Sample records for research atmospheric thermodynamics

  1. Climate Sciences: Atmospheric Thermodynamics

    E-Print Network [OSTI]

    Russell, Lynn

    1 Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http://aerosol.ucsd.edu/courses.html Text: Curry & Webster Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 Energy Climate Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http

  2. Atmospheric Thermodynamics Composition

    E-Print Network [OSTI]

    Russell, Lynn

    1 Atmospheric Thermodynamics Ch1 Composition Ch2 Laws Ch3 Transfers Ch12 EnergyBalance Ch4 Water Ch Sciences: Atmospheric Thermodynamics Instructor: Lynn Russell, NH343 http #12;2 Review from Ch. 1 · Thermodynamic quantities · Composition · Pressure · Density · Temperature

  3. International Scholarly Research Network ISRN Thermodynamics

    E-Print Network [OSTI]

    Tailleux, Remi

    International Scholarly Research Network ISRN Thermodynamics Volume 2012, Article ID 609701, 15 pages doi:10.5402/2012/609701 Research Article Thermodynamics/Dynamics Coupling in Weakly Compressible the thermodynamics from the dynamics, this paper reviews recent results and derive new ones that show

  4. Atmospheric Pollution Research 1 (2010) 220228 Atmospheric Pollution Research

    E-Print Network [OSTI]

    Boyer, Edmond

    Atmospheric Pollution Research 1 (2010) 220228 Atmospheric Pollution Research www in modeling of the associated multiphase processes. Iron redox species are important pollutants. The oxidative capacity of the atmospheric cloud water decreases when dissolution is included

  5. On detecting biospheres from thermodynamic disequilibrium in planetary atmospheres

    E-Print Network [OSTI]

    Krissansen-Totton, Joshua; Catling, David C

    2015-01-01T23:59:59.000Z

    Atmospheric chemical disequilibrium has been proposed as a method for detecting extraterrestrial biospheres from exoplanet observations. Chemical disequilibrium is potentially a generalized biosignature since it makes no assumptions about particular biogenic gases or metabolisms. Here, we present the first rigorous calculations of the thermodynamic chemical disequilibrium in the atmospheres of Solar System planets, in which we quantify the difference in Gibbs free energy of an observed atmosphere compared to that of all the atmospheric gases reacted to equilibrium. The purely gas phase disequilibrium in Earth's atmosphere, as measured by this available Gibbs free energy, is not unusual by Solar System standards and smaller than that of Mars. However, Earth's atmosphere is in contact with a surface ocean, which means that gases can react with water, and so a multiphase calculation that includes aqueous species is required. We find that the disequilibrium in Earth's atmosphere-ocean system (in joules per mole o...

  6. Thermodynamics of atmospheric circulation on hot Jupiters

    E-Print Network [OSTI]

    J. Goodman

    2008-10-07T23:59:59.000Z

    Atmospheric circulation on tidally-locked exoplanets is driven by the absorption and reradiation of heat from the host star. They are natural heat engines, converting heat into mechanical energy. A steady state is possible only if there is a mechanism to dissipate mechanical energy, or if the redistribution of heat is so effective that the Carnot efficiency is driven to zero. Simulations based on primitive, equivalent-barotropic, or shallow-water equations without explicit provision for dissipation of kinetic energy and for recovery of that energy as heat, violate energy conservation. More seriously perhaps, neglect of physical sources of drag may overestimate wind speeds and rates of advection of heat from the day to the night side.

  7. SIO 217a Atmospheric and Climate Sciences I: Atmospheric Thermodynamics

    E-Print Network [OSTI]

    Russell, Lynn

    . Radiant Energy. Radiative Transfer. Transport.) 10-Oct W 3 More Transfer Processes 15-Oct M 4 4 Gas. Equation of State. Hydrostatic Equilibrium.) 3-Oct W 2 2.11 First and Second Laws and Characteristics. Precipitation Processes. Radiative Transfer in a Cloudy Atmosphere. Fogs, Stratus

  8. DOE research on atmospheric aerosols

    SciTech Connect (OSTI)

    Schwartz, S.E.

    1995-11-01T23:59:59.000Z

    Atmospheric aerosols are the subject of a significant component of research within DOE`s environmental research activities, mainly under two programs within the Department`s Environmental Sciences Division, the Atmospheric Radiation Measurement (ARM) Program and the Atmospheric Chemistry Program (ACP). Research activities conducted under these programs include laboratory experiments, field measurements, and theoretical and modeling studies. The objectives and scope of these programs are briefly summarized. The ARM Program is the Department`s major research activity focusing on atmospheric processes pertinent to understanding global climate and developing the capability of predicting global climate change in response to energy related activities. The ARM approach consists mainly of testing and improving models using long-term measurements of atmospheric radiation and controlling variables at highly instrumented sites in north central Oklahoma, in the Tropical Western Pacific, and on the North Slope of Alaska. Atmospheric chemistry research within DOE addresses primarily the issue of atmospheric response to emissions from energy-generation sources. As such this program deals with the broad topic known commonly as the atmospheric source-receptor sequence. This sequence consists of all aspects of energy-related pollutants from the time they are emitted from their sources to the time they are redeposited at the Earth`s surface.

  9. Atmospheric Research at BNL

    ScienceCinema (OSTI)

    Peter Daum

    2010-01-08T23:59:59.000Z

    Brookhaven researcher Peter Daum discusses an international field experiment designed to make observations of critical components of the climate system of the southeastern Pacific. Because elements of this system are poorly understood and poorly represent

  10. Atmospheric and Surface Science Research Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric and Surface Science Research Laboratory Idaho National Laboratory (INL) researchers are contributing to the scientific understanding of contaminant transport through...

  11. ATMOSPHERIC ELSEVIER AtmosphericResearch 44 (1997) 231-241

    E-Print Network [OSTI]

    Reading, University of

    ATMOSPHERIC RESEARCH ELSEVIER AtmosphericResearch 44 (1997) 231-241 Error analysis of backscatter;accepted 14 February 1997 Abstract Ice sphere backscatter has been calculated using both Mie theory as a reasonable approximation for rv 1997 Elsevier Science B.V. 1. Introduction Cirrus clouds play

  12. ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC

    E-Print Network [OSTI]

    Moelders, Nicole

    ELSEVIER AtmosphericResearch 38 (1995) 207-235 ATMOSPHERIC RESEARCH On the parameterization of ice and water substance mixing ratio fields were only strongly altered by turning off the ice phase of these schemes includes ice processes. But in mid- latitudes and also in tropics the ice phase is an important

  13. atmospheric research community: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Corporation for Atmospheric Research Geosciences Websites Summary: University Corporation for Atmospheric Research CIGNA DENTAL PREFERRED PROVIDER INSURANCE EFFECTIVE...

  14. The Atmospheric General Circulation in Thermodynamical Coordinates JOAKIM KJELLSSON AND KRISTOFER DO O S

    E-Print Network [OSTI]

    Döös, Kristofer

    that the cycle has a peak transport of 428 Sv (Sv [ 109 kg s21 ). The thermodynamic cycle encapsulates a globally. Introduction The atmospheric general circulation forms as a re- sponse to differential solar heating (solar heating and ocean heat fluxes) vary. El Ni~no­Southern Oscillation (ENSO) is one of the dominant

  15. The impact of methane thermodynamics on seasonal convection and circulation in a model Titan atmosphere

    E-Print Network [OSTI]

    Caballero, Rodrigo

    The impact of methane thermodynamics on seasonal convection and circulation in a model Titan mechanisms controlling the distribution of methane convection and large-scale circulation in a simplified, axisymmetric model atmosphere of Titan forced by gray radiation and moist (methane) con- vection. The large

  16. JournalofGeophysicalResearch: Atmospheres RESEARCH ARTICLE

    E-Print Network [OSTI]

    Folkins, Ian

    convection to start from more levels · Simple modification of convective parameterization Correspondence to of the Community Atmosphere Model (CAM4), we show that the overall accuracy in the diurnal simulation of convective rise to diurnal cycles in cloud amount [May et al., 2012] and relative humidity [Soden, 2000] which

  17. Sandia National Laboratories: atmospheric research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wavearc-fault circuit interrupterchemistryresearch

  18. 1999 Gordon Research Conference on Atmospheric Chemistry

    SciTech Connect (OSTI)

    Storm, C.

    2000-08-01T23:59:59.000Z

    The Gordon Research Conference (GRC) on Atmospheric Chemistry was held at Salve Regina University in Newport, Rhode Island, June 13-18, 1999. The conference was well attended with 151 participants. The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both US and foreign scientists, senior researchers, young investigators, and students.

  19. Cooperative Institute for Research in the Atmosphere

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    #12;2 Cooperative Institute for Research in the Atmosphere Contents 3 Heavy Snowfall regulations designed to elimi- nate human-caused haze in Big Bend and 155 other National Parks), and the Electric Power Research Institute (EPRI), among others. In support of BRAVO, NPS and CIRA scientists

  20. Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. Nozik -GrownAnAtmospheric Radiation

  1. CIRES/CSD Research Associate Atmospheric/Physical Research Scientist

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    to address atmospheric problems of contemporary interest. A background in atmospheric science is not required or field environment. Experience with optics and optical sensors is highly desirable. Experience by contacting the ADA Coordinator at hr-ada@colorado.edu. The University of Colorado Boulder conducts background

  2. RESEARCH TRAINING GROUP GRK 1095/1: "AERO-THERMODYNAMIC DESIGN OF A SCRAMJET PROPULSION SYSTEM"

    E-Print Network [OSTI]

    RESEARCH TRAINING GROUP GRK 1095/1: "AERO-THERMODYNAMIC DESIGN OF A SCRAMJET PROPULSION SYSTEM" U conception. In this context only the use of a scramjet-propulsion system meets all the aerodynamic it must be mentioned that scramjet-technologies are one of the key technologies for hypersonic flight

  3. Atmospheric Radiation Measurement Climate Research Facility | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4 (Barrels

  4. Integrated Water, Atmosphere, Ecosystems, Education and Research Program

    E-Print Network [OSTI]

    I-WATER Integrated Water, Atmosphere, Ecosystems, Education and Research Program #12;I Graduate Education and Research Traineeship program ¤ IGERT intends to ¤ meet the challenges of educating U a cultural change in graduate education by establishing innovative new models for graduate education

  5. Atmospheric Sciences Program summaries of research in FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  6. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    SciTech Connect (OSTI)

    Dupont, DL

    2011-05-04T23:59:59.000Z

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  7. C.3 SOLAR SYSTEM WORKINGS The Solar System Workings program element supports research into atmospheric, climatological,

    E-Print Network [OSTI]

    Rathbun, Julie A.

    into atmospheric, climatological, dynamical, geologic, geophysical, and geochemical processes occurring proposals for innovative scientific research related to understanding the atmospheric, climatological

  8. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01T23:59:59.000Z

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  9. Evolving research directions in Surface OceanLower Atmosphere (SOLAS) science

    E-Print Network [OSTI]

    Evolving research directions in Surface Ocean­Lower Atmosphere (SOLAS) science Cliff S. Law. Understanding the exchange of energy, gases and particles at the ocean­atmosphere interface is critical­Lower Atmosphere Study (SOLAS) coordinates multi-disciplinary ocean­ atmosphere research projects that quantify

  10. Atmospheric Science Program. Summaries of research in FY 1994

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

  11. 68 Current projects Atmospheric Research The research of the Division focuses on land-

    E-Print Network [OSTI]

    Haak, Hein

    scintillometer remote sensing device), and airplane and satellite observations. Airplane based sensible heat flux Research. This national observatory accommodates numerous remote sensing and in-situ instruments brought of the atmosphere landsurface exchange budgets of relevant constituents (heat, moisture, carbon dioxide) can

  12. Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere

    SciTech Connect (OSTI)

    Tooman, T.P. [ed.] [Sandia National Labs., Livermore, CA (United States). Exploratory Systems Technology Dept.

    1997-01-01T23:59:59.000Z

    This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns were undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.

  13. Cooperative Institute for Research in the Atmosphere Volume 35, Summer 2011

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    , and Glen Liston. 1 CIRA Director 2 Researcher Spotlight 4 Solar Irradiance Forecasting 6 CIRA Founder. of Atmospheric Science with the Carbon Tracker activity led by Pieter Tans at NOAA. Linking the academic research

  14. Pyrgeometer Calibration for DOE-Atmospheric System Research Program Using NREL Method (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Stoffel, T.

    2010-03-15T23:59:59.000Z

    Presented at the DOE-Atmospheric System Research Program, Science Team Meeting, 15-19 March 2010, Bethesda, Maryland. The presentation: Pyrgeometer Calibration for DOE-Atmospheric System Research program using NREL Method - was presented by Ibrahim Reda and Tom Stoffel on March 15, 2010 at the 2010 ASR Science Team Meeting. March 15-19, 2010, Bethesda, Maryland.

  15. Bounds on the thermodynamical properties of the fluid envelope of a planet based upon its radiative budget at the top of the atmosphere: theory and results for Earth, Mars, Titan, and

    E-Print Network [OSTI]

    Lucarini, Valerio

    1 Bounds on the thermodynamical properties of the fluid envelope of a planet based upon its in the atmospheric masses. The possibility of providing constraints to the 3D dynamics of the fluid envelope based into mechanical energy like a thermal engine and generates entropy by irreversible processes. When the external

  16. Atmospheric Radiation Measurement Climate Research Facility (ARM) | U.S.

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 Basic Energy Sciences

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August3 ARM

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August3 ARM7

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August3 ARM79

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August3 ARM792

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August3 ARM7928

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August3 ARM79289

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August3

  4. Clear Skies S. A. Clough Atmospheric and Environmental Research, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail Global Energy Forum Dr.2SitesA. A.AS.

  5. JGR-Atmospheres Papers from the RADAGAST Research Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponsesIon/SurfacePump-TestingJEDI: Jobs andJGI data

  6. Atmospheric Radiation Measurement Climate Research Facility - annual report 2004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. Nozik -GrownAnAtmospheric

  7. Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »Lab (Newport NewsStyle Guide Atmospheric Radiation

  8. Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research. Part 2: Atmospheric and climate research

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    Atmospheric research at Pacific Northwest Laboratory (PNL) occurs in conjunction with the Atmospheric Chemistry Program (ACP) and with the Atmospheric Studies in Complex Terrain (ASCOT) Program. Solicitations for proposals and peer review were used to select research projects for funding in FY 1995. Nearly all ongoing projects were brought to a close in FY 1994. Therefore, the articles in this volume include a summary of the long-term accomplishments as well as the FY 1994 progress made on these projects. The following articles present summaries of the progress in FY 1994 under these research tasks: continental and oceanic fate of pollutants; research aircraft operations; ASCOT program management; coupling/decoupling of synoptic and valley circulations; interactions between surface exchange processes and atmospheric circulations; and direct simulations of atmospheric turbulence. Climate change research at PNL is aimed at reducing uncertainties in the fundamental processes that control climate systems that currently prevent accurate predictions of climate change and its effects. PNL is responsible for coordinating and integrating the field and laboratory measurement programs, modeling studies, and data analysis activities of the Atmospheric Radiation Measurements (ARM) program. In FY 1994, PNL scientists conducted 3 research projects under the ARM program. In the first project, the sensitivity of GCM grid-ad meteorological properties to subgrid-scale variations in surface fluxes and subgrid-scale circulation patterns is being tested in a single column model. In the second project, a new and computationally efficient scheme has been developed for parameterizing stratus cloud microphysics in general circulation models. In the last project, a balloon-borne instrument package is being developed for making research-quality measurements of radiative flux divergence profiles in the lowest 1,500 meters of the Earth`s atmosphere.

  9. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    SciTech Connect (OSTI)

    JW Voyles

    2008-01-30T23:59:59.000Z

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  10. Relativistic thermodynamics

    E-Print Network [OSTI]

    Christian Frřnsdal

    2014-08-22T23:59:59.000Z

    Thermodynamics, when formulated as a dynamic action principle, allows a simple and effective integration into the General Theory of Gravitation.

  11. ATMOSPHERIC ~ ~ RESEARCH

    E-Print Network [OSTI]

    Moelders, Nicole

    . 1. Introduction Air pollution and acid rain have become the subject of (not only) scientific within the troposphere and the transport of pollutants as well as acid rain even in rural regions

  12. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1986-02-01T23:59:59.000Z

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1985, this research has examined the transport and diffusion of atmospheric contaminants in areas of complex terrain, summarized the field studies and analyses of dry deposition and resuspension conducted in past years, and begun participation in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' The description of atmospheric research at PNL is organized in terms of the following study areas: Atmospheric Studies in Complex Terrain; Dispersion, Deposition, and Resuspension of Atmospheric Contaminants; and Processing of Emissions by Clouds and Precipitation (PRECP).

  13. Atmospheric System Research (ASR) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960RealStephanieUseful2-3,Atmospheric System Research

  14. Progress report on DOE research project [Thermodynamic and kinetic behavior of systems with intermetallic and intermediate phases

    SciTech Connect (OSTI)

    Tsakalakos, T.; Semenovskaya-Khachaturyan, S.; Khachaturyan, A.G.

    2000-12-13T23:59:59.000Z

    A theoretical investigation was made of the coherent displacive phase transformation between two equilibrium single-phase states producing several orientation variants of the product phase. The research was focused on a behavior of coherent systems (martensitic systems, metal and ceramic, and ferroelectric systems) with defects. The computer simulation demonstrated that randomly distributed static defects may drastically affect the thermodynamics, kinetics, and morphology of the transformation. In particular, the interaction of the transformation mode with the defects may be responsible for appearance of two new fields in the phase diagram: (i) the two-phase field describing the tweed microstructure, which consists of the retain parent phase and the variants of the product phase and (ii) the single-phase field describing the tweed microstructure, which consists of the variants of the product phase. These new fields can be attributed to the pre-transitional states observed in some of th e displacive transformations. The microstructure evolution resulting in formation of the thermoelastic equilibrium is path dependent. This unusual behavior is expected in systems with a sharp dependence of the transition temperature on the defect concentration.

  15. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1985-02-01T23:59:59.000Z

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to assess, describe, and predict the nature and fate of atmospheric contaminants and to study the impacts of contaminants on local, regional, and global climates. The contaminants being investigated are those resulting from the development and use of conventional resources (coal, gas, oil, and nuclear power) as well as alternative energy sources. The description of the research is organized into 3 sections: (1) Atmospheric Studies in Complex Terrain (ASCOT); (2) Boundary Layer Meteorology; and (3) Dispersion, Deposition, and Resuspension of Atmospheric Contaminants. Separate analytics have been done for each of the sections and are indexed and contained in the EDB. (MDF)

  16. Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology

    SciTech Connect (OSTI)

    Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

    2013-08-06T23:59:59.000Z

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

  17. Atmospheric performance of the special-purpose Solar Energy Research Institute (SERI) thin-airfoil family

    SciTech Connect (OSTI)

    Tangler, J; Smith, B; Jager, D; Olsen, T

    1990-09-01T23:59:59.000Z

    The Solar Energy Research Institute (SERI), in cooperation with SeaWest Energy Group, has completed extensive atmospheric testing of the special-purpose SERI thin-airfoil family during the 1990 wind season. The purpose of this test program was to experimentally verify the predicted performance characteristics of the thin-airfoil family on a geometrically optimized blade, and to compare it to original-equipment blades under atmospheric wind conditions. The tests were run on two identical Micon 65/13 horizontal-axis wind turbines installed side-by-side in a wind farm. The thin-airfoil family 7.96 m blades were installed on one turbine, and AeroStar 7.41 m blades were installed on the other. This paper presents final performance results of the side-by-side comparative field test for both clean and dirty blade conditions. 7 refs., 11 figs., 1 tab.

  18. National Center for Atmospheric Research annual report, fiscal year 1991. Report for 1 October 1990-30 September 1991

    SciTech Connect (OSTI)

    Warner, L.

    1992-06-01T23:59:59.000Z

    The National Center for Atmospheric Research (NCAR) annual report for fiscal year 1991 is presented. NCAR's projects for the period included investigations of air pollution from the oil well fires in Kuwait, a solar eclipse, thunderstorms in central Florida, the El Nino current, greenhouse processes, and upper atmosphere phenomena.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1–September 30, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-10-15T23:59:59.000Z

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  20. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1987-06-01T23:59:59.000Z

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1986, atmospheric research examined the transport and diffusion of atmospheric contaminants in areas of complex terrain and participated in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, during 1986, a special opportunity for measuring the transport and removal of radioactivity occurred after the Chernobyl reactor accident in April 1986. Separate abstracts were prepared for individual projects.

  1. Thermodynamics of electroweak matter

    E-Print Network [OSTI]

    A. Gynther

    2006-09-21T23:59:59.000Z

    This paper is a slightly modified version of the introductory part of a PhD thesis, also containing the articles hep-ph/0303019, hep-ph/0510375 and hep-ph/0512177. We provide a short history of the research of electroweak thermodynamics and a brief introduction to the theory as well as to the necessary theoretical tools needed to work at finite temperatures. We then review computations regarding the pressure of electroweak matter at high temperatures (the full expression of the perturbative expansion of the pressure is given in the appendix) and the electroweak phase diagram at finite chemical potentials. Finally, we compare electroweak and QCD thermodynamics.

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1–March 31, 2011

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-04-11T23:59:59.000Z

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-03-02T23:59:59.000Z

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-07-25T23:59:59.000Z

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  5. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-10-10T23:59:59.000Z

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  6. ATS 620: Thermodynamics and Cloud Physics Dr. Sonia Kreidenweis

    E-Print Network [OSTI]

    van den Heever, Susan C.

    ATS 620: Thermodynamics and Cloud Physics Fall 2013 Dr. Sonia Kreidenweis Dr. Susan van den Heever graduate students to key concepts in cloud physics and thermodynamics as applied to the atmosphere. These concepts include energy variables and energy calculations, thermodynamic diagrams, phase changes, and cloud

  7. Quantum measurement and its role in thermodynamics

    E-Print Network [OSTI]

    Philipp Kammerlander; Janet Anders

    2015-02-09T23:59:59.000Z

    A central goal of the research effort in quantum thermodynamics is the extension of standard thermodynamics to include small-scale and quantum effects. Here we lay out consequences of seeing measurement, one of the central pillars of quantum theory, not merely as a mathematical projection but as a thermodynamic process. We uncover that measurement, a component of any experimental realisation, is accompanied by work and heat contributions and that these are distinct in classical and quantum thermodynamics. Implications are far-reaching, giving a thermodynamic interpretation to quantum coherence, extending the link between thermodynamics and information theory, and providing key input for the construction of a future quantum thermodynamic framework. Repercussions for existing quantum thermodynamic relations that omitted the role of measurement are discussed, including quantum work fluctuation relations and single-shot approaches.

  8. Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-DOE research on atmospheric aerosols

    E-Print Network [OSTI]

    are an programs dealing with atmospheric science, subsurface science, environmental radon, ocean margins Division, the Atmospheric Radiation Measurement (ARM) Program and the Atmospheric Chemistry Program (ACP--Atmospheric Radiation Measurement Program. The ARM Program is the Department's major research activity focusing

  9. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08T23:59:59.000Z

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the "physics" of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited. 3a. EULAG Advances EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG's name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized time-dependent curvilinear coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over many existing dynamical cores. For EULAG itself, numerical advances included refining boundary conditions and filters for optimizing model performance in polar regions. We also added flexibility to the model's underlying formulation, allowing it to work with the pseudo-compressible equation set of Durran in addition to EULAG's standard anelastic formulation. Work in collaboration with others also extended the demonstrated range of validity of soundproof models, showing that they are more broadly applicable than some had previously thought. Substantial testing of EULAG included application and extension of the Jablonowski-Williamson baroclinic wave test - an archetype of planetary weather - and further analysis of multi-scale interactions arising from collapse of temperature fronts in both the baroclinic wave test and simulations of the Held-Suarez idealized climate. These analyses revealed properties of atmospheric gravity waves not seen in previous work and further demonstrated the ability of EULAG to simulate realistic behavior over several orders of magnitude of length scales. Additional collaborative work enhanced capability for modeling atmospheric flows with adaptive moving meshes and demonstrated the ability of EULAG to move into petascale computing. 3b. CAM-EULAG Advances We have developed CAM-EULAG in collaboration with former project postdoc, now University of Cape Town Assistant Professor, Babatunde Abiodun. Initial study documented good model performance in aqua-planet simulations. In particular, we showed that the grid adaptivity (stretching) implemented in CAM-EULAG allows higher resolution in selected regions without causing anomalous behavior such as spurious wave reflection. We then used the stretched-grid version to analyze simulated extreme precipitation events in West Africa, comparing the precipitation and event environment with observed behavior. The model simulates fairly well the spatial scale and the interannual and intraseasonal variability of the extreme events, although its extreme precipitation intensity is weaker than observed. In addition, both observations and the simulations show possible forcing of extreme events by African easterly waves. 3c. Other Contributions Through our collaborations, we have made contributions to a wide range of outcomes. For research focused on terrestrial behavior, these have included (1) upwind schemes for gas dynamics, (2) a nonlinear perspective on the dynamics of the Madden-Julian Oscillation, (3) numerical realism of thermal co

  10. E-Print Network 3.0 - atmospheric processes research Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roundtable Summary: , Center for Multiscale Modeling of Atmospheric Processes Colorado State University John Dunne, Ph... Exler Director, Office of Communications for...

  11. 58 Current projects Atmospheric Composition Research driven by the outcome of data validation. The

    E-Print Network [OSTI]

    Haak, Hein

    missions. Paramaribo Station In 1999 KNMI and the Meteorological Service of Surinam (MDS) have started an atmospheric observation programme in Paramaribo, Surinam (South America, 5.8° N, 55.2° W). Initially

  12. QCD Thermodynamics

    E-Print Network [OSTI]

    Z. Fodor

    2007-11-02T23:59:59.000Z

    Recent results on QCD thermodynamics are presented. The nature of the T>0 transition is determined, which turns out to be an analytic cross-over. The absolute scale for this transition is calculated. The temperature dependent static potential is given. The results were obtained by using a Symanzik improved gauge and stout-link improved fermionic action. In order to approach the continuum limit four different sets of lattice spacings were used with temporal extensions N_t=4, 6, 8 and 10 (they correspond to lattice spacings a \\sim 0.3, 0.2, 0.15 and 0.12 fm). A new technique is presented, which --in contrast to earlier methods-- enables one to determine the equation of state at very large temperatures.

  13. Thermodynamic Origin of Life

    E-Print Network [OSTI]

    K. Michaelian

    2010-09-08T23:59:59.000Z

    Understanding the thermodynamic function of life may shed light on its origin. Life, as are all irreversible processes, is contingent on entropy production. Entropy production is a measure of the rate of the tendency of Nature to explore available microstates. The most important irreversible process generating entropy in the biosphere, and thus facilitating this exploration, is the absorption and transformation of sunlight into heat. Here we hypothesize that life began, and persists today, as a catalyst for the absorption and dissipation of sunlight at the surface of shallow seas. The resulting heat is then efficiently harvested by other irreversible processes such as the water cycle, hurricanes, and ocean and wind currents. RNA and DNA are the most efficient of all known molecules for absorbing the intense ultraviolet light that could have penetrated the dense early atmosphere, and are remarkably rapid in transforming this light into heat in the presence of liquid water. From this perspective, the origin and evolution of life, inseparable from water and the water cycle, can be understood as resulting from the natural thermodynamic imperative of increasing the entropy production of the Earth in its interaction with its solar environment. A mechanism is proposed for the reproduction of RNA and DNA without the need for enzymes, promoted instead through UV light dissipation and the ambient conditions of prebiotic Earth.

  14. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    SciTech Connect (OSTI)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20T23:59:59.000Z

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  15. Thermodynamics Review and Relations

    E-Print Network [OSTI]

    Thermodynamics Review and Relations Review · Gas filled piston Motivation Thermodynamics the efficiency of steam engine. Only macroscopic continues states of matter are con- sidered. Thermodynamics of thermodynamics is essential since it easily to statistical mechanics. Definitions and Convention Signs The sign

  16. CIRRICULUM VITAE: TOM BREIDER Atmospheric Chemistry Post-Doctoral Research Fellow

    E-Print Network [OSTI]

    Jacob, Daniel J.

    to changing anthropogenic and dynamic biogenic emissions of trace gases and aerosols. These chemistry and trace gas factors affecting the number concentration of atmospheric Aitken (Dp=50 nm) particles. Discuss., 3, 1185-1221, 2010 4) Hossani, R., M. P. Chipperfield, W. Feng, T. J. Breider, E. Atlas, S. A

  17. Thermodynamics and Finite size scaling in Scalar Field Theory

    E-Print Network [OSTI]

    Thermodynamics and Finite size scaling in Scalar Field Theory A thesis submitted to the Tata Research, Mumbai December 2008 #12;ii #12;Synopsis In this work we study the thermodynamics of an interacting 4 theory in 4 space- time dimensions. The expressions for the thermodynamic quantities are worked

  18. Atlantic Oceanographic and Meteorological LaboratoryNovember-December 2009 Volume 13, Number 6 AOML is an environmental research laboratory of NOAA's Office of Oceanic and Atmospheric

    E-Print Network [OSTI]

    is an environmental research laboratory of NOAA's Office of Oceanic and Atmospheric Research located on Virginia KeyAtlantic With an estimated 40% of the carbon dioxide (CO2 ) from fossil fuels having entered the oceans since the start studies in the Atlantic and equatorial Pacific performed by NOAA researchers and their affiliates. Carbon

  19. Hierarchical Diagnosis A. J. Heymsfield and J. L. Coen National Center for Atmospheric Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cellHeatExperiment.Theoretical Studies ofA. J.

