x} emissions by 37 percent. There was no increase in LOI with LNCFS Level I.

  5. Fixed-bed gasification research using US coals. Volume 2. Gasification of Jetson bituminous coal

    SciTech Connect (OSTI)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31T23:59:59.000Z

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report describes the gasification testing of Jetson bituminous coal. This Western Kentucky coal was gasified during an initial 8-day and subsequent 5-day period. Material flows and compositions are reported along with material and energy balances. Operational experience is also described. 4 refs., 24 figs., 17 tabs.

  6. Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal

    SciTech Connect (OSTI)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01T23:59:59.000Z

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

  7. Fixed-bed gasification research using US coals. Volume 7. Gasification of Piney Tipple bituminous coal

    SciTech Connect (OSTI)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01T23:59:59.000Z

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the seventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Piney Tipple bituminous coal. The period of the gasification test was July 18-24, 1983. 6 refs., 20 figs., 17 tabs.

  8. Researchers seek to clean up hazardous legacy of bomb production

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    - braska Water Research Initiative Water Quality Research Team. More than 50 years ago, tho u- sands of workers produced more than 3 million bombs at the plant, which is located 30 miles north of Lincoln alternatives to incineration. Incineration is the most common treatment for munitions-contami- nated soil

  9. Low-rank coal research. Quarterly technical progress report, April-June 1984

    SciTech Connect (OSTI)

    Not Available

    1984-08-01T23:59:59.000Z

    Papers in the quarterly technical progress report for the period April-June, 1984, of the Low-Rank Coal Research project have been entered individually into EDB and ERA (17 items). (LTN)

  10. Energy and environmental research emphasizing low-rank coal. Semi-annual report, January--June 1994

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    Summaries of progress on the following tasks are presented: Mixed waste treatment; Hot water extraction of nonpolar organic pollutant from soils; Aqueous phase thermal oxidation wastewater treatment; Review of results from comprehensive characterization of air toxic emissions from coal-fired power plants; Air toxic fine particulate control; Effectiveness of sorbents for trace elements; Catalyst for utilization of methane in selective catalytic reduction of NOx; Fuel utilization properties; Hot gas cleaning; PFBC; catalytic tar cracking; sulfur forms in coal; resid and bitumen desulfurization; biodesulfurization; diesel fuel desulfurization; stability issues; Sorbent carbon development; Evaluation of carbon products; Stable and supercritical chars; Briquette binders; Carbon molecular sieves; Coal char fuel evaporation canister sorbent; Development of a coal by-product classification protocol for utilization; Use of coal ash in recycled plastics and composite materials; Corrosion of advanced structural materials; Joining of advanced structural materials; Resource data evaluation; and the Usti and Labem (Czech Republic) coal-upgrading program.

  11. Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report

    SciTech Connect (OSTI)

    Hsu, F.E.

    1995-08-01T23:59:59.000Z

    The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

  12. Arco's research and development efforts in underground coal gasification

    SciTech Connect (OSTI)

    Bell, G.J.; Brandenburg, C.F.; Bailey, D.W.

    1983-01-01T23:59:59.000Z

    Arco's Rocky Hill No. 1 field test provided invaluable experience in gasifying the deep, thick coal resources in Wyoming. Reverse combustion successfully linked the wells and allowed conversion of the highly permeable, very wet coal to a high-quality gas. The test also produced data on overburden subsidence and groundwater effects. Unresolved issues include such items as site selection, ground water protection, surface treatment of product gas, and the interaction of simultaneously operating gas production modules.

  13. Research on fundamental aspects of inorganic vapor and particle deposition in coal-fired systems. Quarterly technical report, December 6, 1991--March 5, 1992

    SciTech Connect (OSTI)

    Rosner, D.E.

    1992-03-01T23:59:59.000Z

    In September 1990 DOE-PETC initiated at the Yale HTCRE Laboratory a systematic three-year research program directed toward providing engineers with the fundamentally-based design/optimization ``tools`` foreconomically predicting the dynamics of net deposit growth, and thermophysical properties of the resulting microparticulate deposits in coal-fired systems. The goal of our research in the area of mineral mattertransport is to advance the capability of making reliable engineering predictions of the dynamics of net deposit growth for surfaces exposed to the particle-laden products of coal combustion. To accomplish thisfor a wide variety of combustor types, coal types, and operating conditions, this capability must be based on a quantitative understanding of each of the important mechanisms of mineral matter transport, as well as the nature of the interactions between these substances and the prevailing ``fireside`` surface of deposits. This level of understanding and predictive capability could be translated into very significant cost reductions for coal-fired equipment design, development and operation. It is also expected that this research activity will not only directly benefit the ash deposition R&D community -- but also generically closely related technologies of importance to DOE (e.g. hot-gas clean-up, particulate solids handling,...).

  14. A study of toxic emissions from a coal-fired power plant utilizing the SNOX innovative clean coal technology demonstration. Volume 1, Sampling/results/special topics: Final report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electric utilities. The report is organized in two volumes. Volume 1: Sampling describes the sampling effort conducted as the basis for this study; Results presents the concentration data on HAPs in the several power plant streams, and reports the results of evaluations and calculations conducted with those data; and Special Topics report on issues such as comparison of sampling methods and vapor/solid distributions of HAPs. Volume 2: Appendices include quality assurance/quality control results, uncertainty analysis for emission factors, and data sheets. This study involved measurements of a variety of substances in solid, liquid, and gaseous samples from input, output, and process streams at the Innovative Clean Coal Technology Demonstration (ICCT) of the Wet Sulfuric Acid-Selective Catalytic Reduction (SNOX) process. The SNOX demonstration is being conducted at Ohio Edison`s Niles Boiler No. 2 which uses cyclone burners to burn bituminous coal. A 35 megawatt slipstream of flue gas from the boiler is used to demonstrate SNOX. The substances measured at the SNOX process were the following: 1. Five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; 2. Acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); 3. Ammonia and cyanide; 4. Elemental carbon; 5. Radionuclides; 6. Volatile organic compounds (VOC); 7. Semi-volatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH); and 8. Aldehydes.

  15. Coal Market Module This

    Gasoline and Diesel Fuel Update (EIA)

    on fossil energy technologies. This includes 800 million to fund projects under the Clean Coal Power Initiative (CCPI) program, focusing on projects that capture and sequester...

  16. Coal Market Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    on fossil energy technologies. This includes 800 million to fund projects under the Clean Coal Power Initiative (CCPI) program, focusing on projects that capture and sequester...

  17. Coal surface control for advanced fine coal flotation

    SciTech Connect (OSTI)

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. (California Univ., Berkeley, CA (USA)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (USA)); Hu, Weibai; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (USA)); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (USA))

    1990-08-15T23:59:59.000Z

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

  18. Research on chemical factors in underground coal gasification. Final technical report

    SciTech Connect (OSTI)

    Edgar, T.F.

    1985-09-01T23:59:59.000Z

    The goal of this research has been to acquire experimental data and develop mathematical models in order to analyze results from laboratory-scale and field-scale experiments on underground coal gasification (UCG), especially for low-rank coals such as Texas lignite. Experimental data for water injection in a combustion tube, coal core combustion, and coal block gasification are reported; in parallel, a mathematical model for the combustion tube temperature profile and gas composition was developed which compared favorably with experimental data. A mathematical model for predicting gas composition and coal recovery in the Hoe Creek field experiment has been completed and verified with field data. Two experiments have been constructed to obtain data on reactions of interest to UCG; these include an apparatus for determining the kinetics of tar cracking and a microreactor for analyzing the process dynamics of the water gas shift reaction carried out in a fixed bed catalytic system. 44 refs., 60 figs., 22 tabs.

  19. Jet Ignition Research for Clean Efficient Combustion Engines Prasanna Chinnathambi, Abdullah Karimi, Manikanda Rajagopal, Razi Nalim

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Jet Ignition Research for Clean Efficient Combustion Engines Prasanna Chinnathambi, Abdullah Karimi University Indianapolis Abstract Ignition by a jet of hot gas has application in lean-burn pre-chamber internal combustion engines and in innovative pressure-gain combustors for gas turbine engines. Jet

  20. Fusion Energy Research at The National Ignition Facility: The Pursuit of the Ultimate Clean, Inexhaustible

    E-Print Network [OSTI]

    Fusion Energy Research at The National Ignition Facility: The Pursuit of the Ultimate Clean, Inexhaustible Energy Source" John D. Moody, Lawrence Livermore National Laboratory" " Presented to: MIT ­ PSFC IAP 2014" " January 15, 2014" This work performed under the auspices of the U.S. Department of Energy

  1. Impacts of the extended-weight coal haul road system (interim report). Research report

    SciTech Connect (OSTI)

    Crabtree, J.D.; Pigman, J.G.; Deacon, J.A.; Agent, K.R.

    1993-10-01T23:59:59.000Z

    The Extended-Weight Coal Haul Road System, created by Kentucky`s Legislature in 1986, consists of all roads which carry over 50,000 tons of coal in a calendar year. Trucks hauling coal on this system are authorized to exceed normal weight limits through the payment of an annual decal fee. A research study was initiated in July of 1992 to analyze the impacts of the extended-weight system. This interim report prepared after one year of a three-year study, describes the analyses performed thus far and presents preliminary findings, recommendations, and a discussion of future work. Analyses in this report are based on: historical data on coal production and transportation; data from coal decal applications; interviews of legislators, transportation officials, coal company representatives, and coal trucking representatives: newspaper articles; vehicle classification data; a pavement cost analysis; and accident data. Preliminary conclusions include: (1) The extended-weight system has apparently been somewhat successful in accomplishing the primary objectives: to enhance the competitiveness and economic viability of Kentucky`s coal industry and to eliminate the perceived need for cal haulers to violate the law in order to be competitive; (2) Overall accident rates are no higher on the extended-weight system than on other comparable routes, but the fatal accident rate is significantly higher on the extended-weight system; (3) The coal-decal fee structure results in a net annual loss in Road Fund revenue of approximately $2 million; (4) Forty percent of the revenue from decal sales is allocated to the counties, although less than ten percent of the extended-weight system in county-maintained; (5) The heavier weights of coal-decal trucks add approximately $9 million annually to pavement overlay costs and increase other highway costs. (6) Road users throughout the state are subsidizing the movement of Kentucky coal by underwriting the increased costs.

  2. NETL Coal to Hydrogen Program National Energy Technology Laboratory

    E-Print Network [OSTI]

    /Hydrogen Production CCPI Technology Demonstrations (50/50) Clear Skies Reduced Carbon Intensity Clean Coal

  3. NREL: Transportation Research - NREL's Winning Hand of Clean Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmissionResearch

  4. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction technology for the control of nitrogen oxide emissions from high-sulfur coal-fired boilers. First and second quarterly technical progress reports, [January--June 1995]. Final report

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia (NH{sub 3}) into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor containing a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW nameplate capacity) near Pensacola, Florida. The project is funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  5. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    IISolvent Refining for Clean Coal Combustion,1I Walk, R. ,at 7 percent per year. "Clean Coal: What Does it Cost at theof Equipment (Percent of Clean Coal Produced) Year Type Jigs

  6. Status of health and environmental research relative to direct coal liquefaction: 1976 to the present

    SciTech Connect (OSTI)

    Gray, R.H.; Cowser, K.E. (eds.)

    1982-06-01T23:59:59.000Z

    This document describes the status of health and environmental research efforts, supported by the US Department of Energy (DOE), to assist in the development of environmentally acceptable coal liquefaction processes. Four major direct coal liquefaction processes are currently in (or have been investigated at) the pilot plant stage of development. Two solvent refined coal processes (SRC-I and -II), H-coal (a catalytic liquefaction process) and Exxon donor solvent (EDS). The Pacific Northwest Laboratory was assigned responsibility for evaluating SRC process materials and prepared comprehensive health and environmental effects research program plans for SRC-I and -II. A similar program plan was prepared for H-coal process materials by the Oak Ridge National Laboratory. A program has been developed for EDS process materials by Exxon Research and Engineering Co. The program includes short-term screening of coal-derived materials for potential health and ecological effects. Longer-term assays are used to evaluate materials considered most representative of potential commercial practice and with greatest potential for human exposure or release to the environment. Effects of process modification, control technologies and changing operational conditions on potential health and ecological effects are also being evaluated. These assessments are being conducted to assist in formulating cost-effective environmental research programs and to estimate health and environmental risks associated with a large-scale coal liquefaction industry. Significant results of DOE's health and environmental research efforts relative to coal liquefaction include the following: chemical characterization, health effects, ecological fate and effects, amelioration and risk assessment.

