National Library of Energy BETA

Sample records for research areas scientific

  1. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, developing, and deploying computational and networking capabilities to analyze, model,...

  2. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Scientific Computing Research Advanced Scientific Computing Research Discovering, developing, and deploying computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to the Department of Energy. Get Expertise Pieter Swart (505) 665 9437 Email Pat McCormick (505) 665-0201 Email Dave Higdon (505) 667-2091 Email Fulfilling the potential of emerging computing systems and architectures beyond today's tools and techniques to deliver

  3. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  4. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three...

  5. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    SciTech Connect (OSTI)

    Saffer, Shelley I.

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  6. NERSC National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Energy Research Scientific Computing Center 2007 Annual Report National Energy Research Scientific Computing Center 2007 Annual Report Ernest Orlando Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720-8148 This work was supported by the Director, Office of Science, Office of Ad- vanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. LBNL-1143E, October 2008 iii National Energy Research Scientific Computing

  7. Scientific Themes | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Themes Scientific Themes The Photosynthetic Antenna Research Center (PARC) is focused on a basic science approach to understanding the process of light collection in natural,...

  8. National Energy Research Scientific Computing Center (NERSC)...

    Office of Science (SC) Website

    NERSC also works with scientific communities to deploy and develop web-based portals to help scientists analyze large datasets. Science NERSC supports the largest research ...

  9. National Energ y Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Report This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC 03-76SF00098. LBNL-49186, December 2001 National Energ y Research Scientific Computing Center 2001 Annual Report NERSC aspires to be a world leader in accelerating scientific discovery through computation. Our vision is to provide high- performance computing tools to tackle science's biggest and most challenging

  10. Commonwealth Scientific and Industrial Research Organisation - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Electricity Transmission Electricity Transmission Return to Search Commonwealth Scientific and Industrial Research Organisation National Renewable Energy Laboratory Success Story Details Partner Location Agreement Type Publication Date CSIRO Australia Other March 16, 2015 Summary NREL has joined forces with Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) to develop a plug-and-play technology that will result in newly connected solar

  11. Scientific Exchange Program | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program Scientific Exchange Program Applications due February

  12. Laboratory Scientific Focus Area Guidance | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Scientific Focus Area Guidance Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Benefits of BER Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search / Public Abstracts Additional Requirements and Guidance for Digital Data Management Peer Review Policy Grants & Contracts Guidance Laboratory Scientific Focus Area Guidance SBIR/STTR Funding Opportunities Merit Review of BER

  13. Computers as Scientific Peers | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computers as Intellectual Peers in Scientific Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Computers as Intellectual Peers in Scientific Research Emily LeBlanc 2015.09.03 One of the most exciting futurist notions is a machine that can think like a human. Although we are not presently able to have true

  14. National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Annual Report Ernest Orlando Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720-8148 This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Cover Image Credits: front cover, main image: Ken Chen, University of California, Santa Cruz (story, p. 34) front cover, left to right: Burlen Loring, Lawrence Berkeley National Laboratory (story, p. 42);

  15. Scientific Advisory Committee | Photosynthetic Antenna Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marion Thurnauer Scientific Advisory Committee Member Read more about Marion Thurnauer Thomas Moore Thomas Moore Scientific Advisory Committee Chair Read more about Thomas Moore...

  16. A Study of Transport Protocols for Wide Area Scientific Applications

    SciTech Connect (OSTI)

    Vishal Misra

    2011-03-01

    This is the final project report of award "A Study of Transport Protocols for Wide Area Scientific Applications", given by DOE in 2003 to Vishal Misra at Columbia University.

  17. Audit of Acquisition of Scientific Research at Ames Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ON AUDIT OF ACQUISITION OF SCIENTIFIC RESEARCH AT AMES LABORATORY TABLE OF CONTENTS ......... 2 Scope and Methodology...... 2 ...

  18. Scientific Research Data | OSTI, US Dept of Energy, Office of Scientific

    Office of Scientific and Technical Information (OSTI)

    and Technical Information Scientific Research Data Scientific Research Data DOE generates scientific research data in many forms, both text and non-text. Much of the Department's text-based R&D results are readily available via OSTI databases. OSTI has broadened efforts to make non-text scientific and technical information (STI) available as well, providing access to underlying non-text data such as numeric files, computer simulations and interactive maps, as well as multimedia and

  19. Scientific Advisory Committee | Photosynthetic Antenna Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lagarias Scientific Advisory Committee Member E-mail: jclagarias@ucdavis.edu Thomas Moore Thomas Moore Scientific Advisory Committee Chair E-mail: tom.moore@asu.edu Phone:...

  20. NREL: News - Scientific American' Recognizes Solar Cell Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American' Recognizes Solar Cell Research Monday November 11, 2002 Magazine Names NREL to its First "Scientific American 50" List Golden, CO. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has been named by Scientific American magazine as one of the Scientific American 50 - the noted magazine's first list recognizing annual contributions to science and technology that provide a vision of a better future. Announced today, the Scientific American

  1. Scientific Exchange Application | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program / Scientific Exchange Application Scientific Exchange Application Please read all instructions before submitting your application. Interested applicants should complete the following application and provide the materials requested below. The PARC Steering Committee will evaluate these proposals and select those that offer the best chance to lead to new directions and publishable results. An effort will be made to achieve some balance in the various types of exchanges

  2. Secretary Bodman in Illinois Highlights Scientific Research Investments to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advance America's Innovation | Department of Energy Illinois Highlights Scientific Research Investments to Advance America's Innovation Secretary Bodman in Illinois Highlights Scientific Research Investments to Advance America's Innovation April 11, 2007 - 12:36pm Addthis ROMEOVILLE, IL - U.S. Secretary of Energy Samuel Bodman today joined Rep. Judy Biggert (IL-13th) at a technology firm in Illinois to highlight scientific research investments that have led to partnerships between DOE's

  3. Research Subject Areas for IGPPS Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Subject Areas Research Subject Areas for IGPPS Proposals High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and...

  4. National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated Workflows for New LHC Era Researchers working on ATLAS, one of the Large Hadron Collider's largest experiments, are using updated workflow management tools developed ...

  5. Educating Scientifically - Advances in Physics Education Research

    ScienceCinema (OSTI)

    Finkelstein, Noah [University of Colorado, Colorado, USA

    2009-09-01

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  6. Final Scientific/Technical Report Development of Large-Area Photo...

    Office of Scientific and Technical Information (OSTI)

    Final ScientificTechnical Report Development of Large-Area Photo-Detectors Citation Details In-Document Search Title: Final ScientificTechnical Report Development of Large-Area...

  7. 1993 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    1993-12-31

    This report provides a summary of many of the research projects completed by the Santa Fe Institute (SFI) during 1993. These research efforts continue to focus on two general areas: the study of, and search for, underlying scientific principles governing complex adaptive systems, and the exploration of new theories of computation that incorporate natural mechanisms of adaptation (mutation, genetics, evolution).

  8. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    High Energy Density Laboratory Plasmas / Research Areas Research Areas High Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought in the following subfields and cross-cutting areas of HEDLP: High Energy Density Hydrodynamics Specific areas of interest include, but are not limited to, turbulent mixing, probing properties of high energy density (HED) matter through hydrodynamics, solid-state hydrodynamics at high pressures, new hydrodynamic

  9. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Laser User Facilities Program / Research Areas Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma

  10. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Laser Users' Facility Grant Program / Research Areas Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma

  11. Laboratory Directed Research & Development Page National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directed Research & Development Page National Energy Research Scientific Computing Center T3E Individual Node Optimization Michael Stewart, SGI/Cray, 4/9/98 * Introduction * T3E Processor * T3E Local Memory * Cache Structure * Optimizing Codes for Cache Usage * Loop Unrolling * Other Useful Optimization Options * References 1 Laboratory Directed Research & Development Page National Energy Research Scientific Computing Center Introduction * Primary topic will be single processor

  12. Scientific Guidance, Research, and Educational Outreach for the ARM Climate Research Facility (ACRF) in the Southern Great Plains

    SciTech Connect (OSTI)

    Lamb, Peter J.

    2013-06-13

    Scientific Guidance, Research, and Educational Outreach for the ARM Climate Research Facility (ACRF) in the Southern Great Plains

  13. Our SSLS EFRC's Scientific Research Challenges and Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSLS EFRC's Scientific Research Challenges and Publications - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  14. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Stewardship Science Academic Alliances / Research Areas Research Areas Properties of Materials under Extreme Conditions and Hydrodynamics During open solicitations research proposals are solicited for grants and Centers of Excellence in the area of fundamental properties and response of materials under extreme conditions (condensed matter physics and materials science, hydrodynamics and fluid dynamics). Extreme conditions include material response when subjected to one or more of the following:

  15. Research Subject Areas for CSES Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Subject Areas Research Subject Areas for CSES Proposals High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia D. Sanchez (505) 665-0855 Email Science Discipline Leaders Astrophysics & Cosmology Hui Li (505) 665-3131 Email Climate Keeley Costigan (505) 665-4788 Email Geophysics David Coblentz (505) 667-2781 Email Space

  16. Barbara Helland, Facilities Division Director Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barbara Helland, Facilities Division Director Advanced Scientific Computing Research June 10-12, 2015 HEP Requirements Review ASCR F acili+es D ivision * Providing t he F acility - H igh---End a nd L eadership C ompu5ng - Na5onal E nergy R esearch S cien5fic C ompu5ng C enter ( NERSC) at L awrence B erkeley Na+onal L aboratory * Delivers h igh---end c apacity c ompu+ng t o e n+re D OE S C r esearch c ommunity * Over 5 000 u sers a nd 4 00 p rojects - Leadership C ompu5ng C enters a t A rgonne N

  17. Sandia Energy - Our SSLS EFRC's Scientific Research Challenges...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSL technology, and to ultimately enable significant advances in the efficiency with which SSL is produced and used. We do this through the seven scientific...

  18. NERSC Role in Advanced Scientific Computing Research Katherine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using CHIMERA. NISE: NERSC Initiative for Scientific Exploration * NERSC Users: Open process for 10% NERSC time * Modeled after original INCITE program from NERSC: -...

  19. ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop

    SciTech Connect (OSTI)

    Peisert, Sean; Potok, Thomas E.; Jones, Todd

    2015-06-03

    At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues included research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the three topics and a representative of each of the four major DOE Office of Science Advanced Scientific Computing Research Facilities: the Argonne Leadership Computing Facility (ALCF), the Energy Sciences Network (ESnet), the National Energy Research Scientific Computing Center (NERSC), and the Oak Ridge Leadership Computing Facility (OLCF). The rest of the workshop consisted of topical breakout discussions and focused writing periods that produced much of this report.

  20. Advanced Scientific Computing Research (ASCR) Homepage | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) ASCR Home Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: Email Us More Information » Panel lays out top 10 list of

  1. Proceedings of RIKEN BNL Research Center Workshop, Volume 91, RBRC Scientific Review Committee Meeting

    SciTech Connect (OSTI)

    Samios,N.P.

    2008-11-17

    The ninth evaluation of the RIKEN BNL Research Center (RBRC) took place on Nov. 17-18, 2008, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Dr. Wit Busza (Chair), Dr. Miklos Gyulassy, Dr. Akira Masaike, Dr. Richard Milner, Dr. Alfred Mueller, and Dr. Akira Ukawa. We are pleased that Dr. Yasushige Yano, the Director of the Nishina Institute of RIKEN, Japan participated in this meeting both in informing the committee of the activities of the Nishina Institute and the role of RBRC and as an observer of this review. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on his/her research efforts. This encompassed three major areas of investigation, theoretical, experimental and computational physics. In addition the committee met privately with the fellows and postdocs to ascertain their opinions and concerns. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  2. Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Where can I find DOE research results? OSTI delivers free public access to DOE R&D results. Science, technology, and engineering research from DOE DOEOSTI--C187 0915 OSTI...

  3. Qualitative study of African-American job satisfaction in a scientific/technical research environment

    SciTech Connect (OSTI)

    Krossa, C.D.

    1996-09-01

    Many studies have been conducted in the area of job satisfaction. Its necessary attributes sor components have been studied, analyzed, validated, standardized, and normed, onpredominantly white male populations. Few of these studies have focused on people of color, specifically African-Americans, and fewer still on those African-Americans working in a high-tech, scientific and research environments. The researchers have defined what is necessary for the current dominent culture`s population, but are their findings applicable and valid for our nation`s other cultures and ethnic groups? Among the conclusions: the subjects felt that there was no real difference in job satisfiers from their white colleagues; however the subjects had the sense of community (African-American) and the need to give back to it. Frustrations included politics, funding, and lack of control.

  4. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Magnetized High Energy Density Plasma Physics Specific areas of interest include, but are ... Relativistic HED Plasmas and Intense Beam Physics Specific areas of interest include, but ...

  5. National Energy Research Scientific Computing Center | U.S. DOE...

    Office of Science (SC) Website

    a web form known as the ERCAP (Energy Research Computing Allocations Process) Request Form. ERCAP is accessed through the NERSC Information Management (NIM) External link web ...

  6. The National Energy Research Scientific Computing Center: Forty...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing in Science & Engineering 1521-96151531.00 2015 IEEE Copublished by the IEEE CS and the AIP MayJune 2015 Guest editors' introduction The National Energy Research...

  7. Public Access to the Results of DOE-Funded Scientific Research

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-02-22

    In a February 22, 2013, memorandum "Increasing Access to the Results of Federally Funded Scientific Research," John Holdren, Director of the White House Office of Science and Technology Policy (OSTP), directed Federal agencies to develop and implement plans for increasing public access to the full-text version of final, peer-reviewed publications and digital research data resulting from agency funded research.

  8. Research Areas | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Areas Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Print Text Size: A A A FeedbackShare Page To meet the challenge of supporting basic research programs that are also energy relevant, the Division manages portfolio components that consist of distinct Core Research Activities

  9. Research Areas | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Print Text Size: A A A FeedbackShare Page To meet the challenge of supporting basic research programs that are also energy relevant, the Division manages portfolio components that consist of distinct Core Research Activities

  10. National Energy Research Scientific Computing Center | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) National Labs, Profiles, and Contacts » National Energy Research Scientific Computing Center (NERSC) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) Applicant and Awardee Resources Quick Links DOE SBIR Online Learning Center External link DOE Phase 0 Small Business Assistance External link Preparing and Submitting a Phase I Letter of Intent Preparing a DOE SBIR/STTR Phase I

  11. Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan

    SciTech Connect (OSTI)

    Goff, F.; Nielson, D.L.

    1986-05-01

    Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

  12. Final Scientific/Technical Report – DE-FG02-06ER64172 – Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center – Subproject to Co-PI Eric E. Roden

    SciTech Connect (OSTI)

    Eric E. Roden

    2009-03-17

    This report summarizes research conducted in conjunction with a project entitled “Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2. Area 2 is a shallow pathway for migration of contaminated groundwater to seeps in the upper reach of Bear Creek at ORNL, mainly through a ca. 1 m thick layer of gravel located 4-5 m below the ground surface. The gravel layer is sandwiched between an overlying layer of disturbed fill material, and 2-3 m of undisturbed shale saprolite derived from the underlying Nolichucky Shale bedrock. The fill was put in place when contaminated soils were excavated and replaced by native saprolite from an uncontaminated area within Bear Creek Valley; the gravel layer was presumably installed prior to addition of the fill in order to provide a stable surface for the operation of heavy machinery. The undisturbed saprolite is highly weathered bedrock that has unconsolidated character but retains much of the bedding and fracture structure of the parent rock (shale with interbedded limestone). Hydrological tracer studies conducted during the Scheibe et al. field project indicate that the gravel layer receives input of uranium from both upstream sources and from diffusive mass transfer out of highly contaminated fill and saprolite materials above and below the gravel layer. This research sought to examine biogeochemical processes likely to take place in the less conductive materials above and below the gravel during the in situ ethanol biostimulation experiment conducted at Area 2 during 2005-2006. The in situ experiment in turn examined the hypothesis that injection of electron donor into this layer would induce formation of a redox barrier in the less conductive materials, resulting in decreased mass transfer of uranium out these materials and attendant declines in groundwater U(VI) concentration. Our research was directed toward the following three major objectives relevant to formation of this redox barrier: (1) elucidate the kinetics and mechanisms of reduction of solid-phase Fe(III) and U(VI) in Area 2 sediments; (2) evaluate the potential for long-term sustained U(IV) reductive immobilization in Area 2 sediments; (3) numerically simulate the suite of hydrobiogeochemical processes occurring in experimental systems so as to facilitate modeling of in situ U(IV) immobilization at the field-scale.

  13. Barbara Helland Advanced Scientific Computing Research NERSC-HEP Requirements Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7-28, 2012 Barbara Helland Advanced Scientific Computing Research NERSC-HEP Requirements Review 1 Science C ase S tudies d rive d iscussions Program R equirements R eviews  Program offices evaluated every two-three years  Participants include program managers, PI/ Scientists, ESnet/NERSC staff and management  User-driven discussion of science opportunities and needs  What: Instruments and facilities, data scale, computational requirements  How: science process, data analysis,

  14. Plant Products a Growing Research Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Products a Growing Research Area Plant Products a Growing Research Area October 13, 2015 - 1:15am Addthis <i>Plastic water bottles are among the products that some companies are now producing with bio-based chemicals instead of fossil fuels. The Energy Department’s Bioenergy Technologies Office is researching ways that bioproducts can improve the economics of new types of biofuels. | Photo courtesy of Quinn Dombrowski, Flickr creative commons license.</i> Plastic water

  15. Final Scientific/Technical Report: National Institute for Climatic Change Research Coastal Center

    SciTech Connect (OSTI)

    Tornqvist, Torbjorn; Chambers, Jeffrey

    2014-01-07

    It is widely recognized that coastal environments are under particular threat due to changes associated with climate change. Accelerated sea-level rise, in some regions augmented by land subsidence, plus the possibility of a changing storm climate, renders low-lying coastal landscapes and their ecosystems vulnerable to future change. This is a pressing problem, because these ecosystems commonly rank as some of the most valuable on the planet. The objective of the NICCR Coastal Center was to support basic research that aims at reducing uncertainty about ecosystem changes during the next century, carried out along the U.S. coastlines. The NICCR Coastal Center has funded 20 projects nationwide (carried out at 27 institutions) that addressed numerous aspects of the problems outlined above. The research has led to a variety of new insights, a significant number of which published in elite scientific journals. It is anticipated that the dissemination of this work in the scientific literature will continue for several more years, given that a number of projects have only recently reached their end date. In addition, NICCR funds have been used to support research at Tulane University. The lions share of these funds has been invested in the development of unique facilities for experimental research in coastal ecosystems. This aspect of the work could have a lasting impact in the future.

  16. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect (OSTI)

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  17. 1992 annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute`s book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems-the focus of work at SFI-involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.

  18. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect (OSTI)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  19. Enhancing Seismic Calibration Research Through Software Automation and Scientific Information Management

    SciTech Connect (OSTI)

    Ruppert, S D; Dodge, D A; Ganzberger, M D; Harris, D B; Hauk, T F

    2009-07-07

    The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Development (GNEMRD) Program at LLNL continues to make significant progress enhancing the process of deriving seismic calibrations and performing scientific integration, analysis, and information management with software automation tools. Our tool efforts address the problematic issues of very large datasets and varied formats encountered during seismic calibration research. New information management and analysis tools have resulted in demonstrated gains in efficiency of producing scientific data products and improved accuracy of derived seismic calibrations. In contrast to previous years, software development work this past year has emphasized development of automation at the data ingestion level. This change reflects a gradually-changing emphasis in our program from processing a few large data sets that result in a single integrated delivery, to processing many different data sets from a variety of sources. The increase in the number of sources had resulted in a large increase in the amount of metadata relative to the final volume of research products. Software developed this year addresses the problems of: (1) Efficient metadata ingestion and conflict resolution; (2) Automated ingestion of bulletin information; (3) Automated ingestion of waveform information from global data centers; and (4) Site Metadata and Response transformation required for certain products. This year, we also made a significant step forward in meeting a long-standing goal of developing and using a waveform correlation framework. Our objective for such a framework is to extract additional calibration data (e.g. mining blasts) and to study the extent to which correlated seismicity can be found in global and regional scale environments.

  20. Engineering research, development and technology. Thrust area report, FY93

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  1. Final Scientific/Technical Report Development of Large-Area Photo...

    Office of Scientific and Technical Information (OSTI)

    very large-area planar photodetectors. The proposed detectors have integrated transmission-line readout and sampling electronics able to achieve timing and position...

  2. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  3. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  4. PARC - Scientific Exchange Program (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Blankenship, Robert E. (Director, Photosynthetic Antenna Research Center); PARC Staff

    2011-11-03

    'PARC - Scientific Exchange Program' was submitted by the Photosynthetic Antenna Research Center (PARC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  5. Plutonium Focus Area research and development plan. Revision 1

    SciTech Connect (OSTI)

    1996-11-01

    The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

  6. 2015 Scientific Advisory Committee Meeting | Photosynthetic Antenna

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Center Scientific Advisory Committee Meeting 2015 Scientific Advisory Committee Meeting June 25, 2015

  7. Mark Mathias > General Motors - Fuel Cell Research > Scientific Advisory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Board > The Energy Materials Center at Cornell Mark Mathias General Motors - Fuel Cell Research

  8. Office of Science Priority Research Areas for SCGSR Program | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Office of Science Priority Research Areas for SCGSR Program DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Identifying a Collaborating DOE Laboratory Scientist Research Proposal Guidelines Office of Science Priority Research Areas for SCGSR Program About the Office of Science Office of Science User Facilities Priority Areas For Past SCGSR Solicitations Letters of Support Graduate

  9. U.S. Department of Energy Increases Access to Results of DOE-funded Scientific Research

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has launched PAGES, an online resource to increase access to scholarly publications and digital data resulting from Department-funded research.