  20. DOE/SC-ARM-020 Atmospheric Radiation Measurement Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision 1SC Lehman20

  1. DOE/SC-ARM-12-015 Atmospheric Radiation Measurement Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision 1SC6 ARM85

  2. DOE/SC-ARM-12-021 Atmospheric Radiation Measurement Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision 1SC6 ARM851

  3. DOE/SC-ARM-13-001 Atmospheric Radiation Measurement Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision 1SC6 ARM8511

  4. DOE/SC-ARM-13-007 Atmospheric Radiation Measurement Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision 1SC6 ARM85117

  5. DOE/SC-ARM-13-013 Atmospheric Radiation Measurement Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision 1SC6 ARM851173

  6. DOE/SC-ARM-13-020 Atmospheric Radiation Measurement Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision 1SC6 ARM8511730

  7. Data Assimilation C. L. Martin and A.-L. Barrett National Center for Atmospheric Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic2005-2007DanMesoporousDarkDashC. L. Martin

  8. Data Assimilation J. S. Van Baelen(a) National Center for Atmospheric Research(b)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic2005-2007DanMesoporousDarkDashC. L.C.S.

  9. Technical Sessions J.-F. Louis Atmospheric and Environment Research, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR8, 2013Battelle:Technical Services.T.Penner-F.

  10. Technical Sessions Principal Investigator: S. A. Clough Atmospheric and Environmental Research, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR8, 2013Battelle:TechnicalP. Daum L.Principal

  11. Four-Dimensional Data Assimilation J.-F. Louis Atmospheric and Environmental Research, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" Give Forms (AllKurt's ColumnTheD.J.-F.

  12. An Update on Radiative Transfer Model Development at Atmospheric and Environmental Research, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site| Department ofAn InsideAn Update|Update

  13. Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering Facilities5:68MtrC andAmes: Phil Russell,

  14. Summary of Breakout Sessions D. A. Randall National Center for Atmospheric Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium OxideSumin Kim Sumin Kim Sumin KimSummary Slides4

  15. Single-Column Modeling C. J. Walcek Atmospheric Sciences Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart GridShiftMethodSimwYpes(tm)Single microbeC.J.AC.

  16. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Prusa, Joseph

    2012-05-08T23:59:59.000Z

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG�s advanced dynamics core with the �physics� of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  17. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect (OSTI)

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  18. E-Print Network 3.0 - atmosphere research satellite Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ground-based and satellite observations of the Sun. SP2 RC has wide expertise... Plasma Research Centre (SP2 RC), School of Mathematics and Statistics, University of Sheffield in...

  19. SECOND LAW OF THERMODYNAMICS

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    SECOND LAW OF THERMODYNAMICS: STATUS AND CHALLENGES San Diego, California, USA 14 ­ 15 June 2011 The First Law of energy conservation was even known (Joule 1843) and long before Thermodynamic concepts were, including this one. The Laws of Thermodynamics have much wider, including philosophical significance

  20. Spring 2014 Thermodynamics -1

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 Thermodynamics - 1 Consider an insulated (adiabatic) piston and cylinder arrangement. Confirm this statement using the second law of thermodynamics. (b) (20) She now wants to calculate the work done by the air on the piston by using the first law of thermodynamics. Do this. Draw a T

  1. Computational Reality X Thermodynamics

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Computational Reality X Thermodynamics B. Emek Abali @ LKM - TU Berlin Abstract After solving energy density. This is actually a branch of thermodynamics, though this question never gets its full answer in a thermodynamics' class. Here we will show one possibility of deriving the energy formulation

  2. Air Resources Laboratory The Air Resources Laboratory (ARL) is a research laboratory within the National Oceanic and Atmospheric Administration

    E-Print Network [OSTI]

    and the atmospheric transport, transformation and fate of air pollutants. To support air quality decision makers, ARL the interaction of air pollutants in the atmosphere and between the atmosphere and the underlying land and water the National Oceanic and Atmospheric Administration (NOAA). ARL is headquartered at the NOAA Center for Weather

  3. Thermodynamics and scale relativity

    E-Print Network [OSTI]

    Robert Carroll

    2011-10-13T23:59:59.000Z

    It is shown how the fractal paths of scale relativity (following Nottale) can be introduced into a thermodynamical context (following Asadov-Kechkin).

  4. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    SciTech Connect (OSTI)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01T23:59:59.000Z

    The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

  5. Sandia National Laboratories: correct thermodynamic parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Releasehy-drogenmaterial elementswavecorrect thermodynamic

  6. From Quantum Mechanics to Thermodynamics?

    E-Print Network [OSTI]

    Steinhoff, Heinz-Jürgen

    From Quantum Mechanics to Thermodynamics? Dresden, 22.11.2004 Jochen Gemmer Universit¨at Osnabr to thermodynamical behavior · Quantum approach to thermodynamical behavior · The route to equilibrium · Summary of thermodynamical behavior entirely on the basis of Hamilton models and Schr¨odinger-type quantum dynamics. · define

  7. The thermodynamics of bubbles

    E-Print Network [OSTI]

    Clark, John A.

    1956-01-01T23:59:59.000Z

    This paper outlines those concitions annanded by the laws of thermodynamics for equilibriza betwoen the vapor in a bubble and the surrounding liquid and then employs these concepts with a nucleation theory in an atteapt ...

  8. Extensivity and Relativistic Thermodynamics

    E-Print Network [OSTI]

    J. Dunning-Davies

    2007-06-27T23:59:59.000Z

    The mathematical properties associated with the widely accepted concept of the extensivity of many of the common thermodynamic variables are examined and some of their consequences considered. The possible conflict between some of these and currently accepted results of special relativistic thermodynamics is highlighted. Although several questions are raised, answers are not advanced as this seems an area demanding calm, widespread reflection which could conceivably lead to radical revision of part, or parts, of theoretical physics.

  9. Stochastic equations for thermodynamics

    E-Print Network [OSTI]

    Tsekov, R

    2015-01-01T23:59:59.000Z

    The applicability of stochastic differential equations to thermodynamics is considered and a new form, different from the classical Ito and Stratonovich forms, is introduced. It is shown that the new presentation is more appropriate for the description of thermodynamic fluctuations. The range of validity of the Boltzmann-Einstein principle is also discussed and a generalized alternative is proposed. Both expressions coincide in the small fluctuation limit, providing a normal distribution density.

  10. Thermodynamics of Fractal Universe

    E-Print Network [OSTI]

    Ahmad Sheykhi; Zeinab Teimoori; Bin Wang

    2013-01-12T23:59:59.000Z

    We investigate the thermodynamical properties of the apparent horizon in a fractal universe. We find that one can always rewrite the Friedmann equation of the fractal universe in the form of the entropy balance relation $ \\delta Q=T_h d{S_h}$, where $ \\delta Q $ and $ T_{h} $ are the energy flux and Unruh temperature seen by an accelerated observer just inside the apparent horizon. We find that the entropy $S_h$ consists two terms, the first one which obeys the usual area law and the second part which is the entropy production term due to nonequilibrium thermodynamics of fractal universe. This shows that in a fractal universe, a treatment with nonequilibrium thermodynamics of spacetime may be needed. We also study the generalized second law of thermodynamics in the framework of fractal universe. When the temperature of the apparent horizon and the matter fields inside the horizon are equal, i.e. $T=T_h$, the generalized second law of thermodynamics can be fulfilled provided the deceleration and the equation of state parameters ranges either as $-1 \\leq q thermodynamics can be secured in a fractal universe by suitably choosing the fractal parameter $\\beta$.

  11. E-Print Network 3.0 - atmospheric state profiles Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology 2 INVESTIGATING THERMODYNAMICS OF VERTICAL ATMOSPHERIC ENERGY TRANSPORT Summary: the Earth's radiation entropy fluxes. The vertical profiles of net...

  12. A unifying framework for watershed thermodynamics: balance equations for mass,

    E-Print Network [OSTI]

    Hassanizadeh, S. Majid

    A unifying framework for watershed thermodynamics: balance equations for mass, momentum, energy Hassanizadehb a Centre for Water Research, Department of Environmental Engineering, The University of Western Australia, 6907 Nedlands, Australia b Department of Water Management, Environmental and Sanitary Engineering

  13. Quantum thermodynamic cooling cycle

    E-Print Network [OSTI]

    Palao, J P; Gordon, J M; Palao, Jose P.; Kosloff, Ronnie; Gordon, Jeffrey M.

    2001-01-01T23:59:59.000Z

    The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

  14. Confusion in Thermodynamics

    E-Print Network [OSTI]

    Jeremy Dunning-Davies; David Sands

    2011-05-17T23:59:59.000Z

    For a long time now, confusion has existed in the minds of many over the meaning of various concepts in thermodynamics. Recently, this point has been brought to people's attention by two articles appearing on the well-known archive (arxiv) web site. The content of these two pieces serves to illustrate many of the problems and has occasioned the construction of this answer to at least some of them. The position of the axiom proposed by Carath\\'eodory is central in this matter and here its position is clarified and secured within the framework of thermodynamics. In particular, its relation to the First Law is examined and justified.

  15. Quantum thermodynamic cooling cycle

    E-Print Network [OSTI]

    Jose P. Palao; Ronnie Kosloff; Jeffrey M. Gordon

    2001-06-08T23:59:59.000Z

    The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

  16. Gravity-wave forcing in the stratosphere: Observational constraints from the Upper Atmosphere Research Satellite and implications for

    E-Print Network [OSTI]

    Alexander, M. Joan

    Gravity-wave forcing in the stratosphere: Observational constraints from the Upper Atmosphere 6 June 2003; published 2 October 2003. [1] Global models that include parameterized gravity of gravity- wave momentum forcing distributions. We derive a set of constraints on gravity

  17. 6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics

    E-Print Network [OSTI]

    Maruyama, Shigeo

    6th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics April 17-through open-system, therefore the reaction field is close to atmospheric pressure. Our experiments consisted

  18. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    SciTech Connect (OSTI)

    SA Edgerton; LR Roeder

    2008-09-30T23:59:59.000Z

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  19. Thermodynamics and gravitational collapse

    E-Print Network [OSTI]

    Daniele Malafarina; Pankaj S. Joshi

    2011-06-19T23:59:59.000Z

    It is known now that a typical gravitational collapse in general relativity, evolving from regular initial data and under physically reasonable conditions would end in either a black hole or a naked singularity final state. An important question that needs to be answered in this connection is, whether the analogues of the laws of thermodynamics, as formulated for relativistic horizons are respected by the dynamical spacetimes for collapse that end in the formation of a naked singularity. We investigate here the thermodynamical behaviour of the dynamical horizons that form in spherically symmetric gravitational collapse and we show that the first and second laws of black hole thermodynamics, as extended to dynamical spacetimes in a suitable manner, are not violated whether the collapse ends in a black hole or a naked singularity. We then make a distinction between the naked singularities that result from gravitational collapse, and those that exist in solutions of Einstein equations in vacuum axially symmetric and stationary spacetimes, and discuss their connection with thermodynamics in view of the cosmic censorship conjecture and the validity of the third law of black hole mechanics.

  20. Black Hole Thermodynamics Today

    E-Print Network [OSTI]

    Ted Jacobson

    1998-01-07T23:59:59.000Z

    A brief survey of the major themes and developments of black hole thermodynamics in the 1990's is given, followed by summaries of the talks on this subject at MG8 together with a bit of commentary, and closing with a look towards the future.

  1. Thermodynamics CHE 361, 4 credits

    E-Print Network [OSTI]

    Fuchs, Alan

    Thermodynamics CHE 361, 4 credits Spring Semester 2006 Tuesday and Thursday, 11:00 ­ 12:15PM, LME Chemical Engineering Thermodynamics", Prentice Hall PTR, 1999. Prerequisites Calculus III (Math 283 of this course, students will understand the first and second laws, PVT properties of fluids, thermodynamic

  2. Phenomenological thermodynamics in a nutshell

    E-Print Network [OSTI]

    Neumaier, Arnold

    Phenomenological thermodynamics in a nutshell Arnold Neumaier Fakult¨at f¨ur Mathematik, Universit of phenomeno- logical equilibrium thermodynamics for single-phase systems in the absence of chemical reactions-known thermodynamics book the basic concepts by means of a few postulates from which every- thing else follows. His

  3. Algorithmic Thermodynamics John C. Baez

    E-Print Network [OSTI]

    Tomkins, Andrew

    Algorithmic Thermodynamics John C. Baez Department of Mathematics, University of California in statistical mechanics. This viewpoint allows us to apply many techniques developed for use in thermodynamics and chemical potential. We derive an analogue of the fundamental thermodynamic relation dE = TdS - PdV + µd

  4. Stretch Efficiency - Thermodynamic Analysis of New Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stretch Efficiency - Thermodynamic Analysis of New Combustion Regimes (Agreement 10037) Stretch Efficiency - Thermodynamic Analysis of New Combustion Regimes (Agreement 10037)...

  5. Scientific Final Report: COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    William J. Gutowski; Joseph M. Prusa, Piotr K. Smolarkiewicz

    2012-04-09T23:59:59.000Z

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the 'physics' of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  6. Thermodynamic theory of kinetic overshoots

    E-Print Network [OSTI]

    A. N. Gorban; G. S. Yablonsky

    2005-05-19T23:59:59.000Z

    Everything that is not prohibited is permissible. So, what is prohibited in the course of chemical reactions, heat transfer and other dissipative processes? Is it possible to "overshoot" the equilibrium, and if yes, then how far? Thermodynamically allowed and prohibited trajectories of processes are discussed by the example of effects of equilibrium encircling. The complete theory of thermodynamically accessible states is presented. The space of all thermodynamically admissible paths is presented by projection on the "thermodynamic tree", that is the tree of the related thermodynamic potential (entropy, free energy, free enthalpy) in the balance polyhedron. The stationary states and limit points for open systems are localized too.

  7. Contact Symmetries and Hamiltonian Thermodynamics

    E-Print Network [OSTI]

    A. Bravetti; C. S. Lopez-Monsalvo; F. Nettel

    2015-02-22T23:59:59.000Z

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher's Information Matrix. In this work we analyze several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.

  8. Matthew Woelfle1, Farren Herron-Thorpe2, and Joe Vaughan2 Washington State University Laboratory for Atmospheric Research

    E-Print Network [OSTI]

    Collins, Gary S.

    the Weather Research Forecasting (WRF), Community Multiscale Air Quality (CMAQ), and Sparse Matrix Operating by the National Science Foundation's REU program under grant number 0754990. This research was also made possible Serena Chung for her assistance with this work. AIRPACT and MODIS AOD had low correlation, 0

  9. W.-C. Wang X.-Z. Liang M. D. Dudek S. Cox Atmospheric Sciences Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. |VolunteeringMap2-5: EastW. Bennett

  10. 12.003 Physics of Atmospheres and Oceans, Fall 2007

    E-Print Network [OSTI]

    Marshall, John C.

    The laws of classical mechanics and thermodynamics are used to explore how the properties of fluids on a rotating Earth manifest themselves in, and help shape, the global patterns of atmospheric winds, ocean currents, and ...

  11. Classical QGP : IV. Thermodynamics

    E-Print Network [OSTI]

    Sungtae Cho; Ismail Zahed

    2008-12-09T23:59:59.000Z

    We construct the equation of a state of the classical QGP valid for all values of Gamma=V/K, the ratio of the mean Coulomb to kinetic energy. By enforcing the Gibbs relations, we derive the pertinent pressure and entropy densities for all Gamma. For the case of an SU(2) classical gluonic plasma our results compare well with lattice simulations. We show that the strongly coupled component of the classical QGP contributes significantly to the bulk thermodynamics across T_c.

  12. Gravity, Dimension, Equilibrium, & Thermodynamics

    E-Print Network [OSTI]

    Jerome Perez

    2006-03-30T23:59:59.000Z

    Is it actually possible to interpret gravitation as space's property in a pure classical way. Then, we note that extended self-gravitating system equilibrium depends directly on the number of dimension of the space in which it evolves. Given those precisions, we review the principal thermodynamical knowledge in the context of classical gravity with arbitrary dimension of space. Stability analyses for bounded 3D systems, namely the Antonov instability paradigm, are then rapproched to some amazing properties of globular clusters and galaxies.

  13. Thermodynamics of Dark Energy

    E-Print Network [OSTI]

    Neven Bilic

    2010-09-27T23:59:59.000Z

    Thermodynamic properties of dark energy are discussed assuming that dark energy is described in terms of a selfinteracting complex scalar. We first show that, under certain assumptions, selfinteracting complex scalar field theories are equivalent to purely kinetic k-essence models. Then we analyze the themal properties of k-essence and in particular we show that dark-energy in the phantom regime does not necessarily yield negative entropy.

  14. Thermodynamics of Chaplygin gas

    E-Print Network [OSTI]

    Yun Soo Myung

    2011-05-11T23:59:59.000Z

    We clarify thermodynamics of the Chaplygin gas by introducing the integrability condition. All thermal quantities are derived as functions of either volume or temperature. Importantly, we find a new general equation of state, describing the Chaplygin gas completely. We confirm that the Chaplygin gas could show a unified picture of dark matter and energy which cools down through the universe expansion without any critical point (phase transition).

  15. On Phantom Thermodynamics

    E-Print Network [OSTI]

    S. H. Pereira; J. A. S. Lima

    2008-10-30T23:59:59.000Z

    The thermodynamic properties of dark energy fluids described by an equation of state parameter $\\omega=p/\\rho$ are rediscussed in the context of FRW type geometries. Contrarily to previous claims, it is argued here that the phantom regime $\\omega0$ and $S>0$ in the course of the Universe expansion. Further, the negative value of the chemical potential resulting from the entropy constraint ($S>0$) suggests a bosonic massless nature to the phantom particles.

  16. Thermodynamic stability of recoding RNA pseudoknots and ribosomal frameshifting

    E-Print Network [OSTI]

    Cannon, Brian Ray

    2013-02-22T23:59:59.000Z

    THERMODYNAMIC STABILITY OF RECODING RNA PSEUDOKNOTS AND RIBOSOMAL FRAMESHIFTING A Senior Honors Thesis by BRIAN RAY CANNON Submitted to the Office of Honors Progrmas & Academic Scholarships Texas A&M University in partial fulfillment... for the designation of UNIVERSITY UNDERGRADUATE RESEARCH FELLOW April 2001 Group: Biochemistry THERMODYNAMIC STABILITY OF RECODING RNA PSEUDOKNOTS AND RIBOSOMAL FRAMESHIFTING A Senior Honors Thesis by BRIAN RAY CANNON Submitted to the Office of Honors...

  17. A Micro-Thermodynamic Formalism

    E-Print Network [OSTI]

    Hans Henrik Rugh

    2002-01-30T23:59:59.000Z

    We consider the micro-canonical ensemble of a classical Hamiltonian dynamical system, the Hamiltonian being parameter dependent and in the possible presence of other first integrals. We describe a thermodynamic formalism in which a 1st law of thermodynamics, or fundamental relation, is based upon the bulk-entropy, S. Under an ergodic hypothesis, S is shown to be an adiabatic invariant. Expressions for derivatives and thermodynamic relations are derived within the micro-canonical ensemble itself.

  18. An introduction to classical and statistical thermodynamics

    E-Print Network [OSTI]

    An introduction to classical and statistical thermodynamics a conceptual understanding Kwok of thermodynamics ­ concept of energy conservation 4. Second law of thermodynamics ­ concept of entropy 5. Introduction to statistical thermodynamics 03/2011 K.W. Cheng, Thermodynamics 2 #12;3 1. Introduction · study

  19. Atmospheric sciences transfer between research advances and energy-policy assessments (ASTRAEA). Final report, 1 April 1996--31 December 1997

    SciTech Connect (OSTI)

    Slinn, W.G.N.

    1997-12-10T23:59:59.000Z

    Consistent with the prime goal of the ASTRAEA project, as given in its peer-reviewed proposal, this final report is an informal report to DOE managers about a perceived DOE management problem, specifically, lack of vision in DOE`s Atmospheric Chemistry Program (ACP). After presenting a review of relevant, current literature, the author suggests a framework for conceiving new visions for ACP, namely, multidisciplinary research for energy policy, tackling tough (e.g., nonlinear) problems as a team, ahead of political curves. Two example visions for ACP are then described, called herein the CITIES Project (the Comprehensive Inventory of Trace Inhalants from Energy Sources Project) and the OCEAN Project (the Ocean-Circulation Energy-Aerosol Nonlinearities Project). Finally, the author suggests methods for DOE to provide ACP with needed vision.

  20. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  1. Thermodynamics of cuticular transpiration Allen G. Gibbs *

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Review Thermodynamics of cuticular transpiration§ Allen G. Gibbs * School of Life Sciences, 4505 S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 4. Thermodynamics of transport processes Accepted 6 May 2011 Keywords: Cuticle Humidity Thermodynamics Transpiration Water vapor A B S T R A C

  2. Thermodynamics in Loop Quantum Cosmology

    E-Print Network [OSTI]

    Li-Fang Li; Jian-Yang Zhu

    2008-12-18T23:59:59.000Z

    Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. And the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but are actually also found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.

  3. THERMODYNAMICS Unified Model for Nonideal Multicomponent

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    THERMODYNAMICS Unified Model for Nonideal Multicomponent Molecular Diffusion Coefficients Alana and a rigorous descrip- tion of mixture nonideality in the framework of irreversible thermodynamics. Molecular

  4. Thermodynamics of clusterized matter

    E-Print Network [OSTI]

    Ad. R. Raduta; F. Gulminelli

    2009-08-26T23:59:59.000Z

    Thermodynamics of clusterized matter is studied in the framework of statistical models with non-interacting cluster degrees of freedom. At variance with the analytical Fisher model, exact Metropolis simulation results indicate that the transition from homogeneous to clusterized matter lies along the $\\rho=\\rho_0$ axis at all temperatures and the limiting point of the phase diagram is not a critical point even if the surface energy vanishes at this point. Sensitivity of the inferred phase diagram to the employed statistical framework in the case of finite systems is discussed by considering the grand-canonical and constant-pressure canonical ensembles. A Wigner-Seitz formalism in which the fragment charge is neutralized by an uniform electron distribution allows to build the phase diagram of neutron star matter.

  5. Thermodynamics and cement science

    SciTech Connect (OSTI)

    Damidot, D., E-mail: damidot@ensm-douai.fr [Universite Lille Nord de France (France); EM Douai, LGCgE-MPE-GCE, Douai (France); Lothenbach, B. [Empa, Lab. Concrete and Construction Chemistry, Duebendorf (Switzerland); Herfort, D. [Cementir Holding (Denmark); Glasser, F.P. [Chemistry Department, University of Aberdeen, Aberdeen (United Kingdom)

    2011-07-15T23:59:59.000Z

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  6. New nonlinear mechanisms of midlatitude atmospheric low-frequency variability

    E-Print Network [OSTI]

    and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands Abstract

  7. Atmospheric Neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2006-12-11T23:59:59.000Z

    This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

  8. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect (OSTI)

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16T23:59:59.000Z

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  9. ME 326 Thermodynamics ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    ME 326 ­ Thermodynamics Page 1 ABET EC2000 syllabus ME 326 ­ Thermodynamics Summer 2009 Required or Elective: Required 2008-2010 Catalog Data: Properties, heat and work, first and second laws, thermodynamic, and Physics 303K with a grade of at least C in each. Textbook(s): Thermodynamics: An Integrated Learning

  10. Thermodynamics Henri J.F. Jansen

    E-Print Network [OSTI]

    Jansen, Henri J. F.

    Thermodynamics Henri J.F. Jansen Department of Physics Oregon State University August 19, 2010 #12;II #12;Contents PART I. Thermodynamics Fundamentals 1 1 Basic Thermodynamics. 3 1.1 Introduction of Thermodynamics. . . . . . . . . . . . . . . . . . 12 1.4 First law: Energy

  11. MMAE 320 Thermodynamics Illinois Institute of Technology

    E-Print Network [OSTI]

    Heller, Barbara

    MMAE 320 Thermodynamics Fall 2011 Illinois Institute of Technology Instructor: Professor Shawn C of Engineering Thermodynamics, 7th Yes, you will probably be fine with an earlier edition, please buy and read. Work and Heat 4. First Law of Thermodynamics 5. Second Law of Thermodynamics 6. Entropy 7

  12. Research departments Materials Research Department

    E-Print Network [OSTI]

    and alleviate atmospheric pollution in colla- boration with DMU (the National En- vironmental Research Institute Countries is also part of this department. Wind Energy and Atmospheric Physics Department (Formerly

  13. On the Mathematics of Thermodynamics

    E-Print Network [OSTI]

    J. B. Cooper; T. Russell

    2011-02-08T23:59:59.000Z

    We show that the mathematical structure of Gibbsian thermodynamics flows from the following simple elements: the state space of a thermodynamical substance is a measure space together with two orderings (corresponding to "warmer than" and "adiabatically accessible from") which satisfy certain plausible physical axioms and an area condition which was introduced by Paul Samuelson. We show how the basic identities of thermodynamics, in particular the Maxwell relations, follow and so the existence of energy, free energy, enthalpy and the Gibbs potential function. We also discuss some questions which we have not found dealt with in the literature, such as the amount of information required to reconstruct the equations of state of a substance and a systematic approach to thermodynamical identities.

  14. Thermodynamics of regular black hole

    E-Print Network [OSTI]

    Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

    2008-09-21T23:59:59.000Z

    We investigate thermodynamics for a magnetically charged regular black hole (MCRBH), which comes from the action of general relativity and nonlinear electromagnetics, comparing with the Reissner-Norstr\\"om (RN) black hole in both four and two dimensions after dimensional reduction. We find that there is no thermodynamic difference between the regular and RN black holes for a fixed charge $Q$ in both dimensions. This means that the condition for either singularity or regularity at the origin of coordinate does not affect the thermodynamics of black hole. Furthermore, we describe the near-horizon AdS$_2$ thermodynamics of the MCRBH with the connection of the Jackiw-Teitelboim theory. We also identify the near-horizon entropy as the statistical entropy by using the AdS$_2$/CFT$_1$ correspondence.

  15. Relativisticlike structure of classical thermodynamics

    E-Print Network [OSTI]

    Hernando Quevedo; Alberto Sanchez; Alejandro Vazquez

    2014-10-26T23:59:59.000Z

    We analyze in the context of geometrothermodynamics a Legendre invariant metric structure in the equilibrium space of an ideal gas. We introduce the concept of thermodynamic geodesic as a succession of points, each corresponding to a state of equilibrium, so that the resulting curve represents a quasi-static process. A rigorous geometric structure is derived in which the thermodynamic geodesics at a given point split the equilibrium space into two disconnected regions separated by adiabatic geodesics. This resembles the causal structure of special relativity, which we use to introduce the concept of adiabatic cone for thermodynamic systems. This result might be interpreted as an alternative indication of the inter-relationship between relativistic physics and classical thermodynamics.

  16. Nonequilibrium Thermodynamics of Porous Electrodes

    E-Print Network [OSTI]

    Ferguson, Todd Richard

    We reformulate and extend porous electrode theory for non-ideal active materials, including those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic ...

  17. Thermodynamic Analysis for Energy Conservation

    E-Print Network [OSTI]

    Kenney, W. F.

    1981-01-01T23:59:59.000Z

    THERMODYNAMIC ANALYSIS FOR ENERGY CONSERVATION William F. Kenney Exxon Chemical Company Florham Park, New Jersey , ,,~ This paper describes a methodology for per forming a thermodynamic analysis of a process, and it demonstrates how... fired. In a cracking furnace it can reduce lost work in combustion and in the convec tion section at the cost of more surface area in the convection section, reduced steam make, and slightly higher radiative temperature differences. Preheating air...

