Powered by Deep Web Technologies
Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Windows and Building Envelope Research and Development Roadmap...  

Broader source: Energy.gov (indexed) [DOE]

Windows and Building Envelope Research and Development Roadmap Windows and Building Envelope Research and Development Roadmap Cover of windows and envelope report, depicting a...

2

Research and Development Roadmap: Windows and Building Envelope...  

Energy Savers [EERE]

Envelope Technologies Overview - 2014 BTO Peer Review Research & Development Roadmap: Emerging HVAC Technologies Research & Development Roadmap: Emerging Water Heating Technologies...

3

Building Thermal Envelope Systems and Materials (BTESM) progress report for DOE Office of Buildings Energy Research  

SciTech Connect (OSTI)

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-01-01T23:59:59.000Z

4

Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer  

SciTech Connect (OSTI)

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

Burn, G. (comp.)

1990-07-01T23:59:59.000Z

5

Building America Webinar: Advanced Envelope Research for Factory-Built  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev next >research teamhave foundHousing |

6

IEA Task 27 BUILDING ENVELOPE COMPONENTS  

E-Print Network [OSTI]

IEA Task 27 BUILDING ENVELOPE COMPONENTS Performance, durability and sustainability of advanced windows and solar components for building envelopes Energy Performance Assessment Methodology Starting................................................................................................................................................. 3 2 Concepts of Energy Performance Assessment of Building Envelopes

7

Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads  

SciTech Connect (OSTI)

This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

Karagiozis, A.N.

2007-05-15T23:59:59.000Z

8

STATE OF CALIFORNIA BUILDING ENVELOPE SEALING  

E-Print Network [OSTI]

STATE OF CALIFORNIA BUILDING ENVELOPE SEALING CEC-CF-6R-ENV-20-HERS(Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-ENV-20-HERS Building Envelope Sealing (Page 1 of 4) Site, and lineset. Supply and return plenums #12;STATE OF CALIFORNIA BUILDING ENVELOPE SEALING CEC-CF-6R-ENV-20-HERS

9

Building envelope thermal anomaly analysis  

SciTech Connect (OSTI)

A detailed study has been made of building energy thermal anomalies (BETA's) in a large modern office building using computer simulation, on-site inspections, and infrared thermography. The goal was to better understand the heat and moisture flow through these ''bridges,'' develop the beginnings of a classification scheme, and establish techniques for assessing the potential for retrofit or initial design modifications. In terms of presently available analytical techniques, a one-dimensional equivalent of the bridge and its affected area can be created from a steady-state computer simulation. This equivalent, combined with a degree day model, yields good estimates of the bridge behavior in buildings employing heating only. With heating and cooling, the equivalent must be used with an hour-by-hour simulation. A classification scheme based on the one-dimensional equivalent is proposed which should make it possible to create a catalog of basic bridge types that can be used to estimate their effects without requiring a complete hour-by-hour simulation of each building. The classification relates both energy loss and moisture condensation potential to the bridge configuration and the building envelope. The potential for moisture condensation on interior surfaces near a BETA was found to be as significant as the energy loss and this factor needds to be considered in assessing the complete detrimental effects of a bridge. With such a catalog, building designers and analysts would be able to determine and estimate the advantages or disadvantages of modifying the building envelope to reduce the impact of a thermal bridge. 18 refs., 31 figs., 17 tabs.

Melton, B.S.; Mulroney, P.; Scott, T.; Childs, K.W.

1987-12-01T23:59:59.000Z

10

STATE OF CALIFORNIA BUILDING ENVELOPE SEALING  

E-Print Network [OSTI]

STATE OF CALIFORNIA BUILDING ENVELOPE SEALING CEC- CF-4R-ENV-20 (Revised 08/09) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF FIELD VERIFICATION AND DIAGNOSTIC TESTING CF-4R-ENV-20 Building Envelope Sealing.819 x (CFM50H / Conditioned Floor Area in ft2 ) per Residential ACM Manual Equation R3-16 Building

11

THERMAL PERFORMANCE OF BUILDINGS AND BUILDING ENVELOPE SYSTEMS: AN ANNOTATED BIBLIOGRAPHY  

E-Print Network [OSTI]

dynamic test methods for envelope thermal performance whichtransieu~ thermal behavior of building envelopes, and theof dynamic thermal performance, of layered envelope construe

Carroll, William L.

2011-01-01T23:59:59.000Z

12

Ozone Reductions Using Residential Building Envelopes  

SciTech Connect (OSTI)

Ozone is an air pollutant with that can have significant health effects and a significant source of ozone in some regions of California is outdoor air. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone could lead to improved health for many California residents. Ozone is removed from indoor air by surface reactions and can also be filtered by building envelopes. The magnitude of the envelope impact depends on the specific building materials that the air flows over and the geometry of the air flow paths through the envelope that can be changes by mechanical ventilation operation. The 2008 Residential Building Standards in California include minimum requirements for mechanical ventilation by referencing ASHRAE Standard 62.2. This study examines the changes in indoor ozone depending on the mechanical ventilation system selected to meet these requirements. This study used detailed simulations of ventilation in a house to examine the impacts of different ventilation systems on indoor ozone concentrations. The simulation results showed that staying indoors reduces exposure to ozone by 80percent to 90percent, that exhaust ventilation systems lead to lower indoor ozone concentrations, that opening of windows should be avoided at times of high outdoor ozone, and that changing the time at which mechanical ventilation occurs has the ability to halve exposure to ozone. Future work should focus on the products of ozone reactions in the building envelope and the fate of these products with respect to indoor exposures.

Walker, Iain S.; Sherman, Max; Nazaroff, William W.

2009-02-01T23:59:59.000Z

13

Building Envelope Requirements Overview Page 3-1 3 Building Envelope Requirements  

E-Print Network [OSTI]

orientation restrictions (e.g., Shaded Areas: East-Facing). North-Facing "North-facing is oriented to within envelope is responsible for the most significant loads that affect heating and cooling energy use through building envelope components ­ including walls, roofs, floors, slabs, windows and doors. Solar

14

Hotbox Test R-value Database and the Building Envelopes Program (BEP)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Building Envelopes Program at Oak Ridge National Laboratory (ORNL) is a program within the Buildings Technology Center (BTC), the premier U.S. research facility devoted to developing technologies that improve the energy efficiency and environmental compatibility of residential and commercial buildings. Our program is divided into two parts: building envelope research, which focuses on the structural elements that enclose a building (walls, roofs and foundations), and materials research, which concentrates on the materials within the envelope systems (such as insulation). The building envelope provides the thermal barrier between the indoor and outdoor environment, and its elements are the key determinants of a building's energy requirements that result from the climate where it is located. [copied from http://www.ornl.gov/sci/roofs+walls/

15

3457, Page, 1 Coupled CFD/Building Envelope Model  

E-Print Network [OSTI]

Performance Buildings Conference at Purdue, 2012 (Accepted) #12;3457, Page, 2 a standard model for a single3457, Page, 1 Coupled CFD/Building Envelope Model for the Purdue Living Lab Donghun KIM (kim1077 features. In the present case we develop a procedure for coupling a building envelope model to a CFD

Gugercin, Serkan

16

Building envelope membrane as flexible formwork for concrete panels  

E-Print Network [OSTI]

This thesis investigates the use of a building envelope membrane as fabric-like formwork for exterior cladding systems in buildings. The exterior wall system (i.e., fagade) has evolved to meet the demands of the built ...

Sprague, Chelsea Lynn

2014-01-01T23:59:59.000Z

17

Thermal Performance of Building Envelope in Very Hot Dry Desert Region in Egypt (Toshky)  

E-Print Network [OSTI]

Thermal Performance of Building Envelope in Very Hot Dry Desert Region in Egypt (Toshky Region) S.S. Sheble* M. H. Khalil M. A. Helal Prof. M. El- Demirdash3 Asso. Prof. Building Physics Institute (HBRC) Asso. Prof. Building Physics... Institute (HBRC) Prof. & head of Building Physics Institute (HBRC) Prof. & Chairman of HBRC Housing & Building National Research Center (HBRC) Cairo, Egypt * Author ABSTRACT Toshky region is a desert region located in the south east...

Khalil, M. H.; Sheble, S. S.; Helal, M. A.; El-Demirdash, M.

2010-01-01T23:59:59.000Z

18

Building Envelope Overview Page 3-1 2008 Nonresidential Compliance Manual August 2009  

E-Print Network [OSTI]

Building Envelope ­ Overview Page 3-1 2008 Nonresidential Compliance Manual August 2009 3 Building Envelope This chapter describes the requirements for the design of the building envelope for nonresidential buildings. Loads from the building envelope, especially windows, skylights, and roofs are among the most

19

Solar Correction Factors of Building Envelope in Tebei  

E-Print Network [OSTI]

Tebei has very rich solar energy in China and needs heating in winter,but the present energy building design code has no solar correction factor for the overall heat transfer coefficient of building envelope for Tebei. Based on the typical year...

Wang, D.; Tang, M.

2006-01-01T23:59:59.000Z

20

Optimization of thermal comfort in building through envelope design  

E-Print Network [OSTI]

1 Optimization of thermal comfort in building through envelope design Milorad Bojia , Alexandre. The building is modeled in EnergyPlus software and HookeJeves optimization methodology. The investigated house optimizations are performed such as the optimization of the thickness of the concrete block layer, of the wood

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

APPLICATION OF IT AND INTERNATIONAL STANDARDS TO IMPROVE BUILDING ENVELOPE PERFORMANCE  

E-Print Network [OSTI]

APPLICATION OF IT AND INTERNATIONAL STANDARDS TO IMPROVE BUILDING ENVELOPE PERFORMANCE Hua Sheng He with IT and international standards, such as IFC, can ensure that the building envelope satisfies energy requirements1 , Amin Hammad2 , and Paul Fazio1 1 Building Envelope Performance Laboratory; Centre for Building

Hammad, Amin

22

Building Envelope Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding Energy Use

23

RESEARCH PAPER Composition of the plant nuclear envelope: theme and  

E-Print Network [OSTI]

RESEARCH PAPER Composition of the plant nuclear envelope: theme and variations Iris Meier* Plant plants is only just beginning, fundamental differences from the animal nuclear envelope have already been to known plant regulatory pathways. Plant nuclear envelope composition The inner nuclear envelope A number

Meier, Iris

24

Proceedings of ASHRAE-DOE-BTECC Conference on Building Thermal Envelopes Simplified Modeling for  

E-Print Network [OSTI]

LBL-31305 Proceedings of ASHRAE-DOE-BTECC Conference on Building Thermal Envelopes Simplified in the envelopes of residential buildings is the primary mechanism to pro- vide ventilation to those buildings and exposure to be made and demonstrates how changes in the envelope or ventilation system would affect it

25

Field Testing of Nano-PCM Enhanced Building Envelope Components  

SciTech Connect (OSTI)

The U.S. Department of Energy s (DOE) Building Technologies Program s goal of developing high-performance, energy efficient buildings will require more cost-effective, durable, energy efficient building envelopes. Forty-eight percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced envelope components can facilitate maximizing the energy efficiency of buildings. Field-testing of prototype envelope components is an important step in estimating their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conducive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. During 2012, two test walls with cellulose cavity insulation and prototype PCM-enhanced interior wallboards were installed in a natural exposure test (NET) facility at Charleston, SC. The first test wall was divided into four sections, which were separated by wood studs and thin layers of foam insulation. Two sections contained nano-PCM-enhanced wallboards: one was a three-layer structure, in which nano-PCM was sandwiched between two gypsum boards, and the other one had PCM dispersed homogeneously throughout graphite nanosheets-enhanced gypsum board. The second test wall also contained two sections with interior PCM wallboards; one contained nano-PCM dispersed homogeneously in gypsum and the other was gypsum board containing a commercial microencapsulated PCM (MEPCM) for comparison. Each test wall contained a section covered with gypsum board on the interior side, which served as control or a baseline for evaluation of the PCM wallboards. The walls were instrumented with arrays of thermocouples and heat flux transducers. Further, numerical modeling of the walls containing the nano-PCM wallboards were performed to determine their actual impact on wall-generated heating and cooling loads. The models were first validated using field data, and then used to perform annual simulations using Typical Meteorological Year (TMY) weather data. This article presents the measured performance and numerical analysis to evaluate the energy-saving potential of the nano-PCM-enhanced building components.

Biswas, Kaushik [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL

2013-08-01T23:59:59.000Z

26

Experimental Method to Determine the Energy Envelope Performance of Buildings  

E-Print Network [OSTI]

; ? Solar supply; ? Ventilation and airflow losses ? Distributions losses The method is based on the following equation which translates the energy balance of a building's envelope: g1847g3029g3048g3036g3039g3031g3036g3041g3034 g1499 g4666g1846 g3036g...3041g3046 g3036g3031g3032 g3398 g1846 g3042g3048g3047g3046g3036g3031g3032 g4667 g3404 g3533 g1843 g3046g3048g3043g3043g3039g3052 g3398 g3533 g1843g3039g3042g3046g3046g3032g3046 With Ubuilding : thermal performance envelope Qsupply : energy supply...

Berger, J.; Tasca-Guernouti, S. T.; Humbert, M.

2010-01-01T23:59:59.000Z

27

Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998  

E-Print Network [OSTI]

;1 Proceedings of the Thermal Performance of the Exterior Envelopes of Buildings VII, December 7-11, 1998LBNL-41443 IS-390 Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998 The research reported

28

RESEARCH BUILDING AT NORTHWESTERN  

E-Print Network [OSTI]

BIOMEDICAL RESEARCH BUILDING AT NORTHWESTERN MEDICINE #12;"Our new Biomedical Research Building-intensive medical schools. Perkins+Will has designed a building that will be superbly functional and have great a magnificent 12-story Biomedical Research Building to address this priority. The new 600,000 square foot

Engman, David M.

29

Thermal insulation standards for residential building envelopes in Iran  

SciTech Connect (OSTI)

This project develops thermal-insulation standards for residential-building envelopes in Iran which would later serve as the groundwork for development of thermal-insulation regulations in the country. The energy performance of the opaque components of present common construction systems was studied. The results clearly indicate the need for improvement of the energy performance of building components through the application of thermal insulation. The initial cost of insulating the building varied from 2.0-3.5% of the total construction cost, depending on the climate location, form and size of the building. Discounted pay-back period ranged from two to four years. Component performance standards were developed with prescriptive recommendations to meet with the level of technical skills of the parties involved in the implementation and control of standards. The macro-economic assessment of insulation standards proves annual savings of billions of Rials on the national level and also the creation of more jobs in construction-related industries.

Eslami, H.M.

1987-01-01T23:59:59.000Z

30

Window and Envelope Technologies Overview - 2014 BTO Peer Review...  

Energy Savers [EERE]

Research and Development Roadmap: Windows and Building Envelope Research & Development Roadmap: Emerging Water Heating Technologies Research & Development Roadmap: Emerging HVAC...

31

Regionalism and the design of low-rise building envelope systems  

E-Print Network [OSTI]

This investigation proposes the use of a three-pronged approach to evaluating building envelopes for low-rise affordable housing in urban contexts: construction cost estimating, building performance modeling, and cradle ...

Tapia, Jason W. (Jason Wilfredo)

2010-01-01T23:59:59.000Z

32

Impact of Columns and Beams on the Thermal Resistance of the Building Envelope  

E-Print Network [OSTI]

of the buildings envelope. Multi-dimensional heat transfer method was implemented to assess the magnitude of this effect and then to incorporate this in a whole building energy simulation program to assess the impact on the overall thermal performance...

Omar, E.

2002-01-01T23:59:59.000Z

33

Evaluation of energy savings related to building envelope retrofit techniques and ventilation strategies for low energy cooling in  

E-Print Network [OSTI]

Evaluation of energy savings related to building envelope retrofit techniques and ventilation strategies for low energy cooling in offices and commercial sector Laurent Grignon-Mass, Dominique Marchio-use Efficiency Research Group Abstract The energy savings achievable in the end-use space cooling depend

Paris-Sud XI, Universit de

34

The Research Building Blocks  

E-Print Network [OSTI]

The Research Building Blocks For Teaching Children to Read Third Edition Put Reading First Kindergarten Through Grade 3 Third Edition #12;#12;The Research Building Blocks for Teaching Children to Read Centers Program, PR/Award Number R305R70004, as administered by the Office of Educational Research

Rau, Don C.

35

NREL Buildings Research Video  

ScienceCinema (OSTI)

Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campus?the first Federal building to be LEED Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility. For a text version of this video visit http://www.nrel.gov/buildings/about_research_text_version.html

None

2013-05-29T23:59:59.000Z

36

Building America Webinar: Building America Research Tools | Department...  

Energy Savers [EERE]

Building America Research Tools Building America Webinar: Building America Research Tools This webinar was held on March 18, 2015, and reviewed Building America research tools,...

37

Advanced Envelope Research for Factory Built Housing, Phase 3 -- Whole-House Prototyping  

SciTech Connect (OSTI)

The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing new envelope technologies. This work is part of a multi-phase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall design with exterior continuous insulation (CI). Phase 3, completed in two stages, continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.

Levy, E.; Mullens, M.; Rath, P.

2014-04-01T23:59:59.000Z

38

Advanced Envelope Research for Factory Built Housing, Phase 3 -- Design Development and Prototyping  

SciTech Connect (OSTI)

The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet the thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.

Levy, E.; Kessler, B.; Mullens, M.; Rath, P.

2014-01-01T23:59:59.000Z

39

HEAT RECOVERY IN BUILDING ENVELOPES Max H. Sherman and Iain S. Walker  

E-Print Network [OSTI]

1 LBNL 47329 HEAT RECOVERY IN BUILDING ENVELOPES Max H. Sherman and Iain S. Walker Energy formula may produce an unreasonably high contribution because of heat recovery within the building physical model has been developed and used to predict the infiltration heat recovery based on the Peclet

40

Passive solar buildings research  

SciTech Connect (OSTI)

This chapter covers research advances in passive solar buildings research during the time span from 1982 through 1991. These advances fall within the following categories: (1) short-term energy monitoring, (2) heat transport by natural convection within buildings, and (3) design guidelines and design tools. In short-term energy monitoring, a simulation model of the building is calibrated, based on data taken in a 3-day test. The method accurately predicts performance over an extended period. Heat transport through doorways is characterized for complex situations that arise in passive solar buildings. Simple concepts and models adequately describe the energy transport in many situations of interest. In a new approach, design guidelines are automatically generated for any specific locality. Worksheets or an accompanying computer program allow the designer to quickly and accurately evaluate performance and investigate design alternatives. 29 refs., 19 figs., 2 tabs.

Balcomb, J.D.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Webinar: Introduction to Pre-engineered Metal Building Envelope Commissioning  

Office of Energy Efficiency and Renewable Energy (EERE)

The metal building industry produces more than 50% of all new low-rise nonresidential construction in the United States. These buildings serve many different end uses, including commercial,...

42

Building America Case Study: Predicting Envelope Leakage in Attached Dwellings (Fact Sheet)  

SciTech Connect (OSTI)

'The cost for blower testing is high, because it is labor intensive, and it may disrupt occupants in multiple units. This high cost and disruption deters program participants, and dissuades them from pursuing energy improvements that would trigger air leakage testing, such as improvements to the building envelope.' This statement found in a 2012 report by Heschong Mahone Group emphasizes the importance of reducing the cost and complexity of blower testing in multifamily buildings. Energy efficiency opportunities are being bypassed. The cost of single blower testing is on the order of $300. The cost for guarded blower door testing, the more appropriate test for assessing energy savings opportunities, could easily be six times that and that's only if you have the equipment and simultaneous access to multiple apartments. Thus, the proper test is simply not performed. The objective of the 2013 research project was to develop the model for predicting fully guarded test results (FGT), using unguarded test data and specific building features of apartment units. The model developed has a coefficient of determination R2 value of 0.53 with a root mean square error (RMSE) of 0.13. Both statistical metrics indicate that the model is relatively strong. When tested against data that was not included in the development of the model, prediction accuracy was within 19%, which is reasonable given that seasonal differences in blower door measurements can vary by as much as 25%.

Not Available

2014-12-01T23:59:59.000Z

43

The Thermal Test and Analysis of Envelope in Existing Buildings  

E-Print Network [OSTI]

). The thickness of polystyrene slab is in Tab .3. ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol. VI-5-2 The temperature and the heat flux distributing of wall are shown in Fig.2 and Fig.3. Tab. 2... The temperature distributing of wall ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol. VI-5-2 Fig3. The heat flux distributing of wall 5 CONCLUSIONS Through the thermal testing, calculation...

Liu, X.; Li, X.; Sun, J.; Wang, Z.

2006-01-01T23:59:59.000Z

44

Inclusion of Building Envelope Thermal Lag Effects in Linear Regression Models of Daily Basis Building Energy Use Data  

E-Print Network [OSTI]

Inclusion?of?Building?Envelope?Thermal?Lag? Effects?in?Linear?Regression?Models?of?Daily? Basis?Building?Energy?Use?Data The?12th International?Conference?for?Enhanced?Building?Operations October?22nd?26th,?2012 Manchester,?UK Hiroko...?for?simple?energy?performance?analysis ? 24?hour?cycle?variations?are?averaged?out?in?daily?data. ? The?dominant?driving?terms?of?most?buildings?follow?a?24?h?cycle.?(Rabl,?1992)? solar?irradiance,?OA?temperature,?ventilation,?occupancy?level,?lights?and?equipment?loads,? delayed?loads?due?to?thermal...

Masuda, H.; Claridge, D. E.

2012-01-01T23:59:59.000Z

45

Cost Analysis of Simple Phase Change Material-Enhanced Building Envelopes in Southern U.S. Climates  

SciTech Connect (OSTI)

Traditional thermal designs of building envelope assemblies are based on static energy flows, yet building envelopes are subject to varying environmental conditions. This mismatch between the steady-state principles and their dynamic operation can decrease thermal efficiency. Design work supporting the development of low-energy houses showed that conventional insulations may not always be the most cost effective solution to improvement envelope thermal performance. PCM-enhanced building envelopes that simultaneously reduce the total cooling loads and shift the peak-hour loads are the focus of this report.

Kosny, J.; Shukla, N.; Fallahi, A.

2013-01-01T23:59:59.000Z

46

Determining Adaptability Performance of Artificial Neural Network-Based Thermal Control Logics for Envelope Conditions in Residential Buildings  

E-Print Network [OSTI]

This study examines the performance and adaptability of Artificial Neural Network (ANN)-based thermal control strategies for diverse thermal properties of building envelope conditions applied to residential buildings. The thermal performance using...

Moon, Jin Woo; Chang, Jae D.; Kim, Sooyoung

2013-07-18T23:59:59.000Z

47

Expert Meeting Report: Advanced Envelope Research for Factory Built Housing  

SciTech Connect (OSTI)

This report provides information about the expert meeting on advanced envelope research for factory built housing, hosted by the ARIES Collaborative on October 11, 2011, in Phoenix, Arizona. The goals of this meeting were to provide a comprehensive solution to the use of three previously selected advanced alternatives for factory-built wall construction, assess each option focusing on major issues relating to viability and commercial potential, and determine additional steps are required to reach this potential.

Levy, E.; Mullens, M.; Tompos, E.; Kessler, B.; Rath, P.

2012-04-01T23:59:59.000Z

48

An Analysis of Building Envelope Upgrades for Residential Energy Efficiency in Hot and Humid Climates  

E-Print Network [OSTI]

type, and HV AC and DHW system type were determined from the housing survey data by the National Association of Home Builders (NAHB 2003) and the U.S. Census Bureau (USCB 2002). The characteristics of the building envelope, efficiency of HV AC... of Improved Fenestration for Code-Compliant Residential Buildings in Hot and Humid Climates. M.S. Thesis. College Station, TX: Texas A&M University. NAHB. 2003. The Builders Practices Survey Reports. National Association of Home Builders. Upper Marlboro...

Malhotra, M.; Haberl, J.

49

DYNAMIC THERMALLY-DISCONNECTED BUILDING ENVELOPES A NEW PARADIGM FOR WALLS AND ROOFS IN LOW ENERGY BUILDINGS  

SciTech Connect (OSTI)

This paper describes numerical and experimental analysis of a novel design concept. Traditionally the thermal design of building envelope assemblies is based on a static energy flow. However, building envelopes are subject to varying environmental conditions. This mismatch between the steady-state principles used in the design of roofs and walls and their dynamic operation results in relatively low thermal efficiency. Design work in support of the development of zero energy houses showed that conventional insulations may not be the most cost effective energy solution. Testing conducted on several strategies to thermally-disconnect wall and roof components showed 70% to 90% reductions in peak hour loads as compared to conventional building practice.

Miller, William A [ORNL] [ORNL; Kosny, Jan [ORNL] [ORNL; Zaltash, Abdolreza [ORNL] [ORNL

2010-01-01T23:59:59.000Z

50

Building America Webinar: Building America: Research for Real...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building America Webinar: Building America: Research for Real-World Results Building America Webinar: Building America: Research for Real-World Results December 17, 2014 3:00PM to...

51

Building Technologies Research and  

E-Print Network [OSTI]

Impact of Buildings Centers of Excellence · 40% of total primary energy consumption · 74% of electricity consumption · 56% of natural gas consumption (including gas-generated electricity used in buildings) · 39 the nation accounts for its energy consumption, making the energy savings potential even greater. National

Oak Ridge National Laboratory

52

Advanced Envelope Research for Factory Built Housing, Phase 3...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting...

53

NREL: Buildings Research - Webinar Rescheduled: Material Handling...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

attend this webinar. Printable Version Buildings Research Home Commercial Buildings Residential Buildings Facilities Working with Us Publications News Did you find what you...

54

Building | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services »"Building theBuilding We're

55

Energy Impacts of Nonlinear Behavior of PCM When Applied into Building Envelope: Preprint  

SciTech Connect (OSTI)

Previous research on phase change materials (PCM) for building applications has been done for several decades resulting in plenty of literature on PCM properties, temperature, and peak reduction potential. Thus, PCMs are a potential technology to reduce peak loads and HVAC energy consumption in buildings. There are few building energy simulation programs that have PCM modeling features, and even fewer have been validated. Additionally, there is no previous research that indicates the level of accuracy when simulating PCM from a building energy simulation perspective. This study analyzes the effects a nonlinear enthalpy profile has on thermal performance and expected energy benefits for PCM-enhanced insulation.