  10. DOE research makes big bang | OSTI, US Dept of Energy, Office of Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Technical Information research makes big bang Feature Archive Saul Perlmutter Photo Courtesy of Lawrence Berkeley National Laboratory Saul Perlmutter has been awarded the 2011 Nobel Prize in Physics for his breakthrough research at Lawrence Berkeley National Laboratory. He cofounded the Supernova Cosmology Project (SCP) in 1988, with the breakthrough coming ten years later. The SCP pioneered the methods used to discover the accelerating expansion of the universe through observations of

  11. Final Scientific/ Technical Report. Playas Grid Reliability and Distributed Energy Research

    SciTech Connect (OSTI)

    Romero, Van; Weinkauf, Don; Khan, Mushtaq; Helgeson, Wes; Weedeward, Kevin; LeClerc, Corey; Fuierer, Paul

    2012-06-30

    The future looks bright for solar and renewable energies in the United States. Recent studies claim that by 2050, solar power could supply a third of all electricity demand in the country’s western states. Technology advances, soft policy changes, and increased energy consciousness will all have to happen to achieve this goal. But the larger question is, what would it take to do more throughout the United States? The studies tie future solar and renewable growth in the United States to programs that aim to lower the soft costs of solar adoption, streamline utility interconnections, and increase technology advances through research and development. At the state and local levels, the most important steps are; Net metering: Net metering policies lets customers offset their electric bills with onsite solar and receive reliable and fair compensation for the excess electricity they provide to the grid. Not surprisingly, what utilities consider fair is not necessarily a rate that’s favorable to solar customers; Renewable portfolio standards (RPS): RPS policies require utilities to provide a certain amount of their power from renewable sources; some set specific targets for solar and other renewables. California’s aggressive RPS of 33% renewable energy by 2020 is not bankrupting the state, or its residents; Strong statewide interconnection policies: Solar projects can experience significant delays and hassles just to get connected to the grid. Streamlined feasibility and impact analysis are needed. Good interconnection policies are crucial to the success of solar or renewable energy development; Financing options: Financing is often the biggest obstacle to solar adoption. Those obstacles can be surmounted with policies that support creative financing options like third-party ownership (TPO) and property assessed clean energy (PACE). Attesting to the significance of TPO is the fact that in Arizona, it accounted for 86% of all residential photovoltaic (PV) installations in Q1 2013. Policies beyond those at the state level are also important for solar. The federal government must play a role including continuation of the federal Investment tax credit, responsible development of solar resources on public lands, and support for research and development (R&D) to reduce the cost of solar and help incorporate large amounts of solar into the grid. The local level can’t be ignored. Local governments should support: solar rights laws, feed-in tariffs (FITs), and solar-friendly zoning rules. A great example of how effective local policies can be is a city like Gainesville, Florida , whose FIT policy has put it on the map as a solar leader. This is particularly noteworthy because the Sunshine State does not appear anywhere on the list of top solar states, despite its abundant solar resource. Lancaster, California, began by streamlining the solar permitting process and now requires solar on every new home. Cities like these point to the power of local policies, and the ability of local governments to get things done. A conspicuously absent policy is Community Choice energy, also called community choice aggregation (CCA). This model allows local governments to pool residential, business, and municipal electricity loads and to purchase or generate on their behalf. It provides rate stability and savings and allows more consumer choice and local control. The model need not be focused on clean energy, but it has been in California, where Marin Clean Energy, the first CCA in California, was enabled by a state law -- highlighting the interplay of state and local action. Basic net metering8 has been getting a lot of attention. Utilities are attacking it in a number of states, claiming it’s unfair to ratepayers who don’t go solar. On the other hand, proponents of net metering say utilities’ fighting stance is driven by worries about their bottom line, not concern for their customers. Studies in California, Vermont , New York and Texas have found that the benefits of net metering (like savings on investments in infrastructure and on meeting state renewables requirements) outweigh the costs (like the lowered revenue to cover utility infrastructure costs). Many are eagerly awaiting a California Public Utilities Commission study due later this year, in the hopes that it will provide a relatively unbiased look at the issue. Meanwhile, some states continue to pursue virtual net metering policies. Under Colorado’s Solar Gardens Act, for example, utility customers can subscribe to power generated somewhere other than their own homes. The program allowed by that bill sold out in 30 minutes, evidence of the pent-up demand for this kind of arrangement. And California solar advocates are hoping for passage of a “shared renewables” bill in that state, which would provide for similar solar are significant in bringing solar power to the estimated 75% (likely a conservative number) of can’t put solar on our own roof. As great a resource as the sun is, when it comes to actually implementing solar or other renewables, technology advances, policy changes, bureaucratic practices, and increased energy consciousness will all have to happen to achieve a 30% by 2050 national goal. This project incorporated research activities focused on addressing each of these challenges. First, the project researchers evaluated several leading edge solar technologies by actually implementing these technologies at Playas, New Mexico, a remote town built in the 1970s by Phelps Dodge Mining Company for the company’s employees. This town was purchased by the New Mexico Institute of Mining and Technology in 2005 and converted to a training and research center. Playas is an all-electric town served by a substation about seven miles away. The town is the last user on a 240 kV utility transmission line owned by the Columbus Electric Cooperative (CEC) making it easy to isolate for experiment purposes. The New Mexico Institute of Mining and Technology (NMT) and the Department of Homeland Security (DHS) perform various training and research activities at this site. Given its unique nature, Playas was chosen to test Micro-Grids and other examples of renewable distributed energy resources (DER). Several proposed distributed energy sources (DERs) were not implemented as planned including the Micro-Grid. However, Micro-Grid design and computer modeling were completed and these results are included in this report. As part of this research, four PV (solar) generating systems were installed with remote Internet based communication and control capabilities. These systems have been integrated into and can interact with the local grid So that (for example) excess power produced by the solar arrays can be exported to the utility grid. Energy efficient LED lighting was installed in several buildings to further reduce consumption of utility-supplied power. By combining reduced lighting costs; lowering HVAC loads; and installing smart PV generating equipment with energy storage (battery banks) these systems can greatly reduce electrical usage drawn from an older rural electrical cooperative (Co-Op) while providing clean dependable power. Several additional tasks under this project involved conducting research to develop methods of producing electricity from organic materials (i.e. biofuels, biomass. etc.), the most successful being the biodiesel reactor. Improvements with Proton Exchange Membranes (PEM) for fuels cells were demonstrated and advances in Dye Sensitized Solar Cells (DSSC) were also shown. The specific goals of the project include; Instrumentation of the power distribution system with distributed energy resources, demand-side control and intelligent homes within the town of Playas, NM; Creation of models (power flow and dynamic) of the Playas power distribution system; Validation of the models through comparison of predicted behavior to data collected from instrumentation; and Utilization of the models and test grid to characterize the impact of new devices and approaches (e.g., distributed generation and load management) on the local distribution system as well as the grid at large. In addition to the above stated objectives, the research also focused on three critical challenges facing renewable distributed energy platforms: 1) hydrogen from biomass, 2) improved catalyst support systems for electrolysis membranes and fuel cell systems, and 3) improved manufacturing methodologies of low cost photovoltaics. The following sections describe activities performed during this project. The various tasks were focused on establishing Playas as a “…theoretical and experimental test bed…” through which components of a modern/smart grid could be characterized. On a broader scale, project efforts were aimed at development of tools and gathering of experience/expertise that would accelerate progress toward implementation of a modern grid.

  12. Causes of Indoor Air Quality Problems in Schools: Summary of Scientific Research

    SciTech Connect (OSTI)

    Bayer, C.W.

    2001-02-22

    In the modern urban setting, most individuals spend about 80% of their time indoors and are therefore exposed to the indoor environment to a much greater extent than to the outdoors (Lebowitz 1992). Concomitant with this increased habitation in urban buildings, there have been numerous reports of adverse health effects related to indoor air quality (IAQ) (sick buildings). Most of these buildings were built in the last two decades and were constructed to be energy-efficient. The quality of air in the indoor environment can be altered by a number of factors: release of volatile compounds from furnishings, floor and wall coverings, and other finishing materials or machinery; inadequate ventilation; poor temperature and humidity control; re-entrainment of outdoor volatile organic compounds (VOCs); and the contamination of the indoor environment by microbes (particularly fungi). Armstrong Laboratory (1992) found that the three most frequent causes of IAQ are (1) inadequate design and/or maintenance of the heating, ventilation, and air-conditioning (HVAC) system, (2) a shortage of fresh air, and (3) lack of humidity control. A similar study by the National Institute for Occupational Safety and Health (NIOSH 1989) recognized inadequate ventilation as the most frequent source of IAQ problems in the work environment (52% of the time). Poor IAQ due to microbial contamination can be the result of the complex interactions of physical, chemical, and biological factors. Harmful fungal populations, once established in the HVAC system or occupied space of a modern building, may episodically produce or intensify what is known as sick building syndrome (SBS) (Cummings and Withers 1998). Indeed, SBS caused by fungi may be more enduring and recalcitrant to treatment than SBS from multiple chemical exposures (Andrae 1988). An understanding of the microbial ecology of the indoor environment is crucial to ultimately resolving many IAQ problems. The incidence of SBS related to multiple chemical sensitivity versus bioaerosols (aerosolized microbes), or the contribution of the microorganisms to the chemical sensitivities, is not yet understood. If the inhabitants of a building exhibit similar symptoms of a clearly defined disease with a nature and time of onset that can be related to building occupancy, the disease is generally referred to as ''building-related illness.'' Once the SBS has been allowed to elevate to this level, buildings are typically evacuated and the costs associated with disruption of the building occupants, identification of the source of the problem, and eventual remediation can be significant. Understanding the primary causes of IAQ problems and how controllable factors--proper HVAC system design, allocation of adequate outdoor air, proper filtration, effective humidity control, and routine maintenance--can avert the problems may help all building owners, operators, and occupants to be more productive (Arens and Baughman 1996). This paper provides a comprehensive summary of IAQ research that has been conducted in various types of facilities. However, it focuses primarily on school facilities because, for numerous reasons that will become evident, they are far more susceptible to developing IAQ problems than most other types of facilities; and the occupants, children, are more significantly affected than adults (EPA 1998).

  13. Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for 2001-2006 Office of Science Abstracts Database Research Highlights Summaries Research Highlights Members of ARM's science team are major contributors to radiation and cloud research. ARM investigators publish about 150 refereed journal articles per year, and ARM data are used in many studies published by other scientific

  14. DOE Research Set-Aside Areas of the Savannah River Site

    SciTech Connect (OSTI)

    Davis, C.E.; Janecek, L.L.

    1997-08-31

    Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site`s total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside.

  15. Edison Electrifies Scientific Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edison Electrifies Scientific Computing Edison Electrifies Scientific Computing NERSC Flips Switch on New Flagship Supercomputer January 31, 2014 Contact: Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 The National Energy Research Scientific Computing (NERSC) Center recently accepted "Edison," a new flagship supercomputer designed for scientific productivity. Named in honor of American inventor Thomas Alva Edison, the Cray XC30 will be dedicated in a ceremony held at the Department of

  16. 300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan

    SciTech Connect (OSTI)

    Freshley, Mark D.

    2008-12-31

    Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energys (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.

  17. Scientific Impact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Impact Since its inception over twenty years ago, CAMS has achieved noteworthy scientific progress by developing new capabilities and by combining state-of-the-art tools and expertise to address important scientific challenges. Scientific Leadership CAMS scientists are recognized as scientific leaders in the field of AMS and the disciplines that it supports. Many CAMS staff participate on federal agency (NIH, NSF, NOAA and DOE) scientific review panels as well as giving a multitude

  18. Scientific Leadership - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Leadership Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers Governance

  19. FWP Scientific Publications

    Broader source: Energy.gov [DOE]

    Scientific publications either directly studying former workers in the context of the screening program or recruiting former workers in the program as research participants for scientific studies funded by the National Institutes of Health or other research funding sources are summarized below according to publication date.

  20. Engineering Research and Development and Technology thrust area report FY92

    SciTech Connect (OSTI)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  1. PPPL Scientific and Engineering Capabilities | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL Scientific and Engineering Capabilities The Off-Site University Research Program has access to PPPL's extensive scientific, engineering, technical, and safety capabilities. In the area of scientific capabilities, PPPL has both experimental and theoretical scientists on staff who can assist college and university projects. The experimental scientists can provide help with plasma diagnostics, heating and fueling of plasmas, and general plasma experimental techniques. The theoretical

  2. Current Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Research The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and Analysis Computing Center (TRACC) features a state-of-the-art massively parallel computer system, advanced scientific visualization capability, high-speed network

  3. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-29

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

  4. Scientific Bio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Bio Director Deputy Director Leadership Team Advisory Board Directorate Staff Org Chart Navigate Section Director Deputy Director Leadership Team Advisory Board...

  5. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-11-30

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA) to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  6. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-05-15

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA)to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  7. Los Alamos Scientific Laboratory energy-related history, research, managerial reorganization proposals, actions taken, and results. History report, 1945--1979

    SciTech Connect (OSTI)

    Hammel, E.F.

    1997-03-01

    This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory`s primary mission during that era was the design and development of nuclear weapons and most of the Laboratory`s funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory`s internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related to the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos.

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Higher Clouds Retain Less Energy Download a printable PDF Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Qiu Y, Q Wang, and F Hu. 2012. "Shouxian aerosol radiative properties measured by DOE AMF and compared with CERES-MODIS." Advanced Materials Research, 518-523(2), doi:10.4028/www.scientific.net/AMR.518-523.1973. Clouds with bases at different altitudes.

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hemispherical Simulations Show Impact of Aerosols on Cloud Reflectivity Submitter: Rotstayn, L., Commonwealth Scientific and Industrial Research Organization Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Rotstayn, L., and Y. Liu, Sensitivity of the First Indirect Aerosol Effect to an Increase in Cloud Droplet Spectral Dispersion with Droplet Number Concentration, Journal of Climate: Vol. 16, No. 21, pp.3476-3481, May 2003. Figure 1. Measurements of the

  10. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University Nora Berrah, Western Michigan University David L. Brown, Berkeley Lab

  11. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University Nora Berrah, Western Michigan University David L. Brown, Berkeley Lab

  12. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University Nora Berrah, Western Michigan University David L. Brown, Berkeley Lab

  13. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University Nora Berrah, Western Michigan University David L. Brown, Berkeley Lab

  14. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University Nora Berrah, Western Michigan University David L. Brown, Berkeley Lab

  15. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University Nora Berrah, Western Michigan University David L. Brown, Berkeley Lab

  16. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation, strategic planning, and Participating Research Team (PRT) proposals and performance. Current members of the committee, as of January 2016, are Lou Terminello, (chair), Pacific Northwest National Laboratory Harald Ade, North Carolina State University Nora Berrah, Western Michigan University David L. Brown, Berkeley Lab

  17. Final Scientific/Technical Report: Electronics for Large Superconducting Tunnel Junction Detector Arrays for Synchrotron Soft X-ray Research

    SciTech Connect (OSTI)

    Warburton, William K

    2009-03-06

    Superconducting tunnel junction (STJ) detectors offer a an approach to detecting soft x-rays with energy resolutions 4-5 times better and at rates 10 faster than traditions semiconductor detectors. To make such detectors feasible, however, then need to be deployed in large arrays of order 1000 detectors, which in turn implies that their processing electronics must be compact, fully computer controlled, and low cost per channel while still delivering ultra-low noise performance so as to not degrade the STJ's performance. We report on our progress in designing a compact, low cost preamplifier intended for this application. In particular, we were able to produce a prototype preamplifier of 2 sq-cm area and a parts cost of less than $30 that matched the energy resolution of the best conventional system to date and demonstrated its ability to acquire an STJ I-V curve under computer control, the critical step for determining and setting the detectors' operating points under software control.

  18. Call for Proposals: NERSC Initiative for Scientific Exploration - deadline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is January 25 NISE Call for Proposals: NERSC Initiative for Scientific Exploration - deadline is January 25 December 20, 2011 by Francesca Verdier NERSC allocates 10% of the total MPP hours on our computational systems through the NERSC Initiative for Scientific Exploration (NISE) program. This year we expect to allocate about 100 million hours to a few large projects. Users who wish to explore a new research area that requires a large amount of computational resources are encouraged to

  19. DOE Announces First Awards in Scientific Discovery through Advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Program | Jefferson Lab DOE Announces First Awards in Scientific Discovery through Advanced Computing Program August 14, 2001 WASHINGTON, D.C. - The Department of Energy (DOE) today announced its first awards under the new Scientific Discovery through Advanced Computing (SciDAC) program. Fifty-one projects will receive a total of $57 million this fiscal year to advance fundamental research in several areas related to the department's missions, including: climate modeling, fusion

  20. Acquisition of Scientific Equipment

    SciTech Connect (OSTI)

    Noland, Lynn [Director, Sponsored Programs] [Director, Sponsored Programs

    2014-05-16

    Whitworth University constructed a 63,00 sq. ft. biology and chemistry building which opened in the Fall of 2011. This project provided for new state-of-the-art science instrumentation enabling Whitworth students to develop skills and knowledge that are directly transferable to practical applications thus enhancing Whitworth student's ability to compete and perform in the scientific workforce. Additionally, STEM faculty undertake outreach programs in the area schools, bringing students to our campus to engage in activities with our science students. The ability to work with insturmentation that is current helps to make science exciting for middle school and high school students and gets them thinking about careers in science. 14 items were purchased following the university's purchasing policy, that benefit instruction and research in the departments of biology, chemistry, and health sciences. They are: Cadaver Dissection Tables with Exhaust Chamber and accessories, Research Microscope with DF DIC, Phase and Fluorescence illumination with DP72 Camera, Microscope with Fluorescence, Microcomputer controlled ultracentrifuge, Ultracentrifuge rotor, Variable Temperature steam pressure sterilizer, Alliance APLC System, DNA Speedvac, Gel Cocumentation System, BioPac MP150, Glovebox personal workstation,Lyophilizer, Nano Drop 2000/2000c Spectrophotometer, C02 Incubator.

  1. Perspective: The Climate-Population-Infrastructure Modeling and Simulation Fertile Area for New Research

    SciTech Connect (OSTI)

    Allen, Melissa R; Fernandez, Steven J; Walker, Kimberly A; Fu, Joshua S

    2014-01-01

    Managing the risks posed by climate change and extreme weather to energy production and delivery is a challenge to communities worldwide. As climate conditions change, populations will shift, and demand will re-locate; and networked infrastructures will evolve to accommodate new load centers, and, hopefully, minimize vulnerability to natural disaster. Climate effects such as sea level rise, increased frequency and intensity of natural disasters, force populations to move locations. Displaced population creates new demand for built infrastructure that in turn generates new economic activity that attracts new workers and associated households to the new locations. Infrastructures and their interdependencies will change in reaction to climate drivers as the networks expand into new population areas and as portions of the networks are abandoned as people leave. Thus, infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Forecasting the location of these vulnerabilities by combining climate predictions and agent based population movement models shows promise for defining these future population distributions and changes in coastal infrastructure configurations. By combining climate and weather data, engineering algorithms and social theory it has been only recently possible to examine electricity demand response to increased climactic temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. These emerging results suggest a research agenda of coupling these disparate modelling approaches to understand the implications of climate change for protecting the nation s critical infrastructure.

  2. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil target for proof-of-concept actinium-225 production In addition to our routine isotope products, the LANL Isotope Program is focused on developing the next suite of isotopes and services to meet the Nation's emerging needs. The LANL Isotope Program's R&D strategy is focused on four main areas (see

  3. FY 2014 Scientific Infrastructure Support for Consolidated Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA FY 2014 Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA The...

  4. Scientific/Techical Report

    SciTech Connect (OSTI)

    Dr. Chris Leighton, Neutron Scattering Society of American; Mr. J. Ardie Dillen, MRS Director of Finance and Administration

    2012-11-07

    The ACNS provides a focal point for the North American neutron user community, strengthening ties within this diverse group, and promoting neutron research in related disciplines. The conference thus serves a dual role as both a national user meeting and a scientific meeting. As a venue for scientific exchange, the ACNS showcases recent results and provides a forum for scientific discussion of neutron-enabled research in fields as diverse as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, elementary excitations, fundamental physics, and development of neutron instrumentation. This is achieved through a combination of invited oral presentations, contributed oral presentations, and poster sessions. Adequate opportunity for spontaneous discussion and collaboration is also built into the ACNS program in order to foster free exchange of new scientific ideas and the potential for use of powerful neutron scattering methods beyond the current realms of application. The sixth American Conference on Neutron Scattering (ACNS 2012) provided essential information on the breadth and depth of current neutron-related research worldwide. A strong program of plenary, invited and contributed talks showcased recent scientific results in neutron science in a wide range of fields, including soft and hard condensed matter, biology, chemistry, energy and engineering applications, and neutron physics.

  5. Advanced Scientific Computing Research Jobs

    Office of Science (SC) Website

  6. Advanced Scientific Computing Research (ASCR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ASCR) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  7. Scientific Objective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biogenic Aerosols - Effects on Clouds and Climate Scientific Objective Aerosols in the sky are essential to Earth's climate because they can reflect light into space, cooling the atmosphere, or they can combine with other particles to create clouds that have both warming and cooling effects. Biogenic aerosols are emitted by the biosphere directly, or are formed from biogenic volatile gases in gas-to-particle conversion. Examples include dead cells and pollen spores. Boreal forests are among the

  8. Dallas area-wide intelligent transportation system plan. Draft research report, August 1992-August 1996

    SciTech Connect (OSTI)

    Carvell, J.D.; Seymour, E.J.; Walters, C.H.; Starr, T.R.; Balke, K.

    1996-07-01

    This report documents the development of a comprehensive plan for implementation of Intelligent Transportation Systems (ITS) in the Dallas Urban Area. The contract defined objectives: Develop a Broadly Based Steering Committee; Assess Existing Transportation Management Systems and Potential ITS Technology; Identify Institutional Issues and Legal Barriers; Develop an Implementable, Area-Wide Multi-Jurisdictional ITS Plan; and Develop Cost, Benefits, and an Implementation Plan.