  18. ORISE: Climate and Atmospheric Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell BatteriesArchivesNuclearControlSourcesClimate and

  19. Oxygen detected in atmosphere of Saturn's moon Dione

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Scientists and an international research team have announced discovery of...

  20. JournalofGeophysicalResearch: Atmospheres RESEARCH ARTICLE

    E-Print Network [OSTI]

    Robock, Alan

    : The Geoengineering Model Intercomparison Project (GeoMIP) Key Points: · The G1 experiment features signifi- cant. (2014), A multimodel examination of climate extremes in an idealized geoengineering experiment, J extremes in an idealized geoengineering experiment Charles L. Curry1 , Jana Sillmann1,2 , David Bronaugh3

  1. JournalofGeophysicalResearch: Atmospheres RESEARCH ARTICLE

    E-Print Network [OSTI]

    the global ocean in both the long-term mean and on month-to-month timescales. A number of novel large have a profound impact on the Earth's radiation budget [e.g., Ramanathan et al., 1989; Rossow and Lacis incoming shortwave radiation back to space but warm the Earth by trapping outgoing longwave radiation

  2. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic...

  3. Local non-equilibrium thermodynamics

    E-Print Network [OSTI]

    Jinwoo, Lee

    2015-01-01T23:59:59.000Z

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation.

  4. Horizon thermodynamics and composite metrics

    E-Print Network [OSTI]

    Lorenzo Sindoni

    2012-11-12T23:59:59.000Z

    We examine the conditions under which the thermodynamic behaviour of gravity can be explained within an emergent gravity scenario, where the metric is defined as a composite operator. We show that due to the availability of a boundary of a boundary principle for the quantum effective action, Clausius-like relations can always be constructed. Hence, any true explanation of the thermodynamic nature of the metric tensor has to be referred to an equilibration process, associated to the presence of an H-theorem, possibly driven by decoherence induced by the pregeometric degrees of freedom, and their entanglement with the geometric ones.

  5. Thermodynamics of microstructure evolution: grain growth Victor L. Berdichevsky

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Thermodynamics of microstructure evolution: grain growth Victor L. Berdichevsky Mechanical thermodynamic parameters, entropy of microstructure and temperature of microstruc- ture. It was claimed that there is "one more law of thermodynamics": entropy of microstructure must decay in isolated thermodynamic stable

  6. Hawking Emission and Black Hole Thermodynamics

    E-Print Network [OSTI]

    Don N. Page

    2006-12-18T23:59:59.000Z

    A brief review of Hawking radiation and black hole thermodynamics is given, based largely upon hep-th/0409024.

  7. Kinetic Modeling and Thermodynamic Closure Approximation of ...

    E-Print Network [OSTI]

    2007-10-03T23:59:59.000Z

    Oct 5, 2007 ... Kinetic Modeling and Thermodynamic Closure. Approximation of Liquid Crystal Polymers. Haijun Yu. Program in Applied and Computational ...

  8. Equilibrium Thermodynamics of Lattice QCD

    E-Print Network [OSTI]

    D. K. Sinclair

    2007-02-03T23:59:59.000Z

    Lattice QCD allows us to simulate QCD at non-zero temperature and/or densities. Such equilibrium thermodynamics calculations are relevant to the physics of relativistic heavy-ion collisions. I give a brief review of the field with emphasis on our work.

  9. Montana State University EMEC320 Thermodynamics I1 EMEC 320: THERMODYNAMICS I

    E-Print Network [OSTI]

    Dyer, Bill

    Montana State University EMEC320 Thermodynamics I1 EMEC 320: THERMODYNAMICS I (UPDATED AUG 27, 2011 thermodynamic concepts, first and second laws, open and closed systems, properties of ideal and real substances.E. and Borgnakke, C. ISBN 0-471-15232-3 "Fundamentals of Thermodynamics" COORDINATING INSTRUCTOR: Dr. Sarah Codd

  10. Topics in Callen's Thermodynamics and an Introduction to Thermostatistics Thermodynamics Statistical Mechanics

    E-Print Network [OSTI]

    Collins, Gary S.

    Topics in Callen's Thermodynamics and an Introduction to Thermostatistics Thermodynamics of Thermodynamics (1) Equilibrium states exist as function of (U,V,N) (2) Entropy S(U,V,N). If remove constraint; second order trans. 11. Nernst postulate 12. Summary of principles of thermodynamics 13. Materials

  11. Thermodynamics -Past, Present and Future Werner Ebeling

    E-Print Network [OSTI]

    Ebeling, Werner

    Thermodynamics - Past, Present and Future Werner Ebeling Institute of Physics, Humboldt, Clausius, Nernst and Einstein. We underline the key role of thermodynamic ideas in the scientific fundamental laws Thermodynamics as a branch of science was established in the 19th century by Sadi Carnot

  12. Thermodynamics of a Nonlocal PNJL Model

    E-Print Network [OSTI]

    Weise, Wolfram

    Thermodynamics of a Nonlocal PNJL Model Thomas Hell, Simon Rößner and Wolfram Weise Physik Th. Hell Thermodynamics of a Nonlocal NJL-type Model #12;Outline 1 The Nonlocal Nambu Approximation Dynamical Quark Mass 2 Thermodynamics of the Nonlocal PNJL Model Coupling Quarks and Polyakov Loop

  13. Thermodynamics and Mass Transport in Multicomponent,

    E-Print Network [OSTI]

    Jellinek, Mark

    Thermodynamics and Mass Transport in Multicomponent, Multiphase H2O Systems of Planetary Interest, cryogenic systems, thermodynamics, fluid dynamics, clathrates, Mars, Enceladus, sound speed Abstract Heat of the noncondensible components can greatly alter the thermodynamic properties of the phases and their flow properties

  14. Status of the Fundamental Laws of Thermodynamics

    E-Print Network [OSTI]

    Walid K. Abou Salem; Juerg Froehlich

    2006-11-14T23:59:59.000Z

    We describe recent progress towards deriving the Fundamental Laws of thermodynamics (the 0th, 1st and 2nd Law) from nonequilibrium quantum statistical mechanics in simple, yet physically relevant models. Along the way, we clarify some basic thermodynamic notions and discuss various reversible and irreversible thermodynamic processes from the point of view of quantum statistical mechanics.

  15. Thermodynamics and timeaverages October 13, 2004

    E-Print Network [OSTI]

    Carati, Andrea

    Thermodynamics and time­averages A. Carati October 13, 2004 ABSTRACT For a dynamical system far­averages, and the main problem is then how to formulate an appropriate statistical thermodynamics. The com- mon answer: Thermodynamics and time­averages Universit`a di Milano, Dipartimento di Matematica Via Saldini 50, 20133 Milano

  16. Thermodynamics for single-molecule stretching experiments

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Thermodynamics for single-molecule stretching experiments J.M. Rubi,a D. Bedeauxb and S. Kjelstrupb, Trondheim, 7491-Norway May 3, 2006 Abstract We show how to construct non-equilibrium thermodynamics for systems too small to be considered thermodynamically in a traditional sense. Through the use of a non

  17. Thermodynamics of viscoelastic fluids: the temperature equation.

    E-Print Network [OSTI]

    Wapperom, Peter

    Thermodynamics of viscoelastic fluids: the temperature equation. Peter Wapperom Martien A. Hulsen and Hydrodynamics Rotterdamseweg 145 2628 AL Delft (The Netherlands) Abstract From the thermodynamics with internal. The well- known stress differential models that fit into the thermodynamic theory will be treated

  18. THERMODYNAMICS Molecular Simulation of Multicomponent Reaction

    E-Print Network [OSTI]

    Lisal, Martin

    THERMODYNAMICS Molecular Simulation of Multicomponent Reaction and Phase Equilibria in MTBE Ternary System Martin Lisal´ E. Hala Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals N1G 2W1, Canada Ivo Nezbeda E. Hala Laboratory of Thermodynamics, Institute of Chemical Process

  19. Thermodynamics of a Nonlocal PNJL Model

    E-Print Network [OSTI]

    Weise, Wolfram

    Thermodynamics of a Nonlocal PNJL Model Thomas Hell, Simon Rößner and Wolfram Weise Physik Darmstadt, March 14th 2008 T. Hell Thermodynamics of a Nonlocal NJL-type Model #12;Outline 1 The Nonlocal Model Mean Field Approximation Dynamical Quark Mass 2 Thermodynamics of the Nonlocal PNJL Model Coupling

  20. Irreversibility and the second law of thermodynamics

    E-Print Network [OSTI]

    Seevinck, Michiel

    Irreversibility and the second law of thermodynamics Jos Uffink July 5, 2001 1 INTRODUCTION The second law of thermodynamics has a curious status. Many modern physicists regard it as an obsolete relic thermodynamics, in which the state does not con- tain velocity-like parameters, one may take R to be the identity

  1. ADVANCES IN ENVIRONMENTAL REACTION KINETICS AND THERMODYNAMICS

    E-Print Network [OSTI]

    Sparks, Donald L.

    1262 ADVANCES IN ENVIRONMENTAL REACTION KINETICS AND THERMODYNAMICS: LONG-TERM FATE thermodynamic and kinetic data is available with regard to the formation of these mixed metal precipitate phases to six months from the initial addition of aqueous nickel. Additionally, we have determined thermodynamic

  2. Particles, maps and Irreversible Thermodynamics { I

    E-Print Network [OSTI]

    Rondoni, Lamberto

    Particles, maps and Irreversible Thermodynamics { I E. G. D. Cohen The Rockefeller University New Thermodynamics from deterministic dynamics. We #12;nd that these models do not posses the crucial property of local thermodynamic equilibrium, since they rep- resent noninteracting particles systems. Hence

  3. NONEQUILIBRIUM QUANTUM STATISTICAL MECHANICS AND THERMODYNAMICS #

    E-Print Network [OSTI]

    NONEQUILIBRIUM QUANTUM STATISTICAL MECHANICS AND THERMODYNAMICS # Walid K. Abou Salem + Institut f recent progress in deriving the fundamental laws of thermodynamics (0 th , 1 st and 2 nd ­law) from nonequilibrium quantum statistical mechanics. Basic thermodynamic notions are clarified and di#erent reversible

  4. CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings

    E-Print Network [OSTI]

    Sherrill, David

    CHEM 6471 CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings 9:35 ­ 10:55 am, Tuesday and Thursday of October 22-26 Textbooks Molecular Thermodynamics by D.A McQuarrie and J.D. Simon, University Science Books the laws of classical thermodynamics and some of their chemical applications. It also covers basic

  5. Thermodvnamics Thermodynamics of Wax Precipitation in

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Thermodvnamics Thermodynamics of Wax Precipitation in Petroleum Mixtures C. Lira-Galeana and A, Berkeley, CIA 94720 A thermodynamic pamework is developed for calculating wax precipitation in petroleum only recently have attempts been made to develop a thermodynamic description. Published methods

  6. Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon Degradation. Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon Degradation. Abstract: Many...

  7. Urban Atmospheres captures a unique, synergistic moment

    E-Print Network [OSTI]

    Paulos, Eric

    Urban Atmospheres captures a unique, synergistic moment ­ expanding urban populations, rapid EDITORS Eric Paulos Intel Research eric@paulos.net Tom Jenkins Royal College of Art thomas

  8. Thermodynamics of the PNJL model

    E-Print Network [OSTI]

    C. Ratti; S. Roessner; M. A. Thaler; W. Weise

    2006-09-21T23:59:59.000Z

    QCD thermodynamics is investigated by means of the Polyakov-loop-extended Nambu Jona-Lasinio (PNJL) model, in which quarks couple simultaneously to the chiral condensate and to a background temporal gauge field representing Polyakov loop dynamics. The behaviour of the Polyakov loop as a function of temperature is obtained by minimizing the thermodynamic potential of the system. A Taylor series expansion of the pressure is performed. Pressure difference and quark number density are then evaluated up to sixth order in quark chemical potential, and compared to the corresponding lattice data. The validity of the Taylor expansion is discussed within our model, through a comparison between the full results and the truncated ones.

  9. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. D24, PAGES 29,737-29,745, DECEMBER 26, 1997 Atmospheric aerosol and water vapor characteristics over north

    E-Print Network [OSTI]

    Atmospheric aerosol and water vapor characteristics over north central Canada during BOREAS B. L. Markham, J typically0.09 and 0.34 cm, respectively.Size distributionsderivedfrom solar almucantarmeasurementsshowtheHughesSTXCorporation,Greenbelt,Maryland. 2Formerlyat HSTX/GSFC-NASA,Greenbelt,Maryland. Copyright1997by the American

  10. Breaking information-thermodynamics link

    E-Print Network [OSTI]

    Robert Alicki

    2014-06-23T23:59:59.000Z

    The information-thermodynamics link is revisited, going back to the analysis of Szilard's engine. It is argued that instead of equivalence rather complementarity of physical entropy and information theoretical one is a correct concept. Famous Landauer's formula for a minimal cost of information processing is replaced by a new one which takes into account accuracy and stability of information encoding. Two recent experiments illustrating the information-energy conversion are critically discussed.

  11. Black Hole Thermodynamics and Electromagnetism

    E-Print Network [OSTI]

    Burra G. Sidharth

    2005-07-15T23:59:59.000Z

    We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

  12. Thermodynamic States in Explosion Fields

    SciTech Connect (OSTI)

    Kuhl, A L

    2010-03-12T23:59:59.000Z

    We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T < 3,000 K and p < 1k-bar. This model is used to derive a Fundamental Equation u(v,s) for C-4. Given u(v,s), one can use Maxwell's Relations to derive all other thermodynamic functions, such as temperature: T(v,s), pressure: p(v,s), enthalpy: h(v,s), Gibbs free energy: g(v,s) and Helmholz free energy: f(v,s); these loci are displayed in figures for C-4. Such complete equations of state are needed for numerical simulations of blast waves from explosive charges, and their reflections from surfaces.

  13. Atmosphere Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4 Medicare5Dust

  14. Doctoral Programs Atmospheric, Oceanic & Space Sciences

    E-Print Network [OSTI]

    Eustice, Ryan

    University of Michigan Space Research Building 2455 Hayward Street Ann Arbor, MI 48109-2143 aoss Katherine E. White, Ann Arbor ©The Regents of the University of Michigan Research areas Atmospheric Science Atmospheric Dynamics Climate, Climate Modeling & Climate Change Clouds & Precipitation Paleoclimate, Ice

  15. Extremes and Atmospheric Data Eric Gilleland

    E-Print Network [OSTI]

    Gilleland, Eric

    Extremes and Atmospheric Data Eric Gilleland Research Applications Laboratory National Center for Atmospheric Research 2007-08 Program on Risk Analysis, Extreme Events and Decision Theory, opening workshop 16-19 September, North Carolina #12;Extremes · Interest in making inferences about large, rare, extreme phenomena

  16. Atmospheric Aerosol Systems | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Themes Atmospheric Aerosol Systems Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems...

  17. Geometric description of BTZ black holes thermodynamics

    E-Print Network [OSTI]

    Hernando Quevedo; Alberto Sanchez

    2008-11-15T23:59:59.000Z

    We study the properties of the space of thermodynamic equilibrium states of the Ba\\~nados-Teitelboim-Zanelli (BTZ) black hole in (2+1)-gravity. We use the formalism of geometrothermodynamics to introduce in the space of equilibrium states a $2-$dimensional thermodynamic metric whose curvature is non-vanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that thermodynamic curvature is a measure of thermodynamic interaction.

  18. A Thermodynamic Sector of Quantum Gravity

    E-Print Network [OSTI]

    J. Oppenheim

    2001-12-04T23:59:59.000Z

    The connection between gravity and thermodynamics is explored. Examining a perfect fluid in gravitational equilibrium we find that the entropy is extremal only if Einstein's equations are satisfied. Conversely, one can derive part of Einstein's equations from ordinary thermodynamical considerations. This allows the theory of this system to be recast in such a way that a sector of general relativity is purely thermodynamical and should not be quantized.

  19. CH E 2421 Chemical Engineering Thermodynamics I CH E 3322 Chemical Engineering Thermodynamics II

    E-Print Network [OSTI]

    Zhang, Yuanlin

    Physics PHYS 4312 Nuclear and Particle Physics Other Engineering Electives #12;CH E 2421 Chemical Engineering Thermodynamics I CH E 3322 Chemical Engineering Thermodynamics II CH E 3330 Engineering Materials Science CH E 4342 Polymer Physics

  20. Thermodynamic Advantages of Low Temperature Combustion Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Improved Engine Design Concepts Using the Second Law of Thermodynamics Boosted HCCI for High Power without Engine Knock, and with Ultra-Low NOX Emissions...

  1. Thermodynamics of Lemaitre-Tolman-Bondi Model

    E-Print Network [OSTI]

    Subenoy Chakraborty; Nairwita Mazumder; Ritabrata Biswas

    2010-06-13T23:59:59.000Z

    Here we consider our universe as inhomogeneous spherically symmetric Lemaitre-Tolman-Bondi Model and analyze the thermodynamics of this model of the universe. The trapping horizon is calculated and is found to coincide with the apparent horizon. The Einstein field equations are shown to be equivalent with the unified first law of thermodynamics. Finally assuming the first law of thermodynamics validity of the generalized second law of thermodynamics is examined at the apparent horizon for the perfect fluid and at the event horizon for holographic dark energy.

  2. First Principles Contributions to the Thermodynamic Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    rysessionopalka.pdf More Documents & Publications Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and Their Application to Destabillzed Hydride Mixtures...

  3. 5.60 Thermodynamics & Kinetics, Spring 2007

    E-Print Network [OSTI]

    Bawendi, Moungi Gabriel, 1961-

    This subject deals primarily with equilibrium properties of macroscopic systems, basic thermodynamics, chemical equilibrium of reactions in gas and solution phase, and rates of chemical reactions.

  4. Particle Production and Universal Thermodynamics

    E-Print Network [OSTI]

    Subhajit Saha; Subenoy Chakraborty

    2014-12-21T23:59:59.000Z

    In the present work, particle creation mechanism is employed to the Universe as a thermodynamical system. The universe is considered to be spatially flat FRW model and cosmic fluid is chosen as perfect fluid with barotropic equation of state: p=(\\gamma -1)\\rho . By proper choice of the particle creation rate, entropy and temperature will be determined at various stages of evolution of the Universe. Finally, using the deceleration parameter as a function of the redshift parameter based on recent observations, particle creation rate will be evaluated and its variation at different epochs will be shown graphically.

  5. Thermodynamics of discrete quantum processes

    E-Print Network [OSTI]

    Janet Anders; Vittorio Giovannetti

    2012-11-01T23:59:59.000Z

    We define thermodynamic configurations and identify two primitives of discrete quantum processes between configurations for which heat and work can be defined in a natural way. This allows us to uncover a general second law for any discrete trajectory that consists of a sequence of these primitives, linking both equilibrium and non-equilibrium configurations. Moreover, in the limit of a discrete trajectory that passes through an infinite number of configurations, i.e. in the reversible limit, we recover the saturation of the second law. Finally, we show that for a discrete Carnot cycle operating between four configurations one recovers Carnot's thermal efficiency.

  6. Thermodynamics of tubelike flexible polymers

    E-Print Network [OSTI]

    Thomas Vogel; Thomas Neuhaus; Michael Bachmann; Wolfhard Janke

    2009-07-17T23:59:59.000Z

    In this work we present the general phase behavior of short tubelike flexible polymers. The geometric thickness constraint is implemented through the concept of the global radius of curvature. We use sophisticated Monte Carlo sampling methods to simulate small bead-stick polymer models with Lennard-Jones interaction among non-bonded monomers. We analyze energetic fluctuations and structural quantities to classify conformational pseudophases. We find that the tube thickness influences the thermodynamic behavior of simple tubelike polymers significantly, i.e., for given temperature, the formation of secondary structures strongly depends on the tube thickness.

  7. Thermodynamic Properties of Supported Catalysts

    SciTech Connect (OSTI)

    Gorte, Raymond J.

    2014-03-26T23:59:59.000Z

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  8. The thermodynamics of general anesthesia

    E-Print Network [OSTI]

    Heimburg, T; Heimburg, Thomas; Jackson, Andrew D.

    2006-01-01T23:59:59.000Z

    It is known that the action of general anesthetics is proportional to their partition coefficient in lipid membranes (Meyer-Overton rule). This solubility is, however, directly related to the depression of the temperature of the melting transition found close to body temperature in biomembranes. We propose a thermodynamic extension of the Meyer-Overton rule which is based on free energy changes in the system and thus automatically incorporates the effects of melting point depression. This model provides a quantitative explanation of the pressure reversal of anesthesia. Further, it explains why inflammation and the addition of divalent cations reduce the effectiveness of anesthesia.

  9. Thermodynamic States in Explosion Fields

    SciTech Connect (OSTI)

    Kuhl, A L

    2009-10-16T23:59:59.000Z

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. For example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.

  10. Velocity Distributions from Nonextensive Thermodynamics

    E-Print Network [OSTI]

    Eric I. Barnes; Liliya L. R. Williams; Arif Babul; Julianne J. Dalcanton

    2006-10-05T23:59:59.000Z

    There is no accepted mechanism that explains the equilibrium structures that form in collisionless cosmological N-body simulations. Recent work has identified nonextensive thermodynamics as an innovative approach to the problem. The distribution function that results from adopting this framework has the same form as for polytropes, but the polytropic index is now related to the degree of nonextensiveness. In particular, the nonextensive approach can mimic the equilibrium structure of dark matter density profiles found in simulations. We extend the investigation of this approach to the velocity structures expected from nonextensive thermodynamics. We find that the nonextensive and simulated N-body rms-velocity distributions do not match one another. The nonextensive rms-velocity profile is either monotonically decreasing or displays little radial variation, each of which disagrees with the rms-velocity distributions seen in simulations. We conclude that the currently discussed nonextensive models require further modifications in order to corroborate dark matter halo simulations. (adapted from TeX)

  11. Atmospheric Aerosol Systems | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsTools PrintableCARIBU ProposalBeamAtmospheric

  12. Nuclear Instruments and Methods in Physics Research A 428 (1999) 593}607 Radio-controlled xenon #ashers for atmospheric monitoring

    E-Print Network [OSTI]

    Nuclear Instruments and Methods in Physics Research A 428 (1999) 593}607 Radio-controlled xenon 84119, USA. Now at: University of Kansas, Department of Physics, Law- rence, KS 66045, USA. Now at: Wave

  13. Julie N. Howat & Colin S. Howat Kurata Thermodynamics Laboratory

    E-Print Network [OSTI]

    Howat, Colin S. "Chip"

    at KTL Kurata Thermodynamics Laboratory Department of Chemical & Petroleum Engineering UniversityJulie N. Howat & Colin S. Howat Kurata Thermodynamics Laboratory Department of Chemical & Petroleum Total Pressure Method , xsat #12;Kurata Thermodynamics Laboratory Department of Chemical & Petroleum

  14. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories » RemovingResearch CORE-SHELL NANOPARTICLES AND

  15. Loop expansion in Yang-Mills thermodynamics

    E-Print Network [OSTI]

    Ralf Hofmann

    2009-11-05T23:59:59.000Z

    We argue that a selfconsistent spatial coarse-graining, which involves interacting (anti)calorons of unit topological charge modulus, implies that real-time loop expansions of thermodynamical quantities in the deconfining phase of SU(2) and SU(3) Yang-Mills thermodynamics are, modulo 1PI resummations, determined by a finite number of connected bubble diagrams.

  16. Hessian structures, Euler vector fields, and thermodynamics

    E-Print Network [OSTI]

    M. Á. García-Ariza

    2015-03-02T23:59:59.000Z

    In this paper, a geometric structure which generalizes that of thermodynamics is presented; spaces of equilibrium states are portrayed as a particular case of the former. For this end, concepts like Euler vector field and extensive function, which are usual in thermodynamics, are introduced in a wider context.

  17. Thermodynamics of Protein Folding Erik Sandelin

    E-Print Network [OSTI]

    Sandelin, Erik

    Thermodynamics of Protein Folding and Design Erik Sandelin Department of Theoretical Physics Lund Sölvegatan 14A 223 62 LUND September 2000 Erik Sandelin Thermodynamics of Protein Folding and Design The protein folding and protein design problems are addressed, using coarse-grained models with only two types

  18. Thermodynamics of an accelerated expanding universe

    E-Print Network [OSTI]

    Bin Wang; Yungui Gong; Elcio Abdalla

    2005-11-10T23:59:59.000Z

    We investigate the laws of thermodynamics in an accelerating universe driven by dark energy with a time-dependent equation of state. In the case we consider that the physically relevant part of the Universe is that envelopped by the dynamical apparent horizon, we have shown that both the first law and second law of thermodynamics are satisfied. On the other hand, if the boundary of the Universe is considered to be the cosmological event horizon the thermodynamical description based on the definitions of boundary entropy and temperature breaks down. No parameter redefinition can rescue the thermodynamics laws from such a fate, rendering the cosmological event horizon unphysical from the point of view of the laws of thermodynamics.

  19. Thermodynamic laws beyond free energy relations

    E-Print Network [OSTI]

    Matteo Lostaglio; David Jennings; Terry Rudolph

    2014-12-11T23:59:59.000Z

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state we arrive at an additional, independent set of thermodynamic laws, that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilard engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and entanglement theory.

  20. Atmospheric Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsTools PrintableCARIBU

  1. Atmospheric science and power production

    SciTech Connect (OSTI)

    Randerson, D. (ed.)

    1984-07-01T23:59:59.000Z

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  2. Thermodynamic Guidelines for the Prediction of Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and Their Application to Destabillzed Hydride Mixtures Thermodynamic Guidelines for the Prediction of...

  3. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

  4. Benzene Dimer: Dynamic Structure and Thermodynamics Derived from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benzene Dimer: Dynamic Structure and Thermodynamics Derived from On-the-Fly ab initio DFT-D Molecular Dynamic Simulations. Benzene Dimer: Dynamic Structure and Thermodynamics...

  5. Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation. Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation. Abstract: Molecular simulation techniques...

  6. Improved Engine Design Concepts Using the Second Law of Thermodynamics...

    Energy Savers [EERE]

    Improved Engine Design Concepts Using the Second Law of Thermodynamics Improved Engine Design Concepts Using the Second Law of Thermodynamics Presentation from the U.S. DOE Office...

  7. Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes: A Predictive Model through Computations. Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes: A...

  8. Thermodynamic Investigations of Lithium- and Manganese-Rich Transition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides 2013 DOE...

  9. Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants...

    Broader source: Energy.gov (indexed) [DOE]

    Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants Lead Performer: National Institute of...

  10. 13, 90179049, 2013 Stable atmospheric

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 13, 9017­9049, 2013 Stable atmospheric methane in the 2000s I. Pison et al. Title Page Utrecht, Utrecht University, Utrecht, the Netherlands 3 SRON Netherlands Institute for Space Research, Utrecht, the Netherlands 4 Vrije Universiteit, Department of Systems Ecology, Amsterdam, the Netherlands 5

  11. Land-atmosphere interaction and radiative-convective equilibrium

    E-Print Network [OSTI]

    Cronin, Timothy (Timothy Wallace)

    2014-01-01T23:59:59.000Z

    I present work on several topics related to land-atmosphere interaction and radiative-convective equilibrium: the first two research chapters invoke ideas related to land-atmosphere interaction to better understand ...

  12. Thermodynamics for Single-Molecule Stretching Experiments J. M. Rubi,*, D. Bedeaux, and S. Kjelstrup

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Thermodynamics for Single-Molecule Stretching Experiments J. M. Rubi,*, D. Bedeaux, and S to construct nonequilibrium thermodynamics for systems too small to be considered thermodynamically be viewed as a large thermodynamic system, we discuss the validity of nonequilibrium thermodynamics

  13. ELSEVIER Atmospheric Research 39 (1995) 91-111 ATMOSPHERIC

    E-Print Network [OSTI]

    Moelders, Nicole

    Geesthacht, Institutfiir Physik, Max-Planck-Strafle, D-21502 GeesthachtGermany Received 6 April 1994

  14. ATMOSPHERIC ELSEVIER AtmosphericResearch 38 (1995) 2942

    E-Print Network [OSTI]

    Harrington, Jerry Y.

    parameterization Part I: the single-moment scheme R.L. Walko, W.R. Cotton *, M.P. Meyers, J.Y. Harrington Colorado 1994 Abstract A new cloud microphysical parameterization is described. Features of this new scheme; the use of a heat budget equation for hydrometeor classes, allowing heat storage and mixed phase hydrome

  15. University Corporation for Atmospheric Research Learn: Atmospheric Science Explorers

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    and Development, Washington, DC., pp. 91 - 94. In this activity, students will examine graphs of GHG emissions increasing global temperatures. The enhanced greenhouse effect has been linked to increased GHG emissions (some provided; you may want to look for other or encourage your students to do so) · City map

  16. The Thermodynamics of Pizza The Thermodynamics of Pizza ES Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe MolecularPlaceThe AnThe Synthesis

  17. Friedmann Thermodynamics and the Geometry of the Universe

    E-Print Network [OSTI]

    Selcuk S. Bayin

    2008-04-01T23:59:59.000Z

    In a recent article we have introduced Friedmann thermodynamics, where certain geometric parameters in Friedmann models are treated like their thermodynamic counterparts (temperature, entropy, Gibbs potential etc.). This model has the advantage of allowing us to determine the geometry of the universe by thermodynamic stability arguments. In this article we review connections between thermodynamics, geometry and cosmology.