Tabares-Velasco, P. C.

2012-08-01T23:59:59.000Z

56

Building America System Research  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev next > Sun Mon TueBuilding America System

57

Building | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBESEnergyArchaeology onEnergyAbout

58

Building America Expert Meeting: Advanced Envelope Research for Factory  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4,Brent NelsonEvaluationHomes and EnergyfromBuilt

59

Research and Development Roadmap: Windows and Building Envelope |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department ofRequirements Crosswalk|Simulators and

60

Building Technologies Research and Integration Center | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Integration Center October 02, 2014 Today, through the Building Technologies Research and Integration Center (BTRIC) and associated Centers of Excellence, ORNL applies...

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998  

E-Print Network [OSTI]

LBNL-41694 BS-384 Proceedings of the ASHRAE/DOE/BTECC Conference, Thermal Performance of the Exterior Envelopes of Buildings VII, Clearwater Beach, Florida, December 7-11, 1998 This work was supported

62

Proceedings of Thermal VII, Thermal Performance of the Exterior Envelopes of Buildings,  

E-Print Network [OSTI]

LBNL-42871 BS-400 Proceedings of Thermal VII, Thermal Performance of the Exterior Envelopes locations. The user describes the physical, thermal and optical properties of the windows in each

63

Establishing research directions in sustainable building design  

E-Print Network [OSTI]

Establishing research directions in sustainable building design: Koen Steemers The Martin Centre Research Technical Report 5 #12;Final Project Report Establishing research directions in sustainable building design Project ID Code: IT 1.28 Lead Investigator: Dr. Koen Steemers Period: 1st July 2001 to 30th

Watson, Andrew

64

Buildings of the Future Research Project Launch and Virtual Panel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Buildings of the Future Research Project Launch and Virtual Panel Discussion on Building Technology Trends Buildings of the Future Research Project Launch and Virtual Panel...

65

Integrated Hygrothermal Performance of Building Envelopes and Systems in Hot and Humid Climates  

E-Print Network [OSTI]

Technology Center VTT Building Technology, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Espoo, Finland Building Technology Center, Oak Ridge, Tennessee, US Oak Ridge, Tennessee, US ABSTRACT In hot and humid climates the interior... retarders reduce risk of moisture damage, Proceedings of the 4th Symposium, Building Physics in the Nordic Countries, Espoo, Finland, Sept. 9-10, pp.447-454. Karagiozis, A. and Hadjisophocleous G. "Wind- Driven Rain on High-Rise Buildings", Thermal...

Karagiozis, A. N.; Desjarlais, A.; Salonvaara, M.

2000-01-01T23:59:59.000Z

66

Advanced Commercial Buildings Research; Electricity, Resources, & Building Systems Integration (Fact Sheet)  

SciTech Connect (OSTI)

Factsheet describing the Advanced Commercial Buildings Research group within NREL's Electricity, Resources, and Buildings Systems Integration Center.

Not Available

2009-09-01T23:59:59.000Z

67

Solar Buildings Research Network A brief overview  

E-Print Network [OSTI]

Solar Buildings Research Network A brief overview Andreas Athienitis, Scientific Director Meli Stylianou, Network Manager #12;VISION Development of the solar-optimized building as an integrated advanced not mean complex; it brings together "low-tech" passive solar technologies that appear simple but generally

Wu, Bin

68

ResearchArticle BuildingThermal,Lighting,  

E-Print Network [OSTI]

ResearchArticle BuildingThermal,Lighting, andAcousticsModeling E-mail: yanda@tsinghua.edu.cn A detailed loads comparison of three building energy modeling programs: EnergyPlus, DeST and DOE-2.1E Dandan and partitions. This comparison study did not produce another test suite, but rather a methodology to design

69

Comparison of Building Energy Efficiency and Life Span for Different Envelopes  

E-Print Network [OSTI]

from 500C to 800C annually in cold and humid climates. The investigation results indicates that the external heat preservation wall mode is better compared with the internal heat preservation wall mode, and the former can effectively extend building...

Li, Z.; Li, D.; Li, L.; Zhang, G.; Liu, J.

2006-01-01T23:59:59.000Z

70

The Framework of an Optimization Model for the Thermal Design of Building Envelopes  

E-Print Network [OSTI]

Careful long term decisions in the design and operation of buildings can significantly improve the thermal performance and thus reduce the consumption of energy. The availability and ease of use of today's computers can be a sigruficant benefit...

Al-Homoud, M. S.; Degelman, L. O.; Boyer, L. L.

1994-01-01T23:59:59.000Z

71

Building America Special Research Project: High-R Walls Case...  

Office of Environmental Management (EM)

Building America Special Research Project: High-R Walls Case Study Analysis Building America Special Research Project: High-R Walls Case Study Analysis This report considers a...

72

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (http://www.hvac.okstate.edu).  

E-Print Network [OSTI]

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group that is typically only the case for envelope-dominated buildings in a given location. Reasonably constant ground thermal properties between locations for which the rule-of-thumb would be applied. The main example

73

Building Technologies Office Window and Envelope Technologies Emerging Technologies R&D Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev nextInvestigationofBuilding Technologies

74

Advances in Understanding Durability of the Building Envelope | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScienceScripting forAdvancesAdvances

75

2013 Building America Research Planning Meeting Summary  

SciTech Connect (OSTI)

The Building America (BA) Research Planning Meeting was held October 28-30, 2013, in Washington, DC. This meeting provides one opportunity each year for the research teams, national laboratories and Department of Energy (DOE) managers to meet in person to share the most pertinent information and collaboration updates. This report documents the presentations, highlights key program updates, and outlines next steps for the program.

Metzger, C. E.; Hunt, S.

2014-02-01T23:59:59.000Z

76

Building Envelope Design/Retrofit Utilizing Fresnel Type Overhangs in Hot Climates  

E-Print Network [OSTI]

. "Defining visual responses in lighting design and research" . . -, May 1984. 16. Hanley, William "Lighting in the Twenty-First Century, Part II", -, May 1990, p. 52 - 53. 17. Heerwagen, Judith H. and Dean R. Heerwagen "Energy and Psychology...: Designing for a 'State of Mind'", Journaltectu Education 1984, p. 34 - 37. 18. Heerwagen Judith H. and Dean R. Heerwagen "Lighting 6 Psychological Comfort", . . n & -, 1986, p. 47 - 51. 19. Lam, William M. C. . . rver for Ar-tectu, New York: Van...

Ryan, B. J.; Griffith, J. W.

1990-01-01T23:59:59.000Z

77

System-Level Monitoring and Diagnosis of Building HVAC System  

E-Print Network [OSTI]

Y. Shu, Building envelope regulations on thermal comfort inof the building envelope on indoor thermal behavior, serveof the building envelope on indoor thermal behavior. This is

Wu, Siyu

2013-01-01T23:59:59.000Z

78

Building America: Research for Real-World Results | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building America: Research for Real-World Results Building America: Research for Real-World Results December 17, 2014 3:00PM to 4:30PM EST For 20 years, the U.S. Department of...

79

Simulation as a Tool to Develop Guidelines of Envelope Design of a Typical Office Building in Egypt  

E-Print Network [OSTI]

This paper describes the use of building performance simulation software in order to develop guidelines for designing energy-efficient office building. In Egypt energy codes for all building types are being under development. On the other hand...

Samaan, M.M.; Ahmed, A.N.; Farag, O.M.A.; El-Sayed Khalil, M.

2011-01-01T23:59:59.000Z

80

Office of the Vice President for Research 203 Administration Building  

E-Print Network [OSTI]

Office of the Vice President for Research 203 Administration Building Fort Collins, Colorado 80523 of the Vice President for Research. The Institute builds on the long history of broad work in energy at the Powerhouse Energy Institute (when that building is completed in 2014) and Engines & Energy Conversion

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,  

E-Print Network [OSTI]

, ventilating, and air-conditioning (HVAC) accounts for 17% of the nation's primary energy consumption. However and North America. Scaling envelope improve- ments in the market is now feasible without fear of unintended

Oak Ridge National Laboratory

82

Industry Research and Recommendations for New Commercial Buildings  

SciTech Connect (OSTI)

Researchers evaluated industry needs and developed logic models to support possible future commercial new construction research and deployment efforts that could be led or supported by DOE's Commercial Building Integration program or other national initiatives. The authors believe that these recommendations support a proposed course of action from the current state of commercial building energy efficiency to a possible long-term goal of achieving significant market penetration of cost-effective NZE buildings in all building sectors and climates by 2030.

Hendron, B.; Leach, M.; Gregory, N.; Pless, S.; Selkowitz, S.; Matthew, P.

2014-05-01T23:59:59.000Z

83

Energy ForesightNordic H2 Building the Nordic Research  

E-Print Network [OSTI]

H2 Energy ForesightNordic H2 Building the Nordic Research and Innovation Area in Hydrogen Summary Report January 2005 #12;#12;Energy ForesightNordic H2 Building the Nordic Research and Innovation Area Region 7 Competitiveness of Nordic Countries 7 Research and Development in New Energy Technologies 8

84

Research on Very Low-Energy Building Operations and Management...  

Energy Savers [EERE]

Documents The new building wing of the Saint-Gobain Research Shanghai facility, where LBNL is field testing comercialized electrochromic windows. Advanced Window and Shading...

85

Research & Development Needs for Building-Integrated Solar Technologie...  

Energy Savers [EERE]

photovoltaic-thermal systems (PVT), active solar lighting, and building-integrated photovoltaics (BIPV). View the full report Report: Research & Development Needs for...

86

Building America Research Benchmark Definition: Updated December 19, 2008  

SciTech Connect (OSTI)

To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams.

Hendron, R.

2008-12-01T23:59:59.000Z

87

Building America Research for the American Home  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE) Building America program is helping to engineer American homes for better energy performance, durability, quality, affordability, and comfort.

88

Building America Expert Meeting: Foundations Research Results...  

Energy Savers [EERE]

Key results were: * Greater understanding of the role of moisture transport through foundation and insulation materials and its potential impact on building durability * Greater...

89

Track 2 _ A Green Building for Green Research The Problem NIATT Sustainable Transit Research Facility  

E-Print Network [OSTI]

1 Track 2 _ A Green Building for Green Research The Problem NIATT Sustainable Transit Research President Tim White's Commitment to a Green Building The Concerns On-site water retention and treatment Building for Green Research Let's Make This Happen #12;

Kyte, Michael

90

Research Support Facility (RSF): Leadership in Building Performance (Brochure)  

SciTech Connect (OSTI)

This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

Not Available

2011-09-01T23:59:59.000Z

91

Building Technologies Research and Integration Center Reducing the energy consumption of the nation's buildings is  

E-Print Network [OSTI]

2/21/2011 Building Technologies Research and Integration Center Reducing the energy consumption: systems (supermarket refrigeration, ground-source, CHP, multi-zone HVAC, wireless and other communications of the nation's buildings is essential for achieving a sustainable clean energy future and will be an enormous

Oak Ridge National Laboratory

92

Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint  

SciTech Connect (OSTI)

Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

2012-08-01T23:59:59.000Z

93

Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed  

E-Print Network [OSTI]

and a core zone. The envelope thermal properties meet ASHRAEis the thermal zone and the building envelope model that was

Wetter, Michael

2012-01-01T23:59:59.000Z

94

Report for College of Engineering 4117 Engineering Research Building I  

E-Print Network [OSTI]

.............................................................................................................3 Committee and Other Engineering Service.....................................................................................................................................7 Services for Engineering Graduate Student InstructorsReport for College of Engineering 2008-2009 4117 Engineering Research Building I 2200 Bonisteel

Eustice, Ryan

95

Building America Research Teams: Spotlight on Home Innovation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home Innovation and PARR Building America Research Teams: Spotlight on Home Innovation and PARR April 9, 2015 - 10:55am Addthis This article continues our series of profiles about...

96

An Overview of the Building Energy Retrofit Research Program  

E-Print Network [OSTI]

This research update presents the status of a U.S. Department of Energy program that addresses the technical, financial, and behavioral barriers to improving the energy efficiency of existing buildings. The program is implemented with expertise from...

Mixon, W. R.

1988-01-01T23:59:59.000Z

97

STEEL PLATE SHEAR WALL BUILDINGS: DESIGN REQUIREMENTS AND RESEARCH  

E-Print Network [OSTI]

STEEL PLATE SHEAR WALL BUILDINGS: DESIGN REQUIREMENTS AND RESEARCH Michel Bruneau, P.E. 1 Dr. Bruneau is conducting research on the seismic evaluation and retrofit of existing steel bridges, steel of this research, and has co- authored the book "Ductile Design of Steel Structures" published in 1997 by Mc

Bruneau, Michel

98

Dynamic building enclosures : the design of an innovative constructive system which permits mechanically-driven, computer-controlled shape transformations to the building envelope  

E-Print Network [OSTI]

Dynamic Building Enclosures is a system of prefabricated, lightweight, kit-of-parts wall and/or roof elements. This system has the unique capability of dynamically altering, or mutating its shape in reaction to changing ...

Nelson, Eric (Eric Freeman), 1964-

1998-01-01T23:59:59.000Z

99

Research and Application of RCF Technology in Public Building  

E-Print Network [OSTI]

, China, September 14-17, 2014 Research and Application of RCF Technology in Public Buildings 7. REFERENCES ASHRAE, 2013, 2013 Handbook-Fundamental, Thermal Comfort, American Society of Heating, refrigeration and Air-Conditioning Engineers, Inc...Radiant Ceiling plus Fresh Air Research and Application of RCF Technology in Public Buildings ???????????? AirStar Air Conditioning Technology Group (HK) Ltd ?????????? AirStar Environment Technology Group Ltd ?????????????? YanTong Zhu...

Yan, J.; Pan, D.

2014-01-01T23:59:59.000Z

100

Windows and Building Envelope Research and Development: Roadmap for Emerging Technologies  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy WindR&D Roadmap For

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Building America Research Teams: BSC and CARB-20 Years of Advancing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building America Research Teams: BSC and CARB-20 Years of Advancing High Performance Homes Building America Research Teams: BSC and CARB-20 Years of Advancing High Performance...

102

Building America Residential Energy Efficiency Research Planning...  

Broader source: Energy.gov (indexed) [DOE]

Research Planning meeting in October 2011, held in Washington, D.C. Residential Energy Efficiency Planning Meeting Summary Report More Documents & Publications Residential Energy...

103

Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings  

E-Print Network [OSTI]

Building Environment and Thermal Envelope Council (BETEC)of Thermal Performance of the Exterior Envelopes ofof the Thermal Performance of the Exterior Envelopes of

Price, P.N.

2011-01-01T23:59:59.000Z

104

Building America Research Tools | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudget Formulation &andResearch Tools

105

BTRIC | Building Tech Research Integration Center | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperiment Rainarticle featuredAbout

106

Building America Research Benchmark Definition: Updated December 20, 2007  

SciTech Connect (OSTI)

To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. Unlike the reference homes used for HERS, EnergyStar, and most energy codes, the Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without the complication of chasing a 'moving target'.

Hendron, R.

2008-01-01T23:59:59.000Z

107

Building America Research Benchmark Definition, Updated December 15, 2006  

SciTech Connect (OSTI)

To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. Unlike the reference homes used for HERS, EnergyStar, and most energy codes, the Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without the complication of chasing a ''moving target''.

Hendron, R.

2007-01-01T23:59:59.000Z

108

Building America Research Benchmark Definition: Updated August 15, 2007  

SciTech Connect (OSTI)

To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. Unlike the reference homes used for HERS, EnergyStar, and most energy codes, the Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without the complication of chasing a 'moving target'.

Hendron, R.

2007-09-01T23:59:59.000Z

109

Page 1 of 42 BUILDING ENERGY RESEARCH GRANT  

E-Print Network [OSTI]

at the UC Davis Engineering Shop, and John McNamara of Lightning Demolition were essential to onPage 1 of 42 BUILDING ENERGY RESEARCH GRANT (BERG) PROGRAM BERG FINAL REPORT Improving Cost Effectiveness of Radiant Floor Cooling University of California, Davis Western Cooling Efficiency Center 1450

California at Davis, University of

110

Research scoping report: visualizing information in commercial buildings  

E-Print Network [OSTI]

and demand response in commercial buildings," Lawrencefor basic building monitoring, demand response, enterprise

Lehrer, David

2009-01-01T23:59:59.000Z

111

Building America Research Benchmark Definition, Updated December 29, 2004  

SciTech Connect (OSTI)

To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, the U.S. Department of Energy (DOE) Residential Buildings Program and the National Renewable Energy Laboratory (NREL) developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. A series of user profiles, intended to represent the behavior of a ''standard'' set of occupants, was created for use in conjunction with the Benchmark.

Hendron, R.

2005-02-01T23:59:59.000Z

112

Text-Alternative Version of Building America Webinar: Research for Real-World Results  

Broader source: Energy.gov [DOE]

This webinar, held on Dec. 17, 2014, featured Eric Werling, Building America Program Coordinator, providing an overview of key Building America accomplishments, current research focus areas, and future strategies for advancing market adoption of energy efficient building technologies and practices.

113

School building short listed for prestigious sustainability award The Zuckerman Institute for Connective Environmental Research building in the School  

E-Print Network [OSTI]

School building short listed for prestigious sustainability award The Zuckerman Institute for Connective Environmental Research building in the School has been short listed for the `Outstanding as follows: "In 1994 the University of East Anglia erected its award-winning Elizabeth Fry Building, dubbed

Everest, Graham R

114

Building Envelopes | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services » PPPOAmerica »of

115

Russias R&D for Low Energy Buildings: Insights for Cooperation with Russia  

SciTech Connect (OSTI)

Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

Schaaf, Rebecca E.; Evans, Meredydd

2010-05-01T23:59:59.000Z

116

Energy Savings Through Improved Mechanical Systems and Building...  

Office of Environmental Management (EM)

Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Energy Savings Through Improved Mechanical Systems and Building Envelope...

117

Building America Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet)  

SciTech Connect (OSTI)

As part of the NAHB Research Center Industry Partnership, Southface partnered with TaC Studios, an Atlanta based architecture firm specializing in residential and light commercial design, on the construction of a new test home in Atlanta, GA in the mixed-humid climate. This home serves as a residence and home office for the firm's owners, as well as a demonstration of their design approach to potential and current clients. Southface believes the home demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system. Construction quality and execution was a high priority for TaC Studios and was ensured by a third party review process. Post construction testing showed that the project met stated goals for envelope performance, an air infiltration rate of 2.15 ACH50. The homeowner's wished to further validate whole house energy savings through the project's involvement with Building America and this long-term monitoring effort. As a Building America test home, this home was evaluated to detail whole house energy use, end use loads, and the efficiency and operation of the ground source heat pump and associated systems. Given that the home includes many non-typical end use loads including a home office, pool, landscape water feature, and other luxury features not accounted for in Building America modeling tools, these end uses were separately monitored to determine their impact on overall energy consumption.

Not Available

2014-09-01T23:59:59.000Z

118

Commercial Building Energy Asset Rating Program -- Market Research  

SciTech Connect (OSTI)

Under contract to Pacific Northwest National Laboratory, HaydenTanner, LLC conducted an in-depth analysis of the potential market value of a commercial building energy asset rating program for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. The market research objectives were to: (1) Evaluate market interest and need for a program and tool to offer asset rating and rapidly identify potential energy efficiency measures for the commercial building sector. (2) Identify key input variables and asset rating outputs that would facilitate increased investment in energy efficiency. (3) Assess best practices and lessons learned from existing national and international energy rating programs. (4) Identify core messaging to motivate owners, investors, financiers, and others in the real estate sector to adopt a voluntary asset rating program and, as a consequence, deploy high-performance strategies and technologies across new and existing buildings. (5) Identify leverage factors and incentives that facilitate increased investment in these buildings. To meet these objectives, work consisted of a review of the relevant literature, examination of existing and emergent asset and operational rating systems, interviews with industry stakeholders, and an evaluation of the value implication of an asset label on asset valuation. This report documents the analysis methodology and findings, conclusion, and recommendations. Its intent is to support and inform the DOE Office of Energy Efficiency and Renewable Energy on the market need and potential value impacts of an asset labeling and diagnostic tool to encourage high-performance new buildings and building efficiency retrofit projects.

McCabe, Molly J.; Wang, Na

2012-04-19T23:59:59.000Z

119

Research scoping report: visualizing information in commercial buildings  

E-Print Network [OSTI]

display the buildings carbon footprint with a numericalto reduce their personal carbon footprint. (Holmes 2007) The

Lehrer, David

2009-01-01T23:59:59.000Z

120

Sizing Thermally Activated Building Systems (TABS): A Brief Literature Review and Model Evaluation  

E-Print Network [OSTI]

m 2 /W Thermal resistance of the building envelope, K-m 2 /Wtemperature, envelope, slab and tubing thermal resistance,

Basu, Chandrayee; Schiavon, Stefano; Bauman, Fred

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fenestration of Today and Tomorrow: A State-of-the-Art Review and Future Research Opportunities  

E-Print Network [OSTI]

interesting for the thermal building envelope and may thuspart of the thermal and solar building envelope. The phasethe Thermal Performance of the Exterior Envelopes of Whole

Petter Jelle, Bjorn

2013-01-01T23:59:59.000Z

122

ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

Plan for Building Thermal Envelope Systems and Insulatingwith the recently developed Thermal Envelopes and Insulatinga new device A the Envelope Thermal Testing Unit (ETTU),~ .

Sonderegger, R. C.

2011-01-01T23:59:59.000Z

123

Building Technologies Research and Integration Center | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services » PPPOAmericaS Feb 10,BuildingResearch

124

University of Rochester Medical Center / Saunders Research Building Entrance to Saunders  

E-Print Network [OSTI]

Building 265 Crittenden Boulevard From Syracuse and the East NYS Thruway (I-90 West) to Exit 46 (RochesterUniversity of Rochester Medical Center / Saunders Research Building Visitor Parking Entrance to Saunders Research Building New York State Thruway University of Rochester Medical Center Enlarged Detail

Goldman, Steven A.

125

Over the Energy Edge: Results from a Seven Year New Commercial Buildings Research and Demonstration Project  

E-Print Network [OSTI]

Over the Energy Edge: Results from a Seven Year New Commercial Buildings Research and Demonstration that began in 1985. Twenty-eight commercial buildings were designed and constructed to use 30% less was a research-oriented demonstration of energy efficiency in 28 new commercial buildings that provided Northwest

Diamond, Richard

126

Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings  

E-Print Network [OSTI]

The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass...

Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

2010-01-01T23:59:59.000Z

127

System design and dynamic signature identification for intelligent energy management in residential buildings.  

E-Print Network [OSTI]

climates, Journal of Thermal Envelope and Building Science ,the eectiveness of the envelope's thermal insulation on theBuilding 3.1.1 Thermal properties The envelope of a building

Jang, Jaehwi

2008-01-01T23:59:59.000Z

128

Building America Webinar: Building America: Research for Real-World Results  

Broader source: Energy.gov [DOE]

This webinar was conducted on December 17, 2014, by Eric Werling, Building America Program Coordinator.

129

Research on the Statistical Method of Energy Consumption for Public Buildings in China  

E-Print Network [OSTI]

The purpose of this research is to develop a national statistical system for energy consumption data for public buildings in China, in order to provide data support for building energy efficiency work. The framework for a national statistical system...

Chen, S.; Li, N.

2006-01-01T23:59:59.000Z

130

Buildings of the Future Research Project Launch and Virtual Panel Discussion on Building Technology Trends  

Broader source: Energy.gov [DOE]

Learn more about the DOE's Buildings of the Future Project. Buildings will no longer be passive objects that consume resources, but rather active participants engaged in the energy system and our community.

131

Building America Webinar: Building America: Research for Real-World Results  

Broader source: Energy.gov [DOE]

For 20 years, the U.S. Department of Energys (DOE) Building America program has been a source of innovations for high performance homes. Join Eric Werling, Building America Program Coordinator,...

132

A marine research lab in Maine : building coastal identity  

E-Print Network [OSTI]

If the design of a building originates from the place in which it is built, from the social traditions of that place, and from building traditions which are specific to local materials and climate, then it will project an ...

Marinace, F. Paul (Frank Paul)

1995-01-01T23:59:59.000Z

133

Building America Research Teams: BA-PIRC and IBACOS-Pioneers...  

Broader source: Energy.gov (indexed) [DOE]

This article continues our series of profiles about the Building America research teams-multidisciplinary industry partnerships that work to make high performance homes a reality...

134

Building America Systems Integration Research Annual Report: FY 2012  

SciTech Connect (OSTI)

This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

Gestwick, M.

2013-05-01T23:59:59.000Z

135

Design-Build Process for the Research Support Facility (RSF) (Book)  

SciTech Connect (OSTI)

An in-depth look at how the U.S. DOE and NREL used a performance-based design-build contract to build the Research Support Facility (RSF); one of the most energy efficient office buildings in the world.

Not Available

2012-06-01T23:59:59.000Z

136

Envelope design implications of ASHRAE Standard 90. 1P: a case study view  

SciTech Connect (OSTI)

ASHRAE recently issued a public review draft of Standard 90.1P, Energy Efficient Design of New Non-Residential Buildings and High-Rise Residential Buildings. The revisions proposed in Standard 90.1P are substantially different in structure and content from the existing Standard, especially those sections dealing with building envelope. In this paper, the envelope requirements of Standard 90.1P and their impacts on envelope design features are demonstrated. Several example buildings and locations are used to convey the underlying concepts and nature of the envelope criteria and the implications of those concepts for a variety of envelope attributes.

Crawley, D.B.; Briggs, R.S.