  9. Scientific Challenges for Understanding the Quantum Universe

    SciTech Connect (OSTI)

    Khaleel, Mohammad A.

    2009-10-16

    A workshop titled "Scientific Challenges for Understanding the Quantum Universe" was held December 9-11, 2008, at the Kavli Institute for Particle Astrophysics and Cosmology at the Stanford Linear Accelerator Center-National Accelerator Laboratory. The primary purpose of the meeting was to examine how computing at the extreme scale can contribute to meeting forefront scientific challenges in particle physics, particle astrophysics and cosmology. The workshop was organized around five research areas with associated panels. Three of these, "High Energy Theoretical Physics," "Accelerator Simulation," and "Experimental Particle Physics," addressed research of the Office of High Energy Physics Energy and Intensity Frontiers, while the"Cosmology and Astrophysics Simulation" and "Astrophysics Data Handling, Archiving, and Mining" panels were associated with the Cosmic Frontier.

  10. Recent research efforts in the area of biotechnology for fuels and chemicals: Poster session papers

    SciTech Connect (OSTI)

    Antonopoulos, A.A. ); Grohmann, K. )

    1992-01-01

    This report presents research presented at the poster session of the Symposium covering a wide spectrum of current biotechnological research activities. Research focused mostly on ethanol production and methane generation from biomass material via microbial processing, as well as on enhanced hydrogen yield from algae. Several of the posters dealt with the pretreatment of cellulosic materials, and enzyme production/characterization, while a good number of papers displayed research efforts on bioremediation, photosynthesis, production of various useful chemicals from biomass by bioprocessing, and on other miscellaneous subjects. One of the papers treated a very interesting topic of cellulose-cellulase complexes. Many of the poster papers are included in this volume, and a synopsis of all the poster/papers presented is the subject of this article.

  11. Recent research efforts in the area of biotechnology for fuels and chemicals: Poster session papers

    SciTech Connect (OSTI)

    Antonopoulos, A.A.; Grohmann, K.

    1992-09-01

    This report presents research presented at the poster session of the Symposium covering a wide spectrum of current biotechnological research activities. Research focused mostly on ethanol production and methane generation from biomass material via microbial processing, as well as on enhanced hydrogen yield from algae. Several of the posters dealt with the pretreatment of cellulosic materials, and enzyme production/characterization, while a good number of papers displayed research efforts on bioremediation, photosynthesis, production of various useful chemicals from biomass by bioprocessing, and on other miscellaneous subjects. One of the papers treated a very interesting topic of cellulose-cellulase complexes. Many of the poster papers are included in this volume, and a synopsis of all the poster/papers presented is the subject of this article.

  12. Priority research areas to accelerate the development of practical ultraconductive copper conductors

    SciTech Connect (OSTI)

    Lee, Dominic F.; Burwell, Malcolm; Stillman, H.

    2015-09-01

    This report documents the findings at an Ultraconductive Copper Strategy Meeting held on March 11, 2015 in Washington DC. The aim of this meeting was to bring together researchers of ultraconductive copper in the U.S. to identify and prioritize critical non-proprietary research activities that will enhance the understanding in the material and accelerate its development into practical conductors. Every effort has been made to ensure that the discussion and findings are accurately reported in this document.

  13. The Oak Ridge Field Research Center : Advancing Scientific Understanding of the Transportation, Fate, and Remediation of Subsurface Contamination Sources and Plumes

    SciTech Connect (OSTI)

    David Watson

    2005-04-18

    Historical research, development, and testing of nuclear materials across this country resulted in subsurface contamination that has been identified at over 7,000 discrete sites across the U.S. Department of Energy (DOE) complex. With the end of the Cold War threat, DOE has shifted its emphasis to remediation, decommissioning, and decontamination of the immense volumes of contaminated groundwater, sediments, and structures at its sites. DOE currently is responsible for remediating 1.7 trillion gallons of contaminated groundwater, an amount equal to approximately four times the daily U.S. water consumption, and 40 million cubic meters of contaminated soil, enough to fill approximately 17 professional sports stadiums.* DOE also sponsors research intended to improve or develop remediation technologies, especially for difficult, currently intractable contaminants or conditions. The Oak Ridge FRC is representative of some difficult sites, contaminants, and conditions. Buried wastes in contact with a shallow water table have created huge reservoirs of contamination. Rainfall patterns affect the water table level seasonally and over time. Further, the hydrogeology of the area, with its fractures and karst geology, affects the movement of contaminant plumes. Plumes have migrated long distances and to surface discharge points through ill-defined preferred flowpaths created by the fractures and karst conditions. From the standpoint of technical effectiveness, remediation options are limited, especially for contaminated groundwater. Moreover, current remediation practices for the source areas, such as capping, can affect coupled processes that, in turn, may affect the movement of subsurface contaminants in unknown ways. Research conducted at the FRC or with FRC samples therefore promotes understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of extant remediation options, and the development of improved remediation strategies.

  14. Reaction-based Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect (OSTI)

    Tsyh Yeh, Gour

    2007-12-21

    This research sought to examine biogeochemical processes likely to take place in the less conductive materials above and below the gravel during the in situ ethanol biostimulation experiment conducted at Area 2 during 2005-2006. The in situ experiment in turn examined the hypothesis that injection of electron donor into this layer would induce formation of a redox barrier in the less conductive materials, resulting in decreased mass transfer of uranium out these materials and attendant declines in groundwater U(VI) concentration. Our project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This report summarizes research activities conducted at The University of Central Florida (2004-2007), the development of biogeochemical and reactive transport models and the conduction of numerical simulations at laboratory, column, and field scales.

  15. Research on stable, high-efficiency, large-area, amorphous-silicon-based submodules

    SciTech Connect (OSTI)

    Delahoy, A.E.; Tonon, T.; Macneil, J. (Chronar Corp., Princeton, NJ (USA))

    1991-06-01

    The primary objective of this subcontract is to develop the technology for same bandgap, amorphous silicon tandem junction photovoltaic modules having an area of at least 900 cm{sup 2} with the goal of achieving an aperture area efficiency of 9%. A further objective is to demonstrate modules that retain 95% of their under standard light soaking conditions. Our approach to the attainment of these objective is based on the following distinctive technologies: (a) in-house deposition of SiO{sub 2}/SnO{sub 2}:F onto soda lime glass by APCVD to provide a textured, transparent electrode, (b) single chamber r.f. flow discharge deposition of the a-Si:H layers onto vertical substrates contained with high package density in a box carrier'' to which the discharge is confined (c) sputter deposition of highly reflecting, ZnO-based back contacts, and (d) laser scribing of the a-Si:H and electrodes with real-time scribe tracking to minimize area loss. Continued development of single junction amorphous silicon was aggressively pursued as proving ground for various optical enhancement schemes, new p-layers, and i-layers quality. We have rigorously demonstrated that the introduction of a transitional i-layer does not impair stability and that the initial gain in performance is retained. We have demonstrated a small improvement in cell stability through a post-fabrication treatment consisting of multiple, intense light flashes followed by sufficient annealing. Finally, several experiments have indicated that long term stability can be improved by overcoating the SnO{sub 2} with ZnO. 25 refs., 17 figs.

  16. Scientific Visualization, Seeing the Unseeable

    ScienceCinema (OSTI)

    LBNL

    2009-09-01

    June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in bo... June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Area of Research: Journal Reference: N/A

  18. Reaction-Based Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect (OSTI)

    Yeh, Gour-Tsyh

    2006-06-01

    This research project (started Fall 2004) was funded by a grant to The Pennsylvania State University, University of Central Florida, and The University of Alabama in the Integrative Studies Element of the NABIR Program (DE-FG04-ER63914/63915/63196). Dr. Eric Roden, formerly at The University of Alabama, is now at the University of Wisconsin - Madison. Our project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and is directly aligned with the Scheibe et al. NABIR FRC Field Project at Area 2.

  19. Energy Department Requests Proposals for Advanced Scientific...

    Office of Science (SC) Website

    Energy Department Requests Proposals for Advanced Scientific Computing Research News News ... Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW ...

  20. Scientific Achievement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovered the reactive Leidenfrost' effect in cellulose & transition temperature (750 °C). Structured materials with engineered macropores (e.g. catalysts) allow for its tunable control. Controlling Biomass Leidenfrost Liftoff and Heat Transfer Work w as p erformed a t t he U niversity o f M innesota b y t he g roup o f Dauenhauer Research Details --- Cellulose par=cles levitate above 750 o C from generated v apor fl ow --- Onset o f p ar=cle l evita=on d rama=cally l owers heat t ransfer

  1. Plutonium focus area

    SciTech Connect (OSTI)

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  2. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Print The ALS Scientific Advisory Committee (SAC) advises Berkeley Lab and ALS management on issues relating to ALS operations, resource allocation,...

  3. NERSC Contributes to Smithsonian Magazine's Surprising Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milestones of 2012 Smithsonian Magazine's Surprising Scientific Milestones of 2012 NERSC Contributes to Smithsonian Magazine's Surprising Scientific Milestones of 2012 January 23, 2013 744889477276295a0862c.jpg Using supercomputers at National Energy Research Scientific Computing Center (NERSC), researchers from the Massachusetts Institute of Technology (MIT) came up with a new approach for desalinating sea water using sheets of graphene, a one-atom-thick form of the element carbon. Team

  4. The Digital Road to Scientific Knowledge Diffusion

    Office of Scientific and Technical Information (OSTI)

    Digital Road to Scientific Knowledge Diffusion A Faster, Better Way to Scientific Progress? By David E. Wojick, Walter L. Warnick, Bonnie C. Carroll, and June Crowe Introduction With the United States federal government spending over $130 billion annually for research and development, ways to increase the productivity of that research can have a significant return on investment. It is well known that all scientific advancement is based on work that has come before. Isaac Newton expressed this

  5. Index of /documents/public/ScientificWriting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ScientificWriting

  6. Research | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Mission Statement The objective of PARC is to understand the basic scientific principles that underpin the efficient functioning of natural photosynthetic antenna systems as a basis for design of biohybrid and bioinspired architectures for next-generation systems for solar-energy conversion. Scientific Themes Through basic scientific research, PARC seeks to understand the principles of light harvesting and energy funneling as applied to The PARC Vision Graphic three

  7. Final Scientific/Technical Report (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Final ScientificTechnical Report This project addressed the following research need in the Atmospheric System Research (ASR) Science and ...

  8. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-04-09

    To establish Department of Energy (DOE) requirements and responsibilities to ensure that scientific and technical information (STI) is identified, processed, disseminated, and preserved in a manner that (a) enables the scientific community and the public to locate and use the unclassified and unlimited STI resulting from DOE's research and related endeavors and (b) ensures access to classified and sensitive unclassified STI is protected according to legal or Departmental requirements. Cancels DOE O 241.1. Canceled by DOE O 241.1A Chg 1.

  9. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Advanced Scientific Computing Research

  10. Energy Research and Development | Department of Energy

    Energy Savers [EERE]

    Energy Research and Development Energy Research and Development 1. In General GC-52 provides legal advice to DOE regarding energy research and development projects supported by DOE for the advancement of basic and applied science in a variety of subject-matter areas including nuclear energy, fusion energy, and climate change research. GC-52 attorneys provide advice on matters related to scientific conduct and activities, review program reports and activities for compliance with applicable

  11. NETL: University Turbine Systems Research Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Turbine Systems Research The University Turbine Systems Research (UTSR) Program addresses scientific research to develop and transition advanced turbines and turbine-based systems that will operate cleanly and efficiently when fueled with coal-derived synthesis gas (syngas) and hydrogen fuels. This research focuses on the areas of combustion, aerodynamics/heat transfer, and materials, in support of the Department of Energy (DOE) Office of Fossil Energy's Advanced Turbine Program

  12. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical ...

  13. 2016 PARC Scientific Advisory Committee Meeting | Photosynthetic Antenna

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Center Scientific Advisory Committee Meeting 2016 PARC Scientific Advisory Committee Meeting June 23, 2016 - 8:00am Meeting is for SAC members and PIs only.

  14. STIPWorks | OSTI, US Dept of Energy, Office of Scientific and...

    Office of Scientific and Technical Information (OSTI)

    DoE Pages DoE Pages Department of Energy Announces Increased Access to Results of Scientific Research Department of Energy Announces Increased Access to Results of Scientific...

  15. Scientific Societies, E-print Network -- Energy, science, and technology

    Office of Scientific and Technical Information (OSTI)

    for the research community -- Hosted by the Office of Scientific and Technical Information, U.S. Department of Energy Scientific Societies The Scientific Societies Page provides access to websites of scientific societies and professional associations whose focus is in the natural sciences as well as other related disciplines of interest to the Department of Energy research and development programs, projects, and initiatives. Chinese Dutch English French German Italian Japanese Nordic Russian

  16. Energy Department Requests Proposals for Advanced Scientific Computing

    Energy Savers [EERE]

    Research | Department of Energy Requests Proposals for Advanced Scientific Computing Research Energy Department Requests Proposals for Advanced Scientific Computing Research December 27, 2005 - 4:55pm Addthis WASHINGTON, DC - The Department of Energy's Office of Science and the National Nuclear Security Administration (NNSA) have issued a joint Request for Proposals for advanced scientific computing research. DOE expects to fund $67 million annually for three years to five years under its

  17. Large Scale Computing and Storage Requirements for Advanced Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Research: Target 2014 Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research An ASCR / NERSC Review January 5-6, 2011 Final Report Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research, Report of the Joint ASCR / NERSC Workshop conducted January 5-6, 2011 Goals This workshop is being

  18. NREL'S Zunger Receives Scientific Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Award For more information contact: Kerry Masson 303-275-4083 email: Kerry Masson Golden, Colo., Aug. 18, 2000 - Alex Zunger, a leading scientist and research fellow at the U.S. Department of Energy's National Renewable Energy Laboratory, has been named the 2001 recipient of the prestigious John Bardeen award from The Minerals, Metals and Materials Society (TMS). The annual award recognizes "an individual who has made an outstanding contribution and is a leader in the field of

  19. Edison Electrifies Scientific Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NERSC) Center recently accepted "Edison," a new flagship supercomputer designed for scientific productivity. Named in honor of American inventor Thomas Alva Edison, the Cray...

  20. Researchers - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our-Peopple-Hero_v2.jpg Researchers Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  1. Systems Sustainability: Implementation of Enhanced Maintenance Programs at the Kurchatov Institute, the All-Russian Research Institute of Experimental physics and the All-Russian Scientific Institute for Technical Physics

    SciTech Connect (OSTI)

    Coppinger, M.; Pikula, M.; Randolph, J.D.; Windham, M.

    1999-09-20

    Implementation of quality maintenance programs is essential to enhancing sustainable continuous operations of United States funded Materials Protection, Control and Accountability (MPC and A) equipment/systems upgrades at various Russian nuclear facilities. An effective maintenance program is expected to provide assurances to both parties for achieving maximum continuous systems operations with minimum down time. To be effective, the program developed must focus on minimum down time for any part of a system. Minimum down time is realized through the implementation of a quality maintenance program that includes preventative maintenance, necessary diagnostic tools, properly trained technical staff, and an in-house inventory of required spare parts for repairing the impacted component of the system. A centralized maintenance management program is logistically essential for the success of this effort because of the large volume of MPC and A equipment/systems installed at those sites. This paper will discuss current programs and conditions at the Russian Research Center-Kurchatov Institute, the All-Russian Scientific Institute for Technical Physics and the All-Russian Research Institute of Experimental Physics and will address those steps necessary to implement an upgraded program at those sites.

  2. Scientific/Technical Report

    SciTech Connect (OSTI)

    Bommissetty, Venkat

    2012-11-21

    This symposium aimed to bring together researchers working on quantifying nanoscale carrier transport processes in excitonic solar cells. Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such efforts can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well-defined electronic structures.

  3. ARM Climate Research Facility Annual Report 2005

    SciTech Connect (OSTI)

    J. Voyles

    2005-12-31

    Through the ARM Program, the DOE funded the development of several highly instrumented ground stations for studying cloud formation processes and their influence on radiative transfer, and for measuring other parameters that determine the radiative properties of the atmosphere. This scientific infrastructure, and resultant data archive, is a valuable national and international asset for advancing scientific knowledge of Earth systems. In fiscal year (FY) 2003, the DOE designated ARM sites as a national scientific user facility: the ARM Climate Research (ACRF). The ACRF has enormous potential to contribute to a wide range interdisciplinary science in areas such as meteorology, atmospheric aerosols, hydrology, biogeochemical cycling, and satellite validation, to name only a few.

  4. Supporting Advanced Scientific Computing Research * Basic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    effort * Everything is a struggle * Programmers are optimists (sort of) * Simple, language neutral APIs easily accommodate unexpected use cases Links and whatnot * Services...

  5. Scientific Exchange Program deadline | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center July

  6. Scientific Exchange Program deadline | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center November

  7. Supporting Advanced Scientific Computing Research * Basic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peeringupgrades: * EQX-SJ:installedMX480onOct15 th * EQX-ASH:installedMX480onNov30 th * EQX-CHI:PendingMX480ins...

  8. Scientific Exchange Program | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July

  9. Scientific Exchange Program | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November

  10. National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3,072 Material Simulations in Joint Center for Artificial Photosynthesis (JCAP) PI: Frances A. Houle, Lawrence Berkeley National Laboratory Edison 3,072 LLNL MFE Supercomputing...

  11. Supporting Advanced Scientific Computing Research * Basic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in January Status today * Will start publishing SEPs in the DLV in next week * Holding KSK roll until April * Temporarily signing for one site * Will install backup signer box in...

  12. ORISE: Providing Support for DOE Scientific Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in order to better understand the origin of the elements and the evolution of the cosmos. ORISE's PeerNet database streamlined the process and seamlessly connected 20...

  13. Scientific Exchange Program | Photosynthetic Antenna Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This program will permit individuals from PARC teams, with a strong emphasis on graduate students and postdocs, to make extended visits to other laboratories within PARC. In...

  14. National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    calculations of hadron properties . . . . . . . . ... High Performance Systems for Large-Scale Science . . . . . . ... carried out using NERSC resources in 2004 is addressing one ...

  15. National Energy Research Scientific Computing Center

    Office of Scientific and Technical Information (OSTI)

    ... This report, published in the journal Physical Review ... The case of PSRJ07370-3039 A & B," in Proceedings of the ... with DOE and Office of Management and Budget goals. ...

  16. Laboratory Directed Research and Development FY-10 Annual Report

    SciTech Connect (OSTI)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  17. Advanced Test Reactor National Scientific User Facility: Addressing

    Office of Scientific and Technical Information (OSTI)

    advanced nuclear materials research (Conference) | SciTech Connect Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research Citation Details In-Document Search Title: Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and

  18. NERSC Seeks Industry Partners for Collaborative Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeks Industry Partners for Collaborative Research NERSC Seeks Industry Partners for Collaborative Research January 28, 2015 Contact: David Skinner, NERSC Strategic Partnerships Lead, deskinner@lbl.gov, 510-486-4748 Edison7 The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory has launched a private sector partnership program (PSP) to make its computing capabilities available to industry partners working in key technology areas. Led by David

  19. Zelenay wins Electrochemical Society's Research Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrochemical Society's Research Award Zelenay wins Electrochemical Society's Research Award The award includes a monetary prize and membership in the Electrochemical Society's Energy Technology Division. December 11, 2012 Piotr Zelenay Piotr Zelenay The award recognizes Zelenay's "outstanding and original contributions to the science and technology of energy-related research areas that include scientific and technological aspects of fossil fuels and alternative energy sources, energy

  20. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect (OSTI)

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-08-28

    Cleaning up the nations nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as strategies that may provide undue focus on near-term goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research, addressing the full cleanup life-cycle, offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, and 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes. Over the last 3 years, DOEs Office of Environmental Management (EM) has experienced a fundamental shift in philosophy. The mission focus of driving to closure has been replaced by one of enabling the long-term needs of DOE and the nation. Resolving new challenges, such as the disposition of DOE spent nuclear fuel, have been added to EMs responsibilities. In addition, the schedules for addressing several elements of the cleanup mission have been extended. As a result, EMs mission is no longer focused only on driving the current baselines to closure. Meeting the mission will require fundamental advances over at least a 30-year window if not longer as new challenges are added. The overall intent of this paper is to foster a dialogue on how basic scientific research can assist DOE in executing its cleanup and environmental management mission. In this paper, we propose that such scientific investments not be focused solely on what may be viewed as current DOE needs, but also be based upon longer-term investments in specific areas of science that underpin technologies presently in use. In the latter regard, we propose four science theme areas: 1) the structure and dynamics of materials and interfaces, 2) coupled chemical and physical processes, 3) complex solution phase phenomena, and 4) chemical recognition phenomena. The proposed scientific focus for each of these theme areas and the scientific opportunities are identified, along with links to major risks within the initiative areas identified in EMs Engineering and Technology Roadmap.

  1. Sandia Energy - Helping Advance the Scientific Foundation that...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helping Advance the Scientific Foundation that Enables Major Efficiency Improvements Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Helping Advance the...

  2. Advanced Test Reactor National Scientific User Facility: Addressing...

    Office of Scientific and Technical Information (OSTI)

    Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research Citation Details In-Document Search Title: Advanced Test Reactor National ...

  3. Large Scale Computing and Storage Requirements for Advanced Scientific...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for ...

  4. Advanced Test Reactor National Scientific User Facility: Addressing...

    Office of Scientific and Technical Information (OSTI)

    Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research Citation Details In-Document Search Title: Advanced Test Reactor National...

  5. Final Scientific-Technical Report DOE-GISS-61768. Constraints...

    Office of Scientific and Technical Information (OSTI)

    Final Scientific-Technical Report for research conducted under the Atmospheric Radiation Measurement Program from 1994-2010. Authors: Del Genio, Anthony D. 1 + Show Author ...