  18. EMEC 320: THERMODYNAMICS I Updated: June 27, 2012

    E-Print Network [OSTI]

    Dyer, Bill

    EMEC 320: THERMODYNAMICS I Updated: June 27, 2012 CATALOG DATA: Spring, 3 cr. Basic thermodynamic., Fundamentals of Thermodynamics, 7th ed., Wiley, ISBN 0-470-04192-7 INSTRUCTOR: Dr. Sarah Codd, 201 Roberts Hall of thermodynamics to engineering problems involving closed and open systems. · effectively apply and understand

  19. Spacetime thermodynamics of the glass transition Mauro Merolle

    E-Print Network [OSTI]

    Chandler, David

    Space­time thermodynamics of the glass transition Mauro Merolle , Juan P. Garrahan , and David thermodynamic sense. Nevertheless, the phenom- enon is relatively precipitous, and the thermodynamic conditions an explanation of this behavior in terms of a thermodynamics of trajectory space. Our considerations seem

  20. EK424 THERMODYNAMICS AND STATISTICAL MECHANICS Boston University

    E-Print Network [OSTI]

    EK424 THERMODYNAMICS AND STATISTICAL MECHANICS Boston University Fall 2012 Thermodynamics of energy. A thermodynamic system is a collection of matter, defined by some macroscopic variables in a piston. Thermodynamics is the study of processes done on the system, and explains how the macroscopic

  1. Linear Thermodynamics of Rodlike DNA Filtration

    E-Print Network [OSTI]

    Li, Zirui

    Linear thermodynamics transportation theory is employed to study filtration of rodlike DNA molecules. Using the repeated nanoarray consisting of alternate deep and shallow regions, it is demonstrated that the complex ...

  2. Thermodynamics in NJL-like models

    E-Print Network [OSTI]

    A. V. Friesen; Yu. L. Kalinovsky; V. D. Toneev

    2011-03-11T23:59:59.000Z

    Thermodynamic behavior of conventional Nambu-Jona-Lasinio and Polyakov-loop-extended Nambu-Jona-Lasinio models is compared. A particular attention is paid to the phase diagram in the ($T -\\mu$) plane.

  3. QCD Thermodynamics on the Lattice: Recent Results

    E-Print Network [OSTI]

    Carleton DeTar

    2010-12-31T23:59:59.000Z

    I give a brief introduction to the goals, challenges, and technical difficulties of lattice QCD thermodynamics and present some recent results from the HotQCD collaboration for the crossover temperature, equation of state, and other observables.

  4. Predicting Improved Chiller Performance Through Thermodynamic Modeling

    E-Print Network [OSTI]

    Figueroa, I. E.; Cathey, M.; Medina, M. A.; Nutter, D. W.

    This paper presents two case studies in which thermodynamic modeling was used to predict improved chiller performance. The model predicted the performance (COP and total energy consumption) of water-cooled centrifugal chillers as a function...

  5. A Three-Dimensional Ocean-Seaice-Carbon Cycle Model and its Coupling to a Two-Dimensional Atmospheric Model: Uses in Climate Change Studies

    E-Print Network [OSTI]

    Dutkiewicz, Stephanie.

    We describe the coupling of a three-dimensional ocean circulation model, with explicit thermodynamic seaice and ocean carbon cycle representations, to a two-dimensional atmospheric/land model. This coupled system has been ...

  6. Statistical thermodynamics of 1-butanol, 2-methyl-1-propanol, and butanal Prasenjit Seal, Ewa Papajak, Tao Yu, and Donald G. Truhlar

    E-Print Network [OSTI]

    Truhlar, Donald G

    are in excellent agree- ment with experimental data taken from the Thermodynamics Research Center data series- tant roles in alternative-fuel combustion.1­5 Therefore, accu- rate estimation of the thermodynamic the group additivity values. In other cases, where experimental data (but not group additivity values

  7. THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUSSOLUTIONS DATABASE

    SciTech Connect (OSTI)

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.

    1988-05-01T23:59:59.000Z

    Tables of consistent thermodynamic property values for nuclear waste isolation are given. The tables include critically assessed values for Gibbs energy of formation. enthalpy of formation, entropy and heat capacity for minerals; solids; aqueous ions; ion pairs and complex ions of selected actinide and fission decay products at 25{sup o}C and zero ionic strength. These intrinsic data are used to calculate equilibrium constants and standard potentials which are compared with typical experimental measurements and other work. Recommendations for additional research are given.

  8. Thermodynamics of (2+1)-flavor QCD

    E-Print Network [OSTI]

    C. Schmidt; T. Umeda

    2006-09-21T23:59:59.000Z

    We report on the status of our QCD thermodynamics project. It is performed on the QCDOC machine at Brookhaven National Laboratory and the APEnext machine at Bielefeld University. Using a 2+1 flavor formulation of QCD at almost realistic quark masses we calculated several thermodynamical quantities. In this proceeding we show the susceptibilites of the chiral condensate and the Polyakov loop, the static quark potential and the spatial string tension.

  9. Thermodynamic restrictions on mechanosynthesis of strontium titanate

    SciTech Connect (OSTI)

    Monteiro, J.F. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Ferreira, A.A.L. [Instituto Politecnico de Viana do Castelo, 4900-347 Viana do Castelo (Portugal); Antunes, I. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Fagg, D.P., E-mail: duncan@ua.pt [Centro de Tecnologia Mecanica e Automacao, Departamento de Engenharia Mecanica, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Frade, J.R. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)

    2012-01-15T23:59:59.000Z

    Chemical potential phase stability diagrams were calculated from relevant thermodynamic properties and used to predict the thermodynamic driving force under prospective conditions of room temperature mechanosynthesis. One analysed the dependence of chemical potential diagrams on temperature and partial pressure of evolving gases such as oxygen or carbon dioxide, as expected on using strontium peroxide or strontium carbonate as precursor reactants for the alkali earth component. Thermodynamic calculations were also obtained for changes in titania precursor reactants, including thermodynamic predictions for reactivity of strontium carbonate with amorphous titania. Experimental evidence showed that strontium titanate can be obtained by mechanosynthesis of strontium carbonate+anatase mixtures, due to previous amorphization under high energy milling. Ability to perform mechanosynthesis with less energetic milling depends on the suitable choice of alternative precursor reactants, which meet the thermodynamic requirements without previous amorphization; this was demonstrated by mechanosynthesis from anatase+strontium peroxide mixtures. - Graphical abstract: X-Ray diffractograms of the starting TiO{sub 2} (anatase)+SrCO{sub 3} mixture and after mechanical activation at 650 rpm, for 1, 2, and 7 h. Different symbols are used to identify reflections ascribed to anatase (diamonds), SrCO{sub 3} (squares) and SrTiO{sub 3} (triangles). Highlights: Black-Right-Pointing-Pointer Prediction of thermodynamic driving force for room temperature mechanosynthesis. Black-Right-Pointing-Pointer Dependence of chemical potential diagrams on temperature and partial pressure. Black-Right-Pointing-Pointer Thermodynamic calculations for changes in titania precursor. Black-Right-Pointing-Pointer Experimental support for thermodynamic predictions.

  10. Tables of thermodynamic properties of sodium

    SciTech Connect (OSTI)

    Fink, J.K.

    1982-06-01T23:59:59.000Z

    The thermodynamic properties of saturated sodium, superheated sodium, and subcooled sodium are tabulated as a function of temperature. The temperature ranges are 380 to 2508 K for saturated sodium, 500 to 2500 K for subcooled sodium, and 400 to 1600 K for superheated sodium. Tabulated thermodynamic properties are enthalpy, heat capacity, pressure, entropy, density, instantaneous thermal expansion coefficient, compressibility, and thermal pressure coefficient. Tables are given in SI units and cgs units.

  11. ProcessProcess EngineeringEngineeringThermodynamicsThermodynamicsProcessProcess EngineeringEngineeringThermodynamicsThermodynamics coursecourse # 424304.0# 424304.0 v.v. 20132013

    E-Print Network [OSTI]

    Zevenhoven, Ron

    EngineeringThermodynamicsThermodynamics coursecourse # 424304.0# 424304.0 v.v. 20132013 Solar energy (thermal, PV)gy ( , ) Ron Zevenhoven ��bo Akademi 2/52 #12;Potential Solar energy could within one hour provide the energy that is used in all human acitivities in a year. Drawbacks are ­ relatively low energy (exergy) density Pic: IEA08 (exergy) density

  12. The Aqueous Thermodynamics and Complexation Reactions of Anionic Silica and Uranium Species to High Concentration

    SciTech Connect (OSTI)

    Choppin, Gregory R.

    2004-12-01T23:59:59.000Z

    The objective of this research project is to develop the necessary thermodynamic data, including aqueous phase stability constants and Pitzer ion-interaction parameters, to predict the changes in the aqueous phase chemistry that occur when high ionic strength, highly basic tank wastes enter the vadose zone.

  13. Thermodynamic Cycle Analysis for Wave Rotor Combustor Based Combined Cycle Jessica Collins1

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Thermodynamic Cycle Analysis for Wave Rotor Combustor Based Combined Cycle Jessica Collins1 , Brian of Engineering and Technology The conventional combustor that exists in today's market is a constant pressure device; whereas, the wave rotor combustor investigated in the present research is a constant volume

  14. Short Communication Kinetics and thermodynamics of heavy metal ions sequestration onto novel

    E-Print Network [OSTI]

    Gong, Jian Ru

    biomasses had been chosen and utilized by researchers to sequester toxic heavy metal ions from industrialShort Communication Kinetics and thermodynamics of heavy metal ions sequestration onto novel is generally considered as the most toxic metal in natural ecosystems (Clarkson, 1993). Over the years, various

  15. Thermodynamic properties of a magnetically modulated graphene

    E-Print Network [OSTI]

    SK Firoz Islam; Naveen K. Singh; Tarun Kanti Ghosh

    2011-09-12T23:59:59.000Z

    The effect of magnetic modulation on thermodynamic properties of a graphene monolayer in presence of a constant perpendicular magnetic field is reported here. One-dimensional spatial electric or magnetic modulation lifts the degeneracy of the Landau levels and converts into bands and their band width oscillates with magnetic field leading to Weiss-type oscillation in the thermodynamic properties. The effect of magnetic modulation on thermodynamic properties of a graphene sheet is studied and then compared with electrically modulated graphene and magnetically modulated conventional two-dimensional electron gas (2DEG). We observe Weiss-type and de Haas-van Alphen (dHvA) oscillations at low and high magnetic field, respectively. There is a definite phase difference in Weiss-type oscillations in thermodynamic quantities of magnetically modulated graphene in compare to electrically modulated graphene. On the other hand, the phase remains same and amplitude of the oscillation is large when compared with the magnetically modulated 2DEG. Explicit asymptotic expressions of density of states and the Helmholtz free energy are provided to understand the phase and amplitude of the Weiss-type oscillations qualitatively. We also study thermodynamic properties when both electric and magnetic modulations are present. The Weiss-type oscillations still exist when the modulations are out-of-phase.

  16. School of Earth and Atmospheric Sciences Georgia Institute of Technology

    E-Print Network [OSTI]

    Weber, Rodney

    School of Earth and Atmospheric Sciences Georgia Institute of Technology Strategic Plan March 1 opportunities. Vision The vision of the School of Earth and Atmospheric Sciences is: To lead in innovative research and educate the future leaders in earth and atmospheric sciences for the 21st century, within

  17. 5, 60416076, 2005 Atmospheric

    E-Print Network [OSTI]

    Boyer, Edmond

    opportunity to examine atmospheric oxidation in a megacity that has more pollution than typical USACPD 5, 6041­6076, 2005 Atmospheric oxidation in the Mexico City Metropolitan Area T. R. Shirley et.atmos-chem-phys.org/acpd/5/6041/ SRef-ID: 1680-7375/acpd/2005-5-6041 European Geosciences Union Atmospheric Chemistry

  18. Thermodynamics of pairing in mesoscopic systems

    E-Print Network [OSTI]

    Tony Sumaryada; Alexander Volya

    2007-06-12T23:59:59.000Z

    Using numerical and analytical methods implemented for different models we conduct a systematic study of thermodynamic properties of pairing correlation in mesoscopic nuclear systems. Various quantities are calculated and analyzed using the exact solution of pairing. An in-depth comparison of canonical, grand canonical, and microcanonical ensemble is conducted. The nature of the pairing phase transition in a small system is of a particular interest. We discuss the onset of discontinuity in the thermodynamic variables, fluctuations, and evolution of zeros of the canonical and grand canonical partition functions in the complex plane. The behavior of the Invariant Correlational Entropy is also studied in the transitional region of interest. The change in the character of the phase transition due to the presence of magnetic field is discussed along with studies of superconducting thermodynamics.

  19. Black Hole Thermodynamics Based on Unitary Evolutions

    E-Print Network [OSTI]

    Feng, Yu-Lei

    2015-01-01T23:59:59.000Z

    In this paper, we try to construct black hole thermodynamics based on the fact that, the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy $S_{BH}$ cannot be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's "first law" cannot be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described in a unitary manner effectively, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.

  20. Thermodynamics of N-dimensional quantum walks

    E-Print Network [OSTI]

    Alejandro Romanelli; Raul Donangelo; Renato Portugal; Franklin L. Marquezino

    2014-08-22T23:59:59.000Z

    The entanglement between the position and coin state of a $N$-dimensional quantum walker is shown to lead to a thermodynamic theory. The entropy, in this thermodynamics, is associated to the reduced density operator for the evolution of chirality, taking a partial trace over positions. From the asymptotic reduced density matrix it is possible to define thermodynamic quantities, such as the asymptotic entanglement entropy, temperature, Helmholz free energy, etc. We study in detail the case of a $2$-dimensional quantum walk, in the case of two different initial conditions: a non-separable coin-position initial state, and a separable one. The resulting entanglement temperature is presented as function of the parameters of the system and those of the initial conditions.

  1. Towards a 'Thermodynamics' of Active Matter

    E-Print Network [OSTI]

    Sho C. Takatori; John F. Brady

    2014-11-21T23:59:59.000Z

    Self-propulsion allows living systems to display unusual collective behavior. Unlike passive systems in thermal equilibrium, active matter systems are not constrained by conventional thermodynamic laws. A question arises however as to what extent, if any, can concepts from classical thermodynamics be applied to nonequilibrium systems like active matter. Here we use the new swim pressure perspective to develop a simple theory for predicting phase separation in active matter. Using purely mechanical arguments we generate a phase diagram with a spinodal and critical point, and define a nonequilibrium chemical potential to interpret the "binodal." We provide a generalization of thermodynamic concepts like the free energy and temperature for nonequilibrium active systems. Our theory agrees with existing simulation data both qualitatively and quantitatively and may provide a framework for understanding and predicting the behavior of nonequilibrium active systems.

  2. The thermodynamics of general and local anesthesia

    E-Print Network [OSTI]

    Graesboll, Kaare; Heimburg, Thomas

    2014-01-01T23:59:59.000Z

    General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. This analysis is able to describe experimentally observed calorimetric profiles and permits prediction of the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff-effect of long-chain alcohols and the additivity of the effect of general and local anesthetics.

  3. Quantum Thermodynamic Cycles and quantum heat engines

    E-Print Network [OSTI]

    H. T. Quan; Yu-xi Liu; C. P. Sun; Franco Nori

    2007-04-03T23:59:59.000Z

    In order to describe quantum heat engines, here we systematically study isothermal and isochoric processes for quantum thermodynamic cycles. Based on these results the quantum versions of both the Carnot heat engine and the Otto heat engine are defined without ambiguities. We also study the properties of quantum Carnot and Otto heat engines in comparison with their classical counterparts. Relations and mappings between these two quantum heat engines are also investigated by considering their respective quantum thermodynamic processes. In addition, we discuss the role of Maxwell's demon in quantum thermodynamic cycles. We find that there is no violation of the second law, even in the existence of such a demon, when the demon is included correctly as part of the working substance of the heat engine.

  4. Thermodynamics and Kinetics of Advanced Separations Systems – FY 2010 Summary Report

    SciTech Connect (OSTI)

    Leigh R. Martin; Peter R. Zalupski

    2010-09-01T23:59:59.000Z

    This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR&D) program during FY 2010. Thermodynamic investigations into metal extraction dependencies on lactate and HDEHP have been performed. These metal distribution studies indicate a substantial deviation from the expected behavior at conditions that are typical of TALSPEAK process operational platform. These studies also identify that no thermodynamically stable mixed complexes exist in the aqueous solutions and increasing the complexity of the organic medium appears to influence the observed deviations. Following on from this, the first calorimetric measurement of the heat of extraction of americium across a liquid-liquid boundary was performed.

  5. Thermodynamics of Dyonic Lifshitz Black Holes

    E-Print Network [OSTI]

    Tobias Zingg

    2011-07-15T23:59:59.000Z

    Black holes with asymptotic anisotropic scaling are conjectured to be gravity duals of condensed matter system close to quantum critical points with non-trivial dynamical exponent z at finite temperature. A holographic renormalization procedure is presented that allows thermodynamic potentials to be defined for objects with both electric and magnetic charge in such a way that standard thermodynamic relations hold. Black holes in asymptotic Lifshitz spacetimes can exhibit paramagnetic behavior at low temperature limit for certain values of the critical exponent z, whereas the behavior of AdS black holes is always diamagnetic.

  6. Variational thermodynamics of relativistic thin disks

    E-Print Network [OSTI]

    A C Gutiérrez-Pińeres; C S Lopez-Monsalvo; H Quevedo

    2014-08-18T23:59:59.000Z

    We present a relativistic model describing a thin disk system composed of two fluids. The system is surrounded by a halo in the presence of a non-trivial electromagnetic field. We show that the model is compatible with the variational multi-fluid thermodynamics formalism, allowing us to determine all the thermodynamic variables associated with the matter content of the disk. The asymptotic behaviour of these quantities indicates that the single fluid interpretation should be abandoned in favour of a two-fluid model.

  7. Hard-thermal-loop QED thermodynamics

    E-Print Network [OSTI]

    Nan Su; Jens O. Andersen; Michael Strickland

    2009-11-24T23:59:59.000Z

    The weak-coupling expansion for thermodynamic quantities in thermal field theories is poorly convergent unless the coupling constant is tiny. We discuss the calculation of the free energy for a hot gas of electrons and photons to three-loop order using hard-thermal-loop perturbation theory (HTLpt). We show that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ~ 2. The reorganization is gauge invariant by construction, and due to the cancellations among various contributions, we obtain a completely analytic result for the resummed thermodynamic potential at three loops.

  8. Spectroscopy and Thermodynamics of MSW Black Hole

    E-Print Network [OSTI]

    Sebastian, Saneesh

    2013-01-01T23:59:59.000Z

    We study the thermodynamics and spectroscopy of a 2+1 dimensional black hole pro- posed by Mandal et. al1 . We put the background space time in Kruskal like co-ordinate and find period with respect to Euclidean time. Different thermodynamic quantities like entropy, specific heat, temperature etc are obtained. The adiabatic invariant for the black hole is found out and quantized using Bohr-Sommerfeld quantization rule. The study shows that the area spectrum of MSW black hole is equally spaced and the value of spacing is found to be h bar

  9. Spectroscopy and Thermodynamics of MSW Black Hole

    E-Print Network [OSTI]

    Saneesh Sebastian; V. C. Kuriakose

    2013-09-02T23:59:59.000Z

    We study the thermodynamics and spectroscopy of a 2+1 dimensional black hole pro- posed by Mandal et. al1 . We put the background space time in Kruskal like co-ordinate and find period with respect to Euclidean time. Different thermodynamic quantities like entropy, specific heat, temperature etc are obtained. The adiabatic invariant for the black hole is found out and quantized using Bohr-Sommerfeld quantization rule. The study shows that the area spectrum of MSW black hole is equally spaced and the value of spacing is found to be h bar

  10. Black Hole Thermodynamics and Lorentz Symmetry

    E-Print Network [OSTI]

    Ted Jacobson; Aron C. Wall

    2010-02-04T23:59:59.000Z

    Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.

  11. The thermodynamics of a gravitating vacuum

    E-Print Network [OSTI]

    M. Heyl; H. J. Fahr; M. Siewert

    2014-12-09T23:59:59.000Z

    In the present days of modern cosmology it is assumed that the main ingredient to cosmic energy presently is vacuum energy with an energy density $\\epsilon_\\mathrm{vac}$ that is constant over the cosmic evolution. In this paper here we show, however, that this assumption of constant vacuum energy density is unphysical, since it conflicts with the requirements of cosmic thermodynamics. We start from the total vacuum energy including the negatively valued gravitational binding energy and show that cosmic thermodynamics then requires that the cosmic vacuum energy density can only vary with cosmic scale $R=R(t)$ according to $\\epsilon _\\mathrm{vac}\\sim R^{-\

  12. Measurement of thermodynamics using gradient flow

    E-Print Network [OSTI]

    Masakiyo Kitazawa; Masayuki Asakawa; Tetsuo Hatsuda; Takumi Iritani; Etsuko Itou; Hiroshi Suzuki

    2014-12-15T23:59:59.000Z

    We analyze bulk thermodynamics and correlation functions of the energy-momentum tensor in pure Yang-Mills gauge theory using the energy-momentum tensor defined by the gradient flow and small flow time expansion. Our results on thermodynamic observables are consistent with those obtained by the conventional integral method. The analysis of the correlation function of total energy supports the energy conservation. It is also addressed that these analyses with gradient flow require less statistics compared with the previous methods. All these results suggest that the energy-momentum tensor can be successfully defined and observed on the lattice with moderate numerical costs with the gradient flow.

  13. Atmospheric particulates in a semi-rural environment

    E-Print Network [OSTI]

    Klein, Thomas Kelly

    1974-01-01T23:59:59.000Z

    OF TABLES LIST OF FIGURES CHAPTER Page Vli1 iX I INTRODUCTION Air pollution ? general Air pollution ? historical perspective Scope of research Importance of atmospheric particulates Particulates and climatology Particulates and human health 14... of the best definitions of an air pollutant is given by Huschke (1968), "with respect to the atmosphere, any substance within it that is foreign to the 'natural' atmosphere or that exceeds its 'natural' concentration in the atmosphere. The universal...

  14. http://w3.pppl.gov/~ Thermodynamics,

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    web page: http://w3.pppl.gov/~ zakharov Thermodynamics, science and religion in fusion 1 Leonid E of the goal and with understanding how the second law of thermodynamics works in the scientific society

  15. ORISE Climate and Atmospheric Research: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControlsOMB Policies OR I GI N AContact Us

  16. ORISE: Capabilities in Climate and Atmospheric Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK Mapping Application ORISE develops mappingCapabilities

  17. AtmosphericAtmospheric Composition Introduction The division investigates the atmospheric

    E-Print Network [OSTI]

    Haak, Hein

    development on observation side was the installation of an ozone observation station in Surinam in close co-operation with the Surinam Meteorological Service. Processes in the tropical regions are important for the global climate and the global atmospheric composition. The participation in Indoex (Indian Ocean Experiment) and this Surinam

  18. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    SciTech Connect (OSTI)

    T.A. Semelsberger

    2004-10-01T23:59:59.000Z

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  19. Investigating the local atmospheric response to a5 realistic shift in the Oyashio sea surface6

    E-Print Network [OSTI]

    Newman, Matthew

    , where extratropical SST forcing produces31 shallow anomalous heating balanced by strong equatorward cold the atmosphere, beyond basic thermodynamic air-sea coupling via59 turbulent boundary layer heat flux exchange, most of the SST anomaly induced diabatic heating ( ) is balanced by29 poleward transient eddy heat

  20. Fifteenth combustion research conference

    SciTech Connect (OSTI)

    NONE

    1993-06-01T23:59:59.000Z

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

  1. Thermodynamics of Energy Production from Biomass

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Thermodynamics of Energy Production from Biomass Tad W. Patzek 1 and David Pimentel 2 1 Department #12;3 Biomass from Tropical Tree Plantations 14 3.1 Scope of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Environmental Impacts of Industrial Biomass Production . . . . . . . . . . . . . . . 16 3

  2. Thermodynamics of nuclei in thermal contact

    E-Print Network [OSTI]

    Karl-Heinz Schmidt; Beatriz Jurado

    2010-10-05T23:59:59.000Z

    The behaviour of a di-nuclear system in the regime of strong pairing correlations is studied with the methods of statistical mechanics. It is shown that the thermal averaging is strong enough to assure the application of thermodynamical methods to the energy exchange between the two nuclei in contact. In particular, thermal averaging justifies the definition of a nuclear temperature.

  3. Perturbative String Thermodynamics near Black Hole Horizons

    E-Print Network [OSTI]

    Thomas G. Mertens; Henri Verschelde; Valentin I. Zakharov

    2014-10-29T23:59:59.000Z

    We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work JHEP 1403 (2014) 086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of $\\alpha'$-corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large $k$ limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O'Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in $g_s$) to compute thermodynamical quantities in black hole spacetimes.

  4. QCD thermodynamics with dynamical overlap fermions

    E-Print Network [OSTI]

    S. Borsanyi; Y. Delgado; S. Durr; Z. Fodor; S. D. Katz; S. Krieg; T. Lippert; D. Nogradi; K. K. Szabo

    2012-08-02T23:59:59.000Z

    We study QCD thermodynamics using two flavors of dynamical overlap fermions with quark masses corresponding to a pion mass of 350 MeV. We determine several observables on N_t=6 and 8 lattices. All our runs are performed with fixed global topology. Our results are compared with staggered ones and a nice agreement is found.

  5. A thermodynamic switch for chromosome colocalization

    E-Print Network [OSTI]

    M. Nicodemi; B. Panning; A. Prisco

    2008-09-27T23:59:59.000Z

    A general model for the early recognition and colocalization of homologous DNA sequences is proposed. We show, on a thermodynamic ground, how the distance between two homologous DNA sequences is spontaneously regulated by the concentration and affinity of diffusible mediators binding them, which act as a switch between two phases corresponding to independence or colocalization of pairing regions.

  6. An Indicator to Evaluate the Thermodynamic Maturity

    E-Print Network [OSTI]

    Kjelstrup, Signe

    to find universal principles that would determine the development of a system. A cer- tain success value to stages in a product's life cycle, a value that could be seen as a cost, like a negative the thermodynamic maturity of industrial systems at the level of single process units. The measure can be quantified

  7. Optimal distillation using thermodynamic geometry Bjarne Andresen

    E-Print Network [OSTI]

    Salamon, Peter

    (temperature, pressure, etc.) define successive states in a sequence of equilibria. Fractional distillation [2Optimal distillation using thermodynamic geometry Bjarne Andresen Řrsted Laboratory, University of a distillation column may be improved by permitting heat exchange on every tray rather than only in the reboiler

  8. Non-equilibrium thermodynamics of gravitational screens

    E-Print Network [OSTI]

    Laurent Freidel; Yuki Yokokura

    2014-05-19T23:59:59.000Z

    We study the Einstein gravity equations projected on a timelike surface, which represents the time evolution of what we call a gravitational screen. We show that such a screen possesses a surface tension and an internal energy, and that the Einstein equations reduce to the thermodynamic equations of a viscous bubble. We also provide a complete dictionary between gravitational and thermodynamical variables. In the non-viscous cases there are three thermodynamic equations which characterise a bubble dynamics: These are the first law, the Marangoni flow equation and the Young-Laplace equation. In all three equations the surface tension plays a central role: In the first law it appears as a work term per unit area, in the Marangoni flow its gradient drives a force, and in the Young-Laplace equation it contributes to a pressure proportional to the surface curvature. The gravity equations appear as a natural generalization of these bubble equations when the bubble itself is viscous and dynamical. In particular, it shows that the mechanism of entropy production for the viscous bubble is mapped onto the production of gravitational waves. We also review the relationship between surface tension and temperature, and discuss the usual black-hole thermodynamics from this point of view.