1985-11-01T23:59:59.000Z

137

Building system integration research: recommendations for a US Department of Energy multiyear program plan  

SciTech Connect (OSTI)

This plan describes the scope, technical content, and resources required to conduct the Building System Integration (BSI) research program during FY 1987 through 1991. System integration research is defined, the need for the research is discussed, its benefits are outlined, and the history of building system integration research is summarized. The program scope, the general approach taken in developing this program plan, and the plan's contents are also described.

Not Available

1986-01-01T23:59:59.000Z

138

Worldwide Status of Energy Standards for Buildings - Appendices  

E-Print Network [OSTI]

Other: Thermal properties of envelope; air-tightness; energyof Overall Thermal Transfer Value to Building Envelope Hongenvelope provisions: Roof Wall system Fenestration system Infiltration Other: Thermal

Janda, K.B.

2008-01-01T23:59:59.000Z

139

Research on Building Energy Consumption Situation in Shanghai  

E-Print Network [OSTI]

This paper surveys the present situation of building energy consumption in Shanghai and points out the problems of insufficient energy consumption statistics based on the survey data. We analyze the relationships of energy consumption between...

Yang, X.; Tan, H.

2006-01-01T23:59:59.000Z

140

Building America Research Benchmark Definition: Updated December 2009  

SciTech Connect (OSTI)

The Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without chasing a 'moving target.'

Hendron, R.; Engebrecht, C.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings  

E-Print Network [OSTI]

Measured Airflows in a Multifamily Building," AirflowPerformance of Building Envelopes, Components, and Systems,APARTMENTS AND COMMERCIAL BUILDINGS Price, P.N. ; Shehabi,

Price, P.N.

2011-01-01T23:59:59.000Z

142

Research on the Effect of a Planting Roof on the Thermal Load of a Business Building  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Enve lope Technologies for Building Energy Efficiency Vol.II-4-2 Research on the Effect of a Planting Roof on the Thermal Load of a Business Building Weijie Zhang Jinshun Wu Yiran Wei Xudong Gao... ICEBO2006, Shenzhen, China Enve lope Technologies for Building Energy Efficiency Vol.II-4-2 room has been made and some theoretical relations between outdoor air temperature and indoor thermal load within certain region have been...

Zhang, W.; Wu, J.; Wei, Y.; Gao, X.

2006-01-01T23:59:59.000Z

143

Research Profile Smart building materials of new generation can be decisive  

E-Print Network [OSTI]

Research Profile Smart building materials of new generation can be decisive for a wiser use the potential for a breakthrough in design of sustainable smart compounds.The conundrum is to control and design-performance computing and numerical simu- lation tools Microstructure and Rheology of Building Materials CONTACT Prof

Sandoghdar, Vahid

144

5 ways McGill researchers are BUILDING YOUR FUTURE  

E-Print Network [OSTI]

you. COVER STORIES 15 Building Your Future Forget about jet-packs. The real world of tomorrow-engineering projects 25 Future Engines Getting more bang out of biofuels 28 Future Farms A five-point plan for growing efficient. A few years from now, the cars zipping past may be propelled by Earth-friendly biofuels, thanks

Fabry, Frederic

145

Research Administration Discussion Group (RADG) Building Bridges to Navigate Organizational Structures  

E-Print Network [OSTI]

as individual administrators navigate within existing organizational structures to maximize efficiency Research Administration Discussion Group (RADG) Building Bridges to Navigate Organizational organizational experiences and business processes, particularly at the nexus of pre and postaward activities

146

Soiling of building envelope surfaces and its effect on solar reflectance - Part II: Development of an accelerate aging method for roofing materials  

SciTech Connect (OSTI)

Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products?single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles?and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. This accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul; Gilbert, Haley; Quelen, Sarah; Marlot, Lea; Preble, Chelsea; Chen, Sharon; Montalbano, Amadine; Rosseler, Olivier; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

2013-11-18T23:59:59.000Z

147

The Interdivisional Research Building, which will bring together University  

E-Print Network [OSTI]

carbon-14 dating; executed the first controlled, self-sustaining nuclear chain . The ARB will house the Institute for Biophysical Dynamics as well as the Materials Research Science

Gardel, Margaret

148

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates  

SciTech Connect (OSTI)

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

2006-08-01T23:59:59.000Z

149

Building America Research Teams: Spotlight on Alliance for Residential  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4,BrentFeedback for ResidentialOverviewBuilding

150

NEBRASKA WATER RESOURCES RESEARCH INSTITUTE 212 AGRICULTURAL ENGINEERING BUILDING  

E-Print Network [OSTI]

is Deputy Director for Water Resources Research. WASTE GUIDE ON THERMAL POLLUTION Copies of an "Industrial, urban water use and needs, water system construction, and flood plain management. The focal point VIaste Guide on Thermal Pollution" may be obtained by writing to: National Thermal Pollution Research

Nebraska-Lincoln, University of

151

he building that houses the Donnelly Centre for Cellular and Biomolecular Research can be described as transparent,  

E-Print Network [OSTI]

T he building that houses the Donnelly Centre for Cellular and Biomolecular Research can faculty. Each of the new recruits, along with other researchers in the building, have started new towards the glass wall of the building to the expansive and unobstructed view of the skyline and the city

Zandstra, Peter W.

152

An Overview of the Building Energy Retrofit Research Program  

E-Print Network [OSTI]

Ridge National Labora- tory (ORNL) and multi-family (MF) research led by Lawrence Berkeley Laboratory. Other participants include Princeton University, the Solar Energy Research Institute, the Alliance to Save Energy (ASE), and Pacific Northwest.... The ORNL experiments on radiant barriers were conducted in three unoccupied houses. One was used as the control house with no barrier, while the other two houses were used to test two different methods for installing radiant barriers. In one house...

Mixon, W. R.

1987-01-01T23:59:59.000Z

153

NEBRASKA WATER RESOURCES RESEARCH INSTITUTE 212 AGRICULTURAL ENGINEERING BUILDING  

E-Print Network [OSTI]

. Other objectives are to ~rouse interest in environmental research, with emphasis on local pollution CONFERENCE ON ENVIRONMENTAL POLLUTION A four-day conference and exposition is being planned for early next fallon environmental pollution and will be sponsored by the Department of the Interior. Secretary Hickel

Nebraska-Lincoln, University of

154

SPECIFIC AIMS: The Maxwell M. Wintrobe Research Building has served as a central research building for the University of Utah School of Medicine for nearly 30 years. However, the current facilities no longer meet  

E-Print Network [OSTI]

of Neurobiology & Anatomy. Aim 2 - To design and create a sustainable research environment that is energy the University of Utah's goals for sustainable design and energy efficiency. The second step is to fully remodelSPECIFIC AIMS: The Maxwell M. Wintrobe Research Building has served as a central research building

Marc, Robert E.

155

Residential commissioning to assess envelope and HVAC system performance  

SciTech Connect (OSTI)

Houses do not perform optimally or even as many codes and forecasts predict. For example, Walker et al. (1998a) found large variations in thermal distribution system efficiency, as much as a factor of two even between side-by-side houses with the same system design and installation crew. This and other studies (e.g., Jump et al. 1996) indicate that duct leakage testing and sealing can readily achieve a 25 to 30% reduction in installed cooling capacity and energy consumption. As another example, consider that the building industry has recognized for at least 20 years the substantial impact that envelope airtightness has on thermal loads, energy use, comfort, and indoor air quality. However, Walker et al. (1998a) found 50% variances in airtightness for houses with the same design and construction crews, within the same subdivision. A substantial reason for these problems is that few houses are now built or retrofitted using formal design procedures, most are field assembled from a large number of components, and there is no consistent process to identify problems or to correct them. Solving the problems requires field performance evaluations of houses using appropriate and agreed upon procedures. Many procedural elements already exist in a fragmented environment; some are ready now to be integrated into a new process called residential commissioning (Wray et al. 2000). For example, California's Title 24 energy code already provides some commissioning elements for evaluating the energy performance of new houses. A house consists of components and systems that need to be commissioned, such as building envelopes, air distribution systems, cooling equipment, heat pumps, combustion appliances, controls, and other electrical appliances. For simplicity and practicality, these components and systems are usually evaluated individually, but we need to bear in mind that many of them interact. Therefore, commissioning must not only identify the energy and non-energy benefits associated with improving the performance of a component, it must also indicate how individual components interact in the complete building system. For this paper, we limit our discussion to diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. The remainder of this paper first describes what residential commissioning is, its characteristic elements, and how one might structure its process. Subsequent sections describe a consolidated set of practical diagnostics that the building industry can use now. Where possible, we also discuss the accuracy and usability of these diagnostics, based on recent laboratory work and field studies. We conclude by describing areas in need of research and development, such as practical field diagnostics for envelope thermal conductance and combustion safety. There are several potential benefits for builders, consumers, code officials, utilities, and energy planners of commissioning houses using a consistent set of validated methods. Builders and/or commissioning agents will be able to optimize system performance and reduce consumer costs associated with building energy use. Consumers will be more likely to get what they paid for and builders can show they delivered what was expected. Code officials will be better able to enforce existing and future energy codes. As energy reduction measures are more effectively incorporated into the housing stock, utilities and energy planners will benefit through greater confidence in predicting demand and greater assurance that demand reductions will actually occur. Performance improvements will also reduce emissions from electricity generating plants and residential combustion equipment. Research to characterize these benefits is underway.

Wray, Craig P.; Sherman, Max H.

2001-08-31T23:59:59.000Z

156

Research utilization in the building industry: decision model and preliminary assessment  

SciTech Connect (OSTI)

The Research Utilization Program was conceived as a far-reaching means for managing the interactions of the private sector and the federal research sector as they deal with energy conservation in buildings. The program emphasizes a private-public partnership in planning a research agenda and in applying the results of ongoing and completed research. The results of this task support the hypothesis that the transfer of R and D results to the buildings industry can be accomplished more efficiently and quickly by a systematic approach to technology transfer. This systematic approach involves targeting decision makers, assessing research and information needs, properly formating information, and then transmitting the information through trusted channels. The purpose of this report is to introduce elements of a market-oriented knowledge base, which would be useful to the Building Systems Division, the Office of Buildings and Community Systems and their associated laboratories in managing a private-public research partnership on a rational systematic basis. This report presents conceptual models and data bases that can be used in formulating a technology transfer strategy and in planning technology transfer programs.

Watts, R.L.; Johnson, D.R.; Smith, S.A.; Westergard, E.J.

1985-10-01T23:59:59.000Z

157

NREL: Continuum Magazine - A Closer Look: NREL and Buildings Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below areBecomePowerResearchWorkingA

158

Enhancing Residential Building Operation through its Envelope  

E-Print Network [OSTI]

, which support environmental and constructional matters. Also the amounts of energy consumption for these two states are compared and a substantial economy of energy consumption is presented. Eventually, results represent that 32% in heat load and 25...

Vazifeshenas, Y.; Sajjadi, H.

2010-01-01T23:59:59.000Z

159

Building Technologies Office Window and Envelope Technologies...  

Energy Savers [EERE]

R&D investments helped stimulate net savings of more than 8 billion by 2000 (10.7 billion in current dollars) Source: American Energy Innovation Council Case Studies on...

160

Building Envelope Stakeholder Workshop | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudget FormulationCamberly Homes

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Windows and Building Envelope | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy WindR&D Roadmap

162

Building better microbatteries: from fundamental research to manufacturing  

SciTech Connect (OSTI)

The Endangered Species Act requires actions that improve the passage and survival rates for migrating salmonoids and other fish species that sustain injury and mortality when passing through hydroelectric dams. To develop a low-cost revolutionary acoustic transmitter that may be injected instead of surgically implanted into the fish, one major challenge that needs to be addressed is the micro-battery power source. This work focuses on the design and fabrication of micro-batteries for injectable fish tags. High pulse current and required service life have both been achieved as well as doubling the gravimetric energy density of the battery. The newly designed micro-batteries have intrinsically low impedance, leading to significantly improved electrochemical performances at low temperatures as compared with commercial SR416 batteries. Successful field trial by using the micro-battery powered transmitters injected into fish has been demonstrated, providing an exemplary model of transferring fundamental research into practical devices with controlled qualities.

Xiao, Jie; Deng, Zhiqun; Carlson, Thomas J.; Eppard, Matthew B.

2014-03-31T23:59:59.000Z

163

Technical support document for proposed 1994 revision of the MEC thermal envelope requirements  

SciTech Connect (OSTI)

This report documents the development of the proposed revision of the Council of American Building Officials` (CABO) 1994 supplement to the 1993 Model Energy Code (MEC) building thermal envelope requirements for maximum component U{sub 0}-value. The 1994 amendments to the 1993 MEC were established in last year`s code change cycle and did not change the envelope requirements. The research underlying the proposed MEC revision was conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Building Energy Standards program. The goal of this research was to develop revised guidelines based on an objective methodology that determines the most cost-effective (least total cost) combination of energy conservation measures (ECMs) (insulation levels and window types) for residential buildings. This least-cost set of ECMs was used as a basis for proposing revised MEC maximum U{sub 0}-values (thermal transmittances). ECMs include window types (for example, double-pane vinyl) and insulation levels (for example, R-19) for ceilings, walls, and floors.

Conner, C.C.; Lucas, R.G.

1994-03-01T23:59:59.000Z

164

Predictive building automation Research results from a field trial Special event in Allschwil, Thursday, September 20, 2012  

E-Print Network [OSTI]

Predictive building automation ­ Research results from a field trial Special event in Allschwil-efficient control while maintaining a high level of comfort for the building users. Predictive building automation of computer simulations. The project partners focused on the so-called integrated room automation, which deals

Fischlin, Andreas

165

Apply: Commercial Building Technology Demonstrations (DE-FOA...  

Office of Environmental Management (EM)

Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Commercial Building...

166

Commercial Building Energy Asset Scoring Tool  

Broader source: Energy.gov [DOE]

This Asset Scoring Tool will guide your data collection, store your building information, and generate Asset Scores and system evaluations for your building envelope and building systems. The Asset...

167

Jacketed lamp bulb envelope  

DOE Patents [OSTI]

A jacketed lamp bulb envelope includes a ceramic cup having an open end and a partially closed end, the partially closed end defining an aperture, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material at least partially covering a portion of the bulb not abutting the aperture. The reflective ceramic material may substantially fill an interior volume of the ceramic cup not occupied by the bulb. The ceramic cup may include a structural feature for aiding in alignment of the jacketed lamp bulb envelope in a lamp. The ceramic cup may include an external flange about a periphery thereof. One example of a jacketed lamp bulb envelope includes a ceramic cup having an open end and a closed end, a ceramic washer covering the open end of the ceramic cup, the washer defining an aperture therethrough, a lamp bulb positioned inside the ceramic cup abutting the aperture, and a reflective ceramic material filling an interior volume of the ceramic cup not occupied by the bulb. A method of packing a jacketed lamp bulb envelope of the type comprising a ceramic cup with a lamp bulb disposed therein includes the steps of filling the ceramic cup with a flowable slurry of reflective material, and applying centrifugal force to the cup to pack the reflective material therein.

MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Gitsevich, Aleksandr (Gaithersburg, MD); Bass, Gary K. (Mt. Airy, MD); Dolan, James T. (Frederick, MD); Kipling, Kent (Gaithersburg, MD); Kirkpatrick, Douglas A. (Great Falls, VA); Leng, Yongzhang (Damascus, MD); Levin, Izrail (Silver Spring, MD); Roy, Robert J. (Frederick, MD); Shanks, Bruce (Gaithersburg, MD); Smith, Malcolm (Alexandria, VA); Trimble, William C. (Columbia, MD); Tsai, Peter (Olney, MD)

2001-01-01T23:59:59.000Z

168

BUILD RELIABILITY INTO EVERY PROJECT Researchers in the engineering industry and  

E-Print Network [OSTI]

1180 FL BUILD RELIABILITY INTO EVERY PROJECT Researchers in the engineering industry and academia are making important advances on reliability-based design and modeling of uncer- tainty when data is limited, Engineering Design Reliability Handbook is a valuable addition to the reliability literature. It presents

Kreinovich, Vladik

169

LOCAL ACTORS BUILD BROADBAND INFRASTRUCTURE Ingjerd Skogseid, Western Norway Research Institute, Postboks 163, 6851 Sogndal, Norway,  

E-Print Network [OSTI]

LOCAL ACTORS BUILD BROADBAND INFRASTRUCTURE Ingjerd Skogseid, Western Norway Research Institute, Postboks 163, 6851 Sogndal, Norway, Ingjerd.Skogseid@vestforsk.no Ole Hanseth, Department of informatics, University of Oslo, Norway, Ole.Hanseth@ifi.uio.no Abstract This paper explores how local actors can play

Hanseth, Ole

170

Building a Global Federation System for Climate Change Research: The Earth System Grid Center for Enabling  

E-Print Network [OSTI]

Building a Global Federation System for Climate Change Research: The Earth System Grid Center for Enabling Technologies (ESG-CET) The Earth System Grid Center for Enabling Technologies Team: R Ananthakrishnan1 , D E Bernholdt7,9 , S Bharathi8 , D Brown5 , M Chen7 , A L Chervenak8 , L Cinquini5 , R Drach3

Chervenak, Ann

171

Tour Brookhaven Lab's Future Hub for Energy Research: The Interdisciplinary Science Building  

ScienceCinema (OSTI)

Construction is under way for the Interdisciplinary Science Building (ISB), a future world-class facility for energy research at Brookhaven Lab. Meet two scientists who will develop solutions at the ISB to tackle some of the nation's energy challenges, and tour the construction site.

Gerry Stokes; Jim Misewich

2013-07-19T23:59:59.000Z

172

Seismic reliability of lifeline systems He Nan Building Research Institute, Zhengzhou, China  

E-Print Network [OSTI]

Seismic reliability of lifeline systems Yang Han He Nan Building Research Institute, Zhengzhou kinds, i.e., continuous and segment. We often use the segment pipe in China, so the seismic reliability to the seismic damage state of buried pipelines we established the probabilistic prediction model

Spencer Jr., B.F.

173

Tour Brookhaven Lab's Future Hub for Energy Research: The Interdisciplinary Science Building  

SciTech Connect (OSTI)

Construction is under way for the Interdisciplinary Science Building (ISB), a future world-class facility for energy research at Brookhaven Lab. Meet two scientists who will develop solutions at the ISB to tackle some of the nation's energy challenges, and tour the construction site.

Gerry Stokes; Jim Misewich

2012-04-09T23:59:59.000Z

174

NSF Research Needs Workshop:NSF Research Needs Workshop:NSF Research Needs Workshop:NSF Research Needs Workshop:NSF Research Needs Workshop: Building Systems Integration  

E-Print Network [OSTI]

construction and renovation each year, the building industry is over 13% of the United States GDP (NIST 1994 The Environmental Potential of Buildings & Communities . . . . . . . . . . . . . . . . . . . . .7 3.1 Pollution REITs (Real Estate Investment Trusts)), the building industry is at least one quarter of the economic

Tommelein, Iris D.

175

Analysis and Research on the Thermal Properties of Energy-efficient Building Glass: A Case Study in PVB Laminated Glass  

E-Print Network [OSTI]

, are analyzed. The methods on usage of energy-saving glass are promoted based on the differences of their thermal properties. Meanwhile, a new kind of glass?PVB laminated glass (Fig.1), is introduced. Fl at cl ear gl ass 0. 05mmLOWE coati ng Fl at cl ear g... lass 3 mm( 5 mm) 0. 38mmPVB 3 mm( 5 mm) 0. 38mmPVB Fig. 1 Structure of PVB laminated glass ICEBO2006, Shenzhen, China Envelope Technologies for Building Energy Efficiency, Vol.II-4-5 2. EVALUATION STANDARDS OF SOLAR-OPTICAL PROPERTY The main...

Chen, Z.; Meng, Q.

2006-01-01T23:59:59.000Z

176

Building America Research Benchmark Definition, Version 3.1, Updated July 14, 2004  

SciTech Connect (OSTI)

To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, the U.S. Department of Energy (DOE) Residential Buildings Program and the National Renewable Energy Laboratory (NREL) developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. A series of user profiles, intended to represent the behavior of a ''standard'' set of occupants, was created for use in conjunction with the Benchmark.

Hendron, R.

2005-01-01T23:59:59.000Z

177

Building technolgies program. 1994 annual report  

SciTech Connect (OSTI)

The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. We have focused our past efforts on two major building systems, windows and lighting, and on the simulation tools needed by researchers and designers to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. In addition, we are now taking more of an integrated systems and life cycle perspective to create cost-effective solutions for more energy efficient, comfortable, and productive work and living environments. More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity-factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout every space in a building, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Window and lighting systems are thus essential components of any comprehensive building science program.

Selkowitz, S.E.

1995-04-01T23:59:59.000Z

178

Building Technologies Office: 179D DOE Calculator  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or 0.60ft for a partially qualifying property for envelope, heating, ventilating, and air conditioning (HVAC), or lighting improvements. In addition, a building may qualify...

179

Standard 90. 1's ENVSTD: Both a compliance program and an envelope design tool  

SciTech Connect (OSTI)

Since 1982, ASHRAE and the US Department of Energy have worked together to update ANSI/ASHRAE/IES Standard 90A-1980, Energy Conservation in Building Design.'' The new standard, ASHRAE/IES Standard 90.1-1989, Energy-Efficient Design of New Buildings Except Low-Rise Residential Buildings,'' is substantially changed in form and concept from Standard 90A-1980, especially in how it deals with exterior envelopes. In the new standard, designers can use either of two methods -- prescriptive or system performance -- to comply with building envelope requirements. Under the prescriptive method, requirements are listed in tabular form and designers must demonstrate compliance with each individual requirement. In the system performance method, designers generate the requirements for their specific building using a set of equations. The equations establish limits on permissible heating and cooling coil loads based on the local climate and the internal loads in the exterior zones of the building. A personal computer program, ENVSTD (ENVelope STanDard), has been written to simplify compliance with the system performance path of the standard. The program can also be used to evaluate the impact of varying envelope characteristics on building heating and cooling coil loads in specific locations. This paper provides examples of the impacts that the standard's envelope requirements have on envelope design. Use of the ENVSTD program as a design tool to determine the heating and cooling load impacts of various envelope strategies is also demonstrated. 7 refs., 12 figs.

Crawley, D.B.; Boulin, J.J.

1989-12-01T23:59:59.000Z

180

Building the national health information infrastructure for personal health, health care services, public health, and research  

E-Print Network [OSTI]

Professor of Health Management, Cambridge University Health, Judge Institute of Management, University of Cambridge and 2Department of Health Evaluation Sciences, University of Virginia, USA Email: Don E Detmer* - d.detmer@jims.cam.ac.uk * Corresponding... ral BMC Medical Informatics and ssBioMed CentDecision Making Open AcceDebate Building the national health information infrastructure for personal health, health care services, public health, and research Don E Detmer*1,2 Address: 1Dennis Gillings...

Detmer, Don E

2003-01-06T23:59:59.000Z

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Summary of Prioritized Research Opportunities: Building America Program Planning Meeting, Washington, D.C., November 2-4, 2010  

SciTech Connect (OSTI)

This report outlines the results of brainstorming sessions conducted at the Building America Fall 2010 planning meeting, in which research teams and national laboratories identified key research priorities to incorporate into multi-year planning, team research agendas, expert meetings, and technical standing committees.

Not Available

2011-02-01T23:59:59.000Z

182

Performance of Exterior Envelopes of Whole Buildings VIII: Integration of Building Envelopes Proceedings  

E-Print Network [OSTI]

on the properties of fenestration products has also influenced state and national codes (IECC, ASHRAE 90

183

REDUCING ENERGY USE IN FLORIDA BUILDINGS  

E-Print Network [OSTI]

to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency...

Raustad, R.; Basarkar, M.; Vieira, R.

184

Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Chavez, Francesca C. [Editor; Mendius, E. Louise [Editor

2003-09-23T23:59:59.000Z

185

Dr. James Freihaut is a member of the AE mechanical option faculty. His current research focus is on building systems related  

E-Print Network [OSTI]

energy systems for buildings and communities of buildings in parallel with the design tools curriculum, integrated with his research pursuits, which focus on emerging building science issues. He is on building systems related energy and indoor air quality. Freihaut has developed an indoor aerosol laboratory

Yener, Aylin

186

Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone  

E-Print Network [OSTI]

implement demand-response programs involving buildingthan the building envelope in demand response effectiveness.demand response, thermal mass, hot climates, office buildings

Xu, Peng

2010-01-01T23:59:59.000Z

187

Research on Commercial Patterns of China Existing Building Energy Retrofit Based on Energy Management Contract  

E-Print Network [OSTI]

Existing building energy retrofit is one of the keys of building energy efficiency in China. According to experience in developed countries, implementation of energy management contract (EMC) is crucial to promote existing building energy retrofit...

Han, Z.; Liu, C.; Sun, J.

2006-01-01T23:59:59.000Z

188

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006  

SciTech Connect (OSTI)

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

2006-12-01T23:59:59.000Z

189

Minimum cost model energy code envelope requirements  

SciTech Connect (OSTI)

This paper describes the analysis underlying development of the U.S. Department of Energy`s proposed revisions of the Council of American Building Officials (CABO) 1993 Model Energy Code (MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. This analysis resulted in revised MEC envelope conservation levels based on an objective methodology that determined the minimum-cost combination of energy efficiency measures (EEMs) for residences in different locations around the United States. The proposed MEC revision resulted from a cost-benefit analysis from the consumer`s perspective. In this analysis, the costs of the EEMs were balanced against the benefit of energy savings. Detailed construction, financial, economic, and fuel cost data were compiled, described in a technical support document, and incorporated in the analysis. A cost minimization analysis was used to compare the present value of the total long-nm costs for several alternative EEMs and to select the EEMs that achieved the lowest cost for each location studied. This cost minimization was performed for 881 cities in the United States, and the results were put into the format used by the MEC. This paper describes the methodology for determining minimum-cost energy efficiency measures for ceilings, walls, windows, and floors and presents the results in the form of proposed revisions to the MEC. The proposed MEC revisions would, on average, increase the stringency of the MEC by about 10%.