  6. Efficient Feature-Driven Visualization of Large-Scale Scientific Data

    SciTech Connect (OSTI)

    Lu, Aidong

    2012-12-12

    Very large, complex scientific data acquired in many research areas creates critical challenges for scientists to understand, analyze, and organize their data. The objective of this project is to expand the feature extraction and analysis capabilities to develop powerful and accurate visualization tools that can assist domain scientists with their requirements in multiple phases of scientific discovery. We have recently developed several feature-driven visualization methods for extracting different data characteristics of volumetric datasets. Our results verify the hypothesis in the proposal and will be used to develop additional prototype systems.

  7. Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect (OSTI)

    Burgos, W.D.

    2009-09-02

    This report summarizes research conducted in conjunction with a project entitled “Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2.

  8. Scientific Grand Challenges Workshop Series | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Scientific Grand Challenges Workshop Series Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources ASCR Discovery Monthly News Roundup News Archives ASCR Program Documents ASCR Workshops and Conferences Workshops & Conferences Archive DOE Simulations Summit Scientific Grand Challenges Workshop Series SciDAC Conferences HPC

  9. Construction of Blaze at the University of Illinois at Chicago: A Shared, High-Performance, Visual Computer for Next-Generation Cyberinfrastructure-Accelerated Scientific, Engineering, Medical and Public Policy Research

    SciTech Connect (OSTI)

    Brown, Maxine D.; Leigh, Jason

    2014-02-17

    The Blaze high-performance visual computing system serves the high-performance computing research and education needs of University of Illinois at Chicago (UIC). Blaze consists of a state-of-the-art, networked, computer cluster and ultra-high-resolution visualization system called CAVE2(TM) that is currently not available anywhere in Illinois. This system is connected via a high-speed 100-Gigabit network to the State of Illinois' I-WIRE optical network, as well as to national and international high speed networks, such as the Internet2, and the Global Lambda Integrated Facility. This enables Blaze to serve as an on-ramp to national cyberinfrastructure, such as the National Science Foundations Blue Waters petascale computer at the National Center for Supercomputing Applications at the University of Illinois at Chicago and the Department of Energys Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. DOE award # DE-SC005067, leveraged with NSF award #CNS-0959053 for Development of the Next-Generation CAVE Virtual Environment (NG-CAVE), enabled us to create a first-of-its-kind high-performance visual computing system. The UIC Electronic Visualization Laboratory (EVL) worked with two U.S. companies to advance their commercial products and maintain U.S. leadership in the global information technology economy. New applications are being enabled with the CAVE2/Blaze visual computing system that is advancing scientific research and education in the U.S. and globally, and help train the next-generation workforce.

  10. Technoeconomic evaluation of the extractive fermentation of butanol as a guide to research in this area of biotechnology

    SciTech Connect (OSTI)

    Busche, R.M. )

    1991-09-01

    This report represents the completion of a part of an overall project to evaluate the technical and economic status of several newly conceptualized processes for producing butanol, acetone, acetic acid, and aerobically produced specialty chemicals, which are candidates for research support. The objective of the project are to identify strengths and weaknesses in the proposed and to assist in developing an ongoing research strategy along economically relevant lines. The products to be studied presently comprise a collective US market for 10.7 billion lb valued at $2.8 billion. If their manufacturing processes were converted from petroleum feedstocks to corn, they could consume 556 million bushels. Furthermore, if ethanol could be produced at a low enough price to serve as the precursor to ethylene and butadiene, it an its derivatives could account for 159 billion lb, or 50% of the US production of 316 billion lb of synthetic organic chemicals, presently valued at $113 billion. This use would consume 3.4 billion bushels, or {approximately}45% of the corn crop. In addition, the use of butanol for diesel blends or in jet fuel blends to enhance the range of military aircraft could further increase its market.

  11. 'Most Influential Scientific Minds'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three Los Alamos scientists named 'Most Influential Scientific Minds' July 22, 2014 Aiken, Korber and Perelson spotlighted in Thomson Reuters report LOS ALAMOS, N.M., July 22, 2014-Los Alamos National Laboratory scientists Allison Aiken, Bette Korber and Alan Perelson have been named to Thomson Reuters list of "The World's Most Influential Scientific Minds." "To have three of our premier scientists recognized on this list is a great honor and attests to the intellectual vitality

  12. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    1988-01-01

    Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

  13. Status Report on the Development of Research Campaigns

    SciTech Connect (OSTI)

    Baer, Donald R.; Baker, Scott E.; Washton, Nancy M.; Linggi, Bryan E.

    2013-06-30

    Research campaigns were conceived as a means to focus EMSL research on specific scientific questions. Campaign will help fulfill the Environmental Molecular Sciences Laboratory (EMSL) strategic vision to develop and integrate, for use by the scientific community, world leading capabilities that transform understanding in the environmental molecular sciences and accelerate discoveries relevant to the Department of Energys (DOEs) missions. Campaigns are multi-institutional multi-disciplinary projects with scope beyond those of normal EMSL user projects. The goal of research campaigns is to have EMSL scientists and users team on the projects in the effort to accelerate progress and increase impact in specific scientific areas by focusing user research, EMSL resources, and expertise in those areas. This report will give a history and update on the progress of those campaigns.

  14. Environmental resources of selected areas of Hawaii: Ecological resources

    SciTech Connect (OSTI)

    Trettin, C.C.; Tolbert, V.R.; Jones, A.T.; Smith, C.R.; Kalmijn, A.J.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on ecological resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report focus on several areas of Hawaii County. In this report, reference is made to these areas as study areas rather than as areas where proposed or alternative facilities of the HGP would be located. The resource areas addressed herein include terrestrial ecology, aquatic ecology, and marine ecology. The scientific background data and related information that were obtained from review of the (1) scientific literature, (2) government and private sector reports, (3) studies done under DOE interagency agreements with the US Fish and Wildlife Service (FWS) and with the US Army Corps of Engineers (COE), and (4) observations made during site visits are being made available for future research in these areas.

  15. Research Highlights Sorted by Research Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Size and Cover ARM ASR Li, Z., Cribb, M. C. A Lidar View of Clouds in Southeastern China ARM ASR Li, Z. Estimating Glaciation Temperature of Deep Convective Clouds with Remote...

  16. ORISE: Scientific Peer Review for State and Federal Agencies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Peer Review Capabilities Overview Peer review planning Expert identification Peer review management Workshop coordination Process improvement How ORISE is making a difference Overview Supporting DOE's mission to recognize outstanding scientists, engineers Enhancing tools and services to support DOE research Standardization of scientific peer reviews Cost savings and customer service DOE funded research Supercomputing Implementing improvements Homeland security Enhancing energy

  17. 2014-09-30 Issuance: Buildings-to-Grid Integration and Related Areas of Research; Notice of Availability and Request for Public Comment

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of availability and request for public comment regarding buildings-to-grid integration and related areas of research, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 30, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  18. ATR National Scientific User Facility 2013 Annual Report

    SciTech Connect (OSTI)

    Ulrich, Julie A.; Robertson, Sarah

    2015-03-01

    This is the 2013 Annual Report for the Advanced Test Reactor National Scientific User Facility. This report includes information on university-run research projects along with a description of the program and the capabilities offered researchers.

  19. Sandia Energy - Research Challenge 1: Nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Nanowires Home Energy Research EFRCs Solid-State Lighting Science EFRC Our SSLS EFRC's Scientific Research Challenges and Publications Research Challenge 1: Nanowires Research...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Terrestrial Radiation Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Area of Research: General Circulation and Single Column Models...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chinese Researchers Report Reliable Method for Monitoring Soil Moisture Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Surface Properties...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing and Comparing the Modified Anomalous Diffraction Approximation Submitter: Mitchell, D. L., Desert Research Institute Area of Research: Cloud DistributionsCharacterizations...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Program Research Improves Longwave Radiative Transfer Models Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: General Circulation and...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Masters the Misunderstood Mixed-Phase Cloud Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research:...

  5. Accelerator & Detector Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Accelerator & Detector Research Scientific User Facilities (SUF) Division SUF Home About User Facilities Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home Accelerator & Detector Research Print Text Size: A A A FeedbackShare Page This research area supports basic research in accelerator physics and x-ray and neutron detectors. Accelerator research is the corner stone for the development of new technologies that will improve

  6. Hydrogen Materials Advanced Research Consortium

    Broader source: Energy.gov [DOE]

    An overview of the organization and scientific activities of the Hydrogen Materials—Advanced Research Consortium (HyMARC).

  7. Carbon dioxide research plan. A summary

    SciTech Connect (OSTI)

    Trivelpiece, Alvin W.; Koomanoff, F. A.; Suomi, Verner E.

    1983-11-01

    The Department of Energy is the lead federal agency for research related to atmospheric carbon dioxide. Its responsibility is to sponsor a program of relevant research, and to coordinate this research with that of others. As part of its responsibilities, the Department of Energy has prepared a research plan. The plan documented in this Summary delineated the logic, objectives, organization, background and current status of the research activities. The Summary Plan is based on research subplans in four specific areas: global carbon cycle, climate effects, vegetative response and indirect effects. These subplans have emanated from a series of national and international workshops, conferences, and from technical reports. The plans have been peer reviewed by experts in the relevant scientific fields. Their execution is being coordinated between the responsible federal and international government agencies and the involved scientific community.

  8. The Digital Road to Scientific Knowledge Diffusion; A Faster, Better Way to

    Office of Scientific and Technical Information (OSTI)

    Scientific Progress? (Journal Article) | SciTech Connect Journal Article: The Digital Road to Scientific Knowledge Diffusion; A Faster, Better Way to Scientific Progress? Citation Details In-Document Search Title: The Digital Road to Scientific Knowledge Diffusion; A Faster, Better Way to Scientific Progress? With the United States federal government spending billions annually for research and development, ways to increase the productivity of that research can have a significant return on

  9. 2012 Scientific Collaborations at Extreme-Scale | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) 2 Scientific Collaborations at Extreme-Scale Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking 2012 Scientific Collaborations at Extreme-Scale Scientific Discovery through Advanced Computing (SciDAC) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced

  10. The Digital Road to Scientific Knowledge Diffusion; A Faster, Better Way to

    Office of Scientific and Technical Information (OSTI)

    Scientific Progress? (Journal Article) | SciTech Connect The Digital Road to Scientific Knowledge Diffusion; A Faster, Better Way to Scientific Progress? Citation Details In-Document Search Title: The Digital Road to Scientific Knowledge Diffusion; A Faster, Better Way to Scientific Progress? With the United States federal government spending billions annually for research and development, ways to increase the productivity of that research can have a significant return on investment. The

  11. FY 2014 Scientific Infrastructure Support for Consolidated Innovative

    Energy Savers [EERE]

    Nuclear Research FOA | Department of Energy Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA FY 2014 Scientific Infrastructure Support for Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance

  12. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Thermodynamics Affect Radiative Impact of Deep Convective Cloud Systems Submitter: Jensen, M., Brookhaven National Laboratory Area of Research: Atmospheric...

  14. ASCR Research Priorities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESEARCH PRIORITIES Karen Pao Advanced Scientific Computing Research (ASCR) Office of Science Department of Energy karen.pao@science.doe.gov 15 January 2014 NERSC ASCR Requirement Review 1 ASCR Mission The mission of the Advanced Scientific Computing Research (ASCR) program is to advance applied mathematics and computer science; deliver, in partnership with disciplinary science, the most advanced computational scientific applications; advance computing and networking capabilities; and develop,

  15. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    accelerator and particle physics research and home to some of the world's most cutting-edge technologies used by researchers from around the world to uncover scientific ...

  16. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    ... The Manhattan Project helped to cement the bond between basic scientific research and national security. The Atomic Energy Commission was created to lead the research and ...

  17. Searchable Videos Showcasing DOE Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multimedia videos highlighting the U.S. Department of Energy's most exciting scientific research Searchable Videos Showcasing DOE Research * Through a partnership with Microsoft...

  18. Scientific Exchange Program deadline | Photosynthetic Antenna...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Exchange Program deadline Scientific Exchange Program deadline Applications due February...

  19. NREL'S Zunger Receives Top Scientific Honors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top Scientific Honors For more information contact: Gary Schmitz, 303-275-4050 email: Gary Schmitz Golden, Colo., Nov. 29, 2000 - Alex Zunger, a physicist and research fellow at the U.S. Department of Energy's National Renewable Energy Laboratory, has been named the 2001 recipient of the prestigious Rahman Award by the American Physical Society (APS). The award from the APS is bestowed once annually to an individual for "outstanding achievement in computational physics research."

  20. Environmental Resources of Selected Areas of Hawaii: Ecological Resources (DRAFT)

    SciTech Connect (OSTI)

    Trettin, C.C.; Tolbert, V.R.; Jones, A.T.; Smith, C.R.; Kalmijn, A.J.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on ecological resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (COE) published a notice in the Federal Register on May 17, 1994 (Fed. Regist. 5925638) withdrawing its Notice of Intent (Fed. Regst. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report focus on several areas of Hawaii County, including the southeastern coast, a potential development corridor along the Saddle Road between Hilo and the North Kohala District on the northwestern coast, and on the southeastern coast of Maui. In this report, reference is made to these areas as study areas rather than as areas where proposed or alternative facilities of the HGP would be located. The resource areas addressed herein include terrestrial ecology, aquatic ecology, and marine ecology. The scientific background data and related information is being made available for future research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  1. 2006 Department of Energy Strategic Plan - Scientific Discovery and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation | Department of Energy Plan - Scientific Discovery and Innovation 2006 Department of Energy Strategic Plan - Scientific Discovery and Innovation The United States has always been a Nation of innovators and the Department of Energy has been a major contributor to that legacy. DOE-supported basic research has produced Nobel Laureates, numerous paradigm-shifting scientific discoveries, and revolutionary technologies that have spawned entirely new industries. Such breakthroughs have

  2. NREL: Energy Systems Integration - Commonwealth Scientific and Industrial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Organisation Commonwealth Scientific and Industrial Research Organisation Photo of a large piece of laboratory equipment labeled "CSIRO Renewable Energy Integration Facility." NREL is collaborating with CSIRO on an innovative new plug-and-play solar technology for distributed generation applications. Photo from CSIRO NREL has joined forces with Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) to develop a plug-and-play technology that will

  3. Can Cloud Computing Address the Scientific Computing Requirements for DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers? Well, Yes, No and Maybe Can Cloud Computing Address the Scientific Computing Requirements for DOE Researchers? Well, Yes, No and Maybe Can Cloud Computing Address the Scientific Computing Requirements for DOE Researchers? Well, Yes, No and Maybe January 30, 2012 Jon Bashor, Jbashor@lbl.gov, +1 510-486-5849 Magellan1.jpg Magellan at NERSC After a two-year study of the feasibility of cloud computing systems for meeting the ever-increasing computational needs of scientists,

  4. Research Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Gallery Research Gallery Exhibits in this gallery capture Laboratory's leading-edge research in many areas of science and technology to help solve national problems related to energy, the environment, infrastructure, and health. August 18, 2014 Museum floor plan showing the Research Gallery Basic research conducted here enhances our national defense and global security missions. Science serving society The Laboratory conducts leading-edge research in many areas of science and technology

  5. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  6. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo; Zhang, Sisi

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

  7. NERSC Accelerates Scientific Analysis with SciDB

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Accelerates Scientific Analysis with SciDB NERSC Accelerates Scientific Analysis with SciDB August 26, 2015 Linda Vu, +1 510 495 2402, lvu@lbl.gov Pic-from-posterrevised-1.jpg SciDB harnesses parallel architectures for fast analysis of terabyte (TBs) arrays of scientific data. This collage illustrates some of the scientific areas that have benefited from NERSC's implementation of SciDB, including astronomy, biology and climate. (Image Credit: Yushu Yao, Berkeley Lab) Science is swimming in

  8. A. Hampel (Scientific Consultant)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 September 9 - Tuesday TM-behavior of salt 08:30-08:50 Update on the "Joint Project on Constitutive Laws benchmark" A. Hampel (Scientific Consultant) 08:50-09:10 Modeling WIPP rooms B/D L. Argüello (SNL) 09:10-09:30 Laboratory tests on WIPP salt (update) U. Düsterloh (TU Clausthal) 09:30-09:50 Laboratory tests on WIPP salt (update) T. Popp (IfG) 09:50-10:10 Complementary laboratory tests on WIPP salt at higher temperatures I. Plischke (BGR) 10:10-10:30 Characterization of halite

  9. NERSC Oakland Scientific Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training 2012 February 1-2, 2012 NERSC Oakland Scientific Facility Debugging with DDT Woo-Sun Yang NERSC User Services Group Why a Debugger? * It makes it easy to find a bug in your program, by controlling pace of running your program - Examine execution flow of your code - Check values of variables * Typical usage scenario - Set breakpoints (places where you want your program to stop) and let your program run - Or advance one line in source code at a time - Check variables when a breakpoint is

  10. Implementing Arrangement Between the U.S. Department of Energy and the Department of Natural Resources of Canada and Atomic Energy of Canada Limited For Collaboration in the Area of Nuclear Research

    Broader source: Energy.gov [DOE]

    Implementing Arrangement Between the U.S. Department of Energy and the Department of Natural Resources of Canada and Atomic Energy of Canada Limited For Collaboration in the Area of Nuclear Research

  11. Presentations | OSTI, US Dept of Energy, Office of Scientific and Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Presentations Brian Hitson's picture Office of Scientific and Technical Informatin DOE PAGES (Beta) Portal Offers Public Access to Scholarly Scientific Publications Resulting from DOE Research Funding Brian Hitson - Director, U.S. DOE Office of Scientific and Technical Information June 17, 2015 Brian Hitson's picture Public Access to DOE Scientific Publications Brian Hitson - Director, U.S. DOE Office of Scientific and Technical Information June 16, 2014 Brian Hitson's picture

  12. ACARS Aerodynamic (Research Incorporated) Communication and Recording...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research, Inc. AERI Atmospheric Emitted Radiance Interferometer AFOSR Air Force Office of Scientific Research AGARD Advisory Group for Aerospace Research and Development...

  13. It's In The Hopper: 4,000 Scientific Users Now Working With Supercomputer

    Broader source: Energy.gov [DOE]

    The National Energy Research Scientific Computing Center (NERSC) in Berkeley, California, marked a major milestone when they recently put their supercomputer, Hopper, into the hands of its 4,000 scientific users.

  14. Summaries of FY 1993 geosciences research

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the DOE`s many missions. The Geosciences Research Program is supported by the Office of Energy Research. The participants in this program include DOE laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the DOE and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar-atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  15. EA-1924: Consolidation and Relocation of Lawrence Berkeley National Laboratory (LBNL) OffSite Research Programs to a New Off-Site Location that also Allows for Future Growth, San Francisco East Bay Area, California

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal to consolidate and relocate LBNL research programs that are currently in leased off-site buildings at various locations around the San Francisco East Bay Area in California, to a new single location that also provides room for future growth of LBNL research programs.

  16. Laboratory technology research: Abstracts of FY 1998 projects

    SciTech Connect (OSTI)

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  17. Laboratory Technology Research: Abstracts of FY 1996 projects

    SciTech Connect (OSTI)

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  18. Final Scientific EFNUDAT Workshop

    ScienceCinema (OSTI)

    None

    2011-10-06

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilities  International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis Vlachoudis Workshop Assistant: Géraldine Jean

  19. Final Scientific EFNUDAT Workshop

    ScienceCinema (OSTI)

    None

    2011-10-06

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilitiesInternational Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden)Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis VlachoudisWorkshop Assistant: Graldine Jean

  20. A History or Geothermal Energy Research and Development in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 9.0 Scientific Drilling Management . . . . . . . . . . . . . ... Abbreviations & Acronyms . . . . . . . . . . . . . . . . . . ... 93 an international journal devoted to the research ...

  1. CNM Scientific Contact List | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNM Scientific Contact List A list of scientific contacts for the Center for Nanoscale Materials PDF icon CNM Scientific Contact sheet 915...

  2. The (Scientific) Flight of the Falcon - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The (Scientific) Flight of the Falcon April 22, 2015 Photo of a man with a peregrine falcon with a GPS and a very high frequency radio tracker before a flight. NREL researcher...

  3. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Office of Scientific and Technical Informatin DOE PAGES (Beta) Portal Offers Public Access to Scholarly Scientific Publications Resulting from DOE Research Funding Slide01 Slide01 Office of Scientific and Technical Information DOE PAGESBeta Portal Offers Public Access to Scholarly Scientific Publications Resulting from DOE Research Funding Brian A. Hitson OSTI Director Information Management Conference June 2015, Nashville, TN

  4. Throwback Thursdays Celebrate Scientific Supercomputing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » News & Publications » NERSC News » Center News » Throwback Thursdays Celebrate Scientific Supercomputing Throwback Thursdays Celebrate Scientific Supercomputing A Cray-1 supercomputer arrives at the Magnetic Fusion Energy Computer Center in A Cray-1 supercomputer arrives at the Magnetic Fusion Energy Computer Center in May 1978. The U.S. Department of Energy (DOE) was investing in scientific supercomputing long before the internet became the internet, and back when clouds only

  5. USDOE, Office of Scientific and Technical Information

    Office of Scientific and Technical Information (OSTI)

    Science.gov App Find science information and research results from 13 U.S. federal agencies. Get quick answers from over 55 scientific databases and more than 2100 websites. Science.gov App for Android Devices Science.gov App icon Free App at Google Play exit federal site System requirements: Android 2.0 or higher An active internet connection Android Download from Google Play exit federal site

  6. ALS Scientific Advisory Committee Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would create or appear to create a conflict of interest. *Formerly known as Program Advisory Committee (PAC) (rev. 1 - February 15, 1995) Scientific Advisory Committee...

  7. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-14

    The Order establishes requirements and responsibilities for managing DOE's scientific and technical information. Cancels DOE O 241.1. Canceled by DOE O 241.1B.