  9. Thermodynamic Development of Corrosion Rate Modeling in Iron Phosphate Glasses

    SciTech Connect (OSTI)

    Schlesinger, Mark; Vienna, John; Bresee, Jim; Brow, Richard

    2011-10-31T23:59:59.000Z

    A two year research program investigated links between the thermodynamic properties of phosphate glasses and their corrosion rates in different solutions. Glasses in the Na{sub 2}O-CaO-P{sub 2}O{sub 5} and Na{sub 2}O-Fe{sub 2}O{sub 3}-PO{sub 5} systems were prepared and characterized. These glasses and then exposed in bulk and powder form to acid (0.1M HCl), basic (0.1M KOH) and neutral (deionized water) solutions at varying exposure times and temperatures. Analysis of the solution and the glass after exposure determined the rate and type of corrosion that occurred. Simultaneously, efforts were made to determine the thermodynamic properties of solid iron phosphate compounds. This included measurement of low Â?temperature (5Â?300 K) heat capacities, measured at Brigham Young University; the attempted use of a Parr calorimeter to measure ambient Â?temperature enthalpies of formation; and attempted measurement of Â?temperature heat capacities. Only the first of the three tasks was successfully accomplished. In lieu of experimental measurement of enthalpies of formation, first-principles calculation of enthalpies of formation was performed at Missouri S&T; these results will be used in subsequent modeling efforts.

  10. Thermodynamics and Structure of Peptide-Aggregates at Membrane Surfaces

    E-Print Network [OSTI]

    Quake, Stephen R.

    Thermodynamics and Structure of Peptide- Aggregates at Membrane Surfaces INAUGURALDISSERTATION zur. Introduction 01 1.1 ­ Thermodynamics of Protein Aggregation 01 1.2 ­ Formation of Protein Aggregates 03 1 and P-glycoprotein: Connecting Thermodynamics and Membrane Structure with Functional Activity 23 3

  11. ChE 210A M. F. Doherty Thermodynamics

    E-Print Network [OSTI]

    Bigelow, Stephen

    ChE 210A M. F. Doherty Thermodynamics Instructor: Michael F. Doherty (mfd@engineering.ucsb.edu, 893 is an introduction to the fundamentals of classical and statistical thermodynamics. We focus on equilibrium are formulated using either classical or statistical thermodynamics, and these methods have found wide

  12. Thermodynamics of Statistical Inference by Cells Alex H. Lang,1,*

    E-Print Network [OSTI]

    Mora, Thierry

    Thermodynamics of Statistical Inference by Cells Alex H. Lang,1,* Charles K. Fisher,1 Thierry Mora June 2014; published 3 October 2014) The deep connection between thermodynamics, computation that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we

  13. A modified LandauDevonshire thermodynamic potential for strontium titanate

    E-Print Network [OSTI]

    Chen, Long-Qing

    A modified Landau­Devonshire thermodynamic potential for strontium titanate G. Sheng, Y. L. Li, J Landau­Devonshire thermodynamic potential for strontium titanate G. Sheng,1,a Y. L. Li,2 J. X. Zhang,1,b of the Landau energy coefficients and report a modified thermodynamic potential for bulk strontium titanate

  14. Entanglement theory and the second law of thermodynamics

    E-Print Network [OSTI]

    Loss, Daniel

    ARTICLES Entanglement theory and the second law of thermodynamics FERNANDO G. S. L. BRAND~AO1 aim to draw from them formal analogies to the second law of thermodynamics; however, whereas relationship with thermodynamics may be established when considering all non-entangling transformations

  15. The Thermodynamics of Confidentiality Pasquale Malacaria, Fabrizio Smeraldi

    E-Print Network [OSTI]

    Malacaria, Pasquale

    The Thermodynamics of Confidentiality Pasquale Malacaria, Fabrizio Smeraldi School of Electronic and the 2nd principle of thermodynamics. In particular we show that any deter- ministic computation, where constant and T the system temperature. By contrast, for probabilistic computations thermodynamic work can

  16. Mech 204 Thermodynamics Spring 2013 Assoc. Prof. Metin Muradoglu

    E-Print Network [OSTI]

    Muradoglu, Metin

    Mech 204 Thermodynamics Spring 2013 Assoc. Prof. Metin Muradoglu Room: Eng 248; Phone: 1473; E://home.ku.edu.tr/~mmuradoglu/ME204/index.htm Text Book: Thermodynamics: An Engineering Approach, 7th Edition in SI units, by Y: The course is designed to teach students the basic principles of the classical thermodynamics with emphasis

  17. Micro-Thermodynamics Saturation has the most possible

    E-Print Network [OSTI]

    Russell, Lynn

    1 Micro-Thermodynamics · Saturation has the most possible dissolved species · Equilibrium means of "phase" (from particle to droplet) Bohren, 1987 Macro-Thermodynamics · Hot air rises · Rising air)! 0.1! 10! Diameter (µm)! dN! dlogD! Diameter (µm)! 0.1! 10! 7.1 Surface Thermodynamics · Surfaces

  18. Positive and negative entropy production in thermodynamics systems

    E-Print Network [OSTI]

    Jose Iraides Belandria

    2010-12-03T23:59:59.000Z

    This article presents a heuristic combination of the local and global formulations of the second law of thermodynamics that suggests the possibility of theoretical existence of thermodynamics processes with positive and negative entropy production.Such processes may exhibit entropy couplings that reveal an unusual behavior from the point of view of conventional thermodynamics.

  19. Thermodynamics of resonances and blurred particles

    E-Print Network [OSTI]

    D. N. Voskresensky

    2008-04-10T23:59:59.000Z

    Exact and approximate expressions for thermodynamic characteristics of heated matter, which consists of particles with finite mass-widths, are constructed. They are expressed in terms of Fermi/Bose distributions and spectral functions, rather than in terms of more complicated combinations between real and imaginary parts of the self-energies of different particle species. Therefore thermodynamically consistent approximate treatment of systems of particles with finite mass-widths can be performed, provided spectral functions of particle species are known. Approximation of the free resonance gas at low densities is studied. Simple ansatz for the energy dependence of the spectral function is suggested that allows to fulfill thermodynamical consistency conditions. On examples it is shown that a simple description of dense systems of interacting particle species can be constructed, provided some species can be treated in the quasiparticle approximation and others as particles with widths. The interaction affects quasiparticle contributions, whereas particles with widths can be treated as free. Example is considered of a hot gas of heavy fermions strongly interacting with light bosons, both species with zero chemical potentials. The density of blurred fermions is dramatically increased for high temperatures compared to the standard Boltzmann value. The system consists of boson quasiparticles (with effective masses) interacting with fermion -- antifermion blurs. In thermodynamical values interaction terms partially compensate each other. Thereby, in case of a very strong coupling between species thermodynamical quantities of the system, like the energy, pressure and entropy, prove to be such as for the quasi-ideal gas mixture of quasi-free fermion blurs and quasi-free bosons.

  20. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18T23:59:59.000Z

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  1. Atmospheric Dynamics II Instructor

    E-Print Network [OSTI]

    AT602 Atmospheric Dynamics II 2 credits Instructor: David W. J. Thompson davet: An Introduction to Dynamic Meteorology, 5th Edition, Academic Press (recommended) · Marshall, J., and Plumb, R. A., 2008: Atmosphere, Ocean, and Climate Dynamics: An Introductory Text, Academic Press. · Vallis, G. K

  2. Thermodynamics of free Domain Wall fermions

    E-Print Network [OSTI]

    R. V. Gavai; Sayantan Sharma

    2008-11-19T23:59:59.000Z

    Studying various thermodynamic quantities for the free domain wall fermions for both finite and infinite fifth dimensional extent N_5, we find that the lattice corrections are minimum for $N_T\\geq10$ for both energy density and susceptibility, for its irrelevant parameter M in the range 1.45-1.50. The correction terms are, however, quite large for small lattice sizes of $N_T\\leq8$. We propose modifications of the domain wall operator, as well as the overlap operator, to reduce the finite cut-off effects to within 10% of the continuum results of the thermodynamic quantities for the currently used N_T=6-8 lattices. Incorporating chemical potential, we show that \\mu^2 divergences are absent for a large class of such domain wall fermion actions although the chiral symmetry is broken for $\\mu\

  3. Lattice QCD Thermodynamics with Physical Quark Masses

    E-Print Network [OSTI]

    R. A. Soltz; C. DeTar; F. Karsch; Swagato Mukherjee; P. Vranas

    2015-02-08T23:59:59.000Z

    Over the past few years new physics methods and algorithms as well as the latest supercomputers have enabled the study of the QCD thermodynamic phase transition using lattice gauge theory numerical simulations with unprecedented control over systematic errors. This is largely a consequence of the ability to perform continuum extrapolations with physical quark masses. Here we review recent progress in lattice QCD thermodynamics, focussing mainly on results that benefit from the use of physical quark masses: the crossover temperature, the equation of state, and fluctuations of the quark number susceptibilities. In addition, we place a special emphasis on calculations that are directly relevant to the study of relativistic heavy ion collisions at RHIC and the LHC.

  4. Thermodynamic cycle in a cavity optomechanical system

    E-Print Network [OSTI]

    Hou Ian

    2014-02-16T23:59:59.000Z

    A cavity optomechanical system is initiated by a radiation pressure of a cavity field onto a mirror element acting as a quantum resonator. This radiation pressure can control the thermodynamic character of the mirror to some extent, such as cooling its effective temperature. Here we show that by properly engineering the spectral density of a thermal heat bath that interacts with a quantum system, the evolution of the quantum system can be effectively turned on and off. Inside a cavity optomechanical system, when the heat bath is realized by a multi-mode oscillator modeling of the mirror, this on-off effect translates to infusion or extraction of heat energy in and out of the cavity field, facilitating a four-stroke thermodynamic cycle.

  5. Generalized uncertainty principle and black hole thermodynamics

    E-Print Network [OSTI]

    Sunandan Gangopadhyay; Abhijit Dutta; Anirban Saha

    2014-01-08T23:59:59.000Z

    We study the Schwarzschild and Reissner-Nordstr\\"{o}m black hole thermodynamics using the simplest form of the generalized uncertainty principle (GUP) proposed in the literature. The expressions for the mass-temperature relation, heat capacity and entropy are obtained in both cases from which the critical and remnant masses are computed. Our results are exact and reveal that these masses are identical and larger than the so called singular mass for which the thermodynamics quantities become ill-defined. The expression for the entropy reveals the well known area theorem in terms of the horizon area in both cases upto leading order corrections from GUP. The area theorem written in terms of a new variable which can be interpreted as the reduced horizon area arises only when the computation is carried out to the next higher order correction from GUP.

  6. Statistical thermodynamics of supercapacitors and blue engines

    E-Print Network [OSTI]

    René van Roij

    2012-11-06T23:59:59.000Z

    We study the thermodynamics of electrode-electrolyte systems, for instance supercapacitors filled with an ionic liquid or blue-energy devices filled with river- or sea water. By a suitable mapping of thermodynamic variables, we identify a strong analogy with classical heat engines. We introduce several Legendre transformations and Maxwell relations. We argue that one should distinguish between the differential capacity at constant ion number and at constant ion chemical potential, and derive a relation between them that resembles the standard relation between heat capacity at constant volume and constant pressure. Finally, we consider the probability distribution of the electrode charge at a given electrode potential, the standard deviation of which is given by the differential capacity.

  7. Thermodynamics of quantum systems under dynamical control

    E-Print Network [OSTI]

    D. Gelbwaser-Klimovsky; Wolfgang Niedenzu; Gershon Kurizki

    2015-03-04T23:59:59.000Z

    In this review the debated rapport between thermodynamics and quantum mechanics is addressed in the framework of the theory of periodically-driven/controlled quantum-thermodynamic machines. The basic model studied here is that of a two-level system (TLS), whose energy is periodically modulated while the system is coupled to thermal baths. When the modulation interval is short compared to the bath memory time, the system-bath correlations are affected, thereby causing cooling or heating of the TLS, depending on the interval. In steady state, a periodically-modulated TLS coupled to two distinct baths constitutes the simplest quantum heat machine (QHM) that may operate as either an engine or a refrigerator, depending on the modulation rate. We find their efficiency and power-output bounds and the conditions for attaining these bounds. An extension of this model to multilevel systems shows that the QHM power output can be boosted by the multilevel degeneracy. These results are used to scrutinize basic thermodynamic principles: (i) Externally-driven/modulated QHMs may attain the Carnot efficiency bound, but when the driving is done by a quantum device ("piston"), the efficiency strongly depends on its initial quantum state. Such dependence has been unknown thus far. (ii) The refrigeration rate effected by QHMs does not vanish as the temperature approaches absolute zero for certain quantized baths, e.g., magnons, thous challenging Nernst's unattainability principle. (iii) System-bath correlations allow more work extraction under periodic control than that expected from the Szilard-Landauer principle, provided the period is in the non-Markovian domain. Thus, dynamically-controlled QHMs may benefit from hitherto unexploited thermodynamic resources.

  8. Heterophase liquid states: Thermodynamics, structure, dynamics

    E-Print Network [OSTI]

    A. S. Bakai

    2015-01-12T23:59:59.000Z

    An overview of theoretical results and experimental data on the thermodynamics, structure and dynamics of the heterophase glass-forming liquids is presented. The theoretical approach is based on the mesoscopic heterophase fluctuations model (HPFM) developed within the framework of the bounded partition function approach. The Fischer cluster phenomenon, glass transition, liquid-liquid transformations, parametric phase diagram, cooperative dynamics and fragility of the glass-forming liquids is considered.

  9. Laws of thermodynamics and game theory

    E-Print Network [OSTI]

    Lev Sakhnovich

    2011-05-23T23:59:59.000Z

    Using a game theory approach and a new extremal problem, Gibbs formula is proved in a most simple and general way for the classical mechanics case. A corresponding conjecture on the asymptotics of the classical entropy is formulated. For the ordinary quantum mechanics case, the third law of thermodynamics is derived. Some results on the number of ground states and residual entropy are obtained rigorously.

  10. Thermodynamic formalism for systems with Markov dynamics

    E-Print Network [OSTI]

    Vivien Lecomte; Cécile Appert-Rolland; Frédéric van Wijland

    2006-11-09T23:59:59.000Z

    The thermodynamic formalism allows one to access the chaotic properties of equilibrium and out-of-equilibrium systems, by deriving those from a dynamical partition function. The definition that has been given for this partition function within the framework of discrete time Markov chains was not suitable for continuous time Markov dynamics. Here we propose another interpretation of the definition that allows us to apply the thermodynamic formalism to continuous time. We also generalize the formalism --a dynamical Gibbs ensemble construction-- to a whole family of observables and their associated large deviation functions. This allows us to make the connection between the thermodynamic formalism and the observable involved in the much-studied fluctuation theorem. We illustrate our approach on various physical systems: random walks, exclusion processes, an Ising model and the contact process. In the latter cases, we identify a signature of the occurrence of dynamical phase transitions. We show that this signature can already be unravelled using the simplest dynamical ensemble one could define, based on the number of configuration changes a system has undergone over an asymptotically large time window.

  11. Quantum dynamics in the thermodynamic limit

    SciTech Connect (OSTI)

    Wezel, Jasper van [Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2008-08-01T23:59:59.000Z

    The description of spontaneous symmetry breaking that underlies the connection between classically ordered objects in the thermodynamic limit and their individual quantum-mechanical building blocks is one of the cornerstones of modern condensed-matter theory and has found applications in many different areas of physics. The theory of spontaneous symmetry breaking, however, is inherently an equilibrium theory, which does not address the dynamics of quantum systems in the thermodynamic limit. Here, we will use the example of a particular antiferromagnetic model system to show that the presence of a so-called thin spectrum of collective excitations with vanishing energy - one of the well-known characteristic properties shared by all symmetry-breaking objects - can allow these objects to also spontaneously break time-translation symmetry in the thermodynamic limit. As a result, that limit is found to be able, not only to reduce quantum-mechanical equilibrium averages to their classical counterparts, but also to turn individual-state quantum dynamics into classical physics. In the process, we find that the dynamical description of spontaneous symmetry breaking can also be used to shed some light on the possible origins of Born's rule. We conclude by describing an experiment on a condensate of exciton polaritons which could potentially be used to experimentally test the proposed mechanism.

  12. ZINC MITIGATION INTERIM REPORT - THERMODYNAMIC STUDY

    SciTech Connect (OSTI)

    Korinko, P.

    2010-12-17T23:59:59.000Z

    An experimental program was initiated in order to develop and validate conditions that will effectively trap Zn vapors that are released during extraction. The proposed work is broken down into three tasks. The first task is to determine the effectiveness of various pore sizes of filter elements. The second task is to determine the effect of filter temperature on zinc vapor deposition. The final task is to determine whether the zinc vapors can be chemically bound. The approach for chemically binding the zinc vapors has two subtasks, the first is a review of literature and thermodynamic calculations and the second is an experimental approach using the best candidates. This report details the results of the thermodynamic calculations to determine feasibility of chemically binding the zinc vapors within the furnace module, specifically the lithium trap (1). A review of phase diagrams, literature, and thermodynamic calculations was conducted to determine if there are suitable materials to capture zinc vapor within the lithium trap of the extraction basket. While numerous elements exist that form compounds with zinc, many of these also form compounds with hydrogen or the water that is present in the TPBARs. This relatively comprehensive review of available data indicates that elemental cobalt and copper and molybdenum trioxide (MoO3) may have the requisite properties to capture zinc and yet not be adversely affected by the extraction gases and should be considered for testing.

  13. Thermodynamic Prediction of Compositional Phases Confirmed by Transmission Electron Microscopy on Tantalum-Based Alloy Weldments

    SciTech Connect (OSTI)

    Moddeman, William E.; Birkbeck, Janine C. [BWXT Pantex, Amarillo, Texas 79120-0020 (United States); Barklay, Chadwick D.; Kramer, Daniel P. [University of Dayton Research Institute, Dayton OH 45469-0102 (United States); Miller, Roger G.; Allard, Lawrence F. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6064 (United States)

    2007-01-30T23:59:59.000Z

    Tantalum alloys have been used by the U.S. Department of Energy as structural alloys for radioisotope based thermal to electrical power systems since the 1960s. Tantalum alloys are attractive for high temperature structural applications due to their high melting point, excellent formability, good thermal conductivity, good ductility (even at low temperatures), corrosion resistance, and weldability. Tantalum alloys have demonstrated sufficient high-temperature toughness to survive prolonged exposure to the radioisotope power-system working environment. Typically, the fabrication of power systems requires the welding of various components including the structural members made of tantalum alloys. Issues such as thermodynamics, lattice structure, weld pool dynamics, material purity and contamination, and welding atmosphere purity all potentially confound the understanding of the differences between the weldment properties of the different tantalum-based alloys. The objective of this paper is to outline the thermodynamically favorable material phases in tantalum alloys, with and without small amounts of hafnium, during and following solidification, based on the results derived from the FactSage(c) Integrated Thermodynamic Databank. In addition, Transition Electron Microscopy (TEM) data will show for the first time, the changes occurring in the HfC before and after welding, and the data will elucidate the role HfC plays in pinning grain boundaries.

  14. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-09-28T23:59:59.000Z

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ?fG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than approximately one-third of these compounds. Because the temperatures of host formations that will be used for CO2 injection and sequestration will be at tempera¬tures in the range of 50şC to 100şC or greater, the lack of high temperature thermodynamic values for key carbonate compounds especially minerals, will impact the accuracy of some modeling calculations.

  15. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25T23:59:59.000Z

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  16. AT 715 (2 Credits) Atmospheric Oxidation Processes

    E-Print Network [OSTI]

    : 1. Develop an understanding of kinetic and equilibrium aspects of important chemical pathways, Journal of Geophysical Research, Atmospheric Chemis- try and Physics (on-line), Journal of the Air: reactions of isoprene oxidation products. Environ. Sci. Tech. 40, 4956-4960. #12;

  17. Doctoral Programs Atmospheric, Oceanic & Space Sciences

    E-Print Network [OSTI]

    Eustice, Ryan

    Professor; Recipient, Teaching Innovation Prize; Michigan Distinguished Professor of the Year Allison Mission to Comet 67P / Churyumov- Gerasimenko · Solar and Heliospheric Physics Group · STEREO Mission,OceanicandSpaceSciences Atmospheric, Oceanic & Space Sciences University of Michigan Space Research Building 2455 Hayward Street Ann

  18. Thermodynamics and evaporation of the noncommutative black hole

    E-Print Network [OSTI]

    Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

    2007-01-21T23:59:59.000Z

    We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.

  19. Continuum Thermodynamics of the SU(N) Gauge Theory

    E-Print Network [OSTI]

    Saumen Datta; Sourendu Gupta

    2010-12-30T23:59:59.000Z

    The thermodynamics of the deconfined phase of the SU(N) gauge theory is studied. Careful study is made of the approach to the continuum limit. The latent heat of the deconfinement transition is studied, for the theories with 3, 4 and 6 colors. Continuum estimates of various thermodynamic quantities are studied, and the approach to conformality investigated. The bulk thermodynamic quantities at different N are compared, to investigate the validity of 't Hooft scaling at these values of N.

  20. Can the fluctuations of a black hole be treated thermodynamically?

    E-Print Network [OSTI]

    Kostyantyn Ropotenko

    2008-03-31T23:59:59.000Z

    Since the temperature of a typical Schwarzschild black hole is very low, some doubts are raised about whether the fluctuations of the black hole can be treated thermodynamically. It is shown that this is not the case: the thermodynamic fluctuations of a black hole are considerably larger than the corresponding quantum fluctuations. Moreover the ratio of the mean square thermodynamic fluctuation to the corresponding quantum fluctuation can be interpreted as a number of the effective constituents of a black hole.

  1. Thermodynamical description of the interacting new agegraphic dark energy

    E-Print Network [OSTI]

    A. Sheykhi; M. R. Setare

    2010-09-30T23:59:59.000Z

    We describe the thermodynamical interpretation of the interaction between new agegraphic dark energy and dark matter in a non-flat universe. When new agegraphic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium. As soon as an interaction between them is taken into account, their thermodynamical interpretation changes by a stable thermal fluctuation. We obtain a relation between the interaction term of the dark components and this thermal fluctuation.

  2. S4 Atmospheric Science Lecture XX (Thermo)dynamics of Clouds

    E-Print Network [OSTI]

    Haak, Hein

    smaller for lower temperatures dm #12;Absolute Instability Tv(K) ·Lift a (un)saturated parcel from dz dB zzB dt zd dt dw += )(2 2 Tv z z+z Tv z z+z stable unstable unstable dz dT dz Td stable dz d Stability (dry parcel) Tv z z+z Tv z z+z stable unstable unstable stable d d >

  3. E-Print Network 3.0 - atmospheric turbulence utilizing Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of atmospheric particles; Cloud turbulence... but for the dissipation rate of turbulence energy s800 cm2 sy3 . 12;( )M. Pinsky et al.rAtmospheric Research 49 1998 99... , and...

  4. BE.011J Statistical Thermodynamics of Biomolecular Systems, Spring 2004

    E-Print Network [OSTI]

    Hamad-Schifferli, Kimberly

    This course provides an introduction to the physical chemistry of biological systems. Topics include: connection of macroscopic thermodynamic properties to microscopic molecular properties using statistical mechanics, ...

  5. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including...

  6. Thermodynamics of Friedmann Equation and Masslike Function in General Braneworld

    E-Print Network [OSTI]

    Tao Zhu; Ji-Rong Ren; Shu-Fan Mo

    2009-06-10T23:59:59.000Z

    Using the generalized procedure proposed by \\emph{Wu et al}\\cite{wu} recently, we construct the first law of thermodynamics on apparent horizon in a general braneworld model with curvature correction terms on the brane and in the bulk, respectively. The explicit entropy formulary of apparent horizon in the general braneworld is worked out. We also discuss the masslike function which associated with a new type first law of thermodynamics of the general braneworld in detail. We analyze the difference between the conventional thermodynamics and the new type thermodynamics on apparent horizon. At last, the discussions about the physical meanings of the masslike function have also been given.

  7. 3.205 Thermodynamics and Kinetics of Materials, Fall 2003

    E-Print Network [OSTI]

    Allen, Samuel M.

    Laws of thermodynamics applied to materials and materials processes. Solution theory. Equilibrium diagrams. Overview of fluid transport processes. Kinetics of processes that occur in materials, including diffusion, phase ...

  8. Thermodynamic Guidelines for the Prediction of Hydrogen Storage...

    Broader source: Energy.gov (indexed) [DOE]

    Thermodynamic guidelines for the prediction of hydrogen storage reactions and their application to destabilized hydride mixtures Hydrogen Storage & Nanoscale Modeling Group Ford...

  9. SciTech Connect: Thermodynamic and transport properties of sodium...

    Office of Scientific and Technical Information (OSTI)

    on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed...

  10. approaching thermodynamic property: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems are studied from the thermodynamical point of view unifying the principle of maximum informational entropy and the hypothesis of relaxation times hierarchy. The result...

  11. Thermodynamics of Ideal Gas in Cosmology

    E-Print Network [OSTI]

    Ying-Qiu Gu

    2009-10-04T23:59:59.000Z

    The equation of state and the state functions for the gravitational source are necessary conditions for solving cosmological model and stellar structure. The usual treatments are directly based on the laws of thermodynamics, and the physical meanings of some concepts are obscure. This letter show that, we can actually derive all explicit fundamental state functions for the ideal gas in the context of cosmology via rigorous dynamical and statistical calculation. These relations have clear physical meanings, and are valid in both non-relativistic and ultra-relativistic cases. Some features of the equation of state are important for a stable structure of a star with huge mass.

  12. Quark mass thresholds in QCD thermodynamics

    E-Print Network [OSTI]

    M. Laine; Y. Schroder

    2006-05-05T23:59:59.000Z

    We discuss radiative corrections to how quark mass thresholds are crossed, as a function of the temperature, in basic thermodynamic observables such as the pressure, the energy and entropy densities, and the heat capacity of high temperature QCD. The indication from leading order that the charm quark plays a visible role at surprisingly low temperatures, is confirmed. We also sketch a way to obtain phenomenological estimates relevant for generic expansion rate computations at temperatures between the QCD and electroweak scales, pointing out where improvements over the current knowledge are particularly welcome.

  13. Low-temperature thermodynamics with quantum coherence

    E-Print Network [OSTI]

    Varun Narasimhachar; Gilad Gour

    2014-10-02T23:59:59.000Z

    We find a new characterization of low-temperature processes, which we call "cooling processes", incorporating quantum coherence in the model of thermodynamics for the first time. We derive necessary and sufficient conditions for the feasibility of state transitions under cooling processes. We also rigorously confirm the intuitive robustness of coherence against low-temperature thermal noise. Additionally, we develop the low-temperature "Gibbs-preserving" model, and by comparing our results on the two models, we argue that the latter is a poor approximation to physical processes.

  14. Some remarks on black hole thermodynamics

    E-Print Network [OSTI]

    R. Y. Chiao

    2011-02-04T23:59:59.000Z

    Two thermodynamic "paradoxes" of black hole physics are re-examined. The first is that there is a thermal instability involving two coupled blackbody cavities containing two black holes, and second is that a classical black hole can swallow up entropy in the form of ambient blackbody photons without increasing its mass. The resolution of the second paradox by Bekenstein and by Hawking is re-visited. The link between Hawking radiation and Wigner's superluminal tunneling time is discussed using two equivalent Feynman diagrams, and Feynman's re-interpretation principle.

  15. Recent Progress in Lattice QCD Thermodynamics

    E-Print Network [OSTI]

    Carleton DeTar

    2008-11-14T23:59:59.000Z

    This review gives a critical assessment of the current state of lattice simulations of QCD thermodynamics and what it teaches us about hot hadronic matter. It outlines briefly lattice methods for studying QCD at nonzero temperature and zero baryon number density with particular emphasis on assessing and reducing cutoff effects. It discusses a variety of difficulties with methods for determining the transition temperature. It uses results reported recently in the literature and at this conference for illustration, especially those from a major study carried out by the HotQCD collaboration.

  16. Thermodynamics of Few-Particle Systems

    E-Print Network [OSTI]

    Vasily E. Tarasov

    2007-06-23T23:59:59.000Z

    We consider the wide class of few-particle systems that have some analog of the thermodynamic laws. These systems are characterized by the distributions that are determined by the Hamiltonian and satisfy the Liouville equation. Few-particle systems of this class are described by a non-holonomic constraint: the power of non-potential forces is directly proportional to the velocity of the elementary phase volume change. The coefficient of this proportionality is determined by the Hamiltonian. In the general case, the examples of the few-particle systems of this class are the constant temperature systems, canonical-dissipative systems, and Fermi-Bose classical systems.