  7. Researchers | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn the Inorganic PVResearch

  8. Researchers | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn the Inorganic PVResearchTechnologies |

  9. Clean Energy Jobs Plan Introduction

    E-Print Network [OSTI]

    times as many jobs per dollar as gas, oil or coal. And dollars invested in clean energy tend to stay. Investment in clean technology is also growing. Clean tech investment in California reached $3.3 billionClean Energy Jobs Plan Introduction When I was governor, California was the world leader

  10. Combustion Engineering Integrated Gasification Combined Cycle (IGCC) Repowering Project -- Clean Coal II Project. Annual report, November 20, 1990--December 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    The IGCC system will consist of CE`s air-blown, entrained-flow, two-stage, pressurized coal gasifier; an advanced hot gas cleanup process; a combustion turbine adapted to use low-Btu coal gas; and all necessary coal handling equipment. The IGCC will include CE`s slogging, entrained-flow, gasifier operating in a pressurized mode and using air as the oxidant. The hot gas will be cleaned of particulate matter (char) which is recycled back to the gasifier. After particulate removal, the product gas will be cleaned of sulfur prior to burning in a gas turbine. The proposed project includes design and demonstration of two advanced hot gas cleanup processes for removal of sulfur from the product gas of the gasifier. The primary sulfur removal method features a newly developed moving-bed zinc ferrite system downstream of the gasifier. The process data from these pilot tests is expected to be sufficient for the design of a full-scale system to be used in the proposed demonstration. A second complementary process is in situ desulfurization achieved by adding limestone or dolomite directly to the coal feed. The benefit, should such an approach prove viable, is that the downstream cleanup system could be reduced in size. In this plant, the gasifier will be producing a low-Btu gas (LBG). The LBG will be used as fuel in a standard GE gas turbine to produce power. This gas turbine will have the capability to fire LBG and natural gas (for start-up). Since firing LBG uses less air than natural gas, the gas turbine air compressor will have extra capacity. This extra compressed air will be used to pressurize the gasifier and supply the air needed in the gasification process. The plant is made of three major blocks of equipment as shown in Figure 2. They are the fuel gas island which includes the gasifier and gas cleanup, gas turbine power block, and the steam turbine block which includes the steam turbine and the HRSG.

  11. DOE's Coal Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelop Low-carbon Emission CoalEnergyCoal

  12. Advanced research and technoloty: University Coal Research Program. [Listed by state, organization and contract No. plus brief description

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    In October 1979, Congress provided a new budget line item of $5 million for a program open to universities with existing laboratories capable of performing coal research. In response, the Department of Energy developed a national and regional program focused on university work in coal conversion and utilization. The program emphasizes coal combustion, conversion of coal to synthetic oil and gases, and characterization of coals from various regions of the country, and encourages the investigation and development of pertinent, promising, or novel ideas for advancing our knowledge of coal science. The program was announced to the academic community in December 1979, inviting more than 2000 departments of chemistry, chemical engineering, and mechanical engineering as well as academic vice-presidents for research, and university faculty to submit coal research proposals. By March 1980, more than 500 proposals had been received for consideration. By June 1980, after technical review of the proposals, 41 grants were awarded to 33 universities in 24 states. Each of these projects is described by means of a single-page summary that includes pertinent technical and fiscal information. The University Coal Research Program complements other DOE Fossil Energy activities with universities consisting of more than 400 active projects with an annual funding level of about $42 million. However, the new program differs in several respects: (1) it is performed through grants, rather than contracts or cooperative agreements, thereby offering investigators greater leeway in approaches to performance of their research objectives, (2) although mission oriented, it supports somewhat longer-term and more fundamental projects, and (3) it includes the training of students as an important objective.

  13. Coal: Energy for the future

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  14. Suppression of fine ash formation in pulverized coal flames. Quarterly technical progress report No. 10, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Kramlich, J.C.; Chenevert, B.; Park, J.

    1995-06-01T23:59:59.000Z

    The production of ash particles from coal combustion limits it`s use as a fuel. On mechanism by which small ash particles are formed is the generation of submicron aerosols through a vaporization/condensation mechanism. Previous work has shown that coal cleaning can lead to increased emissions of aerosols. This research will investigate the means or aerosol formation in coals and the effects that various methods of coal cleaning have on aerosol production, and whether or not cleaning can be performed in a manner that will not lend itself to aerosol formation.

  15. Cooperative research in coal liquefaction. Final report, May 1, 1992--April 30, 1993

    SciTech Connect (OSTI)

    Huffman, G.P. [ed.

    1996-03-01T23:59:59.000Z

    Research on sulfate and metal (Mo, Sn) promoted Fe{sub 2}O{sub 3} catalysts in the current year focused on optimization of conditions. Parameters varied included temperature, solvent, solvent-to-coal ratio, and the effect of presulfiding versus in situ sulfiding. Oil yields were found to increase approximately proportionately with both temperature and solvent-to-coal ratio. The donor solvent, tetralin, proved to give better total conversion and oil yields than either 1-methylnaphthalene or Wilsonville recycle oil. A significant enhancement of both total liquefaction yields and oil yields from lignites and subbituminous coals has been achieved by incorporating iron into the coal matrix by cation exchange. A study has been conducted on the synthesis of iron, molybdenum, and tungsten catalysts using a laser pyrolysis technique.

  16. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-11-25T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

  17. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-02-03T23:59:59.000Z

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  18. Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-03T23:59:59.000Z

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an Advanced Overfire Air (AOFA) system followed by Low NO{sub x} Burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

  19. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Fourth quarterly technical progress report, [October--December, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This quarterly report discusses the technical progress of a U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, tests of the LNCFS Level III system were conducted to determine the effect that fuel fineness has on NOx emissions and unburned carbon levels. Results showed that changing the fineness of the fuel has almost no effect on NOx emissions; however, unburned carbon levels can be reduced significantly by increasing fuel fineness.

  20. A perspective on the status of coal research from shipments of samples

    SciTech Connect (OSTI)

    Vorres, K.S. [Argonne National Lab., IL (United States); Kruse, C.W. [Illinois State Geological Survey, Champaign, IL (United States); Nater, K.A. [deGrote Vos, Zeeweg 37, 1753 BB St. Martenzee, NL (Netherlands); Glick, D.C.; Davis, A. [Pennsylvania State Univ., University Park, PA (United States). Coal and Organic Petrology Labs.

    1993-12-31T23:59:59.000Z

    Research on all aspects of coal research, at least for more small scale work, involves the use of samples at the beginning of experimental work. Most research workers for smaller scale work do not collect their own coal samples, but rather order them from a group of sample suppliers. The number of suppliers meeting the major needs in the US, as well as for the world, is not very large. An examination of the shipments of samples from each of these suppliers will give an interesting insight into the general trends in volume of work in the field. The suppliers involved in this study include the Argonne Premium Coal Sample Program, the Illinois Basin Coal Sample Program, the SBN and the several groups of samples from the Pennsylvania State University Coal Sample Bank. Each of these supplies a different number of samples in varying quantities. The quantities and variety of samples is important to the individual worker in selecting a supplier. The type of work to be done frequently affects the quantities and choice of sample, which in turn affects the choice of supplier. In general these data indicate that researchers realize the advantages of acquiring samples from centralized sample banks. These advantages include a lower cost than would be incurred from individual sampling and preparation; availability of analyzed samples; preservation of samples and the possibility of comparing results with others who have worked on the same samples.

  1. Preparation for upgrading western subbituminous coal

    SciTech Connect (OSTI)

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01T23:59:59.000Z

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  2. adopt clean technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    then his personal information must Walden, Eric 10 Energy Systems Engineering 1 Clean Coal Technologies Renewable Energy Websites Summary: Energy Systems Engineering 1 Clean...

  3. abundant efficient clean: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Websites Summary: for India & US) workshop--December 8, 2012. Clean Coal Technology Projects updates on Consortium for Clean4th International Symposium on...

  4. EIS-0444: Texas Clean Energy Project (TCEP), Ector County, Texas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy, LLC for the proposed Texas Clean Energy Project. The Project would use coal-based integrated gasification combined-cycle technology to generate electricity and...

  5. Fundamental research on novel process alternatives for coal gasification: Final report

    SciTech Connect (OSTI)

    Hill, A H; Knight, R A; Anderson, G L; Feldkirchner, H L; Babu, S P

    1986-10-01T23:59:59.000Z

    The Institute of Gas Technology has conducted a fundamental research program to determine the technical feasibility of and to prepare preliminary process evaluations for two new approaches to coal gasification. These two concepts were assessed under two major project tasks: Task 1. CO/sub 2/-Coal Gasification Process Concept; Task 2. Internal Recirculation Catalysts Coal Gasification Process Concept. The first process concept involves CO/sub 2/-O/sub 2/ gasification of coal followed by CO/sub 2/ removal from the hot product gas by a solid MgO-containing sorbent. The sorbent is regenerated by either a thermal- or a pressure-swing step and the CO/sub 2/ released is recycled back to the gasifier. The product is a medium-Btu gas. The second process concept involves the use of novel ''semivolatile'' materials as internal recirculating catalysts for coal gasification. These materials remain in the gasifier because their vapor pressure-temperature behavior is such that they will be in the vapor state at the hotter, char exit part of the reactor and will condense in the colder, coal-inlet part of the reactor. 21 refs., 43 figs., 43 tabs.

  6. Exploratory research on solvent refined coal liquefaction. Annual technical progress report, January 1-December 31, 1979

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during 1979. In a series of experiments with varying feed gas composition, low levels (5 to 10 mole %) of carbon monoxide had little effect on the SRC II processing of Pittsburgh Seam coal (Powhatan No. 5 Mine) while higher levels (20 to 40 mole %) resulted in a general degradation of operability and reduced oil yields. Addition of finely divided (approx. 1 ..mu..m) pyrite to the reactive Powhatan coal had little effect on oil yields although the molecular weight of the distillation residue was apparently decreased. When finely divided pyrite and magnetite were added to the less reactive coals from the Loveridge and Blacksville No. 1 Mines (also Pittsburgh Seam), however, substantial increases in oil yields and product quality were obtained. In a comparison of upflow and downflow dissolver configurations with Powhatan coal in the SRC II mode, there was no difference in yields or product quality. A study characterizing specific reactors revealed a significantly higher conversion in the SRC I mode with a reactor approximating plug flow conditions compared to a completely backmixed reactor. In the SRC II mode there was only a slightly higher oil yield with the plug flow reactor.

  7. DOE's Advanced Coal Research, Development, and Demonstration Program to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelop Low-carbon Emission Coal Technologies

  8. DOE's Coal Research and Development | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0and Transparency, and MoreEnergyof Energy DOEEnergyDOE's Coal

  9. CE IGCC repowering project: Clean Coal II Project. Annual report, 1 January, 1992--31 December, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    CE is participating in a $270 million coal gasification combined cycle repowering project that will provide a nominal 60 MW of electricity to City, Water, light and Power (CWL and P) in Springfield, Illinois. The IGCC system will consist of CE`s air-blown entrained flow two-stage gasifier; an advanced hot gas cleanup system; a combustion turbine adapted to use low-Btu gas: and all necessary coal handling equipment. The project is currently in the second budget period of five. The major activities during this budgeted period are: Establishment of an approved for design (AFD) engineering package; development of a detailed cost estimate; resolution of project business issues; CWL and P renewal and replacement activities; and application for environmental air permits. The Project Management Plan was updated. The conceptual design of the plant was completed and a cost and schedule baseline for the project was established previously in Budget Period One. This information was used to establish AFD Process Flow Diagrams, Piping and Instrument Diagrams, Equipment Data Sheets, material take offs, site modification plans and other information necessary to develop a plus or minus 20% cost estimate. Environmental permitting activities are continuing. At the end of 1992 the major activities remaining for Budget Period two is to finish the cost estimate and complete the Continuation Request Documents.