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: NA...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Westwater, E. R., University of Colorado Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference:...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties, Radiative Processes...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Xie, S., Lawrence Livermore National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Modeling Journal Reference: Xie S,...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Xie, S., Lawrence Livermore National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Xie...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Sea Spray on the Thermodynamics of the Hurricane Boundary Layer Download a printable PDF Submitter: Khain, A., The Hebrew University of Jerusalem Area of Research:...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Differences Between Tropical and Trade-Wind Shallow Cumuli Download a printable PDF Submitter: Ghate, V. P., Argonne National Laboratory Area of Research: Vertical Velocity Working...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shallow Clouds Make the Case for Remote Sensing Instrumentation Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Cloud DistributionsCharacterizations...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying Error in the Radiative Forcing of the First Aerosol Indirect Effect Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research:...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Dust Composition on Cloud Droplet Formation Download a printable PDF Submitter: Chuang, C., Lawrence Livermore National Laboratory Area of Research: Aerosol Properties...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burning on the Prairies Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lovejoy, S., McGill University Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Lovejoy, S., D....

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Method for Three-Dimensional Imaging of Cirrus Clouds Submitter: Liou, K., University of California, Los Angeles Area of Research: Cloud DistributionsCharacterizations Working...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cotton-Ball Clouds Contained Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fog and Rain in the Amazon Download a printable PDF Submitter: Gentine, P., Columbia University Sobel, A., Columbia University Area of Research: Cloud-Aerosol-Precipitation...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of MBL Cloud Properties over the Azores Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Radiation Processes Working Group(s): Cloud...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Download a printable PDF Submitter: Maseyk, K. S., Universite Pierre et Marie Curie, Paris 6 Area of Research: Surface Properties Working Group(s):...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Cloud Forcing in the Tropical West Pacific Submitter: Kiehl, J., NCAR Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s):...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP Observations Help Validate Soil Temperature Simulations Download a printable PDF Submitter: Huang, M., Pacific Northwest National Laboratory Area of Research: Surface...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of CERES-MODIS Cloud Retrievals Using the Azores Data Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Cloud Processes Working...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kishcha, P., Tel-Aviv University Starobinets, B., Tel-Aviv University Kalashnikova, O., Jet Propulsion Laboratory Alpert, P., Tel-Aviv University Area of Research: Radiation...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zhang, Q., University of California, Davis Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Lose Download a printable PDF Submitter: Laskin, A., Pacific Northwest National Laboratory Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing the Birth of New Particles Download a printable PDF Submitter: Wang, J., Brookhaven National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Sites Enable Assessment of Cluster Analysis for Identifying Cloud Regimes Submitter: Jakob, C., Monash University Area of Research: Cloud DistributionsCharacterizations...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Campaign Resource Allocation Using Statistical Decision Analysis Download a printable PDF Submitter: Hanlon, C., Pennsylvania State University Area of Research: Cloud...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rosettes in Cirrus Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Radiation Processes...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black Carbon Aerosols and the Third Polar Ice Cap Submitter: Menon, S., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rain and Cloud Resistance Download a printable PDF Submitter: Flaherty, J., Pacific Northwest National Laboratory Area of Research: Cloud DistributionsCharacterizations Working...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying the Magnitude of Anomalous Solar Absorption Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Recent Evaluation of the MTCKD Model of Continuum Absorption Download a printable PDF Submitter: Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Life Cycle Journal Reference: Zhao Y, GG Mace, and JM Comstock. 2011. "The occurrence of particle ...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production Flux of Sea-Spray Aerosol Download a printable PDF Submitter: Schwartz, S. E., Brookhaven National Laboratory Area of Research: Aerosol Properties Working Group(s):...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMBE - a New ACRF Data Product for Climate Studies Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: Cloud Distributions...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosols Help Heat Up the Yangtze River Delta in China Download a printable PDF Submitter: Flynn, C. J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Lidar View of Clouds in Southeastern China Download a printable PDF Submitter: Li, Z., University of Maryland Cribb, M. C., University of Maryland Area of Research: Cloud...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Processes Make a Big Difference in Model Outcomes Submitter: Cole, J. N., Canadian Centre for Climate Modelling and Analysis Area of Research: General Circulation and Single...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid Water the Key to Arctic Cloud Radiative Closure Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud DistributionsCharacterizations...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observational Evidence of Changes in Water Vapor, Clouds, and Radiation Submitter: Dong, X., University of North Dakota Area of Research: Cloud DistributionsCharacterizations...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Comparison of Integrated Water Vapor Sensors: WVIOP-96 Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Accuracy in Liquid Water Path Retrievals Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Clouds with Low Optical Water Depths...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Water Vapor and Cloud Liquid Water at MCTEX Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at the Full Spectrum for Water Vapor Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress in Understanding Water Vapor's Role in Models Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation-Based Estimates of Cloud-Free Aerosol Radiative Forcing Across China Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Aerosol...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution + Storm Clouds Warmer Atmosphere Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud-Radiation Effects on Sea Ice Loss Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud DistributionsCharacterizations...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mid-Level Cloud Formation at the ARM Darwin Site Download a printable PDF Submitter: Riihimaki, L., Pacific Northwest National Laboratory Area of Research: Cloud Distributions...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPartICus Submitter: Mishra, S., DOE - SunShot Initiative, AAAS S&T Policy Fellow Mitchell, D. L., Desert Research Institute Area of Research: General Circulation and Single...

  18. Technical Area 21

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Area 21 Technical Area 21 Technical Area 21 was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. August 1, 2013 Technical Area 21 in 2011 Technical Area 21 in 2011 Technical Area 21 (TA-21), also known as DP Site was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. Between 2008 and 2011, MDAs B, U, and V were excavated and removed. 24 buildings were demolished in 2010 and 2011

  19. Scientific Opportunities to Reduce Risk in Nuclear Process Science - 9279

    SciTech Connect (OSTI)

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-03-01

    In this document, we propose that scientific investments for the disposal of nuclear and hazardous wastes should not be focused solely on what may be viewed as current Department of Energy needs, but also upon longer-term investments in specific areas of science that underpin technologies presently in use. In the latter regard, we propose four science theme areas: 1) the structure and dynamics of materials and interfaces, 2) coupled chemical and physical processes, 3) complex solution phase phenomena, and 4) chemical recognition phenomena. The proposed scientific focus for each of these theme areas and the scientific opportunities are identified, along with links to major risks within the initiative areas identified in EMs Engineering and Technology Roadmap.

  20. Laboratory Directed Research and Development Program FY98

    SciTech Connect (OSTI)

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  1. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    SciTech Connect (OSTI)

    Ross, H.P.; Forsgren, C.K.

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  2. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    Dr. Chu and his research has been made available on the web at http:www.osti.govaccomplishmentschu.html. This web page includes scientific documents that he authored, ...

  3. Slide10 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    of research output to enhance the scientific discovery process. Working together to solve the authorcontributor name ambiguity problem in scholarly communications Working to...

  4. Slide05 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Department of Energy (DOE) researchers and the public. Premise: Science advances only if knowledge is shared Corollary: Accelerating the sharing of scientific knowledge...

  5. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    ECD, or Energy Citations Database, provides access to over two million scientific research ... of interest and provide patrons with access to electronic full text or, when full ...

  6. Research Input Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HighlightsSubmit Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for...

  7. New research, publications and videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and...

  8. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Speeding access to science information from DOE and Beyond Putting Scientific and Technical Information in Perspective: DOE R&D Accomplishments by Mary Schorn on Thu, Nov 12, 2015 The Department of Energy (DOE) Office of Scientific and Technical Information (OSTI) acquires, manages, preserves, and disseminates DOE scientific and technical information (STI) such as technical reports, journals articles, videos, scientific research data, and in other forms and formats. However, this STI

  9. Pacific Northwest Laboratory: Director`s overview of research performed for DOE Office of Health And Environmental Research

    SciTech Connect (OSTI)

    1995-06-01

    A significant portion of the research undertaken at Pacific Northwest Laboratory (PNL) is focused on the strategic programs of the US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER). These programs, which include Environmental Processes (Subsurface Science, Ecosystem Function and Response, and Atmospheric Chemistry), Global Change (Climate Change, Environmental Vulnerability, and Integrated Assessments), Biotechnology (Human Genome and Structural Biology), and Health (Health Effects and Medical Applications), have been established by OHER to support DOE business areas in science and technology and environmental quality. PNL uses a set of critical capabilities based on the Laboratory`s research facilities and the scientific and technological expertise of its staff to help OHER achieve its programmatic research goals. Integration of these capabilities across the Laboratory enables PNL to assemble multidisciplinary research teams that are highly effective in addressing the complex scientific and technical issues associated with OHER-sponsored research. PNL research efforts increasingly are focused on complex environmental and health problems that require multidisciplinary teams to address the multitude of time and spatial scales found in health and environmental research. PNL is currently engaged in research in the following areas for these OHER Divisions: Environmental Sciences -- atmospheric radiation monitoring, climate modeling, carbon cycle, atmospheric chemistry, ecological research, subsurface sciences, bioremediation, and environmental molecular sciences; Health Effects and Life Sciences -- cell/molecular biology, and biotechnology; Medical Applications and Biophysical Research -- analytical technology, and radiological and chemical physics. PNL`s contributions to OHER strategic research programs are described in this report.

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Daytime Precipitable Water Vapor from Vaisala Radiosonde Humidity Sensors Download a printable PDF Submitter: Cady-Pereira, K. E., Atmospheric and Environmental Research, Inc. Mlawer, E. J., Atmospheric & Environmental Research, Inc. Turner, D. D., National Oceanic and Atmospheric Administration Shephard, M. W., Atmospheric and Environmental Research, Inc. Clough, S. A., Atmospheric and Environmental Research, Inc. Area of Research: Atmospheric Thermodynamics and Vertical Structures

  11. FINAL/ SCIENTIFIC TECHNICAL REPORT

    SciTech Connect (OSTI)

    McDonald, Henry; Singh, Suminderpal

    2006-08-28

    The overall objective of the Chattanooga fuel cell demonstrations project was to develop and demonstrate a prototype 5-kW grid-parallel, solid oxide fuel cell (SOFC) system that co-produces hydrogen, based on Ion Americas technology. The commercial viability of the 5kW SOFC system was tested by transporting, installing and commissioning the SOFC system at the Alternative Energy Laboratory at the University of Tennessee Chattanooga. The system also demonstrated the efficiency and the reliability of the system running on natural gas. This project successfully contributed to the achievement of DOE technology validation milestones from the Technology Validation section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. Results of the project can be found in the final technical report.

  12. DOE SCIENTIFIC AND TECHNICAL REPORTS

    Broader source: Energy.gov [DOE]

    The Record Disposition Schedule items listed below are have been consolidated from DOE Records Schedules previously approved over the last 35 years. They apply specifically to those scientific and...

  13. September is Scientific Supercomputing Month

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is Scientific Supercomputing Month DOE celebrates the science and technology that drive modern discovery September 3, 2013 hopper2cshp.jpg NERSC's flagship Cray XE6 system is...

  14. Focus Areas | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus Areas FA 1: Diversifying Supply FA 2: Developing Substitutes FA 3: Improving Reuse and Recycling FA 4: Crosscutting Research

  15. Scientific Opportunities and Challenges in the Upgraded National Spherical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Torus Experiment | Princeton Plasma Physics Lab March 14, 2015, 9:30am to 11:00am Science On Saturday MBG Auditorium Scientific Opportunities and Challenges in the Upgraded National Spherical Torus Experiment Dr. Jonathan Menard, Principal Research Physicist PPPL Abstract: PDF icon Menard.pdf Science On Saturday, March 14, 2015, "Scientific Opportunities & Challenges in the Upgraded National Spherical Torus Experiment", Dr. Jonathan Menard, PPPL Contact Information Website:

  16. DOE Awards Over a Billion Supercomputing Hours to Address Scientific

    Energy Savers [EERE]

    Challenges | Department of Energy Over a Billion Supercomputing Hours to Address Scientific Challenges DOE Awards Over a Billion Supercomputing Hours to Address Scientific Challenges January 26, 2010 - 12:00am Addthis Washington, DC. - The U.S. Department of Energy announced today that approximately 1.6 billion supercomputing processor hours have been awarded to 69 cutting-edge research projects through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

  17. Lester to lead ORISE's scientific and technical peer review program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lester to lead ORISE's scientific and technical peer review program FOR IMMEDIATE RELEASE June 14, 2010 FY10-42 OAK RIDGE, Tenn.-Oak Ridge Associated Universities has appointed Tony Lester as director of the Oak Ridge Institute for Science and Education's program focused on scientific peer review. Lester has been serving in this role in an acting capacity since September 2009. Tony Lester Tony Lester In his role, Lester manages a research peer review capability that coordinates the use of

  18. Protein Puzzles and Scientific Solutions | Department of Energy

    Energy Savers [EERE]

    Protein Puzzles and Scientific Solutions Protein Puzzles and Scientific Solutions January 8, 2014 - 1:45pm Addthis This 3-D rendering of a lysozyme molecule shows two gadolinium atoms bound to it. Researchers soaked lysozyme crystals in a solution containing the metal gadolinium to help improve imaging quality in an experiment at SLAC's Linac Coherent Light Source (LCLS) X-ray laser. The experiment proved that LCLS can resolve the lysozyme structure without using data obtained earlier, and

  19. September is Scientific Supercomputing Month

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September is Scientific Supercomputing Month September is Scientific Supercomputing Month DOE celebrates the science and technology that drive modern discovery September 3, 2013 hopper2cshp.jpg NERSC's flagship Cray XE6 system is called "Hopper" in honor of American computer scientist Grace Murray Hopper. Whether it's building a car battery that will take you 500 miles on a single charge or understanding the impact of Earth's changing climate on agriculture-advanced computing is a

  20. ALS Scientific Advisory Committee Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Charter Print This document was revised and approved December 18, 2008. I. FUNCTION AND REPORTING The ALS Scientific Advisory Committee (SAC) is advisory to the Berkeley Lab Director through the ALS Director. The SAC serves two primary functions: It acts as a "board of directors" to advise the Laboratory on current and future ALS operations, allocation of facility resources, strategic planning, budget development, and other major issues; and It reviews

  1. ALS Scientific Advisory Committee Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Charter Print This document was revised and approved December 18, 2008. I. FUNCTION AND REPORTING The ALS Scientific Advisory Committee (SAC) is advisory to the Berkeley Lab Director through the ALS Director. The SAC serves two primary functions: It acts as a "board of directors" to advise the Laboratory on current and future ALS operations, allocation of facility resources, strategic planning, budget development, and other major issues; and It reviews

  2. Bay Area | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development...

  3. Rockies Area | Open Energy Information

    Open Energy Info (EERE)

    Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development...

  4. Texas Area | Open Energy Information

    Open Energy Info (EERE)

    Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the...

  5. Innovation Impact: Breakthrough Research Results (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INNOVATION IMPACT Breakthrough Research Results NREL's campus in Golden, Colorado, is a model of sustainable energy and energy efficiency. INNOVATION IMPACT NREL has a rich history of scientific innovation and partnering with industry in research and development to bring new products and technologies into manufacturing production. In these pages we have captured key breakthrough results across our primary areas of renewable energy and energy efficiency research: solar, wind, bioenergy,

  6. Environmental Systems Research Candidates FY-01 Annual Report

    SciTech Connect (OSTI)

    Miller, David Lynn; Piet, Steven James

    2001-03-01

    The Environmental Systems Research Candidates (ESRC) Program ran from April 2000 through September 2001 as part of the Environmental Systems Research and Analysis (ESRA) Program at the Idaho National Engineering and Environmental Laboratory (INEEL). ESRA provides key science and technology to meet the cleanup mission of the U.S. Department of Energy Office of Environmental Management (EM), and performs research and development that will help solve current legacy problems and enhance the INEEL’s scientific and technical capability for solving longer-term challenges. This report documents the accomplishments of the ESRC Program. The ESRC Program consisted of 25 tasks subdivided within four research areas.

  7. Sandia National Laboratories: Research: Research Foundations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Foundations Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Foundations Leadership in innovation Integrating unique resources and technical excellence to benefit our nation. Certain research areas are considered key to the success of Sandia's national security programs. These areas - known as research foundations - underpin

  8. ARM-00-006 Site Scientific Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0-006 Site Scientific Mission Plan for the Southern Great Plains CART Site January-June 2000 Prepared for the U.S. Department of Energy under Contract W-31-109-Eng-38 Site Program Manager Office Environmental Research Division Argonne National Laboratory Argonne, IL 60439 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of their employees, makes any warranty,

  9. Invention | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Invention Our people drive every scientific advance we make, every day. Find out who they are and what they're thinking right now. Home > Invention Inventors GE Global Research...

  10. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division Is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and Implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and quantitative links programs to form DOEs contribution to the US Global Change Research Program. Climate research in the ESD has the common goal of improving our understanding of the physical, chemical, biological, and social processes that influence the Earth system so that national and international policymaking relating to natural and human-induced changes in the Earth system can be given a firm scientific basis. This report describes the progress In FY 1991 in each of these areas.

  11. Scientific Advisory Committee | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Advisory Committee Role and Charter of the SSRL SAC Scope The SSRL Scientific Advisory Committee (SAC) reports to and advises the SSRL Director on issues related to:...

  12. Topco Scientific Company Ltd | Open Energy Information

    Open Energy Info (EERE)

    Topco Scientific Company Ltd Jump to: navigation, search Name: Topco Scientific Company Ltd Place: Taipei City, Taiwan Sector: Solar Product: String representation "Its principal a...

  13. Taiflex Scientific Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Taiflex Scientific Co Ltd Place: Kaohsiung, Taiwan Product: Taiwan-based electronic material manufacturer. References: Taiflex Scientific Co Ltd1 This article is a stub. You...

  14. Guide to Scientific Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guide to Scientific Management A Practical Guide to Scientifc Management for Postdocs and New Faculty. PDF icon Guide to Scientific Management second edition.pdf...

  15. PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic Module Material Costs While Increasing Durability PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic Module ...

  16. Scientific User Facilities (SUF) Division Homepage | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) SUF Home Scientific User Facilities (SUF) Division SUF Home About User Facilities Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home Print Text Size: A A A FeedbackShare Page Research Needs Workshop Reports Workshop Reports The Scientific User Facilities (SUF) Division supports the R&D, planning, construction, and operation of scientific user facilities for the development of novel nano-materials and for materials

  17. Sandia Energy - Research Challenge 2: Quantum Dots and Phosphors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2: Quantum Dots and Phosphors Home Energy Research EFRCs Solid-State Lighting Science EFRC Our SSLS EFRC's Scientific Research Challenges and Publications Research Challenge 2:...

  18. A Computing Environment to Support Repeatable Scientific Big Data Experimentation of World-Wide Scientific Literature

    SciTech Connect (OSTI)

    Schlicher, Bob G; Kulesz, James J; Abercrombie, Robert K; Kruse, Kara L

    2015-01-01

    A principal tenant of the scientific method is that experiments must be repeatable and relies on ceteris paribus (i.e., all other things being equal). As a scientific community, involved in data sciences, we must investigate ways to establish an environment where experiments can be repeated. We can no longer allude to where the data comes from, we must add rigor to the data collection and management process from which our analysis is conducted. This paper describes a computing environment to support repeatable scientific big data experimentation of world-wide scientific literature, and recommends a system that is housed at the Oak Ridge National Laboratory in order to provide value to investigators from government agencies, academic institutions, and industry entities. The described computing environment also adheres to the recently instituted digital data management plan mandated by multiple US government agencies, which involves all stages of the digital data life cycle including capture, analysis, sharing, and preservation. It particularly focuses on the sharing and preservation of digital research data. The details of this computing environment are explained within the context of cloud services by the three layer classification of Software as a Service , Platform as a Service , and Infrastructure as a Service .

  19. Aerial Photography At Truckhaven Area (Layman Energy Associates...

    Open Energy Info (EERE)

    indicated DOE-funding Unknown References Layman Energy Associates Inc. (2006) Final Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area,...

  20. Scientific Visualization: The Modern Oscilloscope for "Seeing the Unseeable" (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Bethel, E Wes

    2011-04-28

    Summer Lecture Series 2008: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.

  1. NERSC, Cray Move Forward With Next-Generation Scientific Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC, Cray Move Forward With Next-Generation Scientific Computing NERSC, Cray Move Forward With Next-Generation Scientific Computing New Cray XC40 will be first supercomputer in Berkeley Lab's new Computational Research and Theory facility April 22, 2015 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 NewCRT.jpg The Cori Phase 1 system will be the first supercomputer installed in the new Computational Research and Theory Facility now in the final stages of construction at Lawrence Berkeley

  2. Summaries of FY 1994 geosciences research

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wong M, M Ovchinnikov, and M Wang. 2015. "Evaluation of subgrid-scale hydrometeor transport...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C., Texas A&M University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lappen C and C Schumacher. 2014. "The role of tilted heating in the...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, X Dong, B Xi, S McFarlane, A Kennedy, B Lin, and P Minnis....

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s): Cloud Modeling Journal Reference: Ghan, S.J. and Leung, L.R., 1999: "A...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Modeling Journal Reference: Naud, C, A Del Genio, GG Mace, S Benson, EE Clothiaux, and P Kollias. ...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Properties Journal Reference: Wang X, KN Liou, SS Ou, GG Mace, and M Deng. 2009. "Remote sensing of ...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s): Cloud Life Cycle Journal Reference: Mace GG, S Houser, S Benson, SA Klein, and QL ...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McFarlane, S. A., U.S. Department of Energy Khain, A., The Hebrew University of Jerusalem Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud...

  11. Laboratory technology research - abstracts of FY 1997 projects

    SciTech Connect (OSTI)

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  12. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-12-13

    The purpose of this directive is to ensure that STI is appropriately managed as part of the DOE mission to enable the advancement of scientific knowledge and technological innovation. Supersedes DOE O 241.1A and DOE O 241.1A Chg 1.

  13. Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Brown, R. C.; McCarley, T. M.