Connor, C.C.; Lucas, R.G.; Turchen, S.J.

1994-08-01T23:59:59.000Z

190

Building America  

SciTech Connect (OSTI)

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

191

Dynamic Simulation and Analysis of Factors Impacting the Energy Consumption of Residential Buildings  

E-Print Network [OSTI]

Buildings have a close relationship with climate. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window...

Lian, Y.; Hao, Y.

2006-01-01T23:59:59.000Z

192

Proceedings of the SPIE, Vol. 3700, April 6-8, 1999. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building  

E-Print Network [OSTI]

through components of building thermal envelopes. Two thermal chambers maintain steady-state heat flow the barrier between the outdoor weather and conditioned inside space. A building's thermal envelope consists to increase the efficiency of building heating and cooling. Heat flow through the building thermal envelope

193

Article type: review (Special Issue of Photosynthesis Research in honour of Andrew A. Title: Chloroplast envelope membranes: a dynamic interface between plastids and the  

E-Print Network [OSTI]

1 Article type: review (Special Issue of Photosynthesis Research in honour of Andrew A. Benson;4 Introduction In higher plants, photosynthesis occurs within chloroplasts that are membrane-bound large (5- 10

Paris-Sud XI, Universit de

194

Academic Buildings Student & Admin.  

E-Print Network [OSTI]

Academic Buildings Student & Admin. Services Residence Public Parking Permit Parking GatheringCampusRoad Shrum Science Centre South Sciences Building Technology & Science Complex 2 Greenhouses Science Research AnnexBee Research BuildingAlcan Aquatic Research Technology & Science Complex 1 C Building B Building P

195

Advanced Technologies and Practices - Building America Top Innovations...  

Energy Savers [EERE]

and construction practices that improve the building envelope; heating, ventilation, and air conditioning (HVAC); water heating components; and indoor air quality and safety...

196

Overview of PIER-Funded Existing Building Commissioning and Diagnostics Research  

E-Print Network [OSTI]

), Pacific Gas and Electric ? Whole Building Diagnostician (WBD) outdoor air economizer module and whole building energy module, Pacific Northwest National Laboratory ? Performance And Continuous Recommissioning Analysis Tool (PACRAT), Facility...

Jenkins, N.; Brook, M.

2003-01-01T23:59:59.000Z

197

Building Technologies Program | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across...

198

Radiant cooling research scoping study  

E-Print Network [OSTI]

Systems for Low-Energy Buildings, Proved in Practicenight-sky, etc. ), low-energy building envelopes, and/orto optimize the low-energy design of buildings? Should this

Moore, Timothy; Bauman, Fred; Huizenga, Charlie

2006-01-01T23:59:59.000Z

199

ORNL Building Technologies Research & Integration Center (BTRIC) New Laboratory Facilities per  

E-Print Network [OSTI]

-level energy efficiency in residential and commercial buildings, new or retrofit. In addition, thanks (partnering with builders on new construction and retrofits) is not feasible for commercial buildings in the space utilization in commercial buildings, which limits the R&D value that can be gained from holding

Oak Ridge National Laboratory

200

Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment  

SciTech Connect (OSTI)

Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern Interconnect domain, which they are now planning to extend to predict the demand for the complete century. The initial study raised their data demands from a few GBs to 400GB for the 3year study and expected tens of TBs for the full century.

Kleese van Dam, Kerstin; Lansing, Carina S.; Elsethagen, Todd O.; Hathaway, John E.; Guillen, Zoe C.; Dirks, James A.; Skorski, Daniel C.; Stephan, Eric G.; Gorrissen, Willy J.; Gorton, Ian; Liu, Yan

2014-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NCCR Digital Fabrication Innovative Building Processes in Architecture A new national research initiative  

E-Print Network [OSTI]

NCCR Digital Fabrication ­Innovative Building Processes in Architecture 14.05.2014 A new national and a resulting enhancement in the quality and sustainability of our built environment. To address the use) to investigate Digital Fabrication ­ Innovative Building Processes in Architecture. Global Challenges The rapidly

Lygeros, John

202

National Renewable Energy Laboratory (NREL) researchers enhanced this building energy optimization tool to analyze  

E-Print Network [OSTI]

levels at the lowest possible cost. A new version of NREL's Building Energy Optimization (BEopt) software targeting zero net energy--the new version identifies cost- optimal residential building designs at various levels of energy savings, based on simula- tions driven by hour-by-hour heat transfer, typical weather

203

STATE OF CALIFORNIA ENVELOPE INSULATION; ROOFING; FENESTRATION  

E-Print Network [OSTI]

STATE OF CALIFORNIA ENVELOPE INSULATION; ROOFING; FENESTRATION CEC-CF-6R-ENV-01 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-ENV-01 Envelope Insulation; Roofing:__________________________________ Brand Name:_______________________________ Thickness (inches):_________________________ Thermal

204

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis of solution characteristics using a two-body system  

E-Print Network [OSTI]

of innovative integrated HVAC systems in buildings, infor building envelope and HVAC systems simu- lation - WillIntegrated simulation for HVAC performance prediction: State

Trcka, Marija

2010-01-01T23:59:59.000Z

205

Research on Heat Resisting Character of Hollow Building Blocks in Energy Saving Wall  

E-Print Network [OSTI]

By establishing a mathematical model with the finite difference method, the three-dimensional temperature fields of a new type of asymmetrical hollow building blocks in an energy saving wall are solved in this paper. The three forms of heat...

Zhang, Y.; He, J.; Gao, S.

2006-01-01T23:59:59.000Z

206

Plug-Load Control and Behavioral Change Research in GSA Office Buildings  

SciTech Connect (OSTI)

The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-load energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.

Metzger, I.; Cutler, D.; Sheppy, M.

2012-10-01T23:59:59.000Z

207

Advanced building skins : translucent thermal storage elements  

E-Print Network [OSTI]

Advances in the material sciences continue to provide designers with a wealth of new materials that challenge preconceived notions of the building envelope and its performance. These new technologies can be used to create ...

Kienzl, Nico, 1971-

1999-01-01T23:59:59.000Z

208

Home Energy Ratings and Building Performance  

E-Print Network [OSTI]

climate as they affect the rating score of a proposed or completed structure. The rating is used to determine the most cost effective mechanical systems, building envelope design including window and door types, effect of various roofing materials...

Gardner, J.C.

209

Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems  

SciTech Connect (OSTI)

Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

Wetter, Michael

2009-02-12T23:59:59.000Z

210

NREL Develops Diagnostic Test Cases to Improve Building Energy Simulation Programs (Fact Sheet)  

SciTech Connect (OSTI)

This technical highlight describes NREL research to develop a set of diagnostic test cases for building energy simulations in order to achieve more accurate energy use and savings predictions. The National Renewable Energy Laboratory (NREL) Residential and Commercial Buildings research groups developed a set of diagnostic test cases for building energy simulations. Eight test cases were developed to test surface conduction heat transfer algorithms of building envelopes in building energy simulation programs. These algorithms are used to predict energy flow through external opaque surfaces such as walls, ceilings, and floors. The test cases consist of analytical and vetted numerical heat transfer solutions that have been available for decades, which increases confidence in test results. NREL researchers adapted these solutions for comparisons with building energy simulation results. Testing the new cases with EnergyPlus identified issues with the conduction finite difference (CondFD) heat transfer algorithm in versions 5 and 6. NREL researchers resolved these issues for EnergyPlus version 7. The new test cases will help users and developers of EnergyPlus and other building energy tools to identify and fix problems associated with solid conduction heat transfer algorithms of building envelopes and their boundary conditions. In the long term, improvements to software algorithms will result in more accurate energy use and savings predictions. NREL researchers plan to document the set of test cases and make them available for future consideration by validation standards such as ASHRAE Standard 140: Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. EnergyPlus users will also have access to the improved CondFD model in version 7 after its next scheduled release.

Not Available

2011-12-01T23:59:59.000Z

211

Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)  

SciTech Connect (OSTI)

In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

2012-08-01T23:59:59.000Z

212

and Pollutant Safeguarding Buildings  

E-Print Network [OSTI]

commercial buildings, these flows are driven primarily by the building's ventilation system, but natural2004 Airflow and Pollutant Transport Group Safeguarding Buildings Against Chemical and Biological research since 1998 to protect buildings and building occupants from threats posed by airborne chemical

213

Building America System Research Plan for Reduction of Miscellaneous Electrical Loads in Zero Energy Homes  

SciTech Connect (OSTI)

This research plan describes the overall scope of system research that is needed to reduce miscellaneous electrical loads (MEL) in future net zero energy homes.

Barley, C. D.; Haley, C.; Anderson, R.; Pratsch, L.

2008-11-01T23:59:59.000Z

214

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (http://www.hvac.okstate.edu).  

E-Print Network [OSTI]

. For these reasons, ground-coupled heat pump systems are potentially more efficient than conven- tional air-to-air -Source Heat Pump System Models in an Integrated Building and System Simulation Environment. HVAC&R Research 12 and Validation of Ground-Source Heat Pump System Models in an Integrated Building and System Simulation

215

My research goal is to better integrate technical activities such as behavior modeling, interface design, and system building with conceptualizations of social dynamics as expressed by social  

E-Print Network [OSTI]

design, and system building with conceptualizations of social dynamics as expressed by social science. For instance, understanding the working of memory might help designers build better memory support toolsMy research goal is to better integrate technical activities such as behavior modeling, interface

Keinan, Alon

216

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (www.hvac.okstate.edu)  

E-Print Network [OSTI]

to reductions in electrical energy usage, and allow more effective demand-side management. However, comparedThis paper has been downloaded from the Building and Environmental Thermal Systems Research Group

Ghajar, Afshin J.

217

Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint  

SciTech Connect (OSTI)

Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

2010-08-01T23:59:59.000Z

218

Envelope amplifier for broadband base-station envelope tracking power amplifier  

E-Print Network [OSTI]

represents total power loss inside the envelope ampli?er.simulator can simulate the power loss by extracting andThere are three main power losses inside the envelope ampli?

Zhu, Qiuyao

2011-01-01T23:59:59.000Z

219

The Value of Energy Performance and Green Attributes in Buildings: A Review of Existing Literature and Recommendations for Future Research  

SciTech Connect (OSTI)

Labels, certifications, and rating systems for energy efficiency performance and green attributes of buildings have been available in the U.S. for over 10 years, and used extensively in the European Union and Australia for longer. Such certifications and ratings can make energy efficiency more visible, and could help spur demand for energy efficiency if these designations are shown to have a positive impact on sales or rental prices. This policy brief discusses the findings and methodologies from recent studies on this topic, and suggests recommendations for future research. Although there have been just a handful of studies within the last 10 years that have investigated these effects, a few key findings emerge: To maximize sales price impact, label or rating information must be disclosed early and visibly in the sales process; The approach to evaluating energy efficiency labels (e.g., ENERGY STAR) and general green certifications (e.g., LEED or GreenPoint Rated) may need to be different, depending on the type, vintage and market penetration of the label; Collaborative efforts to promote label adoption and build a large dataset of labeled buildings will be required to produce reliable study results.

Stuart, Elizabeth

2011-09-07T23:59:59.000Z

220

The Value of Energy Performance and Green Attributes in Buildings: A Review of Existing Literature and Recommendations for Future Research  

E-Print Network [OSTI]

nationwide. theGreenBuilding (rangeofgreen NewHome Builders National Green Building Standard; and 4) theis a program of the U.S. Green Building Council and rates

Stuart, Elizabeth

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Integrating Acclimated Kinetic Envelopes into Sustainable Building Design  

E-Print Network [OSTI]

/IESNA Illuminating Engineering Society of North America IRB Institutional Review Board LEED Leadership in Energy and Environmental Design LBNL Lawrence Berkeley National Laboratory LPD lighting power density NREL National Renewable Energy Laboratory....11. Retractable roof of the High Court of Justice and Supreme Court (Foster+Partners, 2012) ................................................................ 33 Figure 2.12. Examples of electrochromic glazing by LBNL (Lee, DiBartolomeo, xiii...

Wang, Jialiang

2014-05-28T23:59:59.000Z

222

Windows and Building Envelope Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energyof Energy This webinar is

223

#AskEnergySaver: Building Envelopes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOfCoal_Budget_Fact_Sheet.pdf MoreDaily wholesaleDepartmentYou're

224

Next Generation Building Envelope Materials | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’sCutWorkers prepareEM

225

Improving Building Envelope and Duct Airtightness of US Dwellings The  

E-Print Network [OSTI]

Diagnostics Database (ResDB) by Lawrence Berkeley National Laboratory. Weatherization Assistance Program (WAP efficiency programs contributed another 10,000 paired measurements. Eighteen states are represented. The levels of improvement varied slightly from state to state, and also between program types. Larger

226

Energy Savings Through Improved Mechanical Systems and Building Envelope  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit| DepartmentNumber:Paducah Site| Department of

227

Windows and Building Envelope Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy ThePrivacy ActVeteranWind Vision About In support

228

On the Common Envelope Efficiency  

E-Print Network [OSTI]

In this work, we try to use the apparent luminosity versus displacement (i.e., $L_{\\rm X}$ vs. $R$) correlation of high mass X-ray binaries (HMXBs) to constrain the common envelope (CE) efficiency $\\alpha_{\\rm CE}$, which is a key parameter affecting the evolution of the binary orbit during the CE phase. The major updates that crucial for the CE evolution include a variable $\\lambda$ parameter and a new CE criterion for Hertzsprung gap donor stars, both of which are recently developed. We find that, within the framework of the standard energy formula for CE and core definition at mass $X=10$\\%, a high value of $\\alpha_{\\rm CE}$, i.e., around 0.8-1.0, is more preferable, while $\\alpha_{\\rm CE}alpha_{\\rm CE}$. ...

Zuo, Zhao-Yu

2014-01-01T23:59:59.000Z

229

PEV Grid Integration Research: Vehicles, Buildings, and Renewables Working Together (Presentation)  

SciTech Connect (OSTI)

Presented at the Electric Power Research Institute (EPRI) Infrastructure Working Council (IWC) Meeting, 18-19 June 2014, White Plains, New York

Markel, T.

2014-06-01T23:59:59.000Z

230

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006  

SciTech Connect (OSTI)

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

2006-12-01T23:59:59.000Z

231

Energy Impacts of Envelope Tightening and Mechanical  

E-Print Network [OSTI]

1 Energy Impacts of Envelope Tightening and Mechanical Ventilation for the U.S. Residential Sector Energy Commission through Contract 500-08-061. #12;3 ABSTRACT Effective residential envelope air sealing reduces infiltration and associated energy costs for thermal conditioning, yet often creates a need

232

Social Networking for Sustainable Building Projects http://stanford.edu/~mlepech/research.projects/cife.09.1/cife.socialnetwork.research.html  

E-Print Network [OSTI]

in building sustainability from actual design, construction, and operation choices & allow for systemSocial Networking for Sustainable Building Projects http The decisions that govern a building's sustainability throughout its life are made by a team of stakeholders

Lepech, Michael D.

233

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

234

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

Müller, Jens-Dominik

235

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

236

High-performance commercial building systems  

SciTech Connect (OSTI)

This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC and other industry partners have assisted directly in this effort

Selkowitz, Stephen

2003-10-01T23:59:59.000Z

237

Occupant satisfaction in mixed-mode buildings.  

E-Print Network [OSTI]

Strategies for Mixed-Mode Buildings, Summary Report, CenterCBE). 2006. Website: Mixed-Mode Building Case Studies.Department of Environmental Building Research Establishment

Brager, Gail; Baker, Lindsay

2008-01-01T23:59:59.000Z

238

Development of an endocrine genomics virtual research environment for Australia: building on success .  

E-Print Network [OSTI]

??The $47m Australian National eResearch Collaboration Tools and Resources (NeCTAR - www.nectar.org.au) project has recently funded an initiative to establish an Australia-wide endocrine genomics virtual (more)

Sinnott, Richard O.

2013-01-01T23:59:59.000Z

239

What`s new in building energy research - desiccant cooling program  

SciTech Connect (OSTI)

Desiccant cooling systems are energy efficient, cost effective, and environmentally safe. They are used as stand-alone systems or with conventional air-conditioning to improve the indoor air quality of all types of buildings. In these systems, a desiccant removes moisture from the air, which releases heat and increases the air temperature. The dry air is cooled using either evaporative cooling or the cooling coils of a conventional air conditioner. The absorbed moisture in the desiccant is then removed (the desiccant is regenerated, or brought back to its original dry state) using thermal energy supplied by natural gas, electricity, waste heat, or the sun. Commercially available desiccants include silica gel, activated alumina, natural and synthetic zeolites, lithium chloride, and synthetic polymers. Currently, desiccant cooling and dehumidification are being used successfully in industrial and some commercial applications. The Office of Building Technologies in the U.S. Department of Energy (DOE) is working with industry to broaden the market for desiccant cooling so its full energy savings and indoor air quality improvement potential can be realized. The main goals of the Desiccant Cooling Program are to (1) Reduce carbon dioxide emissions by 5 million tons (4.5 million metric tons) annually by 2005 and 18 million tons (16.3 million metric tons) annually by 2010. (2) Reduce energy consumption by 0.1 quad (105.5 petajoules) annually by 2005 and 0.3 quad (316.5 petajoules) annually by 2010. (3) Capture 5% of the air-conditioning market by 2005 and 15% by 2010.

NONE

1996-02-01T23:59:59.000Z

240

Building America Webinar: Building America Technology-to-Market...  

Broader source: Energy.gov (indexed) [DOE]

introduced the integrated Building America Technology-to-Market Roadmaps that will serve as a guide for Building America's research, development, and demonstration activities over...

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Summary Report: Control Strategies for Mixed-Mode Buildings  

E-Print Network [OSTI]

The Ultimate Option? Building Services Journal. NovemberProgramme. United Kingdom: Building Research Establishment.Andrew. 1993. Body-building. Building Services Journal.

Brager, Gail; Borgeson, Sam; Lee, Yoonsu

2007-01-01T23:59:59.000Z

242

Window Use in Mixed-Mode Buildings: A Literature Review  

E-Print Network [OSTI]

adaptive behaviour in green buildings. Intelligent Buildingsmore tolerant of green buildings? Building Research &this trend to the green building movement, but this is

Ackerly, Katie; Baker, Lindsay; Brager, Gail

2011-01-01T23:59:59.000Z

243

California Energy Commission's Public Interest Energy Research Program Case Study PIER Buildings Program Research Powers the Future www.energy.ca.gov/research  

E-Print Network [OSTI]

. The technology is installed by shutting off the fan, blocking all inlets and outlets, pressurizing the system to nucleate on edges and build a seal to block flow. Features and Benefits · Allows reduction of fan flow and joints of ductwork, but be prepared to address initially undiscovered design flaws or major ductwork

California at Davis, University of

244

Building 32 35 Building 36  

E-Print Network [OSTI]

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

245

Global Network for Women's & Children's Health Research BUILDING SCIENTIFIC CAPACITY & NETWORKS IN RESOURCE-POOR SETTINGS  

E-Print Network [OSTI]

, information technology, and logistical and statistical support for the Network. Additional support from health and international organizations, interested communities, researchers, and health care providers is crucial Use January 2005 OUR MISSION The Global Network is committed to preventing maternal and infant deaths

Rau, Don C.

246

Building America Top Innovations 2013 Profile Building America Solution Center  

Broader source: Energy.gov [DOE]

PNNL set up the framework for the Building America Solution Center, a web tool connecting users to thousands of pieces of building science information developed by DOEs Building America research partners.

247

Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)  

SciTech Connect (OSTI)

This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.

Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

2011-12-01T23:59:59.000Z

248

Nuclear envelope transmembrane proteins in differentiation systems  

E-Print Network [OSTI]

Historically, our perception of the nuclear envelope has evolved from a simple barrier isolating the genome from the rest of a cell to a complex system that regulates functions including transcription, splicing, DNA ...

Batrakou, Dzmitry G.

2012-11-30T23:59:59.000Z

249

#F1:Research on Very Low-Energy Building O&M Methods  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment ofEnergy.pdfApplications:Adjustment Data#F1:Research on Very

250

Evaluation of Ventilation Strategies in New Construction Multifamily Buildings  

SciTech Connect (OSTI)

In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

Maxwell, S.; Berger, D.; Zuluaga, M.

2014-07-01T23:59:59.000Z

251

A Prediction of Energy Savings Resulting from Building Infiltration Control  

E-Print Network [OSTI]

, working to reduce or increase it. This study uses simulation to evaluate the potential energy impact of the interaction when several different strategies for controlling air leakage direction and velocity in building envelope components are implemented...

McWatters, K.; Claridge, D. E.; Liu, M.

1996-01-01T23:59:59.000Z

252

An Experimental Study of the Performance of PCM-Enhanced Cellulose Insulation Used in Residential Building Walls Exposed to Full Weather Conditions  

E-Print Network [OSTI]

and could potentially cause installation problems. Hydrated Salt Hydrated salts are formed by anhydrous salts and a few fixed number of water molecules, which are usually called ?water of crystallization? (Telkes, 1980). Hydrated salts have...-Enhanced Building Envelopes in Current ORNL Research Projects. Oak Ridge National Laboratory website. Telkes M. 1980. Thermal Storage in Salt-hydrates. Solar Materials Science, Academic Press: 337-404 Zhu D., 2005, A comparative heat transfer examination...

Fang, Y.; Medina, M.; Evers, A.

253

Building America Case Study: Evaluation of Ventilation Strategies in New Construction Multifamily Buildings, New York, New York (Fact Sheet)  

SciTech Connect (OSTI)

In multifamily buildings, particularly in the Northeast, exhaust ventilation strategies are the norm as a means of meeting both local exhaust and whole-unit mechanical ventilation rates. The issue of where the 'fresh' air is coming from is gaining significance as air-tightness standards for enclosures become more stringent, and the 'normal leakage paths through the building envelope' disappear. CARB researchers have found that the majority of high performance, new construction, multifamily housing in the Northeast use one of four general strategies for ventilation: continuous exhaust only with no designated supply or make-up air source, continuous exhaust with ducted make-up air to apartments, continuous exhaust with supply through a make-up air device integral to the unit HVAC, and continuous exhaust with supply through a passive inlet device, such as a trickle vent. Insufficient information is available to designers on how these various systems are best applied. Product performance data are based on laboratory tests, and the assumption is that products will perform similarly in the field. Proper application involves matching expected performance at expected building pressures, but there is no guarantee that those conditions will exist consistently in the finished building. This research effort, which included several weeks of building pressure monitoring, sought to provide field validation of system performance. The performance of four substantially different strategies for providing make-up air to apartments was evaluated.

Not Available

2014-09-01T23:59:59.000Z

254

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network [OSTI]

integrated, and green design 11 Figure 2.1 Environmental control functions performed by the buildingbuilding as a model of high performance, integrated, and green design.Design and Evaluation of integrated envelope and lighting control strategies for commercial buildings.

Konis, Kyle Stas

2012-01-01T23:59:59.000Z

255

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network [OSTI]

integrated, and green design 11 Figure 2.1 Environmental control functions performed by the buildingbuilding as a model of high performance, integrated, and green design.Design and Evaluation of integrated envelope and lighting control strategies for commercial buildings.

Konis, Kyle Stas

2011-01-01T23:59:59.000Z

256

Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)  

SciTech Connect (OSTI)

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

Not Available

2014-11-01T23:59:59.000Z

257

Country Report on Building Energy Codes in India  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America. This reports gives an overview of the development of building energy codes in India, including national energy policies related to building energy codes, history of building energy codes in India, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial buildings in India.

Evans, Meredydd; Shui, Bin; Somasundaram, Sriram

2009-04-07T23:59:59.000Z

258

Country Report on Building Energy Codes in Canada  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

Shui, Bin; Evans, Meredydd

2009-04-06T23:59:59.000Z

259

Country Report on Building Energy Codes in China  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

2009-04-15T23:59:59.000Z

260

Country Report on Building Energy Codes in Australia  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

2009-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Country Report on Building Energy Codes in Japan  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

Evans, Meredydd; Shui, Bin; Takagi, T.

2009-04-15T23:59:59.000Z

262

Country Report on Building Energy Codes in Korea  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Korea, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial buildings in Korea.

Evans, Meredydd; McJeon, Haewon C.; Shui, Bin; Lee, Seung Eon

2009-04-17T23:59:59.000Z

263

Country Report on Building Energy Codes in the United States  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

Halverson, Mark A.; Shui, Bin; Evans, Meredydd

2009-04-30T23:59:59.000Z

264

The Value of Energy Performance and Green Attributes in Buildings: A Review of Existing Literature and Recommendations for Future Research  

E-Print Network [OSTI]

quantify the value of green and energy efficiency upgradesofhomeswithBuildGreen,ENERGYSTARorLEEDforHomesmajor renovations, and energy or green upgrade projects.

Stuart, Elizabeth

2012-01-01T23:59:59.000Z

265

California Energy Commission's Public Interest Energy Research Program Case Study PIER Buildings Program Research Powers the Future www.energy.ca.gov/research  

E-Print Network [OSTI]

a more energy efficient stage could provide adequate cooling. 2. Sub-optimal refrigerant charge. Inappropriate refrigerant charge is one of the most common faults in rooftop air conditioners. It occurs because %OFUNITSTESTEDWITHPROBLEM #12;high refrigerant charge result in decreased efficiency. According to research by Robert Mowris

California at Davis, University of

266

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates  

SciTech Connect (OSTI)

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); Florida Solar Energy Center (FSEC); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

2006-01-01T23:59:59.000Z

267

Identification of building applications for a variable-conductance insulation  

SciTech Connect (OSTI)

Recent experiments have confirmed the feasibility of controllable, reversible disabling of a vacuum insulation panel, which may result in the development of energy-efficient building envelope components. These components could extend the managed energy exchange through the building envelope from about 30% (typical with fenestration systems in commercial buildings), to as much as 90% of the gross wall and roof areas. Further investigation will be required to optimized the thermal response and the magnitude of the R-value swing (from a difference between insulating and conducting insulating values of 4 to as high as a factor of 100). The potential for energy reduction by using the variable-conductance insulation in the building envelope is discussed, and other potential building applications are mentioned.

Potter, T.F. [National Renewable Energy Lab., Golden, CO (United States); Tuluca, A. [Winter (Steven) Associates, Inc., New York, NY (United States)

1992-07-01T23:59:59.000Z

268

Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint  

SciTech Connect (OSTI)

This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

2011-02-01T23:59:59.000Z

269

Tank waste remediation system (TWRS) privatization contractor samples waste envelope D material 241-C-106  

SciTech Connect (OSTI)

This report represents the Final Analytical Report on Tank Waste Remediation System (TWRS) Privatization Contractor Samples for Waste Envelope D. All work was conducted in accordance with ''Addendum 1 of the Letter of Instruction (LOI) for TWRS Privatization Contractor Samples Addressing Waste Envelope D Materials - Revision 0, Revision 1, and Revision 2.'' (Jones 1996, Wiemers 1996a, Wiemers 1996b) Tank 241-C-1 06 (C-106) was selected by TWRS Privatization for the Part 1A Envelope D high-level waste demonstration. Twenty bottles of Tank C-106 material were collected by Westinghouse Hanford Company using a grab sampling technique and transferred to the 325 building for processing by the Pacific Northwest National Laboratory (PNNL). At the 325 building, the contents of the twenty bottles were combined into a single Initial Composite Material. This composite was subsampled for the laboratory-scale screening test and characterization testing, and the remainder was transferred to the 324 building for bench-scale preparation of the Privatization Contractor samples.

Esch, R.A.

1997-04-14T23:59:59.000Z

270

Mobile Building Energy Audit and Modeling Tools: Cooperative Research and Development Final Report, CRADA Number CRD-11-00441  

SciTech Connect (OSTI)

Broadly accessible, low cost, accurate, and easy-to-use energy auditing tools remain out of reach for managers of the aging U.S. building population (over 80% of U.S. commercial buildings are more than 10 years old*). concept3D and NREL's commercial buildings group will work to translate and extend NREL's existing spreadsheet-based energy auditing tool for a browser-friendly and mobile-computing platform. NREL will also work with concept3D to further develop a prototype geometry capture and materials inference tool operable on a smart phone/pad platform. These tools will be developed to interoperate with NREL's Building Component Library and OpenStudio energy modeling platforms, and will be marketed by concept3D to commercial developers, academic institutions and governmental agencies. concept3D is NREL's lead developer and subcontractor of the Building Component Library.

Brackney, L.

2013-04-01T23:59:59.000Z

271

Building | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, and technology forBudgetThison Success

272

NREL: Buildings Research - Events  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below are upcoming events related to

273

NREL: Buildings Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below are upcoming events related

274

NREL: Buildings Research - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below are upcoming events relatedNews

275

NREL: Buildings Research - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below are upcoming events

276

NREL: Buildings Research - Webmaster  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below are upcoming

277

Building Stones  

E-Print Network [OSTI]

3). Photographs by the author. Building Stones, Harrell, UEEOxford Short Citation: Harrell, 2012, Building Stones. UEE.Harrell, James A. , 2012, Building Stones. In Willeke

2012-01-01T23:59:59.000Z

278

THE PENNSYLVANIA STATE UNIVERSITY HANKIN CHAIR IN RESIDENTIAL BUILDING CONSTRUCTION  

E-Print Network [OSTI]

research in the areas of residential building design and construction, sustainable buildings, energy issues in residential buildings, lifecycle analysis of buildings and related infrastructure, and sustainable landTHE PENNSYLVANIA STATE UNIVERSITY HANKIN CHAIR IN RESIDENTIAL BUILDING CONSTRUCTION The College

Guiltinan, Mark

279

Power functions and envelopes for unit root tests  

E-Print Network [OSTI]

This paper studies power functions and envelopes for covariate augmented unit root tests. The power functions are calculated by integrating the characteristic function, allowing accurate evaluation of the power envelope ...

Juhl, Ted P.; Xiao, Z. J.

2003-04-01T23:59:59.000Z

280

Experimental Research and Performance Analysis of a Solar-Powered Air-conditioning System in a Green Building  

E-Print Network [OSTI]

Based on the green building of the Shanghai Institute of Architectural Science, a solar-powered adsorption air-conditioning system was designed. The operational performance under a typical operating mode in summer was studied, which includes...

Zhai, X.; Wang, R.; Dai, Y.; Wu, J.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems  

E-Print Network [OSTI]

Physical Modeling with Modelica. Kluwer Academic Publisher,Using SPARK as a solver for modelica. In Proc. of SimBuild,Proceedings of the 2nd Modelica conference, pages 551 55

Wetter, Michael

2010-01-01T23:59:59.000Z

282

200 Area Deactivation Project Facilities Authorization Envelope Document  

SciTech Connect (OSTI)

Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation.

DODD, E.N.

2000-03-28T23:59:59.000Z

283

Clean Energy Program Policy Brief. The Value of Energy Performance and Green Attributes in Buildings: Review of Existing Literature and Recommendations for Future Research.  

E-Print Network [OSTI]

nationwide. theGreenBuilding (rangeofgreen Newhttp://www.southface.org/green? building?services/programs/regarding residential green building and provide further

Stuart, Elizabeth

2013-01-01T23:59:59.000Z

284

Using text analysis to listen to building users.  

E-Print Network [OSTI]

the Built Environment, Building Research & Information 36(with Indoor Environmental Quality in Green Buildings.Proceedings of the Healthy Buildings Conference, Lisbon.

Moezzi, Mithra; Goins, John

2010-01-01T23:59:59.000Z

285

Modeling FullEnvelope Aerodynamics of Small UAVs in RealTime Prof. Michael Selig  

E-Print Network [OSTI]

D M E S S Modeling FullEnvelope Aerodynamics of Small UAVs in RealTime Prof. Michael Selig Applied Aerodynamics Group and Subsonic Aerodynamics Research Lab Department of Aerospace Engineering will focus on the development of a full six degreeoffreedom aerodynamics modeling environment for small UAVs

Barthelat, Francois

286

An annotated bibliography of completed and in-progress behavioral research for the Office of Buildings and Community Systems. [About 1000 items, usually with abstracts  

SciTech Connect (OSTI)

This report provides an annotated bibliography of completed and in-progress consumer decision research useful for technology transfer and commercialization planning by the US Department of Energy's (DOE) Office of Buildings and Community Systems (OBCS). This report attempts to integrate the consumer research studies conducted across several public and private organizations over the last four to five years. Some of the sources of studies included in this annotated bibliography are DOE National Laboratories, public and private utilities, trade associations, states, and nonprofit organizations. This study divides the articles identified in this annotated bibliography into sections that are consistent with or similar to the system of organization used by OBCS.

Weijo, R.O.; Roberson, B.F.; Eckert, R.; Anderson, M.R.

1988-05-01T23:59:59.000Z

287

Pitfalls in Building and HVAC Audits  

E-Print Network [OSTI]

The purpose of an energy audit is to identify and analyze areas of energy consumption and to propose methods of conservation. In the process of completing an audit the following areas of consumption should be considered: 0 Building Envelope 0 Air...

Gidwani, B. N.

1985-01-01T23:59:59.000Z

288

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network [OSTI]

metrics for sustainable building design. National ResearchJ. 2007. Sustainable Construction: Green Building Design anddesign strategies implemented in buildings promoted as green, sustainable,

Konis, Kyle Stas

2011-01-01T23:59:59.000Z

289

Effective Daylighting: Evaluating Daylighting Performance in the San Francisco Federal Building from the Perspective of Building Occupants  

E-Print Network [OSTI]

metrics for sustainable building design. National ResearchJ. 2007. Sustainable Construction: Green Building Design anddesign strategies implemented in buildings promoted as green, sustainable,

Konis, Kyle Stas

2012-01-01T23:59:59.000Z

290

A prototype toolkit for evaluating indoor environmental quality in commercial buildings  

E-Print Network [OSTI]

more tolerant of green buildings? Building Research &Korkmaz S. Effects of green buildings on employee health andcosts and financial benefits of green buildings: a report to

Heinzerling, David; Webster, Tom; Schiavon, Stefano; Anwar, George; Dickerhoff, Darryl

2013-01-01T23:59:59.000Z

291

Advanced Load Identification and Management for Buildings: Cooperative Research and Development Final Report, CRADA Number: CRD-11-422  

SciTech Connect (OSTI)

The goal of this CRADA work is to support Eaton Innovation Center (Eaton) efforts to develop advanced load identification, management technologies, and solutions to reduce building energy consumption by providing fine granular visibility of energy usage information and safety protection of miscellaneous electric loads (MELs) in commercial and residential buildings. MELs load identification and prediction technology will be employed in a novel 'Smart eOutlet*' to provide critical intelligence and information to improve the capability and functionality of building load analysis and design tools and building power management systems. The work scoped in this CRADA involves the following activities: development and validation of business value proposition for the proposed technologies through voice of customer investigation, market analysis, and third-party objective assessment; development and validation of energy saving impact as well as assessment of environmental and economic benefits; 'smart eOutlet' concept design, prototyping, and validation; field validation of the developed technologies in real building environments. (*Another name denoted as 'Smart Power Strip (SPS)' will be used as an alternative of the name 'Smart eOutlet' for a clearer definition of the product market position in future work.)

Gentile-Polese, L.

2014-05-01T23:59:59.000Z

292

FORESTRY BUILDING: BUILDING EMERGENCY PLAN  

E-Print Network [OSTI]

FORESTRY BUILDING: BUILDING EMERGENCY PLAN Date Adopted: August 18, 2009 Date Revised June 17, 2013 Prepared By: Diana Evans and Jennifer Meyer #12;PURDUE UNIVERSITY BUILDING EMERGENCY PLAN VERSION 3 2 Table Suspension or Campus Closure SECTION 3: BUILDING INFORMATION 3.1 Building Deputy/Alternate Building Deputy

293

Building America Webinar: Ductless Hydronic Distribution Systems...  

Energy Savers [EERE]

Building America Webinar: Ductless Hydronic Distribution Systems Building America Webinar: Ductless Hydronic Distribution Systems This webinar was presented by research team...

294

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network [OSTI]

BUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAY BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

295

What School Buildings Can Teach Us: Post-Occupancy Evaluation Surveys in K-12 Learning Environments  

E-Print Network [OSTI]

environmental quality in green buildings. In Proceedings ofResearch Group. 2004. Green Building White Paper Research.6. 23 Heerwagen, J. (2000). Green buildings, organizational

Baker, L.

2011-01-01T23:59:59.000Z

296

EIS-0350-S1: Supplemental Environmental Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, New Mexico  

Broader source: Energy.gov [DOE]

This Supplemental EIS evaluates the completion of the Chemistry and Metallurgy Research Building Replacement (CMRR) Project, which consists of constructing the nuclear facility portion (CMRR-NF) at Los Alamos National Laboratory (LANL). The CMRR Project provides the analytical chemistry and materials characterization capabilities currently or previously performed in the existing Chemistry and Metallurgy Research (CMR) Building. Because of recent detailed site geotechnical investigations, certain aspects of the CMRR-NR project have changed resulting in change to the environmental impacts.

297

Building Retrofits for Increased Protection Against Airborne  

E-Print Network [OSTI]

Building Retrofits for Increased Protection Against Airborne Chemical and Biological Releases of Standards and Technology William A. Jeffrey, Director Building Retrofits for Increased Protection Against Dols Heather Davis Priya Lavappa Amy Rushing Building and Fire Research Laboratory Prepared for: U

298

Around Buildings  

E-Print Network [OSTI]

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

299

Technical support document for proposed revision of the model energy code thermal envelope requirements  

SciTech Connect (OSTI)

This report documents the development of the proposed revision of the council of American Building Officials' (CABO) 1993 supplement to the 1992 Model Energy Code (MEC) (referred to as the 1993 MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. The goal of this analysis was to develop revised guidelines based on an objective methodology that determined the most cost-effective (least total life-cycle cost [LCC]) combination of energy conservation measures (ECMs) for residences in different locations. The ECMs with the lowest LCC were used as a basis for proposing revised MEC maximum U[sub o]-value (thermal transmittance) curves in the MEC format. The changes proposed here affect the requirements for group R'' residences. The group R residences are detached one- and two-family dwellings (referred to as single-family) and all other residential buildings three stories or less (referred to as multifamily).

Conner, C.C.; Lucas, R.G.

1993-02-01T23:59:59.000Z

300

Technical support document for proposed revision of the model energy code thermal envelope requirements  

SciTech Connect (OSTI)

This report documents the development of the proposed revision of the council of American Building Officials` (CABO) 1993 supplement to the 1992 Model Energy Code (MEC) (referred to as the 1993 MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. The goal of this analysis was to develop revised guidelines based on an objective methodology that determined the most cost-effective (least total life-cycle cost [LCC]) combination of energy conservation measures (ECMs) for residences in different locations. The ECMs with the lowest LCC were used as a basis for proposing revised MEC maximum U{sub o}-value (thermal transmittance) curves in the MEC format. The changes proposed here affect the requirements for ``group R`` residences. The group R residences are detached one- and two-family dwellings (referred to as single-family) and all other residential buildings three stories or less (referred to as multifamily).

Conner, C.C.; Lucas, R.G.

1993-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network [OSTI]

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

302

2014-09-30 Issuance: Buildings-to-Grid Integration and Related Areas of Research; Notice of Availability and Request for Public Comment  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register notice of availability and request for public comment regarding buildings-to-grid integration and related areas of research, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 30, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

303

Comparison of Building Energy Modeling Programs: Building Loads  

E-Print Network [OSTI]

Energy, the U.S.-China Clean Energy Research Center for Building Energy Efficiency, of the U National Laboratory, USA and Tsinghua University, China Under the U.S.-China Clean Energy Research Center the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation

304

Energy efficiency buildings program, FY 1980  

SciTech Connect (OSTI)

A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

Not Available

1981-05-01T23:59:59.000Z

305

Economic Energy Savings Potential in Federal Buildings  

SciTech Connect (OSTI)

The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

2000-09-04T23:59:59.000Z

306

Energy Survey and Energy Savings in an Office Building with Aid of Building Software.  

E-Print Network [OSTI]

?? Simulation is one of the best Analytical tools for Building Research .Energy Efficient Buildings are of great concern which is gaining importance steeply in (more)

Lu, Yinghao

2008-01-01T23:59:59.000Z

307

Accelerated Lambda Iteration in Rapidly Expanding Envelopes  

E-Print Network [OSTI]

We discuss the current implementation of the ALI method into our HYDrodynamical RAdiation(HYDRA) code for rapidly expanding, low density envelopes commonly found in core collapse and thermonuclear supernovae, novae and WR stars. Due to the low densities, non-thermal excitation by high energy photons (e.g. by radioactive decays) and the time dependence of the problem, large departures from LTE are common throughout the envelope even at large optical depths. ALI is instrumental for both the coupling of the statistical equations and the hydrodynamical equations with the radiation transport (RT). We employ several concepts to improve the stability, and convergence rate/control including the concept of leading elements, the use of net rates, level locking, reconstruction of global photon redistribution functions, equivalent-2-level approach, and predictive corrector methods. For appropriate conditions, the solution of the time-dependent rate equations can be reduced to the time-independent problem plus an analytic solution of an ODE For the 3-D problem, we solve the radiation transport via the moment equations. To construct the Eddington tensor elements, we use a Monte Carlo scheme to determine the deviation of the solution of the RT equation from the diffusion approximation (ALI of second kind). At the example of a thermonuclear supernova (SN99by),we show an analysis of light light curves, flux and polarization spectra and discuss the limitations of our approach.

P. Hoeflich

2002-07-04T23:59:59.000Z

308

Precision envelope detector and linear rectifier circuitry  

DOE Patents [OSTI]

Disclosed is a method and apparatus for the precise linear rectification and envelope detection of oscillatory signals. The signal is applied to a voltage-to-current converter which supplies current to a constant current sink. The connection between the converter and the sink is also applied through a diode and an output load resistor to a ground connection. The connection is also connected to ground through a second diode of opposite polarity from the diode in series with the load resistor. Very small amplitude voltage signals applied to the converter will cause a small change in the output current of the converter, and the difference between the output current and the constant current sink will be applied either directly to ground through the single diode, or across the output load resistor, dependent upon the polarity. Disclosed also is a full-wave rectifier utilizing constant current sinks and voltage-to-current converters. Additionally, disclosed is a combination of the voltage-to-current converters with differential integrated circuit preamplifiers to boost the initial signal amplitude, and with low pass filtering applied so as to obtain a video or signal envelope output.

Davis, Thomas J. (Richland, WA)

1980-01-01T23:59:59.000Z

309

EIS-0350: Final Environmental Impact Statement for the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory Los Alamos, New Mexico  

Broader source: Energy.gov [DOE]

The CMRR EIS examines the potential environmental impacts associated with the Proposed Action of consolidating and relocating the mission-critical CMR capabilities from a degraded building to a new modern building(s).

310

The Design-Build Process for the Research Support Facility (RSF), Energy Efficiency & Renewable Energy (EERE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004Theapproaches201EvaluationDesign-Build

311

Commercial Building Indoor Environmental Quality Evaluation: Methods and Tools  

E-Print Network [OSTI]

quality (IEQ) acceptance in residential buildings.Energy and Buildings, 41(9), 930936. doi:10.1016/j.more tolerant of green buildings? Building Research &

Heinzerling, David

2012-01-01T23:59:59.000Z

312

NREL: Buildings Research - Challenges in Commercial Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women

313

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network [OSTI]

and/or require energy efficiency in buildings during the 11to strengthen energy efficiency in buildings. This BuildingUniversity Building Energy Efficiency Research Centre (

Zhou, Nan

2010-01-01T23:59:59.000Z

314

The Economics of Green Building  

E-Print Network [OSTI]

Green Building Piet Eichholtz Maastricht University Netherlands p.eichholtz@maastrichtuniversity.nl Nils Kok Maastricht University Netherlands n.kok@maastrichtuniversity.nl Abstract Research on climate change

Eichholtz, Piet; Kok, Nils; Quigley, John M.

2010-01-01T23:59:59.000Z

315

Building Energy Modeling (BEM) Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Annex 58: validation-grade experiments Targeted research & advanced development * Modelica Buildings Library & IEA Annex 60 * Modelica + Functional Mockup Interface * Will form...

316

$18.8 Million Award for Power Systems Engineering Research Center Continues Collaboration of 13 Universities and 35 Utilities for Electric Power Research, Building the Nation's Energy Workforce  

Broader source: Energy.gov [DOE]

The Department of Energy awarded a cooperative agreement on January 16, 2009, to the Arizona State University (ASU) Board of Regents to operate the Power Systems Engineering Research Center (PSERC). PSERC is a collaboration of 13 universities with 35 electricity industry member organizations including utilities, transmission companies, vendors and research organizations.

317

BUILDING STRONGSM 2008 AFEP Preliminary  

E-Print Network [OSTI]

BUILDING STRONGSM 1 2008 AFEP Preliminary Research Results Northwest Power and Conservation Council Meeting March 2009 Boise, ID #12;BUILDING STRONGSM 2 Focus Today · Anadromous Fish Evaluation Program Purpose · Juvenile Fish Passage · Adult Fish · Predation ­ Avian ­ Pinniped · Lamprey #12;BUILDING

318

Advanced Envelope Research for Factory Built Housing, Phase 3-Design  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 20142-021

319

Expert Meeting Report: Advanced Envelope Research for Factory Built Housing  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department of Energy56Executive Summit on WindMarch Achieving the

320

Building Research & Information (2000) 28(5-6), 394-402 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office  

E-Print Network [OSTI]

, this collaboration must continue throughout the building lifecycle, from construction, commissioning and operation

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building Technologies Experimental Capabilities and Apparatus...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Experimental Capabilities and Apparatus Directory October 01, 2014 ORNL Building Technologies Research and Integration Center (BTRIC) provides unique experimental capabilities...

322

Direct modelling of envelope dynamics in resonant inverters  

E-Print Network [OSTI]

Direct modelling of envelope dynamics in resonant inverters Y. Yin, R. Zane, R. Erickson and J. Glaser A direct dynamic modelling approach is proposed for envelope signals in resonant inverters tank and simplify analysis and controller design. Introduction: High-frequency DC-AC inverters

323

NEUTRON STAR ENVELOPES AND THERMAL RADIATION FROM THE MAGNETIC SURFACE  

E-Print Network [OSTI]

NEUTRON STAR ENVELOPES AND THERMAL RADIATION FROM THE MAGNETIC SURFACE in: C. Kouveliotou, J. van.Petersburg, Russia Abstract. The thermal structure of neutron star envelopes is discussed with emphasis on analytic on the opacities and the thermal structure is further reviewed in view of the application to pulsar cooling

324

Envelope of Fracture Density Dragana Todorovic-Marinic*  

E-Print Network [OSTI]

Envelope of Fracture Density Dragana Todorovic-Marinic* Veritas DGC Ltd., Calgary, Alberta, Canada that interpretation of fractures can be improved by using the envelope of the fracture density. It has been shown that open, fluid (or gas) filled fractures can be identified through the use of the AVAZ method (Gray et. al

Santos, Juan

325

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

SciTech Connect (OSTI)

Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

Wall, L.W.; Rosenfeld, A.H.

1982-12-01T23:59:59.000Z

326

Building America Webinar: Building America Technology-to-Market Roadmaps  

Broader source: Energy.gov [DOE]

This webinar introduced the integrated Building America Technology-to-Market Roadmaps that will serve as a guide for Building Americas research, development, and demonstration activities over the coming years and result in an integrated Building America Research-to-Market Plan in 2015. This webinar is intended to be an informative session to assist stakeholders in providing review and comment to the Request for Information that will be issued regarding these Roadmaps.

327

A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

1991-09-01T23:59:59.000Z

328

Particle deposition from turbulent flow: Review of published research and its applicability to ventilation ducts in commercial buildings  

SciTech Connect (OSTI)

This report reviews published experimental and theoretical investigations of particle deposition from turbulent flows and considers the applicability of this body of work to the specific case of particle deposition from flows in the ducts of heating, ventilating and air conditioning (HVAC) systems. Particle deposition can detrimentally affect the performance of HVAC systems and it influences the exposure of building occupants to a variety of air pollutants. The first section of this report describes the types of HVAC systems under consideration and discusses the components, materials and operating parameters commonly found in these systems. The second section reviews published experimental investigations of particle deposition rates from turbulent flows and considers the ramifications of the experimental evidence with respect to HVAC ducts. The third section considers the structure of turbulent airflows in ventilation ducts with a particular emphasis on turbulence investigations that have been used as a basis for particle deposition models. The final section reviews published literature on predicting particle deposition rates from turbulent flows.

Sippola, Mark R.; Nazaroff, William W.

2002-06-01T23:59:59.000Z

329

Building technologies  

ScienceCinema (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-15T23:59:59.000Z

330

Building technologies  

SciTech Connect (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-14T23:59:59.000Z

331

The Envelope Thermal Test Unit (ETTU): Full Measurement of Wall Perform ance  

E-Print Network [OSTI]

March 30-April THE ENVELOPE THERMAL TEST UNIT (ETTU): FIELDFigure 1. Schematic of Envelope Thermal Test Unit (cross-the dvnami c thermal propert i es of envelope c~ponents. The

Sonderegger, R.C.; Sherman, M.H.; Adams, J.W.

2008-01-01T23:59:59.000Z

332

The Envelope Thermal Test Unit (ETTU): Full Measurement of Wall Perform ance  

E-Print Network [OSTI]

March 30-April THE ENVELOPE THERMAL TEST UNIT (ETTU): FIELDFigure 1. Schematic of Envelope Thermal Test Unit (cross-the dvnami c thermal propert i es of envelope c~ponents. The

Adams, J.W.

2010-01-01T23:59:59.000Z

333

Beardmore Building  

High Performance Buildings Database

Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

334

Building load control and optimization  

E-Print Network [OSTI]

Researchers and practitioners have proposed a variety of solutions to reduce electricity consumption and curtail peak demand. This research focuses on load control by improving the operations in existing building HVAC ...

Xing, Hai-Yun Helen, 1976-

2004-01-01T23:59:59.000Z

335

CALIFORNIA ENERGY Large HVAC Building  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION Large HVAC Building Survey Information Database of Buildings over 100 Design of Large Commercial HVAC Systems research project, one of six research elements in the Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems Integrated

336

STATE OF CALIFORNIA ENVELOPE COMPONENT APPROACH  

E-Print Network [OSTI]

panels and building integrated solar thermal panels are exempted solar relectance and thermal emittance are exempted solar relectance and thermal emittance or SRI that have a U- factor of 0.039 or lower. See Opaque are exempted solar relectance and thermal emittance or SRI that have a U- factor of 0.048 or lower. See Opaque

337

Building Name BuildingAbbr  

E-Print Network [OSTI]

Capture/InstrCam ClassroomCapture/TechAsst SkypeWebcam NOTES for R&R Only Room Detail Building Times Weekend and Evening BldgBuilding Name BuildingAbbr RoomNumber SeatCount DepartmentalPriority SpecialNeedsSeating Special Detail Building Contacts Event Scheduling Detail BI 02010 104 NR Y 52 61 81 84 85 86 87 88 89 90 91 92 94

Parker, Matthew D. Brown

338

E-Print Network 3.0 - acoustic envelope shape Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

variable, and the spectrum of an acoustic instrument... . In this work, acoustic performances are analyzed to derive amplitude and frequency envelopes... less envelope shape...

339

Critical point analysis of phase envelope diagram  

SciTech Connect (OSTI)

Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

Soetikno, Darmadi; Siagian, Ucok W. R. [Department of Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Kusdiantara, Rudy, E-mail: rkusdiantara@s.itb.ac.id; Puspita, Dila, E-mail: rkusdiantara@s.itb.ac.id; Sidarto, Kuntjoro A., E-mail: rkusdiantara@s.itb.ac.id; Soewono, Edy; Gunawan, Agus Y. [Department of Mathematics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

2014-03-24T23:59:59.000Z

340

Optimisation of buildings' solar irradiation availability  

SciTech Connect (OSTI)

In order to improve the sustainability of new and existing urban settlements it is desirable to maximise the utilisation of the solar energy incident on the building envelope, whether by passive or active means. To this end we have coupled a multi-objective optimisation algorithm with the backwards ray tracing program RADIANCE which itself uses a cumulative sky model for the computation of incident irradiation (W h/m{sup 2}) in a single simulation. The parameters to optimise are geometric (the height of buildings up to their facade and the height and orientation of roofs), but with the constraint of maintaining an overall built volume, and the objective function is heating season solar irradiation offset by envelope heat losses. This methodology has been applied to a range of urban typologies and produces readily interpretable results. The focus of this work is on the design of new urban forms but the method could equally be applied to examine the relative efficiency of existing urban settlements, by comparison of existing forms with the calculated optima derived from relevant specifications of the building envelope. (author)

Kaempf, Jerome Henri; Montavon, Marylene; Bunyesc, Josep; Robinson, Darren [Solar Energy and Building Physics Laboratory, Station 18, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Bolliger, Raffaele [Industrial Energy Systems Laboratory, Station 9, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland)

2010-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Comfort standards and variation in exceedance for mixed-mode buildings.  

E-Print Network [OSTI]

a lower carbon society. Building Research & Information, 36(ventilated and mixed-mode buildings Part I: Thermalmodeling. Building and Environment, 44(4), 736749.

Brager, Gail; Borgeson, Sam

2010-01-01T23:59:59.000Z

342

Behavioral strategies to bridge the gap betweenpotential and actual savings in commercial buildings  

E-Print Network [OSTI]

about your personal workspace or building overall?Z. Brown & S. McKay. 2010. Building human agency: a timelymanifesto. Building Research & Information 38(3):339-350.

Moezzi, Mithra; Hammer, Christine; Goins, John; Meier, Alan

2013-01-01T23:59:59.000Z

343

Auto-DR and Pre-cooling of Buildings at Tri-City Corporate Center  

E-Print Network [OSTI]

funded Demand Response Research Center, a building energyto maximize demand response savings for these buildings. Theapply the demand response strategies in the building on the

Yin, Rongxin

2010-01-01T23:59:59.000Z

344

Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit: Annapolis, Maryland. Building America Case Study: Whole-House Solutions for Existing Homes (Fact Sheet)  

SciTech Connect (OSTI)

Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place DER at the Bay Ridge multifamily (MF) development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a "base scope" retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a "DER scope" which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. The base scope was applied to the entire apartment complex, except for one 12-unit building which underwent the DER scope. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

Not Available

2013-10-01T23:59:59.000Z

345

Audit Procedures for Improving Residential Building Energy Efficiency  

E-Print Network [OSTI]

Efficiency April 2013 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science & TechnologyAudit Procedures for Improving Residential Building Energy Efficiency This report analyses in thermal envelopes. The report was submitted by HNEI to the U.S. Department of Energy Office of Electricity

346

Multidimensional thermal structure of magnetized neutron star envelopes  

E-Print Network [OSTI]

Recently launched x-ray telescopes have discovered several candidate isolated neutron stars. The thermal radiation from these objects may potentially constrain our understanding of nuclear physics in a realm inaccessible to terrestrial experiments. To translate the observed fluxes from neutron stars into constraints, one needs precise calculations of the heat transfer through the thin insulating envelopes of neutron stars. We describe models of the thermal structure of the envelopes of neutron stars with magnetic fields up to 10^{14} G. Unlike earlier work, we infer the properties of envelope models in two dimensions and precisely account for the quantization of the electron phase space. Both dipole and uniformly magnetized envelopes are considered.

Jeremy S. Heyl; Lars Hernquist

1998-08-12T23:59:59.000Z

347

Influence of concrete fracture on the rain infiltration and thermal performance of building facades  

E-Print Network [OSTI]

Influence of concrete fracture on the rain infiltration and thermal performance of building facades., Foray G., Roux J.-J., 2013. Influence of concrete fracture on the rain infiltration and thermal is to be accounted for in long-term hygrothermal performance as- sessments of the building envelope. The present work

348

The System Approach to Thermal Performance - Control of Condensation and Mold in Buildings  

E-Print Network [OSTI]

sealing which controls the leakage of air and moisture vapor into the building envelope. New soft foam insulation is now being used in retrofit and new buildings to solve mold and moisture condensation problems. At the same time downsizing of HVAC...

Nicklas, R.

2002-01-01T23:59:59.000Z

349

Experiences with a High-Fidelity Wireless Building Energy Auditing Network  

E-Print Network [OSTI]

Experiences with a High-Fidelity Wireless Building Energy Auditing Network Xiaofan Jiang, Minh Van to determine and audit the energy envelope of an active labo- ratory. Classic WSN issues of coverage, Experimentation, Measurement, Performance, Human Factors Keywords Energy, Audit, Building, Power, Wireless, Sensor

Dutta, Prabal

350

300 Area Liquid Effluent Facilities (LEF) Authorization Envelope  

SciTech Connect (OSTI)

The purpose of this document is to establish the facility Authorization Envelope (AE) for the 300 Liquid Effluent Facilities (LEP )Project and identify the requirements related to the maintenance of the AE as Specified in HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The 300 LEF Project consists of two separate facilities operating under one management organization. They are the 310 Facility and the 340 Facility. The AE documents the limits of operations for all 300 LEF Project activities.

WRIGHT, E.J.; STORDEUR, R.T.

2000-04-07T23:59:59.000Z

351

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

SciTech Connect (OSTI)

The following paper conducts a regional analysis of the U.S. and Chinese buildings? potential for adopting Distributed Energy Resources (DER). The expected economics of DER in 2020-2025 is modeled for a commercial and a multi-family residential building in different climate zones. The optimal building energy economic performance is calculated using the Distributed Energy Resources Customer Adoption Model (DER CAM) which minimizes building energy costs for a typical reference year of operation. Several DER such as combined heat and power (CHP) units, photovoltaics, and battery storage are considered. The results indicate DER have economic and environmental competitiveness potential, especially for commercial buildings in hot and cold climates of both countries. In the U.S., the average expected energy cost savings in commercial buildings from DER CAM?s suggested investments is 17percent, while in Chinese buildings is 12percent. The electricity tariffs structure and prices along with the cost of natural gas, represent important factors in determining adoption of DER, more so than climate. High energy pricing spark spreads lead to increased economic attractiveness of DER. The average emissions reduction in commercial buildings is 19percent in the U.S. as a result of significant investments in PV, whereas in China, it is 20percent and driven by investments in CHP. Keywords: Building Modeling and Simulation, Distributed Energy Resources (DER), Energy Efficiency, Combined Heat and Power (CHP), CO2 emissions 1. Introduction The transition from a centralized and fossil-based energy paradigm towards the decentralization of energy supply and distribution has been a major subject of research over the past two decades. Various concerns have brought the traditional model into question; namely its environmental footprint, its structural inflexibility and inefficiency, and more recently, its inability to maintain acceptable reliability of supply. Under such a troubled setting, distributed energy resources (DER) comprising of small, modular, electrical renewable or fossil-based electricity generation units placed at or near the point of energy consumption, has gained much attention as a viable alternative or addition to the current energy system. In 2010, China consumed about 30percent of its primary energy in the buildings sector, leading the country to pay great attention to DER development and its applications in buildings. During the 11th Five Year Plan (FYP), China has implemented 371 renewable energy building demonstration projects, and 210 photovoltaics (PV) building integration projects. At the end of the 12th FYP, China is targeting renewable energy to provide 10percent of total building energy, and to save 30 metric tons of CO2 equivalents (mtce) of energy with building integrated renewables. China is also planning to implement one thousand natural gas-based distributed cogeneration demonstration projects with energy utilization rates over 70percent in the 12th FYP. All these policy targets require significant DER systems development for building applications. China?s fast urbanization makes building energy efficiency a crucial economic issue; however, only limited studies have been done that examine how to design and select suitable building energy technologies in its different regions. In the U.S., buildings consumed 40percent of the total primary energy in 2010 [1] and it is estimated that about 14 billion m2 of floor space of the existing building stock will be remodeled over the next 30 years. Most building?s renovation work has been on building envelope, lighting and HVAC systems. Although interest has emerged, less attention is being paid to DER for buildings. This context has created opportunities for research, development and progressive deployment of DER, due to its potential to combine the production of power and heat (CHP) near the point of consumption and delivering multiple benefits to customers, such as cost

Mendes, Goncalo; Feng, Wei; Stadler, Michael; Steinbach, Jan; Lai, Judy; Zhou, Nan; Marnay, Chris; Ding, Yan; Zhao, Jing; Tian, Zhe; Zhu, Neng

2014-04-09T23:59:59.000Z

352

Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring  

SciTech Connect (OSTI)

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

Dentz, J.; Henderson, H.; Varshney, K.

2014-09-01T23:59:59.000Z

353

Building Stones  

E-Print Network [OSTI]

was no good source of local building stone, rock was usuallyrock-cut shrines and especially tombs, and these are the sources

2012-01-01T23:59:59.000Z

354

Energy Department Announces $5 Million for Residential Building...  

Office of Environmental Management (EM)

Announces 5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships Energy Department Announces 5 Million for Residential Building Energy...

355

Building America Webinar: Field Test Best Practices Tool  

Broader source: Energy.gov [DOE]

This presentation was delivered at the U.S. Department of Energy Building America webinar, Building America Research Tools, on March 18, 2015.

356

Building America Webinar: HVAC Right-Sizing Part 1-Calculating...  

Energy Savers [EERE]

HVAC Right-Sizing Part 1-Calculating Loads Building America Webinar: HVAC Right-Sizing Part 1-Calculating Loads During this webinar, Building America Research Team IBACOS...

357

Building America Whole-House Solutions for New Homes: Nelson...  

Broader source: Energy.gov (indexed) [DOE]

Case study of Nelson Construction, who worked with the Building America research partner Building Science Corporation to design ten HERS 53 homes with ICF foundations,...

358

Building America Webinar: Sealing of Home Enclosures with Aerosol...  

Energy Savers [EERE]

Sealing of Home Enclosures with Aerosol Particles Building America Webinar: Sealing of Home Enclosures with Aerosol Particles This webinar was presented by research team Building...

359

Extended supernova shock breakout signals from inflated stellar envelopes  

E-Print Network [OSTI]

Stars close to the Eddington luminosity can have large low-density inflated envelopes. We show that the rise times of shock breakout signals from supernovae can be extended significantly if supernova progenitors have an inflated stellar envelope. If the shock breakout occurs in such inflated envelopes, the shock breakout signals diffuse in them, and their rise time can be significantly extended. Then, the rise times of the shock breakout signals are dominated by the diffusion time in the inflated envelope rather than the light-crossing time of the progenitors. We show that our inflated Wolf-Rayet star models whose radii are of the order of the solar radius can have shock breakout signals which are longer than ~100 sec. The existence of inflated envelopes in Wolf-Rayet supernova progenitors may be related to the mysterious long shock breakout signal observed in Type Ib SN 2008D. Extended shock breakout signals may provide evidence for the existence of inflated stellar envelopes and can be used to constrain the...

Moriya, Takashi J; Langer, Norbert

2015-01-01T23:59:59.000Z

360

INL Green Building Strategy  

SciTech Connect (OSTI)

Green buildings, also known as sustainable buildings, resource efficient buildings, and high performance buildings, are structures that minimize the impact on the environment by using less energy and water, reducing solid waste and pollutants, and limiting the depletion of natural resources. As Idaho National Laboratory (INL) becomes the nations premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish the mission. This infrastructure, particularly the buildings, should incorporate green design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. With this in mind, the recommendations described in this strategy are intended to form the INL foundation for green building standards. The recommendations in this strategy are broken down into three levels: Baseline Minimum, Leadership in Energy and Environmental Design (LEED)Certification, and Innovative. Baseline Minimum features should be included in all new occupied buildings no matter what the purpose or size. These features do not require significant research, design, or capital costs and yet they can reduce Operation and Maintenance (O&M) costs and produce more environmentally friendly buildings. LEED Certification features are more aggressive than the Baseline Minimums in that they require documentation, studies, and/or additional funding. Combined with the Baseline Minimums, many of the features in this level will need to be implemented to achieve the goal of LEED certification. LEED Silver certification should be the minimum goal for all new buildings (including office buildings, laboratories, cafeterias, and visitor centers) greater than 25,000 square feet or a total cost of $10 million. Innovative features can also contribute to LEED certification, but are less mainstream than those listed in the previous two levels. These features are identified as areas where INL can demonstrate leadership but they could require significant upfront cost, additional studies, and/or development. Appendix A includes a checklist summary of the INL Green Building Strategy that can be used as a tool during the design process when considering which green building features to include. It provides a quick reference for determining which strategies have lower or no increased capital cost, yield lower O&M costs, increase employee productivity, and contribute to LEED certification.

Jennifer Dalton

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

An Assessment of Envelope Measures in Mild Climate Deep Energy Retrofits  

SciTech Connect (OSTI)

Energy end-uses and interior comfort conditions have been monitored in 11 Deep Energy Retrofits (DERs) in a mild marine climate. Two broad categories of DER envelope were identified: first, bringing homes up to current code levels of insulation and airtightness, and second, enhanced retrofits that go beyond these code requirements. The efficacy of envelope measures in DERs was difficult to determine, due to the intermingled effects of enclosure improvements, HVAC system upgrades and changes in interior comfort conditions. While energy reductions in these project homes could not be assigned to specific improvements, the combined effects of changes in enclosure, HVAC system and comfort led to average heating energy reductions of 76percent (12,937 kWh) in the five DERs with pre-retrofit data, or 80percent (5.9 kWh/ft2) when normalized by floor area. Overall, net-site energy reductions averaged 58percent (15,966 kWh; n=5), and DERs with code-style envelopes achieved average net-site energy reductions of 65percent (18,923 kWh; n=4). In some homes, the heating energy reductions were actually larger than the whole house reductions that were achieved, which suggests that substantial additional energy uses were added to the home during the retrofit that offset some heating savings. Heating system operation and energy use was shown to vary inconsistently with outdoor conditions, suggesting that most DERs were not thermostatically controlled and that occupants were engaged in managing the indoor environmental conditions. Indoor temperatures maintained in these DERs were highly variable, and no project home consistently provided conditions within the ASHRAE Standard 55-2010 heating season comfort zone. Thermal comfort and heating system operation had a large impact on performance and were found to depend upon the occupant activities, so DERs should be designed with the occupants needs and patterns of consumption in mind. Beyond-code building envelopes were not found to be strictly necessary for the achievement of deep energy savings in existing uninsulated homes in mild marine climates, provided that other energy end-uses were comprehensively reduced. We recommend that mild climate DERs pursue envelopes in compliance with the 2012 International Energy Conservation Code (IECC) and pair these with high efficiency, off-the-shelf HVAC equipment. Enhanced building envelopes should be considered in cases where very low heating energy use (<1,000 kWh/year or <0.5 kWh/ft2-year) and enhanced thermal comfort (ASHRAE 55-2010) are required, as well as in those situations where substantial energy uses are added to the home, such as decorative lighting, cooling or smart home A/V and communication equipment.

Walker, Iain; Less, Brennan

2014-06-01T23:59:59.000Z

362

Renewable Energy Requirements for Future Building Codes: Options for Compliance  

SciTech Connect (OSTI)

As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy Credits (RECs). Each REC represents a specified amount of renewable electricity production and provides an offset of environmental externalities associated with non-renewable electricity production. The purpose of this paper is to explore the possible issues with RECs and comparable alternative compliance options. Existing codes have been examined to determine energy equivalence between the energy generation requirement and the RECs alternative over the life of the building. The price equivalence of the requirement and the alternative are determined to consider the economic drivers for a market decision. This research includes case studies that review how the few existing codes have incorporated RECs and some of the issues inherent with REC markets. Section 1 of the report reviews compliance options including RECs, green energy purchase programs, shared solar agreements and leases, and other options. Section 2 provides detailed case studies on codes that include RECs and community based alternative compliance methods. The methods the existing code requirements structure alternative compliance options like RECs are the focus of the case studies. Section 3 explores the possible structure of the renewable energy generation requirement in the context of energy and price equivalence. The price of RECs have shown high variation by market and over time which makes it critical to for code language to be updated frequently for a renewable energy generation requirement or the requirement will not remain price-equivalent over time. Section 4 of the report provides a maximum case estimate for impact to the PV market and the REC market based on the Kaufmann et al. proposed requirement levels. If all new buildings in the commercial sector complied with the requirement to install rooftop PV arrays, nearly 4,700 MW of solar would be installed in 2012, a major increase from EIA estimates of 640 MW of solar generation capacity installed in 2009. The residential sector could contribute roughly an additional 2,300 MW based on the same code requirement levels of 4 W/ft{sup 2} of r

Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

2011-09-30T23:59:59.000Z

363

Clean Energy Program Policy Brief. The Value of Energy Performance and Green Attributes in Buildings: Review of Existing Literature and Recommendations for Future Research.  

E-Print Network [OSTI]

quantify the value of green and energy efficiency upgradesofhomeswithBuildGreen,ENERGYSTARorLEEDforHomesmajor renovations, and energy or green upgrade projects.

Stuart, Elizabeth

2013-01-01T23:59:59.000Z

364

Making your Building Smarter : The Retrofit Challenge  

E-Print Network [OSTI]

Wireless Temp Sensors IBM Dublin Research Labs : Smart Buildings Living Lab Environment Background ? 2012 IBM Corporation IBM Dublin Research Labs Our Smart Building Retrofit Challenges Retrofit Challenges Summary 1. Smart Building Design 2... Comfortable environment ?Reduce Energy/Water usage environment ?Keep within Budget ?Biggest Challenge ?? Constantly competing (& changing) objectives within the design and build cycles What to include ? What is critical? Where to Invest ? 5 ? 2012...

Brady, N.

2012-01-01T23:59:59.000Z

365

Lab begins demolition of Cold War-era buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demolition begins of cold War-Era buildings Lab begins demolition of Cold War-era buildings More than 165,000 square feet of former research, production, and office buildings will...

366

Field Study and Energy-Plus Benchmarks for Energy Saver Homes having Different Envelope Designs  

SciTech Connect (OSTI)

An alliance to maximize energy efficiency and cost-effective residential construction (ZEBRAlliance) built and field tested four homes that are 50 percent more energy efficient than a code compliant home. The homes are unoccupied for the duration of a two-year field study, thereby eliminating the confounding issue of occupancy habits. All homes have about the same consistent and scheduled internal load. Each home showcases a unique envelope strategy: 1) structural insulated panel (SIP), 2) optimal value wall framing (OVF), 3) advanced framing featuring the benefits of insulations mixed with phase change materials (PCM), and 4) an exterior insulation and finish system (EIFS). All homes have different weather resistive barriers (WRBs) and/or air barriers to limit air and moisture infiltration. Three homes provide space conditioning and water heating via a ground loop heat exchanger, while the fourth home uses a high efficiency air-to-air heat pump and heat pump water heater. Field performance and results of EnergyPlus V7.0 benchmarks were made for roof and attics as compared to cathedral design and for wall heat flows to validate models. The moisture content of the wall sheathing is shown to prove the protecting effectiveness of WRBs. Temperature distributions through insulations in the wall and ceiling with and without PCMs are described to characterize the performance of the PCM building envelopes.

Shrestha, Som S [ORNL] [ORNL; Childs, Kenneth W [ORNL] [ORNL; Stannard, Eric E [ORNL] [ORNL

2012-01-01T23:59:59.000Z

367

Building Energy Optimization Analysis Method (BEopt) - Building...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

368

Building America Expert Meeting: Transforming Existing Buildings...  

Energy Savers [EERE]

Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report...

369

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

370

Building diagnosable distributed systems  

E-Print Network [OSTI]

Building diagnosable distributed systems Petros Maniatis Intel Research Berkeley ICSI ­ Security] Project response@R (R, K, SI) lookup response Specification #12;2/8/2006 Petros Maniatis9 Strawman Design Join lookup.NI == node.NI Join lookup.NI == succ.NI Select K in (N, S] Project response@R (R, K, SI

Maniatis, Petros

371

U.S. Department of Energy Commercial Reference Building Models of the National Building Stock  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Building Technologies Program has set the aggressive goal of producing marketable net-zero energy buildings by 2025. This goal will require collaboration between the DOE laboratories and the building industry. We developed standard or reference energy models for the most common commercial buildings to serve as starting points for energy efficiency research. These models represent fairly realistic buildings and typical construction practices. Fifteen commercial building types and one multifamily residential building were determined by consensus between DOE, the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory, and represent approximately two-thirds of the commercial building stock.

Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; Yazdanian, M.; Huang, J.; Crawley, D.

2011-02-01T23:59:59.000Z

372

Cycling and Transit Green Buildings  

E-Print Network [OSTI]

solar thermal panels at the LSC. 2. Solar wall on the Mona Campbell Bld. 3. 80 solar Photovoltaic (PV) panels installed in front of a solar wall system on the roof of the Computer Science Bld. Water Green Buildings Renewable Energy 1. Solar Thermal and PV Panels are mounted on C Building for research

Lotze, Heike K.

373

apply skills & experience build skills  

E-Print Network [OSTI]

senior apply skills & experience junior build skills sophomore research & execute freshman explore options1 2 3 4 s u p p o r t4-year career action plan parent about the center for career development Remind your student that it is never too soon or too late to seek an internship or summer job. build

Alvarez, Pedro J.

374

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (www.hvac.okstate.edu)  

E-Print Network [OSTI]

Plus is a new whole-building energy simulation program being developed for the United States Department is modular in structure, and uses the heat balance technique to simulate building thermal loads. The Energy to calculate the airflows, which are used by EnergyPlus in the subsequent heat balance simulation. The paper

375

Apply: Funding Opportunity- Buildings University Innovators and Leaders Development (BUILD)  

Broader source: Energy.gov [DOE]

Full Application Deadline February 11, 2015 This FOA makes available competitive, 2-year cooperative agreements for U.S.-based university teams to research and develop innovative building energy efficient technologies, manufacturing (for projects developing hardware), and commercialization.

376

A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings  

SciTech Connect (OSTI)

Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

2013-06-06T23:59:59.000Z

377

NREL: Buildings Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two yearsNPResultsPhoto of a

378

NREL: Buildings Research - Residential Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below are upcoming eventsResidential

379

Building Stones  

E-Print Network [OSTI]

1992 Are the pyramids of Egypt built of poured concreteel-Anbaut, Red Sea coast, Egypt. Marmora 6, pp. 45 - 56.building stones of ancient Egypt are those relatively soft,

2012-01-01T23:59:59.000Z

380

Building Science  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question How do we first do no harm with high-r enclosures??

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building debris  

E-Print Network [OSTI]

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

382

Healthy buildings  

SciTech Connect (OSTI)

This book is covered under the following headings: Healthy building strategies/productivity, Energy and design issues, Ventilation, Contaminants, Thermal, airflow, and humidity issues, School-related issues, Sources and sinks, Filtering, Operation and maintenance.

Not Available

1991-01-01T23:59:59.000Z

383

Better Buildings  

E-Print Network [OSTI]

Challenge National leadership Initiative Better Information MOU with the Appraisal Foundation Better Tax Incentives/Credits New :179d eligibility and tool; Announced in March Better Financing With Small Business...: engaging in ESCO financing with low interest bonds) ?Tenant/Employee behaviors at odds with efficiency goals ?Split incentives ?Not enough/qualified workforce Better Buildings strategies to overcome barriers and drive action 4 Better Buildings...

Neukomm, M.

2012-01-01T23:59:59.000Z

384

Healthy buildings  

SciTech Connect (OSTI)

This proceedings is of the Indoor Air Quality (IAQ) Conference held September 4--8, 1991 in Washington, D.C. Entitled the IAQ 91, Healthy Buildings,'' the major topics of discussion included: healthy building strategies/productivity; energy and design issues; ventilation; contaminants; thermal, airflow, and humidity issues; school-related issues; sources and sinks; filtering; and operation and maintenance. For these conference proceedings, individual papers are processed separately for input into the Energy Data Base. (BN)

Geshwiler, M.; Montgomery, L.; Moran, M. (eds.)

1991-01-01T23:59:59.000Z

385

Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report  

SciTech Connect (OSTI)

The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair of field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test procedure which could lead to the certification of building materials and systems as flood damage resistant.

Aglan, H.

2005-08-04T23:59:59.000Z

386

Thermal structure and cooling of neutron stars with magnetized envelopes  

E-Print Network [OSTI]

The thermal structure of neutron stars with magnetized envelopes is studied using modern physics input. The relation between the internal (T_i) and local surface temperatures is calculated and fitted by analytic expressions for magnetic field strengths B from 0 to 10^{16} G and arbitrary inclination of the field lines to the surface. The luminosity of a neutron star with dipole magnetic field is calculated and fitted as a function of B, T_i, stellar mass and radius. In addition, we simulate cooling of neutron stars with magnetized envelopes. In particular, we analyse ultramagnetized envelopes of magnetars and also the effects of the magnetic field of the Vela pulsar on the determination of critical temperatures of neutron and proton superfluids in its core.

A. Y. Potekhin; D. G. Yakovlev

2001-06-19T23:59:59.000Z

387

Method and apparatus for controlling carrier envelope phase  

DOE Patents [OSTI]

A chirped pulse amplification laser system. The system generally comprises a laser source, a pulse modification apparatus including first and second pulse modification elements separated by a separation distance, a positioning element, a measurement device, and a feedback controller. The laser source is operable to generate a laser pulse and the pulse modification apparatus operable to modify at least a portion of the laser pulse. The positioning element is operable to reposition at least a portion of the pulse modification apparatus to vary the separation distance. The measurement device is operable to measure the carrier envelope phase of the generated laser pulse and the feedback controller is operable to control the positioning element based on the measured carrier envelope phase to vary the separation distance of the pulse modification elements and control the carrier envelope phase of laser pulses generated by the laser source.

Chang, Zenghu (Manhattan, KS); Li, Chengquan (Sunnyvale, CA); Moon, Eric (Manhattan, KS)

2011-12-06T23:59:59.000Z

388

Archive Reference Buildings by Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

389

Archive Reference Buildings by Building Type: Supermarket  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

390

GREEN BUILDINGS IN CHALLENGES AND  

E-Print Network [OSTI]

GREEN BUILDINGS IN DELAWARE: CHALLENGES AND OPPORTUNITIES FINAL REPORT A Renewable Energy and collaborative research and supports graduate instruction in energy, environmental, and sustainable development policy, sustainable development, political economy of energy, environment and development, environmental

Delaware, University of

391

Buildings Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

December 2014 < prev next > Sun Mon Tue Wed Thu Fri Sat 30 1 2 3 4 5 6 BENEFIT Funding Opportunity - Webinar 2 3:00PM to 4:00PM EST Buildings of the Future Research Project Launch...

392

Building America Webinar: Ventilation in Multifamily Buildings...  

Energy Savers [EERE]

Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design,...

393

Academic & Student Recreation Center Art Building (AB) I9  

E-Print Network [OSTI]

School of (ED) F7 Engineering Building (EB) H10 Engineering & Computer Science Annex (CECS) H8 Extended Studies Building (XSB) D4 Fifth Avenue Cinema (CIN) H8 Fifth Avenue Parking Lot F9 Fourth Avenue Building Research Greenhouses I4 Science and Education Center (SEC) J9 Science Building 1 (SB1) D3 Science Research

Caughman, John

394

Building Scale DC Microgrids  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Marnay, Chris

2013-01-01T23:59:59.000Z

395

Better Buildings Alliance  

Broader source: Energy.gov [DOE]

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

396

ARE 3D HEAT TRANSFER FORMULATIONS WITH SHORT TIME STEP AND SUN PATCH EVOLUTION NECESSARY FOR BUILDING SIMULATION?  

E-Print Network [OSTI]

; Savoyat et al., 2011). As a thermal model of a building envelope should take into account rapid A numerical model is developed to accurately simulate the transient thermal behaviour of rooms with sun of current transient thermal models when adapted to low energy buildings, defined as those with particularly

Boyer, Edmond

397

Fitting and re-fitting : adaptive re-use proposal for building 114 in the Charlestown Navy Yard as a bio-tech research facility  

E-Print Network [OSTI]

n the 1988 Master Plan of the Charlestown Navy Yard, Building 114 was originally planned as a boat repair and maintenance facility with offices. It appeared to be a logical proposal which would revive it to its previous ...

Shay, Stephen D. (Stephen Dar), 1969-

1999-01-01T23:59:59.000Z

398

Building America Webinar: High Performance Space Conditioning...  

Energy Savers [EERE]

Kohta Ueno, Building Science Corporation. Kohta will discuss BSC's research on ductless heat pumps versus mini-splits being used in high performance (high R value enclosurelow...

399

Unvented, Conditioned Crawlspaces - Building America Top Innovation...  

Broader source: Energy.gov (indexed) [DOE]

the interior of a framed crawlspace with insulation installed. This Top Innovation profile highlights Building America research into the benefits of closed, conditioned crawlspaces...

400

Building America Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York (Fact Sheet)  

SciTech Connect (OSTI)

While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

Not Available

2014-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Building Envelope Air Leakage Failure in Small Commercial Buildings Related to the Use of Suspended Tile Ceilings  

E-Print Network [OSTI]

, there is the likelihood that loose fitting tiles may be pushed open at higher test pressures. This indicates that the airtightness may change depending on the pressure differential that occurs across the ceiling. A typical 4 square foot ceiling tile weighs only 4... foot by 2 foot air distribution registers (representing 2.3% of ceiling area) were sealed off during the test to eliminate duct pathways and leaks from being measured. While the room was depressurized, the wall electric outlets were checked to see...

Withers, C. R.; Cummings, J. B.

2000-01-01T23:59:59.000Z

402

Energy 101: Energy Efficient Commercial Buildings  

ScienceCinema (OSTI)

Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

None

2014-06-26T23:59:59.000Z

403

Energy 101: Energy Efficient Commercial Buildings  

SciTech Connect (OSTI)

Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

None

2014-03-14T23:59:59.000Z

404

Neutron star envelopes and thermal radiation from the magnetic surface  

E-Print Network [OSTI]

The thermal structure of neutron star envelopes is discussed with emphasis on analytic results. Recent progress on the effect of chemical constitution and high magnetic fields on the opacities and the thermal structure is further reviewed in view of the application to pulsar cooling and magnetars.

J. Ventura; A. Y. Potekhin

2001-03-31T23:59:59.000Z

405

DO NOT INCLUDE: flatten cardboard staples, tape & envelope windows ok  

E-Print Network [OSTI]

/ bottles Metal items other than cans/foil Napkins Paper towels Plastic bags Plastic films Plastic utensilsDO NOT INCLUDE: flatten cardboard staples, tape & envelope windows ok Aerosol cans Books Bottle, PDAs, inkjet cartridges, CFL bulbs (cushioned, sealed in plastic) computers, printers, printer

Wolfe, Patrick J.

406

The Formation of Hydrogen Deficient Stars through Common Envelope Evolution  

E-Print Network [OSTI]

We present preliminary results from Smooth Particle Hydrodynamics (SPH) simulations of common envelope evolution. We qualitatively compare the interaction between a 0.9M red giant with two different companion masses: a 0.05M brown dwarf and a 0.25M white dwarf companion.

Steven Diehl; Chris Fryer; Falk Herwig

2007-11-02T23:59:59.000Z

407

Building America Expert Meeting Report: Hydronic Heating in Multifamily Buildings  

SciTech Connect (OSTI)

The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort. The U.S. Department of Energy's Building America program develops technologies with the goal of reducing energy use by 30% to 50% in residential buildings. Toward this goal, the program sponsors 'Expert Meetings' focused on specific building technology topics. The meetings are intended to sharpen Building America research priorities, create a forum for sharing information among industry leaders and build partnerships with professionals and others that can help support the program's research needs and objectives. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multifamily buildings with the goals of reducing energy waste and improving occupant comfort. The objectives of the meeting were to: (1) Share knowledge and experience on new and existing solutions: what works, what doesn't and why, and what's new; (2) Understand the market barriers to currently offered solutions: what disconnects exist in the market and what is needed to overcome or bridge these gaps; and (3) Identify research needs.

Dentz, J.

2011-10-01T23:59:59.000Z

408

Presented at the U.S. Green Buildings Council Third Annual Conference, San Diego, CA, November 17-19, 1996. The research reported here was funded, in part, by the California Institute for Energy Efficiency (CIEE), a research  

E-Print Network [OSTI]

Pollution Prevention Division. Interoperable, Life-cycle Tools for Assuring Building Performance to the structure of the building industry, the numerous people and companies involved in the process, the current design and construction are completed. We suggest that new interoperable software tools could greatly

409

Characterization of Glycosylation Profiles of HIV-1 Transmitted/Founder Envelopes by Mass Spectrometry  

E-Print Network [OSTI]

The analysis of HIV-1 envelope carbohydrates is critical to understanding their roles in HIV-1 transmission as well as in binding of envelope to HIV-1 antibodies. However, direct analysis of protein glycosylation by ...

Go, Eden P.; Hewawasam, Geetha; Lio, Hua-Xin; Chen, Haiyan; Ping, Li-Hua; Anderson, Jeffrey A.; Hua, David C.; Haynes, Barton F.; Desaire, Heather

2011-08-01T23:59:59.000Z

410

Making America's Buildings Better (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet is an overview of the U.S. Department of Energy's Building Technologies program. Buildings use more energy than any other sector of the U.S. economy? In fact, buildings consume more than 70% of the electricity and more than 50% of the natural gas Americans use. That's why the U.S. Department of Energy's (DOE's) Building Technologies Program (BTP) is working to improve building energy performance through high-impact research, out-reach, and regulatory efforts. These efforts will result in affordable, high-performance homes and commercial buildings. These grid-connected buildings will be more energy efficient than today's typical buildings, with renewable energy providing a portion of the power needs. They will combine energy-smart 'whole building' design and construction, appliances and equipment that minimize plug loads, and cost-effective photovoltaics or other on-site energy systems.

Not Available

2012-03-01T23:59:59.000Z

411

Building Energy Monitoring and Analysis  

SciTech Connect (OSTI)

U.S. and China are the worlds top two economics. Together they consumed one-third of the worlds primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

2013-06-01T23:59:59.000Z

412

Predicting Envelope Leakage in Attached Dwellings  

SciTech Connect (OSTI)

The most common method for measuring air leakage is to use a single blower door to pressurize and/or depressurize the test unit. In detached housing, the test unit is the entire home and the single blower door measures air leakage to the outside. In attached housing, this 'single unit', 'total', or 'solo' test method measures both the air leakage between adjacent units through common surfaces as well air leakage to the outside. Measuring and minimizing this total leakage is recommended to avoid indoor air quality issues between units, reduce energy losses to the outside, reduce pressure differentials between units, and control stack effect. However, two significant limitations of the total leakage measurement in attached housing are: for retrofit work, if total leakage is assumed to be all to the outside, the energy benefits of air sealing can be significantly over predicted; for new construction, the total leakage values may result in failing to meet an energy-based house tightness program criterion. The scope of this research is to investigate an approach for developing a viable simplified algorithm that can be used by contractors to assess energy efficiency program qualification and/or compliance based upon solo test results.

Faakye, O.; Arena, L.; Griffiths, D.

2013-07-01T23:59:59.000Z

413

THERMAL STRUCTURE AND COOLING OF SUPERFLUID NEUTRON STARS WITH ACCRETED MAGNETIZED ENVELOPES  

E-Print Network [OSTI]

THERMAL STRUCTURE AND COOLING OF SUPERFLUID NEUTRON STARS WITH ACCRETED MAGNETIZED ENVELOPES envelopes composed of accreted material, using updated thermal conductivities of plasmas in quantizing is determined by the equation of state (EOS) and thermal conductivity of matter in the heat-blanketing envelope

414

THERMAL STRUCTURE AND COOLING OF SUPERFLUID NEUTRON STARS WITH ACCRETED MAGNETIZED ENVELOPES  

E-Print Network [OSTI]

THERMAL STRUCTURE AND COOLING OF SUPERFLUID NEUTRON STARS WITH ACCRETED MAGNETIZED ENVELOPES envelopes composed of accreted material, using updated thermal conductivities of plasmas in quantizing is determined by the equation of state (EOS) and thermal conductivity of matter in the heat­blanketing envelope

415

Ventilation Effectiveness Research at UT-Typer Lab Houses  

Broader source: Energy.gov (indexed) [DOE]

Research 30 April 2013 3 Testing Approach Building enclosure and building mechanical systems characterization by measurement of building enclosure air leakage, central...

416

Building Performance Simulation  

E-Print Network [OSTI]

technologies, integrated design, building operation andperformance, integrated buildingdesignandoperation,Integrated Design and Operation for Very Low Energy Buildings,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

417

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (http://www.hvac.okstate.edu).  

E-Print Network [OSTI]

at Oklahoma State University (http://www.hvac.okstate.edu). The correct citation for the paper is: Spitler, J.D. 2007. Research Planning for the HVAC&R Industry. HVAC&R Research 13(5):681- 682. #12;VOLUME 13, NUMBER 5 HVAC&R RESEARCH SEPTEMBER 2007 681 EDITORIAL Research Planning for the HVAC&R Industry Jeffrey D

418

High Performance Homes That Use 50% Less Energy Than the DOE Building America Benchmark Building  

SciTech Connect (OSTI)

This document describes lessons learned from designing, building, and monitoring five affordable, energy-efficient test houses in a single development in the Tennessee Valley Authority (TVA) service area. This work was done through a collaboration of Habitat for Humanity Loudon County, the US Department of Energy (DOE), TVA, and Oak Ridge National Laboratory (ORNL).The houses were designed by a team led by ORNL and were constructed by Habitat's volunteers in Lenoir City, Tennessee. ZEH5, a two-story house and the last of the five test houses to be built, provided an excellent model for conducting research on affordable high-performance houses. The impressively low energy bills for this house have generated considerable interest from builders and homeowners around the country who wanted a similar home design that could be adapted to different climates. Because a design developed without the project constraints of ZEH5 would have more appeal for the mass market, plans for two houses were developed from ZEH5: a one-story design (ZEH6) and a two-story design (ZEH7). This report focuses on ZEH6, identical to ZEH5 except that the geothermal heat pump is replaced with a SEER 16 air source unit (like that used in ZEH4). The report also contains plans for the ZEH6 house. ZEH5 and ZEH6 both use 50% less energy than the DOE Building America protocol for energyefficient buildings. ZEH5 is a 4 bedroom, 2.5 bath, 2632 ft2 house with a home energy rating system (HERS) index of 43, which qualifies it for federal energy-efficiency incentives (a HERS rating of 0 is a zero-energy house, and a conventional new house would have a HERS rating of 100). This report is intended to help builders and homeowners build similar high-performance houses. Detailed specifications for the envelope and the equipment used in ZEH5 are compared with the Building America Benchmark building, and detailed drawings, specifications, and lessons learned in the construction and analysis of data gleaned from 94 sensors installed in ZEH5 to monitor electric sub-metered usage, temperature and relative humidity, hot water usage, and heat pump operation for 1 year are presented. This information should be particularly useful to those considering structural insulated panel (SIP) walls and roofing; foundation geothermal heat pumps for space heating and cooling; solar water heaters; and roof-mounted, grid-tied photovoltaic systems. The document includes plans for ZEH6 (adapted from ZEH5), a one-story, high-performance house, as well as projections of how the design might perform in five major metropolitan areas across the TVA service territory. The HERS ratings for this all-electric house vary from 36 (Memphis, Tennessee) to 46 (Bristol, Tennessee).

Christian, J.

2011-01-01T23:59:59.000Z

419

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (www.hvac.okstate.edu)  

E-Print Network [OSTI]

is presented. INTRODUCTION Although originating in the residential building sector, ground-source heat pump conductivity is a signif- icant challenge facing designers of ground-source heat pump (GSHP heat pump systems" may include a range of system configurations, closed-loop systems, where the ground

420

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (http://www.hvac.okstate.edu).  

E-Print Network [OSTI]

-source heat pump (GSHP) systems have been gaining increasing popularity in commercial and residential in construction to a domestic water well). Water is circulated from the well through the heat pump in an open, water is recirculated between the well and the building (heat pump). Deep bores are drilled in hard rock

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (http://www.hvac.okstate.edu).  

E-Print Network [OSTI]

for the heat gain due to lights, both of ASHRAE's new cooling load calculation procedures require contributor to the space heat gain and the space cooling load in many commercial buildings. To account's new cooling load calcu- lation procedures (Pedersen et al. 1998) use a simple lighting heat gain model

422

Technology data characterizing space conditioning in commercial buildings: Application to end-use forecasting with COMMEND 4.0  

SciTech Connect (OSTI)

In the US, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of space conditioning end uses in terms of specific technologies is complicated by several factors. First, the number of configurations of heating, ventilating, and air conditioning (HVAC) systems and heating and cooling plants is very large. Second, the properties of the building envelope are an integral part of a building`s HVAC energy consumption characteristics. Third, the characteristics of commercial buildings vary greatly by building type. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. This report describes the process by which the authors collected space-conditioning technology data and then mapped it into the COMMEND 4.0 input format. The data are also generally applicable to other end-use forecasting frameworks for the commercial sector.

Sezgen, O.; Franconi, E.M.; Koomey, J.G.; Greenberg, S.E.; Afzal, A.; Shown, L.

1995-12-01T23:59:59.000Z

423

Expanded Content Envelope For The Model 9977 Packaging  

SciTech Connect (OSTI)

An Addendum was written to the Model 9977 Safety Analysis Report for Packaging adding a new content consisting of DOE-STD-3013 stabilized plutonium dioxide materials to the authorized Model 9977 contents. The new Plutonium Oxide Content (PuO{sub 2}) Envelope will support the Department of Energy shipment of materials between Los Alamos National Laboratory and Savannah River Site facilities. The new content extended the current content envelope boundaries for radioactive material mass and for decay heat load and required a revision to the 9977 Certificate of Compliance prior to shipment. The Addendum documented how the new contents/configurations do not compromise the safety basis presented in the 9977 SARP Revision 2. The changes from the certified package baseline and the changes to the package required to safely transport this material is discussed.

Abramczyk, G. A.; Loftin, B. M.; Nathan, S. J.; Bellamy, J. S.

2013-07-30T23:59:59.000Z

424

Independent Control of Sensible and Latent Cooling in Small Buildings  

E-Print Network [OSTI]

util impact. INTRODUCTION Dehumidification has become an increasingly large fraction of the total cooling load in many new buildings, as heat gains through the envelope have been reduced but internal moisture generation and the need... to be coincident with maximum air-conditioning loads. The possibility was suggested that by independently controlling temperature and humidity ways might be found to ameliorate the peak electrical loads imposed on utilities by the residential and small...

Andrews, J.; Lamontagne, J.; Piraino, M.

1989-01-01T23:59:59.000Z

425

Exact N-envelope-soliton solutions of the Hirota equation  

E-Print Network [OSTI]

We discuss some properties of the soliton equations of the type, partial derivative u/partial derivative t = S [u, (u) over bar], where S is a nonlinear operator differential in x, and present the additivity theorems of the class of the soliton equations. On using the theorems, we can construct a new soliton equation through two soliton equations with similar properties. Meanwhile, exact N-envelope-soliton solutions of the Hirota equation are derived through the trace method.

Jian-Jun Shu

2014-03-14T23:59:59.000Z

426

National Green Building Standard Analysis  

SciTech Connect (OSTI)

DOE's Building America Program is a research and development program to improve the energy performance of new and existing homes. The ultimate goal of the Building America Program is to achieve examples of cost-effective, energy efficient solutions for all U.S. climate zones. Periodic maintenance of an ANSI standard by review of the entire document and action to revise or reaffirm it on a schedule not to exceed five years is required by ANSI. In compliance, a consensus group has once again been formed and the National Green Building Standard is currently being reviewed to comply with the periodic maintenance requirement of an ANSI standard.

NAHB Research Center, Upper Marlboro, Maryland

2012-07-01T23:59:59.000Z

427

BuildingDepot: An Extensible and Distributed Architecture for Building Data Storage, Access and Sharing  

E-Print Network [OSTI]

to devise intelligent data-driven methods for energy efficient use of building systems. Most current a prototype of BuildingDepot, along with connectors to several standard energy management systems, showing how Introduction Improving energy efficiency in buildings has emerged as an important societal issue and research

Gupta, Rajesh

428

Building technologies program. 1995 annual report  

SciTech Connect (OSTI)

The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

Selkowitz, S.E.

1996-05-01T23:59:59.000Z

429

Current Postdoctoral Researchers | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction...

430

3Building a Business Building a Business  

E-Print Network [OSTI]

15 3Building a Business Building a Business This section provides direction on the kinds. If you contemplate building a "garage- based" company to sell a product into a niche market, you should-ups conjure up images of future wealth, of building the next Amgen or Microsoft, of launching what will become

Arnold, Jonathan

431

InfraMation 2009 Proceedings 2009-029 Schreyer Interactive Three-Dimensional Visualization of Building  

E-Print Network [OSTI]

of Building Envelope Systems Using Infrared Thermography and SketchUp Alexander C. Schreyer and Simi Hoque Google SketchUp. A variety of common application scenarios will be presented and examples called Google SketchUp. This software is a general-purpose 3D polygon-modeler (it considers surfaces only

Schweik, Charles M.

432

Renewable Energy Requirements for Future Building Codes: Energy Generation and Economic Analysis  

SciTech Connect (OSTI)

As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, installation of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including the building envelope, mechanical systems, and lighting, have been maximized at the most cost-effective limit.

Russo, Bryan J.; Weimar, Mark R.; Dillon, Heather E.

2011-09-30T23:59:59.000Z

433

An Application of State-Of-The-Art HVAC and Building Systems  

E-Print Network [OSTI]

AN APPLICATION OF STATE-OF-THE-ART HVAC AND BUILDING SYSTEMS DONALD P. FIORINO, M.S., P.E. Energy Conservation Manager Texas Instruments, Inc. Defense Systems and Electronics Group Dallas, Texas ABSTRACT This case study describes... the successful application of state-of-the-art HVAC and building systems at a large commercial office and industrial facility. The facility's exterior envelope systems, HVAC systems, lighting systems, energy conservation systems, exhaust/heat recovery...

Fiorino, D. P.

434

A Toolkit for Building Energy Consumption Data Quality Assurance/Quality Control  

E-Print Network [OSTI]

Independence of the energy balance load on secondary systems ESL-IC-11-10-30 Proceedings of the Eleventh International Conference Enhanced Building Operations, New York City, October 18-20, 2011 ICEBO 2011 ? New York JCB... of the Eleventh International Conference Enhanced Building Operations, New York City, October 18-20, 2011 ICEBO 2011 ? New York JCB/ESL Energy Balance Curve - Interpretation Low CHW High HHW High ELE High Tindoor High VOA High envelope UA...

Baltazar, J.C.

2011-01-01T23:59:59.000Z

435

Developing New Components to Improve Energy Savings in Buildings by Using Phase Change Materials  

E-Print Network [OSTI]

to build walls, - by developing light envelopes for tertiary buildings. - in the internal dividing wallboards - by developing new panels - in heating, ventilation and air conditioning devices - by developing recuperating/regenerating heat exchangers... good storage density with respect to mass but their thermal conductivity is rather low. They do not react with most chemicals. Their compatibility with metals is very good. They have limited safety constraints, the main problem arising from...

Bontemps, A.; Dendievel, R.; Royon, L.; Sallee, H.

2010-01-01T23:59:59.000Z

436

Building America Building Science Translator  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1,Energy ForBryanR BUILDING AMERICA

437

Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings  

SciTech Connect (OSTI)

We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

2006-06-01T23:59:59.000Z

438

Understanding Building Infrastructure and Building Operation through DOE Asset Score Model: Lessons Learned from a Pilot Project  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system to help building owners to evaluate the as-built physical characteristics (including building envelope, the mechanical and electrical systems) and overall building energy efficiency, independent of occupancy and operational choices. The energy asset score breaks down building energy use information by simulating building performance under typical operating and occupancy conditions for a given use type. A web-based modeling tool, the energy asset score tool facilitates the implementation of the asset score system. The tool consists of a simplified user interface built on a centralized simulation engine (EnergyPlus). It is intended to reduce both the implementation cost for the users and increase modeling standardization compared with an approach that requires users to build their own energy models. A pilot project with forty-two buildings (consisting mostly offices and schools) was conducted in 2012. This paper reports the findings. Participants were asked to collect a minimum set of building data and enter it into the asset score tool. Participants also provided their utility bills, existing ENERGY STAR scores, and previous energy audit/modeling results if available. The results from the asset score tool were compared with the building energy use data provided by the pilot participants. Three comparisons were performed. First, the actual building energy use, either from the utility bills or via ENERGY STAR Portfolio Manager, was compared with the modeled energy use. It was intended to examine how well the energy asset score represents a buildings system efficiencies, and how well it is correlated to a buildings actual energy consumption. Second, calibrated building energy models (where they exist) were used to examine any discrepancies between the asset score model and the pilot participant buildings [known] energy use pattern. This comparison examined the end use breakdowns and more detailed time series data. Third, ASHRAE 90.1 prototype buildings were also used as an industry standard modeling approach to test the accuracy level of the asset score tool. Our analysis showed that the asset score tool, which uses simplified building simulation, could provide results comparable to a more detailed energy model. The buildings as-built efficiency can be reflected in the energy asset score. An analysis between the modeled energy use through the asset score tool and the actual energy use from the utility bills can further inform building owners about the effectiveness of their buildings operation and maintenance.

Wang, Na; Goel, Supriya; Gorrissen, Willy J.; Makhmalbaf, Atefe

2013-06-24T23:59:59.000Z

439

Building America Whole-House Solutions for New Homes: Shaw Constructio...  

Broader source: Energy.gov (indexed) [DOE]

Shaw Construction who worked with Building America research partner Building Science Corporation to design affordable HERS-54 townhouses with central solar radiator space heating,...

440

Building and Buildings, Scotland: Draft Building Standards (Scotland) Regulations, 1961  

E-Print Network [OSTI]

These regulations, made under the Building (Scotland) Act, 1959, prescribe standards for buildings for the purposes of Part II of that Act. The matters in relation to which standards have been prescribed are described in ...

Her Majesty's Stationary Office

1961-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Solar Energy Windows and Smart IR Switchable Building Technologies  

SciTech Connect (OSTI)

The three building envelope functions with the largest impact on the energy usage are illumination, energy flux and energy production. In general, these three functions are addressed separately in the building design. A step change toward a zero-energy building can be achieved with a glazing system that combines these three functions and their control into a single unit. In particular, significant value could be realized if illumination into the building is dynamically controlled such that it occurs during periods of low load on the grid (e.g., morning) to augment illumination supplied by interior lights and then to have that same light diverted to PV energy production and the thermal energy rejected during periods of high load on the grid. The objective of this project is to investigate the feasibility of a glazing unit design that integrates these three key functions (illumination and energy flux control, and power production) into a single module.

McCarny, James; Kornish, Brian

2011-09-30T23:59:59.000Z

442

*1 The WPI program was launched in 2007 by MEXT in an effort to build "globally visible" research centers within Japan that boast a very high research standard and  

E-Print Network [OSTI]

centers throughout Japan, all of which aim to: 1) Advance leading edge research. 2) Create new centers within Japan that boast a very high research standard and outstanding research environment projects is a key policy of the Japanese government. Technology and knowledge to pursue uncharted research

Takada, Shoji

443

Envelope calculations for a low temperature neutron star  

E-Print Network [OSTI]

with distance inward from the surface R for all three star models S, I and II at effective temperature Te = 10 K 34 Density-pressure dependence for the Model S star at different values of Te 35 Envelope calculation traces in the opacity-density plane... )] (20) Similarly a relation between p and T can be found 64v GN~ uH() a+1 1 a+1 ~a+ 3 r L k 4-b+aJ 0 (21) Inserting this back into the energy transport equation (13) gives the radial dependence of the temperature (22) (23) where R is the surface...

McCoy, Robert Paul

1976-01-01T23:59:59.000Z

444

Physical Building Information Modeling for Solar Building Design and Simulation- Annual Report 2011  

E-Print Network [OSTI]

information from BIM to Radiance. For Building Integrated Photovoltaic (BIPV), we have researched on how to build solar models in BIM that can calculate solar position and solar insolation. 1.2 Research on BIM simplification methods, BIM topology, and data... we will continue investigating the use of Modelica to integrate the daylighting modeling with thermal modeling. 4 c) BIPV prototypes We have developed a Building Integrated Photovoltaic (BIPV) prototype in the BIM (Autodesk Revit) platform...

Yan, W.; Haberl, J.; Clayton, M.; Jeong, W.; Kim, J.; Kota, S.; Alcocer, J.; Dixit, M.

2011-01-01T23:59:59.000Z

445

BUILDING EFFECTIVENESS COMMUNICATION RATIOS FOR IMPROVED BUILDING LIFE CYCLE MANAGEMENT  

E-Print Network [OSTI]

BUILDING EFFECTIVENESS COMMUNICATION RATIOS FOR IMPROVED BUILDING LIFE CYCLE MANAGEMENT Elmer building energy performance assessment frameworks, quantifying and categorising buildings post occupancy a performance-based strategy utilising building effectiveness communication ratios stored in Building

446

RESEARCH BRIEF wcec.ucdavis.edu  

E-Print Network [OSTI]

lighting, envelope, HVAC and controls suitable for cost-effective retrofits for the MTLC market Develop are referred to as Multi-Tenant Light Commercial (MTLC) buildings. Properties that fall into the MTLC market. Project Goals The goal of this project is to develop technological and market-based approaches

California at Davis, University of

447

Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories » RemovingResearch CORE-SHELL NANOPARTICLES AND

448

DOE Commercial Building Benchmark Models: Preprint  

SciTech Connect (OSTI)

To provide a consistent baseline of comparison and save time conducting such simulations, the U.S. Department of Energy (DOE) has developed a set of standard benchmark building models. This paper will provide an executive summary overview of these benchmark buildings, and how they can save building analysts valuable time. Fully documented and implemented to use with the EnergyPlus energy simulation program, the benchmark models are publicly available and new versions will be created to maintain compatibility with new releases of EnergyPlus. The benchmark buildings will form the basis for research on specific building technologies, energy code development, appliance standards, and measurement of progress toward DOE energy goals. Having a common starting point allows us to better share and compare research results and move forward to make more energy efficient buildings.

Torcelini, P.; Deru, M.; Griffith, B.; Benne, K.; Halverson, M.; Winiarski, D.; Crawley, D. B.

2008-07-01T23:59:59.000Z

449

Critical core mass for enriched envelopes: the role of H2O condensation  

E-Print Network [OSTI]

Context. Within the core accretion scenario of planetary formation, most simulations performed so far always assume the accreting envelope to have a solar composition. From the study of meteorite showers on Earth and numerical simulations, we know that planetesimals must undergo thermal ablation and disruption when crossing a protoplanetary envelope. Once the protoplanet has acquired an atmosphere, the primordial envelope gets enriched in volatiles and silicates from the planetesimals. This change of envelope composition during the formation can have a significant effect in the final atmospheric composition and on the formation timescale of giant planets. Aims. To investigate the physical implications of considering the envelope enrichment of protoplanets due to the disruption of icy planetesimals during their way to the core. Particular focus is placed on the effect on the critical core mass for envelopes where condensation of water can occur. Methods. Internal structure models are numerically solved with th...

Venturini, J; Benz, W; Ikoma, M

2015-01-01T23:59:59.000Z

450

Improving Operational Strategies of an Institutional Building in Kuwait  

E-Print Network [OSTI]

The Building and Energy Technologies Department (BET) of the Kuwait Institute for Scientific Research has pledged to achieve 10% reduction in buildings energy consumption by the year 2005. Working in line with the Kuwaiti government that highly...

Al-Ragom, F.

2002-01-01T23:59:59.000Z

451

Dynamic interrelationship between technology and architecture in tall buildings  

E-Print Network [OSTI]

The interrelationship between the technology and architecture of tall buildings is investigated from the emergence of tall buildings in the late 19th century to the present. Through the historical research, a filtering ...

Moon, Kyoung-Sun

2005-01-01T23:59:59.000Z

452

Development of an integrated building design information interface  

E-Print Network [OSTI]

This research recognizes the need for building simulation/performance tools that can easily be integrated into the building design process. The study examines available simulation tools and attempts to determine why these tools are not used...

Punjabi, Sonia Arjun

2005-08-29T23:59:59.000Z

453

Smart Buildings Using Demand Response March 6, 2011  

E-Print Network [OSTI]

Smart Buildings Using Demand Response March 6, 2011 Sila Kiliccote Deputy, Demand Response Research Center Program Manager, Building Technologies Department Environmental Energy Technologies only as needed) · Energy Efficiency strategies are permanent (occur daily) 4 #12;Demand-Side

Kammen, Daniel M.

454

Building America Whole-House Solutions for New Homes: Tindall...  

Broader source: Energy.gov (indexed) [DOE]

Tindall Homes who worked with Building America research team IBACOS to build 20 HERS-58 homes with R-49 mixed attic insulation, poly-iso foam in advanced framed walls, precast...

455

Building Science-Based Climate Maps - Building America Top Innovation...  

Energy Savers [EERE]

Building Science-Based Climate Maps - Building America Top Innovation Building Science-Based Climate Maps - Building America Top Innovation Photo showing climate zone maps based on...

456

Building America Top Innovations Hall of Fame Profile - Building...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building America Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher Performance Building America Top...

457

Building America  

SciTech Connect (OSTI)

Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

Brad Oberg

2010-12-31T23:59:59.000Z

458

The Expulsion of Stellar Envelopes in Core-Collapse Supernovae  

E-Print Network [OSTI]

We examine the relation between presupernova stellar structure and the distribution of ejecta in core-collapse supernovae, assuming adiabatic, spherically symmetric flow. We develop a simple yet accurate formula for the blastwave shock velocity, and demonstrate that the entire final density distribution can be approximated with simple models for the final pressure distribution, along with the approximate shock-deposited entropy, in a way that matches the results of simulations. We find that the distribution of density in a star's ejecta depends on whether its outer envelope is radiative or convective, and if convective, on the composition structure of the star; simple approximate forms are presented for red and blue supergiant ejecta. Our models are most accurate for the high-velocity ejecta from the periphery of a star, where the shock dynamics are predictable. We present formulae for the final density distribution of this material, for both radiative and efficiently convective envelopes. These formulae limit to the well-known planar, self-similar solutions for mass shells approaching the stellar surface. But, the assumption of adiabatic flow fails at low optical depth, so this planar limit need not be attained. Formulae are given for the observable properties of the X-ray burst accompanying shock emergence, and their dependence on the parameters of the explosion. Motivated by the relativistic expansion recently inferred by Kulkarni et al. (1998) for the synchrotron shell around SN1998bw, we estimate the criterion for relativistic mass ejection and the rest mass of relativistic ejecta.

Christopher D. Matzner; Christopher F. McKee

1998-07-04T23:59:59.000Z

459

Case Study of Envelope Sealing in Existing Multiunit Structures  

SciTech Connect (OSTI)

Envelope air sealing was included in the retrofit of a 244 unit low-rise multifamily housing complex in Durham, N.C. Pre- and post-retrofit enclosure leakage tests were conducted on 51 units and detailed diagnostics were performed on 16. On average, total leakage was reduced by nearly half, from 19.7 ACH50 to 9.4 ACH50. Costs for air sealing were $0.31 per square foot of conditioned floor area, lower than estimates found in the National Residential Efficiency Measures Database (NREMD) and other sources, perhaps due in part to the large-scale production nature of the project. Modeling with BEopt software -- using an estimate of 85% of the envelope air leakage going to the outside (based on guarded tests performed at the site) -- calculated a space conditioning energy cost savings of 15% to 21% due to the air sealing retrofit. Important air leakage locations identified included plumbing and electrical penetrations, dropped ceilings/soffits, windows, ducts and wall-to-floor intersections. Previous repair activity had created significant leakage locations as well. Specifications and a pictorial guide were developed for contractors performing the work.

Dentz, J.; Conlin, F.; Podorson, D.

2012-10-01T23:59:59.000Z

460

Asteroseismic determination of helium abundance in stellar envelopes  

E-Print Network [OSTI]

Intermediate degree modes of the solar oscillations have previously been used to determine the solar helium abundance to a high degree of precision. However, we cannot expect to observe such modes in other stars. In this work we investigate whether low degree modes that should be available from space-based asteroseismology missions can be used to determine the helium abundance, Y, in stellar envelopes with sufficient precision. We find that the oscillatory signal in the frequencies caused by the depression in \\Gamma_1 in the second helium ionisation zone can be used to determine the envelope helium abundance of low mass main sequence stars. For frequency errors of 1 part in 10^4, we expect errors \\sigma_Y in the estimated helium abundance to range from 0.03 for 0.8M_sun stars to 0.01 for 1.2M_sun stars. The task is more complicated in evolved stars, such as subgiants, but is still feasible if the relative errors in the frequencies are less than 10^{-4}.

Sarbani Basu; Anwesh Mazumdar; H. M Antia; Pierre Demarque

2004-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

E-Print Network 3.0 - adaptive flight envelope Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a flight envelope protection algorithm... flight controller to an ... Source: Johnson, Eric N. - School of Aerospace Engineering, Georgia Institute of Technology...

462

Seismic Performance, Modeling, and Failure Assessment of Reinforced Concrete Shear Wall Buildings  

E-Print Network [OSTI]

Post- Tensioned Concrete Buildings, PEER Report 2011/104,RC shear walls in high-rise buildings, The Young ResearcherExtended 3D Analysis of Building Structures, Computers and

Tuna, Zeynep

2012-01-01T23:59:59.000Z

463

TITLE: Integrated Building Energy Efficiency HOSTS: Howard Chong, Brandon Hencey, and Kenneth Schlather  

E-Print Network [OSTI]

sustainable buildings research come out of many departments including Architecture, Computer Science, Design on building energy efficiency. Facilities Services, which has a strong team on Energy and Sustainability and Environmental Analysis (DEA), Economics, Engineering, and Hotel Administration. Sustainable buildings represent

Angenent, Lars T.

464

Building Performance Simulation  

E-Print Network [OSTI]

afuturewith verylowenergybuildingsresultinginveryconsumption of low energy buildings, with site EUIdesignandoperationoflowenergybuildingsthroughbetter

Hong, Tianzhen

2014-01-01T23:59:59.000Z

465

Thick Buildings [Standards  

E-Print Network [OSTI]

on Occupant Behavior in Buildings, New Directions forSacramento, is a thin building that surrounds an atrium. (Performance of a Green Building," Urban UndQune 1992): 23-

Coffin, Christie Johnson

1995-01-01T23:59:59.000Z

466

BUILDING MOBILE EXPERIENCES Frank Bentley  

E-Print Network [OSTI]

BUILDING MOBILE EXPERIENCES Frank Bentley Principal Staff Research Scientist Motorola Mobility of teaching mobile apps class at MIT ! Strong believer in user-inspired innovation ! Have brought several new? ! Investigating the interaction between people and mobile computing devices ! Creating compelling mobile

Glinz, Martin

467

BUILDING PROCTOR rev. April 2014  

E-Print Network [OSTI]

BUILDING PROCTOR MANUAL rev. April 2014 #12;Building Proctor Manual rev. April 2014 2 TABLE.........................................................................................................................................5 Role of a Building Proctor ..............................................................................................................5 Authority of Building Proctor

468

Building a Molecule Building Structures in Moe  

E-Print Network [OSTI]

14 Chapter 3 Building a Molecule #12;15 Building Structures in Moe Dorzolamide Exercise 1 #12;16 Open the Molecule Builder · Open the Molecule Builder panel using MOE | Edit | Build | Molecule, the chiral center will be either R or S, and one of the two will be highlighted in green. The green

Fischer, Wolfgang

469

Flexible Framework for Building Energy Analysis: Preprint  

SciTech Connect (OSTI)

In the building energy research and advanced practitioner communities, building models are perturbed across large parameter spaces to assess energy and cost performance in the face of programmatic and economic constraints. This paper describes the OpenStudio software framework for performing such analyses.

Hale, E.; Macumber, D.; Weaver, E.; Shekhar, D.

2012-09-01T23:59:59.000Z

470

Building Scale DC Microgrids  

E-Print Network [OSTI]

Folsom CA, Integration of Renewable Resources: OperationalOffice of Energy Efficiency and Renewable Energy, BuildingOffice of Energy Efficiency and Renewable Energy, Building

Marnay, Chris

2013-01-01T23:59:59.000Z

471

Office Buildings - Full Report  

Gasoline and Diesel Fuel Update (EIA)

1). Table 1. Totals and means of of floorspace, number of workers, and hours of operation for office buildings, 2003 Buildings (thousand) Total Floorspace (million sq. ft.)...

472

ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980  

SciTech Connect (OSTI)

The aim of the Energy Efficient Buildings Program is to conduct theoretical and experimental research on various aspects of building technology that will permit such gains in energy efficiency without decreasing occupants' comfort or adversely affecting indoor air quality. To accomplish this goal, we have developed five major research groups. The foci of these groups are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality; Building Energy Analysis; Energy Efficient Windows and Lighting; and Building Energy Data, Analysis and Demonstration.

Authors, Various

1981-05-01T23:59:59.000Z

473

Commissioning, Operation, Real Time Monitoring and Evaluation of Pilot: Achieving Optimal Performance through Building Commissioning  

E-Print Network [OSTI]

BUILDINGS ENERGY EFFICIENCY CONSORTIUM U.S. - CHINA CLEAN ENERGY RESEARCH CENTER (CERC-BEE) E3: Commissioning, Operation, Real Time Monitoring and Evaluation of Pilot Achieving Optimal Performance through Building Commissioning Xiufeng Pang... for the Sustainable performance of Buildings Xiufeng Pang, Ph.D, P.E. 5 Cx Workshop Topic Covered Introduction of building Cx in the U.S., the standards and guidelines Building enclosure Cx New building Cx and LEED Cx requirements Existing building Cx...

Pang,X.; Piette, M.A.; Hao,B.

2014-01-01T23:59:59.000Z

474

Better Buildings Neighborhood Program: BetterBuildings Lowell Final Report  

SciTech Connect (OSTI)

The City of Lowell set four goals at the beginning of the Better Buildings Neighborhood Program: 1. Improve the Downtown Historic Park Districts Carbon Footprint 2. Develop a sustainable and replicable model for energy efficiency in historic buildings 3. Create and retain jobs 4. Promote multi?stakeholder partnerships The City of Lowell, MA was awarded $5 million in May 2010 to conduct energy efficiency retrofits within the downtown National Historical Park (NHP). The Citys target was to complete retrofits in 200,000 square feet of commercial space and create 280 jobs, while adhering to the strict historical preservation regulations that govern the NHP. The development of a model for energy efficiency in historic buildings was successfully accomplished. BetterBuildings Lowells success in energy efficiency in historic buildings was due to the simplicity of the program. We relied strongly on the replacement of antiquated HVAC systems and air sealing and a handful of talented energy auditors and contractors. BetterBuildings Lowell was unique for the Better Buildings Neighborhood Program because it was the only program that focused solely on commercial properties. BetterBuildings Lowell did target multi?family properties, which were reported as commercial, but the majority of the building types and uses were commercial. Property types targeted were restaurants, office buildings, museums, sections of larger buildings, mixed use buildings, and multifamily buildings. This unique fabric of building type and use allows for a deeper understanding to how different properties use energy. Because of the National Historical Park designation of downtown Lowell, being able to implement energy efficiency projects within a highly regulated historical district also provided valuable research and precedent proving energy efficiency projects can be successfully completed in historical districts and historical buildings. Our program was very successful in working with the local Historic Board, which has jurisdiction in the NHP. The Historic Board was cooperative with any exterior renovations as long as they were not changing the existing aesthetics of the property. If we were replacing a rooftop condenser it needed to be placed where the existing rooftop condenser was located. Receiving proper approval from the Historic Board for any external energy conservation measures was known by all the participating contractors. One area of the retrofits that was contentious regarded venting of the new HVAC equipment. Installing external stacks was not allowed so the contractors had to negotiate with the Historic Board regarding the proper way to vent the equipment that met the needs mechanically and aesthetically. Overall BetterBuildings Lowell was successful at implementing energy and cost saving measures into 31 commercial properties located within the NHP. The 31 retrofits had 1,554,768 square feet of commercial and multifamily housing and a total predicted energy savings exceeding 22,869 a year. Overall the City of Lowell achieved its target goals and is satisfied with the accomplishments of the BetterBuildings program. The City will continue to pursue energy efficient programs and projects.

Heslin, Thomas

2014-01-31T23:59:59.000Z

475

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University (http://www.hvac.okstate.edu).  

E-Print Network [OSTI]

function (TF) method was the method of choice for cooling load calculation. There- fore, information; Rundquist 1990; Treado and Bean 1992). Recently, ASHRAE developed two new cooling load calculation: Chantrasrisalai, C., and D.E. Fisher. 2007. Lighting heat gain parameters: Experimental results. HVAC&R Research

476

Progressing for Intelligent to Smart Buildings  

E-Print Network [OSTI]

This paper addresses the issue of the misunderstandings surrounding the terms intelligent and smart when applied to modern buildings. The terms have increasingly been used interchangeably which has led to confusion for designers, researchers...

Buckman, A. H.; Mayfield, M.; Meijer, R.; Beck, S. B. M.

2013-01-01T23:59:59.000Z

477

ccsd-00003326,version2-9Dec2005 On geodesic envelopes  

E-Print Network [OSTI]

ccsd-00003326,version2-9Dec2005 On geodesic envelopes Gianmarco Capitanio December 9, 2005 Abstract We give a global description of envelopes of geodesic tangents of regular curves in (not necessarily inflectional geodesics and its tangential caustics (formed by the conjugate points to those of the initial

478

Nuclear envelope-limited chromatin sheets (ELCS) and heterochromatin higher order structure  

E-Print Network [OSTI]

REVIEW Nuclear envelope-limited chromatin sheets (ELCS) and heterochromatin higher order structure /Published online: 12 June 2009 # Springer-Verlag 2009 Abstract The interphase nucleus and nuclear envelope of these nuclear shapes and, consequently, a barrier to understanding the biochemical and biophysical causes

Olins, Ada L.

479

Guidelines for Measuring Air Infiltration Heat Exchange Effectiveness (IHEE), Submitted to the Texas Higher Education Coordination Board Energy Research Application Program Project #227  

E-Print Network [OSTI]

. 12 Reference Anderlind, G., 1985, "Energy Consumption due to Air Infiltration," Proceedings of the 3rd ASHRAE/DOE/BTECC Conference on Thermal Performance of the Exterior Envelopes of Buildings, Clearwater Beach, FL, pp. 201-208 ASHRAE, 1981, "ASHRAE.... 1992c, "The Energy Impact of Combined Solar- Radiation/Infiltration/Conduction Effects in Walls and Attics," Proceedings of Thermal Guidelines for Measuring IHEE, P. 13 Performance of the Exterior Envelopes of Buildings, 5th ASHRAE/DOE/BTECC Conference...

Liu, M.; Claridge, D. E.

1993-01-01T23:59:59.000Z

480

Better Buildings Neighborhood Program  

Broader source: Energy.gov [DOE]

U.S. Department of Energy Better Buildings Neighborhood Program: Business Models Guide, October 27, 2011.

Note: This page contains sample records for the topic "research building envelope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

FOREST CENTRE STORAGE BUILDING  

E-Print Network [OSTI]

FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI PURPOSE COURT STUDENT RESIDENCES GREEN HOUSE STUDENT RESIDENCES STUDENT RESIDENCES RECPLEX STORAGE BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE

deYoung, Brad

482

Community Development Building Division  

E-Print Network [OSTI]

California Energy Commission 1516 Ninth Street Sacramento, Ca 95814-5514 Re: Green Building Ordinance of Los Altos Energy Efficiency Ordinance, Green Building Regulations under the 2005 California Building by the Board on that date. The Green Building Regulation, Chapter 12.66 of the City Municipal code, will ensure

483

Building Technology MSc Programme  

E-Print Network [OSTI]

of this programme is on the design of innovative and sustainable building components and their integration

Langendoen, Koen

484

NIST Preliminary Reconnaissance, Building  

E-Print Network [OSTI]

NIST Preliminary Reconnaissance, Building Performance and Emergency Communications, Joplin)): Support R&D to improve building codes and standards and practices for design and construction of buildings of and data collection on the impact of severe wind on buildings, structures, and infrastructure ­ Section 204

Magee, Joseph W.

485

BUILDING MANAGEMENT & RESTRICTED ACCESS  

E-Print Network [OSTI]

BUILDING MANAGEMENT & RESTRICTED ACCESS Plan Annex 2014 VIII #12;#12;#12;The University of Texas at Austiniv #12;Building Management & Restricted Access Plan Annex v CONTENTS RECORD OF CHANGES .......................................................................................................15 J. BUILDING SECURITY OPERATIONS RESTRICTED ACCESS PROCEDURES FOR BUILDINGS ON ELECTRONIC ACCESS

Johnston, Daniel

486

Building America Case Study: Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1-1/2 Story Homes in Cold Climates, Minneapolis, MN (Fact Sheet)  

SciTech Connect (OSTI)

The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 1/2-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

Not Available

2014-12-01T23:59:59.000Z

487

Building America Energy Renovations: A Business Case for Home...  

Broader source: Energy.gov (indexed) [DOE]

Energy Renovations: A Business Case for Home Performance Contracting Building America Energy Renovations: A Business Case for Home Performance Contracting This research report...

488

Innovative Facility Kicks Off First Experiment to Transform Building...  

Energy Savers [EERE]

One test bed rotates 270 degrees, which enables researchers to study how building energy use and environmental parameters change with solar conditions. Another test bed...

489

Building America Technology Solutions for New and Existing Homes...  

Broader source: Energy.gov (indexed) [DOE]

Cold Climate Foundation Wall Hygrothermal Research Facility (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Cold Climate Foundation Wall Hygrothermal...

490

PROGRAM OPPORTUNITY NOTICE Building Natural Gas Technology (BNGT) Grant  

E-Print Network [OSTI]

PROGRAM OPPORTUNITY NOTICE Building Natural Gas Technology (BNGT) Grant Program PON-13-503 http ............................................................................................................................5 PIER NATURAL GAS RESEARCH PROGRAM

491

Building America Technology Solutions for New and Existing Homes...  

Broader source: Energy.gov (indexed) [DOE]

STAR requirements, and a high performance heating and cooling system. Ground Source Heat Pump Research, TaC Studios Residence More Documents & Publications Building America...

492

Building America Whole-House Solutions for New Homes: Insight...  

Office of Environmental Management (EM)

Building America research partner IBACOS to design HERS-49 homes with high-efficiency HVAC, ducts in insulated crawl spaces, raised heel trusses, dehumidifiers, and central...

493

Exterior Rigid Insulation Best Practices - Building America Top...  

Broader source: Energy.gov (indexed) [DOE]

Effec guid-exterior rigid insulation.jpg For years, Building America research teams have advocated using the thermal, air, and vapor properties of rigid foam sheathing insulation...

494

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Stand-off Furring in Deep Energy Retrofits Building America Technology Solutions for New and Existing Homes: Stand-off Furring in Deep Energy Retrofits This research project,...

495

Low Cost Thin Film Building-Integrated PV Systems: Cooperative Research and Development Final Report, CRADA Number CRD-07-239  

SciTech Connect (OSTI)

In this CRADA, NREL's Silicon group members performed the following research activities: (1) investigation of the role of hydrogen in growth of a mixed-phase nc-Si:H/a-Si:H material; (2) role of hydrogen in light-induced degradation of a-Si:H and development of Staebler-Wronski effect resistive a-Si:H; and (3) performing characterizations of UniSolar's a-Si:H and nc-Si materials, with goal to help optimizing large-area uniformity and quality of the UniSolar's nanocrystalline Si:H.

Stradins, P.

2011-10-01T23:59:59.000Z

496

Building Green in Greensburg: City Hall Building  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing City Hall building in Greensburg, Kansas.

497

The Blake Ragsdale Van leeR Building Renewal  

E-Print Network [OSTI]

The Blake Ragsdale Van leeR Building Renewal Campaign Defining the Technological ResearchR Building Renewal Architectural renderings are representative and subject to change with final design in such places as Lorraine, France, and Shanghai, China. Renewing the Promise: The Van Leer Building

Li, Mo

498

Pounding and impact of base isolated buildings due to earthquakes  

E-Print Network [OSTI]

.3. Base isolation in both adjacent buildings.....................................................72 5. SUMMARY AND CONCLUSION.........................................................................85 5.1. Summary and scope of study... ..............................................................................................................................138 viii LIST OF TABLES TABLE Page 1.1 Survey of earlier research on pounding of buildings...............................................5 3.1 Adjacent building configurations used in this study...

Agarwal, Vivek Kumar

2005-08-29T23:59:59.000Z

499

Abstract--The Envelope Impedance (EI) concept was used to investigate the thermal effects on the stability of  

E-Print Network [OSTI]

Abstract-- The Envelope Impedance (EI) concept was used to investigate the thermal effects) systems. The envelope analysis of the CCFL, which was verified experimentally, revealed that the magnitude and envelope simulation based on phasor transformation [1-4]. Still lacking, however, is an understanding

500

Instruments and Methods Singular spectrum analysis and envelope detection  

E-Print Network [OSTI]

such as Radan (Geophysical Survey Systems Inc.) or Haescan (Roadscanners Oy). In glaciological research

Moore, John