  10. How to Manage the Chinese Coal Value Chain by Kevin Jianjun Tu

    E-Print Network [OSTI]

    at the China Huaneng Group Clean Energy Technology Research Institute, Wang Jinnan at the Chinese AcademyI How to Manage the Chinese Coal Value Chain by Kevin Jianjun Tu Carnegie Endowment enormously from speakers and participants at two US-China Coal Value Chain Exchanges, especially Ni Weido, Li

  11. advanced resin cleaning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cashew processing. Mohd Meraj Jafri; Dr. D. K. Singh; Dr. P. K. Kamani 14 4th Annual Clean Coal CiteSeer Summary: Proceedings he emphasis of the Fourth Clean Coal Technology...

  12. The Governance of Clean Development Working Paper 015 July 2011

    E-Print Network [OSTI]

    Watson, Andrew

    has been redefined as a `clean coal' power plant following a World Bank loan of $3 billion in April of climate change mitigation and emerging stakeholders in renewable generation. Key words: clean coal

  13. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 11, April 1, 1991--June 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. The conceptual flowsheet will be revised based on the results of the bench scale testing and areas will be identified that need further larger scale design data verification, to prove out the design.

  14. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1992

    SciTech Connect (OSTI)

    Not Available

    1992-11-25T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

  15. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, first quarter 1992

    SciTech Connect (OSTI)

    Not Available

    1992-05-20T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO{sub x} emissions for each day of long-term testing are presented. The average NO{sub x} emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO{sub x} combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

  16. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-05-20T23:59:59.000Z

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO[sub x] emissions for each day of long-term testing are presented. The average NO[sub x] emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO[sub x] combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

  17. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  18. Coal combustion science

    SciTech Connect (OSTI)

    Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01T23:59:59.000Z

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  19. US-China Clean Energy Research Center Announced | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter AccidentSeptember 2009JulyUS-China Clean Energy Research

  20. Exploratory Research on Novel Coal Liquefaction Concept - Task 2: Evaluation of Process Steps.

    SciTech Connect (OSTI)

    Brandes, S.D.; Winschel, R.A.

    1997-05-01T23:59:59.000Z

    A novel direct coal liquefaction technology is being investigated in a program being conducted by CONSOL Inc. with the University of Kentucky, Center for Applied Energy Research and LDP Associates under DOE Contract DE-AC22-95PC95050. The novel concept consists of a new approach to coal liquefaction chemistry which avoids some of the inherent limitations of current high-temperature thermal liquefaction processes. The chemistry employed is based on hydride ion donation to solubilize coal at temperatures (350-400{degrees}C) significantly lower than those typically used in conventional coal liquefaction. The process concept being explored consists of two reaction stages. In the first stage, the coal is solubilized by hydride ion donation. In the second, the products are catalytically upgraded to acceptable refinery feedstocks. The program explores not only the initial solubilization step, but integration of the subsequent processing steps, including an interstage solids-separation step, to produce distillate products. A unique feature of the process concept is that many of the individual reaction steps can be decoupled, because little recycle around the liquefaction system is expected. This allows for considerable latitude in the process design. Furthermore, this has allowed for each key element in the process to be explored independently in laboratory work conducted under Task 2 of the program.

  1. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    SciTech Connect (OSTI)

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01T23:59:59.000Z

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  2. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31T23:59:59.000Z

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  3. An SAIC Report Prepared for The Indiana Center for Coal Technology

    E-Print Network [OSTI]

    Fernndez-Juricic, Esteban

    ....................................................................................................................... 15 1.6.2 Implement advanced clean coal technologies for production of energy products ........ 15

  4. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08T23:59:59.000Z

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  5. Elementary processes in combustion and sooting of coal-derived fuels. University coal research. Final report

    SciTech Connect (OSTI)

    McVey, J.K.

    1986-01-01T23:59:59.000Z

    In this final report, a review of the major results and accomplishments are presented. This research program examined the role of several key radical-radical, radical-molecule and ionic decomposition reactions important in the formation of soot. In light of the then predicted increased use of fossile-based synfuels, a better understanding of the combustion of aromatic-rich fuels seemed imperative as these materials are particularly prone of form soot. Objectives of this work included developing techniques for the efficient generation of gas-phase radicals and ions, probes of their reaction dynamics, and finding new procedures for stabilization of reaction intermediates in combustion. Five specific issues examined in this study are discussed and summarized in this report: (1) the reactivity of phenyl radicals, (2) chemistry of diradicals generated from laser induced decomposition of cyclic ketones, (3) reactions of butadiene radicals, (4) reactions of gas-phase methylene, and (5) selective generation and induced decomposition of phenyl-based cations. New techniques for examining the kinetics of fast, combustion-related systems were developed using free jet expansion cooling of reaction intermediates and in using ultraviolet multiphoton ionization techniques for initiation of chemical sequences.

  6. Environmental Health & Safety, UC Irvine TITLE: CLEAN AREAS IN RESEARCH LABS (Non-Clinical)

    E-Print Network [OSTI]

    George, Steven C.

    . Relocate all hazardous materials use and storage from the Clean Area and maintain separation distance an adequate separation of the Clean Area from hazardous operations is not possible, splash is focused upon the adequacy of separation of the proposed Clean Area from areas in which hazardous materials

  7. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-05-01T23:59:59.000Z

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  8. Biosciences Division Media Mentions | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosciences Division Publications Newsletters Organizational Charts Research Highlights Media Mentions Clean Energy Home | Science & Discovery | Clean Energy | Supporting...

  9. Combustion characterization of the blend of plant coal and recovered coal fines. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Singh, S. [SS Energy Environmental International, Inc., Rockford, IL (United States); Scaroni, A.; Miller, B. [Pennsylvania State Univ., University Park, PA (United States). Combustion Lab.; Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States)

    1992-08-01T23:59:59.000Z

    The overall objective of this proposed research program is to determine the combustion characteristics of the blend derived from mixing a plant coal and recovered and clean coal fines from the pond. During this study, one plant coal and three blend samples will be prepared and utilized. The blend samples will be of a mixture of 90% plant coal + 10% fines, 85% plant coal + 15% fines, 80% plant coal + 20% fines having particle size distribution of 70% passing through -200 mesh size. These samples` combustion behavior will be examined in two different furnaces at Penn State University, i.e., a down-fired furnace and a drop-tube furnace. The down-fired furnace will be used mainly to measure the emissions and ash deposition study, while the drop tube furnace will be used to determine burning profile, combustion efficiency, etc.

  10. acceptable coal utilization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 CONSORTIUM FOR CLEAN COAL UTILIZATION Materials Science Websites Summary: CONSORTIUM FOR CLEAN COAL...

  11. advanced coal utilization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 CONSORTIUM FOR CLEAN COAL UTILIZATION Materials Science Websites Summary: CONSORTIUM FOR CLEAN COAL...

  12. annual coal preparation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 4th Annual Clean Coal CiteSeer Summary: Proceedings he emphasis of the Fourth Clean Coal Technology...

  13. International perspectives on coal preparation

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  14. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report No. 5, October--December, 1995

    SciTech Connect (OSTI)

    Groppo, J.G.; Parekh, B.K.

    1996-02-01T23:59:59.000Z

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74{mu}m) clean coal. Economical dewatering of an ultrafine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the the University of Kentucky Center for Applied Energy Research will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. Accomplishments for the past quarter are described.

  15. advanced coal preparation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 15 1.6.2 Implement advanced clean coal technologies for production of energy products ... 15 An SAIC Report Prepared...

  16. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, September 30, 1992

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-12-31T23:59:59.000Z

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville {number_sign}2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

  17. USDA and DOE Biomass Research And Development Technical Advisory...

    Energy Savers [EERE]

    Energy Announces Members of the Secretary of Energy Advisory Board DOE Announces 62.4M in "Clean Coal" R&D Awards USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research...

  18. Earth Sciences Division Research Summaries 2006-2007

    E-Print Network [OSTI]

    DePaolo, Donald

    2008-01-01T23:59:59.000Z

    of Sequestration, Hydrogen, and Clean Coal Fuels, NationalSequestration, Hydrogen, and Clean Coal Fuels, through theAC02-05CH11231. Hydrogen and Clean Coal Fuels, through the

  19. advanced coal conversion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the coal plant is transmitted over the transmission lines, Phadke, Amol 2008-01-01 7 Clean Coal Technology Program Advanced Coal Conversion Process Demonstration CiteSeer Summary:...

  20. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    SciTech Connect (OSTI)

    None

    1988-02-01T23:59:59.000Z

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  1. Air toxic emissions from the combustion of coal: Identifying and quantifying hazardous air pollutants from US coals

    SciTech Connect (OSTI)

    Szpunar, C.B.

    1992-09-01T23:59:59.000Z

    This report addresses the key air toxic emissions likely to emanate from continued and expanded use of domestic coal. It identifies and quantifies those trace elements specified in the US 1990 Clean Air Act Amendments, by tabulating selected characterization data on various source coals by region, state, and rank. On the basis of measurements by various researchers, this report also identifies those organic compounds likely to be derived from the coal combustion process (although their formation is highly dependent on specific boiler configurations and operating conditions).

  2. Department of Energy Announces Third Grant for U.S.-China Clean...

    Energy Savers [EERE]

    by the University of Michigan to advance technologies for clean vehicles and one led by West Virginia University to focus on the next generation of clean coal technologies,...

  3. Fixed-bed gasification research using US coals. Volume 17. Gasification and liquids recovery of four US coals

    SciTech Connect (OSTI)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-12-01T23:59:59.000Z

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the seventeenth in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This report describes the gasification and pyrolysis liquids recovery test for four different coals: Illinois No. 6, SUFCO, Indianhead lignite, and Hiawatha. This test series spanned from July 15, 1985, through July 28, 1985. 4 refs., 16 figs., 19 tabs.

  4. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  5. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  6. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-04-23T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  7. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17T23:59:59.000Z

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  8. Meeting today's challenges to supply tomorrow's energy. Clean fossil energy technical and policy seminar

    SciTech Connect (OSTI)

    NONE

    2005-07-01T23:59:59.000Z

    Papers discussed the coal policy of China, Russia, Indonesia and Vietnam; clean coal technology (small-scale coal power plants, carbon capture and sequestration, new coking process SCOPE21, coal gasification (HyPr-RING), CO{sub 2} reduction technology, Supercritical coal-fired units and CFB boilers, EAGLE project, coal liquefaction), the coal consumer's view of clean fossil energy policy, and natural gas policy and technology. Some of the papers only consist of the presentation overheads/viewgraphs.

  9. Clean Coal Diesel Demonstration Project

    E-Print Network [OSTI]

    A Doe Assessment

    2007-01-01T23:59:59.000Z

    This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The view and opinions of authors expressed therein do not necessarily state or reflect those of the United States

  10. Technical support for the Ohio Coal Technology Program. Volume 1, Baseline of knowledge concerning by-product characteristics: Final report

    SciTech Connect (OSTI)

    Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L. [Battelle, Columbus, OH (United States)

    1989-08-28T23:59:59.000Z

    This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LRl and comprises two volumes. Volume I presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume II consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

  11. Development of an Advanced Fine Coal Suspension Dewatering Process

    SciTech Connect (OSTI)

    B. K. Parekh; D. P. Patil

    2008-04-30T23:59:59.000Z

    With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake is subjected to pressure for a short time, the free water present is released from the filter cake. Laboratory studies have shown that depending on the coal type a filter cake containing about 15% moisture could be obtained using the two-stage filtration technique. It was also noted that applying intermittent breaks in vacuum force during cake formation, which disturbed the cake structure, helped in removing moisture from the filter cakes. In this project a novel approach of cleaning coal using column flotation was also developed. With this approach the feed capacity of the column is increased significantly, and the column was also able to recover coarser size coal which usually gets lost in the process. The outcome of the research benefits the coal industry, utility industry, and indirectly the general public. The benefits can be counted in terms of clean energy, cleaner environment, and lower cost power.

  12. Coal liquefaction: A research and development needs assessment: Final report, Volume II

    SciTech Connect (OSTI)

    Schindler, H.D.; Burke, F.P.; Chao, K.C.; Davis, B.H.; Gorbaty, M.L.; Klier, K.; Kruse, C.W.; Larsen, J.W.; Lumpkin, R.E.; McIlwain, M.E.; Wender, I.; Stewart, N.

    1989-03-01T23:59:59.000Z

    Volume II of this report on an assessment of research needs for coal liquefaction contains reviews of the five liquefaction technologies---direct, indirect, pyrolysis, coprocessing, and bioconversion. These reviews are not meant to be encyclopedic; several outstanding reviews of liquefaction have appeared in recent years and the reader is referred to these whenever applicable. Instead, these chapters contain reviews of selected topics that serve to support the panel's recommendations or to illustrate recent accomplishments, work in progress, or areas of major research interest. At the beginning of each of these chapters is a brief introduction and a summary of the most important research recommendations brought out during the panel discussions and supported by the material presented in the review. A review of liquefaction developments outside the US is included. 594 refs., 100 figs., 60 tabs.

  13. RESEARCH & DEVELOPMENT TO PREPARE AND CHARACTERIZE ROBUST COAL/BIOMASS MIXTURES FOR DIRECT CO-FEEDING INTO GASIFICATION SYSTEMS

    SciTech Connect (OSTI)

    Felix, Larry; Farthing, William; Hoekman, S. Kent

    2014-12-31T23:59:59.000Z

    This project was initiated on October 1, 2010 and utilizes equipment and research supported by the Department of Energy, National Energy Technology Laboratory, under Award Number DE- FE0005349. It is also based upon previous work supported by the Department of Energy, National Energy Technology Laboratory, under Award Numbers DOE-DE-FG36-01GOl1082, DE-FG36-02G012011 or DE-EE0000272. The overall goal of the work performed was to demonstrate and assess the economic viability of fast hydrothermal carbonization (HTC) for transforming lignocellulosic biomass into a densified, friable fuel to gasify like coal that can be easily blended with ground coal and coal fines and then be formed into robust, weather-resistant pellets and briquettes. The specific objectives of the project include: Demonstration of the continuous production of a uniform densified and formed feedstock from loblolly pine (a lignocellulosic, short rotation woody crop) in a hydrothermal carbonization (HTC) process development unit (PDU). Demonstration that finely divided bituminous coal and HTC loblolly pine can be blended to form 90/10 and 70/30 weight-percent mixtures of coal and HTC biomass for further processing by pelletization and briquetting equipment to form robust weather resistant pellets and/or briquettes suitable for transportation and long term storage. Characterization of the coal-biomass pellets and briquettes to quantify their physical properties (e.g. flow properties, homogeneity, moisture content, particle size and shape), bulk physical properties (e.g. compressibility, heat transfer and friability) and assess their suitability for use as fuels for commercially-available coal gasifiers. Perform economic analyses using Aspen-based process simulations to determine the costs for deploying and operating HTC processing facilities for the production of robust coal/biomass fuels suitable for fueling commercially-available coal-fired gasifiers. This Final Project Scientific/Technical Report discusses and documents the project work required to meet each of these objectives.

  14. Non-intrusive measurement of particle charge: Electrostatic dry coal cleaning. Technical progress report No. 8, April 1, 1993--June 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    As we reported in the Technical Progress Report No. 7, there are surges of electric current in the charging loop during triboelectrification of all particles. A high speed data acquisition and analysis system was developed to monitor and record the current pattern. There is no known report on such charge-discharge surges in the literature. The mechanism for it is yet to be understood. The on-line computerized electric current measurement also leads to an observation of charging effects as a function of particle feeding rate. It is shown that feed rate greatly alters particle charge. Such an effect is mostly overlooked by researchers and it could have a important role in process design where the feed rate would be maximized. The initial results for coal and mineral particles demonstrated that the average charge was lower when the feed rate was increased. Further investigation is scheduled to identify potential controlling factors, eg, the solid volume fraction and particle number density could be important process factors. The study of charging velocity and particle size was continued. It was found that particle charge was linearly dependent on the charging velocity for all samples investigated. However, the slope of this linear dependence varied for particles having different diameters. In addition, the charge-velocity relationships were dependent on feeding rates. Hence, the data discussed below include these interrelationships.

  15. Low-rank coal research annual report, July 1, 1989--June 30, 1990 including quarterly report, April--June 1990

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    Research programs in the following areas are presented: control technology and coal preparation; advance research and technology development; combustion; liquefaction; and gasification. Sixteen projects are included. Selected items have been processed separately for inclusion in the Energy Science and Technology Database.

  16. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    Council (NCC), 2006, Coal: Americas Energy Future, VolumeAssessments to Inform Energy Policy, Coal: Research andOF RAIL TRANSPORTATION OF COAL The Federal Energy Regulatory

  17. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  18. Consortium for coal log pipeline research and development. Final technical progress report, August 10, 1993--August 9, 1996

    SciTech Connect (OSTI)

    Marrero, T.R.

    1996-10-01T23:59:59.000Z

    The main objective of this project was to conduct intensive research and development of the Coal Log Pipeline (CLP). Specifically, the R & D was to concentrate on previously neglected and insufficiently studied aspects of CLP which were deemed significant. With improvements in these areas, CLP could be implemented for commercial use within five years. CLP technology is capable of transporting coal logs for long distances. The many potential advantages of CLP over truck and railroad transportation include: lower freight costs, less energy consumption, less air pollution, decreased environmental problems, increased safety, and improved reliability. Previous studies have shown that CLP is advantageous over slurry pipeline technology. First, CLP uses one-third the water required by a coal slurry pipeline. Second, CLP provides easier coal dewatering. Third, the CLP conveying capacity of coal is twice as much as a slurry transport line of equal diameter. In many situations, the cost for transporting each ton of coal is expected to be less expensive by CLP as compared to other competing modes of transportation such as: truck, unit train and slurry pipeline.

  19. Enhancement of surface properties for coal beneficiation

    SciTech Connect (OSTI)

    Chander, S.; Aplan, F.F.

    1992-01-30T23:59:59.000Z

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  20. Fixed-bed gasification research using US coals. Volume 1. Program and facility description

    SciTech Connect (OSTI)

    Thimsen, D.; Maurer, R.E.; Poole, A.R.; Pui, D.; Liu, B.; Kittleson, D.

    1984-10-01T23:59:59.000Z

    The United States Department of Interior, Bureau of Mines, Twin Cities Research Center, Minneapolis, Minnesota is the site of a 6.5 foot diameter Wellman-Galusha gasifier, installed in 1977-1978. This gasifier, combustor/incinerator, and flue gas scrubber system in the past had been operated jointly by Bureau of Mines personnel, personnel from member companies of the Mining and Industrial Fuel Gas Group, and United States Department of Energy personnel-consultants. Numerous tests using a variety of coals have to date been performed. In May of 1982, Black, Sivalls and Bryson, Incorporated (BS and B) was awarded the contract to plan, execute, and report gasification test performance data from this small industrial fixed-bed gasification test facility. BS and B is responsible for program administration, test planning, test execution, and all documentation of program activities and test reports. The University of Minnesota, Particle Technology Laboratory (UMPTL) is subcontractor to BS and B to monitor process parameters, and provide analysis for material inputs and outputs. This report is the initial volume in a series of reports describing the fixed-bed gasification of US coals at the Bureau of Mines, Twin Cities Research Center. A history of the program is given in Section 1 and a thorough description of the facility in Section 2. The operation of the facility is described in Section 3. Monitoring systems and procedures are described in Sections 4 and 5. Data reduction tools are outlined in Section 6. There is no executive summary or conclusions as this volume serves only to describe the research program. Subsequent volumes will detail each gasification test and other pertinent results of the gasification program. 32 references, 23 figures, 15 tables.

  1. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Third quarterly technical progress report 1992

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3} and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

  2. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO[sub x]) emissions from high-sulfur coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO[sub x]) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO[sub x] to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO[sub 2] and SO[sub 3] and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

  3. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  4. Non-Reacting Flow Characteristics and Emissions Reduction on Blends of Coal and Dairy Biomass in 30 kW_(t) Low NO_(x) Down-Fired Furnace

    E-Print Network [OSTI]

    Tiyawongsakul, Tiyawut

    2014-08-07T23:59:59.000Z

    recently the required CO_(2) reduction of 30% by 2030. Clean coal technology must be continuously developed in order to prevent people from losing their jobs and to decrease the negative impacts of firing coal on environment. The present research focuses...

  5. Scientific American: The Road to Clean Energy Starts Here http://www.sciam.com/print_version.cfm?articleID=E7361267-E7F2-9... 1 of 2 4/24/2007 11:44 AM

    E-Print Network [OSTI]

    clean coal will be essential. New combustion techniques, combined with carbon capture and sequestration

  6. Characterization of the surface properties of Illinois Basin Coals

    SciTech Connect (OSTI)

    Demir, I.

    1991-01-01T23:59:59.000Z

    The overall objective of this research project is to provide fundamental data on the physical and chemical surface properties of Illinois coals, specifically those of the Illinois Basin Coal Sample Program (IBCSP). This will help coal researchers achieve an optimal match between Illinois Basin coals and potential coal cleaning and conversion processes (or at least reduce the number of coals suitable for a particular process) and may lead to improved desulfurization and increased utilization of Illinois Basin coals. The specific tasks scheduled to meet our objective are: (1) Physical Characterization: Determine total surface area, porosity, pore size and volume distributions of IBCSP coals crushed to two particle sizes, {minus}100 and {minus}400 mesh (exclusive of IBC-108 which is available only in {minus}400 mesh form), in both an unoxidized and oxidized state. (2) Chemical Characterization: Determine the surface charge (electrokinetic mobility) as a function of pH by electrophoresis and analyze the surface chemical structure of the above samples using Diffuse Reflectance Infrared Spectroscopy (DRIS). (3) Multivariate Statistical Analyses: Explore possible relationships among the newly determined surface properties and other available characterization data, including chemical and petrographic compositions, vitrinite reflectance, free swelling index, ash yield, sulfur forms, and other relevant properties.

  7. Non-intrusive measurement of particle charge: Electrostatic dry coal cleaning. Technical progress report No. 11, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    As has been previously reported, the charge measurement portion of this project has been broadened to include direct measurement techniques which yield an average particle charge per unit mass. These methods, which now include current measurements from the charging loop, an electrolytic collection solution and a Faraday cage have been employed to expand the charge measurement capabilities over those that were originally developed using the PDPA. The effects of gas velocity, humidity and temperature as well as particle size on charge was evaluated for different coals and silica. The charge accumulated on silica particles was linearly dependent on their velocity in the tribocharger for the velocities and mass loadings which were investigated. For coals, a linear increase in charge occurred over a more limited velocity range. Transport gas humidity had a much stronger effect on the charge established on silica particles than on coal particles.

  8. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report

    SciTech Connect (OSTI)

    NONE

    1992-12-31T23:59:59.000Z

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  9. Research on fundamental aspects of inorganic vapor and particle deposition in coal-fired systems

    SciTech Connect (OSTI)

    Rosner, D.E.

    1992-06-01T23:59:59.000Z

    Parallel research studies are underway on the following interrelated and fundamental subjects; Geometrical Approach to Determining the Sticking Probability of Particles Impacting on Convex Solid Surfaces; Correlations for High Schmidt Number Particle Deposition From Dilute Flowing Rational Engineering Suspensions; Average Capture Probability of Arriving Particles Which Are Distributed With ResPect to ImPact VelocitY and Incidence Angle (Relative to Deposit Substrate); Experimental and Theoretical Studies of Vapor Infiltration of Non-isothermal Granular Deposits; Effective Area/Volume of Populations of 'MicroPorous' Aerosol Particles (Compact and 'Fractal' Quasispherical Aggregates); Effects of Radiative Heat Transfer on the Coagulation Rates of Combustion-Generated Particles; Structure-Sensitivity of Total Mass Deposition Rates from Combustion Product Streams containing Coagulation-Aged Populations of Aggregated Primary Particles; and Na[sub 2]SO[sub 4] Chemical Vapor Deposition From Chlorine-containing Coal-Derived Gases.

  10. Integrated production/use of ultra low-ash coal, premium liquids and clean char. Interim final technical report, 1 September, 1992--31 August, 1993

    SciTech Connect (OSTI)

    Kruse, C.W.; Carlson, S.L. [Illinois State Geological Survey, Champaign, IL (United States); Fatemi, M. [Amoco Research Center, Naperville, IL (United States); Snoeyink, V.L.; Feizoulof, C.A. [Univ. of Illinois, Urbana, IL (United States); Klavetter, E. [Sandia National Labs., Albuquerque, NM (United States)

    1993-12-31T23:59:59.000Z

    The ultimate objective of this project is to attain high-value, coal-derived products, especially varieties of char, from Illinois coal. The chars (carbons) made in this study, because of their special properties, could become the marketable materials having the highest value in the product set. Tests this quarter followed up on an unexpected correlation of surface properties of a variety of oxidized carbons with adsorption phenomena. Additional oxidized carbons were made at the ISGS and tests to establish the reproducibility of results were begun. Work will be continued through December on a no-cost extension.

  11. DETERMINATION OF PHOTOVOLTAIC EFFECTIVE CAPACITY FOR Richard Perez for Clean Power Research

    E-Print Network [OSTI]

    Perez, Richard R.

    DETERMINATION OF PHOTOVOLTAIC EFFECTIVE CAPACITY FOR NEW JERSEY Richard Perez for Clean Power) requirements. #12;DETERMINATION OF PHOTOVOLTAIC EFFECTIVE CAPACITY FOR NEW JERSEY The ELCC metric dispatchable power plant. 2 #12;DETERMINATION OF PHOTOVOLTAIC EFFECTIVE CAPACITY FOR NEW JERSEY 0 1 2 3 4 5 6 7

  12. advancing clean energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build a miniature sun on earth? NIF-0205-10343 P8481 14 Energy Systems Engineering 1 Clean Coal Technologies Renewable Energy Websites Summary: Energy Systems Engineering 1 Clean...

  13. FACT SHEET: U.S.-China Clean Energy Cooperation Announcements

    Broader source: Energy.gov (indexed) [DOE]

    years in each of the three areas of the Center's work: buildings energy efficiency, clean coal and clean vehicles. An official CERC logo was unveiled and the website was launched...

  14. MS_Coal_Studyguide.indd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    atmosphere. Many of these technologies belong to a family of energy systems called "clean coal technologies." Since the mid-1980s, the U.S. Government has invested more than 3...

  15. Research on thermophoretic and inertial aspects of ash particle deposition on heat exchanger surfaces in coal-fired equipment

    SciTech Connect (OSTI)

    Rosner, D.E.

    1990-05-01T23:59:59.000Z

    The overall goal of this research in the area of ash transport was to advance the capability of making reliable engineering predictions of the dynamics and consequences of net deposit growth for surfaces exposed to the products of coal combustion. To accomplish this for a wide variety of combustor types, coal types, and operating conditions, this capability must be based on a quantitative understanding of each of the important mechanisms of mineral matter transport, as well as the nature of the interactions between these substances and the prevailing fireside'' surface of the deposit. This level of understanding and predictive capability could ultimately be translated into very significant cost reductions for coal-fired equipment design, development and operation.

  16. 4th International Symposium on Energy & Environment: ACCESS Abundant Clean Cost-effective Energy Systems for Sustainability

    E-Print Network [OSTI]

    Subramanian, Venkat

    for India & US) workshop--December 8, 2012. Clean Coal Technology Projects updates on Consortium for Clean Coal Utilization activities. Discussion on future activities and multi-country efforts in R

  17. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-09-01T23:59:59.000Z

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  18. TOXIC SUBSTANCES FROM COAL COMBUSTION

    SciTech Connect (OSTI)

    Kolker, A.; Sarofim, A.F.; Palmer, C.A.; Huggins, F.E.; Huffman, G.P.; Lighty, J.; Veranth, J.; Helble, J.J.; Wendt, J.O.L.; Ames, M.R.; Finkelman, R.; Mamani-Paco, M.; Sterling, R.; Mroczkowsky, S.J.; Panagiotou, T.; Seames, W.

    1999-05-10T23:59:59.000Z

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environ-mental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 January 1999 to 31 March 1999. During this period, a full Program Review Meeting was held at the University of Arizona. At this meeting, the progress of each group was reviewed, plans for the following 9 month period were discussed, and action items (principally associated with the transfer of samples and reports among the various investigators) were identified.

  19. Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization

    SciTech Connect (OSTI)

    Henghu Sun; Yuan Yao

    2012-06-29T23:59:59.000Z

    Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

  20. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 14, January 1, 1992--March 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    In order to develop additional confidence in the conceptual design of the advanced froth flotation circuit, a 2-3 TPH Proof-of-Concept (POC) facility was necessary. During operation of this facility, the ICF KE team will demonstrate the ability of the conceptual flowsheets to meet the program goals of maximum pyritic sulfur reduction coupled with maximum energy recovery on three DOE specified coals. The POC circuit was designed to be integrated into the Ohio Coal Development`s facility near Beverly, Ohio. OCDO`s facility will provide the precleaning unit operations and ICF KE will add the advanced froth flotation circuitry. The work in this task will include the POC conceptual design, flowsheet development, equipment list, fabrication and construction drawings, procurement specifications and bid packages and a facilities.

  1. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 13, October 1, 1991--December 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1993-02-12T23:59:59.000Z

    Work completed produced the criteria for additional engineering analysis, computation and detailed experimental benchscale testing for areas of uncertainty. The engineering analysis, computation, bench-scale testing and component development was formulated to produce necessary design information to define a commercially operating system. In order to produce the required information by means of bench-scale testing and component development, a uniform coal sample was procured. After agreement with DOE, a selected sample of coal from those previously listed was secured. The test plan was developed in two parts. The first part listed procedures for engineering and computational analyses of those deficiencies previously identified that could be solved without bench scale testing. Likewise, the second part prepared procedures for bench-scale testing and component development for those deficiencies previously identified in Task 3.

  2. LOW-COST, HIGH-PERFORMANCE MATERIALS USING ILLINOIS COAL COMBUSTION BY-PRODUCTS

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    conventional and clean coal technologies. This project was primarily directed toward developing concrete, mineralogical, and microstructural properties. A clean coal ash is defined as the ash derived from SO2 control technologies. Based on these properties, two sources of both conventional and clean coal ashes were selected

  3. TOXIC SUBSTANCES FROM COAL COMBUSTION

    SciTech Connect (OSTI)

    A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

    1998-12-08T23:59:59.000Z

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mssbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was carried out during August at the Advanced Photon Source (APS), the new synchrotron facility at Argonne National Laboratory, Chicago, IL. Further analysis of small-scale combustion experiments conducted at PSI in Phase I was completed this quarter. The results of these experiments for the first time suggest almost complete vaporization of certain trace elements (Se, Zn) from coal combustion in the flame zone, in accordance with theoretical equilibrium predictions. Other elements (As, Sb, Cr) appeared considerably less volatile and may react with constituents in the bulk ash at combustion temperatures. The combustion section of the University of Arizona's Downflow Combustor was completely rebuilt. The University of Utah worked on setting up EPA Method 26A to give the capability to measure chlorine in flue gas. The chlorine kinetic calculations performed as part of the Phase I program were found to have an error in the initial conditions. Therefore, the calculations were re-done this quarter with the correct starting conditions. Development of a quasi-empirical emissions model based on reported emissions of particulate matter from field measurements was continued this quarter. As a first step in developing the ToPEM, we developed a sub-model that calculates the evaporation of major elements (Na, K, Fe, Si, Al, Ca and Mg) from both inherent and extraneous minerals of coal. During this quarter, this sub-model was included into EMAF, which formed the ToPEM. Experimental data from the Phase I program were used to test and modify the sub-model and the ToPEM.

  4. Carbonation as a binding mechanism for coal/calcium hydroxide pellets

    SciTech Connect (OSTI)

    Rapp, D.M.

    1991-01-01T23:59:59.000Z

    Current coal mining and processing procedures produce a significant quanity of fine coal that is difficult to handle and transport. The objective of this work is to determine if these fines can be economically pelletized with calcium hydroxide, a sulfur capturing sorbent, to produce a clean-burning fuel for fluidized-bed combustors or stoker boilers. To harden these pellets, carbonation, which is the reaction of calcium hydroxide with carbon dioxide to produce a cementitious matrix of calcium carbonate, is being investigated. Previous research indicated that carbonation significantly improved compressive strength, impact and attrition resistance and weatherproofed'' pellets formed with sufficient calcium hydroxide (5 to 10% for minus 28 mesh coal fines).

  5. University coal research/historically black colleges and universities and other minority institutions contractors review meeting

    SciTech Connect (OSTI)

    NONE

    2006-07-01T23:59:59.000Z

    A variety of papers/posters were presented on topics concerning power generation, including solid oxide fuel cells, hydrogen production, mercury as a combustion product, carbon dioxide separation from flue gas. A total of 31 presentations in slide/overview/viewgraph form and with a separate abstract are available online (one in abstract form only) and 24 poster papers (text). In addition 41 abstracts only are available. Papers of particular interest include: Hydrogen production from hydrogen sulfide in IGCC power plants; Oxidation of mercury in products of coal combustion; Computer aided design of advanced turbine aerofoil alloys for industrial gas turbines in coal fired environments; Developing engineered fuel using flyash and biomass; Conversion of hydrogen sulfide in coal gases to elemental sulfur with monolithic catalysts; Intelligent control via wireless sensor networks for advanced coal combustion systems; and Investment of fly ash and activated carbon obtained from pulverized coal boilers (poster).

  6. Exploratory research on novel coal liquefaction concept. Progress report, April 1, 1996--June 30, 1996

    SciTech Connect (OSTI)

    Burke, F.P.; Brandes, S.D.; Winschel, R.A.

    1996-08-12T23:59:59.000Z

    Activities this quarter were conducted under Tasks 2, 3, and 5. Task 2 work concentrated on evaluating the effects of low-severity, first-stage reaction conditions on coal conversions of lignite, subbituminous, and bituminous coals. The impact of artificially weathering bituminous coal was investigated. Large quantities of first-stage product were made using the one-liter reactor for subsequent filtration and catalytic upgrading tests. Test conditions and coal conversions for all microautoclave and one-liter tests made this quarter are presented. Filtration tests examined lignite, subbituminous, and bituminous coal products. The effects on resid conversion of second-stage reaction conditions and catalyst recycle were studied. Task 3 work included the successful transfer of first-stage reactor products to a receiver and the design of an interstage filter. Task 5 work included an ongoing review of the technical and patent literature and expansion of the annotated bibliography. Mass and elemental balances were obtained for selected tests.

  7. U.S.-China Clean Energy Research Center (CERC) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries | Department ofDepartmentChina Clean Energy

  8. U.S.-China Clean Energy Research Center Webcast | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation&DepartmentFurtherU.S.-China Clean Energy

  9. Selective flotation of inorganic sulfides from coal

    DOE Patents [OSTI]

    Miller, Kenneth J. (Floreffe, PA); Wen, Wu-Wey (Murrysville, PA)

    1989-01-01T23:59:59.000Z

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow.

  10. Selective flotation of inorganic sulfides from coal

    DOE Patents [OSTI]

    Miller, K.J.; Wen, Wu-Wey

    1988-05-31T23:59:59.000Z

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow. 1 fig., 2 tabs.

  11. COAL LIQUEFACTION STUDIES USING PHOSPHORIC ACID AT MODERATE TEMPERATURES AND PRESSURES

    E-Print Network [OSTI]

    McLean, J.B.

    2010-01-01T23:59:59.000Z

    1976. Cox, John 1. , urCatalysts for Coal Conversion", fromUiClean Fuels from Coal", IGT Symposium, Sept. 10-14, 1974.Derived from Solvent Refined Coal Conversion Products", SRI

  12. Coal in China

    SciTech Connect (OSTI)

    Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

    2005-07-01T23:59:59.000Z

    The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

  13. Recent advances in coal geochemistry

    SciTech Connect (OSTI)

    Chyi, L.L. (Dept. of Geology, Univ. of Akron, Akron, OH (US)); Chou, C.-L. (Illinois State Geological Survey, 615 E. Peabody Drive, Champaign, IL (US))

    1990-01-01T23:59:59.000Z

    Chapters in this collection reflect the recent emphasis both on basic research in coal geochemistry and on applied aspects related to coal utilization. Geochemical research on peat and coal generates compositional data that are required for the following reasons. First, many studies in coal geology require chemical data to aid in interpretation for better understanding of the origin and evolution of peat and coal. Second, coal quality assessment is based largely on composition data, and these data generate useful insights into the geologic factors that control the quality of coal. Third, compositional data are needed for effective utilization of coal resources and to reflect the recent emphasis on both basic research in coal geochemistry and environmental aspects related to coal utilization.

  14. Technical support to the Solvent Refined Coal (SRC) demonstration projects: assessment of current research and development

    SciTech Connect (OSTI)

    Edwards, M.S.; Rodgers, B.R.; Brown, C.H.; Carlson, P.K.; Gambill, W.R.; Gilliam, T.M.; Holmes, J.M.; Krishnan, R.P.; Parsly, L.F.

    1980-12-01T23:59:59.000Z

    A program to demonstrate Solvent Refined Coal (SRC) technology has been initiated by the US Department of Energy (DOE) in partnership with two industrial groups. Project management responsibility has been assigned to the Oak Ridge Operations Office (ORO) of DOE. ORO requested that the Oak Ridge National Laboratory assess current research and development (R and D) activities and develop recommendations for those activities that might contribute to successful completion of the SRC demonstration plant projects. The objectives of this final report are to discuss in detail the problem areas in SRC; to discuss the current and planned R and D investigations relevant to the problems identified; and to suggest appropriate R and D activities in support of designs for the SRC demonstration plants. Four types of R and D activities are suggested: continuation of present and planned activities; coordination of activities and results, present and proposed; extension/redirection of activities not involving major equipment purchase or modifications; and new activities. Important examples of the first type of activity include continuation of fired heater, slurry rheology, and slurry mixing studies at Ft. Lewis. Among the second type of activity, coordination of data acquisition and interpretation is recommended in the areas of heat transfer, vapor/liquid equilibria, and physical properties. Principal examples of recommendations for extension/redirection include screening studies at laboratory scale on the use of carbonaceous precoat (e.g., anthracite) infiltration, and 15- to 30-day continuous tests of the Texaco gasifier at the Texaco Montebello facility (using SRC residues).

  15. Research on fundamental aspects of inorganic vapor and particle deposition in coal-fired systems

    SciTech Connect (OSTI)

    Rosner, D.E.

    1992-09-01T23:59:59.000Z

    In September 1990 DOE-PETC initiated at the Yale HTCRE Laboratory a systematic three-year research program directed toward providing engineers with the fundamentally-based design/optimization 'tools' for economically predicting the dynamics of net deposit growth*, and thermophysical properties of the resulting microparticulate deposits in coal-fired systems. In light of the theoretical 'program' based on the notion of self-regulation'' set forth in Rosner and Nagarajan (1987), this Task includes investigation of the effects of particle material properties and possible liquid phases on the capture properties of particulate deposits. For this purpose we exploit dynamical 'many-body' computer simulation techniques. This approach will provide the required parametric dependencies (on such quantities as incident kinetic energy and angle, mechanical and thermophysical properties of the particles,[hor ellipsis]) of a dimensionless ensemble-averaged particle capture fraction, relegating the role of direct laboratory experiment to verifying (or rejecting) some crucial features/consequences of the simulation route followed. Our ultimate goal is recommend 'sticking' and 'erosion' laws of mechanistic origin. The availability of such laws could dramatically increase the reliability of predicted deposition rates of inertially delivered particles, in the simultaneous presence of a condensed liquid phase within the growing particulate, deposit. Equally important, one could also rationally select conditions to avoid. troublesome deposition subject to other operational requirements.

  16. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    This reports presents the operating results for Run 252 at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. This run operated in the Close-Coupled Integrated Two-Stage Liquefaction mode (CC-ITSL) using Illinois No. 6 bituminous coal. The primary run objective was demonstration of unit and system operability in the CC-ITSL mode with catalytic-catalytic reactors and with ash recycle. Run 252 began on 26 November 1986 and continued through 3 February 1987. During this period 214.4 MF tons of Illinois No. 6 coal were fed in 1250 hours of operation. 3 refs., 29 figs., 18 tabs.

  17. NOx EMISSIONS PRODUCED WITH COMBUSTION OF POWDER RIVER BASIN COAL IN A UTILITY BOILER

    SciTech Connect (OSTI)

    John S. Nordin; Norman W. Merriam

    1997-04-01T23:59:59.000Z

    The objective of this report is to estimate the NOx emissions produced when Powder River Basin (PRB) coal is combusted in a utility boiler. The Clean Air Act regulations specify NOx limits of 0.45 lb/mm Btu (Phase I) and 0.40 lb/mm Btu (Phase II) for tangentially fired boilers, and 0.50 lb/mm 13tu (Phase II) and 0.46 lb/mm Btu (Phase II) for dry-bottom wall-fired boilers. The Clean Air Act regulations also specify other limits for other boiler types. Compliance for Phase I has been in effect since January 1, 1996. Compliance for Phase II goes into effect on January 1, 2000. Emission limits are expressed as equivalent NO{sub 2} even though NO (and sometimes N{sub 2}O) is the NOx species emitted during combustion. Regulatory agencies usually set even lower NOx emission limits in ozone nonattainment areas. In preparing this report, Western Research Institute (WRI) used published test results from utilities burning various coals, including PRB coal, using state-of-the art control technology for minimizing NOx emissions. Many utilities can meet Clean Air Act NOx emission limits using a combination of tight combustion control and low-NOx burners and by keeping furnaces clean (i.e., no slag buildup). In meeting these limits, some utilities also report problems such as increased carbon in their fly ash and excessive furnace tube corrosion. This report discusses utility experience. The theory of NOx emission formation during coal combustion as related to coal structure and how the coal is combusted is also discussed. From this understanding, projections are made for NOx emissions when processed PRB coal is combusted in a test similar to that done with other coals. As will be shown, there are a lot of conditions for achieving low NOx emissions, such as tight combustion control and frequent waterlancing of the furnace to avoid buildup of deposits.

  18. Comprehensive report to Congress: Clean Coal Technology program: Evaluation of gas reburning and low-NO sub x burners on a wall-fired boiler

    SciTech Connect (OSTI)

    Not Available

    1990-09-01T23:59:59.000Z

    This report briefly describes the Gas Reburning and Low-NO{sub x} Burners technology which is a low-cost technology that can be applied in both retrofit and new applications. This demonstration will be conducted on a utility boiler in Colorado at Cherokee Station {number sign}3; however, the technology is applicable to industrial boilers and other combustion systems. Although this technology is primarily a NO{sub x} reduction technology, some reductions in other emissions will take place. Since 15--20% of the coal is replaced with natural gas, SO{sub 2} and particulate emissions are reduced commensurately. Also the lower carbon-to-hydrogen ratio of natural gas compared to coal reduces CO{sub 2} emissions. The formation of NO{sub x} is controlled by several factors: (1) the amount of nitrogen that is chemically bound in the fuel; (2) the flame temperature; (3) the residence time that combustion products remain at very high temperatures; and (4) the amount of excess oxygen available, especially at the hottest parts of the flame. Decreasing any of these parameters, tends to reduce NO{sub x} formation. 6 figs., 1 tab.

  19. advanced coal processes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Clean Coal Technology Program Advanced Coal Conversion Process Demonstration CiteSeer Summary:...

  20. arc coal process: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the system in figure 1 as an M equidistant receiver Paris-Sud XI, Universit de 8 Clean Coal Technology Program Advanced Coal Conversion Process Demonstration CiteSeer Summary:...

  1. Stress evaluation of welded steel bridges on coal-haul routes. Interim research report

    SciTech Connect (OSTI)

    Hopwood, T.; Hogan, K.J.; Oberst, C.M.

    1993-05-01T23:59:59.000Z

    Certain roads in Kentucky are designated as `extended-weight coal haul routes.` On those roads, coal transporters are allowed to employ coal trucks loaded far in excess of legal limits in force on normal roads throughout the state. The objective of this study is to measure live-load stresses on welded steel bridges on extended-weight coal haul routes. Fatigue analyses are performed on strain (stress) data derived from field stress measurements. Those are performed to determine whether the magnitude of those stresses and frequency of their occurrence are sufficient to pose fatigue problems presently or over the anticipated service lives of those bridges (i.e., 75 years). Live-load stress data obtained from bridges not possessing fatigue-prone weld details may be of benefit to bridge designers.

  2. Materials and Systems Research, Inc. Lessons Learned from SOFC/SOEC Development

    E-Print Network [OSTI]

    present & future by year 2035: 80% of America's electricity from clean energy sources: wind, solar, clean coal, natural gas, nuclear, etc. Renewables represent the smallest share among the various sectors and Systems Research, Inc. 5 Energy Storage Technologies European Emerging Technology Roadmap 2009

  3. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    The investigation of various Two-Stage Liquefaction (TSL) process configurations was conducted at the Wilsonville Advanced Coal Liquefaction R D Facility between July 1982 and September 1986. The facility combines three process units. There are the liquefaction unit, either thermal (TLU) or catalytic, for the dissolution of coal, the Critical Solvent Deashing unit (CSD) for the separation of ash and undissolved coal, and a catalytic hydrogenation unit (HTR) for product upgrading and recycle process solvent replenishment. The various TSL process configurations were created by changing the process sequence of these three units and by recycling hydrotreated solvents between the units. This report presents a description of the TSL configurations investigated and an analysis of the operating and performance data from the period of study. Illinois No. 6 Burning Star Mine coal Wyodak Clovis Point Mine coal were processed. Cobalt-molybdenum and disposable iron-oxide catalysts were used to improve coal liquefaction reactions and nickel-molybdenum catalysts were used in the hydrotreater. 28 refs., 31 figs., 13 tabs.

  4. Inside this Issue Clean Sweep 1

    E-Print Network [OSTI]

    Perkins, Richard A.

    (coal, aggregate, ore, etc.) are involved in commercial transactions where current weighing technologyInside this Issue Page Clean Sweep 1 This Month in History 1 Calendar 2 This Month in History on page 4) 1 Volume 2 Issue 5 August 29, 2011 Clean Sweep By John Barton Vast amounts of bulk materials

  5. DOEEA-1183 ENVIRONMENTAL ASSESSMENT COAL-FIRED DIESEL GENERATOR

    Broader source: Energy.gov (indexed) [DOE]

    (EA) (DOEEA-1183) for a project proposed by Arthur D. Little, Inc., to demonstrate a clean coal technology. Under this proposal, DOE would provide partial funding under a...

  6. COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA

    E-Print Network [OSTI]

    in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

  7. Coal-oil slurry preparation

    DOE Patents [OSTI]

    Tao, John C. (Perkiomenville, PA)

    1983-01-01T23:59:59.000Z

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  8. Engineering support services for the DOE/GRI coal gasification research program. Final technical progress report, October 1978-November 1982

    SciTech Connect (OSTI)

    Bostwick, L.E.

    1982-01-01T23:59:59.000Z

    The agreement between the United States Government Department of Energy and the Gas Research Institute for the Joint Coal Gasification Research Program provided for one or more technical evaluation contractors. Pullman Kellogg (now the M.W. Kellogg Company) was selected as evaluation contractor to assess, and report to the DOE/GRI Operating Committee on, the relative merits of the active programs covered by the agreement. This report includes the period from 1 October 1978 to 30 November 1982. The objective was to provide engineering support for the DOE/GRI high Btu coal gasification program. This support generally consisted of assistance in developing or advancing each process to its maximum potential. Kellogg monitored and evaluated the startup and operational activities of all pilot plant projects within the combined DOE/GRI program. Kellogg evaluated proposals to determine their technical feasibility as potential processes or as viable processing operations for commercial-scale gasification of coal. Kellogg also recorded observations on the reliability, maintainability, and availability of the equipment used in the pilot plant or PDU facilities. Kellogg performed design reviews, data analyses, and engineering evaluations of proposals, cost estimates and monthly progress reports to provide information considered essential to the overall objectives of the combined DOE/GRI program.

  9. Fossil Energy Program. Progress report for November 1979. [35 Wt % Illinois No. 6 coal with Wilsonville recycle solvent

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This report - the sixty-fourth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, materials engineering, a coal equipment test program, an atmospheric fluid bed combustor for cogeneration, engineering studies and technical support, process and program analysis, environmental assessment studies, magnetic beneficiation of dry pulverized coal, technical support to the TVA fluid bed combustion program, coal cogeneration/district heating plant assessment, chemical research and development, and technical support to major liquefaction projects.

  10. CSEM WP 118 The Impact of the Clean Air Act Amendments of 1990

    E-Print Network [OSTI]

    California at Berkeley. University of

    CSEM WP 118 The Impact of the Clean Air Act Amendments of 1990 on Electric Utilities and Coal Mines of the Clean Air Act Amendments of 1990 on Electric Utilities and Coal Mines: Evidence from the Stock Market at Davis, crknittel@ucdavis.edu. #12;2 The Impact of the Clean Air Act Amendments of 1990 on Electric

  11. Jointly Sponsored Research Program Energy Related Research

    SciTech Connect (OSTI)

    Western Research Institute

    2009-03-31T23:59:59.000Z

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental impacts associated with energy production and utilization. This report summarizes the accomplishments of the JSR Program.

  12. Mercury control for coal-fired power plants

    SciTech Connect (OSTI)

    Haase, P.

    2005-06-30T23:59:59.000Z

    On 15 March 2005 the US Environmental Protection Agency issued its Clean Air Mercury Rule (CAMP) to regulate mercury emissions from coal-fired power plants. EPRI is working with the US Department of Energy and the power industry to develop mercury control technologies needed to meet the final 2018 emission limits. Some improvements can be made by modifying existing SO{sub 2} or NOx control devices. Precombustion cleaning reduces mercury content of eastern coals by about one third. Adding a little halogen is another technology being researched - this promotes oxidation improving short-term mercury capture. EPRI is developing the TOXECON{trademark} technology to address a major problem of using sorbents to control mercury emissions: contamination of fly ash. 5 figs.

  13. Secretary Bodman Celebrates Clean Up Completion of Three Former...

    Office of Environmental Management (EM)

    Clean Up Completion of Three Former Weapons Research and Production Sites in Ohio Secretary Bodman Celebrates Clean Up Completion of Three Former Weapons Research and Production...

  14. THE DEVELOPMENT OF COAL-BASED TECHNOLOGIES FOR DEPARTMENT OF DEFENSE FACILITIES

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Sarma V. Pisupati; Chunshan Song; Ronald S. Wasco; Ronald T. Wincek; Xiaochun Xu; Alan W. Scaroni; Richard Hogg; Subhash Chander; M. Thaddeus Ityokumbul; Mark S. Klima; Peter T. Luckie; Adam Rose; Richard L. Gordon; Jeffrey Lazo; A. Michael Schaal

    2004-01-30T23:59:59.000Z

    The third phase of a three-phase project investigating the development of coal-based technologies for US Department of Defense (DOD) facilities was completed. The objectives of the project were to: decrease DOD's dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase III activities were focused on evaluating deeply-cleaned coals as fuels for industrial boilers and investigating emissions control strategies for providing ultra-low emissions when firing coal-based fuels. This was addressed by performing coal beneficiation and preparation studies, and bench- to demonstration-scale emissions reduction studies. In addition, economic studies were conducted focused on determining cost and market penetration, selection of incentives, and regional economic impacts of coal-based technologies.

  15. Carbonation as a binding mechanism for coal/calcium hydroxide pellets. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect (OSTI)

    Rapp, D.M.

    1991-12-31T23:59:59.000Z

    Current coal mining and processing procedures produce a significant quanity of fine coal that is difficult to handle and transport. The objective of this work is to determine if these fines can be economically pelletized with calcium hydroxide, a sulfur capturing sorbent, to produce a clean-burning fuel for fluidized-bed combustors or stoker boilers. To harden these pellets, carbonation, which is the reaction of calcium hydroxide with carbon dioxide to produce a cementitious matrix of calcium carbonate, is being investigated. Previous research indicated that carbonation significantly improved compressive strength, impact and attrition resistance and ``weatherproofed`` pellets formed with sufficient calcium hydroxide (5 to 10% for minus 28 mesh coal fines).

  16. Integrated production/use of ultra low-ash coal, premium liquids and clean char. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect (OSTI)

    Kruse, C.W.; Carlson, S.L. [Illinois State Geological Survey, Champaign, IL (United States); Fatemi, M. [Amoco Research Center, Naperville, IL (United States); Snoeyink, V.L.; Feizoulof, C.A. [Illinois Univ., Urbana, IL (United States); Klavetter, E. [Sandia National Labs., Albuquerque, NM (United States)

    1993-09-01T23:59:59.000Z

    Tests this quarter showed the adsorption efficiency of an oxidized activated ChemCoal{trademark} (OACC) char for removing volatile organic compounds (VOCs) from spiked water is higher than for unoxidized activated char (ACC). OACC destroyed (or reacted with) a higher percentage of VOCs when loaded char was heated quickly to 850{degrees}C. This was expected based on the OACC`s superiority as an elimination catalyst. Aromatic VOCs appeared to be adsorbed on the chars more readily than the chlorinated ones but the multichlorinated VOCs appeared to be adsorbed more strongly. The performance of two oxidized carbons (OST3-9 and OACC chars) for the removal of the VOCs from two industrial waste waters spiked with VOCs appeared similar. The more active catalyst, OST3-9 appeared more effective than OACC in destroying the adsorbed materials. A series of carbons having differing levels of oxygen on the surface was prepared by desorbing oxygen from the surface placed there by nitric acid oxidation. Tests revealed that the capacity to adsorb 2-nitrophenol increased as the outgassing temperature was increased. This indicates that PNP adsorption is increased as surface oxygen is removed from the carbon.

  17. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 17, August 1, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    The construction of the DOE POC at the OCDO facility continued through this entire quarter. By the end of the quarter approximately 90% of all of the construction had been completed. All equipment has beeninstalled, checked for mechanical and installation and operated from a local pushbutton. During this quarter a review of items to be completed for start-up was compiled. This information was then presented to the construction subcontractors and agreement was concluded that all items will be completed and operational for processing coal by February 1, 1993. There are still several items that were not on site for installation during this quarter. These items are the flocculant controls supplied by Westec Engineering, Inc., and the discharge valve for the hyperbaric filter supplied by KHD. Neither of these items will prevent start-up. The flocculants can be manually controlled and provisions are all ready provided to bypass the hyperbaric filter to the Sharpels high-G centrifuge. Both of these items are scheduled for delivery in mid-January.

  18. Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels

    SciTech Connect (OSTI)

    McIlroy, A.; McRae, G.; Sick, V.; Siebers, D. L.; Westbrook, C. K.; Smith, P. J.; Taatjes, C.; Trouve, A.; Wagner, A. F.; Rohlfing, E.; Manley, D.; Tully, F.; Hilderbrandt, R.; Green, W.; Marceau, D.; O'Neal, J.; Lyday, M.; Cebulski, F.; Garcia, T. R.; Strong, D.

    2006-11-01T23:59:59.000Z

    To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions.

  19. Light Duty Efficient Clean Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Clean Combustion February 27, 2008 Tim Frazier Research & Technology 2008 Semi-Mega Merit Review Agenda Project Goals and Objectives Project Partners Technical...

  20. Enabling High Efficiency Clean Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Clean Combustion 2008 Semi-Mega Merit Review Donald Stanton Research & Technology February 26 th , 2008 This presentation does not contain any proprietary or...

  1. Enhancement of surface properties for coal beneficiation. Final report

    SciTech Connect (OSTI)

    Chander, S.; Aplan, F.F.

    1992-01-30T23:59:59.000Z

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  2. Safety in Mine Research EstablishmentPresent-day requirements for protection against fire in coal mines

    E-Print Network [OSTI]

    Kushnarev, A.; Koslyuk, A.; Petrov, P.

    Analysis of a statistical data shows that, on an average, about 50% of the total underground emergencies occurring in coal mines in the USSR are due to fires. Great attention is, therefore, paid in our country to the problem of protection against...

  3. Characterization of the surface properties of Illinois Basin Coals. Technical report, September 1--November 30, 1991

    SciTech Connect (OSTI)

    Demir, I.

    1991-12-31T23:59:59.000Z

    The overall objective of this research project is to provide fundamental data on the physical and chemical surface properties of Illinois coals, specifically those of the Illinois Basin Coal Sample Program (IBCSP). This will help coal researchers achieve an optimal match between Illinois Basin coals and potential coal cleaning and conversion processes (or at least reduce the number of coals suitable for a particular process) and may lead to improved desulfurization and increased utilization of Illinois Basin coals. The specific tasks scheduled to meet our objective are: (1) Physical Characterization: Determine total surface area, porosity, pore size and volume distributions of IBCSP coals crushed to two particle sizes, {minus}100 and {minus}400 mesh (exclusive of IBC-108 which is available only in {minus}400 mesh form), in both an unoxidized and oxidized state. (2) Chemical Characterization: Determine the surface charge (electrokinetic mobility) as a function of pH by electrophoresis and analyze the surface chemical structure of the above samples using Diffuse Reflectance Infrared Spectroscopy (DRIS). (3) Multivariate Statistical Analyses: Explore possible relationships among the newly determined surface properties and other available characterization data, including chemical and petrographic compositions, vitrinite reflectance, free swelling index, ash yield, sulfur forms, and other relevant properties.

  4. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2004-09-30T23:59:59.000Z

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  5. Advanced coal liquefaction research. Quarterly technical progress report, July 1, 1983-September 30, 1983

    SciTech Connect (OSTI)

    None

    1984-04-01T23:59:59.000Z

    Work this quarter focused on staged liquefaction. The effect of residence time on conversion in single pass experiments was found to be quite different for the subbituminous Belle Ayr Mine and bituminous Illinois No. 6 coals studied. With bituminous coal, conversion to soluble material is quite high and the limit of conversion is approached in only a few minutes. With a subbituminous coal, however, conversion is much lower and the limit of conversion is approached much more slowly. Short contact time (SCT) dissolution of Belle Ayr coal was studied as a possible first stage in a two-stage process. Conversion, hydrocarbon gas yield and hydrogen consumption were increased as residence time or temperature were increased. Conversion was also significantly increased by partial slurry recycle. Pyrite was found to be the most effective slurry catalyst for increasing conversion, followed by ammonium molybdate emulsion and finally nickel-molybdenum on alumina. Illinois No. 6 coal was liquefied in two stages. Conditions in the first stage dissolution were varied to determine the effect on upgradability in the second stage. An SCT (6 minute) coal dissolution stage is preferred over one at 30 minutes because hydrocarbon gas yield was much lower while overall oil yields for the combined dissolution and upgrading stages were nearly the same. Use of a NiMo/Al/sub 2/O/sub 3/ catalyst in a trickle-bed second stage resulted in a higher oil yield and lower product heteroatom content than use of the same catalyst in the slurry phase. The total oil yield was lower with a pyrite slurry catalyst than with a NiMo/Al/sub 2/O/sub 3/ slurry catalyst. With Belle Ayr coal and added pyrite, there was no change in total oil yield, conversion or product quality brought about by adding an 8-minute first stage at 450/sup 0/C (842/sup 0/F) to a 2-hour second stage operated at 420/sup 0/C (788/sup 0/F). 39 figures, 12 tables.

  6. Clean Cities

    Broader source: Energy.gov [DOE]

    Clean Cities works to reduce U.S. reliance on petroleum in transportation by establishing local coalitions of public- and private-sector stakeholders across the country.

  7. Making coal burnable: preparation and use

    SciTech Connect (OSTI)

    Rittenhouse, R.C.

    1985-06-01T23:59:59.000Z

    This paper offers several different views on the tools available to boost the burnability of coal. One view of making coal burnable and for better emissions control lies in the combustion process. One approach is fluidized bed combustion and the two choices within this technology are atmospheric (AFBC) and pressurized (PFBC). Several tests are being conducted to develop the slagging combustor technology for direct conversion from oil to coal. Some advantages listed for this method are a simple retrofit, low particulate, NO/sub x/ and SO/sub 2/ emissions, no modification for burning pulverized coal or coal/water slurry, no ash and no moving parts. Another method discussed is coal blending. The industrial and utility coal burning demand, combined with vacillating regulatory situations, reveals a need for coal users to be ever more alert to fuel price and availability. Technologies in the three areas of application -- coal preparation/cleaning, combustion, and emissions control -- offer an endless array of combinations.

  8. Thickening of ultrafine coal-water slurries in a solid-bowl centrifuge

    SciTech Connect (OSTI)

    Pinkerton, A.P.; Klima, M.S.; Morrison, J.L.; Miller, B.G.

    1999-07-01T23:59:59.000Z

    As part of a study being conducted for the Electric Power Research Institute's (EPRI's) Upgraded Coal Interest Group (UCIG) to evaluate ultrafine coal dewatering technologies, testing was carried out to investigate the use of a solid-bowl (high-g) centrifuge for thickening ultrafine coalwater slurries. The objective of this study was to increase the solids concentration to a level suitable for use as a coal-water slurry fuel, while maximizing overall solids recovery. Feed material was collected from the combined discharge (centrate) streams from several screen-bowl centrifuges. These devices are currently being used in a commercial coal cleaning facility to dewater the clean coal product from a froth flotation circuit. Current plant practice is to discharge the centrate to settling ponds. The screen bowl centrate averages 5% solids by weight and contains nearly 60% material finer than 10 {mu}m. The current study examined the effects of operating conditions on centrifuge performance. The test conditions included centrifuge bowl and scroll speeds and volumetric feed rate. In addition to thickening, some cleaning was also achieved, because the finest particles (e.g. < 3 {micro}m), which contained a large percentage of liberated clays, were removed with the bulk of the water. The centrifuge products were analyzed for solids concentration, particle size distribution, and ash content. Size selectivity curves were also used to evaluate centrifuge performance.

  9. Utilization of coal-associated minerals. Final report

    SciTech Connect (OSTI)

    Slonaker, J. F.; Akers, D. J.; Alderman, J. K.

    1980-01-01T23:59:59.000Z

    Under contract number DE-AS21-77ET10533 with the US-DOE several methods of utilizing coal associated by-products were examined for potential commercial use. Such use could transform a costly waste disposal situation into new materials for further use and could provide incentive for the adoption of new coal utilization processes. Several utilization processes appear to have merit and are recommended for further study. Each process is discussed separately in the text of this report. Common coal cleaning processes were also examined to determine the effect of such processes on the composition of by-products. Data obtained in this portion of the research effort are reported in the Appendix. Information of this type is required before utilization processes can be considered. A knowledge of the mineral composition of these materials is also required before even simple disposal methods can be considered.

  10. Research | Center for Gas SeparationsRelevant to Clean Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn the Inorganic PV thrust, weSoftware|

  11. Evaluation of an enhanced gravity-based fine-coal circuit for high-sulfur coal

    SciTech Connect (OSTI)

    Mohanty, M.K.; Samal, A.R.; Palit, A. [South Illinois University, Carbondale, IL (United States). Dept. of Mining & Mineral Resources Engineering

    2008-02-15T23:59:59.000Z

    One of the main objectives of this study was to evaluate a fine-coal cleaning circuit using an enhanced gravity separator specifically for a high sulfur coal application. The evaluation not only included testing of individual unit operations used for fine-coal classification, cleaning and dewatering, but also included testing of the complete circuit simultaneously. At a scale of nearly 2 t/h, two alternative circuits were evaluated to clean a minus 0.6-mm coal stream utilizing a 150-mm-diameter classifying cyclone, a linear screen having a projected surface area of 0.5 m{sup 2}, an enhanced gravity separator having a bowl diameter of 250 mm and a screen-bowl centrifuge having a bowl diameter of 500 mm. The cleaning and dewatering components of both circuits were the same; however, one circuit used a classifying cyclone whereas the other used a linear screen as the classification device. An industrial size coal spiral was used to clean the 2- x 0.6-mm coal size fraction for each circuit to estimate the performance of a complete fine-coal circuit cleaning a minus 2-mm particle size coal stream. The 'linear screen + enhanced gravity separator + screen-bowl circuit' provided superior sulfur and ash-cleaning performance to the alternative circuit that used a classifying cyclone in place of the linear screen. Based on these test data, it was estimated that the use of the recommended circuit to treat 50 t/h of minus 2-mm size coal having feed ash and sulfur contents of 33.9% and 3.28%, respectively, may produce nearly 28.3 t/h of clean coal with product ash and sulfur contents of 9.15% and 1.61 %, respectively.

  12. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    SciTech Connect (OSTI)

    Shiquan Tao

    2006-12-31T23:59:59.000Z

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.

  13. Hanna, Wyoming underground coal gasification data base. Volume 5. Hanna III field test research report

    SciTech Connect (OSTI)

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01T23:59:59.000Z

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna III was conducted during the spring and summer of 1977. The test involved only two process wells but also had twelve water monitoring wells, eight in the Hanna No. 1 coal seam and four in an aquifer above the coal seam. The test was designed to obtain information regarding the effects of the process on groundwater within the target seam and the overlying aquifer. The site for Hanna III had a low productivity aquifer above the Hanna No. 1 seam. The wells within the seam and the overlying aquifer were placed in such a manner that maximum information on groundwater flow and quality could be obtained. This report covers: (1) site selection and characterization; (2) test objectives; (3) facilities description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 4 refs., 11 figs., 5 tabs.

  14. Call for Research Proposals January 13, 2011

    E-Print Network [OSTI]

    Subramanian, Venkat

    should contact Prof. Jon Chase, Director (jchase@wustl.edu). For proposals focused on the Clean Coal

  15. Fine Anthracite Coal Washing Using Spirals

    SciTech Connect (OSTI)

    R.P. Killmeyer; P.H. Zandhuis; M.V. Ciocco; W. Weldon; T. West; D. Petrunak

    2001-05-31T23:59:59.000Z

    The spiral performed well in cleaning the coarse 8 x 16 mesh size fraction, as demonstrated by the Ep ranging from 0.091 to 0.177. This is in line with typical spiral performance. In addition, the presence of the coarser size fraction did not significantly affect spiral performance on the typical 16 x 100 mesh fraction, in which the Ep ranged from 0.144 to 0.250. Changes in solids concentration and flow rate did not show a clear correlation with spiral performance. However, for difficult-to-clean coals with high near-gravity material, such as this anthracite, a single-stage spiral cleaning such a wide size fraction may not be able to achieve the clean coal ash and yield specifications required. In the first place, while the performance of the spiral on the coarse 8 x 16 mesh fraction is good with regard to Ep, the cutpoints (SG50s) are high (1.87 to 1.92), which may result in a clean coal with a higher-than-desired ash content. And second, the combination of the spiral's higher overall cutpoint (1.80) with the high near-gravity anthracite results in significant misplaced material that increases the clean coal ash error. In a case such as this, one solution may be to reclean the clean coal and middlings from the first-stage spiral in a second stage spiral.

  16. Emissions of airborne toxics from coal-fired boilers: Mercury

    SciTech Connect (OSTI)

    Huang, H.S.; Livengood, C.D.; Zaromb, S.

    1991-09-01T23:59:59.000Z

    Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.

  17. The development of coal-based technologies for Department of Defense facilities: Phase 1 final report. Volume 1: Technical report

    SciTech Connect (OSTI)

    Miller, B.G.; Morrison, J.L.; Pisupati, S.V. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1997-01-31T23:59:59.000Z

    The first phase of a three-phase project investigating the development of coal-based technologies for Department of Defense facilities has been completed. The objectives of the project are to: decrease DOD`s dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase 1 activities were focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. The specific objective in Phase 1 was to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWM or DMC. This was achieved through a project consisting of fundamental, pilot-sale, and demonstration-scale activities investigating coal beneficiation and preparation, and MCWM and DMC combustion performance. In addition, detailed engineering designs and an economic analysis were conducted for a boiler located at the Naval Surface Warfare Center, near Crane, Indiana. Results are reported on MCWM and DMC combustion performance evaluation; engineering design; and cost/economic analysis.

  18. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Final project report

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    As part of the US Department of Energy`s (DOE`s) Innovative Clean Coal Technology Program, under Round 2, a project for Full Scale Demonstration of Coal Reburning for Cyclone Boiler Nitrogen Oxide (NO{sub x},) Control was selected. DOE sponsored The Babcock & Wilcox (B&W) Company, with Wisconsin Power & Light (WP&L) as the host utility, to demonstrate coal reburning technology at WP&L`s 110 MW{sub c}, cyclone-fired Unit No.2 at the Nelson Dewey Generating Station in Cassville, Wisconsin. The coal reburning demonstration was justified based on two prior studies. An Electric Power Research Institute (EPRI) and B&W sponsored engineering feasibility study indicated that the majority of cyclone-equipped boilers could successfully apply reburning technology to reduce NO{sub x}, emissions by 50 to 70%. An EPRI/Gas Research Institute (GRI)/B&W pilot-scale evaluation substantiated this conclusion through pilot-scale testing in B&W`s 6 million Btu/hr Small Boiler Simulator. Three different reburning fuels, natural gas, No. 6 oil, and pulverized coal were tested. This work showed that coal as a reburning fuel performs nearly as well as gas/oil without deleterious effects of combustion efficiency. Coal was selected for a full scale demonstration since it is available to all cyclone units and represents the highest level of technical difficulty-in demonstrating the technology.

  19. Engineering development of advanced physical fine coal cleaning technolgies: Froth flotation. Quarterly technical progress report No. 10, January 1, 1991--March 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    The Task 6 effort involves three main elements including column cell development, flotation circuit testing and flotation cell modeling. The work outlined is to research column designs and operation parameters in developing an optimized column flotation cell (OCFC) to meet the overall program objectives. Any design parameters that were not evaluated as part of the optimized column development work will be reviewed and tested so as to incorporate all possible scenarios in presenting DOE with the best available flotation process for use in the 2 to 3 ton per hour POC. Following development of the OCFC, various flotation circuit configurations will be evaluated determine the ``best`` circuit design for the 2 to 3 ton per hour POC. Single and multiple stage flotation, grab and run, rougher/scavenger/cleaner, etc., test circuits will be tested as part of this effort. Upon completion of this test work, the ``best`` possible flotation cell will have been tested in a number of possible flotation circuit designs to possibly provide the ``best`` flotation approach in meeting the design criteria. In conjunction with the flotation test effort, model development work will be conducted to provide a tool in evaluating the various flotation circuit configurations and in predicting flotation performance. The model will be useful in selecting operating conditions in the POC and in evaluating the performance of the POC.

  20. Toward zero emissions from coal in China Robert H. Williams

    E-Print Network [OSTI]

    is oxygen-blown (O2blown) gasification to generate synthesis gas from coal. This technology is used is a strong candidate for becoming the "third" clean energy carrier for China. Evolving a coal-based energyToward zero emissions from coal in China Robert H. Williams Princeton Environmental Institute, Room