    2006-05-04

    The overall goal of this project was to establish an education and training program in biobased products at Iowa State University (ISU). In particular, a graduate program in Biorenewable Resources and Technology (BRT) was to be established as a way of offering students advanced study in the use of plant- and crop-based resources in the production of biobased products. The program was to include three fundamental elements: an academic program, a research program, and industrial interactions. The academic program set out to introduce a new graduate major in Biorenewable Resources and Technology. Unlike other schools, which only offer certificates or areas of emphasis in biobased products, Iowa State University offers both M.S. and Ph.D degrees through its graduate program. Core required courses in Biorenewable Resources and Technology include a foundation course entitled Fundamentals of Biorenewable Resources (BRT 501); a seminar course entitled Biobased Products Seminar (BRT 506); a laboratory course, and a special topics laboratory course. The foundation course is a three-credit course introducing students to basic concepts in biorenewable resources and technology. The seminar course provides students with an opportunity to hear from nationally and internationally recognized leaders in the field. The laboratory requirement is a 1-credit laboratory course or a special topics laboratory/research experience (BRT 591L). As part of student recruitment, quarter-time assistantships from DOE funds were offered to supplement assistantships provided by faculty to students. Research was built around platform teams in an effort to encourage interdisciplinary research and collaborative student learning in biorenewable resources. A platform is defined as the convergence of enabling technologies into a highly integrated system for transforming a specific feedstock into desired products. The platform teams parallel the way industry conducts research and product development. Platform teams organize faculty and students for cross-disciplinary, systems-oriented research and collaborative learning. To date, nine platforms have been developed, although these will most likely be reorganized into a smaller number of broader topics. In the spring of 2004, BRT faculty initiated a regional partnership and collaborative learning program with colleagues at the University of Minnesota, Kansas State University, and South Dakota State University to develop distance education courses in biorenewable resources and technology. As a fledgling graduate program, the BRT graduate program didnt have the breadth of resources to offer a large number of courses in biorenewables. Other schools faced a similar problem. The academic consortium as first conceived would allow students from the member schools to enroll in biorenewables courses from any of the participating schools, which would assure the necessary enrollment numbers to offer specialized course work. Since its inception, the collaborative curriculum partnership has expanded to include Louisiana State University and the University of Wisconsin. A second international curriculum development campaign was also initiated in the spring of 2004. In particular, several BRT faculty teamed with colleagues at the University of Arkansas, University of Washington, University of Gent (Belgium), National Polytechnic Institute of Toulouse (France), and Technical University of Graz (Austria) to develop an EU-US exchange program in higher education and vocational education/training (entitled Renewable Resources and Clean Technology).

  14. Fundamental Scientific Problems in Magnetic Recording

    SciTech Connect (OSTI)

    Schulthess, T.C.; Miller, M.K.

    2007-06-27

    Magnetic data storage technology is presently leading the high tech industry in advancing device integration--doubling the storage density every 12 months. To continue these advancements and to achieve terra bit per inch squared recording densities, new approaches to store and access data will be needed in about 3-5 years. In this project, collaboration between Oak Ridge National Laboratory (ORNL), Center for Materials for Information Technology (MINT) at University of Alabama (UA), Imago Scientific Instruments, and Seagate Technologies, was undertaken to address the fundamental scientific problems confronted by the industry in meeting the upcoming challenges. The areas that were the focus of this study were to: (1) develop atom probe tomography for atomic scale imaging of magnetic heterostructures used in magnetic data storage technology; (2) develop a first principles based tools for the study of exchange bias aimed at finding new anti-ferromagnetic materials to reduce the thickness of the pinning layer in the read head; (3) develop high moment magnetic materials and tools to study magnetic switching in nanostructures aimed at developing improved writers of high anisotropy magnetic storage media.

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Models Download a printable PDF Submitter: Iacono, M. J., Atmospheric & Environmental Research, Inc. Delamere, J. S., Tech-X Corporation Mlawer, E. J., Atmospheric & Environmental Research, Inc. Collins, W. D., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Radiative Processes Journal Reference: Iacono, MJ, JS Delamere, EJ

  16. Advanced Test Reactor National Scientific User Facility 2010 Annual Report

    SciTech Connect (OSTI)

    Mary Catherine Thelen; Todd R. Allen

    2011-05-01

    This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

  17. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  18. ORISE: Scientific Peer Review Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planning Woman participating in a peer review The Oak Ridge Institute for Science and Education (ORISE) begins the peer review planning process by analyzing the purpose of the funds to be distributed. Because each agency's needs are different, ORISE then designs and manages a flexible, scientific peer review process that can be modified based on a sponsor's regulatory, policy and operational requirements. ORISE's existing tools and systems, and knowledge of reviewing proposals from a government

  19. ITER Project Scientific Foundations Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER Project Scientific Foundations Mission Investment and Return Fusion reactions power the sun and the stars. To achieve fusion power on earth, a fusion reactor requires a burning plasma, where plasma energy is maintained primarily by self- heating due to internal fusion reactions. A 2002 US fusion-community study assessed a range of approaches for creating a burning plasma. Following a 2003 letter report, the Fusion Energy Sciences Advisory Committee noted ITER's advanced stage and

  20. Machine Learning A Scientific Method

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Machine Learning A Scientific Method or Just a Bag of Tools? Don Hush Machine Learning Team Group CCS-3, Los Alamos National Laboratory Los Alamos National Laboratory LAUR Number 06-2338 - p.1/30 Machine Learning Toolbox Fisher's Linear Discriminant Nearest Neighbor Neural Networks (backprop) Decision Trees (CART, C4.5) Boosting Support Vector Machines K-Means Clustering Principle Component Analysis (PCA) Expectation-Maximization (EM) ... and many more Los Alamos National Laboratory LAUR Number

  1. Bay Area

    National Nuclear Security Administration (NNSA)

    8%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  2. Introduction to Scientific I/O

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific I/O Show All | 1 2 3 4 5 6 | Next » Introduction to Scientific I/O Table of Contents Introduction to Scientific I/O The Lustre File System The HDF5 Library Parallel HDF5 Scientific I/O in HDF5 Optimizations for HDF5 on Lustre Introduction to Scientific I/O I/O is commonly used by scientific applications to achieve goals like: storing numerical output from simulations for later analysis; implementing 'out-of-core' techniques for algorithms that process more data than can fit in system

  3. Laboratory directed research and development program, FY 1996

    SciTech Connect (OSTI)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  4. Scientific Applications Research Associates Inc SARA | Open Energy...

    Open Energy Info (EERE)

    90630 Region: United States Sector: Marine and Hydrokinetic Phone Number: 714-224-4410 x 274 Website: www.sara.comraeoceanwave.ht This company is listed in the Marine and...

  5. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy S ciences N etwork Enabling Virtual Science June 9, 2009 Steve C o/er steve@es.net Dept. H ead, E nergy S ciences N etwork Lawrence B erkeley N aDonal L ab The E nergy S ciences N etwork The D epartment o f E nergy's O ffice o f S cience i s o ne o f t he l argest s upporters o f basic r esearch i n t he p hysical s ciences i n t he U .S. * Directly s upports t he r esearch o f s ome 1 5,000 s cienDsts, p ostdocs a nd g raduate s tudents at D OE l aboratories, u niversiDes, o ther F

  6. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESCC,
Salt
Lake
City
 Steve
Co6er,
Dept
Head

 steve@es.net

 Lawrence
Berkeley
NaDonal
Lab
 Outline
 * Staff
Updates
 * Network
Update
 * Advanced
Networking
IniDaDve
 * ESnet
Projects
 * Infrastructure
Projects
 * Staff
Projects
 Staff
Update
 New
hires:
 * Hing
Chow:

Project
Manager
(ANI)
 * Chris
Tracy:

Network
/
SoVware
Engineer
(ANI)
 * Andy
Lake:

SoVware
Engineer
(ANI)
 *

  7. Measurement and Control Systems of Tritium Facilities for Scientific Research

    SciTech Connect (OSTI)

    Vinogradov, Yu.I.; Kuryakin, A.V.; Yukhimchuk, A.A.

    2005-07-15

    The technical approach, equipment and software developed during the creation of measurement and control systems for two complexes are described. The first one is a complex that prepares the gas mixture and targets of the 'TRITON' facility. The 'TRITON' facility is designed for studying muon catalyzed fusion reactions in triple mixtures of H/D/T hydrogen isotopes over wide ranges of temperature and pressure. The second one is 'ACCULINNA' - the liquid tritium target designed to investigate the neutron overloaded hydrogen and helium nuclei. These neutron-overloaded nuclei are produced in reactions of tritium beams on a heavy hydrogen and tritium target.

  8. Secretary Bodman in Illinois Highlights Scientific Research Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    At Advanced Diamond Technologies, Inc., Secretary Bodman touted the key contributions of ... Secretary Bodman toured Advanced Diamond Technologies, Inc. (ADT), a technology company ...

  9. National Energy Research Scientific Computing Center NERSC Exceeds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC stores data from some of the largest experimental devices in the world, including the Large Hadron Col- lider in Europe, the Daya Bay Neutrino detector in China, the Planck ...

  10. DOE Collections, Office of Scientific and Technical Information, USDOE

    Office of Scientific and Technical Information (OSTI)

    DOE Collections At OSTI you can find research results and science information from the Manhattan Project to the present, download documents, view energy citations, discover patents and e-prints, read about ongoing DOE accomplishments, search multimedia, science conference proceedings, scientific research data, and software, and connect to federated search of DOE collections, U.S., and global science portals, as well as customized resources. SciTech Connect Information Bridge DOE R&D

  11. JCESR Scientific Sprints - Better Polymers for Better Batteries | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Better Polymers for Better Batteries Share Topic Energy Energy usage Energy storage Argonne National Laboratory leads the Joint Center for Energy Storage Research (JCESR), a major collaborative research partnership with the goal of developing next-generation energy storage technologies. JCESR supplements its traditional project management approach with scientific "Sprints." The Sprint described in this video involved a multidisciplinary team from Argonne, the

  12. JCESR Scientific Sprints - Speed through Collaboration | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Speed through Collaboration Share Topic Energy Energy usage Energy storage Argonne National Laboratory leads the Joint Center for Energy Storage Research (JCESR), a major collaborative research partnership involving national laboratories, academia, and industry with the goal of developing next-generation energy storage technologies. JCESR supplements its traditional project management approach with scientific "Sprints." Sprints take a single question from JCESR's catalog

  13. Lab Enhances Scientific Data Sharing with Cutting-Edge Connection |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Lab Enhances Scientific Data Sharing with Cutting-Edge Connections September 21, 2006 Cutting-Edge Andy Kowalski holds a 10 Gigabit fiber-optic cable. Newport News, Va. - Scientists who conduct research at the Department of Energy's (DOE's) Thomas Jefferson National Accelerator Facility can now access and share research data faster than ever before, thanks to an upgraded Internet connection that provides data transfer rates of up to 10 Gigabits per second (Gbps). The upgrade

  14. Final Scientific-Technical Report DOE-GISS-61768. Constraints on cloud

    Office of Scientific and Technical Information (OSTI)

    feedback from analysis of arm observations and models (Technical Report) | SciTech Connect Technical Report: Final Scientific-Technical Report DOE-GISS-61768. Constraints on cloud feedback from analysis of arm observations and models Citation Details In-Document Search Title: Final Scientific-Technical Report DOE-GISS-61768. Constraints on cloud feedback from analysis of arm observations and models Final Scientific-Technical Report for research conducted under the Atmospheric Radiation

  15. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Office of Scientific & Technical Information NEWS MEDIA CONTACT: Cathey Daniels, (865) 576-9539 FOR IMMEDIATE RELEASE June 8, 2011 A First in Combining Science Discovery Technologies: Federated Search and Speech-Indexed Multimedia Oak Ridge, TN - The DOE Office of Scientific and Technical Information (OSTI) announced today a new tool in scientific discovery technology. Now citizens and researchers alike can search for both

  16. RSVP for the 2016 PARC All Hands & Scientific Advisory Committee Meetings |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photosynthetic Antenna Research Center Events / RSVP for the 2016 PARC All Hands & Scientific Advisory Committee Meetings RSVP for the 2016 PARC All Hands & Scientific Advisory Committee Meetings Please complete the form below to RSVP for the 2016 PARC All Hands and Scientific Advisory Committee Meetings at Washington University in St. Louis. We understand that travel plans may change; Erin Plut (eplut@wustl.edu) can be contacted with updates. We will also confirm all accommodations

  17. Energy Department Seeks Proposals to Use Scientific Computing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through the use of these advanced systems, scientists have made important progress in several grand challenge research areas, including combustion, astrophysics, protein structure, ...

  18. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond researchers Topic Get scientific e-prints by Dennis Traylor 31 Aug, 2012 in Products and Content E-print Network The E-print Network provides a vast, integrated network of electronic scientific and technical information created by scientists and research engineers active in their respective fields, all full-text searchable. Documents such as these are the means by which today's scientists and researchers communicate their recent

  19. Lakeside: Merging Urban Design with Scientific Analysis

    ScienceCinema (OSTI)

    Guzowski, Leah; Catlett, Charlie; Woodbury, Ed

    2014-11-18

    Researchers at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago are developing tools that merge urban design with scientific analysis to improve the decision-making process associated with large-scale urban developments. One such tool, called LakeSim, has been prototyped with an initial focus on consumer-driven energy and transportation demand, through a partnership with the Chicago-based architectural and engineering design firm Skidmore, Owings & Merrill, Clean Energy Trust and developer McCaffery Interests. LakeSim began with the need to answer practical questions about urban design and planning, requiring a better understanding about the long-term impact of design decisions on energy and transportation demand for a 600-acre development project on Chicago's South Side - the Chicago Lakeside Development project.

  20. Lakeside: Merging Urban Design with Scientific Analysis

    SciTech Connect (OSTI)

    Guzowski, Leah; Catlett, Charlie; Woodbury, Ed

    2014-10-08

    Researchers at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago are developing tools that merge urban design with scientific analysis to improve the decision-making process associated with large-scale urban developments. One such tool, called LakeSim, has been prototyped with an initial focus on consumer-driven energy and transportation demand, through a partnership with the Chicago-based architectural and engineering design firm Skidmore, Owings & Merrill, Clean Energy Trust and developer McCaffery Interests. LakeSim began with the need to answer practical questions about urban design and planning, requiring a better understanding about the long-term impact of design decisions on energy and transportation demand for a 600-acre development project on Chicago's South Side - the Chicago Lakeside Development project.

  1. Scientific Data Management (SDM) Center for Enabling Technologies. Final Report, 2007-2012

    SciTech Connect (OSTI)

    Ludascher, Bertram; Altintas, Ilkay

    2013-09-06

    Our contributions to advancing the State of the Art in scientific workflows have focused on the following areas: Workflow development; Generic workflow components and templates; Provenance collection and analysis; and, Workflow reliability and fault tolerance.

  2. Scientific Alternative Investment Advisory Partners | Open Energy...

    Open Energy Info (EERE)

    Alternative Investment Advisory Partners Jump to: navigation, search Name: Scientific Alternative Investment Advisory Partners Place: Frankfurt, Germany Zip: 60325 Sector:...

  3. Fermilab | Directorate | Fermilab Committee on Scientific Appointments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (FCSA) Committee on Scientific Appointments (FCSA) The Fermilab Committee on Scientific Appointments (FCSA) reviews the hiring, promotion and term extensions for scientific staff. FCSA also plays a review role when a member of the scientific staff requires a Performance Improvement Plan or is considered for a Reduction in Force. FCSA does not review the hiring of Wilson and Peoples Fellows, or promotions from Scientist II to Scientist III, both of which are subject to separate procedures.

  4. LCLS CDR Chapter 3 - Scientific Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Basis for Optical Systems TECHNICAL SYNOPSIS The LCLS Scientific Advisory Committee (SAC) has recommended experiments in five scientific disciplines for the initial operation of the LCLS. These experiments cover a variety of scientific disciplines: atomic physics, plasma physics, chemistry, biology and materials science. The x-ray optics and detectors needed to verify the LCLS capability to address these five disciplines will be constructed and installed as part of the LCLS project.

  5. Steering Committee | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steering Committee Steering Committee The SC evaluates the scientific program of the PARC, assures that PARC research is highly integrated, and monitors PARC performance to ensure...

  6. Researchers Model Impact of Aerosols Over California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cooling over California using supercomputers at the Department of Energy's National Energy Research Scientific Computing Center (NERSC) and at PNNL. The scientists found that...

  7. University of Delaware | CCEI Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Highlights Discovering New Catalytic Technologies Click on the links below to learn about our exciting new discoveries impacting the scientific community. (beginning with ...

  8. Research and Development | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mission Ensure the safety, security, and effectiveness of the nuclear weapons stockpile through well-managed scientific research, technology development, and advantageous ...

  9. Summaries of FY 92 geosciences research

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions and their subdivisions including Earth dynamics, properties of Earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  10. Mid-Pacific Research Laboratory annual report, October 1, 1982-September 30, 1983

    SciTech Connect (OSTI)

    Colin, P.L.; Harrison, J.T. III

    1982-02-01

    Fiscal year 1983 marked the end of on-site operations of the Mid-Pacific Research Laboratory at Enewetak Atoll in the Northern Marshall Islands. With the departure of the laboratory staff from Enewetak on 22 September, research conducted by the resident scientific staff ceased. Henceforth, MPRL will exist in the form of a research readiness program involving a part-time technician at the Hawaii Institute of Marine Biology who will inventory and maintain residual scientific assets and be available to support expeditionary research efforts in the Pacific area. A summary of research efforts in FY 83 is reported including descriptions of the redistribution of coarse surface particles by callianassid to deeper layers of the sediment. The relationship of this bioturbation to the redistribution of Bravo event fallout is related.

  11. International Food Policy Research Institute | Open Energy Information

    Open Energy Info (EERE)

    mission flows from the CGIAR mission: "To achieve sustainable food security and reduce poverty in developing countries through scientific research and research-related activities...

  12. Breaking Ground on Computational Research and Theory Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab Breaks Ground on New Computational Research Facility Breaking Ground on Computational Research and Theory Facility CRT to Foster Scientific Collaboration in...

  13. Research & Evaluation Prototypes (REP) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Research & Evaluation Prototypes (REP) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities User Facilities Accessing ASCR Facilities Computational Science Graduate Fellowship (CSGF) Research & Evaluation Prototypes (REP) Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding the Causes for Consistently Low Biased Stratiform Rainfall in Models Submitter: Varble, A., University of Utah Zipser, E., University of Utah Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Varble A, EJ Zipser, AM Fridlind, P Zhu, AS Ackerman, J Chaboureau, J Fan, A Hill, B Shipway, and C Williams. 2014. "Evaluation of cloud-resolving and limited area model simulations using TWP-ICE observations. 2. Precipitation microphysics." Journal of

  15. SULI Areas of Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Shihuai Zhou) Growth and discovery of novel materials (Paul Canfield) Molecular design of extractants (Theresa Windus) Nanomaterials by Design (Ludovico Cademartiri) ...

  16. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms, laboratory...

  17. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms, laboratory astrophysics, fundamental ...

  18. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    (condensed matter physics and materials science, hydrodynamics and fluid dynamics). ... Hydrodynamic experiments in low energy density physics, high-temperature-pressure and rate ...

  19. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    cross sections of stable and unstable nuclei and corresponding reaction rates for neutron, gamma, and ion-induced reactions. Development of advanced simulations and...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Threshold Radar Reflectivity Separating Precipitating from Non-Precipitating Clouds Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Liu, Y, B Geerts, PH Daum, R McGraw, and M Miller. 2008. "Threshold radar reflectivity for drizzling clouds." Geophysical Research Letters 35, L03807, doi:10.1029/2007GL031201. Figure 1 shows the comparison of the

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Ice Crystals on Ice Sedimentation Rates in Cirrus Clouds and GCM Simulations Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Rasch, P., Pacific Northwest National Laboratory Ivanova, D., Embry-Riddle Aeronautical University McFarquhar, G., University of Illinois, Urbana Nousiainen, T. P., University of Helsinki Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Properties Journal Reference: Mitchell, DL, P

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Aerosol Study Flies By Download a printable PDF Submitter: Schmid, B., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: ARM Climate Research Facility Operations Update, April 30, 2008, Edition Preliminary screening and analysis of images from the time-resolved aerosol collector indicate particles laden with carbon and sulfur. These data were obtained on April 8, 2008. Image courtesy of Alexander Laskin, PNNL. Images

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Surprisingly Large Contribution of Small Marine Clouds to Cloud Fraction and Reflectance Download a printable PDF Submitter: Oreopoulos, L., NASA Feingold, G., NOAA - Earth System Research Laboratory Koren, I., Weizmann Institute of Science Remer, L., NASA - GSFC, Laboratory for Atmospheres Area of Research: Clouds with Low Optical [Water] Depths (CLOWD) Working Group(s): Cloud Properties Journal Reference: Koren, I, L Oreopoulos, G Feingold, LA Remer, and O Altaratz. 2008. "How small

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Aerosol Measurements on Cloudy Days: a New Method Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Kassianov, EI, and M Ovtchinnikov. 2008. "On reflectance ratios and aerosol optical depth retrieval in the presence of cumulus clouds." Geophysical Research Letters doi:10.1029/2008GL033231.