  17. Development and evaluation of a thermodynamic dataset for phases of interest in CO2 mineral sequestration in basaltic rocks

    E-Print Network [OSTI]

    Aradottir, E.S.P.

    2013-01-01T23:59:59.000Z

    evaluation of a thermodynamic dataset for phases of interestKeywords: Thermodynamic dataset CO2–water– basaltABSTRACT A thermodynamic dataset describing 36 mineral

  18. Extended Canadian middle atmosphere model: zonal-mean climatology and

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    and data assimilation; 3334 Meteorology and Atmospheric Dynamics: Middle atmosphere dynamics (0341, 0342 the Upper Atmos- phere Research Satellite (UARS), such as the Wind Imaging Interferometer (WINDII) [Shepherd and Dynamics (TIMED) satellite. These observations have provided (or will provide) a unique set of information

  19. A Characterization of Tropical Transient Activity in the CAM3 Atmospheric Hydrologic Cycle

    E-Print Network [OSTI]

    , Brian Eaton1 , James J. Hack1 National Center for Atmospheric Research5 Printed: September 2, 2005 For J Research is operated by the University Corporation for Atmo- spheric Research under sponsorship

  20. Stochastic thermodynamics, fluctuation theorems, and molecular machines

    E-Print Network [OSTI]

    Udo Seifert

    2012-05-18T23:59:59.000Z

    Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics like work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation-dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power, can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones like molecular motors, and heat engines like thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.

  1. Conservation-dissipation formalism of irreversible thermodynamics

    E-Print Network [OSTI]

    Yi Zhu; Liu Hong; Zaibao Yang; Wen-An Yong

    2014-07-21T23:59:59.000Z

    We propose a conservation-dissipation formalism (CDF) for coarse-grained descriptions of irreversible processes. This formalism is based on a stability criterion for non-equilibrium thermodynamics. The criterion ensures that non-equilibrium states tend to equilibrium in long time. As a systematic methodology, CDF provides a feasible procedure in choosing non-equilibrium state variables and determining their evolution equations. The equations derived in CDF have a unified elegant form. They are globally hyperbolic, allow a convenient definition of weak solutions, and are amenable to existing numerics. More importantly, CDF is a genuinely nonlinear formalism and works for systems far away from equilibrium. With this formalism, we formulate novel thermodynamics theories for heat conduction in rigid bodies and non-isothermal compressible Maxwell fluid flows as two typical examples. In these examples, the non-equilibrium variables are exactly the conjugate variables of the heat fluxes or stress tensors. The new theory generalizes Cattaneo's law or Maxwell's law in a regularized and nonlinear fashion.

  2. UNIVERSITY CORPORATION FOR ATMOSPHERIC RESEARCH NATIONAL CENTER FOR ATMOSPHERIC RESEARCH UCAR Community Programs

    E-Print Network [OSTI]

    the most volatile in the world and have significant economic impacts. Increasing our knowledge. Fluctuations in routine weather and seasonal changes have a major impact on Americans' mobility, patterns, economy, enviro

  3. EK424 THERMODYNAMICS AND STATISTICAL MECHANICS (Fall 2013) Thermodynamics is the study of processes (e.g., expansion of a gas, boiling of water, or diffusion

    E-Print Network [OSTI]

    Vajda, Sandor

    EK424 THERMODYNAMICS AND STATISTICAL MECHANICS (Fall 2013) Thermodynamics is the study in order to take place? We will study the thermodynamics of two types of processes: mechanical, or the chemical conversion of glucose into useful work), and a good understanding of thermodynamics is essential

  4. EK424 THERMODYNAMICS AND STATISTICAL MECHANICS (Spring 2013) Thermodynamics is the study of processes (e.g., expansion of a gas, boiling of water, or diffusion

    E-Print Network [OSTI]

    Vajda, Sandor

    EK424 THERMODYNAMICS AND STATISTICAL MECHANICS (Spring 2013) Thermodynamics is the study in order to take place? We will study the thermodynamics of two types of processes: mechanical, or the chemical conversion of glucose into useful work), and a good understanding of thermodynamics is essential

  5. atmospheric precipitations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Mars;MEX ASPERA (Energetic particles) Escape fluxes of O+, O2 +, CO2 + Three example energy spectra Withers, Paul 131 High Impact Atmospheric Research to Advance Scientific...

  6. Atmospheric Mercury Deposition during the Last 270 Years: A

    E-Print Network [OSTI]

    Atmospheric Mercury Deposition during the Last 270 Years: A Glacial Ice Core Record of Natural, and U.S. Geological Survey, Wisconsin District Mercury Research Laboratory, Middleton, Wisconsin 53562 Mercury (Hg) contamination of aquatic ecosystems and subsequent methylmercury bioaccumulation

  7. HGSYSTEMUF6. Model for Simulating Dispersion due to Atmospheric Release of UF6

    SciTech Connect (OSTI)

    Hanna, G [George Mason University, (United States); Chang, J.C. [Earthtech, Inc., (United States); Zhang, J.X. [BlazeTech Corporation, (United States); Bloom, S.G. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States); Goode, W.D. Jr [Bechtel Jacobs Company, Oak Ridge, TN (United States); Lombardi, D.A. [JBF Associates, (United States); Yambert, M.W. [LMERC, Oak Ridge, TN (United States)

    1998-08-01T23:59:59.000Z

    HGSYSTEMUF6 is a suite of models designed for use in estimating consequences associated with accidental, atmospheric release of Uranium Hexafluoride (UF6) and its reaction products, namely Hydrogen Fluoride (HF), and other non-reactive contaminants which are either negatively, neutrally, or positively buoyant. It is based on HGSYSTEM Version 3.0 of Shell Research LTD., and contains specific algorithms for the treatment of UF6 chemistry and thermodynamics. HGSYSTEMUF6 contains algorithms for the treatment of dense gases, dry and wet deposition, effects due to the presence of buildings (canyon and wake), plume lift-off, and the effects of complex terrain. The models components of the suite include (1) AEROPLUME/RK, used to model near-field dispersion from pressurized two-phase jet releases of UF6 and its reaction products, (2) HEGADAS/UF6 for simulating dense, ground based release of UF6, (3) PGPLUME for simulation of passive, neutrally buoyant plumes (4) UF6Mixer for modeling warm, potentially reactive, ground-level releases of UF6 from buildings, and (5) WAKE, used to model elevated and ground-level releases into building wake cavities of non-reactive plumes that are either neutrally or positively buoyant.

  8. Thermodynamics of finite magnetic two-isomer systems Peter Borrmann, Heinrich Stamerjohanns,a)

    E-Print Network [OSTI]

    Thermodynamics of finite magnetic two-isomer systems Peter Borrmann, Heinrich Stamerjohanns Carlo simulations to investigate the thermodynamical behavior of aggregates consisting of few thermodynamically the nature of the transition between the ring and the chain ``phase.'' © 1999 American Institute

  9. Thermodynamics based stabilitization of CSTR networks H. Hoang, F. Couenne, Y. Le Gorrec and D. Dochain

    E-Print Network [OSTI]

    Boyer, Edmond

    Thermodynamics based stabilitization of CSTR networks H. Hoang, F. Couenne, Y. Le Gorrec and D. Dochain Abstract-- This paper shows that any potential function fulfilling certain thermodynamic stability the theoretical developments. Keywords. Irreversible thermodynamics, CSTR networks, Port Hamiltonian systems

  10. Thermodynamics and the naked singularity in the Gamma-metric

    E-Print Network [OSTI]

    K. Lochan; D. Malafarina; T. P. Singh

    2010-09-23T23:59:59.000Z

    We investigate a possible way of establishing a parallel between the third law of black hole mechanics, and the strong version of the third law of thermodynamics. We calculate the surface gravity and area for a naked singular null surface in the Gamma-metric and explain in what sense this behaviour violates thermodynamics.

  11. Thermodynamics and Finite size scaling in Scalar Field Theory

    E-Print Network [OSTI]

    Debasish Banerjee; Saumen Datta; Sourendu Gupta

    2008-12-05T23:59:59.000Z

    In this work we consider the 1-component real scalar $\\phi^4$ theory in 4 space-time dimensions on the lattice and investigate the finite size scaling of thermodynamic quantities to study whether the thermodynamic limit is attained. The results are obtained for the symmetric phase of the theory.

  12. Thermodynamic Analysis of a single chamber Microbial Eric A. Zielke

    E-Print Network [OSTI]

    Thermodynamic Analysis of a single chamber Microbial Fuel Cell Eric A. Zielke May 5, 2006 #12;Microbial Fuel Cell Zielke ii List of Tables 1 First Law Thermodynamic Efficiencies from Experimental Data . . . . . . . 9 #12;Microbial Fuel Cell Zielke iii List of Figures 1 Representation of Anaerobic (anode portion

  13. Molecular Thermodynamic Modeling of Droplet-Type Microemulsions

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    a molecular thermodynamic theory for droplet-type microemulsions, both water-in-oil and oil/W) or spherical water droplets dispersed in a continuous medium of oil (water-in-oil microemulsions, W/O). The OMolecular Thermodynamic Modeling of Droplet-Type Microemulsions Livia A. Moreira and Abbas

  14. Notes on the Generalised Second Law of Thermodynamics

    E-Print Network [OSTI]

    S. -T. Sung

    1997-03-22T23:59:59.000Z

    Several comments are given to previous proofs of the generalised second law of thermodynamics: black hole entropy plus ordinary matter entropy never decreases for a thermally closed system. Arguments in favour of its truism are given in the spirit of conventional thermodynamics.

  15. Thermodynamical Consistency of Excluded Volume Hadron Gas Models

    E-Print Network [OSTI]

    M. I. Gorenstein

    2012-05-08T23:59:59.000Z

    The new excluded volume hadron gas model by Singh et al. [1-7] is critically discussed. We demonstrate that in this model the results obtained from relations between thermodynamical quantities disagree with the corresponding results obtained by statistical ensemble averaging. Thus, the model does not satisfy the requirements of thermodynamical consistency.

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearch Form Research FormURTests

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearch Form Research

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearch Form ResearchImproved

  19. Thermodynamics in f(R,T) Theory of Gravity

    E-Print Network [OSTI]

    M. Sharif; M. Zubair

    2012-04-11T23:59:59.000Z

    A non-equilibrium picture of thermodynamics is discussed at the apparent horizon of FRW universe in $f(R,T)$ gravity, where $R$ is the Ricci scalar and $T$ is the trace of the energy-momentum tensor. We take two forms of the energy-momentum tensor of dark components and demonstrate that equilibrium description of thermodynamics is not achievable in both cases. We check the validity of the first and second law of thermodynamics in this scenario. It is shown that the Friedmann equations can be expressed in the form of first law of thermodynamics $T_hdS'_h+T_hd_{\\jmath}S'=-dE'+W'dV$, where $d_{\\jmath}S'$ is the entropy production term. Finally, we conclude that the second law of thermodynamics holds both in phantom and non-phantom phases.

  20. Beyond heat baths II: Framework for generalized thermodynamic resource theories

    E-Print Network [OSTI]

    Nicole Yunger Halpern

    2014-09-27T23:59:59.000Z

    Cutting-edge experiments, which involve the nano- and quantum scales, have been united with thermodynamics, which describes macroscopic systems, via resource theories. Resource theories have modeled small-scale exchanges of heat and information. Recently, the models were extended to particle exchanges, and a family of thermodynamic resource theories was proposed to model diverse baths, interactions, and free energies. This paper motivates and details the family's structure and prospective applications. How to model electrochemical, gravitational, magnetic, and other thermodynamic systems is explained. Szilard's engine and Landauer's Principle are generalized, as resourcefulness is shown to be convertible not only between informational and gravitational-energy forms, but also among varied physical degrees of freedom in the thermodynamic limit. Quantum operators associated with extensive variables offer opportunities to explore nonclassical noncommutation. This generalization of thermodynamic resource theories invites the modeling of realistic systems that might be harnessed to test small-scale statistical mechanics experimentally.

  1. Dynamics of Atmospheres

    E-Print Network [OSTI]

    Read, Peter L.

    transfer ­ Solar heating of surface, and atmosphere via dust absorption ­ Infrared CO2 band cooling (especially around 667 cm-1) ­ nonLTE near-infrared heating of CO2 and nonLTE cooling effects above ~60-80 km. Baroclinic waves, scales, heat and momentum transport, seasonal occurrence. Qualitative treatment

  2. Dynamics of Planetary Atmospheres

    E-Print Network [OSTI]

    Read, Peter L.

    pressure (bars) N2 82%; Ar 12%; CH4 6%CO2 96.5%; N2 3.5%Atmospheric composition 26177Orbital inclination (1992) orbiter ­ Winds from cloud-tracking and probe drifts ­ IR temperatures, solar-fixed tides, polar-Huygens mission (from 2005) ­ Doppler wind descent profile ­ IR temperature and composition maps ­ Visible, IR

  3. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect (OSTI)

    Peter C. Kong; Myrtle

    2006-09-01T23:59:59.000Z

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  4. E-Print Network 3.0 - aqueous thermodynamic properties Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C7-267 Summary: , and the response to thermodynamic perturbation is best understood in terms of aqueous properties. Membrane proteins... -267 THERMODYNAMIC STUDIES OF...

  5. Thermodynamics in variable speed of light theories

    E-Print Network [OSTI]

    Juan Racker; Pablo Sisterna; Hector Vucetich

    2009-11-30T23:59:59.000Z

    The perfect fluid in the context of a covariant variable speed of light theory proposed by J. Magueijo is studied. On the one hand the modified first law of thermodynamics together with a recipe to obtain equations of state are obtained. On the other hand the Newtonian limit is performed to obtain the nonrelativistic hydrostatic equilibrium equation for the theory. The results obtained are used to determine the time variation of the radius of Mercury induced by the variability of the speed of light ($c$), and the scalar contribution to the luminosity of white dwarfs. Using a bound for the change of that radius and combining it with an upper limit for the variation of the fine structure constant, a bound on the time variation of $c$ is set. An independent bound is obtained from luminosity estimates for Stein 2015B.

  6. Thermodynamics of pairing transition in hot nuclei

    E-Print Network [OSTI]

    Lang Liu; Zhen-Hua Zhang; Peng-Wei Zhao

    2014-12-16T23:59:59.000Z

    The pairing correlations in hot nuclei $^{162}$Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The heat capacities $C_V$ are evaluated in the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. A S-shaped heat capacity curve, which agrees qualitatively with the experimental data, has been obtained and analyzed in details. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.

  7. Thermodynamics in variable speed of light theories

    SciTech Connect (OSTI)

    Racker, Juan [CONICET, Centro Atomico Bariloche, Avenida Bustillo 9500 (8400), San Carlos De Bariloche (Argentina); Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N (1900), La Plata (Argentina); Sisterna, Pablo [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350 (7600), Mar del Plata (Argentina); Vucetich, Hector [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N (1900), La Plata (Argentina)

    2009-10-15T23:59:59.000Z

    The perfect fluid in the context of a covariant variable speed of light theory proposed by J. Magueijo is studied. On the one hand the modified first law of thermodynamics together with a recipe to obtain equations of state are obtained. On the other hand the Newtonian limit is performed to obtain the nonrelativistic hydrostatic equilibrium equation for the theory. The results obtained are used to determine the time variation of the radius of Mercury induced by the variability of the speed of light (c), and the scalar contribution to the luminosity of white dwarfs. Using a bound for the change of that radius and combining it with an upper limit for the variation of the fine structure constant, a bound on the time variation of c is set. An independent bound is obtained from luminosity estimates for Stein 2015B.

  8. Thermodynamic formalism for field driven Lorentz gases

    E-Print Network [OSTI]

    Oliver Muelken; Henk van Beijeren

    2003-12-22T23:59:59.000Z

    We analytically determine the dynamical properties of two dimensional field driven Lorentz gases within the thermodynamic formalism. For dilute gases subjected to an iso-kinetic thermostat, we calculate the topological pressure as a function of a temperature-like parameter $\\ba$ up to second order in the strength of the applied field. The Kolmogorov-Sinai entropy and the topological entropy can be extracted from a dynamical entropy defined as a Legendre transform of the topological pressure. Our calculations of the Kolmogorov-Sinai entropy exactly agree with previous calculations based on a Lorentz-Boltzmann equation approach. We give analytic results for the topological entropy and calculate the dimension spectrum from the dynamical entropy function.

  9. Polymeric Quantization and Black Hole Thermodynamics

    E-Print Network [OSTI]

    M. A. Gorji; Kourosh Nozari; B. Vakili

    2014-05-18T23:59:59.000Z

    Polymer quantization is a non-standard representation of the quantum mechanics that inspired by loop quantum gravity. To study the associated statistical mechanics, one needs to find microstates' energies which are eigenvalues of the Hamiltonian operator in the polymer framework. But, this is not an easy task at all since the Hamiltonian takes a nonlinear form in polymer picture. In this paper, we introduce a semiclassical method in which it is not necessary to solve the eigenvalue problem. Instead, we work with the classical Hamiltonian function and the deformed density of states in the polymeric phase space. Implementing this method, we obtain the canonical partition function for the polymerized systems and we show that our results are in good agreement with those arising from full quantum considerations. Using the partition function, we study the thermodynamics of quantum Schwarzschild black hole and we obtain corrections to the Bekenstein-Hawking entropy due to loop quantum gravity effects.

  10. A Geometric, Dynamical Approach to Thermodynamics

    E-Print Network [OSTI]

    Rugh, H H

    1997-01-01T23:59:59.000Z

    We present a geometric and dynamical approach to the micro-canonical ensemble of classical Hamiltonian systems. In a recent paper [Phys Rev Lett, vol 78, 772-774 (1997)] we showed that under general hypotheses the temperature defined in this ensemble is dynamically observable. Here we generalize the arguments and present simple, explicit formulas showing that also the specific heat and higher order derivatives of the entropy can be observed dynamically. Using perturbation theory we give asymptotic formulas through which the canonical ensemble, at least in principle, can be reconstructed from micro-canonical measurements only. We believe that our approach will prove useful in numerical simulations and provide a natural geometric and dynamical interpretation of the thermodynamics of classical Hamiltonian systems.

  11. Thermodynamic aspects of reformulation of automotive fuels

    SciTech Connect (OSTI)

    Zudkevitch, D. [Columbia Univ., New York, NY (United States); Murthy, A.K.S. [BOC Gases, Murray Hill, NJ (United States); Gmehling, J. [Univ. Oldenburg (Germany)

    1995-09-01T23:59:59.000Z

    A study of procedures for measuring and predicting the RVP and the initial vapor emissions of reformulated gasoline blends which contain one or more oxygenated compounds, viz., Ethanol, MTBE, ETBE, and TAME is discussed. Two computer simulation methods were programmed and tested. In one method, Method A, the D-86 distillation data on the blend are used for predicting the blend`s RVP from a simulation of the Mini RVPE (RVP Equivalent) experiment. The other method, Method B, relies on analytical information (PIANO analyzes) on the nature of the base gasoline and utilizes classical thermodynamics for simulating the same RVPE, Mini experiment. Method B, also, predicts the composition and other properties of the initial vapor emission from the fuel. The results indicate that predictions made with both methods agree very well with experimental values. The predictions with Method B illustrate that the admixture of an oxygenate to a gasoline blend changes the volatility of the blend and, also, the composition of the vapor emission. From the example simulations, a blend with 10 vol % ethanol increases the RVP by about 0.8 psi. The accompanying vapor emission will contain about 15% ethanol. Similarly, the vapor emission of a fuel blend with 11 vol % MTBE was calculated to contain about 11 vol % MTBE. Predictions of the behavior of blends with ETBE and ETBE+Ethanol are also presented and discussed. Recognizing that quite some efforts have been invested in developing empirical correlations for predicting RVP, the writers consider the purpose of this paper to be pointing out that the methods of classical thermodynamics are adequate and that there is a need for additional work in developing certain fundamental data that are still lacking.

  12. A Community Atmosphere Model with Superparameterized Clouds

    SciTech Connect (OSTI)

    Randall, David; Branson, Mark; Wang, Minghuai; Ghan, Steven J.; Craig, Cheryl; Gettelman, A.; Edwards, Jim

    2013-06-18T23:59:59.000Z

    In 1999, National Center for Atmospheric Research (NCAR) scientists Wojciech Grabowski and Piotr Smolarkiewicz created a "multiscale" atmospheric model in which the physical processes associated with clouds were represented by running a simple high-resolution model within each grid column of a lowresolution global model. In idealized experiments, they found that the multiscale model produced promising simulations of organized tropical convection, which other models had struggled to produce. Inspired by their results, Colorado State University (CSU) scientists Marat Khairoutdinov and David Randall created a multiscale version of the Community Atmosphere Model (CAM). They removed the cloud parameterizations of the CAM, and replaced them with Khairoutdinov's high-resolution cloud model. They dubbed the embedded cloud model a "super-parameterization," and the modified CAM is now called the "SP-CAM." Over the next several years, many scientists, from many institutions, have explored the ability of the SP-CAM to simulate tropical weather systems, the day-night changes of precipitation, the Asian and African monsoons, and a number of other climate processes. Cristiana Stan of the Center for Ocean-Land-Atmosphere Interactions found that the SP-CAM gives improved results when coupled to an ocean model, and follow-on studies have explored the SP-CAM's utility when used as the atmospheric component of the Community Earth System Model. Much of this research has been performed under the auspices of the Center for Multiscale Modeling of Atmospheric Processes, a National Science Foundation (NSF) Science and Technology Center for which the lead institution is CSU.

  13. Thermodynamic Properties of Multifunctional Oxygenates in

    E-Print Network [OSTI]

    Goddard III, William A.

    pressure, enthalpies of vaporization, and heats of sublimation of atmospheric organic compounds heats of sublimation at 298 K are also predicted using molecular simulations. Vapor pressures of the advances in computational and theoretical chemistry to calculate the parameters needed to predict

  14. E-Print Network 3.0 - atmospheric parameters influence Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environmental parameters... of chemical and environmental engineering, and the atmospheric sciences department, researches the effects... . He is using the grant to design...

  15. E-Print Network 3.0 - atmospheric administration national Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national Page: << < 1 2 3 4 5 > >> 1 Madelyn Appelbaum Senior Communications Policy Advisor Summary: Communications Director Office of Oceanic & Atmospheric Research National...

  16. E-Print Network 3.0 - atmospheric multiple scattering Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in planetary atmospheres. Part II. Sunlight... , so the absorption lines in reflected solar light ... Source: Fridlind, Ann - Earth Science Division, NASA Ames Research Center...

  17. E-Print Network 3.0 - atmospheric oxygenation recorded Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Summary: is that photosynthesising microbes in the surface ocean caused atmospheric oxygen levels to rise significantly around 2... not viable. Researchers have long speculated...

  18. E-Print Network 3.0 - atmosphere radiation budget Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the solar constant albedo Changes in atmospheric infrared opacity The "greenhouse effect" Time constants Source: Sherwood, Steven - Climate Change Research Centre,...

  19. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar

    E-Print Network [OSTI]

    Takada, Shoji

    in 1970s.6) In order to explain this weakening *1 Research Institute for Sustainable Humanosphere (RISH for Sustainable Humanosphere (RISH), Kyoto Univer- sity, Uji, Kyoto 611-0011, Japan (e-mail: tsuda processes of atmospheric gravity waves was proposed.7),8) In the 1980s a notable advance was made

  20. A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming

    SciTech Connect (OSTI)

    Shen, W.; Tuleya, R.E.; Ginis, I.

    2000-01-01T23:59:59.000Z

    In this study, the effect of thermodynamic environmental changes on hurricane intensity is extensively investigated with the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model for a suite of experiments with different initial upper-tropospheric temperature anomalies up to {+-}4 C and sea surface temperatures ranging from 26 to 31 C given the same relative humidity profile. The results indicate that stabilization in the environmental atmosphere and sea surface temperature (SST) increase cause opposing effects on hurricane intensity. The offsetting relationship between the effects of atmospheric stability increase (decrease) and SST increase (decrease) is monotonic and systematic in the parameter space. This implies that hurricane intensity increase due to a possible global warming associated with increased CO{sub 2} is considerably smaller than that expected from warming of the oceanic waters alone. The results also indicate that the intensity of stronger (weaker) hurricanes is more (less) sensitive to atmospheric stability and SST changes. The model-attained hurricane intensity is found to be well correlated with the maximum surface evaporation and the large-scale environmental convective available potential energy. The model-attained hurricane intensity if highly correlated with the energy available from wet-adiabatic ascent near the eyewall relative to a reference sounding in the undisturbed environment for all the experiments. Coupled hurricane-ocean experiments show that hurricane intensity becomes less sensitive to atmospheric stability and SST changes since the ocean coupling causes larger (smaller) intensity reduction for stronger (weaker) hurricanes. This implies less increase of hurricane intensity related to a possible global warming due to increased CO{sub 2}.

  1. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02T23:59:59.000Z

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  2. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, Otto A. (Langhorne, PA); Stencel, Joseph R. (Skillman, NJ)

    1990-01-01T23:59:59.000Z

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  3. The changing atmosphere

    SciTech Connect (OSTI)

    Graedel, T.E.; Crutzen, P.J.

    1989-09-01T23:59:59.000Z

    The chemistry of the atmosphere is changing, in large measure because of gases emitted by such human activities as farming, manufacturing, and the combustion of fossil fuels. The deleterious effects are increasingly evident; they may well become worse in the years ahead. This paper discusses the pollutants and the environmental perturbations with which they are associated. The authors believe the solution to the earth's environmental problems lies in a truly global effort.

  4. Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics

    E-Print Network [OSTI]

    Gerlich, Gerhard

    2007-01-01T23:59:59.000Z

    The atmospheric greenhouse effect, an idea that authors trace back to the traditional works of Fourier 1824, Tyndall 1861 and Arrhenius 1896 and is still supported in global climatology essentially describes a fictitious mechanism in which a planetary atmosphere acts as a heat pump driven by an environment that is radiatively interacting with but radiatively equilibrated to the atmospheric system. According to the second law of thermodynamics such a planetary machine can never exist. Nevertheless, in almost all texts of global climatology and in a widespread secondary literature it is taken for granted that such mechanism is real and stands on a firm scientific foundation. In this paper the popular conjecture is analyzed and the underlying physical principles are clarified. By showing that (a) there are no common physical laws between the warming phenomenon in glass houses and the fictitious atmospheric greenhouse effects, (b) there are no calculations to determine an average surface temperature of a planet, ...

  5. A Study of Universal Thermodynamics in Brane World Scenario

    E-Print Network [OSTI]

    Saugata Mitra; Subhajit Saha; Subenoy Chakraborty

    2015-03-25T23:59:59.000Z

    A study of Universal thermodynamics is done in the frame work of RSII brane model and DGP brane scenario. The Universe is chosen as FRW model bounded by apparent or event horizon. Assuming extended Hawking temperature on the horizon, the unified first law is examined for perfect fluid (with constant equation of state) and modified Chaplygin gas model. As a result there is a modification of Bekenstein entropy on the horizons. Further the validity of the generalized second law of thermodynamics and thermodynamical equilibrium are also investigated.

  6. Thermodynamics on the apparent horizon in generalized gravity theories

    E-Print Network [OSTI]

    Shao-Feng Wu; Bin Wang; Guo-Hong Yang

    2008-01-17T23:59:59.000Z

    We present a general procedure to construct the first law of thermodynamics on the apparent horizon and illustrate its validity by examining it in some extended gravity theories. Applying this procedure, we can describe the thermodynamics on the apparent horizon in Randall-Sundrum braneworld imbedded in a nontrivial bulk. We discuss the mass-like function which was used to link Friedmann equation to the first law of thermodynamics and obtain its special case which gives the generalized Misner-Sharp mass in Lovelock gravity.

  7. Thermodynamical properties of graphene in noncommutative phase-space

    E-Print Network [OSTI]

    Victor Santos; R. V. Maluf; C. A. S. Almeida

    2014-01-31T23:59:59.000Z

    We investigated the thermodynamic properties of graphene in a noncommutative phase-space in the presence of a constant magnetic field. In particular, we determined the behaviour of the main thermodynamical functions: the Helmholtz free energy, the mean energy, the entropy and the specific heat. The high temperature limit is worked out and the thermodynamic quantities, such as mean energy and specific heat, exhibit the same features as the commutative case. Possible connections with the results already established in the literature are discussed briefly.

  8. A Study of Universal Thermodynamics in Brane World Scenario

    E-Print Network [OSTI]

    Mitra, Saugata; Chakraborty, Subenoy

    2015-01-01T23:59:59.000Z

    A study of Universal thermodynamics is done in the frame work of RSII brane model and DGP brane scenario. The Universe is chosen as FRW model bounded by apparent or event horizon. Assuming extended Hawking temperature on the horizon, the unified first law is examined for perfect fluid (with constant equation of state) and modified Chaplygin gas model. As a result there is a modification of Bekenstein entropy on the horizons. Further the validity of the generalized second law of thermodynamics and thermodynamical equilibrium are also investigated.

  9. Methods for thermodynamic evaluation of battery state of health

    DOE Patents [OSTI]

    Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

    2013-05-21T23:59:59.000Z

    Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

  10. A white paper on Effects of Anthropogenic Pollution on the Atmospheric

    E-Print Network [OSTI]

    1 A white paper on Effects of Anthropogenic Pollution on the Atmospheric Chemistry of the Tropical Brazilian Partner Organizations National Institute for Amazonian Research (INPA)1 The Large-Scale Biosphere-Atmosphere by the atmospheric oxidation of trace gases to low volatility compounds (Chen et al. 2009). These products can

  11. Environmental Chemistry II (Atmospheric Chemistry)

    E-Print Network [OSTI]

    Dibble, Theodore

    Seinfeld, J. H. and Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate ChangeSYLLABUS FOR Environmental Chemistry II (Atmospheric Chemistry) FCH 511 Fall 2013 Theodore S

  12. NREL: Process Development and Integration Laboratory - Atmospheric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearchReliabilityand7 November

  13. Research in actinide chemistry

    SciTech Connect (OSTI)

    Choppin, G.R.

    1993-01-01T23:59:59.000Z

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH[sup [minus

  14. Pluto's Atmosphere Does Not Collapse

    E-Print Network [OSTI]

    Olkin, C B; Borncamp, D; Pickles, A; Sicardy, B; Assafin, M; Bianco, F B; Buie, M W; de Oliveira, A Dias; Gillon, M; French, R G; Gomes, A Ramos; Jehin, E; Morales, N; Opitom, C; Ortiz, J L; Maury, A; Norbury, M; Ribas, F B; Smith, R; Wasserman, L H; Young, E F; Zacharias, M; Zacharias, N

    2013-01-01T23:59:59.000Z

    Combining stellar occultation observations probing Pluto's atmosphere from 1988 to 2013 and models of energy balance between Pluto's surface and atmosphere, we conclude that Pluto's atmosphere does not collapse at any point in its 248-year orbit. The occultation results show an increasing atmospheric pressure with time in the current epoch, a trend present only in models with a high thermal inertia and a permanent N2 ice cap at Pluto's north rotational pole.

  15. arctic research station: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Rocky Mountain Research Sta- tion is one of five 19 Z .Atmospheric Research 51 1999 4575 Cloud resolving simulations of Arctic stratus Geosciences Websites Summary: Z...

  16. M. Bahrami ENSC 388 (F09) 2nd Law of Thermodynamics 1

    E-Print Network [OSTI]

    Bahrami, Majid

    M. Bahrami ENSC 388 (F09) 2nd Law of Thermodynamics 1 The Second Law of Thermodynamics The second law of thermodynamics asserts that processes occur it satisfies both the first and the second laws of thermodynamics. The second law also asserts that energy

  17. Thermodynamics of de Sitter Black Holes: Thermal Cosmological Constant

    E-Print Network [OSTI]

    Yuichi Sekiwa

    2006-04-10T23:59:59.000Z

    We study the thermodynamic properties associated with the black hole event horizon and the cosmological horizon for black hole solutions in asymptotically de Sitter spacetimes. We examine thermodynamics of these horizons on the basis of the conserved charges according to Teitelboim's method. In particular, we have succeeded in deriving the generalized Smarr formula among thermodynamical quantities in a simple and natural way. We then show that cosmological constant must decrease when one takes into account the quantum effect. These observations have been obtained if and only if cosmological constant plays the role of a thermodynamical state variable. We also touch upon the relation between inflation of our universe and a phase transition of black holes.

  18. Thermodynamics of a non-commutative fermion gas

    E-Print Network [OSTI]

    F G Scholtz; J Govaerts

    2008-10-17T23:59:59.000Z

    Building on the recent solution for the spectrum of the non-commutative well in two dimensions, the thermodynamics that follows from it is computed. In particular the focus is put on an ideal fermion gas confined to such a well. At low densities the thermodynamics is the same as for the commutative gas. However, at high densities the thermodynamics deviate strongly from the commutative gas due to the implied excluded area resulting from the non-commutativity. In particular there are extremal macroscopic states, characterized by area, number of particles and angular momentum, that correspond to a single microscopic state and thus have vanishing entropy. When the system size and excluded area are comparable, thermodynamic quantities, such as entropy, exhibit non-extensive features.

  19. Physics 112 Thermodynamics and Statistical Physics Winter 2000 COURSE OUTLINE

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Physics 112 Thermodynamics and Statistical Physics Winter 2000 COURSE OUTLINE TOPIC READINGS 1 and probability theory can be found in Chapter 16 of Mathematical Methods in the Physical Sciences, by Mary L

  20. Irreversible Thermodynamics of the Universe: Constraints from Planck Data

    E-Print Network [OSTI]

    Subhajit Saha; Atreyee Biswas; Subenoy Chakraborty

    2014-04-04T23:59:59.000Z

    The present work deals with irreversible Universal thermodynamics. The homogenous and isotropic flat model of the universe is chosen as open thermodynamical system and non-equilibrium thermodynamics comes into picture due to the mechanism of particle creation. For simplicity, entropy flow is considered only due to heat conduction. Further, due to Maxwell-Cattaneo modified Fourier law for non-equilibrium phenomenon, the temperature satisfies damped wave equation instead of heat conduction equation. Validity of generalized second law of thermodynamics (GSLT) has been investigated for Universe bounded by apparent or event horizon with cosmic substrutum as perfect fluid with constant or variable equation of state or interacting dark species. Finally, we have used three Planck data sets to constrain the thermal conductivity \\lambda and the coupling parameter b^2. These constraints must be satisfied in order for GSLT to hold for Universe bounded by apparent or event horizons.

  1. Lithium-ion battery modeling using non-equilibrium thermodynamics

    E-Print Network [OSTI]

    Ferguson, Todd R. (Todd Richard)

    2014-01-01T23:59:59.000Z

    The focus of this thesis work is the application of non-equilibrium thermodynamics in lithium-ion battery modeling. As the demand for higher power and longer lasting batteries increases, the search for materials suitable ...

  2. Thermodynamic Database for Rare Earth Elements Recycling Process...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermodynamic Database for Rare Earth Elements Recycling Process: Energetics of the REE-X Systems (XA;, Mg, Zn, Si, Sn, Mn, Pb, Fe, Co, Ni) Apr 17 2015 11:00 AM - 12:00 PM In-Ho...

  3. Fermionic Molecular Dynamics for nuclear dynamics and thermodynamics

    E-Print Network [OSTI]

    K. H. O. Hasnaoui; Ph. Chomaz; F. Gulminelli

    2008-12-02T23:59:59.000Z

    A new Fermionic Molecular Dynamics (FMD) model based on a Skyrme functional is proposed in this paper. After introducing the basic formalism, some first applications to nuclear structure and nuclear thermodynamics are presented

  4. Gravitation and Thermodynamics: The Einstein Equation of State Revisited

    E-Print Network [OSTI]

    Jarmo Makela; Ari Peltola

    2008-08-19T23:59:59.000Z

    We perform an analysis where Einstein's field equation is derived by means of very simple thermodynamical arguments. Our derivation is based on a consideration of the properties of a very small, spacelike two-plane in a uniformly accelerating motion.

  5. Mechanical and Industrial Engineering 230 Thermodynamics Course Syllabus

    E-Print Network [OSTI]

    Rothstein, Jonathan

    cycles Refrigeration and heat pump systems Final Exam (Date and time TBA) Suggested Reading Chapter 1Mechanical and Industrial Engineering 230 Fall 2009 Thermodynamics Course Syllabus Date Week 1 (9

  6. aggrecans statistical thermodynamic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Thermodynamics for Fractal Statistics HEP - Theory (arXiv) Summary: We consider for an anyon gas its...

  7. Dynamics and Thermodynamics of Blackholes and Naked Singularities

    E-Print Network [OSTI]

    Lorenzo Fatibene; Mauro Francaviglia; Roberto Giambo'; Giulio Magli

    2005-12-15T23:59:59.000Z

    Proceedings of the international Workshop on ``Dynamics and Thermodynamics of Blackholes and Naked Singularities``, that took place at the Department of Mathematics of the Politecnico of Milano from 13 to 15 May 2004.

  8. Thermodynamic behavior of particular f(R,T)-gravity models

    SciTech Connect (OSTI)

    Sharif, M., E-mail: msharif.math@pu.edu.pk; Zubair, M., E-mail: mzubairkk@gmail.com [University of the Punjab Quaid-e-Azam Campus, Department of Mathematics (Pakistan)

    2013-08-15T23:59:59.000Z

    We investigate the thermodynamics at the apparent horizon of the FRW universe in f(R, T) theory in the nonequilibrium description. The laws of thermodynamics are discussed for two particular models of the f(R, T) theory. The first law of thermodynamics is expressed in the form of the Clausius relation T{sub h} dS-circumflex{sub h} = {delta} Q , where {delta}Q is the energy flux across the horizon and dS-circumflex is the entropy production term. Furthermore, the conditions for the generalized second law of thermodynamics to be preserved are established with the constraints of positive temperature and attractive gravity. We illustrate our results for some concrete models in this theory.

  9. Thermodynamic Behavior of particular $f(R,T)$ Gravity Models

    E-Print Network [OSTI]

    M. Sharif; M. Zubair

    2014-02-07T23:59:59.000Z

    We investigate the thermodynamics at the apparent horizon of the FRW universe in $f(R,T)$ theory under non-equilibrium description. The laws of thermodynamics have been discussed for two particular models of $f(R,T)$ theory. The first law of thermodynamics is expressed in the form of Clausius relation $T_hd\\hat{S}_h=\\delta{Q}$, where $\\delta{Q}=-d\\hat{E}+Wd\\mathbb{V}+T_hd_{\\jmath}\\hat{S}$ is the energy flux across the horizon and $d_{\\jmath}\\hat{S}$ is the entropy production term. Furthermore, the conditions to preserve the generalized second law of thermodynamics are established with the constraints of positive temperature and attractive gravity. We have illustrated our results for some concrete models in this theory.

  10. Irreversible Thermodynamics and Smart Materials Systems Modelling. Example of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Irreversible Thermodynamics and Smart Materials Systems Modelling. Example of Magnetic Shape Memory mechanisms in smart materials. This procedure is applied to Magnetic Shape Memory Alloys actuators of complex active materials for smart systems. Keywords: Smart material systems, Actuator design

  11. Coal surface structure and thermodynamics. Final report

    SciTech Connect (OSTI)

    Larsen, J.W.; Wernett, P.C.; Glass, A.S.; Quay, D.; Roberts, J.

    1994-05-01T23:59:59.000Z

    Coals surfaces were studied using static surface adsorption measurements, low angle x-ray scattering (LAXS), inverse gas chromatography (IGC) and a new {sup 13}C NMR relaxation technique. A comparison of surface areas determined by hydrocarbon gas adsorption and LAXS led to the twin conclusions that the hydrocarbons had to diffuse through the solid to reach isolated pores and that the coal pores do not form interconnected networks, but are largely isolated. This conclusion was confirmed when IGC data for small hydrocarbons showed no discontinuities in their size dependence as usually observed with porous solids. IGC is capable of providing adsorption thermodynamics of gases on coal surfaces. The interactions of non-polar molecules and coal surfaces are directly proportioned to the gas molecular polarizability. For bases, the adsorption enthalpy is equal to the polarizability interaction plus the heat of hydrogen bond formation with phenol. Amphoteric molecules have more complex interactions. Mineral matter can have highly specific effects on surface interactions, but with most of the molecules studied is not an important factor.

  12. Thermodynamic functions of degenerate magnetized electron gas

    SciTech Connect (OSTI)

    Skobelev, V. V., E-mail: v.skobelev@inbox.ru [Moscow State Industrial University (Russian Federation)

    2011-11-15T23:59:59.000Z

    The Fermi energy, pressure, internal energy, entropy, and heat capacity of completely degenerate relativistic electron gas are calculated by numerical methods. It is shown that the maximum admissible magnetic field on the order of 10{sup 9} G in white dwarfs increases the pressure by a factor of 1.06 in the central region, where the electron concentration is {approx}10{sup 33} cm{sup -3}, while the equilibrium radius increases by approximately a factor of 1.03, which obviously cannot be observed experimentally. A magnetic field of {approx}10{sup 8} G or lower has no effect on the pressure and other thermodynamic functions. It is also shown that the contribution of degenerate electron gas to the total pressure in neutron stars is negligible compared to that of neutron gas even in magnetic fields with a maximum induction {approx}10{sup 17} G possible in neutron stars. The neutron beta-decay forbiddeness conditions in a superstrong magnetic field are formulated. It is assumed that small neutron stars have such magnetic fields and that pulsars with small periods are the most probable objects that can have super-strong magnetic fields.

  13. On the Quantum-Corrected Black Hole Thermodynamics

    E-Print Network [OSTI]

    Kourosh Nozari; S. Hamid Mehdipour

    2006-01-15T23:59:59.000Z

    Bekenstein-Hawking Black hole thermodynamics should be corrected to incorporate quantum gravitational effects. Generalized Uncertainty Principle(GUP) provides a perturbational framework to perform such modifications. In this paper we consider the most general form of GUP to find black holes thermodynamics in microcanonical ensemble. Our calculation shows that there is no logarithmic pre-factor in perturbational expansion of entropy. This feature will solve part of controversies in literatures regarding existence or vanishing of this pre-factor.

  14. Calculation of the compressibility factor and thermodynamic properties for methane

    E-Print Network [OSTI]

    Dowling, Dennis William

    1966-01-01T23:59:59.000Z

    of Saturated Vapor Volumes Reported by Bloomer and Parent (5) and Those Calculated in This Work Thermodynamic Properties Calculated by Use of Berlin Equation Thermodynamic Properties Calculated by Use of Benedict-Webb-Rubin Equation 35 36 39 40 48..., and Smith (15), Gardoso (7), and Bloomer and Parent (5) have reported experimental vapor pressure data and values for the saturated liquid density. Cardoso (7) and Bloomer and Parent (5) have also reported values for saturated vapor densities. A critical...

  15. Quadractic Model of Thermodynamic States in SDF Explosions

    SciTech Connect (OSTI)

    Kuhl, A L; Khasainov, B

    2007-05-04T23:59:59.000Z

    We study the thermodynamic states encountered during Shock-Dispersed-Fuel (SDF) explosions. Such explosions contain up to six components: three fuels (PETN, TNT and Aluminum) and their products corresponding to stoichiometric combustion with air. We establish the loci in thermodynamic state space that correctly describes the behavior of the components. Results are fit with quadratic functions that serve as fast equations of state suitable for 3D numerical simulations of SDF explosions.

  16. On the Relationship between Thermodynamics and Special Relativity

    E-Print Network [OSTI]

    Farías, C A; Pinto, V A

    2007-01-01T23:59:59.000Z

    Starting from a formulation for the $dS$ element that includes movement, and considering the variation of the entropy Lorentz invariant, we found the relativistic transformations for thermodynamic systems that satisfy the three laws of thermodynamics. Particularly, we found the temperature and pressure transformations, given by $T'=\\gamma T$ and $p'=\\gamma^2p$ respectively. Furthermore, we show that this transformations keeps the form of the state equation for an ideal gas in agreement with the relativity principle.

  17. An electromagnetic and thermodynamic lumped parameter model of an explosively driven regenerative magnetohydrodynamic generator

    SciTech Connect (OSTI)

    Morrison, J.L.

    1992-12-01T23:59:59.000Z

    The objective of this research is to develop a simple, yet accurate, lumped parameter mathematical model for an explosively driven magnetohydrodynamic generator that can predict the pulse power variables of voltage and current from startup through regenerative operation. The inputs to the model will be the plasma properties entering the generator as predicted by the explosive shock model of Reference [1]. The strategy used was to simplify electromagnetic and thermodynamic three dimensional effects into a zero dimensional model. The model will provide a convenient tool for researchers to optimize designs to be used in pulse power applications. The model is validated using experimental data of Reference [1]. An overview of the operation of the explosively driven generator is first presented. Then a simplified electrical circuit model that describes basic performance of the device is developed. Then a lumped parameter model that incorporates the coupled electromagnetic and thermodynamic effects that govern generator performance is described and developed. The model is based on fundamental physical principles and parameters that were either obtained directly from design data or estimated from experimental data. The model was used to obtain parameter sensitivities and predict beyond the limits observed in the experiments to the levels desired by the potential Department of Defense sponsors. The model identifies process limitations that provide direction for future research.

  18. Planetary, Atmospheric, and Environmental Applications of Physics Frank Mills

    E-Print Network [OSTI]

    Chen, Ying

    solar energy production Evaluating, forecasting, and managing suburb-scale distributed solar electricity of clouds on the production of solar energy. Most of my research is done in collaboration with other groups production My research applies physics to a range of problems in planetary, atmospheric, and environmental

  19. Atmospheric,OceanicandSpaceSciences IntroductIon

    E-Print Network [OSTI]

    Eustice, Ryan

    to understand the Earth, atmosphere, planets, solar system and space weather in a whole systemic view, rather in the University of Michigan tradition: The Leaders and The Best #12;About AoSS Concerned with Research ... Concerned with Knowledge Like the University of Michigan, AOSS combines the best of two worlds: research

  20. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August 1999 ARM

  1. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August 1999

  2. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August 1999July

  3. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August

  4. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssemblyDemandPlasma4August3 ARM 2003

  5. Atmospheric Particulates | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. Nozik -GrownAn overheadAtmospheric

  6. Thermodynamics of Schwarzschild-de Sitter black hole: thermal stability of Nariai black hole

    E-Print Network [OSTI]

    Yun Soo Myung

    2008-03-28T23:59:59.000Z

    We study thermodynamics of the Schwarzschild-de Sitter black hole in five dimensions by introducing two temperatures based on the standard and Bousso-Hawking normalizations. We use the first-law of thermodynamics to derive thermodynamic quantities. The two temperatures indicate that the Nariai black hole is thermodynamically unstable. However, it seems that black hole thermodynamics favors the standard normalization, and does not favor the Bousso-Hawking normalization.

  7. Thermodynamic Geometry of Reissener-Nordström-de Sitter black hole and its extremal case

    E-Print Network [OSTI]

    R. Tharanath; Jishnu Suresh; Nijo Varghese; V. C. Kuriakose

    2014-04-27T23:59:59.000Z

    We study the thermodynamics and the different thermodynamic geometric methods of Reissener-Nordstr\\"{o}m-de Sitter black hole and its extremal case, which is similar to the de Sitter black hole coupled to a scalar field, rather called an MTZ black hole. While studying the thermodynamics of the systems, we could find some abnormalities. In both cases, the thermodynamic geometric methods could give the correct explanation for the all abnormal thermodynamic behaviors in the system.

  8. University Research

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News News Homeuniversity-research/ The Office of Science

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearch Form

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearch FormGeneral Formulation

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearch FormGeneral FormulationAn

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearch FormGeneral

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearch FormGeneralIntegrated

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearch

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearchCloud Observations at

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearchCloud Observations atARM

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearchCloud Observations

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearchCloud

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearchCloudObservational

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergyResearchCloudObservationalA

  1. CHARACTERIZING THE ATMOSPHERES OF TRANSITING PLANETS WITH A DEDICATED SPACE TELESCOPE

    SciTech Connect (OSTI)

    Tessenyi, M.; Tinetti, G.; Swinyard, B.; Aylward, A.; Tennyson, J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Ollivier, M. [Institut d'Astrophysique Spatiale, Universite de Paris-Sud and CNRS (UMR 8617), IAS UMR8617, Orsay F-91405 (France); Beaulieu, J. P. [Institut d'Astrophysique de Paris, CNRS, UMR7095, Universite Paris VI, 98bis Boulevard Arago, Paris (France); Coude du Foresto, V.; Encrenaz, T. [Observatoire de Paris, LESIA, Meudon (France); Micela, G. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy); Ribas, I. [Institut de Ciencies de l'Espai (CSIC-IEEC), Campus UAB, 08193 Bellaterra (Spain); Swain, M. R.; Vasisht, G.; Deroo, P. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Sozzetti, A. [INAF-Osservatorio Astronomico di Torino, Strada Osservatorio 20, 10025 Pino Torinese (Italy)

    2012-02-10T23:59:59.000Z

    Exoplanetary science is one of the fastest evolving fields of today's astronomical research, continuously yielding unexpected and surprising results. Ground-based planet-hunting surveys, together with dedicated space missions such as Kepler and CoRoT, are delivering an ever-increasing number of exoplanets, over 690, and ESA's Gaia mission will escalate the exoplanetary census into the several thousands. The next logical step is the characterization of these new worlds. What is their nature? Why are they as they are? Use of the Hubble Space Telescope and Spitzer Space Telescope to probe the atmospheres of transiting hot, gaseous exoplanets has opened perspectives unimaginable even just 10 years ago, demonstrating that it is indeed possible with current technology to address the ambitious goal of characterizing the atmospheres of these alien worlds. However, these successful measurements have also shown the difficulty of understanding the physics and chemistry of these exotic environments when having to rely on a limited number of observations performed on a handful of objects. To progress substantially in this field, a dedicated facility for exoplanet characterization, able to observe a statistically significant number of planets over time and a broad spectral range will be essential. Additionally, the instrument design (e.g., detector performances, photometric stability) will be tailored to optimize the extraction of the astrophysical signal. In this paper, we analyze the performance and tradeoffs of a 1.2/1.4 m space telescope for exoplanet transit spectroscopy from the visible to the mid-IR. We present the signal-to-noise ratio as a function of integration time and stellar magnitude/spectral type for the acquisition of spectra of planetary atmospheres for a variety of scenarios: hot, warm, and temperate planets orbiting stars ranging in spectral type from hot F- to cooler M-dwarfs. Our results include key examples of known planets (e.g., HD 189733b, GJ 436b, GJ 1214b, and Cancri 55 e) and simulations of plausible terrestrial and gaseous planets, with a variety of thermodynamical conditions. We conclude that even most challenging targets, such as super-Earths in the habitable zone of late-type stars, are within reach of an M-class, space-based spectroscopy mission.

  2. Thermodynamic Database Population Software (DBCreate) - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1 MembersStability ofXPS. |Portal Geothermal

  3. Thermodynamics of metallic systems | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1 MembersStability ofXPS.Solid with a|

  4. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01T23:59:59.000Z

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  5. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01T23:59:59.000Z

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  6. Linear harmonic analysis of Stirling engine thermodynamics

    SciTech Connect (OSTI)

    Chen, N.C.J.; Griffin, F.P.; West, C.D.

    1984-08-01T23:59:59.000Z

    The analysis involves linearization of the pressure waveform and represents each term in the conservation equations by a truncated Fourier series, including enthalpy flux discontinuity. Second-Law analysis is presented of four important loss mechanisms that result from adiabatic cylinders, transient heat transfer in semiadiabatic cylinders, pressure drop through the heat exchangers, and gas leakage from the compression space. The four loss mechanisms, all leading to efficiency reduction below the Carnot level, are characterized by irreversible thermodynamic processes that occur when heat is transferred across a finite temperature difference; when gases at two different temperatures are mixed; or when there is a mass flow through a pressure difference. The allocation of each individual loss mechanism is derived precisely in terms of entropy production but evaluated by use of pressure, temperature, and mass oscillations calculated from the linear harmonic approximation. When the theory is applied to an engine of Sunpower's RE-1000 dimensions, it reveals clearly that the adiabatic loss (due to temperature fluctuations in the cylinders) consists of two components: gas mixing and heat transfer across a temperature difference. The theory further shows that the adiabatic effect is more important than the transient heat transfer loss if the gas-to-cylinder heat transfer rate is small (i.e., nearly adiabatic conditions); the reverse is true for intermediate heat transfer rates; and both losses vanish at very high heat transfer rates. In addition, entropy analyses of pressure drop and mass leakage for isothermal cylinders shed some light on coupling between the different individual loss mechanisms.

  7. Rigorous and General Definition of Thermodynamic Entropy

    E-Print Network [OSTI]

    Gian Paolo Beretta; Enzo Zanchini

    2010-10-05T23:59:59.000Z

    The physical foundations of a variety of emerging technologies --- ranging from the applications of quantum entanglement in quantum information to the applications of nonequilibrium bulk and interface phenomena in microfluidics, biology, materials science, energy engineering, etc. --- require understanding thermodynamic entropy beyond the equilibrium realm of its traditional definition. This paper presents a rigorous logical scheme that provides a generalized definition of entropy free of the usual unnecessary assumptions which constrain the theory to the equilibrium domain. The scheme is based on carefully worded operative definitions for all the fundamental concepts employed, including those of system, property, state, isolated system, environment, process, separable system, system uncorrelated from its environment, and parameters of a system. The treatment considers also systems with movable internal walls and/or semipermeable walls, with chemical reactions and/or external force fields, and with small numbers of particles. The definition of reversible process is revised by introducing the new concept of scenario. The definition of entropy involves neither the concept of heat nor that of quasistatic process; it applies to both equilibrium and nonequilibrium states. The role of correlations on the domain of definition and on the additivity of energy and entropy is discussed: it is proved that energy is defined and additive for all separable systems, while entropy is defined and additive only for separable systems uncorrelated from their environment; decorrelation entropy is defined. The definitions of energy and entropy are extended rigorously to open systems. Finally, to complete the discussion, the existence of the fundamental relation for stable equilibrium states is proved, in our context, for both closed and open systems.

  8. Contrasting Regional Responses to Increasing Leaf-Level Atmospheric Carbon Dioxide over Australia

    E-Print Network [OSTI]

    Evans, Jason

    Contrasting Regional Responses to Increasing Leaf-Level Atmospheric Carbon Dioxide over Australia, New South Wales, Australia JOHN L. MCGREGOR Centre for Australian Weather and Climate Research, and CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia JASON P. EVANS Climate Change

  9. UC Riverside Engineering Students Receive Research

    E-Print Network [OSTI]

    senior who has done worked at CE-CERT's Atmospheric Pollution Laboratory (APL), has won a highly the California Institute of technology (Caltech) to pursue her Ph.D. in atmospheric studies. As an undergraduate and environmental engineering. "Lindsay has been a top researcher in our atmospheric processes lab for four years

  10. Atmospheric propagation of THz radiation.

    SciTech Connect (OSTI)

    Wanke, Michael Clement; Mangan, Michael A.; Foltynowicz, Robert J.

    2005-11-01T23:59:59.000Z

    In this investigation, we conduct a literature study of the best experimental and theoretical data available for thin and thick atmospheres on THz radiation propagation from 0.1 to 10 THz. We determined that for thick atmospheres no data exists beyond 450 GHz. For thin atmospheres data exists from 0.35 to 1.2 THz. We were successful in using FASE code with the HITRAN database to simulate the THz transmission spectrum for Mauna Kea from 0.1 to 2 THz. Lastly, we successfully measured the THz transmission spectra of laboratory atmospheres at relative humidities of 18 and 27%. In general, we found that an increase in the water content of the atmosphere led to a decrease in the THz transmission. We identified two potential windows in an Albuquerque atmosphere for THz propagation which were the regions from 1.2 to 1.4 THz and 1.4 to 1.6 THz.

  11. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    SciTech Connect (OSTI)

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28T23:59:59.000Z

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  12. Heat exchanges in fast, high-performance liquid chromatography. A complete thermodynamic study

    SciTech Connect (OSTI)

    Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL

    2008-01-01T23:59:59.000Z

    The successive physical transformations of the mobile phase that take place in very high pressure liquid chromatography were studied based on the formalism of classical thermodynamics. The eluent is initially under atmospheric pressure (P{sup 0}) and at ambient temperature (T{sub ext}). In a first step, it is compressed to a high pressure (P{sub max} of the order of 1 kbar) in the pump heads of the chromatograph. In a second step, the pressurized eluent is transferred to the inlet of the chromatographic column, along which, in a third step, it is decompressed to atmospheric pressure. Both the compression and the decompression of the fluid were considered to take place under conditions that can be either adiabatic or nonadiabatic and either reversible or irreversible. Applications of the first and second principles of thermodynamics allow the determination of the heat and energy exchanged between the eluent and the external surroundings during each transformation. Experimental data were acquired using acetonitrile as the mobile phase. The true state equation, {rho}(P, T), of liquid acetonitrile was used in the theoretical calculations. A series of four different flow rates (0.55, 0.85, 1.15, and 1.45 mL/min, corresponding to inlet pressures of 357.2, 559.5, 765.1, and 972.9 bar, respectively), were applied to a 2.1 x 100 mm column packed with 1.7-{micro}m bridged ethane-silicon hybrid particles. Thermocouples were used to measure the eluent temperature before and after its passage through the column. These data provide estimates of the variation of the internal energy of the eluent. The heat lost through the external wall of the column during the eluent decompression was estimated by measuring the surface temperature of the column tube under steady state. Both the compression and the decompression of acetonitrile were found to be nonadiabatic and irreversible transformations. The results showed that, during the eluent decompression, the heat released by the friction forces serves four different purposes: (1) it increases the eluent entropy at constant temperature (for 35%); (2) it increases the temperature of the eluent (for 5%); (3) it provides heat to the laboratory atmosphere (for 5%); and (4) it provides some work inside the column (for 5%). This quantitative heat balance description accounts well for the actual performance of the new, very high pressure liquid chromatographic technique.

  13. Clathrate hydrates as a sink of noble gases in Titan's atmosphere

    E-Print Network [OSTI]

    Thomas, C; Ballenegger, V; Picaud, Sylvain

    2007-01-01T23:59:59.000Z

    We use a statistical thermodynamic approach to determine the composition of clathrate hydrates which may form from a multiple compound gas whose composition is similar to that of Titan's atmosphere. Assuming that noble gases are initially present in this gas phase, we calculate the ratios of xenon, krypton and argon to species trapped in clathrate hydrates. We find that these ratios calculated for xenon and krypton are several orders of magnitude higher than in the coexisting gas at temperature and pressure conditions close to those of Titan's present atmosphere at ground level. Furthermore we show that, by contrast, argon is poorly trapped in these ices. This trapping mechanism implies that the gas-phase is progressively depleted in xenon and krypton when the coexisting clathrate hydrates form whereas the initial abundance of argon remains almost constant. Our results are thus compatible with the deficiency of Titan's atmosphere in xenon and krypton measured by the {\\it Huygens} probe during its descent on J...

  14. Development of a self-consistent thermodynamic- and transport-property correlation framework for the coal conversion industry. Phase I. Semiannual report, September 1, 1980-February 28, 1981

    SciTech Connect (OSTI)

    Starling, K.E.; Lee, L.L.; Kumar, K.H.

    1981-01-01T23:59:59.000Z

    During the first half year of this research program the following elements of research have been performed: (1) the development of an improved pure component data bank, including collection and processing of data which is 70% complete as to substance, (2) calculation of distillable coal fluid thermodynamic properties using a multiparameter corresponding states correlation, (3) application of the most general density-cubic equation of pure fluids and (4) initiation of research to extend the corresponding states correlation framework to polar fluids. Primary conclusions of the first phase of this research program are that the three parameter corresponding states correlation predicts lighter coal fluid properties to a reasonable level of accuracy, and that a cubic equation can predict pure fluid thermodynamic properties on par with non-cubic equations of state.

  15. Abstracts and research accomplishments of university coal research projects

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.

  16. Work extraction and thermodynamics for individual quantum systems

    E-Print Network [OSTI]

    Paul Skrzypczyk; Anthony J. Short; Sandu Popescu

    2014-09-26T23:59:59.000Z

    Thermodynamics is traditionally concerned with systems comprised of a large number of particles. Here we present a framework for extending thermodynamics to individual quantum systems, including explicitly a thermal bath and work-storage device (essentially a `weight' that can be raised or lowered). We prove that the second law of thermodynamics holds in our framework, and give a simple protocol to extract the optimal amount of work from the system, equal to its change in free energy. Our results apply to any quantum system in an arbitrary initial state, in particular including non-equilibrium situations. The optimal protocol is essentially reversible, similar to classical Carnot cycles, and indeed, we show that it can be used it to construct a quantum Carnot engine.

  17. Quantum coherence, time-translation symmetry and thermodynamics

    E-Print Network [OSTI]

    Matteo Lostaglio; Kamil Korzekwa; David Jennings; Terry Rudolph

    2015-04-13T23:59:59.000Z

    The first law of thermodynamics imposes not just a constraint on the energy-content of systems in extreme quantum regimes, but also symmetry-constraints related to the thermodynamic processing of quantum coherence. We show that this thermodynamic symmetry decomposes any quantum state into mode operators that quantify the coherence present in the state. We then establish general upper and lower bounds for the evolution of quantum coherence under arbitrary thermal operations, valid for any temperature. We identify primitive coherence manipulations and show that the transfer of coherence between energy levels manifests irreversibility not captured by free energy. Moreover, the recently developed thermo-majorization relations on block-diagonal quantum states are observed to be special cases of this symmetry analysis.

  18. Thermodynamics of Modified Chaplygin Gas and Tachyonic Field

    E-Print Network [OSTI]

    Samarpita Bhattacharya; Ujjal Debnath

    2010-12-26T23:59:59.000Z

    Here we generalize the results of the work of ref. [10] in modified Chaplygin gas model and tachyonic field model. Here we have studied the thermodynamical behaviour and the equation of state in terms of volume and temperature for both models. We have used the solution and the corresponding equation of state of our previous work [12] for tachyonic field model. We have also studied the thermodynamical stability using thermal equation of state for the tachyonic field model and have shown that there is no critical points during thermodynamical expansion. The determination of $T_{*}$ due to expansion for the tachyonic field have been discussed by assuming some initial conditions. Here, the thermal quantities have been investigated using some reduced parameters.

  19. Thermodynamics of viscous dark energy in an RSII braneworld

    E-Print Network [OSTI]

    M. R. Setare; A. Sheykhi

    2011-03-05T23:59:59.000Z

    We show that for an RSII braneworld filled with interacting viscous dark energy and dark matter, one can always rewrite the Friedmann equation in the form of the first law of thermodynamics, $dE=T_hdS_h+WdV$, at apparent horizon. In addition, the generalized second law of thermodynamics can fulfilled in a region enclosed by the apparent horizon on the brane for both constant and time variable 5-dynamical Newton's constant $G_5$. These results hold regardless of the specific form of the dark energy. Our study further support that in an accelerating universe with spatial curvature, the apparent horizon is a physical boundary from the thermodynamical point of view.

  20. Polyport atmospheric gas sampler

    DOE Patents [OSTI]

    Guggenheim, S. Frederic (Teaneck, NJ)

    1995-01-01T23:59:59.000Z

    An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

  1. Space Science : Atmosphere Greenhouse Effect

    E-Print Network [OSTI]

    Johnson, Robert E.

    Space Science : Atmosphere Greenhouse Effect Part-5a Solar + Earth Spectrum IR Absorbers Grey Atmosphere Greenhouse Effect #12;Radiation: Solar and Earth Surface B"(T) Planck Ideal Emission Integrate at the carbon cycle #12;However, #12;Greenhouse Effect is Complex #12;PLANETARY ENERGY BALANCE G+W fig 3-5

  2. Non-equilibrium thermodynamics approach to open quantum systems

    E-Print Network [OSTI]

    Vitalii Semin; Francesco Petruccione

    2014-11-11T23:59:59.000Z

    Open quantum systems are studied from the thermodynamical point of view unifying the principle of maximum informational entropy and the hypothesis of relaxation times hierarchy. The result of the unification is a non-Markovian and local in time master equation that provides a direct connection of dynamical and thermodynamical properties of open quantum systems. The power of the approach is illustrated with the application to the damped harmonic oscillator and the damped driven two-level system resulting in analytical expressions for the non-Markovian and non-equilibrium entropy and inverse temperature.

  3. Thermodynamics of an Evaporating Schwarzschild Black Hole in Noncommutative Space

    E-Print Network [OSTI]

    Kourosh Nozari; Behnaz Fazlpour

    2007-01-14T23:59:59.000Z

    We investigate the effects of space noncommutativity and the generalized uncertainty principle on the thermodynamics of a radiating Schwarzschild black hole. We show that evaporation process is in such a way that black hole reaches to a maximum temperature before its final stage of evolution and then cools down to a nonsingular remnant with zero temperature and entropy. We compare our results with more reliable results of string theory. This comparison Shows that GUP and space noncommutativity are similar concepts at least from view point of black hole thermodynamics.

  4. Thermodynamics of Schrödinger black holes with hyperscaling violation

    E-Print Network [OSTI]

    J. Sadeghi; B. Pourhassan; F. Pourasadollah

    2012-11-06T23:59:59.000Z

    In this work, we follow Kim and Yamada (JHEP1107 (2011) 120) and utilize AdS in light-cone frame to derive thermodynamic and transport properties of two kinds of Schr\\"{o}dinger black holes with hyperscaling violation. In that case, we show entropy and temperature are depend on $\\theta$. In $\\theta=0$ we see our results are agree with the work of Kim and Yamada. We also construct R-charged black hole with hyperscaling violation and obtain thermodynamics and transport properties.

  5. Thermodynamics and Spectroscopy of Schwarzschild black hole surrounded by Quintessence

    E-Print Network [OSTI]

    R Tharanath; V C Kuriakose

    2013-01-11T23:59:59.000Z

    The thermodynamic and spectroscopic behaviour of Schwarzschild black hole surrounded by quintessence are studied. We have derived the thermodynamic quantities and studied their behaviour for different values of quintessence parameter. We put the background space-time into the Kruskal-like coordinate to find the period with respect to Elucidean time. Also assuming that the adiabatic invariant obeys Bohr-Sommerfeld quantization rule, detailed study of area spectrum and entropy spectrum have been done for special cases of the quintessece state parameter. We find that the spectra are equally spaced.

  6. Thermodynamic Model of Aluminum Combustion in SDF Explosions

    SciTech Connect (OSTI)

    Kuhl, . L

    2006-06-19T23:59:59.000Z

    Thermodynamic states encountered during combustion of Aluminum powder in Shock-Dispersed-Fuel (SDF) explosions were analyzed with the Cheetah code. Results are displayed in the Le Chatelier diagram: the locus of states of specific internal energy versus temperature. Accuracy of the results was confirmed by comparing the fuel and products curves with the heats of detonation and combustion, and species composition as measured in bomb calorimeter experiments. Results were fit with analytic functions u = f(T) suitable for specifying the thermodynamic properties required for gas-dynamic models of combustion in explosions.

  7. The thermodynamic dual structure of linear-dissipative driven systems

    E-Print Network [OSTI]

    Eric Smith

    2005-05-02T23:59:59.000Z

    The spontaneous emergence of dynamical order, such as persistent currents, is sometimes argued to require principles beyond the entropy maximization of the second law of thermodynamics. I show that, for linear dissipation in the Onsager regime, current formation can be driven by exactly the Jaynesian principle of entropy maximization, suitably formulated for extended systems and nonequilibrium boundary conditions. The Legendre dual structure of equilibrium thermodynamics is also preserved, though it requires the admission of current-valued state variables, and their correct incorporation in the entropy.

  8. Quantum Thermodynamic Cycles and Quantum Heat Engines (II)

    E-Print Network [OSTI]

    H. T. Quan

    2009-03-09T23:59:59.000Z

    We study the quantum mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric process, such as quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in 1D box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum mechanical) foundation for Szilard-Zurek single molecule engine.

  9. A Model for Structure and Thermodynamics of ssDNA and dsDNA Near...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure and Thermodynamics of ssDNA and dsDNA Near a Surface:A Coarse Grained Approach. A Model for Structure and Thermodynamics of ssDNA and dsDNA Near a Surface:A Coarse...

  10. Applications of Irreversible Thermodynamics: Bulk and Interfacial Electronic, Ionic, Magnetic, and Thermal Transport

    E-Print Network [OSTI]

    Sears, Matthew

    2012-10-19T23:59:59.000Z

    Irreversible thermodynamics is a widely-applicable toolset that extends thermodynamics to describe systems undergoing irreversible processes. It is particularly useful for describing macroscopic flow of system components, whether conserved (e...

  11. Quantifying the thermodynamic entropy budget of the land surface: is this useful?

    E-Print Network [OSTI]

    Brunsell, Nathaniel A.; Schymanski, S.J.; Kleidon, A.

    2011-06-20T23:59:59.000Z

    As a system is moved away from a state of thermodynamic equilibrium, spatial and temporal heterogeneity is induced. A possible methodology to assess these impacts is to examine the thermodynamic entropy budget and ...

  12. Thermodynamic properties and atomic structure of Ca-based liquid alloys

    E-Print Network [OSTI]

    Poizeau, Sophie (Sophie Marie Claire)

    2013-01-01T23:59:59.000Z

    To identify the most promising positive electrodes for Ca-based liquid metal batteries, the thermodynamic properties of diverse Ca-based liquid alloys were investigated. The thermodynamic properties of Ca-Sb alloys were ...

  13. Computer support to run models of the atmosphere. Final report

    SciTech Connect (OSTI)

    Fung, I.

    1996-08-30T23:59:59.000Z

    This research is focused on a better quantification of the variations in CO{sub 2} exchanges between the atmosphere and biosphere and the factors responsible for these exchangers. The principal approach is to infer the variations in the exchanges from variations in the atmospheric CO{sub 2} distribution. The principal tool involves using a global three-dimensional tracer transport model to advect and convect CO{sub 2} in the atmosphere. The tracer model the authors used was developed at the Goddard institute for Space Studies (GISS) and is derived from the GISS atmospheric general circulation model. A special run of the GCM is made to save high-frequency winds and mixing statistics for the tracer model.

  14. JournalofAtmosphericChemistry14: 353-37,1, 1992, 1992 KluwerAcademicPublishers. Printedin theNetherlands.

    E-Print Network [OSTI]

    Jacob, Daniel J.

    JournalofAtmosphericChemistry14: 353-37,1, 1992, © 1992 KluwerAcademicPublishers. Printedin the of Oceanography University of Rhode Island Narragansett, RI 02882 USA. and MARK A. KRITZ Atmospheric Sciences Research Center State University of New York Albany, NY 12222 USA. ABSTRACT. The atmospheric distribution

  15. Thermodynamics of the Three-dimensional Black Hole with a Coulomb-like Field

    E-Print Network [OSTI]

    Alexis Larranaga; Luz Angela Garcia

    2008-11-21T23:59:59.000Z

    In this paper, we study the thermodynamical properties of the (2+1)dimensional black hole with a Coulomb-like electric field and the differential form of the first law of thermodynamics is derived considering a virtual displacement of its event horizon. This approach shows that it is possible to give a thermodynamical interpretation to the field equations near the horizon. The Lambda=0 solution is studied and its interesting thermodynamical properties are commented.

  16. E-Print Network 3.0 - analysis pathway thermodynamics Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Collection: Materials Science ; Physics 28 Comprehensive Analysis of Protein Folding Activation Thermodynamics Reveals a Universal Behavior Violated Summary:...

  17. A thermodynamic cycle more efficient than an infinite set of carnot engines operating between the same temperature levels

    E-Print Network [OSTI]

    Jose Belandria

    2009-01-06T23:59:59.000Z

    A theoretical thermodynamic cycle more efficient than an infinite set of Carnot engines is presented. This result is unexpected from the point of view of classical thermodynamics.

  18. Thermodynamics and Relativity: Possible Consequences of their Close Link

    E-Print Network [OSTI]

    Jean-Louis Tane

    2008-05-25T23:59:59.000Z

    The first part of this paper is a summary of a hypothesis previously advanced, suggesting the existence of a close link between thermodynamics and relativity. The second part is a preliminary comment about some possible consequences in the fields of physics, astronomy and biology.

  19. Thermodynamics of higher spin black holes in 3D

    E-Print Network [OSTI]

    Justin R. David; Michael Ferlaino; S. Prem Kumar

    2012-10-01T23:59:59.000Z

    We examine the thermodynamic properties of recently constructed black hole solutions in SL(3,R) x SL(3,R) Chern-Simons theory in the presence of a chemical potential for spin-3 charge, which acts as an irrelevant deformation of the dual CFT with W_3 x W_3 symmetry. The smoothness or holonomy conditions admit four branches of solutions describing a flow between two AdS_3 backgrounds corresponding to two different CFTs. The dominant branch at low temperatures, connected to the BTZ black hole, merges smoothly with a thermodynamically unstable branch and disappears at higher temperatures. We confirm that the UV region of the flow satisfies the Ward identities of a CFT with W_3^(2) x W_3^(2) symmetry deformed by a spin-3/2 current. This allows to identify the precise map between UV and IR thermodynamic variables. We find that the high temperature regime is dominated by a black hole branch whose thermodynamics can only be consistently inferred with reference to this W_3^(2) x W_3^(2) CFT.

  20. Thermodynamics and Universality for Mean Field Quantum Spin Glasses

    E-Print Network [OSTI]

    Nick Crawford

    2006-10-13T23:59:59.000Z

    We study aspects of the thermodynamics of quantum versions of spin glasses. By means of the Lie-Trotter formula for exponential sums of operators, we adapt methods used to analyze classical spin glass models to answer analogous questions about quantum models.

  1. THERMODYNAMIC AND TRANSPORT PROPERTIES OF SILICATE MELTS AND MAGMA

    E-Print Network [OSTI]

    Spera, Frank J.

    PROPERTIES5 Density and Equation of State6 Enthalpy, Entropy and Heat Capacity7 VI. MAGMA TRANSPORT-1- THERMODYNAMIC AND TRANSPORT PROPERTIES OF SILICATE MELTS AND MAGMA Charles E. Lesher PROPERTIES8 Magma Rheology9 Thermal Conductivity: Radiative and Phonon10 Diffusion: Self, Tracer and Chemical

  2. Conserved Charges and Thermodynamics of the Spinning Goedel Black Hole

    SciTech Connect (OSTI)

    Barnich, Glenn; Compere, Geoffrey [Physique Theorique et Mathematique, Universite Libre de Bruxelles, and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Brussels (Belgium)

    2005-07-15T23:59:59.000Z

    We compute the mass, angular momenta, and charge of the Goedel-type rotating black hole solution to five-dimensional minimal supergravity. A generalized Smarr formula is derived, and the first law of thermodynamics is verified. The computation rests on a new approach to conserved charges in gauge theories that allows for their computation at finite radius.

  3. Statistical Energy Analysis and the second principle of thermodynamics

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Statistical Energy Analysis and the second principle of thermodynamics Alain Le Bot Abstract Statistical Energy Analysis is a statistical method in vibroacoustics en- tirely based on the application discussed. 1 Introduction Statistical Energy Analysis [1, 2] is born from the application of statistical

  4. First Principles Contributions to the Thermodynamic Assessment of

    E-Print Network [OSTI]

    on Hydrogen Storage Materials Crystal Gateway Marriott, Crystal City, VA May 18, 2006 #12;Acknowledgements with Enhanced Hydrogen Storage Capacity DE-FC36-02AL67610- High Density Hydrogen Storage System Demonstration evaluations Theoretical Ground state structures Thermodynamic properties Phase diagrams/reactions OBSERVABLES

  5. Virial theorem and Gibbs thermodynamic potential for Coulomb systems

    SciTech Connect (OSTI)

    Bobrov, V. B., E-mail: vic5907@mail.ru, E-mail: satron@mail.ru [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya St. 13, Bd. 2, Moscow 125412 (Russian Federation); National Research University “MPEI,” Krasnokazarmennaya str. 14, Moscow 111250 (Russian Federation); Trigger, S. A., E-mail: vic5907@mail.ru, E-mail: satron@mail.ru [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya St. 13, Bd. 2, Moscow 125412 (Russian Federation); Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, Berlin D-12489 (Germany)

    2014-10-15T23:59:59.000Z

    Using the grand canonical ensemble and the virial theorem, we show that the Gibbs thermodynamic potential of the non-relativistic system of charged particles is uniquely defined by single-particle Green functions of electrons and nuclei. This result is valid beyond the perturbation theory with respect to the interparticle interaction.

  6. Thermodynamics of Protein Folding from Coarse-Grained Models' Perspectives

    E-Print Network [OSTI]

    Janke, Wolfhard

    8 Thermodynamics of Protein Folding from Coarse-Grained Models' Perspectives Michael Bachmann applications. In this lecture, we focus on the anal- ysis of mesoscopic models for protein folding, aggregation for a more universal description of the notoriously difficult problem of protein fold- ing. In this approach

  7. THERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION

    E-Print Network [OSTI]

    Boyer, Edmond

    , heat and mass transfer, drying, pyrolysis, combustion of pyrolysis gases, combustion and gasificationTHERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION Y. ME´ NARD, A Me´tallurgie (LSG2M) Nancy, France T he incineration of municipal solid waste (MSW) contributes

  8. Thermodynamic modeling of CatLiq biomass conversion process

    E-Print Network [OSTI]

    Toor, Saqib

    with fixed-bed reactor. Results Aim Measurement and Prediction of bubble point pressures of selected model Reactor Trimheater Pressure reduction Separator Circulation pump Thermodynamic model The results were. The proposed algorithm for bubble pressure calculation Yes No No Yes Specify liquid mole fraction xi

  9. Resummed thermodynamic perturbation theory for bond cooperativity in associating fluids

    E-Print Network [OSTI]

    B. D. Marshall; W. G. Chapman

    2013-09-18T23:59:59.000Z

    We develop a resummed thermodynamic perturbation theory for bond cooperativity in associating fluids by extension of Wertheim's multi - density formalism. We specifically consider the case of an associating hard sphere with two association sites and both pairwise and triplet contributions to the energy. To test the theory we perform new monte carlo simulations. Theory and simulation are found to be in excellent agreement.

  10. A First Law Thermodynamic Analysis of Biodiesel Production From Soybean

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    A First Law Thermodynamic Analysis of Biodiesel Production From Soybean Tad W. Patzek Department@mail.utexas.edu April 13, 2009 Abstract A proper First Law energy balance of the soybean biodiesel cycle shows that the overall efficiency of biodiesel production is 0.18, i.e., only 1 in 5 parts of the solar energy

  11. Thermodynamical properties of a rotating ideal Bose gas Sebastian Kling*

    E-Print Network [OSTI]

    Pelster, Axel

    potential becomes sombrero shaped. We present an analysis for an ideal Bose gas that is confined and determine the criti- cal temperature, the condensate fraction, and the heat capac- ity of the Bose gasThermodynamical properties of a rotating ideal Bose gas Sebastian Kling* Institut fĂĽr Angewandte

  12. Nonequilibrium thermodynamics of interfaces using classical density functional theory

    E-Print Network [OSTI]

    Kjelstrup, Signe

    resistivities. The interfacial resistivities for heat transfer, for mass transfer, and for the coupling of heat and condensation.5,6 This description finds that the thermodynamic driving forces are linear functions of the heat the measurable heat fluxes differ on both sides. It is important to take the coupling between the heat and mass

  13. Entropy Calculations and the Third Law of Thermodynamics Chemistry 223

    E-Print Network [OSTI]

    Ronis, David M.

    Entropy Calculations and the Third Law of Thermodynamics Chemistry 223 1. Entropy Calculations I We heat of fusion, sublimation, or vaporization) is added to the system, with no resulting change, 2014 #12;Entropy Calculations and the Third Law -2- Chemistry 223 STiT f = T0 Ti CP,i(T, P, N) T d

  14. Molecular Thermodynamics of Asphaltene Precipitation in Reservoir Fluids

    E-Print Network [OSTI]

    Wu, Jianzhong

    Molecular Thermodynamics of Asphaltene Precipitation in Reservoir Fluids Jianzhong Wu and John M the- ory, is used to correlate experimental asphaltene-precipitation data at high-temperature and pressure conditions. In this framework, asphaltenes and resins are represented by pseudopure components

  15. Molecular-Thermodynamic Framework for Asphaltene-Oil Equilibria

    E-Print Network [OSTI]

    Wu, Jianzhong

    Molecular-Thermodynamic Framework for Asphaltene-Oil Equilibria Jianzhong Wu and John M. Prausnitz 94304 Asphaltene precipitation is a perennial problem in producing and rejming crude oils. To avoid precipitation, it is usefid to know the solubility of asphaltenes in petroleum liquids as a function

  16. Classical thermodynamics of particles in harmonic traps Martin Ligarea

    E-Print Network [OSTI]

    Ligare, Martin

    , and the heat capacities. I also consider cyclic thermodynamic processes in a harmonically confined gas. © 2010 of state for a gas of N noninteract- ing particles in a rigid volume V is derived in almost every text and pressure vary with position within such traps, and the volume of the gas is not well defined

  17. Thermodynamic route to field equations in Lanczos-Lovelock gravity

    SciTech Connect (OSTI)

    Paranjape, Aseem; Sarkar, Sudipta; Padmanabhan, T. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400 005 (India); IUCAA, Post Bag 4, Ganeshkhind, Pune-411 007 (India)

    2006-11-15T23:59:59.000Z

    Spacetimes with horizons show a resemblance to thermodynamic systems and one can associate the notions of temperature and entropy with them. In the case of Einstein-Hilbert gravity, it is possible to interpret Einstein's equations as the thermodynamic identity TdS=dE+PdV for a spherically symmetric spacetime and thus provide a thermodynamic route to understand the dynamics of gravity. We study this approach further and show that the field equations for the Lanczos-Lovelock action in a spherically symmetric spacetime can also be expressed as TdS=dE+PdV with S and E given by expressions previously derived in the literature by other approaches. The Lanczos-Lovelock Lagrangians are of the form L=Q{sub a}{sup bcd}R{sup a}{sub bcd} with {nabla}{sub b}Q{sub a}{sup bcd}=0. In such models, the expansion of Q{sub a}{sup bcd} in terms of the derivatives of the metric tensor determines the structure of the theory and higher order terms can be interpreted as quantum corrections to Einstein gravity. Our result indicates a deep connection between the thermodynamics of horizons and the allowed quantum corrections to standard Einstein gravity, and shows that the relation TdS=dE+PdV has a greater domain of validity than Einstein's field equations.

  18. Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes: A Predictive Model through Computations

    SciTech Connect (OSTI)

    Chen, Shentan; Rousseau, Roger J.; Raugei, Simone; Dupuis, Michel; DuBois, Daniel L.; Bullock, R. Morris

    2011-11-28T23:59:59.000Z

    Prediction of thermodynamic quantities such as redox potentials and homolytic and heterolytic metal hydrogen bond energies is critical to the a priori design of molecular catalysts. In this paper we expound upon a density functional theory (DFT)-based isodesmic methodology for the accurate computation of the above quantities across a series of Ni(diphosphine)2 complexes compounds that are potential catalysts for production of H2 from protons and electrons, or oxidation of H2 to electrons and protons. Isodesmic schemes give relative free energies between the complex of interest and a reference system. A natural choice is to use as a reference a compound that shares similarities with the chemical species under study and for which the properties of interest have been measured with accuracy. However, this is not always possible as in the case of the Ni complexes considered here where data are experimentally available for only some species. To overcome this difficulty we employed a theoretical reference compound, Ni(PH3)4, which is amenable to highly accurate electron-correlated calculations, which allows one to explore thermodynamics properties even when no experimental input is accessible. The reliability of this reference is validated against the available thermodynamics data in acetonitrile solution. Overall the proposed protocol yields excellent accuracy for redox potentials (~ 0.10 eV of accuracy), for acidities (~1.5 pKa units of accuracy), for hydricities (~2 kcal/mol of accuracy), and for homolytic bond dissociation free energies (~ 1-2 kcal/mol of accuracy). The calculated thermodynamic properties are then analyzed for a broad set of Ni complexes. The power of the approach is demonstrated through the validation of previously reported linear correlations among properties. New correlations are revealed. It emerges that only two quantities, the Ni(II)/Ni(I) and Ni(I)/Ni(0) redox potentials (which are easily accessible experimentally), suffice to predict with high confidence the energetics of all relevant species involved in the catalytic cycles for H2 oxidation and production. The approach is extendable to other transition metal complexes. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  19. Thermodynamics for Systems Biology Peter Salamon, Anna Salamon, and Andrzej Konopka

    E-Print Network [OSTI]

    Salamon, Peter

    1 Thermodynamics for Systems Biology Peter Salamon, Anna Salamon, and Andrzej Konopka Department to thermodynamics designed specifically for the needs of the systems biologist. It departs from modern treatments of the subject that have to do with modeling, i.e. to communicate thermodynamics as a body of worldviews, methods

  20. THERMODYNAMICS AND STATISTICAL PHYSICS Fall 2014, T,R 9:30-10:45, CP397

    E-Print Network [OSTI]

    MacAdam, Keith

    THERMODYNAMICS AND STATISTICAL PHYSICS Fall 2014, T,R 9:30-10:45, CP397 Professor Joseph Brill, CP in the Science Library: 1) "Heat and Thermodynamics, an intermediate textbook", by Zemansky and Dittman. 2 Thermodynamics: Engines, Refrigerators, and Cryogenics: Schroeder 4.1-4.4 Course Grading Homework