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieving Dust Optical Depth and Mineral Composition from Infrared Spectra Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Turner DD. 2008. "Ground-based retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel." Journal of Geophysical Research - Atmospheres, 113, D00E03,

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detection and Retrieval of Cirrus Clouds in the Tropics from AIRS: Validation from ARM Data Submitter: Yue, Q., Jet Propulsion Laboratory/California Institute of Technology Liou, K., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Yue Q and KN Liou. 2009. "Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra." Geophysical Research Letters, 36, L05810,

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Is In Download a printable PDF Submitter: Tomlinson, J., Pacific Northwest National Laboratory Long, C. N., NOAA Global Monitoring Division/CIRES Comstock, J. M., Pacific Northwest National Laboratory Ronfeld, D., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Properties Journal Reference: N/A The Twin Otter takes off to test the onboard instruments for the RACORO field campaign that began in January 2009. Researchers are gathering data

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds Brighten Up the Sky Near Them Download a printable PDF Submitter: Varnai, T., University of Maryland, Baltimore County/JCEST Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Varnai T and A Marshak. 2009. "MODIS observations of enhanced clear sky reflectance near clouds." Geophysical Research Letters, 36, L06807, doi:10.1029/2008GL037089. Figure 1. Illustration of clouds enhancing the

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Experiments to Improve the Treatment of Radiation in the Mid-to-Upper Troposphere Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Turner DD and EJ Mlawer. 2010. "The Radiative Heating in Underexplored Bands Campaigns (RHUBC)." Bulletin of the American

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Method for Retrieving Cloud Heights from Satellite Data Download a printable PDF Submitter: Chang, F., Science Systems and Applications, Inc. Minnis, P., NASA - Langley Research Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Chang F, P Minnis, B Lin, MM Khaiyer, R Palikonda, and DA Spangenberg. 2010. "A modified method for inferring cloud top height using GOES-12 imager 10.7- and 13.3-µm data." Journal of

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Summertime Radiative Forcing by Shallow Cumuli at the ARM SGP Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Berg LK, EI Kassianov, CN Long, and DL Mills. 2011. "Surface summertime radiative forcing by shallow cumuli at the ARM SGP." Journal of Geophysical Research - Atmospheres, 116, D01202, 10.1029/2010JD014593. Histogram of hourly average shortwave

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cumuli Impact on Solar Radiation at Surface: Spectral Changes Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, J Barnard, LK Berg, CN Long, and C Flynn. 2011. "Shortwave spectral radiative forcing of cumulus clouds from surface observations." Geophysical Research Letters, 38, L07801,

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Heating Up Cold Clouds Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ovchinnikov M, A Korolev, and J Fan. 2011. "Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud." Journal of Geophysical Research - Atmospheres, 116, D00T06, doi:10.1029/2011JD015888. The mighty cloud

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Ground-Based Spectral Observations of the Entire Infrared Band Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Turner DD, EJ Mlawer, G Bianchini, MP Cadeddu, S Crewell, JS Delamere, RO Knuteson, G Maschwitz, M Mlynzcak, S Paine, L Palchetti, and DC Tobin. 2012.

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Invisible" Giants in the Sky Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Daily averaged values of (a, b) the direct

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lord of the Wings: Elevated Particles a Rising Star Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, C Flynn, J Redemann, B Schmid, PB Russell, and A Sinyuk. 2012. "Initial assessment of the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)-based aerosol retrieval: Sensitivity study." Atmosphere, 3,

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Cloud Properties in Major Reanalyses Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Wu, W., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Wu W, YG Liu, and AK Betts. 2012. "Observationally based evaluation of NWP reanalyses in modeling cloud properties over the Southern Great Plains." Journal of Geophysical Research - Atmospheres, 117, D12202,

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micropulse Lidar-Derived Aerosol Optical Depth Climatology at ARM Sites Worldwide Download a printable PDF Submitter: Kafle, D. N., NASA GSFC /ADNET Systems Coulter, R. L., Argonne National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Kafle DN and RL Coulter. 2013. "Micropulse lidar-derived aerosol optical depth climatology at ARM sites worldwide." Journal of Geophysical Research - Atmospheres, 118(13), 10.1002/jgrd.50536.

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Brass Ring of Climate Modeling Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ghan SJ, SJ Smith, M Wang, K Zhang, K Pringle, K Carslaw, J Pierce, S Bauer, and P Adams. 2013. "A simple model of global aerosol indirect effects." Journal of Geophysical Research - Atmospheres, 118, 1-20. The simple model of aerosol effects on clouds

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twenty Years Serving Climate Science Download a printable PDF Submitter: Mather, J. H., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mather JH and JW Voyles. 2013. "The ARM Climate Research Facility: a review of structure and capabilities." Bulletin of the American Meteorological Society, 94(3), doi:10.1175/BAMS-D-11-00218.1. A scanning ARM

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of WRF Microphysics Schemes in Squall Line Simulations Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wu D, B Xi, Z Feng, A Kennedy, M Grenchen, G Matt, and T W-K. 2013. "The impact of various WRF single-moment microphysics parameterizations on squall line precipitation events." Journal of Geophysical Research - Atmospheres, 118, doi:10.1002/jgrd.50798.

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Invisible Giants in the Sky Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Photo

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Overambitious Other Carbon Submitter: Church, J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Song C, M Gyawali, RA Zaveri, JE Shilling, and WP Arnott. 2013. "Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity." Journal of Geophysical Research - Atmospheres, 118, doi:10.1002/jgrd.50767. Time-dependent Mass Absorption

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observational Analysis of Land-Atmosphere Coupling for Climate Model Evaluation Download a printable PDF Submitter: Phillips, T. J., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: Phillips TJ and SA Klein. 2014. "Land-atmosphere coupling manifested in warm-season observations on the U.S. southern great plains." Journal of Geophysical Research -

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Revealing Look Inside Northern Australian Wet Season Precipitation Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, M Bartholomew, M Pope, S Collis, and MP Jensen. 2014. "A Summary of Precipitation Characteristics from the 2006-2011 Northern Australian Wet Seasons as Revealed by ARM Disdrometer Research Facilities (Darwin, Australia)." Journal of

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accuracy of GFS and ECMWF Hurricane Sandy Track Forecasts Dependent on Cumulus Parameterization Download a printable PDF Submitter: Bassill, N. P., University of Utah Zipser, E., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Bassill NP. 2014. "Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: Evidence for a dependence on cumulus parameterization." Geophysical Research Letters, ,

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Checking Up on Tropical Sunlight Download a printable PDF Submitter: Riihimaki, L., Pacific Northwest National Laboratory Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Riihimaki LD and CN Long. 2014. "Spatial variability of surface irradiance measurements at the Manus ARM site." Journal of Geophysical Research - Atmospheres, 119(9), 5475-5491. ACCEPTED. The radiometer system used at the

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Vapor Turbulence Statistics in the Convective Boundary Layer Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Turner DD, V Wulfmeyer, LK Berg, and JH Schween. 2014. "Water vapor turbulence profiles in stationary continental convective mixed layers." Journal of Geophysical Research - Atmospheres, 119,

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Novel Approach for Introducing 3D Cloud Spatial Structure Into 1D Radiative Transfer Download a printable PDF Submitter: Huang, D., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Huang D and Y Liu. 2015. "A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations." Environmental Research Letters, 9(12), 124022. An example of a 3D cloud liquid water content field

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Vertical Velocities in Cirrus Derived from Aircraft and Ground-based Radar Download a printable PDF Submitter: Muhlbauer, A., University of Washington Kalesse, H., Leibniz Institute for Tropospheric Research Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Muhlbauer A, H Kalesse, and P Kollias. 2014. "Vertical velocities and turbulence in midlatitude anvil cirrus: A comparison between in situ aircraft measurements and ground-based

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessing Impact of Shattered Artifacts on Measured Size Distributions Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A Figure 1. (a) Photograph of 2DC with standard tips; and (b) with modified tips installed on the left pod of the National Research Council of Canada Convair 580 during ISDAC. Figure 2. (a) Ratio of number concentration of particles

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBL Cloud and CCN Properties Under Coupled and Decoupled Conditions Submitter: Dong, X., University of North Dakota Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Dong X, A Schwantes, B Xi, and P Wu. 2015. "Investigation of the marine boundary layer cloud and CCN properties under coupled and decoupled conditions over the Azores." Journal of Geophysical Research - Atmospheres, , 1-13. ONLINE. A

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieving Cloud and Aerosol Properties from the ARM Raman Lidar Download a printable PDF Submitter: Thorsen, T., NASA - Langley Research Center Fu, Q., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Thorsen TJ, Q Fu, RK Newsom, DD Turner, and JM Comstock. 2015. "Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, Part I: Feature detection." Journal of

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Ice Nuclei Recycling in the Maintenance of Cloud Ice in Arctic Mixed-phase Stratocumulus Download a printable PDF Submitter: Solomon, A., NOAA/ESRL/Physical Sciences Division Feingold, G., NOAA - Earth System Research Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle Journal Reference: Solomon A, G Feingold, and MD Shupe. 2015. "The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roles of Wind Shear at Different Vertical Levels in Cloud System Organization and Properties Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Chen Q, J Fan, S Hagos, W Gustafson, and L Berg. 2015. "Roles of wind shear at different vertical levels, Part I: Cloud system organization and properties." Journal of Geophysical Research -

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Changes Clouds' Ice Crystal Genesis Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Kulkarni GR, K Zhang, C Zhao, M Nandasiri, V Shutthanandan, X Liu, L Berg, and J Fast. 2015. "Ice formation on nitric acid-coated dust particles: Laboratory and modeling studies." Journal of Geophysical Research - Atmospheres, 120(15), doi:10.1002/2014JD022637.

  17. Research Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Capabilities Research Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy, to supercomputing. thumbnail of Bioscience At Los Alamos, scientists and engineers are working to unlock many of the mechanisms found in nature to improve humanity's ability to battle diseases, create new forms of environmentally friendly and abundant

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Fire to Ice Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Kulkarni GR, M Nandasiri, A Zelenyuk, J Beranek, N Madaan, A Devaraj, V Shutthanandan, S Thevuthasan, and T Varga. 2015. "Effects of crystallographic properties on the ice nucleation properties of volcanic ash particles." Geophysical Research Letters, 42(8), doi:10.1002/2015GL063270. Tons of

  19. Scientific and Technical Need | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thousands of charge-recharge cycles. To develop such batteries, researchers must first lean to better control the reactivity within batteries, a task that requires a better...

  20. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  1. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  2. Compelling Research Opportunities using Isotopes

    SciTech Connect (OSTI)

    2009-04-23

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.

  3. U.S. Scientific Team Draws on New Data, Multiple Scientific Methodologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Reach Updated Estimate of Oil Flows from BP's Well | Department of Energy Scientific Team Draws on New Data, Multiple Scientific Methodologies to Reach Updated Estimate of Oil Flows from BP's Well U.S. Scientific Team Draws on New Data, Multiple Scientific Methodologies to Reach Updated Estimate of Oil Flows from BP's Well June 15, 2010 - 12:00am Addthis Washington - Based on updated information and scientific assessments, Secretary of Energy Steven Chu, Secretary of the Interior Ken

  4. Verifying disarmament: scientific, technological and political challenges

    SciTech Connect (OSTI)

    Pilat, Joseph R

    2011-01-25

    There is growing interest in, and hopes for, nuclear disarmament in governments and nongovernmental organizations (NGOs) around the world. If a nuclear-weapon-free world is to be achievable, verification and compliance will be critical. VerifYing disarmament would have unprecedented scientific, technological and political challenges. Verification would have to address warheads, components, materials, testing, facilities, delivery capabilities, virtual capabilities from existing or shutdown nuclear weapon and existing nuclear energy programs and material and weapon production and related capabilities. Moreover, it would likely have far more stringent requirements. The verification of dismantlement or elimination of nuclear warheads and components is widely recognized as the most pressing problem. There has been considerable research and development done in the United States and elsewhere on warhead and dismantlement transparency and verification since the early 1990s. However, we do not today know how to verifY low numbers or zero. We need to develop the needed verification tools and systems approaches that would allow us to meet this complex set of challenges. There is a real opportunity to explore verification options and, given any realistic time frame for disarmament, there is considerable scope to invest resources at the national and international levels to undertake research, development and demonstrations in an effort to address the anticipated and perhaps unanticipated verification challenges of disarmament now andfor the next decades. Cooperative approaches have the greatest possibility for success.

  5. Scientific American: "Tall Trees Sucked Dry by Global Warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" June 7, 2015 Scientific American: "Tall Trees Sucked Dry by Global Warming" A well-known scientific principle...

  6. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    Within the US Department of Energy's (DOE's) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division Is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and Implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). Research at PNL provides basic scientific underpinnings to DOE's program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and quantitative links programs to form DOEs contribution to the US Global Change Research Program. Climate research in the ESD has the common goal of improving our understanding of the physical, chemical, biological, and social processes that influence the Earth system so that national and international policymaking relating to natural and human-induced changes in the Earth system can be given a firm scientific basis. This report describes the progress In FY 1991 in each of these areas.

  7. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    and the library community to expand access to and use of DOE scientific research ... from the Manhattan Project; searchable access to over 290,000 DOE full-text reports , ...

  8. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    ... Another example of the ongoing innovative work here at OSTI is a multimedia indexing ... be developed as part of many scientific research projects in today's Web 2.0 environment. ...

  9. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond colleagues Topic Get scientific e-prints by Dennis Traylor 31 Aug, 2012 in Products and Content E-print Network The E-print Network provides a vast, integrated network of electronic scientific and technical information created by scientists and research engineers active in their respective fields, all full-text searchable. Documents such as these are the means by which today's scientists and researchers communicate their recent

  10. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond documents Topic Get scientific e-prints by Dennis Traylor 31 Aug, 2012 in Products and Content E-print Network The E-print Network provides a vast, integrated network of electronic scientific and technical information created by scientists and research engineers active in their respective fields, all full-text searchable. Documents such as these are the means by which today's scientists and researchers communicate their recent

  11. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond prints Topic Get scientific e-prints by Dennis Traylor 31 Aug, 2012 in Products and Content E-print Network The E-print Network provides a vast, integrated network of electronic scientific and technical information created by scientists and research engineers active in their respective fields, all full-text searchable. Documents such as these are the means by which today's scientists and researchers communicate their recent findings

  12. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond full text Topic Get scientific e-prints by Dennis Traylor 31 Aug, 2012 in Products and Content E-print Network The E-print Network provides a vast, integrated network of electronic scientific and technical information created by scientists and research engineers active in their respective fields, all full-text searchable. Documents such as these are the means by which today's scientists and researchers communicate their recent

  13. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond searchable Topic Get scientific e-prints by Dennis Traylor 31 Aug, 2012 in Products and Content E-print Network The E-print Network provides a vast, integrated network of electronic scientific and technical information created by scientists and research engineers active in their respective fields, all full-text searchable. Documents such as these are the means by which today's scientists and researchers communicate their recent

  14. STIPWorks | OSTI, US Dept of Energy, Office of Scientific and Technical

    Office of Scientific and Technical Information (OSTI)

    Information Sandia National Laboratories In the Spotlight - A Bold Heritage: Sandia National Laboratories' roots lie in World War II's Manhattan Project. Sandia National Laboratories In the Spotlight - A Bold Heritage: Sandia National Laboratories' roots lie in World War II's Manhattan Project. Department of Energy Announces Increased Access to Results of Scientific Research Department of Energy Announces Increased Access to Results of Scientific Research OSTI Blog OSTI Blog Public Access in

  15. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Author Notification by Jim Littlepage on Mon, May 12, 2008 Authors of DOE scientific and technical reports are getting their research results made electronically available worldwide courtesy of the Office of Scientific and Technical Information, http://www.osti.gov/. OSTI is making research results from work performed under DOE-sponsored contracts available via an array of web based outlets including powerful federated searching

  16. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Get scientific e-prints by Dennis Traylor on Fri, Aug 31, 2012 E-print Network The E-print Network provides a vast, integrated network of electronic scientific and technical information created by scientists and research engineers active in their respective fields, all full-text searchable. Documents such as these are the means by which today's scientists and researchers communicate their recent findings to their colleagues and by

  17. DOE Data ID Service | OSTI, US Dept of Energy, Office of Scientific and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Information DOE Data ID Service DataCite | Contact DOE Data ID Service DOE Data ID Service DOE Data ID Service The DOE Office of Scientific and Technical Information (OSTI) offers a service for registering datasets to help increase access to digital data from DOE-funded scientific research. Through the DOE Data ID Service, OSTI assigns persistent identifiers, known as Digital Object Identifiers (DOIs), to datasets submitted by DOE and its contractor and grantee researchers and

  18. The 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference/Gordon Research Seminar

    SciTech Connect (OSTI)

    Krauss, Todd D.

    2014-11-25

    The fundamental properties of small particles and their potential for groundbreaking applications are among the most exciting areas of study in modern physics, chemistry, and materials science. The Clusters, Nanocrystals & Nanostructures Gordon ResearchConference and Gordon Research Seminar synthesize contributions from these inter-related fields that reflect the pivotal role of nano-particles at the interface between these disciplines. Size-dependent optical, electronic, magnetic and catalytic properties offer prospects for applications in many fields, and possible solutions for many of the grand challenges facing energy generation, consumption, delivery, and storage in the 21st century. The goal of the 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference and Gordon Research Seminar is to continue the historical interdisciplinary tradition of this series and discuss the most recent advances, basic scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. The Clusters, Nanocrystals & Nanostructures GRC/GRS traditionally brings together the leading scientific groups that have made significant recent advances in one or more fundamental nanoscience or nanotechnology areas. Broad interests of the DOE BES and Solar Photochemistry Program addressed by this meeting include the areas of solar energy to fuels conversion, new photovoltaic systems, fundamental characterization of nanomaterials, magnetism, catalysis, and quantum physics. The vast majority of speakers and attendees will address either directly the topic of nanotechnology for photoinduced charge transfer, charge transport, and catalysis, or will have made significant contributions to related areas that will impact these fields indirectly. These topics have direct relevance to the mission of the DOE BES since it is this cutting-edge basic science that underpins our energy future.

  19. Development of Enabling Scientific Tools to Characterize the Geologic Subsurface at Hanford

    SciTech Connect (OSTI)

    Kenna, Timothy C.; Herron, Michael M.

    2014-07-08

    This final report to the Department of Energy provides a summary of activities conducted under our exploratory grant, funded through U.S. DOE Subsurface Biogeochemical Research Program in the category of enabling scientific tools, which covers the period from July 15, 2010 to July 14, 2013. The main goal of this exploratory project is to determine the parameters necessary to translate existing borehole log data into reservoir properties following scientifically sound petrophysical relationships. For this study, we focused on samples and Ge-based spectral gamma logging system (SGLS) data collected from wells located in the Hanford 300 Area. The main activities consisted of 1) the analysis of available core samples for a variety of mineralogical, chemical and physical; 2) evaluation of selected spectral gamma logs, environmental corrections, and calibration; 3) development of algorithms and a proposed workflow that permits translation of log responses into useful reservoir properties such as lithology, matrix density, porosity, and permeability. These techniques have been successfully employed in the petroleum industry; however, the approach is relatively new when applied to subsurface remediation. This exploratory project has been successful in meeting its stated objectives. We have demonstrated that our approach can lead to an improved interpretation of existing well log data. The algorithms we developed can utilize available log data, in particular gamma, and spectral gamma logs, and continued optimization will improve their application to ERSP goals of understanding subsurface properties.

  20. Institutional research and development, FY 1988

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The Laboratory's Institutional Research and Development (IR and D) Program was established in 1984 to foster exploratory work to advance science and technology, disciplinary research to develop innovative solutions to support our national defense and energy missions. In FY 1988, the IR and D Program was funded by a 2% assessment on the Laboratory's operating budget. Our policy is to use these funds for researching innovative ideas in LLNL's areas of expertise and for developing new areas of expertise that we perceive to be in the national interest. The technical and scientific accomplishments of each project and of each institute funded this year are presented in this report. The projects were selected because they are expected to advance research in important areas that are too basic or too time consuming to be funded by the developmental programs or because they are somewhat risky projects that have the promise of high payoff. We are continually reappraising the IR and D Program. In particular, we seek new candidates for the Director's Initiatives, and we constantly reassess the work in progress. Each year, we make adjustments to further the Laboratory's policy of using the IR and D Program to fund innovative ideas with high potential for enhancing programmatic activities of national importance.

  1. Adventures in supercomputing: Scientific exploration in an era of change

    SciTech Connect (OSTI)

    Gentry, E.; Helland, B.; Summers, B.

    1997-11-01

    Students deserve the opportunity to explore the world of science surrounding them. Therefore it is important that scientific exploration and investigation be a part of each student`s educational career. The Department of Energy`s Adventures in Superconducting (AiS) takes students beyond mere scientific literacy to a rich embodiment of scientific exploration. AiS provides today`s science and math students with a greater opportunity to investigate science problems, propose solutions, explore different methods of solving the problem, organize their work into a technical paper, and present their results. Students learn at different rates in different ways. Science classes with students having varying learning styles and levels of achievement have always been a challenge for teachers. The AiS {open_quotes}hands-on, minds-on{close_quotes} project-based method of teaching science meets the challenge of this diversity heads on! AiS uses the development of student chosen projects as the means of achieving a lifelong enthusiasm for scientific proficiency. One goal of AiS is to emulate the research that takes place in the everyday environment of scientists. Students work in teams and often collaborate with students nationwide. With the help of mentors from the academic and scientific community, students pose a problem in science, investigate possible solutions, design a mathematical and computational model for the problem, exercise the model to achieve results, and evaluate the implications of the results. The students then have the opportunity to present the project to their peers, teachers, and scientists. Using this inquiry-based technique, students learn more than science skills, they learn to reason and think -- going well beyond the National Science Education Standard. The teacher becomes a resource person actively working together with the students in their quest for scientific knowledge.

  2. Research Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Techniques Research Techniques Print Coming Soon

  3. Southern CA Area | Open Energy Information

    Open Energy Info (EERE)

    CA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Southern CA Area 1.1 Products and Services in the Southern CA Area 1.2 Research and Development...

  4. ORISE: Capabilities in Scientific Peer Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Link Best Practices in Peer Review Assure Quality, Value, Objectivity (PDF, 330KB) Journal of the National Grants Management Association Oak Ridge Institute for Science Education Capabilities in Scientific Peer Review ORISE Provides Extensive Capabilities in Managing Competitive Scientific Peer Reviews The Oak Ridge Institute for Science and Education (ORISE) manages scientific peer reviews for the U.S. Department of Energy (DOE) and other government agencies. Our capabilities span the

  5. Peter Nugent Named Deputy for Scientific Engagement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peter Nugent Named Deputy for Scientific Engagement Peter Nugent Named Deputy for Scientific Engagement June 3, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov XBD201308-03524-01.jpg Peter Nugent working with 2013 summer student Kayla Mendel. Peter Nugent has been appointed Deputy for Scientific Engagement in Berkeley Lab's Computing Sciences. In his new role, Nugent will work with CRD and Computing Sciences leadership to develop and implement a strategy for engaging with other Berkeley Lab

  6. AWEA WINDPOWER 2012 Conference and Exhibition; Scientific Track Paper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AWEA WINDPOWER 2012 Conference and Exhibition; Scientific Track Paper Atlanta, GA; June 3-6, 2012 Challenges and Opportunities in Large Offshore Rotor Development: Sandia 100-meter Blade Research D. Todd Griffith, 1 Brian R. Resor, 2 and Thomas D. Ashwill 3 Sandia National Laboratories, Albuquerque, New Mexico 87185 Sandia National Laboratories' (SNL) Wind & Water Power Technologies Department, as part of its ongoing R&D efforts, creates and evaluates innovative large blade concepts for

  7. DOE Advanced Scientific Advisory Committee (ASCAC): Workforce Subcommittee

    Office of Scientific and Technical Information (OSTI)

    Letter (Program Document) | SciTech Connect Advisory Committee (ASCAC): Workforce Subcommittee Letter Citation Details In-Document Search Title: DOE Advanced Scientific Advisory Committee (ASCAC): Workforce Subcommittee Letter Simulation and computing are essential to much of the research conducted at the DOE national laboratories. Experts in the ASCR ¬relevant Computing Sciences, which encompass a range of disciplines including Computer Science, Applied Mathematics, Statistics and domain

  8. Research in progress: FY 1992. Summaries of projects

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The Biological and Environmental Research (BER) Program of OHER has two main missions: (1) to develop the knowledge base necessary to identify, understand, and anticipate the long-term health and environmental consequences of energy use and development and (2) to utilize the Department`s unique scientific and technological capabilities to solve major scientific problems in medicine, biology, and the environment. These missions reflect a commitment to develop the beneficial uses of advanced energy technologies while at the same time assuring that any potentially adverse health and environmental impacts of the Nation`s energy policies are fully identified and understood. The BER Program includes research in atmospheric, marine, and terrestrial processes, including the linkage between the use in greenhouse gases, carbon dioxide, and regional and global climate change; in molecular and subcellular mechanisms underlying human somatic and genetic processes and their responses to energy-related environmental toxicants; in nuclear medicine, structural biology, the human genome, measurement sciences and instrumentation, and other areas that require the unique capabilities of the Department`s laboratory system. The principal areas of research are Health Research and Environmental Research.

  9. Workshop on Scientific Applications of the LCLS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WORKSHOP ON SCIENTIFIC APPLICATIONS OF THE LCLS Stanford Linear Accelerator Center, January 12-14, 1999 I. Lindau and J. Arthur, principal organizers INTRODUCTION Free electron...

  10. Increasing Scientific Productivity by Tracking Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    than its predecessor. To effectively meet the increasing scientific demand for storage systems and services, the center's staff must first understand how data moves within the...

  11. Hoku Scientific Inc | Open Energy Information

    Open Energy Info (EERE)

    Hoku Scientific Inc Place: Kapolei, Hawaii Zip: 96707 Product: US-based materials science company, which started as a fuel cell company and then got into polysilicon...

  12. ORISE: Contact Us - Scientific Peer Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Tony Lester Senior Associate Director, Scientific Assessment and Workforce Development Work: 865.576.3304 peerreview@orau.org...

  13. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  14. Federated Search | OSTI, US Dept of Energy, Office of Scientific and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Information Federated Search OSTI ensures global access to DOE research results and brings the world's research to DOE. To find government research results, first you need to find the right discovery tools. If you've been searching for science information using popular search engines such as Google, Yahoo! and MSN, you may be missing out on the research you need. That's because popular search engines generally cannot search in the deep web where most scientific research results are

  15. The code of codes: Scientific and social issues in the human genome project

    SciTech Connect (OSTI)

    Kevles, D.J.; Hood, L.

    1992-01-01

    The US Human Genome Project (HGP) may be the first coordinated scientific endeavor to formally address the social consequences of its scientific research program. From its beginning, the HGP has reserved approximately 3%-5% of the overall scientific budget for study of the ethical, social, and legal implications of the use of the information that the project's research will generate. This book reflects the interdisciplinary approach of the HGP, presenting both scientific perspectives and commentary on social and ethical issues. It is notable that the content of this book is more heavily weighted toward consideration of the latter than is the HGP itself; fully two-thirds of the book consists of essays with historical and ethical themes. This diverse collection affords an opportunity to compare and contrast the thoughts of individuals who are considering the implications of this genetic research from very different disciplines and perspectives.

  16. Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA), FINAL REPORT

    SciTech Connect (OSTI)

    Bertram Ludaescher; Ilkay Altintas

    2012-07-03

    This is the final report from SDSC and UC Davis on DE-FC02-01ER25486, Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA).

  17. U.S. Scientific Team Draws on New Data, Multiple Scientific Methodolog...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Oil Flows from BP's Well U.S. Scientific Team Draws on New Data, Multiple Scientific Methodologies to Reach Updated Estimate of Oil Flows from BP's Well June 15, 2010 - 12:00am ...

  18. Research Extension and Education Programs on Bio-based Energy Technologies and Products

    SciTech Connect (OSTI)

    Jackson, Sam; Harper, David; Womac, Al

    2010-03-02

    The overall objectives of this project were to provide enhanced educational resources for the general public, educational and development opportunities for University faculty in the Southeast region, and enhance research knowledge concerning biomass preprocessing and deconstruction. All of these efforts combine to create a research and education program that enhances the biomass-based industries of the United States. This work was broken into five primary objective areas: Task A - Technical research in the area of biomass preprocessing, analysis, and evaluation. Tasks B&C - Technical research in the areas of Fluidized Beds for the Chemical Modification of Lignocellulosic Biomass and Biomass Deconstruction and Evaluation. Task D - Analyses for the non-scientific community to provides a comprehensive analysis of the current state of biomass supply, demand, technologies, markets and policies; identify a set of feasible alternative paths for biomass industry development and quantify the impacts associated with alternative path. Task E - Efforts to build research capacity and develop partnerships through faculty fellowships with DOE national labs The research and education programs conducted through this grant have led to three primary results. They include: A better knowledge base related to and understanding of biomass deconstruction, through both mechanical size reduction and chemical processing A better source of information related to biomass, bioenergy, and bioproducts for researchers and general public users through the BioWeb system. Stronger research ties between land-grant universities and DOE National Labs through the faculty fellowship program. In addition to the scientific knowledge and resources developed, funding through this program produced a minimum of eleven (11) scientific publications and contributed to the research behind at least one patent.

  19. University Turbine Systems Research Program

    SciTech Connect (OSTI)

    Leitner, Robert; Wenglarz, Richard

    2010-12-31

    The primary areas of university research were combustion, aerodynamics/heat transfer, and materials, with a few projects in the area of instrumentation, sensors and life (ISL).

  20. Postdoctoral Program Program Description The Postdoctoral (Postdoc) Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdoctoral Program Program Description The Postdoctoral (Postdoc) Research program offers the opportunity for appointees to perform research in a robust scientific R&D environment, present and publish research, advance knowledge in basic and applied science, and strengthen national scientific and technical capabilities. Program Mission The Postdoctoral Program provides the opportunity for appointees to perform scientifically rich research, showcase their work through publishing and

  1. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

    2012-11-01

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

  2. Visiting Scientists and Researchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visiting Scientists and Researchers Proposals for use of the fixed and mobile ACRF sites are welcome from all members of the scientific community. The ACRF is an ideal platform on which to develop and test new instrumental approaches. Activities conducted by ACRF users may include a visit to one of the research sites for informational or educational purposes; an effort to test or validate new instruments; a short-duration period of data acquisition or a longer, more permanent type of data

  3. DOE Science Showcase - Computing Research | OSTI, US Dept of Energy, Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Scientific and Technical Information DOE Science Showcase - Computing Research For the growing number of problems where experiments are impossible, dangerous, or inordinately costly, exascale computing will enable the solution of vastly more accurate predictive models and the analysis of massive quantities of data, producing advances in areas of science and technology that are essential to DOE and Office of Science missions and, in the hands of the private sector, drive U.S.

  4. DOE Science Showcase - Light-emitting Diode (LED) Lighting Research | OSTI,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Dept of Energy, Office of Scientific and Technical Information Light-emitting Diode (LED) Lighting Research Light-emitting diode (LED) lighting is a type of solid-state lighting that uses a semiconductor to convert electricity to light. LED lighting products are beginning to appear in a wide variety of home, business, and industrial products such as holiday lighting, replacement bulbs for incandescent lamps, street lighting, outdoor area lighting and indoor ambient lighting. Over the past

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Measurements Validate New Satellite Multilayer Cloud Remote Sensing Method Submitter: Minnis, P., NASA - Langley Research Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Huang, J., P. Minnis, B. Lin, Y. Yi, T.-F. Fan, S. Sun-Mack, and J. K. Ayers, 2006: Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements. Geophys. Res. Lett., 33, L21801, 10.1029/2006GL027038. Minnis,

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM M-PACE Data Used to Evaluate and Improve Arctic Mixed-Phase Clouds Simulated in Climate Models Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Xie, S, J Boyle, SA Klein, X Liu, and S Ghan. 2008. "Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE." Journal of Geophysical Research 113,

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Term Observations of Convective Boundary Layer Using Insect Returns at SGP Download a printable PDF Submitter: Chandra, A. S., McGill University Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Chandra AS, P Kollias, SE Giangrande, and SA Klein. 2010. "Long-term observations of the convective boundary layer using insect radar returns at the SGP ARM Climate Research Facility." Journal of Climate, 23, 5699-5714. Example of time-height mapping

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving the Treatment of Radiation in Climate Models Download a printable PDF Submitter: Delamere, J. S., Tech-X Corporation Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Delamere JS, SA Clough, VH Payne, EJ Mlawer, DD Turner, and RR Gamache. 2010. "A far-infrared radiative closure study in the Arctic: Application to water vapor." Journal of Geophysical Research - Atmospheres, 115, D17106, 10.1029/2009JD012968. The

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predicting Arctic Sea Ice Loss Download a printable PDF Submitter: Liu, X., University of Wyoming Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Liu X, S Xie, J Boyle, SA Klein, X Shi, Z Wang, W Lin, SJ Ghan, M Earle, PS Liu, and A Zelenyuk. 2011. "Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations." Journal of Geophysical Research, 116, D00T11,

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effect of Dry Deposition of Condensable Organic Vapors on SOA Formation in the Urban Plume Download a printable PDF Submitter: Hodzic, A., NCAR Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Hodzic A, S Madronich, B Aumont, J Lee-Taylor, T Karl, M Camredon, and C Mouchel-Vallon. 2014. "Limited influence of dry deposition of semi-volatile organic vapors on secondary organic aerosol formation in the urban plume." Geophysical Research Letters,

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Warming Due to Soot and Smoke? Maybe Not. Submitter: Penner, J. E., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Penner, J.E., S.Y. Zhang, and C.C. Chuang, Soot and smoke aerosol may not warm climate, J. Geophys. Res., 108(D21), 4657, doi:10.1029/2003JD003409, 2003. New research results from the Department of Energy's Atmospheric Radiation Measurement (ARM) Program suggest that fossil fuel soot emissions and biomass smoke may

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Program Achieves Milestone in Global Cloud Properties Research Submitter: Revercomb, H. E., University of Wisconsin, Madison Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Knuteson, R.O., Best, F.A., Dedecker, R.G., Feltz, W.F., Revercomb, H.E., and Tobin, D.C., 2004: "10 Years of AERI Data from the DOE ARM Southern Great Plains Site," In Proceedings from the Fourteenth ARM Science Team Meeting, U.S. Department of Energy,Washington,

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dust Takes Detour on Ice-Cloud Journey Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kulkarni G, C Sanders, K Zhang, X Liu, and C Zhao. 2014. "Ice nucleation of bare and sulfuric acid-coated mineral dust particles and implication for cloud properties." Journal of Geophysical Research - Atmospheres, 119(16), doi:10.1002/2014JD021567. Cirrus clouds are

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DCS Ice Cloud Microphysical Properties Derived from Aircraft Data During MC3E Submitter: Dong, X., University of North Dakota Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wang J, X Dong, and B Xi. 2015. "Investigation of ice cloud microphysical properties of DCSs using aircraft in situ measurements during MC3E over the ARM SGP site." Journal of Geophysical Research - Atmospheres, 120(8), 3533-3552. Figure 1. The observed PSDs at different

  15. Summaries of FY 1979 research in the chemical sciences

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.

  16. Exploiting the Use of Social Networking to Facilitate Collaboration in the Scientific Community

    SciTech Connect (OSTI)

    Coppock, Edrick G.

    2014-04-07

    The goal of this project was to exploit social networking to facilitate scientific collaboration. The project objective was to research and identify scientific collaboration styles that are best served by social networking applications and to model the most effective social networking applications to substantiate how social networking can support scientific collaboration. To achieve this goal and objective, the project was to develop an understanding of the types of collaborations conducted by scientific researchers, through classification, data analysis and identification of unique collaboration requirements. Another technical objective in support of this goal was to understand the current state of technology in collaboration tools. In order to test hypotheses about which social networking applications effectively support scientific collaboration the project was to create a prototype scientific collaboration system. The ultimate goal for testing the hypotheses and research of the project was to refine the prototype into a functional application that could effectively facilitate and grow collaboration within the U.S. Department of Energy (DOE) research community.

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Vertical Structure of Cloud Radiative Forcing at the ACRF SGP Revealed by 8 Years of Continuous Measurements Submitter: Mace, G., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Accepted to Journal of Climate, 2007. Figure 1. Cloud occurrence, coverage, radiative forcing, and radiation effects over a composite annual cycle that is derived by averaging all observations collected during a

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Climatology of Midlatitude Continental Cloud Properties and Their Impact on the Surface Radiation Budget Submitter: Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Dong, X., P. Minnis, and B. Xi, 2005: A climatology of midlatitude continental clouds from ARM SGP site. Part I: Low-level Cloud Macrophysical, microphysical and radiative properties. J. Climate. 18, 1391-1410. Dong, X., B. Xi, and P.

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raman Lidar Observations of Aerosol Humidification Near Clouds Submitter: Ferrare, R. A., NASA LaRC Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Ferrare, R., et al., Evaluation of Daytime Measurements of Aerosols and Water Vapor Made by an Operational Raman Lidar over the Southern Great Plains, J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836, 2006. Relative humidity profiles derived from the Raman lidar during the ALIVE 2005 field experiment. Aerosol

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Matthews, S., J. M. Hacker, J. Cole, J. Hare, C. N. Long, and R. M. Reynolds, (2007): Modification of the atmospheric boundary layer by a small island: observations from Nauru, MWR, Vol. 135, No. 3, pages 891–905. Figure 1.

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate? Submitter: Prenni, A. J., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Prenni, A. J., J. Y. Harrington, M. Tjernstrom, P. J. DeMott, A. Avramov, C. N. Long, S. M. Kreidenweis, P. Q. Olsson, and J. Verlinde, (2006): Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate?, BAMS, Vol.88, Iss. 4; pg. 541-550. ACIA, 2004: Impacts of a Warming

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Aerosol Humidity Effects Using the ARM Measurements Submitter: Li, Z., University of Maryland Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Jeong, M.-J., Z. Li, E. Andrews, and S.-C. Tsay (2007). Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site, J. Geophys. Res., 112, D10202, doi:10.1029/2006JD007176. (a)-(j) Column-mean aerosol humidification factor as

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Doppler Radar to Characterize Cloud Parameters Download a printable PDF Submitter: Kogan, Y., University of Oklahoma - CIMMS Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Kogan, Y.L., Z. N. Kogan, and D. B. Mechem, 2007: Assessing the errors of microphysical retrievals in Marine Stratocumulus based on Doppler radar parameters, J. Hydrometeorol., GEWEX special issue, 8, 665-677. Figure 1. The errors of drizzle flux R retrieval

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Significance of Multilayer Cloud Systems in Tropical Convection Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Stephens, GL, and NB Wood. 2007. "Properties of tropical convection observed by millimeter-wave radar systems." Monthly Weather Review 135: 821-842. Storm classifications (derived from k-means clustering analysis) applied to MWR

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with SCAM, CAPT Forecasts and M-PACE Observations Download a printable PDF Submitter: Liu, X., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Liu, X, S Xie, and SJ Ghan. 2007. "Evaluation of a new mixed-Phase cloud microphysics parameterization with the NCAR single column climate model (SCAM) and ARM M-PACE

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Depth Measurements by Shadowband Radiometers and Their Uncertainties Download a printable PDF Submitter: Alexandrov, M. D., Columbia University Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Applied Optics, accepted Sept. 2007. Effective offset to measured optical depths due to tilt of 1-degree in different directions. Offset observed in C1 MFRSR AOD relative to Cimel and representative offset due to tilt. Appearance of shading failure and effect on

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed-Phase Cloud Vertical Velocities and Dynamical-Microphysical Interactions Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, P Kollias, M Poellot, and E Eloranta. 2008. "On deriving vertical air motions from cloud radar Doppler spectra." Journal of Atmospheric and Oceanic Technology 25: 547-557. Shupe, MD, P Kollias, POG Persson, and GM

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Five-Year Statistics of Shallow Clouds at the ACRF SGP Site Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Kassianov, E., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Berg, LK, and EI Kassianov. 2008. "Temporal variability of fair-weather cumulus statistics at the ARM SGP site." Journal of Climate 21, 3344-3358. Figure 1. Five-year mean ARSCL VAP

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM QCRad Goes Global Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Long, CN, and Y Shi. 2008. "An automated quality assessment and control algorithm for surface radiation measurements." The Open Atmospheric Science Journal 2: 23-37, doi: 10.2174/1874282300802010023. Figure: QCRad downwelling (top) and upwelling (bottom) longwave (LW) comparison

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Mixed-Phase Clouds from the Ground: a Status Report Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, JS Daniel, G De Boer, EW Eloranta, P Kollias, E Luke, CN Long, DD Turner, and J Verlinde. 2008. "A focus on mixed-phase clouds: The status of ground-ba sed observational methods." Bulletin of the American Meteorological Society,

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Susceptibility Measures Potential Cloud Sensitivity to First Aerosol Indirect Effect Download a printable PDF Submitter: Oreopoulos, L., NASA Platnick, S., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Platnick, S, and L Oreopoulos. 2008. "Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 1. Theoretical analysis and examples from MODIS." Journal of

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of CloudSat Using ARM, AMF, and CloudNet Observations Download a printable PDF Submitter: Protat, A., Australian Bureau of Meterology May, P. T., Bureau of Meteorology O'Connor, E. J., University of Reading Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Submitted. PDF of cloud reflectivity (upper-left), cloud top height (upper-right), thickness (lower-left), and cloud base height (lower right) as measured by the Darwin

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Simple Algorithm to Find Cloud Optical Depth Applied to Thin Ice Clouds Download a printable PDF Submitter: Barnard, J., University of Nevada Reno Long, C. N., NOAA Global Monitoring Division/CIRES Kassianov, E., Pacific Northwest National Laboratory McFarlane, S. A., U.S. Department of Energy Comstock, J. M., Pacific Northwest National Laboratory Freer, M., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical Variation of Cloud Droplet Size Using Ship and Space-borne R/S Data Download a printable PDF Submitter: Li, Z., University of Maryland Chen, R., University of Maryland Wood, R., University of Washington Chang, F., Science Systems and Applications, Inc. Ferraro, R., NOAA/NESDIS, WWBG Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Chen, R, R Wood, Z Li, R Ferraro, and F Chang. 2008. "Studying the vertical variation of

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forcing Boundary Layer Cloud Systems with Multi-Dimensional Radiation Download a printable PDF Submitter: Mechem, D. B., University of Kansas Kogan, Y., University of Oklahoma - CIMMS Ovchinnikov, M., Pacific Northwest National Laboratory Davis, A. B., Jet Propulsion Laboratory Evans, F., University of Colorado Ellingson, R. G., Florida State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling, Radiative Processes Journal Reference: Mechem, DB, YL

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Significant Decadal Brightening over the Continental United States Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Dutton, E. G., NOAA/OAR/ESRL Augustine, J., National Oceanic and Atmospheric Administration Wiscombe, W. J., Brookhaven National Laboratory Wild, M., Institute for Atmospheric and Climate Science - ETH Zurich McFarlane, S. A., U.S. Department of Energy Flynn, C. J., Pacific Northwest National Laboratory Area of Research: Radiation Processes

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continuous Clear-Sky Longwave from Surface Measurements Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Long, CN, and DD Turner. 2008. "A method for continuous estimation of clear-sky downwelling longwave radiative flux developed using ARM surface measurements." Journal of Geophysical

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microwave and Millimeter-Wave Radiometric and Radiosonde Observations in an Arctic Environment Download a printable PDF Submitter: Westwater, E. R., University of Colorado Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Mattioli V, ER Westwater, D Cimini, AJ Gasiewski, M Klein, and V Leuski. 2008. "Microwave and millimeter-wave radiometric and radiosonde observations in an arctic environment." Journal of Atmospheric and Oceanic Technology,

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Nuclei and Global Warming Download a printable PDF Submitter: Zeng, X., Morgan State University GSFC, N., NASA GSFC Zhang, M., Stony Brook University Hou, A., NASA - Goddard Space Flight Center Xie, S., Lawrence Livermore National Laboratory Lang, S. E., NASA - Goddard Space Flight Center Li, X., University of Maryland, Baltimore County Starr, D. O., NASA - Goddard Space Flight Center Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving the Numerical Simulation of Squall Lines Download a printable PDF Submitter: Morrison, H. C., NCAR Thompson, G., NCAR Tatarskii, V., Georgia Institute of Technology Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Morrison HC, G Thompson, and V Tatarskii. 2009. "Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes."