Sample records for research areas scientific

  1. Scientific and Natural Areas (Minnesota)

    Broader source: Energy.gov [DOE]

    Certain scientific and natural areas are established throughout the state for the purpose of preservation and protection. Construction and new development is prohibited in these areas.

  2. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    SciTech Connect (OSTI)

    Saffer, Shelley (Sam) I.

    2014-12-01T23:59:59.000Z

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  3. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014References by WebsitehomeResearch Areas

  4. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases 2014References by WebsitehomeResearch

  5. Scientific databases have recently become a challenging research area for a number of reasons: 1) the amount of data stored in scientific

    E-Print Network [OSTI]

    Ward, Matthew

    measures, solar radiation, and output of numeric models of ground­water flow or weather fore­ casting of reasons: 1) the amount of data stored in scientific databases is rapidly increasing, with orders of magnitude increases on the horizon, 2) the data are becoming increasing complex, as more complicated data

  6. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research along with supporting narratives, illustrated by specific science-based case studies. Findings from the review will guide NERSC procurements and service offerings...

  7. Advanced Scientific Computing Research Computer Science

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Advanced Scientific Computing Research Computer Science FY 2006 Accomplishment HDF5-Fast fundamental Computer Science technologies and their application in production scientific research tools. Our technology ­ index, query, storage and retrieval ­ and use of such technology in computational and computer

  8. Advanced Scientific Computing Research Computer Science

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Advanced Scientific Computing Research Computer Science FY 2006 Accomplishment High Performance collections of scientific data. In recent years, much of the work in computer and computational science has problem. It is generally accepted that as sciences move into the tera- and peta-scale regimes that one

  9. Sandia Energy - Our SSLS EFRC's Scientific Research Challenges...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of light-emission phenomena. Scientific Research Challenge 1 and 2: Materials Architecture Materials Architecture Our second two scientific research challenges focus on...

  10. A Study of Transport Protocols for Wide Area Scientific Applications

    SciTech Connect (OSTI)

    Vishal Misra

    2011-03-01T23:59:59.000Z

    This is the final project report of award "A Study of Transport Protocols for Wide Area Scientific Applications", given by DOE in 2003 to Vishal Misra at Columbia University.

  11. National Energy Research Scientific Computing Center

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    National Energy Research Scientific Computing Center (NERSC) Visualization Tools and Techniques quotas)!! · Dual IR4 graphics accelerators. · Dual GigE channels to HPSS (use hsi to move data) Alternative implementation: SGI's Vizserver · Uses escher's graphics hardware to accelerate rendering

  12. Advanced Scientific Computing Research Network Requirements

    SciTech Connect (OSTI)

    Dart, Eli; Tierney, Brian

    2013-03-08T23:59:59.000Z

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  13. Scientific Advisory Committee | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,Science andJanuaryScientific

  14. Scientific Exchange Application | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,ScienceScientific Exchange Program /

  15. Scientific Exchange Program deadline | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,ScienceScientific Exchange Program

  16. Scientific Exchange Program deadline | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,ScienceScientific Exchange

  17. Fermilab | Director's Policy Manual | No. 42.000 Scientific Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    42.000 Rev. 0 Scientific Research 2.0 Effective Date 063009 3.0 Scope The purpose of this policy is to express the fundamental intent and direction for scientific research...

  18. Secretary Bodman in Illinois Highlights Scientific Research Investment...

    Energy Savers [EERE]

    Bodman in Illinois Highlights Scientific Research Investments to Advance America's Innovation April 11, 2007 - 12:36pm Addthis ROMEOVILLE, IL - U.S. Secretary of Energy...

  19. 1993 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    NONE

    1993-12-31T23:59:59.000Z

    This report provides a summary of many of the research projects completed by the Santa Fe Institute (SFI) during 1993. These research efforts continue to focus on two general areas: the study of, and search for, underlying scientific principles governing complex adaptive systems, and the exploration of new theories of computation that incorporate natural mechanisms of adaptation (mutation, genetics, evolution).

  20. National Energy Research Scientific Computing Center 2007 Annual Report

    SciTech Connect (OSTI)

    Hules, John A.; Bashor, Jon; Wang, Ucilia; Yarris, Lynn; Preuss, Paul

    2008-10-23T23:59:59.000Z

    This report presents highlights of the research conducted on NERSC computers in a variety of scientific disciplines during the year 2007. It also reports on changes and upgrades to NERSC's systems and services aswell as activities of NERSC staff.

  1. Scientific Advisory Committee | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells"03,Scientific

  2. Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological

    E-Print Network [OSTI]

    Supporting Advanced Scientific Computing Research · Basic Energy Sciences · Biological and Environmental Research · Fusion Energy Sciences · High Energy Physics · Nuclear Physics What my students Code ­http://code.google.com/p/net-almanac/ ­Beta release this week #12;Contact Information Jon Dugan

  3. DOE Office of Advanced Scientific Computing Research

    E-Print Network [OSTI]

    . Interconnect technology: Increasing the performance and energy efficiency of data movement. 3. Memory Facilities ­ Leadership Computing ­ National Energy Research Supercomputing Center (NERSC) ­ High. Energy efficiency: Creating more energy efficient circuit, power, and cooling technologies. 2

  4. Educating Scientifically - Advances in Physics Education Research

    ScienceCinema (OSTI)

    Finkelstein, Noah [University of Colorado, Colorado, USA

    2009-09-01T23:59:59.000Z

    It is now fairly well documented that traditionally taught, large-scale introductory physics courses fail to teach our students the basics. In fact, often these same courses have been found to teach students things we do not want. Building on a tradition of research in physics, the physics education research community has been researching the effects of educational practice and reforms at the undergraduate level for many decades. From these efforts and those within the fields of education, cognitive science, and psychology we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students in the physics classroom. This talk will introduce some of the ideas from physics education research, discuss a variety of effective classroom practices/ surrounding educational structures, and begin to examine why these do (and do not) work. I will present both a survey of physics education research and some of the exciting theoretical and experimental developments emerging from the University of Colorado.

  5. Sandia Energy - Advanced Scientific Computing Research (ASCR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRSSafetyAdvancedAdvanced

  6. Scientific Exchange Program deadline | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland ScienceInnovationScience and TechnologyNERSCJLab

  7. Scientific Guidance, Research, and Educational Outreach for the ARM Climate Research Facility (ACRF) in the Southern Great Plains

    SciTech Connect (OSTI)

    Lamb, Peter J.

    2013-06-13T23:59:59.000Z

    Scientific Guidance, Research, and Educational Outreach for the ARM Climate Research Facility (ACRF) in the Southern Great Plains

  8. climate research and seismology department Biennial Scientific Report

    E-Print Network [OSTI]

    Stoffelen, Ad

    climate research and seismology department Biennial Scientific Report 2001­2002 #12;2 #12;3 Contents Preface Foreword Recent highlights On the role of cirrus clouds in climate 11 Pathways in the ocean 19 Monitoring of tropical processes relevant to climate change 29 Current projects Climate

  9. demokritos national center for scientific research institute of

    E-Print Network [OSTI]

    demokritos national center for scientific research institute of nuclear technology and radiation #12;INSTITUTE OF NUCLEAR TECHNOLOGY ­ RADIATION PROTECTION ANNUAL REPORT 2004 #12;2 #12;3 ANNUAL. Stakakis Nuclear Analytical Techniques I. Stamatelatos Reactor Safety C. Housiadas Neutron Scattering K

  10. Sigma Xi, The Scientific Research Society Rock Varnish

    E-Print Network [OSTI]

    Dorn, Ron

    Sigma Xi, The Scientific Research Society Rock Varnish Author(s): Ronald I. Dorn Source: American;Rock Varnish Over thousandsofyears,a thincoatingofclay,cementedtorocksbymanganese and iron that appeared "smooth, black, and as ifcoated with plumbago." Indian legends explained that these rocks had been

  11. Research Highlights Sorted by Research Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearchMaking Sense of

  12. Research Areas | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipal InvestigatorsResearchNational Laser

  13. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01T23:59:59.000Z

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  14. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26T23:59:59.000Z

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  15. Public Domain, Public Interest, Public Funding: Focussing on the ‘Three P’s’ in Scientific Research 

    E-Print Network [OSTI]

    Waelde, Charlotte

    2005-01-01T23:59:59.000Z

    The paper discusses the ‘three Ps’ of scientific research: Public Domain; Public Interest; Public Funding by examining difficulties faced by scientists engaged in scientific research. It discusses the problems faced when ...

  16. Professor Clive Brasier, Forest Research UK Scientific and operational flaws

    E-Print Network [OSTI]

    circinatum, recently reported from Spain, Italy; now spread to Portugal? .. Photos: Joan Webber Forest and mortality of cork oaks and holm oaks in Spain and Portugal. Origin: Pacific-Celebes area. Phytophthora cinnamomi root disease of Q. ilex, Spain Photo Forest Research UK #12;Phytophthora alni sp. nov. on alder

  17. Open Science: Open source licenses in scientific research 

    E-Print Network [OSTI]

    Guadamuz, Andres

    2006-01-01T23:59:59.000Z

    The article examines the validity of OSS (open source software) licenses for scientific, as opposed to creative works. It draws on examples of OSS licenses to consider their suitability for the scientific community and ...

  18. New creative teams in priorities of scientific research is searching for suitable candidates for

    E-Print Network [OSTI]

    Savicky, Petr

    New creative teams in priorities of scientific research The VSB is searching for suitable systems in energetics (5 postdoc positions; contact: A basic description of each specific project module i preparation of new joint research projects New creative teams in priorities of scientific research

  19. Proceedings of RIKEN BNL Research Center Workshop, Volume 91, RBRC Scientific Review Committee Meeting

    SciTech Connect (OSTI)

    Samios,N.P.

    2008-11-17T23:59:59.000Z

    The ninth evaluation of the RIKEN BNL Research Center (RBRC) took place on Nov. 17-18, 2008, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Dr. Wit Busza (Chair), Dr. Miklos Gyulassy, Dr. Akira Masaike, Dr. Richard Milner, Dr. Alfred Mueller, and Dr. Akira Ukawa. We are pleased that Dr. Yasushige Yano, the Director of the Nishina Institute of RIKEN, Japan participated in this meeting both in informing the committee of the activities of the Nishina Institute and the role of RBRC and as an observer of this review. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on his/her research efforts. This encompassed three major areas of investigation, theoretical, experimental and computational physics. In addition the committee met privately with the fellows and postdocs to ascertain their opinions and concerns. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  20. NERSC Role in Advanced Scientific Computing Research Katherine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Center (NERSC) is to accelerate the pace of scientific discovery by providing high performance computing, information, data, and communications services for all DOE...

  1. Sandia National Laboratories: Our SSLS EFRC's Scientific Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    works to advance the scientific foundation that underlies current and potential-future SSL technology, and to ultimately enable significant advances in the efficiency with which...

  2. Analyzing Volunteer Geographic Information Accuracy and Determining its Capabilities for Scientific Research Data

    E-Print Network [OSTI]

    Schwind, Michael Anthony

    2014-02-28T23:59:59.000Z

    The primary purpose of this research project is to develop, test, and evaluate a volunteered geographic information (VGI) based approach for collecting data in order to assess its accuracy and relativity to a field of scientific research. As such...

  3. Analyzing Volunteer Geographic Information Accuracy and Determining its Capabilities for Scientific Research Data

    E-Print Network [OSTI]

    Davis, Kelsi Lyn

    2014-04-14T23:59:59.000Z

    The primary purpose of this research project is to develop, test, and evaluate a volunteered geographic information (VGI) based approach for collecting data in order to assess its accuracy and relativity to a field of scientific research. As such...

  4. Portable housing : an exploration into lightweight housing for remote scientific research

    E-Print Network [OSTI]

    McCluskey, Keith V. (Keith Vincent), 1971-

    2002-01-01T23:59:59.000Z

    This thesis proposes the design of portable housing for use in scientific research applications in remote locations. Currently, remote research is conducted from tents or other portable shelters. Larger, more hospitable ...

  5. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    radiation-dominated HED dynamo, and radiation-dominated reconnection. Nonlinear Optics of Plasmas and Laser-Plasma Interactions Specific areas of interest include, but are...

  6. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    SciTech Connect (OSTI)

    Brown, D L

    2009-05-01T23:59:59.000Z

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex networked systems, and (4) design, situational awareness and control of complex networks. The program elements consist of a group of Complex Networked Systems Research Institutes (CNSRI), tightly coupled to an associated individual-investigator-based Complex Networked Systems Basic Research (CNSBR) program. The CNSRI's will be principally located at the DOE National Laboratories and are responsible for identifying research priorities, developing and maintaining a networked systems modeling and simulation software infrastructure, operating summer schools, workshops and conferences and coordinating with the CNSBR individual investigators. The CNSBR individual investigator projects will focus on specific challenges for networked systems. Relevancy of CNSBR research to DOE needs will be assured through the strong coupling provided between the CNSBR grants and the CNSRI's.

  7. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Development of nuclear physics experimental diagnostic techniques for laser or pulsed power implosion systems. Radiochemistry During open solicitations, research proposals are...

  8. PIER Demand Response Research Center SCOPING STUDY ROUNDTABLE RESEARCH TARGET AREAS

    E-Print Network [OSTI]

    PIER Demand Response Research Center SCOPING STUDY ROUNDTABLE ­ RESEARCH TARGET AREAS (Draft Areas #12;PIER Demand Response Research Center SCOPING STUDY ROUNDTABLE ­ RESEARCH TARGET AREAS (Draft the Value of Demand Response: Develop an Integrated Efficiency / Demand Response Framework Introduction

  9. Postdoctoral Opportunities World-Class Scientific Research Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials science, plasma physics, astrophysics, biology, climate research, nuclear fission, computer science, or applied mathematics. Neutron Science ORNL is home to two of...

  10. Describing Public Participation in Scientific Research Andrea Wiggins

    E-Print Network [OSTI]

    Crowston, Kevin

    research. To address this gap, we conducted a survey of citizen science projects. We present a description of the phenomenon to establish a basis for sampling and evaluation of research on citizen science, including details, and data policies. The diverse organizational and functional arrangements in citizen science projects

  11. Research Subject Areas for IGPPS Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronic Public Reading Room ElectronicResearchResearch Subject

  12. Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH

    E-Print Network [OSTI]

    from buildings. Ventilation, however, comes with a significant energy cost. Currently, heating, with roughly onethird of this energy used to heat and cool ventilation air. As buildings strive to become.energy.ca.gov/research/ environmental March 2011 The Issue Previous studies have associated low ventilation rates with reduced worker

  13. Advanced Scientific Computing Research User Facilities | U.S...

    Office of Science (SC) Website

    research projects that are funded by the DOE Office of Science and require high performance computing support are eligible to apply to use NERSC resources. Projects that are not...

  14. Research Areas | Supercomputers & Computation | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipal InvestigatorsResearchNational Laser

  15. Advanced Scientific Computing Research Funding Profile by Subprogram

    E-Print Network [OSTI]

    results in mathematics, high performance computing and advanced networks and a Excludes $1 applications. High-performance computing provides a new window for researchers to observe the natural world in applied mathematics, computer science and high-performance networks and providing the high-performance

  16. Climate Change in Mountain Ecosystems Areas of Current Research

    E-Print Network [OSTI]

    Climate Change in Mountain Ecosystems Areas of Current Research · Glacier Research · Snow Initiative Glacier Research A Focus on Mountain Ecosystems Climate change is widely acknowledged to be having in the western U.S. and the Northern Rockies in particular are highly sensitive to climate change. In fact

  17. Sandia Energy - Our SSLS EFRC's Scientific Research Challenges and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows JerryNuclearPublications Our

  18. Focus Research Areas 1. Fundamental Accelerator Physics: Theory

    E-Print Network [OSTI]

    Kemner, Ken

    Focus Research Areas 1. Fundamental Accelerator Physics: Theory Importance Accelerator physics aspects. Pursuit of fundamental accelerator physics in this sense has contributed significantly to the advance of the accelerator physics knowledgebase during the last several decades, clarifying

  19. Research Areas Stephen A. EdwardsStephen A. Edwards

    E-Print Network [OSTI]

    Research Areas Stephen A. EdwardsStephen A. Edwards Department of Computer Science drivers between Linux and FreeBSD (Tom Heydt-Benjamin) Ultimate vision: compiler takes two programs

  20. FWF OTKA Call for Lead Agency applications June 2014 Hungarian Scientific Research Fund (OTKA)

    E-Print Network [OSTI]

    Fuchs, Clemens

    1 FWF ­ OTKA Call for Lead Agency applications ­ June 2014 Hungarian Scientific Research Fund (OTKA input from both sides. Applications will be dealt with following the Lead Agency Principle. The application must be prepared in accordance with the formal guidelines of the Lead Agency. The Lead Agency

  1. Why Citizen Science? Public participation in scientific research, commonly called citizen

    E-Print Network [OSTI]

    Hall, Sharon J.

    Findings Why Citizen Science? Public participation in scientific research, commonly called citizen as the citizen science type of PPSR when compared against typologies (Fig 2). Furthermore, 82% of projects that 71% of PPSR projects were in the citizen science model and focused on conservation and/or ecology

  2. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 77, RBRC SCIENTIFIC REVIEW COMMITTEE MEETING, OCTOBER 10-12, 2005

    SciTech Connect (OSTI)

    SAMIOS, N.P.

    2005-10-10T23:59:59.000Z

    The eighth evaluation of the RIKEN BNL Research Center (RBRC) took place on October 10-12, 2005, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Jean-Paul Blaizot, Professor Makoto Kobayashi, Dr. Akira Masaike, Professor Charles Young Prescott (Chair), Professor Stephen Sharpe (absent), and Professor Jack Sandweiss. We are grateful to Professor Akira Ukawa who was appointed to the SRC to cover Professor Sharpe's area of expertise. In addition to reviewing this year's program, the committee, augmented by Professor Kozi Nakai, evaluated the RBRC proposal for a five-year extension of the RIKEN BNL Collaboration MOU beyond 2007. Dr. Koji Kaya, Director of the Discovery Research Institute, RIKEN, Japan, presided over the session on the extension proposal. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on higher research efforts. In addition, a special session was held in connection with the RBRC QCDSP and QCDOC supercomputers. Professor Norman H. Christ, a collaborator from Columbia University, gave a presentation on the progress and status of the project, and Professor Frithjof Karsch of BNL presented the first physics results from QCDOC. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  3. Caldera processes and magma-hydrothermal systems continental scientific drilling program: thermal regimes, Valles caldera research, scientific and management plan

    SciTech Connect (OSTI)

    Goff, F.; Nielson, D.L. (eds.)

    1986-05-01T23:59:59.000Z

    Long-range core-drilling operations and initial scientific investigations are described for four sites in the Valles caldera, New Mexico. The plan concentrates on the period 1986 to 1993 and has six primary objectives: (1) study the origin, evolution, physical/chemical dynamics of the vapor-dominated portion of the Valles geothermal system; (2) investigate the characteristics of caldera fill and mechanisms of caldera collapse and resurgence; (3) determine the physical/chemical conditions in the heat transfer zone between crystallizing plutons and the hydrothermal system; (4) study the mechanism of ore deposition in the caldera environment; (5) develop and test high-temperature drilling techniques and logging tools; and (6) evaluate the geothermal resource within a large silicic caldera. Core holes VC-2a (500 m) and VC-2b (2000 m) are planned in the Sulphur Springs area; these core holes will probe the vapor-dominated zone, the underlying hot-water-dominated zone, the boiling interface and probable ore deposition between the two zones, and the deep structure and stratigraphy along the western part of the Valles caldera fracture zone and resurgent dome. Core hole VC-3 will involve reopening existing well Baca number12 and deepening it from 3.2 km (present total depth) to 5.5 km, this core hole will penetrate the deep-crystallized silicic pluton, investigate conductive heat transfer in that zone, and study the evolution of the central resurgent dome. Core hole VC-4 is designed to penetrate deep into the presumably thick caldera fill in eastern Valles caldera and examine the relationship between caldera formation, sedimentation, tectonics, and volcanism. Core hole VC-5 is to test structure, stratigraphy, and magmatic evolution of pre-Valles caldera rocks, their relations to Valles caldera, and the influences of regional structure on volcanism and caldera formation.

  4. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  5. Researcher warns that current could still bring oil to area

    E-Print Network [OSTI]

    Belogay, Eugene A.

    sludge of the Deepwater Horizon oil spill, Dr. Tamara Frank told a Delray Beach audienceResearcher warns that current could still bring oil to area September 08, 2010|DAVID DIPINO that the disaster was "the biggest peacetime oil spill ever" and that local habitats are not yet out of harm's way

  6. The mission of the Research Centers is to serve the specific needs of the clientele in local production areas and the broader needs of Montana agriculture

    E-Print Network [OSTI]

    Dyer, Bill

    production areas and the broader needs of Montana agriculture in general through applied research directed to the problems and impacts of agricultural production. New knowledge generated by Agricultural Research Center programs benefits Montana agriculture and the scientific community at local, state and national levels

  7. Co-operation agreement between CERN and the National Council for Scientific Research, Lebanon (CNRS-L) concerning Scientific and Technical Co-operation in High-Energy Physics

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Co-operation agreement between CERN and the National Council for Scientific Research, Lebanon (CNRS-L) concerning Scientific and Technical Co-operation in High-Energy Physics

  8. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect (OSTI)

    Langland, R. T.

    1997-02-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  9. CURRICULUM VITAE: LAURENCE C. SMITH My scientific research examines the impacts of climatic and environmental change upon

    E-Print Network [OSTI]

    Smith, Laurence C.

    1 CURRICULUM VITAE: LAURENCE C. SMITH My scientific research examines the impacts of climatic of the year, see http://www.pnas.org/site/media/topten2013.xhtml Best Analytic Presentation (First Place) Esri

  10. Engineering research, development and technology. Thrust area report, FY93

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  11. Page 1 of 3 Summary of the NIST Proposed Plan for the Organization of Scientific Area

    E-Print Network [OSTI]

    and certification specialists, quality system managers, and forensic science practitioners. QIC is responsible management experience, forensic science research, presentation and publication experience, documentary a sustainable infrastructure that produces best practices, guidelines, and standards to improve quality

  12. Research Areas | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7 2ResearchAreas Chemical

  13. Research Areas | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7 2ResearchAreas Chemical

  14. PARC - Scientific Exchange Program (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Blankenship, Robert E. (Director, Photosynthetic Antenna Research Center); PARC Staff

    2011-11-03T23:59:59.000Z

    'PARC - Scientific Exchange Program' was submitted by the Photosynthetic Antenna Research Center (PARC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  15. 1992 annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute`s book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems-the focus of work at SFI-involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.

  16. Final Scientific/Technical Report Development of Large-Area Photo-Detectors

    SciTech Connect (OSTI)

    Frisch, Henry J. [The University of Chicago

    2013-07-15T23:59:59.000Z

    This proposal requested ADR funds for two years to make measurements and detector proto-types in the context of planning a program in conjunction with Argonne National Laboratory to develop very large-area planar photodetectors. The proposed detectors have integrated transmission-line readout and sampling electronics able to achieve timing and position resolutions in the range of 1-50 psec and 1-10 mm, respectively. The capability for very precise time measurements is inherent in the design, and provides a ?third? coordinate, orthogonal to the two in the plane, for the point of origin of photons or charged particles, allowing ?tomographic? reconstruction in 3-dimensions inside a volume.

  17. Final Scientific / Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California

    SciTech Connect (OSTI)

    Layman Energy Associates, Inc.

    2006-08-15T23:59:59.000Z

    With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and interpretation of remote sensing imagery such as aerial and satellite photographs; acquisition, quality control and interpretation of gravity data; and acquisition, quality control and interpretation of resistivity data using state of the art magnetotelluric (MT) methods. The results of this exploratory program have allowed LEA to develop a structural and hydrologic interpretation of the Truckhaven geothermal resource which can be used to guide subsequent exploratory drilling and resource development. Of primary significance, is the identification of an 8 kilometer-long, WNW-trending zone of low resistivity associated with geothermal activity in nearby wells. The long axis of this low resistivity zone is inferred to mark a zone of faulting which likely provides the primary control on the distribution of geothermal resources in the Truckhaven area. Abundant cross-faults cutting the main WNW-trending zone in its western half may indicate elevated fracture permeability in this region, possibly associated with thermal upwelling and higher resource temperatures. Regional groundwater flow is inferred to push thermal fluids from west to east along the trend of the main low resistivity zone, with resource temperatures likely declining from west to east away from the inferred upwelling zone. Resistivity mapping and well data have also shown that within the WNW-trending low resistivity zone, the thickness of the Plio-Pleistocene sedimentary section above granite basement ranges from 1,900–2,600 meters. Well data indicates the lower part of this sedimentary section is sand-rich, suggesting good potential for a sediment-hosted geothermal reservoir in porous sands, similar to other fields in the region such as Heber and East Mesa. Sand porosity may remain higher in the eastern portion of the low resistivity zone. This is based on its location hydrologically downstream of the probable area of thermal upwelling, intense fracture development, and associated pore-filling hydrothermal mineral deposition to the west.

  18. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  19. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  20. An overview of the Nuclear Materials Focus Area research program

    SciTech Connect (OSTI)

    ROBERSON,GARY D.; POLANSKY,GARY F.; OSBORNE,KEN K.; RANDALL,VIRGINIA

    2000-02-25T23:59:59.000Z

    The Nuclear Material Focus Area (NMFA) is responsible for providing comprehensive needs identification, integration of technology research and development activities, and technology deployment for stabilization, packaging, and interim storage of surplus nuclear materials within the DOE complex. The NMFA was chartered in April 1999 by the Office of Science and Technology (OST), an organizational component of the US Department of Energy's (DOE) Office of Environmental Management (EM). OST manages a national program to conduct basic and applied research, and technology development, demonstration, and deployment assistance that is essential to completing a timely and cost-effective cleanup of the DOE nuclear weapons complex. DOE/EM provides environmental research results, as well as cleanup technologies and systems, to meet high-priority end-user needs, reduce EM's major cost centers and technological risks, and accelerate technology deployments. The NMFA represents the segment of EM that focuses on technological solutions for re-using, transforming, and disposing excess nuclear materials and is jointly managed by the DOE Albuquerque Operations Office and the DOE Idaho Operations Office.

  1. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect (OSTI)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01T23:59:59.000Z

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

  2. Defining a Taxonomy for Research Areas on ICT for Governance and Policy Modelling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Defining a Taxonomy for Research Areas on ICT for Governance and Policy Modelling Fenareti presents a taxonomy classifying the research themes, the research areas and the research sub in research, policy and practice, the taxonomy brings together the open, linked data and visual analytics

  3. Plutonium Focus Area research and development plan. Revision 1

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

  4. Bi-Annual Scientific Report Jan. 2002 -Dec. 2003 Department of Solar Energy & Environmental Physics: highlight of research projects.

    E-Print Network [OSTI]

    Prigozhin, Leonid

    Bi-Annual Scientific Report Jan. 2002 - Dec. 2003 Department of Solar Energy & Environmental by the researchers of the Department of Solar Energy & Environmental Physics during the reported years provides a wide scope of environmental physics problems and their treatment calls for the application of a large

  5. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    SciTech Connect (OSTI)

    Kleese van Dam, Kerstin; Lansing, Carina S.; Elsethagen, Todd O.; Hathaway, John E.; Guillen, Zoe C.; Dirks, James A.; Skorski, Daniel C.; Stephan, Eric G.; Gorrissen, Willy J.; Gorton, Ian; Liu, Yan

    2014-01-31T23:59:59.000Z

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern Interconnect domain, which they are now planning to extend to predict the demand for the complete century. The initial study raised their data demands from a few GBs to 400GB for the 3year study and expected tens of TBs for the full century.

  6. area process research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research environmental January 2012 The Issue Comprehensive and reliable energy statistics are essential for good policy analysis and for future projections of energy...

  7. A simple interpretation of the growth of scientific/technological research impact leading to hype-type evolution curves

    E-Print Network [OSTI]

    Campani, Marco

    2014-01-01T23:59:59.000Z

    The empirical and theoretical justification of Gartner hype curves is a very relevant open question in the field of Technological Life Cycle analysis. The scope of the present paper is to introduce a simple model describing the growth of scientific/technological research impact, in the specific case where science is the main source of a new idea driving a technological development, leading to hype-type evolution curves. The main idea of the model is that, in a first stage, the growth of the scientific interest of a new specific field (as can be measured by publication numbers) basically follows the classical logistic growth curve. At a second stage, starting at a later trigger time, the technological development based on that scientific idea (as can be measured by patent deposits) can be described as the integral (in a mathematical sense) of the first curve, since technology is based on the overall accumulated scientific knowledge. The model is tested through a bibliometric analysis of the publication and pat...

  8. Beyond scientific research: tracing the contributions Ernest Rutherford made to the next generation of scientists

    E-Print Network [OSTI]

    Armstrong, Andrew A.

    2006-08-16T23:59:59.000Z

    advising his students to follow his research method in nuclear physics. As a faculty advisor to research students, Rutherford advised courses, research topics, and experimental research. To determine whether Rutherford made an impact on his students...

  9. Area of Concentration in Clinical Research The Committee on Clinical & Translational Science

    E-Print Network [OSTI]

    Mateo, Jill M.

    of clinical research include epidemiological and behavioral studies; outcomes and health services researchArea of Concentration in Clinical Research The Committee on Clinical & Translational Science CliniCAl of clinical trials is a central component of clinical research, and may include pharmacokinetic

  10. S2I2 Exploratory Workshop: Open Source Software as a Foundation for Scientific Research

    E-Print Network [OSTI]

    Stein, William

    fundamental libraries for numerical and scientific computing in Python. In addition to organizing numerous libraries, etc. One can learn from the success of TEX and more specialized software like Macaulay2. I do to provide a snapshot of the core issues of sustainability, peer review, and reproducibility, which

  11. Library Support of Signature Areas of Research at the University of Saskatchewan

    E-Print Network [OSTI]

    Saskatchewan, University of

    Library Support of Signature Areas of Research at the University of Saskatchewan: Food and if necessary ­ to develop broader library support. 1. Introduction Several detailed evaluations of collections of information users of any level. Library support of research is focused on three broad areas: providing access

  12. Area of cooperation includes: Joint research and development on

    E-Print Network [OSTI]

    Buyya, Rajkumar

    Technologies August 2, 2006: HCL Technologies Ltd (HCL), India's leading global IT services company, has signed projects that are using this technology currently such as BioGrid in Japan, National Grid Service in UKArea of cooperation includes: · Joint research and development on Grid computing technologies

  13. Research Area D Evaluation Criteria Scorer 1 Scorer 2 Scorer 3 Scorer 4 Scorer 5

    E-Print Network [OSTI]

    areas as shown below: D. Environmental Mitigation for Utility-Scale Solar Energy Projects 8 7 9 8 8 12 areas as shown below: D. Environmental Mitigation for Utility-Scale Solar Energy Projects 0 0 0 0 0 0 will be used for different research areas as shown below: D. Environmental Mitigation for Utility-Scale Solar

  14. Microorganisms In Industry And Environment From Scientific and Industrial Research to Consumer Products

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Products Proceedings of the III International Conference on Environmental, Industrial and Applied and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, #69 Pasteur Ave., Tehran

  15. all-russian scientific research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MPI programming in Python NumPy (SciPy) arrays Plotting in Python: - bar-charts, pie and processing (interpolation) 2 12;Advanced Research Computing About me ...

  16. Research Area A Evaluation Criteria Scorer 1 Scorer 2 Scorer 3 Scorer 4

    E-Print Network [OSTI]

    ­ Different criteria will be used for different research areas as shown below: A. Renewable Hybrid Generation areas as shown below: A. Renewable Hybrid Generation and Energy Storage Integration Demonstration as shown below: A. Renewable Hybrid Generation and Energy Storage Integration Demonstration Projects 0 0 0

  17. I2S2 Idealised Scientific Research Activity Lifecycle Model The model represents the processes and phases of a typical physical science

    E-Print Network [OSTI]

    Rzepa, Henry S.

    I2S2 Idealised Scientific Research Activity Lifecycle Model The model represents the processes include: development of the research proposal; its peer-review; carrying out of the experiment; equipment configuration and calibration data; processing software and associated control parameters; wikis

  18. (865) 574-6185, mccoydd@ornl.gov Advanced Scientific Computing Research

    E-Print Network [OSTI]

    Pennycook, Steve

    on integrating new software for the science applications which researchers run on high performance computing platforms. One of the key challenges in high performance computing is to ensure that the software which

  19. Analyzing Volunteer Geographic Information Accuracy and Determining its Capabilities for Scientific Research Data

    E-Print Network [OSTI]

    Baldridge, Payton Lloyd

    2014-04-14T23:59:59.000Z

    . Daniel Goldberg Department of Geography The primary purpose of this research project is to develop, test, and evaluate a volunteered geographic information (VGI) based approach for collecting data in order to assess its accuracy and relativity to a...

  20. Scientific Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,ScienceScientific

  1. Scientific Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,ScienceScientific

  2. Ecologically friendly buildings The new de Picciotto building for scientific and technical research which will be

    E-Print Network [OSTI]

    Shapiro, Ehud

    with vegetation which offers the pro's to isolate the roof from heat, they absorb moisture and reduce temperatures for the separation of waste at source in the kitchens and other central areas in the building. Electric hand dryers in the building. #12;Separation of Biodegradable Waste The separation of biodegradable waste started in January

  3. Research in the design and implementation of a comprehensive facility for scientific computation. Final project report

    SciTech Connect (OSTI)

    Fateman, R.J.; Kahan, W.

    1983-01-01T23:59:59.000Z

    Research on ways to organize a body of numerical procedures in such a way that they may be invoked automatically by processes which accept symbolic and algebraic specifications from a user, and produce combined symbolic, numeric and graphical output is described. Efforts are made to make these algebraic systems as flexible and useful as possible in this context, and to integrate them successfully into a man-machine design which provides operating system, language, and algorithm support. Various aspects of this research are reviewed including languages for symbolic algebra systems, programming environments, numerical software, numeric/symbolic programs, floating point hardware, elementary functions, Macsyma distribution, VAX/Macsyma/computer architecture, interactive systems, Lisp language, and advanced computer concepts (supercomputers). The computing environment for this research are UNIX-VAX-11/780, Vax 11/750, and Motorola 68000 systems. 32 refs. (DWL)

  4. Global Network for Women's & Children's Health Research BUILDING SCIENTIFIC CAPACITY & NETWORKS IN RESOURCE-POOR SETTINGS

    E-Print Network [OSTI]

    Rau, Don C.

    , information technology, and logistical and statistical support for the Network. Additional support from health and international organizations, interested communities, researchers, and health care providers is crucial Use January 2005 OUR MISSION The Global Network is committed to preventing maternal and infant deaths

  5. A reprint from American Scientistthe magazine of Sigma Xi, The Scientific Research Society

    E-Print Network [OSTI]

    Gelman, Andrew

    to have repeatedly published mate- rial written by others without attribu- tion is Edward Wegman, formerly interesting because Wegman has a distinguished record of public service and scholar- ship (he received at one point (see the appendix to this essay at American Scientist's website)--Wegman and his research

  6. Cultivating Global Science IN OUR RAPIDLY EXPANDING GLOBAL SCIENTIFIC RESEARCH ENTERPRISE, GOOD SCIENCE ANYWHERE

    E-Print Network [OSTI]

    Suresh, Subra

    .* The heads of major science and engineering research funding agen- cies from nearly 50 countries's unique needs for economic growth, national security, and human capital development. One major barrier synthesized into a coherent set of basic principles that were circulated for input from all participants

  7. DOE Research Set-Aside Areas of the Savannah River Site

    SciTech Connect (OSTI)

    Davis, C.E.; Janecek, L.L.

    1997-08-31T23:59:59.000Z

    Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site`s total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside.

  8. Breaking the grant cycle: on the rational allocation of public resources to scientific research projects

    E-Print Network [OSTI]

    Avin, Shahar

    2015-04-07T23:59:59.000Z

    of the Rockefeller family (mainly from the oil industry) to support science and health research and medical education, and the Carnegie Corporation, founded by a railroad industrialist for “the advancement and diffusion of knowledge and understanding”. Early public... and dynamic nature of epistemic fitness. The sceptical argument is further refined using computer simulations of different funding mechanisms and their effect on the accumulation of epistemic fitness over time. Based on the sceptical argument and the results...

  9. Implementation of manufacturing data management application in the scientific research project. Case: CERN, the European Organization for Nuclear Research

    E-Print Network [OSTI]

    Saifoulina, Margarita

    2010-01-01T23:59:59.000Z

    This Bachelor’s thesis examined the implementation process of an MTF (Manufacturing and Test Folder) application in the CLIC (Compact Linear Collider) Radio Frequency Structure Development project for manufacturing data management purposes. The primary goal of the study was to investigate how MTF implementation and its integration with CERN EDMS (Engineering and Equipment Data Management System) system could facilitate product life cycle through the supply chain, and could affect on manufacturing operations performance in internaland external levels. The aim of the study was also to find out implementation differences within CERN (European Organization for Nuclear Research) projects. The study is divided into two parts: a qualitative theory section and an empirical section. In the theory section differences of features between PDM (Product Data Management), EDM (Engineering Data Management) and PLM (Product Life Cycle Management) systems were studied. The thesis examined the benefits and managerial challeng...

  10. Biomedical Research Advisory Group: Critical Areas of Research Chemical Biology/Pharmacology/Therapeutics White Paper

    E-Print Network [OSTI]

    Goodrich, Lisa V.

    or prevent disease. This includes small molecules, but also proteins, nucleic acids, other macromolecules and perhaps nanoparticles, also research on drug delivery. This document does not explicitly consider medical Opportunities The confluence of genomic information, broad understanding of how biological systems function

  11. Thermo-Fluids, Energy Systems and Environment This group conducts research in the following areas

    E-Print Network [OSTI]

    Calgary, University of

    and Reacting Flows l Aerodynamics l Internal-Combustion Engines l Stirling Engines l Computational Fluid internal-combustion engines l Cross-flow and co-flow combustion facilities l Flammability test apparatus l-Fluids, Energy Systems and Environment This group conducts research in the following areas: l Combustion

  12. Eye-Tracking: Characteristics and Methods Eye-Tracking: Research Areas and Applications

    E-Print Network [OSTI]

    Richardson, Daniel C.

    1 Part 1 Eye-Tracking: Characteristics and Methods Part 2 Eye-Tracking: Research Areas. & Bowlin, G. (Eds.) [ PREPRINT, FEB 2004. PLEASE DO NOT QUOTE ] #12;2 Eye-Tracking: Characteristics and Methods Introduction Eye movements are arguably the most frequent of all human movements (Bridgeman, 1992

  13. NASA Research Areas of Interest NASA EPSCoR research priorities are defined by the Mission Directorates (Aeronautics Research,

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ; avionics; displays; high speed re-entry; modeling; power systems; interoperability/commonality; advanced. Engineering Research Spacecraft: Guidance, navigation and control; thermal; electrical; structures; software

  14. Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has adopted: achieving a fusion gain of 1 as

    E-Print Network [OSTI]

    Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has as fusion energy produced divided the external energy incident on the fusion reaction chamber. Typical fusion power plant design concepts require a fusion gain of 30 for MFE and 70 for IFE. Fusion energy

  15. Engineering Research and Development and Technology thrust area report FY92

    SciTech Connect (OSTI)

    Langland, R.T.; Minichino, C. [eds.

    1993-03-01T23:59:59.000Z

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  16. South Florida Ecosystem Restoration: Scientific Information Needs in the Southern

    E-Print Network [OSTI]

    South Florida Ecosystem Restoration: Scientific Information Needs in the Southern Coastal Areas information needed for ecosystem restoration in the Southern Coastal Areas of South Florida. In 1996 that time, ecosystem restoration has advanced from planning to implementation; progress in research has

  17. A risk characterization of safety research areas for Integral Fast Reactor program planning

    SciTech Connect (OSTI)

    Mueller, C.J.; Cahalan, J.E.; Hill, D.J.; Kramer, J.M.; Marchaterre, J.F.; Pedersen, D.R.; Sevy, R.H.; Tilbrook, R.W.; Wei, T.Y.; Wright, A.E.

    1988-01-01T23:59:59.000Z

    This paper characterizes the areas of Integral Fast Reactor (IFR) safety research in terms of their importance in addressing the risk of core disruption sequences for innovative designs. Such sequences have traditionally been determined to constitute the primary risk to public health and safety. All core disruption sequences are folded into four fault categories: classic unprotected (unscrammed) events; loss of decay heat; local fault propagation; and failure of critical reactor structures. Event trees are used to describe these sequences and the areas in the IFR Safety and related Base Technology research programs are discussed with respect to their relevance in addressing the key issues in preventing or delimiting core disruptive sequences. Thus a measure of potential for risk reduction is obtained for guidance in establishing research priorites.

  18. Journal of Volcanology and Geothermal Research 65 ( 1995 ) 119-133 The Hengill geothermal area, Iceland: Variation of temperature

    E-Print Network [OSTI]

    Foulger, G. R.

    Journal of Volcanology and Geothermal Research 65 ( 1995 ) 119-133 The Hengill geothermal area. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The likely measurements from four drill sites within the area indicate average, near-surface geothermal gradients of up

  19. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENAAdministrative80-AAAdvanced

  20. Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENAAdministrative80-AAAdvanced Large Scale

  1. RESEARCH & RESEARCH INTERESTS Dr. Osisanya has been very active in both experimental and analytical research in the areas of

    E-Print Network [OSTI]

    Williams, John M.

    technology, and environmental studies. MAJOR RESEARCH GRANTS & ACCOMPLISHMENTS 1. Bureau of Ocean Energy-Africa Technology Conference and exhibition held in Cairo, Egypt, 20-22 Feb. 2012. 3. (w/Omojuwa and Ahmed, R to Selecting and Optimizing Demulsifier Chemical Injection Points Using Shearing Energy Concept

  2. Comparative study of authentic scientific research versus guided inquiry in affecting middle school students' abilities to know and do genetics 

    E-Print Network [OSTI]

    Scallon, Jane Metty

    2006-08-16T23:59:59.000Z

    This exploratory mixed methods study addressed the types of gains students made when engaged in one of two forms of inquiry. Gains were measured on three levels: conceptual understanding, the process of scientific ...

  3. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-29T23:59:59.000Z

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

  4. A floristic study of the La Copita Research Area in Jim Wells County, Texas

    E-Print Network [OSTI]

    Coffey, Charley Ralston

    1986-01-01T23:59:59.000Z

    runoff and medium available water capacity. The potential for native range plant growth and wildlife habitat on Sandy cl ~Le end sl = Sandy Loam cl Clay Loam gsl Gray Sandy Loam cpp = Claypan Prairie ssl = Shallow Sandy Loam lb Lakebed sl... = Shallow Ridge tsl = Tight Sandy Loam asl sr ssl cl sl cl /lb tsl cl asl as l cl sl Ia esl cl sl esl gal cpp Sf cpp 8 cl Ib Figure 3. Range Sites within the La Copita Research Area. Loam range sites is high. These sites provide...

  5. Scientific and Technical Need | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    key questions in electrochemical energy storage along the full technology-development pipeline, from basic scientific research through manufacturing and delivery to market. The...

  6. This is an unofficial copy of a technical report jointly published by Ford Motor Co. Scientific Research Laboratories, Dearborn Michigan

    E-Print Network [OSTI]

    Papalambros, Panos

    1 This is an unofficial copy of a technical report jointly published by Ford Motor Co. Scientific combustion chamber geometry to maximize power. Both net power and power per unit displacement were studied boundaries. In this report, optimization techniques are used in internal combustion engine design to obtain

  7. Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of Albania concerning Scientific and Technical Co-operation in High-Energy Physics

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of Albania concerning Scientific and Technical Co-operation in High-Energy Physics

  8. Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of People's Republic of Bangladesh concerning Education, Scientific and Technical Co-operation in High-Energy Physics

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of People's Republic of Bangladesh concerning Education, Scientific and Technical Co-operation in High-Energy Physics

  9. Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of Mongolia concerning Scientific and Technical Co-operation in High-Energy Physics

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of Mongolia concerning Scientific and Technical Co-operation in High-Energy Physics

  10. Kelly Scientific Resources Kelly Scientific Resources yy BIOTECHNOLOGY DRUG &

    E-Print Network [OSTI]

    Puglisi, Joseph

    for a wide variety of scientific and clinical research positions. KSR is a trusted career advisor, guiding is a $92 Billion Dollar Industry Customer Uses for an Agencyg y · Strictly Head Count · Special Projects staffing supplier in the world * ­ Recruiting Scientific and Clinical Research professionals since 1995

  11. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-11-30T23:59:59.000Z

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA) to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  12. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-05-15T23:59:59.000Z

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA)to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  13. Acquisition of Scientific Equipment

    SciTech Connect (OSTI)

    Noland, Lynn [Director, Sponsored Programs] [Director, Sponsored Programs

    2014-05-16T23:59:59.000Z

    Whitworth University constructed a 63,00 sq. ft. biology and chemistry building which opened in the Fall of 2011. This project provided for new state-of-the-art science instrumentation enabling Whitworth students to develop skills and knowledge that are directly transferable to practical applications thus enhancing Whitworth student's ability to compete and perform in the scientific workforce. Additionally, STEM faculty undertake outreach programs in the area schools, bringing students to our campus to engage in activities with our science students. The ability to work with insturmentation that is current helps to make science exciting for middle school and high school students and gets them thinking about careers in science. 14 items were purchased following the university's purchasing policy, that benefit instruction and research in the departments of biology, chemistry, and health sciences. They are: Cadaver Dissection Tables with Exhaust Chamber and accessories, Research Microscope with DF DIC, Phase and Fluorescence illumination with DP72 Camera, Microscope with Fluorescence, Microcomputer controlled ultracentrifuge, Ultracentrifuge rotor, Variable Temperature steam pressure sterilizer, Alliance APLC System, DNA Speedvac, Gel Cocumentation System, BioPac MP150, Glovebox personal workstation,Lyophilizer, Nano Drop 2000/2000c Spectrophotometer, C02 Incubator.

  14. Research and Creative Activity Resources Administrative units (area code 517, unless noted otherwise)

    E-Print Network [OSTI]

    /commercialization (area code 517, unless noted otherwise) MSU Bioeconomy Institute (Holland, Mich.) 616395 8918 http

  15. Environmental Health & Safety, UC Irvine TITLE: CLEAN AREAS IN RESEARCH LABS (Non-Clinical)

    E-Print Network [OSTI]

    George, Steven C.

    . Relocate all hazardous materials use and storage from the Clean Area and maintain separation distance an adequate separation of the Clean Area from hazardous operations is not possible, splash is focused upon the adequacy of separation of the proposed Clean Area from areas in which hazardous materials

  16. Scientific Challenges for Understanding the Quantum Universe

    SciTech Connect (OSTI)

    Khaleel, Mohammad A.

    2009-10-16T23:59:59.000Z

    A workshop titled "Scientific Challenges for Understanding the Quantum Universe" was held December 9-11, 2008, at the Kavli Institute for Particle Astrophysics and Cosmology at the Stanford Linear Accelerator Center-National Accelerator Laboratory. The primary purpose of the meeting was to examine how computing at the extreme scale can contribute to meeting forefront scientific challenges in particle physics, particle astrophysics and cosmology. The workshop was organized around five research areas with associated panels. Three of these, "High Energy Theoretical Physics," "Accelerator Simulation," and "Experimental Particle Physics," addressed research of the Office of High Energy Physics’ Energy and Intensity Frontiers, while the"Cosmology and Astrophysics Simulation" and "Astrophysics Data Handling, Archiving, and Mining" panels were associated with the Cosmic Frontier.

  17. Scientific/Techical Report

    SciTech Connect (OSTI)

    Dr. Chris Leighton, Neutron Scattering Society of American; Mr. J. Ardie (Butch) Dillen, MRS Director of Finance and Administration

    2012-11-07T23:59:59.000Z

    The ACNS provides a focal point for the North American neutron user community, strengthening ties within this diverse group, and promoting neutron research in related disciplines. The conference thus serves a dual role as both a national user meeting and a scientific meeting. As a venue for scientific exchange, the ACNS showcases recent results and provides a forum for scientific discussion of neutron-enabled research in fields as diverse as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, elementary excitations, fundamental physics, and development of neutron instrumentation. This is achieved through a combination of invited oral presentations, contributed oral presentations, and poster sessions. Adequate opportunity for spontaneous discussion and collaboration is also built into the ACNS program in order to foster free exchange of new scientific ideas and the potential for use of powerful neutron scattering methods beyond the current realms of application. The sixth American Conference on Neutron Scattering (ACNS 2012) provided essential information on the breadth and depth of current neutron-related research worldwide. A strong program of plenary, invited and contributed talks showcased recent scientific results in neutron science in a wide range of fields, including soft and hard condensed matter, biology, chemistry, energy and engineering applications, and neutron physics.

  18. Los Alamos Scientific Laboratory energy-related history, research, managerial reorganization proposals, actions taken, and results. History report, 1945--1979

    SciTech Connect (OSTI)

    Hammel, E.F.

    1997-03-01T23:59:59.000Z

    This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory`s primary mission during that era was the design and development of nuclear weapons and most of the Laboratory`s funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory`s internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related to the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos.

  19. Perspective: The Climate-Population-Infrastructure Modeling and Simulation Fertile Area for New Research

    SciTech Connect (OSTI)

    Allen, Melissa R [ORNL; Fernandez, Steven J [ORNL; Walker, Kimberly A [ORNL; Fu, Joshua S [ORNL

    2014-01-01T23:59:59.000Z

    Managing the risks posed by climate change and extreme weather to energy production and delivery is a challenge to communities worldwide. As climate conditions change, populations will shift, and demand will re-locate; and networked infrastructures will evolve to accommodate new load centers, and, hopefully, minimize vulnerability to natural disaster. Climate effects such as sea level rise, increased frequency and intensity of natural disasters, force populations to move locations. Displaced population creates new demand for built infrastructure that in turn generates new economic activity that attracts new workers and associated households to the new locations. Infrastructures and their interdependencies will change in reaction to climate drivers as the networks expand into new population areas and as portions of the networks are abandoned as people leave. Thus, infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Forecasting the location of these vulnerabilities by combining climate predictions and agent based population movement models shows promise for defining these future population distributions and changes in coastal infrastructure configurations. By combining climate and weather data, engineering algorithms and social theory it has been only recently possible to examine electricity demand response to increased climactic temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. These emerging results suggest a research agenda of coupling these disparate modelling approaches to understand the implications of climate change for protecting the nation s critical infrastructure.

  20. Costs and business models in scientific

    E-Print Network [OSTI]

    Rambaut, Andrew

    Costs and business models in scientific research publishing A report commissioned by the Wellcome Trust DP-3114.p/100/04-2004/JM #12;Costs and business models in scientific research publishing A report, Cambridgeshire CB4 9ZR, UK Tel: +44 (0)1223 209400 Web: www.sqw.co.uk #12;Costs and business models in scientific

  1. advancing scientific understanding: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interventions in Science Education Scientific thinking can be characterized in terms of two of the scientific enter- prise" (row 2). (6). Research on domain-specific...

  2. advanced scientific component: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interventions in Science Education Scientific thinking can be characterized in terms of two of the scientific enter- prise" (row 2). (6). Research on domain-specific...

  3. advanced scientific computing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22 23 24 25 Next Page Last Page Topic Index 1 Advanced Scientific Computing Research Computer Science Plasma Physics and Fusion Websites Summary: Advanced Scientific Computing...

  4. Plutonium focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  5. Scientific Bio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells"03,ScientificScientific

  6. Abstract --This panel session paper outlines one of the re-search thrust areas in the Power System Engineering Research

    E-Print Network [OSTI]

    Oren, Shmuel S.

    1 Abstract -- This panel session paper outlines one of the re- search thrust areas in the Power- tential of harnessing the inherent flexibility of certain load types such as heating and cooling and PHEV for massive penetration of renewable resources such as wind and solar power into the mix of elec- tricity

  7. COLORADO SCHOOL OF MINES RESEARCH INSTITUTE (CSMRI) SITE FLOOD PLAIN AREA CLEANUP FACT SHEET & PROJECT SUMMARY

    E-Print Network [OSTI]

    . In 1992 a water main break at the Site flooded a tailings pond that overflowed into Clear Creek. The U.S. Environmental Protection Agency excavated and stockpiled soil from the tailings pond and surrounding area at the west end of the former tailings pond area previously cleaned up by EPA was found to contain

  8. Conservation priorities under global change : protected areas, threatened biodiversity and research trends

    E-Print Network [OSTI]

    Lee, Tien Ming

    2011-01-01T23:59:59.000Z

    research. Environmental Conservation 37, 442-450. Fazey,training in environmental conservation: definitions,future directions. Environmental Conservation 37, 410-418.

  9. Scientific Visualization, Seeing the Unseeable

    ScienceCinema (OSTI)

    LBNL

    2009-09-01T23:59:59.000Z

    June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in bo... June 24, 2008 Berkeley Lab lecture: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.

  10. Biological and Environmental Research

    E-Print Network [OSTI]

    recalcitrance. Using an integrated approach to solving the challenge of producing biofuel from cellulosic materials, the center will not only provide the scientific basis for affordable and sustainable biofuel but will also advance our understanding in areas of fundamental biological science. BESC researchers have

  11. Research and Observation

    E-Print Network [OSTI]

    Worrest, Robert C.

    half of the world's focused climate change ence. As an input to this review, the U.S. research climate. With respect to specific areas of · monitor, understand, and predict Agriculture, Commerce- that greenhouse gases are accumulating · provide a sound scientific basis for tion), Defense, Energy, Health

  12. Research on stable, high-efficiency, large-area amorphous silicon based modules -- Task B

    SciTech Connect (OSTI)

    Mitchell, K.W.; Willet, D.R. (Siemens Solar Industries, Camarillo, CA (USA))

    1990-10-01T23:59:59.000Z

    This report documents progress in developing a stable, high- efficiency, four-terminal hybrid tandem module. The module consists of a semi-transparent, thin-film silicon:hydrogen alloy (TFS) top circuit and a copper indium diselenide (CuInSe{sub 2}) bottom circuit. Film deposition and patterning processes were successfully extended to 0.4-m{sup 2} substrates. A 33.2-W (8.4% efficient) module with a 3970-cm{sup 2} aperture area and a white back reflector was demonstrated; without the back reflector, the module produced 30.2 W (7.6% efficient). Placing a laminated, 31.6-W, 8.1%-efficient CuInSe{sub 2} module underneath this TFS module, with an air gap between the two, produces 11.2 W (2.9% efficient) over a 3883-cm{sup 2} aperture area. Therefore, the four-terminal tandem power output is 41.4 W, translating to a 10.5% aperture-area efficiency. Subsequently, a 37.8-W (9.7% aperture-area efficiency) CuInSe{sub 2} module was demonstrated with a 3905-cm{sup 2} aperture area. Future performances of single-junction and tandem modules of this size were modeled, and predicted power outputs exceed 50 W (13% efficient) for CuInSe{sub 2} and 65 W (17% efficient) for TFS/CuInSe{sub 2} tandem modules.

  13. Comparison of AVHRR classification and aerial photography interpretation for estimation of forest area. Forest Service research paper

    SciTech Connect (OSTI)

    Lannom, K.B.; Evans, D.L.; Zhu, Z.

    1995-09-01T23:59:59.000Z

    The USDA Forest Service Southern Forest Experiment Station`s Forest Inventory and Analysis (SO-FIA) unit uses a dot count method to estimate the percentage of forest area in counties or parishes from aerial photographs. The research reported in this paper was designed to determine whether Advanced Very High Resolution Radiometer (AVHRR) data could be used to estimate forest area at the county or parish level. For this study, AVHRR data for three parishes in central Louisiana were extracted from a 1991 AVHRR forest type map of the United States. Photo interpretation data were obtained from a digital mosaic of aerial photography of the parishes. Forest area estimates obtained by means of photo interpretation did not differ significantly from those obtained by analyzing AVHRR data.

  14. Recent research efforts in the area of biotechnology for fuels and chemicals: Poster session papers

    SciTech Connect (OSTI)

    Antonopoulos, A.A. [Argonne National Lab., IL (United States); Grohmann, K. [US Citrus and Subtropical Products Lab., Winter Haven, FL (United States)

    1992-09-01T23:59:59.000Z

    This report presents research presented at the poster session of the Symposium covering a wide spectrum of current biotechnological research activities. Research focused mostly on ethanol production and methane generation from biomass material via microbial processing, as well as on enhanced hydrogen yield from algae. Several of the posters dealt with the pretreatment of cellulosic materials, and enzyme production/characterization, while a good number of papers displayed research efforts on bioremediation, photosynthesis, production of various useful chemicals from biomass by bioprocessing, and on other miscellaneous subjects. One of the papers treated a very interesting topic of cellulose-cellulase complexes. Many of the poster papers are included in this volume, and a synopsis of all the poster/papers presented is the subject of this article.

  15. Recent research efforts in the area of biotechnology for fuels and chemicals: Poster session papers

    SciTech Connect (OSTI)

    Antonopoulos, A.A. (Argonne National Lab., IL (United States)); Grohmann, K. (US Citrus and Subtropical Products Lab., Winter Haven, FL (United States))

    1992-01-01T23:59:59.000Z

    This report presents research presented at the poster session of the Symposium covering a wide spectrum of current biotechnological research activities. Research focused mostly on ethanol production and methane generation from biomass material via microbial processing, as well as on enhanced hydrogen yield from algae. Several of the posters dealt with the pretreatment of cellulosic materials, and enzyme production/characterization, while a good number of papers displayed research efforts on bioremediation, photosynthesis, production of various useful chemicals from biomass by bioprocessing, and on other miscellaneous subjects. One of the papers treated a very interesting topic of cellulose-cellulase complexes. Many of the poster papers are included in this volume, and a synopsis of all the poster/papers presented is the subject of this article.

  16. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,Science andJanuary »Scientific

  17. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,Science andJanuaryScientific Advisory

  18. Research on stable, high-efficiency, large-area, amorphous-silicon-based submodules

    SciTech Connect (OSTI)

    Delahoy, A.E.; Tonon, T.; Macneil, J. (Chronar Corp., Princeton, NJ (USA))

    1991-06-01T23:59:59.000Z

    The primary objective of this subcontract is to develop the technology for same bandgap, amorphous silicon tandem junction photovoltaic modules having an area of at least 900 cm{sup 2} with the goal of achieving an aperture area efficiency of 9%. A further objective is to demonstrate modules that retain 95% of their under standard light soaking conditions. Our approach to the attainment of these objective is based on the following distinctive technologies: (a) in-house deposition of SiO{sub 2}/SnO{sub 2}:F onto soda lime glass by APCVD to provide a textured, transparent electrode, (b) single chamber r.f. flow discharge deposition of the a-Si:H layers onto vertical substrates contained with high package density in a box carrier'' to which the discharge is confined (c) sputter deposition of highly reflecting, ZnO-based back contacts, and (d) laser scribing of the a-Si:H and electrodes with real-time scribe tracking to minimize area loss. Continued development of single junction amorphous silicon was aggressively pursued as proving ground for various optical enhancement schemes, new p-layers, and i-layers quality. We have rigorously demonstrated that the introduction of a transitional i-layer does not impair stability and that the initial gain in performance is retained. We have demonstrated a small improvement in cell stability through a post-fabrication treatment consisting of multiple, intense light flashes followed by sufficient annealing. Finally, several experiments have indicated that long term stability can be improved by overcoating the SnO{sub 2} with ZnO. 25 refs., 17 figs.

  19. Sandia National Laboratories: Scientific Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer System On March 16, 2011, in The PMTF computer system can perform theoretical modeling and analysis, experimental control and data acquisition, and post-test data...

  20. Advanced Scientific Computing Research Jobs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummerNews &OfficeAdvanced

  1. Scientific Cornerstones | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,Science andJanuaryScientificScientific

  2. Scientific Labs | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,ScienceScientificScientific Labs SHARE

  3. The scientific case for eInfrastructure in Norway

    E-Print Network [OSTI]

    Helgaker, Trygve

    The scientific case for eInfrastructure in Norway The eInfrastructure Scientific Opportunities Panel #12;2 3 The scientific case for eInfrastructure in Norway The eInfrastructure Scientific Opportunities Panel Appointed by the Research Council of Norway Galen Gisler (chair) Physics of Geological

  4. The School of Physics and Astronomy has a world-leading research profile that covers a broad spectrum from fundamental to applied physics. The research is grouped into the three areas of photonics,

    E-Print Network [OSTI]

    Greenaway, Alan

    The School of Physics and Astronomy has a world-leading research profile that covers a broad spectrum from fundamental to applied physics. The research is grouped into the three areas of photonics, condensed matter physics, and astronomy. In the 2008 Research Assessment Exercise, the School was rated

  5. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,Science andJanuary »Scientific Advisory

  6. Scientific Divisions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,Science

  7. Scientific Impact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland ScienceInnovationScience and TechnologyNERSCJLab

  8. Scientific Innovation Through Integration Capabilities Series

    E-Print Network [OSTI]

    tools, EMSL offers the only HIM at a national scientific user facility. EMSL's microscopy suite affords at EMSL cater to well- established as well as emerging and specialty science areas, such as radiological

  9. Slide04 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Primary Goal Speed the diffusion of scientific knowledge by enabling improved web 2.0 communications among scientific and research communities. Ease implementation of peer-to-peer...

  10. Slide07 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    out there." (examples: Korean medical journals, South African scientific research database) ii. Inadequate time to search scientific databases one by one. (examples: UK PubMed...

  11. Slide12 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Korean medical journals, Australian Antarctic data, South African scientific research database) 2. Inadequate time to search scientific databases one by one. (examples: UK PubMed...

  12. Slide03 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Korean medical journals, Australian Antarctic data, South African scientific research database) 2. Inadequate time to search scientific databases one by one. (examples: UK PubMed...

  13. Slide06 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    out there." (examples: Korean medical journals, South African scientific research database) B. Inadequate time to search scientific databases one by one. (examples: UK PubMed...

  14. Geographic Information Science (GIS) and Technology Research UCSB is a leader in the development of geographic information science (GISc), which is the area of

    E-Print Network [OSTI]

    Akhmedov, Azer

    Geographic Information Science (GIS) and Technology Research at UCSB UCSB is a leader in the development of geographic information science (GISc), which is the area of academic research behind information science and its related technologies, including geographic information systems (GIS). · Center

  15. The DFG PhD Research Training Group 1261 "Critical Junctures of Globalization" at the Centre for Area Studies (CAS) of the University of Leipzig is offering

    E-Print Network [OSTI]

    Schüler, Axel

    The DFG PhD Research Training Group 1261 "Critical Junctures of Globalization" at the Centre for Area Studies (CAS) of the University of Leipzig is offering 9 PhD positions (65% of a TVL E 13 post April 2012 to 31 March 2014 The PhD Research Training Group, which was established in 2006, is devoted

  16. Computational plasma physics Plasma physics is blossoming and flourishing. It is a very fertile research area, from both a scientific and technological

    E-Print Network [OSTI]

    Ebert, Ute

    Preface Computational plasma physics Plasma physics is blossoming and flourishing. It is a very of plasma technology are, besides the classical example of discharge lamps: sterilisation, plasma medicines that is still far from complete. Given the often very high temperatures and short life times of plasma states

  17. Plutonium focus area: Technology summary

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this approach, EM developed a management structure and principles that led to creation of specific focus areas. These organizations were designed to focus scientific and technical talent throughout DOE and the national scientific community on major environmental restoration and waste management problems facing DOE. The focus area approach provides the framework for inter-site cooperation and leveraging of resources on common problems. After the original establishment of five major focus areas within the Office of Technology Development (EM-50), the Nuclear Materials Stabilization Task Group (NMSTG, EM-66) followed EM-50`s structure and chartered the Plutonium Focus Area (PFA). NMSTG`s charter to the PFA, described in detail later in this book, plays a major role in meeting the EM-66 commitments to the Defense Nuclear Facilities Safety Board (DNFSB). The PFA is a new program for FY96 and as such, the primary focus of revision 0 of this Technology Summary is an introduction to the Focus Area; its history, development, and management structure, including summaries of selected technologies being developed. Revision 1 to the Plutonium Focus Area Technology Summary is slated to include details on all technologies being developed, and is currently planned for release in August 1996. The following report outlines the scope and mission of the Office of Environmental Management, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  18. Educational Interventions to Advance Children's Scientific Thinking

    E-Print Network [OSTI]

    Klahr, David

    , and an assessment process. Here we describe some ways in which re- search in cognitive development has advanced our for Classifying Interventions in Science Education Scientific thinking can be characterized in terms of two of the scientific enter- prise" (row 2). (6). Research on domain-specific hypotheses (cell A) assesses young

  19. Data Mining for Scientific & Engineering Applications

    E-Print Network [OSTI]

    Kumar, Vipin

    Data Mining for Scientific & Engineering Applications Robert Grossman, Laboratory for Advanced Kumar, Army High Performance Research Center, University of Minnesota #12;Chapter 10 ­ Data Mining. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications Ch 10/ 3 Goals

  20. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-04-09T23:59:59.000Z

    To establish Department of Energy (DOE) requirements and responsibilities to ensure that scientific and technical information (STI) is identified, processed, disseminated, and preserved in a manner that (a) enables the scientific community and the public to locate and use the unclassified and unlimited STI resulting from DOE's research and related endeavors and (b) ensures access to classified and sensitive unclassified STI is protected according to legal or Departmental requirements. Cancels DOE O 241.1. Canceled by DOE O 241.1A Chg 1.

  1. Laboratory Directed Research and Development FY-10 Annual Report

    SciTech Connect (OSTI)

    Dena Tomchak

    2011-03-01T23:59:59.000Z

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  2. Environmental resources of selected areas of Hawaii: Ecological resources

    SciTech Connect (OSTI)

    Trettin, C.C.; Tolbert, V.R. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Jones, A.T. [Jones (Anthony T.), Vancouver, British Columbia (Canada); Smith, C.R. [Smith (Craig R.), Kailna, HI (United States); Kalmijn, A.J. [Kalmijn (Adrianus J.), Encinitas, CA (United States)

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on ecological resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report focus on several areas of Hawaii County. In this report, reference is made to these areas as study areas rather than as areas where proposed or alternative facilities of the HGP would be located. The resource areas addressed herein include terrestrial ecology, aquatic ecology, and marine ecology. The scientific background data and related information that were obtained from review of the (1) scientific literature, (2) government and private sector reports, (3) studies done under DOE interagency agreements with the US Fish and Wildlife Service (FWS) and with the US Army Corps of Engineers (COE), and (4) observations made during site visits are being made available for future research in these areas.

  3. Advanced energy projects FY 1997 research summaries

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  4. Thermodynamic assessment of the variation of the surface areas of two synthetic swelling clays during adsorption of water

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Thermodynamic assessment of the variation of the surface areas of two synthetic swelling clays; Synthetic smectite; Water; Adsorption; Surface area; Swelling clay; Interlayer space #12;1. Introduction Synthetic clays are very interesting materials, both for scientific research and for industrial applications

  5. 165THE FOURTH PARADIGM scientific infr astructure

    E-Print Network [OSTI]

    Narasayya, Vivek

    . This data deluge, especially in the scientific domain, has brought new research infrastructure challenges with the challenges of the data deluge. The emergence of the Web as an application, data sharing, and collaboration

  6. The objectives for deep scientific drilling in Yellowstone National Park

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    The western area of the United Stated contains three young silicic calderas, all of which contain attractive targets for scientific drilling. Of the three, the Yellowstone caldera complex is the largest, has the most intense geothermal anomalies, and is the most seismically active. On the basis of scientific objectives alone. it is easily the first choice for investigating active hydrothermal processes. This report briefly reviews what is known about the geology of Yellowstone National Park and highlights unique information that could be acquired by research drilling only in Yellowstone. However, it is not the purpose of this report to recommend specific drill sites or to put forth a specific drilling proposal. 175 refs., 9 figs., 2 tabs.

  7. Work of the All-Russian Scientific Research Institute of Automatics with the U.S. laboratory-to-laboratory program for cooperation on nuclear materials protection, control, and accounting

    SciTech Connect (OSTI)

    Griggs, J.R.; Smoot, J.L. [Pacific Northwest National Lab., Richland, WA (United States); Hoida, Hiroshi [Los Alamos National Lab., NM (United States)] [and others

    1996-12-31T23:59:59.000Z

    The All-Russian Scientific Research Institute of Automatics (VNIIA) is one of the scientific research institutes participating in the US/Russian Laboratory-to-Laboratory Program in Nuclear Materials Protection, Control, and Accounting (MPC and A). The Institute has provided instrumentation and measurement techniques to the Russian defense program and to the medical, gas and oil, and manufacturing industries. VNIIA is improving MPC and A in Russia by providing support to the Russian institutes and enterprises in the Ministry of Atomic Energy. VNIIA has a primary role in determining the requirements and specifications and developing procedures for testing and certification of MPC and A equipment, and is instrumental in strengthening the Russian infrastructure for supplying MPC and A equipment. Contracts have been placed with VNIIA by Russian suppliers to test, certify, and prepare for manufacturing hand-held special nuclear material detection equipment they have developed. A contract also is in place with VNIIA to test and evaluate a US-manufactured pedestrian portal monitor. Work for 1996 includes certifying these portal monitors and portable radiation detection equipment for use in Russian facilities, testing and evaluating a US active well coincidence counter and gamma-ray isotopic measurement methods, and developing guidelines for statistical evaluation methods used in MPC and A. This paper reviews the status of this effort and describes the plans for continuing this work in 1996.

  8. GOOD SCIENTIFIC PRACTICE at Carl von Ossietzky University Oldenburg

    E-Print Network [OSTI]

    Damm, Werner

    GOOD SCIENTIFIC PRACTICE at Carl von Ossietzky University Oldenburg K O M M I S S I O N F Ü R F O R OF RESEARCH EFFECTS #12;1 Guidelines for good scientific practice at Carl von Ossietzky University (30. Guidelines, 1. Allgemeine Prinzipien wissenschaftlicher Arbeit. Good scientific practice at Carl von

  9. A 10-year content analysis to assess research theme areas in agricultural education: gap analysis of future research priorities in the discipline. 

    E-Print Network [OSTI]

    Edgar, Leslie Dawn

    2009-05-15T23:59:59.000Z

    The field of agricultural education relies on multiple research journals to disseminate findings. This study focused on a 10-year content analysis of research published in premier journals in agricultural education. The ...

  10. Unique Aspects and Scientific Challenges - Advanced R and D|...

    Office of Science (SC) Website

    Advanced R and D Unique Aspects and Scientific Challenges High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Intensity Frontier...

  11. Abstract --Brain-Computer Music Interface (BCMI) is a new research area that is emerging at the cross roads of neurobiology,

    E-Print Network [OSTI]

    Miranda, Eduardo Reck

    1 Abstract -- Brain-Computer Music Interface (BCMI) is a new research area that is emerging the brain, the design of generative music techniques that respond to such information, and the training of brain activity associated with music cognition, and the development of new tools and techniques

  12. By defining Western University's areas of established and emerging research strength, we recognize the significant success of our

    E-Print Network [OSTI]

    Denham, Graham

    disasters Environmental Sustainability and Green Energy · State-of-the-art climate change research Experimental Climate Change Research Facility, Ontario Bioindustrial Innovation Centre and ICFAR Philosophy the significant success of our researchers in building strong collaborative initiatives with existing and broadly

  13. Environmental Resources of Selected Areas of Hawaii: Ecological Resources (DRAFT)

    SciTech Connect (OSTI)

    Trettin, C.C.; Tolbert, V.R.; Jones, A.T.; Smith, C.R.; Kalmijn, A.J.

    1994-06-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on ecological resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (COE) published a notice in the Federal Register on May 17, 1994 (Fed. Regist. 5925638) withdrawing its Notice of Intent (Fed. Regst. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report focus on several areas of Hawaii County, including the southeastern coast, a potential development corridor along the Saddle Road between Hilo and the North Kohala District on the northwestern coast, and on the southeastern coast of Maui. In this report, reference is made to these areas as study areas rather than as areas where proposed or alternative facilities of the HGP would be located. The resource areas addressed herein include terrestrial ecology, aquatic ecology, and marine ecology. The scientific background data and related information is being made available for future research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  14. Status Report on the Development of Research Campaigns

    SciTech Connect (OSTI)

    Baer, Donald R.; Baker, Scott E.; Washton, Nancy M.; Linggi, Bryan E.

    2013-06-30T23:59:59.000Z

    Research campaigns were conceived as a means to focus EMSL research on specific scientific questions. Campaign will help fulfill the Environmental Molecular Sciences Laboratory (EMSL) strategic vision to develop and integrate, for use by the scientific community, world leading capabilities that transform understanding in the environmental molecular sciences and accelerate discoveries relevant to the Department of Energy’s (DOE’s) missions. Campaigns are multi-institutional multi-disciplinary projects with scope beyond those of normal EMSL user projects. The goal of research campaigns is to have EMSL scientists and users team on the projects in the effort to accelerate progress and increase impact in specific scientific areas by focusing user research, EMSL resources, and expertise in those areas. This report will give a history and update on the progress of those campaigns.

  15. Why the US Needs a Deep Domestic Research Facility: Owning rather than Renting the Education Benefits, Technology Advances, and Scientific Leadership of Underground Physics

    E-Print Network [OSTI]

    Kevin T. Lesko

    2013-04-01T23:59:59.000Z

    I summarize the status of the Sanford Underground Research Facility in South Dakota and present connections to Energy and Intensity Frontier that benefit from the establishment of SURF and the staging of US-funded experiments in a domestic facility.

  16. Slide04 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Research & Development annually. OSTI collects, preserves, disseminates, and leverages the scientific and technical information resources resulting from this investment...

  17. Slide22 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Sources * Australian Antarctic Data Centre * Article@INIST (France) * Canada Institute for Scientific and Technical Information * Defence Research and Development...

  18. Building Digital Libraries for Scientific Data: An Exploratory Study of Data Pratices in Habitat Ecology

    E-Print Network [OSTI]

    Borgman, C L; Wallis, J C; Enyedy, N

    2006-01-01T23:59:59.000Z

    Building Digital Libraries for Scientific Data: Anscientific capital, digital libraries of data become morecollaborative research [1]. Digital libraries are essential

  19. Slide03 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Office of Research and Development * Library of Congress * National Aeronautics and Space Administration Scientific and Technical Information Program * National Science...

  20. Edison Electrifies Scientific Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recently accepted "Edison," a new flagship supercomputer designed for scientific productivity. Named in honor of American inventor Thomas Alva Edison, the Cray XC30 will be...

  1. Scientific/Technical Report

    SciTech Connect (OSTI)

    Bommissetty, Venkat

    2012-11-21T23:59:59.000Z

    This symposium aimed to bring together researchers working on quantifying nanoscale carrier transport processes in excitonic solar cells. Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such efforts can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well-defined electronic structures.

  2. Basic research needs and priorities in solar energy. Volume II. Technology crosscuts for DOE

    SciTech Connect (OSTI)

    Jayadev, J S; Roessner, D [eds.] eds.

    1980-01-01T23:59:59.000Z

    Priorities for basic research important to the future developments of solar energy are idenified, described, and recommended. SERI surveyed more than 120 leading scientists who were engaged in or knowledgeable of solar-related research. The result is an amalgam of national scientific opinion representing the views of key researchers in relevant disciplines and of SERI staff members. The scientific disciplines included in the report are: chemistry, biology, materials sciences, engineering and mathematics, and the social and behavioral sciences. Each discipline is subdivided into two to five topical areas-and, within each topical area, research needs are described and ranked according to the priorities suggested in the survey. Three categories of priority were established: crucial, important, and needed. A narrative accompanying the description of research needs in each topical area discusses the importance of research in the area for solar energy development and presents the bases for the priority rankings recommended.

  3. OCEAN DRILLING PROGRAM LEG 179 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 179 SCIENTIFIC PROSPECTUS HAMMER DRILLING and NERO Dr. Jack Casey Chief.S.A. Tom Pettigrew Chief Engineer, Leg 179 Ocean Drilling Program Texas A&M University Research Park 1000 Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

  4. OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS IZU-MARIANA MARGIN Dr. Terry Plank Co France Dr. Carlota Escutia Staff Scientist Ocean Drilling Program Texas A&M University Research Park 1000 the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000

  5. OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS THE COTE D'IVOIRE - GHANA TRANSFORM MARGIN, Leg 159 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station requires the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park

  6. Scientific Foundations of Computer Graphics Thomas Larsson

    E-Print Network [OSTI]

    Larsson, Thomas

    Scientific Foundations of Computer Graphics Thomas Larsson Department of Computer Engineering M methodological framework and research methods? In this paper, the nature of computer graphics is discussed from a theory of science perspective. The research methods of computer graphics are discussed and reasons

  7. advance science research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that one Geddes, Cameron Guy Robinson 3 Advanced Scientific Computing Research Computer Science Engineering Websites Summary: Advanced Scientific Computing Research Computer...

  8. Summer Undergraduate Research Program: Environmental studies

    SciTech Connect (OSTI)

    McMillan, J. [ed.

    1994-12-31T23:59:59.000Z

    The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. The students are offered research topics at the Medical University in the scientific areas of pharmacology and toxicology, epidemiology and risk assessment, environmental microbiology, and marine sciences. Students are also afforded the opportunity to work with faculty at the University of Charleston, SC, on projects with an environmental theme. Ten well-qualified students from colleges and universities throughout the eastern United States were accepted into the program.

  9. Mobile robotics research at Sandia National Laboratories

    SciTech Connect (OSTI)

    Morse, W.D.

    1998-09-01T23:59:59.000Z

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  10. Scientific Motivation Project Overview

    E-Print Network [OSTI]

    van Dyk, David

    and Tracking of Solar Features David Stenning1 Vinay Kashyap2 Thomas Lee3 David van Dyk4 C. Alex Young5 1 Flight Center Stenning, David Automatic Classifying and Tracking of Solar Features #12;Scientific Classifying and Tracking of Solar Features #12;Scientific Motivation Project Overview Methodology Results

  11. Sixty years of change in tree numbers and basal area in central Utah Aspen stands. Forest Service research paper

    SciTech Connect (OSTI)

    Mueggler, W.F.

    1994-10-01T23:59:59.000Z

    Plots established in 1913-14 in three separate aspen (Populus tremuloides Michx.) stands on the Wasatch Plateau in central Utah were inventoried at irregular intervals over a 64-year period. The data indicate that (1) stem numbers declined continuously as the stands aged; (2) an inverse relationship existed between aspen site quality and stem numbers in middle age stands; (3) basal area peaked probably sometime around 80 years of age and declined appreciably by age 100; (4) greatest subsequent mortality in middle age stands was those stems in diameter size classes smaller than the mode; and (5) stands thinned between the ages of 40 and 70 contained more but smaller stems at maturity and greater total basal area than those not thinned.

  12. Stem cubic-foot volume tables for tree species in the Appalachian area. Forest Service research paper

    SciTech Connect (OSTI)

    Clark, A.; Souter, R.A.

    1996-03-01T23:59:59.000Z

    Steamwood cubic-foot volume inside bark tables are presented for 20 species and 8 species groups based on equations used to estimate timber sale volumes on national forests in the Appalachian Area. Tables are based on form class measurement data for 2,670 trees sampled in the Appalachian Area and taper data collected across the South. A series of tables is presented for each species based on diameter at breast height (d.b.h.) in combination with total height and height to a 4-inch diameter outside bark (d.o.b.) top. Volume tables are also presented based on d.b.h. in combination with height to a 7-inch d.o.b. top for softwoods and height to a 9-inch d.o.b. top for hardwoods.

  13. Stem cubic-foot volume tables for tree species in the Arkansas area. Forest Service research paper

    SciTech Connect (OSTI)

    Clark, A.; Souter, R.A.

    1996-03-01T23:59:59.000Z

    Steamwood cubic-foot volume inside bark tables are presented for 9 species and 9 species groups based on equations used to estimate timber sale volumes on national forests in the Arkansas Area. Tables are based on form class measurement data for 1,417 trees sampled in the Arkansas Area and taper data collected across the South. A series of tables is presented for each species based on diameter at breast height (d.b.h.) in combination woth total height and height to a 4-inch diameter outside bark (d.o.b.) top. Volume tables are also presented based on d.b.h. in combination with height to a 7-inch d.o.b. top for softwoods and height to a 9-inch d.o.b. top for hardwoods.

  14. Stem cubic-foot volume tables for tree species in the Delta area. Forest Service research paper

    SciTech Connect (OSTI)

    Clark, A.; Souter, R.A.

    1996-03-01T23:59:59.000Z

    Steamwood cubic-foot volume inside bark tables are presented for 13 species and 6 species groups based on equations used to estimate timber sale volumes on national forests in the Delta Area. Tables are based on form class measurement data for 990 trees sampled in the Delta Area and taper data collected across the South. A series of tables is presented for each species based on diameter at breast height (d.b.h.) in combination with total height and height to a 4-inch diameter outside bark (d.o.b.) top. Volume tables are also presented based on diameter outside of the bark (d.o.b.) in combination with height with to a 9-inch d.o.b. top.

  15. Bark beetle and wood borer infestation in the greater Yellowstone area during four postfire years. Forest Service research paper

    SciTech Connect (OSTI)

    Rasmussen, L.A.; Amman, G.D.; Vandygriff, J.C.; Oakes, R.D.; Munson, A.S.

    1996-03-01T23:59:59.000Z

    Surveys of bark beetle and wood borer infestation in the Greater Yellowstone Area were conducted from 1991 through 1993 to determine the effect of delayed tree mortality on mosaics of fire-killed and green tree stands, the relationship between fire injury and infestation, but both types of mortality greatly altered the mosaics immediately apparent after the 1988 fires. The high level of infestation suggests that insects built up in fire-injured trees and then caused increased infestation of uninjured trees.

  16. The Dissertation Process: Survivor Manual The doctoral dissertation is a piece of original, independent research in an area of

    E-Print Network [OSTI]

    Galles, David

    The Dissertation Process: Survivor Manual The doctoral dissertation is a piece of original. The dissertation in the form of an organized and competently written study should represent a contribution is devoted to the development of a dissertation proposal and to the research and writing of a dissertation

  17. Writing and Publishing Scientific Articles in Computer Science

    E-Print Network [OSTI]

    Wladmir Cardoso Brandăo

    2015-06-01T23:59:59.000Z

    Over 15 years of teaching, advising students and coordinating scientific research activities and projects in computer science, we have observed the difficulties of students to write scientific papers to present the results of their research practices. In addition, they repeatedly have doubts about the publishing process. In this article we propose a conceptual framework to support the writing and publishing of scientific papers in computer science, providing a kind of guide for computer science students to effectively present the results of their research practices, particularly for experimental research.

  18. Co-operation Agreement between the European Organization for Nuclear Research and the Department of Energy of the United States of America and the National Science Foundation of the United States of America concerning Scientific and Technical Co-operation in Nuclear and Particle Physics

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Co-operation Agreement between the European Organization for Nuclear Research and the Department of Energy of the United States of America and the National Science Foundation of the United States of America concerning Scientific and Technical Co-operation in Nuclear and Particle Physics

  19. Record of the first meeting of the Joint Coordinating Committee for Radiation Effects Research

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This conference was held July 27--28, 1994 in Moscow. The main purpose of the meeting was to implement an agreement between the Russian Federation and the US to facilitate cooperative research on health and environmental effects of radiation. It was hoped that the exchange of information would provide a good basis for employing new scientific knowledge to implement practical measures to facilitate the rehabilitation of radioactively contaminated areas and to treat radiation illnesses. The Russian Federation suggested five main scientific areas for cooperative research. They will prepare proposals on 4--5 projects within the scope of the scientific areas discussed and forward them to the US delegation for consideration of the possibility to facilitate joint research.

  20. 2014-09-30 Issuance: Buildings-to-Grid Integration and Related Areas of Research; Notice of Availability and Request for Public Comment

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of availability and request for public comment regarding buildings-to-grid integration and related areas of research, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 30, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  1. Advanced Energy Projects FY 1996 research summaries

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    The mission of the Advanced Energy Projects Division (AEP) is to explore the scientific feasibility of novel energy-related concepts. These concepts are typically at an early stage of scientific development and, therefore, are premature for consideration by applied research or technology development programs. The portfolio of projects is dynamic, but reflects the broad role of the Department in supporting research and development for improving the Nation`s energy posture. Topical areas presently receiving support include: alternative energy sources; innovative concepts for energy conversion and storage; alternate pathways to energy efficiency; exploring uses of new scientific discoveries; biologically-based energy concepts; renewable and biodegradable materials; novel materials for energy technology; and innovative approaches to waste treatment and reduction. Summaries of the 70 projects currently being supported are presented. Appendices contain budget information and investigator and institutional indices.

  2. Scientific Data Management (SDM) Center for Enabling Technologies

    SciTech Connect (OSTI)

    Lud?scher, Bertram [Professor

    2013-09-06T23:59:59.000Z

    Our contributions to advancing the state?of?the?art in scientific workflows have focused on the following areas: Workflow development; Generic workflow components and templates; Provenance collection and analysis; Workflow reliability and fault tolerance.

  3. Laboratory technology research: Abstracts of FY 1998 projects

    SciTech Connect (OSTI)

    NONE

    1998-11-01T23:59:59.000Z

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  4. Construction of Blaze at the University of Illinois at Chicago: A Shared, High-Performance, Visual Computer for Next-Generation Cyberinfrastructure-Accelerated Scientific, Engineering, Medical and Public Policy Research

    SciTech Connect (OSTI)

    Brown, Maxine D. [Acting Director, EVL; Leigh, Jason [PI

    2014-02-17T23:59:59.000Z

    The Blaze high-performance visual computing system serves the high-performance computing research and education needs of University of Illinois at Chicago (UIC). Blaze consists of a state-of-the-art, networked, computer cluster and ultra-high-resolution visualization system called CAVE2(TM) that is currently not available anywhere in Illinois. This system is connected via a high-speed 100-Gigabit network to the State of Illinois' I-WIRE optical network, as well as to national and international high speed networks, such as the Internet2, and the Global Lambda Integrated Facility. This enables Blaze to serve as an on-ramp to national cyberinfrastructure, such as the National Science Foundation’s Blue Waters petascale computer at the National Center for Supercomputing Applications at the University of Illinois at Chicago and the Department of Energy’s Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. DOE award # DE-SC005067, leveraged with NSF award #CNS-0959053 for “Development of the Next-Generation CAVE Virtual Environment (NG-CAVE),” enabled us to create a first-of-its-kind high-performance visual computing system. The UIC Electronic Visualization Laboratory (EVL) worked with two U.S. companies to advance their commercial products and maintain U.S. leadership in the global information technology economy. New applications are being enabled with the CAVE2/Blaze visual computing system that is advancing scientific research and education in the U.S. and globally, and help train the next-generation workforce.

  5. OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS CARIBBEAN OCEAN HISTORY AND THE CRETACEOUS Scientist, Leg 165 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College of any portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University

  6. OCEAN DRILLING PROGRAM LEG 191 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 191 SCIENTIFIC PROSPECTUS NORTHWEST PACIFIC SEISMIC OBSERVATORY AND HAMMER DRILL ENGINEERING TESTS Dr. Toshihiko Kanazawa Co-Chief Scientist Earthquake Research Institute Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

  7. OCEAN DRILLING PROGRAM LEG 120 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 120 SCIENTIFIC PROSPECTUS CENTRAL KERGUELEN PLATEAU Dr. Roland Schlich Drilling Program Texas A&M University College Station, TX 77841 Philip D.VRabinowitz Director ^^~-- ODP of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000 Discovery Drive, College Station

  8. OCEAN DRILLING PROGRAM LEG 118 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 118 SCIENTIFIC PROSPECTUS FRACTURE ZONE DRILLING ON THE SOUTHWEST INDIAN Oceanographic Institution Woods Hole, MA 02543 Andrew C. Adamson Staff Scientist, Leg 118 Ocean Drilling Program the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000

  9. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    NONE

    1988-01-01T23:59:59.000Z

    Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

  10. Slide07 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    & Advancement Areas of active innovations include: Federation of distributed collections with simultaneous, ranked, full text search. Modeling scientific exchange in the...

  11. EMSL Strategic Plan to Maximize Scientific Impact of

    E-Print Network [OSTI]

    ) is a new facility built to support scientific research that will enable cost-effective solutions to the U, and maximize the scientific benefit of that investment, the Performance Evaluation Management Plan (PEMP to maximize the benefit of the investment, and Target Outreach to cultivate new users and ultimately

  12. Advanced energy projects FY 1994 research summaries

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation`s energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects.

  13. Summaries of FY 1993 geosciences research

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the DOE`s many missions. The Geosciences Research Program is supported by the Office of Energy Research. The participants in this program include DOE laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the DOE and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar-atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  14. Los Alamos research and leadership prizes awarded

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and leadership prizes awarded Los Alamos research and leadership prizes awarded Commendations for exemplary scientific research and leadership have been bestowed upon...

  15. Recording Scientific Knowledge

    SciTech Connect (OSTI)

    Bowker, Geof (Santa Clara University) [Santa Clara University

    2006-01-09T23:59:59.000Z

    The way we record knowledge, and the web of technical, formal, and social practices that surrounds it, inevitably affects the knowledge that we record. The ways we hold knowledge about the past - in handwritten manuscripts, in printed books, in file folders, in databases - shape the kind of stories we tell about that past. In this talk, I look at how over the past two hundred years, information technology has affected the nature and production of scientific knowledge. Further, I explore ways in which the emergent new cyberinfrastructure is changing our relationship to scientific practice.

  16. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells"03,Scientific AdvisoryScientific

  17. Scientific Data Movement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells"03,ScientificScientificData

  18. National Energy Research Scientific Computing Center (NERSC)...

    Office of Science (SC) Website

    News NERSCLBL Study Finds No Evidence of Heartbleed External link Attacks Before the Virus Was Made Public Recent Requirement Workshops Large Scale Computing and Storage...

  19. Advanced Scientific Computing Research Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2014-01-01T23:59:59.000Z

    that have a high-performance computing (HPC) component (with an emphasis on high performance computing facilities.develop and deploy high- performance computing hardware and

  20. Advanced Scientific Computing Research Computer Science

    E-Print Network [OSTI]

    as production-quality, parallel-capable AMR visual data analysis infrastructure. This effort will help science-quality visualization of an AMR simulation of a hydrogen flame (Sample data courtesy J. Bell and M. Day, Center Infrastructure Center (APDEC) has begun to transition away from their in-house ChomboVis application to Vis

  1. Advanced Scientific Computing Research Computer Science

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    contacts a normal web server, downloads the map file, then begins navigation through the ordered sequence of images. The client requests images through the web server as needed to satisfy a particular viewpoint

  2. Scientific Exchange Program | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel

  3. Scientific Themes | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter PrincipalfuelTorus Experiment | Princeton Plasmaandfor

  4. ORISE: Providing Support for DOE Scientific Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOENurse Triage Lines SupportPolicyProcessFunding and

  5. NERSC National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate - Events -Exascalemade 2012BerkeleyGW

  6. NERSC: National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item$altMagnet

  7. National Energ y Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar Energy Harvesting LosNationalAnnual Report This work

  8. National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar Energy Harvesting LosNationalAnnual Report

  9. Personal Background andPersonal Background and AreasAreas ofof InterestInterest

    E-Print Network [OSTI]

    Boehning, Dankmar

    General Topics CurrentCurrent AreasAreas ofof InterestInterest ResearchResearch AreasAreas inin Preperation InterestInterest ResearchResearch AreasAreas inin PreperationPreperation #12;Personal BackgroundHistory BesidesBesides cooperatingcooperating inin severalseveral projectsprojects in SEin SE AsiaAsia oneone

  10. Implementing Arrangement Between the U.S. Department of Energy and the Department of Natural Resources of Canada and Atomic Energy of Canada Limited For Collaboration in the Area of Nuclear Research

    Broader source: Energy.gov [DOE]

    Implementing Arrangement Between the U.S. Department of Energy and the Department of Natural Resources of Canada and Atomic Energy of Canada Limited For Collaboration in the Area of Nuclear Research

  11. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  12. Combinatorial Parallel and Scientific

    E-Print Network [OSTI]

    Pinar, Ali

    - tional biology, scientific data mining, and network analysis. These applications are changing, and Department of Computer Science, University of New Mexico, email: bah at sandia dot gov. #12;i i discrete modeling, astrophysics, nanoscience, and combustion. Sparse solvers invariably require exploiting

  13. Protected Areas Stacy Philpott

    E-Print Network [OSTI]

    Gottgens, Hans

    · Convention of Biological Diversity, 1992 #12;IUCN Protected Area Management Categories Ia. Strict Nature. Protected Landscape/ Seascape VI. Managed Resource Protected Area #12;Ia. Strict Nature Preserves and Ib. Wilderness Areas · Natural preservation · Research · No · No #12;II. National Parks · Ecosystem protection

  14. Calendar | OSTI, US Dept of Energy, Office of Scientific and...

    Office of Scientific and Technical Information (OSTI)

    Tip: Explore DOE Scientific Research Data 2015-01-28 10:58 DOE Science Showcase: Protein Folding 2015-01-28 10:59 Most Viewed Documents from All OSTI Search Tools by Subject...

  15. Essays on the production and commercialization of new scientific knowledge

    E-Print Network [OSTI]

    Bikard, Michaël

    2013-01-01T23:59:59.000Z

    Scientific research frequently generates tremendous economic value. Yet, this value tends to be elusive and public and private organizations often struggle to obtain returns from their investment in science. This dissertation, ...

  16. Big Data Ecosystems Enable Scientific Discovery

    SciTech Connect (OSTI)

    Critchlow, Terence J.; Kleese van Dam, Kerstin

    2011-11-01T23:59:59.000Z

    Over the past 5 years, advances in experimental, sensor and computational technologies have driven the exponential growth in the volumes, acquisition rates, variety and complexity of scientific data. As noted by Hey et al in their 2009 e-book The Fourth Paradigm, this availability of large-quantities of scientifically meaningful data has given rise to a new scientific methodology - data intensive science. Data intensive science is the ability to formulate and evaluate hypotheses using data and analysis to extend, complement and, at times, replace experimentation, theory, or simulation. This new approach to science no longer requires scientists to interact directly with the objects of their research; instead they can utilize digitally captured, reduced, calibrated, analyzed, synthesized and visualized results - allowing them carry out 'experiments' in data.

  17. Techniques for interactive 3-D scientific visualization

    SciTech Connect (OSTI)

    Glinert, E.P. (Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Computer Science); Blattner, M.M. (Anderson (M.D.) Hospital and Tumor Inst., Houston, TX (USA). Dept. of Biomathematics California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National Lab., CA (USA)); Becker, B.G. (California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National La

    1990-09-24T23:59:59.000Z

    Interest in interactive 3-D graphics has exploded of late, fueled by (a) the allure of using scientific visualization to go where no-one has gone before'' and (b) by the development of new input devices which overcome some of the limitations imposed in the past by technology, yet which may be ill-suited to the kinds of interaction required by researchers active in scientific visualization. To resolve this tension, we propose a flat 5-D'' environment in which 2-D graphics are augmented by exploiting multiple human sensory modalities using cheap, conventional hardware readily available with personal computers and workstations. We discuss how interactions basic to 3-D scientific visualization, like searching a solution space and comparing two such spaces, are effectively carried out in our environment. Finally, we describe 3DMOVE, an experimental microworld we have implemented to test out some of our ideas. 40 refs., 4 figs.

  18. Laboratory Directed Research and Development Program FY98

    SciTech Connect (OSTI)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  19. Summaries of FY 1995 geosciences research

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either direct or indirect to the Department of Energy`s long-range technological needs.

  20. EA-1924: Consolidation and Relocation of Lawrence Berkeley National Laboratory (LBNL) OffSite Research Programs to a New Off-Site Location that also Allows for Future Growth, San Francisco East Bay Area, California

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal to consolidate and relocate LBNL research programs that are currently in leased off-site buildings at various locations around the San Francisco East Bay Area in California, to a new single location that also provides room for future growth of LBNL research programs.

  1. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01T23:59:59.000Z

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

  2. Neutron Science Research Areas | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeural probe design Biology and Soft

  3. Advanced materials research areas | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENAAdministrative80-AAAdvancedof Materials Under

  4. Accelerating scientific discovery : 2007 annual report.

    SciTech Connect (OSTI)

    Beckman, P.; Dave, P.; Drugan, C.

    2008-11-14T23:59:59.000Z

    As a gateway for scientific discovery, the Argonne Leadership Computing Facility (ALCF) works hand in hand with the world's best computational scientists to advance research in a diverse span of scientific domains, ranging from chemistry, applied mathematics, and materials science to engineering physics and life sciences. Sponsored by the U.S. Department of Energy's (DOE) Office of Science, researchers are using the IBM Blue Gene/L supercomputer at the ALCF to study and explore key scientific problems that underlie important challenges facing our society. For instance, a research team at the University of California-San Diego/ SDSC is studying the molecular basis of Parkinson's disease. The researchers plan to use the knowledge they gain to discover new drugs to treat the disease and to identify risk factors for other diseases that are equally prevalent. Likewise, scientists from Pratt & Whitney are using the Blue Gene to understand the complex processes within aircraft engines. Expanding our understanding of jet engine combustors is the secret to improved fuel efficiency and reduced emissions. Lessons learned from the scientific simulations of jet engine combustors have already led Pratt & Whitney to newer designs with unprecedented reductions in emissions, noise, and cost of ownership. ALCF staff members provide in-depth expertise and assistance to those using the Blue Gene/L and optimizing user applications. Both the Catalyst and Applications Performance Engineering and Data Analytics (APEDA) teams support the users projects. In addition to working with scientists running experiments on the Blue Gene/L, we have become a nexus for the broader global community. In partnership with the Mathematics and Computer Science Division at Argonne National Laboratory, we have created an environment where the world's most challenging computational science problems can be addressed. Our expertise in high-end scientific computing enables us to provide guidance for applications that are transitioning to petascale as well as to produce software that facilitates their development, such as the MPICH library, which provides a portable and efficient implementation of the MPI standard--the prevalent programming model for large-scale scientific applications--and the PETSc toolkit that provides a programming paradigm that eases the development of many scientific applications on high-end computers.

  5. annapurna conservation area: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contains several scientifically interesting geologic features and plant communities and rare plants and animals in a compact area. Author Glenn Patrick Juday is associate...

  6. area hot embossing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contains several scientifically interesting geologic features and plant communities and rare plants and animals in a compact area. Author Glenn Patrick Juday is associate...

  7. area vadose zone: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contains several scientifically interesting geologic features and plant communities and rare plants and animals in a compact area. Author Glenn Patrick Juday is associate...

  8. ProductSpecifications Thermo Scientific

    E-Print Network [OSTI]

    Peraire, Jaime

    ProductSpecifications Thermo Scientific CellomicsArrayScan VTI HCS Reader The Thermo Scientific info.cellularimaging@thermofisher.com www.thermo.com/cellomics and Cellular Imaging Europe: +44 118 988 and filters available Integrated Software Features · Thermo Scientific Cellomics iQ - High Content intelligent

  9. Sandia National Laboratories: Scientific Visit on Crystalline...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WorkshopsScientific Visit on Crystalline Rock Repository Development Scientific Visit on Crystalline Rock Repository Development Many thanks to all participants at the Scientific...

  10. Pacific Northwest Laboratory: Director`s overview of research performed for DOE Office of Health And Environmental Research

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    A significant portion of the research undertaken at Pacific Northwest Laboratory (PNL) is focused on the strategic programs of the US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER). These programs, which include Environmental Processes (Subsurface Science, Ecosystem Function and Response, and Atmospheric Chemistry), Global Change (Climate Change, Environmental Vulnerability, and Integrated Assessments), Biotechnology (Human Genome and Structural Biology), and Health (Health Effects and Medical Applications), have been established by OHER to support DOE business areas in science and technology and environmental quality. PNL uses a set of critical capabilities based on the Laboratory`s research facilities and the scientific and technological expertise of its staff to help OHER achieve its programmatic research goals. Integration of these capabilities across the Laboratory enables PNL to assemble multidisciplinary research teams that are highly effective in addressing the complex scientific and technical issues associated with OHER-sponsored research. PNL research efforts increasingly are focused on complex environmental and health problems that require multidisciplinary teams to address the multitude of time and spatial scales found in health and environmental research. PNL is currently engaged in research in the following areas for these OHER Divisions: Environmental Sciences -- atmospheric radiation monitoring, climate modeling, carbon cycle, atmospheric chemistry, ecological research, subsurface sciences, bioremediation, and environmental molecular sciences; Health Effects and Life Sciences -- cell/molecular biology, and biotechnology; Medical Applications and Biophysical Research -- analytical technology, and radiological and chemical physics. PNL`s contributions to OHER strategic research programs are described in this report.

  11. Slide08 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    User Search Statistics 87% of online users have gone online to research a scientific topic. 25% of a knowledge worker's time is spent searching for information...

  12. Slide07 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    to science are shared with a wide range of audiences, including the general public, news media, scientific and research communities, businessindustry, Congress, OMB, and OSTP...

  13. Slide23 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    efforts, WorldWideScience.org is well timed to other trends in global scientific communication. National research organizations recognize the importance of increasing visibility...

  14. Slide24 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    translations, WorldWideScience.org complements other trends in global scientific communication. National research organizations recognize the importance of increasing visibility...

  15. Slide11 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    (cont'd.) Open Access Standards: Chosen to import documents to the Library since a primary function of the system is a repository (library) for scientific research information...

  16. Slide20 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    * At-Large Member - Yvonne Halland, Council for Scientific and Industrial Research, South Africa An election for the Alliance's Executive Board was held in early April 2008....

  17. Slide19 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Information (CISTI) * Council for Scientific and Industrial Research (CSIR) - South Africa * German National Library of Science and Technology (TIB) * Institut de...

  18. Slide23 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Scientifique et Technique * At-Large Member - Yvonne Halland, Strategic Information Resources Coordinator, Council for Scientific and Industrial Research, South Africa...

  19. Slide10 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    At-Large Member - Yvonne Halland, Council for Scientific and Industrial Research, South Africa An election for the Alliance's Executive Board was held in early April 2008....

  20. Slide36 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Science Research Connection (SRC) http:www.osti.govsrc SRC draws together, in a single place, scientific and technical information previously contained in the DOE Information...

  1. Slide25 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    national research capabilities * Provide a sound basis for decision-making * Drive innovation Brian Hitson U.S. DOE Office of Scientific and Technical Information Chair,...

  2. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    is often minimal * Scientific, technical, and medical terminologyvocabulary * Videos can be long, often up to an hour or more Slide12 Slide12 OSTI and Microsoft Research...

  3. Slide24 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    findings and conclusions resulting from research and development activities, as well as other relevant associated information and data. DOE STI is the body of scientific,...

  4. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipal Investigators PostdoctoralResearch

  5. Radiolabeled monoclonal antibodies for imaging and therapy: Potential, problems, and prospects: Scientific highlights

    SciTech Connect (OSTI)

    Srivastava, S.C.; Buraggi, G.L.

    1986-01-01T23:59:59.000Z

    This meeting focused on areas of research on radiolabeled monoclonal antibodies. Topics covered included the production, purification, and fragmentation of monoclonal antibodies and immunochemistry of hybridomas; the production and the chemistry of radionuclides; the radiohalogenation and radiometal labeling techniques; the in-vivo pharmacokinetics of radiolabeled antibodies; the considerations of immunoreactivity of radiolabeled preparations; the instrumentation and imaging techniques as applied to radioimmunodetection; the radiation dosimetry in diagnostic and therapeutic use of labeled antibodies; the radioimmunoscintigraphy and radioimmunotherapy studies; and perspectives and directions for future research. Tutorial as well as scientific lectures describing the latest research data on the above topics were presented. Three workshop panels were convened on ''Methods for Determining Immunoreactivity of Radiolabeled Monoclonal Antibodies - Problems and Pitfalls,'' Radiobiological and Dosimetric Considerations for Immunotherapy with Labeled Antibodies,'' and ''The Human Anti-Mouse Antibody Response in Patients.''

  6. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells"03,Scientific Advisory Committee

  7. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells"03,Scientific Advisory

  8. Environmental Systems Research Candidates FY-01 Annual Report

    SciTech Connect (OSTI)

    Miller, David Lynn; Piet, Steven James

    2001-03-01T23:59:59.000Z

    The Environmental Systems Research Candidates (ESRC) Program ran from April 2000 through September 2001 as part of the Environmental Systems Research and Analysis (ESRA) Program at the Idaho National Engineering and Environmental Laboratory (INEEL). ESRA provides key science and technology to meet the cleanup mission of the U.S. Department of Energy Office of Environmental Management (EM), and performs research and development that will help solve current legacy problems and enhance the INEEL’s scientific and technical capability for solving longer-term challenges. This report documents the accomplishments of the ESRC Program. The ESRC Program consisted of 25 tasks subdivided within four research areas.

  9. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    SciTech Connect (OSTI)

    Ross, H.P.; Forsgren, C.K. (eds.)

    1992-04-01T23:59:59.000Z

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  10. Crown area equations for 13 species of trees and shrubs in northern California and southwestern Oregon. Forest service research paper (Final)

    SciTech Connect (OSTI)

    Uzoh, F.C.C.; Ritchie, M.W.

    1996-07-01T23:59:59.000Z

    The equations presented predict crown area for 13 species of trees and shrubs which may be found growing in competition with commercial conifers during early stages of stand development. The equations express crown area as a function of basal area and height. Parameters were estimated for each species individually using weighted nonlinear least square regression.

  11. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    collaborations. The Office of Research and Development is responsible for managing the Science Campaign which conducts new scientific research and combines it with existing data...

  12. Exploratory research and development FY90

    SciTech Connect (OSTI)

    Struble, G.L.; Middleton, C.; Baldwin, G.; Cherniak, J.; Clements, W.; Donohue, M.L.; Francke, A.; Kirvel, R.D.; MacGregor, P.; Shaw, G. (eds.)

    1990-01-01T23:59:59.000Z

    In general, the Exploratory Research and Development (ER D) Program supports research projects considered too basic or long-range to be funded by other Lawrence Livermore National Laboratory (LLNL) programs. This Program is managed for the Laboratory Director by a special assistant who chairs the LLNL's IR D Review Committee. Membership in the Review Committee comprises senior LLNL scientists, engineers, and managers whose areas of expertise span the range of scientific disciplines pursued at the Laboratory. The research supported by the Program falls into three categories: Exploratory Research in the Disciplines, Director's Initiatives, and Laboratory-Wide Competition. The first two, Exploratory Research and Director's Initiatives, promote pioneering work in the various scientific disciplines and programmatic areas. Laboratory departments and divisions propose and manage projects in the Exploratory Research category. The Laboratory Director, with the advice of the Review Committee, selects several larger projects to fund as Director's Initiative. These projects, which are proposed and managed by the responsible associate director, are intended to enhance the scope of existing programs or establish new technical directions and programs for the Laboratory. All FY90 projects are described in detail in this report. Other publications on ER D projects are included in the Publications List at the back of this report.

  13. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-14T23:59:59.000Z

    The Order establishes requirements and responsibilities for managing DOE's scientific and technical information. Cancels DOE O 241.1. Canceled by DOE O 241.1B.

  14. Throwback Thursdays Celebrate Scientific Supercomputing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Celebrate Scientific Supercomputing A Cray-1 supercomputer arrives at the Magnetic Fusion Energy Computer Center in A Cray-1 supercomputer arrives at the Magnetic Fusion...

  15. Final Scientific EFNUDAT Workshop

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilities  International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis Vlachoudis Workshop Assistant: Géraldine Jean

  16. Proposed scientific activities for the Salton Sea Scientific Drilling Project

    SciTech Connect (OSTI)

    Not Available

    1984-05-01T23:59:59.000Z

    The Salton Sea Scientific Drilling Project (SSSDP) has been organized for the purpose of investigating a hydrothermal system at depths and temperatures greater than has been done before. Plans are to deepen an existing well or to drill a new well for research purposes for which temperatures of 300/sup 0/C will be reached at a depth of less than 3.7 km and then deepen that well a further 1.8 km. This report recounts the Congressional history of the appropriation to drill the hole and other history through March 1984, gives a review of the literature on the Salton Sea Geothermal Field and its relationship to other geothermal systems of the Salton Trough, and describes a comprehensive series of investigations that have been proposed either in the well or in conjunction with the SSSDP. Investigations in geophysics, geochemistry and petrology, tectonics and rock mechanics, and geohydrology are given. A tabulation is given of current commercial and state-of-the-art downhole tools and their pressure, temperature, and minimum hole size limitations.

  17. Scientific and Technical Information Publications FAQs | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,ScienceScientificScientific Labs

  18. Scientific Visualization: The Modern Oscilloscope for "Seeing the Unseeable" (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Bethel, E Wes

    2011-04-28T23:59:59.000Z

    Summer Lecture Series 2008: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.

  19. Chesapeake Bay Eutrophication: Scientific Understanding, Ecosystem Restoration, and Challenges for Agriculture

    E-Print Network [OSTI]

    Chesapeake Bay Eutrophication: Scientific Understanding, Ecosystem Restoration, and Challenges'scultural eutrophication and extensive efforts to reduce nutrient inputs. In 1987 a commitment was made to reduce of eutrophication were incompletely known. research, policies, and concerted management action Subsequent research

  20. Mining Scientific Data Naren Ramakrishnan

    E-Print Network [OSTI]

    Southern California, University of

    -scale data repositories. Advances in networking technology have en- abled communication of large volumesMining Scientific Data Naren Ramakrishnan Department of Computer Science Virginia Tech, VA 24061 rapid advances in high performance computing and tools for data acquisition in a variety of scientific

  1. ProductSpecifications Thermo Scientific

    E-Print Network [OSTI]

    Short, Daniel

    ProductSpecifications Thermo Scientific Niton XL3t GOLDD+ XRF Analyzer The Thermo Scientific Niton XL3t x-ray tube-based x-ray fluorescence (XRF) analyzer with GOLDD+ technology is purpose versatile x-ray tubes ever used in a handheld XRF instrument. When this power is harnessed to our

  2. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  3. Laboratory technology research - abstracts of FY 1997 projects

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  4. Effects of seed production, seedbed condition, and overstory basal area on the establishment of shortleaf pine seedlings in the Ouachita Mountains. Forest Service research paper

    SciTech Connect (OSTI)

    Shelton, M.G.

    1995-09-01T23:59:59.000Z

    First-year seedlings establishment was determined across an array of seedbed conditions and overstory basal areas in stands of shortleaf pine (Pinus echinata Mill.) and hardwoods following the initial harvest implementing uneven-aged silviculture. Results indicate the importance of regulating overstory basal area in the application of uneven-aged silviculture in stands featuring short-leaf pine. When total overstory basal area was within the guidelines for uneven-aged stands (45 to 75 sq.ft.acre), seedbeds of mineral soil and partial and undisturbed litter resulted in ample regeneration even with seed crops that were slightly below regional averages. Composition of the overstory basal area apparently did not strongly affect initial seedling establishment in areas having sparse ground vegetation and should not be extended to longer time periods or other conditions.

  5. Summaries of FY 1994 geosciences research

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  6. Publications New NMFS Scientific

    E-Print Network [OSTI]

    is advisable to determine avail- ability and price (prices may change and prepayment is required). NOAA done in recent years on the relationship be- tween various fatty acids and certain human diseases and discusses the highlights of much of this research in "Medical Ef- fects of Fish or Fish Oil in the Diet

  7. Scientific Notes 693 ASPECTS OF THE FIELD ECOLOGY OF

    E-Print Network [OSTI]

    Hoddle, Mark S.

    Scientific Notes 693 ASPECTS OF THE FIELD ECOLOGY OF STENOMA CATENIFER (LEPIDOPTERA: ELACHISTIDAE drop (Núńez 2008). Heavy infestations of stem-mining larvae can kill twigs and young avocado trees for moving this pest into new areas (Núńez 2008). To better understand the field ecology of S. catenifer

  8. NEST Scientific Report 2007-2009 Graphene and artificial graphene

    E-Print Network [OSTI]

    Abbondandolo, Alberto

    NEST Scientific Report 2007-2009 Graphene 43 Graphene and artificial graphene T his area-layer graphene behave like massless fermions. Graphene is a first remarkable and clean example of the impact of a potential with honeycomb structure on the electronic states and dynamics. In graphene the crystalline

  9. Research collaboration opportunities at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Budwine, C.M.

    1996-09-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) is a major research facility within the Department of Energy (DOE) complex. LLNL`s traditional mission is in Defense Programs, including a significant effort in non-proliferation and arms control. In terms of disciplinary areas, over 50% of our present research efforts are in the fields of large-scale computing, high energy-density physics, energy and environmental sciences, engineering, materials research, manufacturing, and biotechnology. The present decade presents new challenges to LLNL. Many factors have influenced us in modifying our research approach. The main driver is the realization that many scientific problems in our mission areas can best be solved by collaborative teams of experts. At LLNL we excel in physical sciences, but we need the expertise of many others, beyond our established areas of expertise. For example, to find an acceptable solution to reduce earthquake damage requires contributions from engineering, soil mechanics, hydrology, materials sciences, Geosciences, computer modeling, economics, law, and political science. In the pursuit of our mission goals, we are soliciting increased research collaborations with university faculty and students. The scientific and national security challenges facing us and our nation today are unprecedented. Pooling talents from universities, other research organizations, and the national laboratories will be an important approach to finding viable solutions.

  10. National Scientific User Facility Purpose and Capabilities

    SciTech Connect (OSTI)

    K. E. Rosenberg; T. R. Allen; J. C. Haley; M. K. Meyer

    2010-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007. This designation allows the ATR to become a cornerstone of nuclear energy research and development (R&D) within the U.S. by making it easier for universities, the commercial power industry, other national laboratories, and international organizations to conduct nuclear energy R&D. The mission of the ATR NSUF is to provide nuclear energy researchers access to world-class facilities, thereby facilitating the advancement of nuclear science and technology within the U.S. In support of this mission, hot cell laboratories are being upgraded. These upgrades include a set of lead shielded cells that will house Irradiated Assisted Stress Corrosion Cracking (IASCC) test rigs and construction of a shielded laboratory facility. A primary function of this shielded laboratory is to provide a state of the art type laboratory facility that is functional, efficient and flexible that is dedicated to the analysis and characterization of nuclear and non-nuclear materials. The facility shall be relatively easy to reconfigure to provide laboratory scale hot cave space for housing current and future nuclear material scientific research instruments.

  11. Scientific Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,Science andJanuary

  12. I/O Resources for Scientific Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources for Scientific Applications at NERSC IO Resources for Scientific Applications at NERSC Introduction NERSC provides a range of online resources to assist users...

  13. NERSC HPSS Storage by Scientific Discipline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage by Scientific Discipline Troubleshooting IO Resources for Scientific Applications at NERSC Optimizing IO performance on the Lustre file system IO Formats Science...

  14. Increasing Scientific Productivity by Tracking Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Tracking Increases Scientific Productivity Data Tracking Increases Scientific Productivity July 20, 2011 | Tags: HPSS, NERSC Linda Vu, lvu@lbl.gov, +1 510 486 2402 HPSS...

  15. Scientific Data Management (SDM) Center for Enabling Technologies

    SciTech Connect (OSTI)

    Lud?scher, Bertram; Altintas, Ilkay

    2013-09-06T23:59:59.000Z

    Over the past five years, our activities have both established Kepler as a viable scientific workflow environment and demonstrated its value across multiple science applications. We have published numerous peer-reviewed papers on the technologies highlighted in this short paper and have given Kepler tutorials at SC06,SC07,SC08,and SciDAC 2007. Our outreach activities have allowed scientists to learn best practices and better utilize Kepler to address their individual workflow problems. Our contributions to advancing the state-of-the-art in scientific workflows have focused on the following areas. Progress in each of these areas is described in subsequent sections. Workflow development. The development of a deeper understanding of scientific workflows "in the wild" and of the requirements for support tools that allow easy construction of complex scientific workflows; Generic workflow components and templates. The development of generic actors (i.e.workflow components and processes) which can be broadly applied to scientific problems; Provenance collection and analysis. The design of a flexible provenance collection and analysis infrastructure within the workflow environment; and Workflow reliability and fault tolerance. The improvement of the reliability and fault-tolerance of workflow environments.

  16. Laboratory directed research and development program, FY 1996

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  17. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15T23:59:59.000Z

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  18. The last six weeks have seen substantial progress in several areas: a federal budget that preserved investments in discovery research, committed new resources

    E-Print Network [OSTI]

    Aamodt, Tor

    collective work in this area. a Board retreat that considered the progress on AUCC's renewal agenda and new Electric Canada reflect on how universities are contributing to a stronger Canada. We held a frank dialogue with college leaders in an effort to build a broader discussion on Canada's education agenda. Many members

  19. RESEARCH AREA SPACE REGISTRATION USING HASP DATA ENTRY FORM Please fill in this form, using one form for each individual room.

    E-Print Network [OSTI]

    Manning, Sturt

    Chemical Storage Aggregate storage of any one chemical > 5 gal or > 40 lb Chemical Storage Cabinet Battery Charging Area Centrifuge Chainsaw Drains Equipment ­ Etching (like the water jet system) Equipment > 85 decibels Storage tank Welding #12;2 Hazard Sources Specific Hazard Sources Present Risk Level

  20. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 3: Atmospheric and climate research

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER) atmospheric sciences and carbon dioxide research programs provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the Environmental Sciences Division of OHER, the Atmospheric Chemistry Program continues DOE`s long-term commitment to understanding the local, regional, and global effects of energy-related air pollutants. Research through direct measurement, numerical modeling, and analytical studies in the Atmospheric Chemistry Program emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, photochemically produced oxidant species, nitrogen-reservoir species, and aerosols. The atmospheric studies in Complex Terrain Program applies basic research on atmospheric boundary layer structure and evolution over inhomogeneous terrain to DOE`s site-specific and generic mission needs in site safety, air quality, and climate change. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements, the Computer Hardware, Advanced Mathematics and Model Physics, and Quantitative Links program to form DOE`s contribution to the US Global Change Research Program. The description of ongoing atmospheric and climate research at PNL is organized in two broad research areas: atmospheric research; and climate research. This report describes the progress in fiscal year 1993 in each of these areas. Individual papers have been processed separately for inclusion in the appropriate data bases.

  1. FINAL/ SCIENTIFIC TECHNICAL REPORT

    SciTech Connect (OSTI)

    McDonald, Henry; Singh, Suminderpal

    2006-08-28T23:59:59.000Z

    The overall objective of the Chattanooga fuel cell demonstrations project was to develop and demonstrate a prototype 5-kW grid-parallel, solid oxide fuel cell (SOFC) system that co-produces hydrogen, based on Ion America’s technology. The commercial viability of the 5kW SOFC system was tested by transporting, installing and commissioning the SOFC system at the Alternative Energy Laboratory at the University of Tennessee – Chattanooga. The system also demonstrated the efficiency and the reliability of the system running on natural gas. This project successfully contributed to the achievement of DOE technology validation milestones from the Technology Validation section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. Results of the project can be found in the final technical report.

  2. Advanced Test Reactor National Scientific User Facility

    SciTech Connect (OSTI)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01T23:59:59.000Z

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  3. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01T23:59:59.000Z

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  4. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, R.J.; Laney, P.T.

    2002-05-14T23:59:59.000Z

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  5. OCEAN DRILLING PROGRAM LEG 142 ENGINEERING AND SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 142 ENGINEERING AND SCIENTIFIC PROSPECTUS EAST PACIFIC RISE Mr. Michael A. Storms Operations Superintendent/ Assistant Manager of Engineering and Drilling Operations Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

  6. OCEAN DRILLING PROGRAM LEG 171A SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 171A SCIENTIFIC PROSPECTUS BARBADOS ACCRETIONARY PRISM LOGGING WHILE DRILLING (LWD) Dr. J. Casey Moore Co-Chief Scientist, Leg 171A University of California, Santa Cruz Earth Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

  7. EMSL Strategic Plan to Maximize Scientific Impact of

    E-Print Network [OSTI]

    alternative energy sources. BER has a long history of determining the biological and environmental impact of Biological and Environmental Research (BER) to foster high-impact science for the benefit of BER's scienceEMSL Strategic Plan to Maximize Scientific Impact of the Quiet Wing PEMP Notable Outcomes Goal 2

  8. Advanced Test Reactor National Scientific User Facility 2010 Annual Report

    SciTech Connect (OSTI)

    Mary Catherine Thelen; Todd R. Allen

    2011-05-01T23:59:59.000Z

    This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

  9. Dupont-Nivet, G., Sier, M., Campisano, C.J., Arrowsmith, J R., DiMaggio, E., Reed, K., Lockwood, C., Franke, C., and Hsing, S., 2008, Magnetostratigraphy of the eastern Hadar Basin (Ledi-Geraru research area, Ethiopia) and implications for hominin paleoen

    E-Print Network [OSTI]

    Utrecht, Universiteit

    -Geraru research area, Ethiopia) and implications for hominin paleoenvironments, in Quade, J., and Wynn, J.G., eds Magnetostratigraphy of the eastern Hadar Basin (Ledi-Geraru research area, Ethiopia) and implications for hominin and climatic context. The Plio- cene Hadar Basin in the Afar region of northern Ethiopia (Fig. 1) includes some

  10. area next-generation infrastructure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glenn Ricart September, 2014 Distributed has become a hot area for finding new scientific relationships and for optimizing the efficiency Tennessee, University of 2...

  11. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

    2012-11-01T23:59:59.000Z

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

  12. SCIENTIFIC DISCOVERY WITH LAW ENCODING DIAGRAMS Peter C-H. Cheng

    E-Print Network [OSTI]

    Cheng, Peter

    - 1 - SCIENTIFIC DISCOVERY WITH LAW ENCODING DIAGRAMS Peter C-H. Cheng ESRC Centre for Research the concept of Law Encoding Diagrams, LEDs, and argues that they have had a role in scientific discovery the underlying relations of a law, or a system of simultaneous laws, in the structure of a diagram by the means

  13. Status of Avian Research at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Sinclair, K.

    2001-09-18T23:59:59.000Z

    As the use of wind energy expands across the United States, concerns about the impacts of commercial wind farms on bird and bat populations are frequently raised. Two primary areas of concern are (1) possible litigation resulting from the killing of even one bird if it is protected by the Migratory Bird Treaty Act, the Endangered Species Act, or both; and (2) the effect of avian mortality on bird populations. To properly address these concerns, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) supports scientifically based avian/wind power interaction research. In this paper I describe NREL's field-based research projects and summarize the status of the research. I also summarize NREL's other research activities, including lab-based vision research to increase the visibility of moving turbine blades and avian acoustic research, as well as our collaborative efforts with the National Wind Coordinating Committee's Avian Subcommittee.

  14. Basic research needs and priorities in solar energy. Volume I. Executive summary. Technology crosscuts for DOE

    SciTech Connect (OSTI)

    Jayadev, T S; Roessner, D [eds.] eds.

    1980-01-01T23:59:59.000Z

    This report identifies, describes, and recommends priorities for basic research important to the future development of solar energy. In response to a request from the US Department of Energy, SERI surveyed more than 120 leading scientists who were engaged in or knowledgeable of solar-related research. SERI scientists relied heavily on the opinions of scientists polled, but weighted their own recommendations and opinions equally. The result is an amalgam of national scientific opinion representing the views of key researchers in relevant disciplines and of SERI staff members. The Scientific disciplines included in the report are: chemistry, biology, materials sciences, engineering and mathematics, and the social and behavioral sciences. Each discipline is subdivided into two to five topical areas and, wintin each topical area, research needs are described and ranked according to the priorities suggested in the survey. Three categories of priority were established: Crucial, important, and needed. A narrative accompanying the descripton of research needs in each topical area discusses the importance of research in the area for solar energy development and presents the bases for the priority rankings recommended.

  15. Soils and Climate... Of the Texas A&M University Research and Extension Center at Stephenville in Relation to the Cross Timbers Land Resource Area.

    E-Print Network [OSTI]

    Stahnke, C.R.; Godfrey, C.L.; Moore, Joe; Newman, J.S.

    1980-01-01T23:59:59.000Z

    arrangements wi th area farmers. Soils of the Cross Timbers are reasonably similar 9 with respect to several important properties. Tex- tures i n the surface horizons generally range from fine sand to fine sandy loam, unless the soils are severely...-om Cretaceous materials. Atlee (2) stated that outcrops of the Paluxy and Trinity sands comprise the "West Cross Timbers." Both are Cretaceous deposits (2, 11). Atlee noted that the Paluxy formation thickens to the north and merges with Trinity sand in Wise...

  16. Slonakar carried out research to manufacture forty percent core area fly ash bricks using sodium silicate as the binder, and bottom as the coarse aggregate

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    produced at a pilot plant which is operated by the Coal Research Bureau, West Virginia University was reduced. The fired compressive strength was relatively unaffected by the silicate contents used.8 1.7 1.6 Silicate Grade 47 47 47 47 47 47 47 Water 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Firing Rate, o F

  17. This volume brings together the research results of a remarkable group of ten undergraduates who came together at Iowa State University for 10 weeks to apply their skills at scientific

    E-Print Network [OSTI]

    Mayfield, John

    Deformation System for Composite Wind Turbine Blade Manufacturing David Deisenroth, turbine-components manufacturing plants, a research wind tunnel, and a meteorological field observing site ..................................................................................1/1-1/12 Life Cycle Assessment of Taller Wind Turbines With Four Different Tower Designs Sarah A

  18. Summaries of FY 92 geosciences research

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions and their subdivisions including Earth dynamics, properties of Earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  19. APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING

    E-Print Network [OSTI]

    Rogina, Mladen

    APPLIED MATHEMATICS AND SCIENTIFIC COMPUTING Brijuni, Croatia June 23{27, 2003. y x Runge's example; Organized by: Department of Mathematics, Unversity of Zagreb, Croatia. Miljenko Maru#20;si#19;c, chairman;simir Veseli#19;c Andro Mikeli#19;c Sponsors: Ministry of Science and Technology, Croatia, CV Sistemi d

  20. Laser Direct Drive: Scientific Advances,

    E-Print Network [OSTI]

    1 Laser Direct Drive: Scientific Advances, Technical Achievements, and the Road To Fusion Energy energy gain ( 40) at 1 MJ laser energy · Advanced lasers/ target designs overcome uniformity requirements, medical applications) Gas laser medium is easy to cool (tough to break gas) Nike single beam focus #12

  1. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-12-13T23:59:59.000Z

    The purpose of this directive is to ensure that STI is appropriately managed as part of the DOE mission to enable the advancement of scientific knowledge and technological innovation. Cancels DOE O 241.1A and DOE O 241.1A Chg 1.

  2. VOLUME 49 2009 Scientific papers

    E-Print Network [OSTI]

    Singh, Amit

    with the timing of pruning of the branches RITSUKO MURAKAMI, AKIO KOYAMA & HIROE YASUI Technical reports Eco-friendly innovative techniques for reverting crop losses due to weeds, into gains, in sericulture P.S. SINHA, RAM in French and English, with original scientific and technical articles. If you wish to join the ISC

  3. Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Brown, R. C.; McCarley, T. M.

    2006-05-04T23:59:59.000Z

    The overall goal of this project was to establish an education and training program in biobased products at Iowa State University (ISU). In particular, a graduate program in Biorenewable Resources and Technology (BRT) was to be established as a way of offering students advanced study in the use of plant- and crop-based resources in the production of biobased products. The program was to include three fundamental elements: an academic program, a research program, and industrial interactions. The academic program set out to introduce a new graduate major in Biorenewable Resources and Technology. Unlike other schools, which only offer certificates or areas of emphasis in biobased products, Iowa State University offers both M.S. and Ph.D degrees through its graduate program. Core required courses in Biorenewable Resources and Technology include a foundation course entitled Fundamentals of Biorenewable Resources (BRT 501); a seminar course entitled Biobased Products Seminar (BRT 506); a laboratory course, and a special topics laboratory course. The foundation course is a three-credit course introducing students to basic concepts in biorenewable resources and technology. The seminar course provides students with an opportunity to hear from nationally and internationally recognized leaders in the field. The laboratory requirement is a 1-credit laboratory course or a special topics laboratory/research experience (BRT 591L). As part of student recruitment, quarter-time assistantships from DOE funds were offered to supplement assistantships provided by faculty to students. Research was built around platform teams in an effort to encourage interdisciplinary research and collaborative student learning in biorenewable resources. A platform is defined as the convergence of enabling technologies into a highly integrated system for transforming a specific feedstock into desired products. The platform teams parallel the way industry conducts research and product development. Platform teams organize faculty and students for cross-disciplinary, systems-oriented research and collaborative learning. To date, nine platforms have been developed, although these will most likely be reorganized into a smaller number of broader topics. In the spring of 2004, BRT faculty initiated a regional partnership and collaborative learning program with colleagues at the University of Minnesota, Kansas State University, and South Dakota State University to develop distance education courses in biorenewable resources and technology. As a fledgling graduate program, the BRT graduate program didn’t have the breadth of resources to offer a large number of courses in biorenewables. Other schools faced a similar problem. The academic consortium as first conceived would allow students from the member schools to enroll in biorenewables courses from any of the participating schools, which would assure the necessary enrollment numbers to offer specialized course work. Since its inception, the collaborative curriculum partnership has expanded to include Louisiana State University and the University of Wisconsin. A second international curriculum development campaign was also initiated in the spring of 2004. In particular, several BRT faculty teamed with colleagues at the University of Arkansas, University of Washington, University of Gent (Belgium), National Polytechnic Institute of Toulouse (France), and Technical University of Graz (Austria) to develop an EU-US exchange program in higher education and vocational education/training (entitled “Renewable Resources and Clean Technology”).

  4. Understanding Educational Reforms: Physics Education Research

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Understanding Educational Reforms: Impacts of Physics Education Research Steven Pollock Physics Science Education Scientifically Theoretical frames Student concepts and engagement Curricular reforms

  5. Graduate Research Aide Appointments | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aide Appointments Solving big problems with big science. As an Argonne Research Aide, college and university students work alongside scientific and engineering staff, providing...

  6. Research on high efficiency, large-area CuInSe{sub 2}-based thin-film modules. Annual subcontract report, 1 May 1991--30 April 1992

    SciTech Connect (OSTI)

    Mitchell, K.W.; Eberspacher, C. [Siemens Solar Industries, Camarillo, CA (United States)

    1993-02-01T23:59:59.000Z

    Objective was to demonstrate 12.5% aperture efficient, large area (3900 cm{sup 2}) encapsulated thin thin CuInSe{sub 2} (CIS) modules. The module design consists of 53 series-connected ZnO/CdS/CIS/Mo/glass cells fabricated on a glass substrate. A baseline characterization of the CIS modules was established during Phase 1. Maps of open circuit voltage provide information on junction quality uniformity. Maps of cell voltages at fixed forward bias show variations in resistance losses due to interconnects. Individual cell I-V curves can be evaluated. Physical nature of defects is correlated using OBIC, EBIC, SEM, tape adhesion, etc. A new world record of 37.7 W and 9.7% aperture efficiency was attained for an encapsulated module; an unencapsulated CIS module plate achieved 40.8 W and 10.5% aperture efficiency.

  7. Robust regression analysis of growth in basal area of natural pine stands in Georgia and Alabama, 1962-1972 and 1972-1982. Forest Service research paper

    SciTech Connect (OSTI)

    Ueng, C.Y.; Gadbury, G.L.; Schreuder, H.T.

    1997-07-01T23:59:59.000Z

    Net growth and gross growth in basal area of selected plots of natural pin stands in Georgia and Alabama are examined under previously used models. We use a procedure based on a linear model that is resistant to the influence of outliers. Our objective is to determine if the results of a previously used model hold when a linear model is fit to the data using our robust procedures. The data are drawn for forest inventory analysis measurements over two period (cycle 4 and cycle 5). The analysis includes a bootstrap testing procedure. Growth of the three species studied in Georgia consistently showed a significant decline from the first period to the second period. A similar but less consistent decline in growth was observed in Alabama.

  8. Slide06 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Discovery Percentage of R&D Funding for Sharing of Scientific Knowledge at 100%. If all resources went to sharing, there would be no resources for research itself, and no progress....

  9. International Journal of Software Engineering and Knowledge Engineering World Scientific Publishing Company

    E-Print Network [OSTI]

    Xu, Haiping

    International Journal of Software Engineering and Knowledge Engineering © World Scientific Publishing Company 1 FUTURE RESEARCH DIRECTIONS OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING* HAIPING XU) Software Engineering (SE) and Knowledge Engineering (KE) are closely related disciplines with goals

  10. Slide15 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Accessible Scientific Research Data Many disciplines overlap and use data from other sciences Internet can unify all literature and data Go from lit to computation to data and back...

  11. Slide30 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    (U.S. Department of EnergyOSTI, WorldWideScience.org Operating Agent) * At-Large Delegate: Martie van Deventer (Council for Scientific and Industrial Research, South Africa)...

  12. Slide10 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    (U.S. Department of EnergyOSTI, WorldWideScience.org Operating Agent) * At-Large Delegate: Martie van Deventer (Council for Scientific and Industrial Research, South Africa)...

  13. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    documents, using DOIs for DOE-sponsored scientific research datasets. California Digital Library and Purdue University are the other two U.S. members. CDL is here today to share...

  14. Slide16 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    documents, using DOIs for DOE-sponsored scientific research datasets. California Digital Library and Purdue University are the other two U.S. members. CDL is here today to share...

  15. Efficient and flexible fault tolerance and migration of scientific simulation using CUMULVS

    SciTech Connect (OSTI)

    Kohl, J.A.; Papadopoulos, P.M.

    1998-05-01T23:59:59.000Z

    Many practical scientific applications would benefit from a simple checkpointing mechanism to provide automatic restart or recovery in response to faults and failures. CUMULVS is a middleware infrastructure for interacting with parallel scientific simulations to support online visualization and computational steering. The base CUMULVS system has been extended to provide a user-level mechanism for collecting checkpoints in a parallel simulation program. Via the same interface that CUMULVS uses to identify and describe data fields for visualization and parameters for steering, the user application can select the minimal program state necessary to restart or migrate an application task. The CUMULVS run-time system uses this information to efficiently recover fault-tolerant applications by restarting failed tasks. Application tasks can also be migrated -- even across heterogeneous architecture boundaries -- to achieve load balancing or to improve the task`s locality with a required resource. This paper describes the CUMULVS interface for checkpointing, the issues faced in utilizing this interface when developing fault-tolerant and migrating applications, and the direction of future research in this area.

  16. Development of Enabling Scientific Tools to Characterize the Geologic Subsurface at Hanford

    SciTech Connect (OSTI)

    Kenna, Timothy C.; Herron, Michael M.

    2014-07-08T23:59:59.000Z

    This final report to the Department of Energy provides a summary of activities conducted under our exploratory grant, funded through U.S. DOE Subsurface Biogeochemical Research Program in the category of enabling scientific tools, which covers the period from July 15, 2010 to July 14, 2013. The main goal of this exploratory project is to determine the parameters necessary to translate existing borehole log data into reservoir properties following scientifically sound petrophysical relationships. For this study, we focused on samples and Ge-based spectral gamma logging system (SGLS) data collected from wells located in the Hanford 300 Area. The main activities consisted of 1) the analysis of available core samples for a variety of mineralogical, chemical and physical; 2) evaluation of selected spectral gamma logs, environmental corrections, and calibration; 3) development of algorithms and a proposed workflow that permits translation of log responses into useful reservoir properties such as lithology, matrix density, porosity, and permeability. These techniques have been successfully employed in the petroleum industry; however, the approach is relatively new when applied to subsurface remediation. This exploratory project has been successful in meeting its stated objectives. We have demonstrated that our approach can lead to an improved interpretation of existing well log data. The algorithms we developed can utilize available log data, in particular gamma, and spectral gamma logs, and continued optimization will improve their application to ERSP goals of understanding subsurface properties.

  17. General Critical Properties of the Dynamics of Scientific Discovery

    SciTech Connect (OSTI)

    Bettencourt, L. M. A. (LANL); Kaiser, D. I. (MIT)

    2011-05-31T23:59:59.000Z

    Scientific fields are difficult to define and compare, yet there is a general sense that they undergo similar stages of development. From this point of view it becomes important to determine if these superficial similarities can be translated into a general framework that would quantify the general advent and subsequent dynamics of scientific ideas. Such a framework would have important practical applications of allowing us to compare fields that superficially may appear different, in terms of their subject matter, research techniques, typical collaboration size, etc. Particularh' important in a field's history is the moment at which conceptual and technical unification allows widespread exchange of ideas and collaboration, at which point networks of collaboration show the analog of a percolation phenomenon, developing a giant connected component containing most authors. Here we investigate the generality of this topological transition in the collaboration structure of scientific fields as they grow and become denser. We develop a general theoretical framework in which each scientific field is an instantiation of the same large-scale topological critical phenomenon. We consider whether the evidence from a variety of specific fields is consistent with this picture, and estimate critical exponents associated with the transition. We then discuss the generality of the phenomenon and to what extent we may expect other scientific fields — including very large ones — to follow the same dynamics.

  18. Lakeside: Merging Urban Design with Scientific Analysis

    SciTech Connect (OSTI)

    Guzowski, Leah; Catlett, Charlie; Woodbury, Ed

    2014-10-08T23:59:59.000Z

    Researchers at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago are developing tools that merge urban design with scientific analysis to improve the decision-making process associated with large-scale urban developments. One such tool, called LakeSim, has been prototyped with an initial focus on consumer-driven energy and transportation demand, through a partnership with the Chicago-based architectural and engineering design firm Skidmore, Owings & Merrill, Clean Energy Trust and developer McCaffery Interests. LakeSim began with the need to answer practical questions about urban design and planning, requiring a better understanding about the long-term impact of design decisions on energy and transportation demand for a 600-acre development project on Chicago's South Side - the Chicago Lakeside Development project.

  19. Lakeside: Merging Urban Design with Scientific Analysis

    ScienceCinema (OSTI)

    Guzowski, Leah; Catlett, Charlie; Woodbury, Ed

    2014-11-18T23:59:59.000Z

    Researchers at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago are developing tools that merge urban design with scientific analysis to improve the decision-making process associated with large-scale urban developments. One such tool, called LakeSim, has been prototyped with an initial focus on consumer-driven energy and transportation demand, through a partnership with the Chicago-based architectural and engineering design firm Skidmore, Owings & Merrill, Clean Energy Trust and developer McCaffery Interests. LakeSim began with the need to answer practical questions about urban design and planning, requiring a better understanding about the long-term impact of design decisions on energy and transportation demand for a 600-acre development project on Chicago's South Side - the Chicago Lakeside Development project.

  20. Research in progress: FY 1992. Summaries of projects

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    The Biological and Environmental Research (BER) Program of OHER has two main missions: (1) to develop the knowledge base necessary to identify, understand, and anticipate the long-term health and environmental consequences of energy use and development and (2) to utilize the Department`s unique scientific and technological capabilities to solve major scientific problems in medicine, biology, and the environment. These missions reflect a commitment to develop the beneficial uses of advanced energy technologies while at the same time assuring that any potentially adverse health and environmental impacts of the Nation`s energy policies are fully identified and understood. The BER Program includes research in atmospheric, marine, and terrestrial processes, including the linkage between the use in greenhouse gases, carbon dioxide, and regional and global climate change; in molecular and subcellular mechanisms underlying human somatic and genetic processes and their responses to energy-related environmental toxicants; in nuclear medicine, structural biology, the human genome, measurement sciences and instrumentation, and other areas that require the unique capabilities of the Department`s laboratory system. The principal areas of research are Health Research and Environmental Research.

  1. Apprentice Researchers The Apprentice Researchers (AR) program was awarded supplemental funding by NSF's EHR

    E-Print Network [OSTI]

    Bigelow, Stephen

    Apprentice Researchers The Apprentice Researchers (AR) program was awarded supplemental funding apprentices acquire scientific knowledge and lab skills while experiencing what real research in hopes to their peers, family, and mentors. Totals -Summers 1991 to 2008 Total #Apprentices % Apprentices All

  2. SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Earthquake Engineering Research in

    E-Print Network [OSTI]

    SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES Earthquake Engineering Research Infrastructures (RI) in regions of high seismicity. · Limited access of the Scientific and Technical (S resources at some RIs. #12;SEISMIC ENGINEERING RESEARCH INFRASTRUCTURES FOR EUROPEAN SYNERGIES KEY POINTS

  3. IT Licentiate theses Scientific Computing on Hybrid

    E-Print Network [OSTI]

    Flener, Pierre

    IT Licentiate theses 2013-002 Scientific Computing on Hybrid Architectures MARCUS HOLM UPPSALA of Licentiate of Philosophy in Scientific Computing c Marcus Holm 2013 ISSN 1404-5117 Printed by the Department

  4. The 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference/Gordon Research Seminar

    SciTech Connect (OSTI)

    Krauss, Todd D. [University of Rochester

    2014-11-25T23:59:59.000Z

    The fundamental properties of small particles and their potential for groundbreaking applications are among the most exciting areas of study in modern physics, chemistry, and materials science. The Clusters, Nanocrystals & Nanostructures Gordon ResearchConference and Gordon Research Seminar synthesize contributions from these inter-related fields that reflect the pivotal role of nano-particles at the interface between these disciplines. Size-dependent optical, electronic, magnetic and catalytic properties offer prospects for applications in many fields, and possible solutions for many of the grand challenges facing energy generation, consumption, delivery, and storage in the 21st century. The goal of the 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference and Gordon Research Seminar is to continue the historical interdisciplinary tradition of this series and discuss the most recent advances, basic scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. The Clusters, Nanocrystals & Nanostructures GRC/GRS traditionally brings together the leading scientific groups that have made significant recent advances in one or more fundamental nanoscience or nanotechnology areas. Broad interests of the DOE BES and Solar Photochemistry Program addressed by this meeting include the areas of solar energy to fuels conversion, new photovoltaic systems, fundamental characterization of nanomaterials, magnetism, catalysis, and quantum physics. The vast majority of speakers and attendees will address either directly the topic of nanotechnology for photoinduced charge transfer, charge transport, and catalysis, or will have made significant contributions to related areas that will impact these fields indirectly. These topics have direct relevance to the mission of the DOE BES since it is this cutting-edge basic science that underpins our energy future.

  5. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    SciTech Connect (OSTI)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Reed, R.M. [Oak Ridge National Lab., TN (United States); Hamilton, C.B. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  6. Ultimate Isotope Precision for Carbonates Thermo Scientific

    E-Print Network [OSTI]

    Lachniet, Matthew S.

    Ultimate Isotope Precision for Carbonates Thermo Scientific KIEL IV Carbonate Device Part of Thermo integration cycle Ultimate Isotope Precision for Carbonates The Thermo Scientific KIEL IV Carbonate DeviceV Thermo Scientific MAT 253 or the 3-kV DELTA V isotope ratio mass spectrometer meets the requirements

  7. Institutional research and development, FY 1988

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    The Laboratory's Institutional Research and Development (IR and D) Program was established in 1984 to foster exploratory work to advance science and technology, disciplinary research to develop innovative solutions to support our national defense and energy missions. In FY 1988, the IR and D Program was funded by a 2% assessment on the Laboratory's operating budget. Our policy is to use these funds for researching innovative ideas in LLNL's areas of expertise and for developing new areas of expertise that we perceive to be in the national interest. The technical and scientific accomplishments of each project and of each institute funded this year are presented in this report. The projects were selected because they are expected to advance research in important areas that are too basic or too time consuming to be funded by the developmental programs or because they are somewhat risky projects that have the promise of high payoff. We are continually reappraising the IR and D Program. In particular, we seek new candidates for the Director's Initiatives, and we constantly reassess the work in progress. Each year, we make adjustments to further the Laboratory's policy of using the IR and D Program to fund innovative ideas with high potential for enhancing programmatic activities of national importance.

  8. Compelling Research Opportunities using Isotopes

    SciTech Connect (OSTI)

    None

    2009-04-23T23:59:59.000Z

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.

  9. Slide24 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    Program In May 2005, "Energy Research and Technological Development (RTD) Information Systems in the ERA (European Research Area)," issued positive comments regarding OSTI's...

  10. 1999 Summer Research Program for High School Juniors at the University of Rochester's Laboratory for Laser Energetics

    SciTech Connect (OSTI)

    None

    2002-10-09T23:59:59.000Z

    oak-B202--During the summer of 1999, 12 students from Rochester-area high schools participated in the Laboratory for Laser Energetics' Summer High School Research Program. The goal of this program is to excite a group of high school students about careers in the areas of science and technology by exposing them to research in a state-of-the-art environment. Too often, students are exposed to ''research'' only through classroom laboratories that have prescribed procedures and predictable results. In LLE's summer program, the students experience all of the trials, tribulations, and rewards of scientific research. By participating in research in a real environment, the students often become more enthusiastic about careers in science and technology. In addition, LLE gains from the contributions of the many highly talented students who are attracted to the program. The students spent most of their time working on their individual research projects with members of LLE's technical staff. The projects were related to current research activities at LLE and covered a broad range of areas of interest including laser modeling, diagnostic development, chemistry, liquid crystal devices, and opacity data visualization. The students, their high schools, their LLE supervisors and their project titles are listed in the table. Their written reports are collected in this volume. The students attended weekly seminars on technical topics associated with LLE's research. Topics this year included lasers, fusion, holography, optical materials, global warming, measurement errors, and scientific ethics. The students also received safety training, learned how to give scientific presentations, and were introduced to LLE's resources, especially the computational facilities. The program culminated with the High School Student Summer Research Symposium on 25 August at which the students presented the results of their research to an audience that included parents, teachers, and members of LIX. Each student spoke for approximately ten minutes and answered questions.

  11. Adventures in supercomputing: Scientific exploration in an era of change

    SciTech Connect (OSTI)

    Gentry, E. [Univ. of Alabama, Huntsville, AL (United States); Helland, B. [Krell Institute, Ames, IA (United States); Summers, B. [Oak Ridge National Lab., TN (United States)

    1997-11-01T23:59:59.000Z

    Students deserve the opportunity to explore the world of science surrounding them. Therefore it is important that scientific exploration and investigation be a part of each student`s educational career. The Department of Energy`s Adventures in Superconducting (AiS) takes students beyond mere scientific literacy to a rich embodiment of scientific exploration. AiS provides today`s science and math students with a greater opportunity to investigate science problems, propose solutions, explore different methods of solving the problem, organize their work into a technical paper, and present their results. Students learn at different rates in different ways. Science classes with students having varying learning styles and levels of achievement have always been a challenge for teachers. The AiS {open_quotes}hands-on, minds-on{close_quotes} project-based method of teaching science meets the challenge of this diversity heads on! AiS uses the development of student chosen projects as the means of achieving a lifelong enthusiasm for scientific proficiency. One goal of AiS is to emulate the research that takes place in the everyday environment of scientists. Students work in teams and often collaborate with students nationwide. With the help of mentors from the academic and scientific community, students pose a problem in science, investigate possible solutions, design a mathematical and computational model for the problem, exercise the model to achieve results, and evaluate the implications of the results. The students then have the opportunity to present the project to their peers, teachers, and scientists. Using this inquiry-based technique, students learn more than science skills, they learn to reason and think -- going well beyond the National Science Education Standard. The teacher becomes a resource person actively working together with the students in their quest for scientific knowledge.

  12. ALS Scientific Advisory Committee Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral Fellowship inALS Reveals NewScientific

  13. ALS Scientific Advisory Committee Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral Fellowship inALS RevealsScientific

  14. Performance Engineering Technology for Scientific Component Software

    SciTech Connect (OSTI)

    Malony, Allen D.

    2007-05-08T23:59:59.000Z

    Large-scale, complex scientific applications are beginning to benefit from the use of component software design methodology and technology for software development. Integral to the success of component-based applications is the ability to achieve high-performing code solutions through the use of performance engineering tools for both intra-component and inter-component analysis and optimization. Our work on this project aimed to develop performance engineering technology for scientific component software in association with the DOE CCTTSS SciDAC project (active during the contract period) and the broader Common Component Architecture (CCA) community. Our specific implementation objectives were to extend the TAU performance system and Program Database Toolkit (PDT) to support performance instrumentation, measurement, and analysis of CCA components and frameworks, and to develop performance measurement and monitoring infrastructure that could be integrated in CCA applications. These objectives have been met in the completion of all project milestones and in the transfer of the technology into the continuing CCA activities as part of the DOE TASCS SciDAC2 effort. In addition to these achievements, over the past three years, we have been an active member of the CCA Forum, attending all meetings and serving in several working groups, such as the CCA Toolkit working group, the CQoS working group, and the Tutorial working group. We have contributed significantly to CCA tutorials since SC'04, hosted two CCA meetings, participated in the annual ACTS workshops, and were co-authors on the recent CCA journal paper [24]. There are four main areas where our project has delivered results: component performance instrumentation and measurement, component performance modeling and optimization, performance database and data mining, and online performance monitoring. This final report outlines the achievements in these areas for the entire project period. The submitted progress reports for the first two years describe those year's achievements in detail. We discuss progress in the last project period in this document. Deployment of our work in CCA components, frameworks, and applications is an important metric of success. We also summarize the project's accomplishments in this regard at the end of the report. A list of project publications is also given.

  15. Verifying disarmament: scientific, technological and political challenges

    SciTech Connect (OSTI)

    Pilat, Joseph R [Los Alamos National Laboratory

    2011-01-25T23:59:59.000Z

    There is growing interest in, and hopes for, nuclear disarmament in governments and nongovernmental organizations (NGOs) around the world. If a nuclear-weapon-free world is to be achievable, verification and compliance will be critical. VerifYing disarmament would have unprecedented scientific, technological and political challenges. Verification would have to address warheads, components, materials, testing, facilities, delivery capabilities, virtual capabilities from existing or shutdown nuclear weapon and existing nuclear energy programs and material and weapon production and related capabilities. Moreover, it would likely have far more stringent requirements. The verification of dismantlement or elimination of nuclear warheads and components is widely recognized as the most pressing problem. There has been considerable research and development done in the United States and elsewhere on warhead and dismantlement transparency and verification since the early 1990s. However, we do not today know how to verifY low numbers or zero. We need to develop the needed verification tools and systems approaches that would allow us to meet this complex set of challenges. There is a real opportunity to explore verification options and, given any realistic time frame for disarmament, there is considerable scope to invest resources at the national and international levels to undertake research, development and demonstrations in an effort to address the anticipated and perhaps unanticipated verification challenges of disarmament now andfor the next decades. Cooperative approaches have the greatest possibility for success.

  16. Undergraduate Research Report Physics Department

    E-Print Network [OSTI]

    Ye, Jingbo

    that SMU set up student journals to publish research results from graduate and undergraduate student of SMU. This will be the first publication for the two participating students in a scientific journal

  17. Andrew Salway Uni Research, Bergen

    E-Print Network [OSTI]

    Bradstock, Burton

    , people, government, nations, policy, china, issues, sustainable Other topics: "energy", "wildlife blog corpus English-language blogs that mention broad climate change issues across science, politics, year, ocean, time, temperatures, scientific, research "climate change politics": climate, change

  18. analysis scientific computing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the need Kuzmanov, Georgi 3 SCIINSTITUTE Scientific Computing and Imaging Institute Computer Technologies and Information Sciences Websites Summary: SCIINSTITUTE Scientific...

  19. Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009

    SciTech Connect (OSTI)

    Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

    2009-04-14T23:59:59.000Z

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  20. Advancing Concentrating Solar Power Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) provide scientific, engineering, and analytical expertise to help advance innovation in concentrating solar power (CSP). This fact sheet summarizes how NREL is advancing CSP research.

  1. Small Business Innovation Research. Abstracts of Phase I awards, 1999

    SciTech Connect (OSTI)

    None

    1999-12-01T23:59:59.000Z

    This booklet presents technical abstracts of Phase I awards made in Fiscal Year (FY) 1999 under the DOE Small Business Innovation Research (SBIR) program. SBIR research explores innovative concepts in important technological and scientific areas that can lead to valuable new technology and products. The work described in the abstracts is novel, high-risk research, but the benefits will also be potentially high if the objectives are met. Brief comments on the potential applications, as described by the awardee, are given after each abstract. Individuals and organizations, including venture capital and larger industrial firms, with an interest in the research described in any of the abstracts are encouraged to contact the appropriate small business directly.

  2. 300 Area Disturbance Report

    SciTech Connect (OSTI)

    LL Hale; MK Wright; NA Cadoret

    1999-01-07T23:59:59.000Z

    The objective of this study was to define areas of previous disturbance in the 300 Area of the U.S. Department of Energy (DOE) Hanford Site to eliminate these areas from the cultural resource review process, reduce cultural resource monitoring costs, and allow cultural resource specialists to focus on areas where subsurface disturbance is minimal or nonexistent. Research into available sources suggests that impacts from excavations have been significant wherever the following construction activities have occurred: building basements and pits, waste ponds, burial grounds, trenches, installation of subsurface pipelines, power poles, water hydrants, and well construction. Beyond the areas just mentioned, substrates in the' 300 Area consist of a complex, multidimen- sional mosaic composed of undisturbed stratigraphy, backfill, and disturbed sediments; Four Geographic Information System (GIS) maps were created to display known areas of disturbance in the 300 Area. These maps contain information gleaned from a variety of sources, but the primary sources include the Hanford GIS database system, engineer drawings, and historic maps. In addition to these maps, several assumptions can be made about areas of disturbance in the 300 Area as a result of this study: o o Buried pipelines are not always located where they are mapped. As a result, cultural resource monitors or specialists should not depend on maps depicting subsurface pipelines for accurate locations of previous disturbance. Temporary roads built in the early 1940s were placed on layers of sand and gravel 8 to 12 in. thick. Given this information, it is likely that substrates beneath these early roads are only minimally disturbed. Building foundations ranged from concrete slabs no more than 6 to 8 in. thick to deeply excavated pits and basements. Buildings constructed with slab foundations are more numerous than may be expected, and minimally disturbed substrates may be expected in these locations. Historic black and white photographs provide a partial record of some excavations, including trenches, building basements, and material lay-down yards. Estimates of excavation depth and width can be made, but these estimates are not accurate enough to pinpoint the exact location where the disturbedhmdisturbed interface is located (e.g., camera angles were such that depths and/or widths of excavations could not be accurately determined or estimated). In spite of these limitations, these photographs provide essential information. Aerial and historic low-level photographs have captured what appears to be backfill throughout much of the eastern portion of the 300 Area-near the Columbia River shoreline. This layer of fill has likely afforded some protection for the natural landscape buried beneath the fill. This assumption fits nicely with the intermittent and inadvertent discoveries of hearths and stone tools documented through the years in this part of the 300 Area. Conversely, leveling of sand dunes appears to be substantial in the northwestern portion of the 300 Area during the early stages of development. o Project files and engineer drawings do not contain information on any impromptu but necessary adjustments made on the ground during project implementation-after the design phase. Further, many projects are planned and mapped but never implemented-this information is also not often placed in project files. Specific recommendations for a 300 Area cultural resource monitoring strategy are contained in the final section of this document. In general, it is recommended that monitoring continue for all projects located within 400 m of the Columbia River. The 400-m zone is culturally sensitive and likely retains some of the most intact buried substrates in the 300 Area.

  3. Exploiting the Use of Social Networking to Facilitate Collaboration in the Scientific Community

    SciTech Connect (OSTI)

    Coppock, Edrick G. [Information International Associates, Inc.

    2014-04-07T23:59:59.000Z

    The goal of this project was to exploit social networking to facilitate scientific collaboration. The project objective was to research and identify scientific collaboration styles that are best served by social networking applications and to model the most effective social networking applications to substantiate how social networking can support scientific collaboration. To achieve this goal and objective, the project was to develop an understanding of the types of collaborations conducted by scientific researchers, through classification, data analysis and identification of unique collaboration requirements. Another technical objective in support of this goal was to understand the current state of technology in collaboration tools. In order to test hypotheses about which social networking applications effectively support scientific collaboration the project was to create a prototype scientific collaboration system. The ultimate goal for testing the hypotheses and research of the project was to refine the prototype into a functional application that could effectively facilitate and grow collaboration within the U.S. Department of Energy (DOE) research community.

  4. Scientific Research Data | OSTI, US Dept of Energy, Office of Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter PrincipalfuelTorus Experiment | Princeton Plasmaand

  5. University Turbine Systems Research Program

    SciTech Connect (OSTI)

    Leitner, Robert; Wenglarz, Richard

    2010-12-31T23:59:59.000Z

    The primary areas of university research were combustion, aerodynamics/heat transfer, and materials, with a few projects in the area of instrumentation, sensors and life (ISL).

  6. A training program for scientific supercomputing users

    SciTech Connect (OSTI)

    Hanson, F.; Moher, T.; Sabelli, N.; Solem, A.

    1988-01-01T23:59:59.000Z

    There is need for a mechanism to transfer supercomputing technology into the hands of scientists and engineers in such a way that they will acquire a foundation of knowledge that will permit integration of supercomputing as a tool in their research. Most computing center training emphasizes computer-specific information about how to use a particular computer system; most academic programs teach concepts to computer scientists. Only a few brief courses and new programs are designed for computational scientists. This paper describes an eleven-week training program aimed principally at graduate and postdoctoral students in computationally-intensive fields. The program is designed to balance the specificity of computing center courses, the abstractness of computer science courses, and the personal contact of traditional apprentice approaches. It is based on the experience of computer scientists and computational scientists, and consists of seminars and clinics given by many visiting and local faculty. It covers a variety of supercomputing concepts, issues, and practices related to architecture, operating systems, software design, numerical considerations, code optimization, graphics, communications, and networks. Its research component encourages understanding of scientific computing and supercomputer hardware issues. Flexibility in thinking about computing needs is emphasized by the use of several different supercomputer architectures, such as the Cray X/MP48 at the National Center for Supercomputing Applications at University of Illinois at Urbana-Champaign, IBM 3090 600E/VF at the Cornell National Supercomputer Facility, and Alliant FX/8 at the Advanced Computing Research Facility at Argonne National Laboratory. 11 refs., 6 tabs.

  7. Transfer Function Design for Scientific Discovery

    SciTech Connect (OSTI)

    Jian Huang

    2008-12-08T23:59:59.000Z

    As computation scales beyond terascale, the scientific problems under study through computing are increasingly pushing the boundaries of human knowledge about the physical world. It is more pivotal than ever to quickly and reliably extract new knowledge from these complex simulations of ultra scale. In this project, the PI expanded the traditional notion of transfer function, which maps physical quantities to visual cues via table look-ups, to include general temporal as well as multivariate patterns that can be described procedurally through specialty mini programming languages. Their efforts aimed at answering a perpetual question of fundamental importance. That is "what a visualization should show". Instead of waiting for application scientists to initiate the process, the team at University of Tennessee worked closely with scientists at ORNL in a proactive role to envision and design elegant, powerful, and reliable tools that a user can use to specify "what is interesting". Their new techniques include visualization operators that revolve around correlation and graph properties, relative patterns in statistical distribution, temporal regular expressions, concurrent attribute subspaces and traditional compound boolean range queries. The team also paid special attention to ensure that all visualization operators are inherently designed with great parallel scalability to handle tera-scale datasets in both homogeneous and heterogeneous environments. Success has been demonstrated with leading edge computational science areas include climate modeling, combustion and systems genetics.

  8. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    more information on the NLUF program, the capabilities of the OMEGA (including OMEGA EP) laser system, and the updated users guide can be found on the NLUF web site off site link ....

  9. California Energy Balance ENVIRONMENTAL AREA RESEARCH

    E-Print Network [OSTI]

    consumption for about 25 energy products. Due to inconsistencies between the total data. CALEB v2 manages data from 1990 to 2008 on energy supply, transformation, and enduse consumption). CALEB manages data collected from 1990 to 2003 on energy supply, transformation, and enduse

  10. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms,...

  11. Research Subject Areas for IGPPS Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ed Fenimore (505) 667-7371 Email Climate Manvendra K. Dubey (505) 665-3128 Email Geophysics W. Scott Baldridge (505) 667-4338 Email Space Physics Geoffrey Reeves (505) 665-3877...

  12. Pushmataha Forest Habitat Research Area TALL TIMBERS

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    . Determine the effects of fire and fire frequency on post oak and blackjack oak acorn production, crown vigor monitored other than through pellet count data on the FHRA. Plots were laid out and fire guards bladed

  13. Clean Energy Research Areas | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2 PermitClean Energy ManufacturingHorse

  14. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,Enriched UraniumPhysical Security Systems(PA)About| |About

  15. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High Energy Density Laboratory Plasmas /

  16. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High Energy Density Laboratory Plasmas /

  17. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High Energy Density Laboratory Plasmas

  18. SULI Areas of Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR E Q

  19. Laboratory Directed Research and Development Program Assessment for FY 2008

    SciTech Connect (OSTI)

    Looney,J.P.; Fox, K.J.

    2008-03-31T23:59:59.000Z

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities within existing mission areas, as well as to develop new research mission areas in response to DOE and National needs. As the largest expense in BNL's LDRD program is the support graduate students, post-docs, and young scientists, LDRD provides base for continually refreshing the research staff as well as the education and training of the next generation of scientists. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included are a metric of success indicators and Self Assessment.

  20. Knowledge Annotations in Scientific Workflows

    E-Print Network [OSTI]

    Pinheiro da Silva, Paulo

    University of Texas at El Paso 2Pacific Northwest National Laboratory SSDBM 2011 #12;PNNL-UTEP Research at PNNL manage collaborative data that is traditionally generated during a research effort process at PNNL SSDBM 2011 #12;Case Study · Subsurface Flow and Transport Analysis ­ Typically members

  1. PNNL pushing scientific discovery through data intensive computing breakthroughs

    ScienceCinema (OSTI)

    Deborah Gracio; David Koppenaal; Ruby Leung

    2012-12-31T23:59:59.000Z

    The Pacific Northwest National Laboratorys approach to data intensive computing (DIC) is focused on three key research areas: hybrid hardware architectures, software architectures, and analytic algorithms. Advancements in these areas will help to address, and solve, DIC issues associated with capturing, managing, analyzing and understanding, in near real time, data at volumes and rates that push the frontiers of current technologies.

  2. apparent burning area: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics and Fusion Websites Summary: The Workshop will concentrate on burning plasma research in the areas of Plasma Transport and Confinement, MHD plasma research; ...

  3. Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA), FINAL REPORT

    SciTech Connect (OSTI)

    Bertram Ludaescher; Ilkay Altintas

    2012-07-03T23:59:59.000Z

    This is the final report from SDSC and UC Davis on DE-FC02-01ER25486, Scientific Data Management Integrated Software Infrastructure Center (SDM/ISIC): Scientific Process Automation (SPA).

  4. The Distribution of Data Management Responsibility within Scientific Research Groups

    E-Print Network [OSTI]

    Wallis, Jillian C.

    2012-01-01T23:59:59.000Z

    A. (2003). The Data Deluge: An e-Science Perspective. InScience confronts the data deluge: Habitat ecology, embeddedScience confronts the data deluge: Habitat ecology, embedded

  5. 5Number Sentence Puzzles Scientific research has a lot in

    E-Print Network [OSTI]

    of the ring system? 3 - Two astronomers combined their catalogs of cosmic gamma-ray bursts. There were 287. This is the sentence 145 + 375 = N 3 - Two astronomers combined their catalogs of cosmic gamma-ray bursts. There were to each not subtracted. Answer B is correct. Among the 287 + 598 gamma ray bursts in the two catalogs

  6. Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological

    E-Print Network [OSTI]

    SDN PNWG-HUB ­ PNNL on June 6th 1 10GE NASH-ORNL-#2 SDN Wave PNNL Sire office at OSTI June 19th 1 10GE KANS-Great Plains Net (GPN

  7. National Energy Research Scientific Computing Center 2007 Annual Report

    E-Print Network [OSTI]

    Hules, John A.

    2008-01-01T23:59:59.000Z

    and Directions in High Performance Computing for the Officein the evolution of high performance computing and networks.Hectopascals High performance computing High Performance

  8. The Scientific Literature Research Concepts in Natural Resources

    E-Print Network [OSTI]

    DeStefano, Stephen

    (1) In a recognized serial publication or journal (4-6 x a year). (2) Usually very topic specific and individual memberships. Papers you cite must be published or "in press". #12;Journals ­ A Rating System Prestige based on age, severity of review, high rejection rate, content: A. International ­ Science, Nature

  9. Supporting Advanced Scientific Computing Research Basic Energy Sciences Biological

    E-Print Network [OSTI]

    configuration ­ Continuous monitoring of servers & services ­ Performance tuning & verifying everything Bechtel-NV IARC INL NSTEC Pantex SNLA DOE-ALB Allied Signal KCP SRS NREL DOE NETL NNSA ARM ORAU OSTI NOAA and how? · Evaluate publication issues ­ Is the data already published? ­ Are there security concerns

  10. Barbara Helland, Facilities Division Director Advanced Scientific Computing Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugustDecade5-F,INITIAL JohnE Pt he A

  11. Secretary Bodman in Illinois Highlights Scientific Research Investments to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle School (6-8)Need for aNuclear Security Progress

  12. Postdoctoral Opportunities World-Class Scientific Research Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoral Opportunities World-Class

  13. Secretary Bodman in Illinois Highlights Scientific Research Investments to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »Usage »DownloadSolar »MiddleHighHighEnergyorofNeed for

  14. Scientific Applications Research Associates Inc SARA | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir Jump to: navigation,DeltaInformation

  15. National Energy Research Scientific Computing Center NERSC Exceeds Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar Energy Harvesting LosNationalAnnual ReportOffice

  16. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success StoriesSupplement AnalysisSupplying

  17. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success StoriesSupplement

  18. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success StoriesSupplementNetwork Monitoring and

  19. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success StoriesSupplementNetwork Monitoring andEnergy S

  20. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success StoriesSupplementNetwork Monitoring andEnergy

  1. Scientific Discovery Learning with Computer Simulations Scientific Discovery Learning with Computer

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Scientific Discovery Learning with Computer Simulations 1 Scientific Discovery Learning with Computer Simulations 2 Abstract Scientific discovery learning is a highly self-directed and constructivistic form of learning. A computer simulation is a type of computer-based environment that is very

  2. APOLLO MANNED LUNAR LANDING SCIENTIFIC EXPERIMENT PROPOSAL

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APOLLO MANNED LUNAR LANDING SCIENTIFIC EXPERIMENT PROPOSAL GEOLOGICAL FIELD INVESTIGATION IN EARLY APOLLO MANNED LUNAR LANDING MISSIONS Abstract and Techi~icalSection E. M.Shoemaker, U. S-investigator November 1965 #12;APOLLO MANNED 1,UNAR I,ANDING SCIENTIFIC EXPERIMENT PROPOSAL GEOLOGICAL FIETADINi

  3. Theory and Advanced Scientific Presentation to

    E-Print Network [OSTI]

    Theory and Advanced Scientific Computing Presentation to Dr. Walt Polansky Acting Director, MICS Laboratory August 29, 2002 #12;PPPL THEORY PROGRAM Has Well-Defined Target & Approach · TARGET --- RELIABLE systems (longer-term impact) #12;PPPL THEORY/ADVANCED SCIENTIFIC COMPUTING PROGRAM Emphasizes

  4. Plutonium focus area. Technology summary

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The Assistant Secretary for the Office of Environmental Management (EM) at the U.S. Department of Energy (DOE) chartered the Plutonium Focus Area (PFA) in October 1995. The PFA {open_quotes}...provides for peer and technical reviews of research and development in plutonium stabilization activities...{close_quotes} In addition, the PFA identifies and develops relevant research and technology. The purpose of this document is to focus attention on the requirements used to develop research and technology for stabilization, storage, and preparation for disposition of nuclear materials. The PFA Technology Summary presents the approach the PFA uses to identify, recommend, and review research. It lists research requirements, research being conducted, and gaps where research is needed. It also summarizes research performed by the PFA in the traditional research summary format. This document encourages researchers and commercial enterprises to do business with PFA by submitting research proposals or {open_quotes}white papers.{close_quotes} In addition, it suggests ways to increase the likelihood that PFA will recommend proposed research to the Nuclear Materials Stabilization Task Group (NMSTG) of DOE.

  5. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

  6. Wildlife Management Areas (Minnesota)

    Broader source: Energy.gov [DOE]

    Certain areas of the State are designated as wildlife protection areas and refuges; new construction and development is restricted in these areas.

  7. Ten LLNL researchers named 2014 APS fellows | National Nuclear...

    National Nuclear Security Administration (NNSA)

    and diffuse the knowledge of physics through research journals, scientific meetings, education, outreach, advocacy and international activities. Ten fellows is the highest number...

  8. Cancer Research Beckman Institute

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    Cancer Research Beckman Institute FOR ADVANCED SCIENCE AND TECHNOLOGY #12;T The medical and scientific worlds have known for many years that in order to truly understand and treat cancer, the fight has and cancerous tumors have to first be visualized at the smallest scales possible, and then treated in the most

  9. Interdisciplinary research Sl.No Areas of Research Eligible Degree

    E-Print Network [OSTI]

    Mittal, Anurag

    ) Nuclear waste management (iii) Carbon dioxide sequestration (iv) Aerosol science Undergraduate and post

  10. Idaho National Laboratory Directed Research and Development FY-2009

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are appropriately handled. The LDRD Program is assessed annually for both output and process efficiency to ensure the investment is providing expected returns on technical capability enhancement. The call for proposals and project selection process for the INL LDRD program begins typically in April, with preliminary budget allocations, and submittal of the technical requests for preproposals. A call for preproposals is made at this time as well, and the preparation of full proposals follows in June and closes in July. The technical and management review follows this, and the portfolio is submitted for DOE-ID concurrence in early September. Project initiation is in early October. The technical review process is independent of, and in addition to the management review. These review processes are very stringent and comprehensive, ensuring technical viability and suitable technical risk are encompassed within each project that is selected for funding. Each proposal is reviewed by two or three anonymous technical peers, and the reviews are consolidated into a cohesive commentary of the overall research based on criteria published in the call for proposals. A grade is assigned to the technical review and the review comments and grade are released back to the principal investigators and the managers interested in funding the proposals. Management criteria are published in the call for proposals, and management comments and selection results are available for principal investigator and other interested management as appropriate. The DOE Idaho Operations Office performs a final review and concurs on each project prior to project authorization, and on major scope/budget changes should they occur during the project's implementation. This report begins with several research highlights that exemplify the diversity of scientific and engineering research performed at the INL in FY 2009. Progress summaries for all projects are organized into sections reflecting the major areas of research focus at the INL. These sections begin with the DOE-NE Nuclear Science and Technology mission support area,

  11. Scientific Grand Challenges: Crosscutting Technologies for Computing at the Exascale - February 2-4, 2010, Washington, D.C.

    SciTech Connect (OSTI)

    Khaleel, Mohammad A.

    2011-02-06T23:59:59.000Z

    The goal of the "Scientific Grand Challenges - Crosscutting Technologies for Computing at the Exascale" workshop in February 2010, jointly sponsored by the U.S. Department of Energy’s Office of Advanced Scientific Computing Research and the National Nuclear Security Administration, was to identify the elements of a research and development agenda that will address these challenges and create a comprehensive exascale computing environment. This exascale computing environment will enable the science applications identified in the eight previously held Scientific Grand Challenges Workshop Series.

  12. Photocatalysis Currently, the research

    E-Print Network [OSTI]

    Vollmer, Heribert

    Photocatalysis Currently, the research activit in the area ofies Photocatalysis focus on the topics Photocatalysis and Prof. Dr. Detlef Bahnemann Nanotechnology Research Topics Bioprocess Engineering Bioprocess Modeling and Control Photocatalysis and Nanotechnology Institute of Technical Chemistry Contact Person

  13. Wildlife Management Areas (Florida)

    Broader source: Energy.gov [DOE]

    Certain sites in Florida are designated as wildlife management areas, and construction and development is heavily restricted in these areas.

  14. JV Task 120 - Coal Ash Resources Research Consortium Research

    SciTech Connect (OSTI)

    Debra Pflughoeft-Hassett; Loreal Heebink; David Hassett; Bruce Dockter; Kurt Eylands; Tera Buckley; Erick Zacher

    2009-03-28T23:59:59.000Z

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') is the core coal combustion product (CCP) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCPs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCP utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program, which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCP performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 2007 to 2009 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCPs. The tasks were included in four categories: (1) Environmental Evaluations of CCPs; (2) Evaluation of Impacts on CCPs from Emission Controls; (3) Construction and Product-Related Activities; and (4) Technology Transfer and Maintenance Tasks. All tasks are designed to work toward achieving the CARRC overall goal and supporting objectives. The various tasks are coordinated in order to provide broad and useful technical data for CARRC members. Special projects provide an opportunity for non-CARRC members to sponsor specific research or technology transfer consistent with CARRC goals. This report covers CARRC activities from January 2007 through March 2009. These activities have been reported in CARRC Annual Reports and in member meetings over the past 2 years. CARRC continues to work with industry and various government agencies with its research, development, demonstration, and promotional activities nearing completion at the time of submission of this report. CARRC expects to continue its service to the coal ash industry in 2009 and beyond to work toward the common goal of advancing coal ash utilization by solving CCP-related technical issues and promoting the environmentally safe, technically sound, and economically viable management of these complex and changing materials.

  15. The Khorana Program Scientific Exchange

    E-Print Network [OSTI]

    Ansari, Aseem Z.

    -12 weeks in summer · Experience research with international lab teams · Join top US undergrads on NSF-REU: An International Scholar Member of the UW faculty 1960-1970 1968 Nobel Prize in Physiology 1. Provide Indian and U.S. students with a transformative international experience 2. Contribute

  16. Environmental resources of selected areas of Hawaii: Cultural environment and aesthetic resources

    SciTech Connect (OSTI)

    Trettin, L.D. [Univ. of Tennessee (United States)] [Univ. of Tennessee (United States); Petrich, C.H.; Saulsbury, J.W. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

    1996-01-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on the cultural environment and aesthetic resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The cultural environment in the Geothermal Resource Zone (GRZ) and associated study area consists of Native Hawaiian cultural and religious practices and both Native Hawaiian and non-Native Hawaiian cultural resources. This report consists of three sections: (1) a description of Native Hawaiian cultural and religious rights, practices, and values; (2) a description of historic, prehistoric, and traditional Native Hawaiian sites; and (3) a description of other (non-native) sites that could be affected by development in the study area. Within each section, the level of descriptive detail varies according to the information currently available. The description of the cultural environment is most specific in its coverage of the Geothermal Resource Subzones in the Puna District of the island of Hawaii and the study area of South Maui. Ethnographic and archaeological reports by Cultural Advocacy Network Developing Options and International Archaeological Research Institute, Inc., respectively, supplement the descriptions of these two areas with new information collected specifically for this study. Less detailed descriptions of additional study areas on Oahu, Maui, Molokai, and the island of Hawaii are based on existing archaeological surveys.

  17. Tech Area II: A history

    SciTech Connect (OSTI)

    Ullrich, R. [Ktech Corp., Albuquerque, NM (United States)] [Ktech Corp., Albuquerque, NM (United States)

    1998-07-01T23:59:59.000Z

    This report documents the history of the major buildings in Sandia National Laboratories` Technical Area II. It was prepared in support of the Department of Energy`s compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission`s integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area`s primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on high-explosive components outside of the original Area II diamond-shaped parcel. Most of the buildings in the area are vacant and Sandia has no plans to use them. They are proposed for decontamination and demolition as funding becomes available.

  18. Institutional research and development, FY 1987

    SciTech Connect (OSTI)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S. (eds.)

    1987-01-01T23:59:59.000Z

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87. (DWL)

  19. Resources for research Palaeoclimate research in the Pacific

    E-Print Network [OSTI]

    currents flowing into the Coral Sea in the western Pacific. ··· Seismometers on the ocean floor OceanResources for research Palaeoclimate research in the Pacific #12;··· Scientific equipment: pooled Caledonian lagoon and the western Pacific, including the Santo biodiversity survey in Vanuatu. ··· Clinical

  20. Joint Center for Energy Storage Research

    SciTech Connect (OSTI)

    Eric Isaacs

    2012-11-30T23:59:59.000Z

    The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

  1. Scientific Innovation Through Integration Capabilities Series

    E-Print Network [OSTI]

    and quantify metabolites in complex biofluids ęę NMR with radiological capabilities ęę Combined confocal(5948):1670-1673. ABOUT EMSL EMSL, a U.S. Department of Energy national scientific user facility located at Pacific

  2. Enabling scientific data on the web 

    E-Print Network [OSTI]

    Milowski, Raymond Alexander

    2014-11-27T23:59:59.000Z

    Scientific data does not exist on the Web in the same way as the written word; reviews, media, wikis, social networks, and blogs all contribute to the interconnected nature of ordinary language on the Web. Network ...

  3. Secretarial Policy Statement on Scientific Integrity

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-06-02T23:59:59.000Z

    This Secretarial policy statement is intended to enhance our culture by establishing a unified framework for scientific integrity. This policy applies to all DOE Federal employees. This policy will be reviewed annually.

  4. OCEAN DRILLING PROGRAM LEG 149 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    Committee and the Pollution Prevention and Safety Panel. #12;Leg 149 Scientific Prospectus Page 3 ABSTRACT western Iberia to determine the changes in the physical and petrological nature of the acoustic basement

  5. A Course in Scientific Modeling and Simulation

    E-Print Network [OSTI]

    O'Leary, Michael

    A Course in Scientific Modeling and Simulation Mike O'Leary Shiva Azadegan Academx Publishing Copyright © 2003 by Mike O'Leary and Shiva Azadegan All rights reserved. No part of this publication may

  6. A Distribution Oblivious Scalable Approach for Large-Scale Scientific...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Oblivious Scalable Approach for Large-Scale Scientific Data Processing June 12, 2013 Problem Statement: Runtimes of scientific data processing (SDP) methods vary...

  7. PIA - Advanced Test Reactor National Scientific User Facility...

    Energy Savers [EERE]

    Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

  8. Environmental resources of selected areas of Hawaii: Groundwater in the Puna District of the Island of Hawaii

    SciTech Connect (OSTI)

    Staub, W.P.; Reed, R.M.

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on groundwater during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the withdrawing its notice of intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report were collected for the geothermal resource subzones in the Puna District on the island of Hawaii. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied and does not represent an assessment of environmental impacts. This paper summarizes the current state of knowledge with respect to groundwater in the Puna District of the island of Hawaii. Groundwater quality in and adjacent to Kilauea`s east rift zone (KERZ), is compared with that of meteoric water, seawater, and geothermal fluid. Two segments of KERZ lie within the Puna District. These segments are the middle east rift zone (KERZ) and lower east rift zone (LERZ). The degree of mixing between meteoric water, seawater, and geothermal water in and adjacent to the also is discussed.

  9. 1 Lesson 9(A) Scientific Notation Definition: A number is in scientific ...

    E-Print Network [OSTI]

    charlotb

    2010-08-31T23:59:59.000Z

    In 1990 the National Health Care expenditures was $695,600,000,000. (Source: U.S. Centers for Medicare and Medicaid Services) Write this in scientific.

  10. U.S. Scientific Team Draws on New Data, Multiple Scientific Methodolog...

    Office of Environmental Management (EM)

    several scientific teams and is based on a combination of analyses of high resolution videos taken by ROVs, acoustic technologies, and measurements of oil collected by the oil...

  11. Charter for the ARM Climate Research Facility Science Board

    SciTech Connect (OSTI)

    Ferrell, W

    2013-03-08T23:59:59.000Z

    The objective of the ARM Science Board is to promote the Nation’s scientific enterprise by ensuring that the best quality science is conducted at the DOE’s User Facility known as the ARM Climate Research Facility. The goal of the User Facility is to serve scientific researchers by providing unique data and tools to facilitate scientific applications for improving understanding and prediction of climate science.

  12. Western Area Power Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development...

  13. Recent Progress on Spherical Torus Research

    SciTech Connect (OSTI)

    Ono, Masayuki [PPPL; Kaita, Robert [PPPL

    2014-01-01T23:59:59.000Z

    The spherical torus or spherical tokamak (ST) is a member of the tokamak family with its aspect ratio (A = R0/a) reduced to A ~ 1.5, well below the normal tokamak operating range of A ? 2.5. As the aspect ratio is reduced, the ideal tokamak beta ? (radio of plasma to magnetic pressure) stability limit increases rapidly, approximately as ? ~ 1/A. The plasma current it can sustain for a given edge safety factor q-95 also increases rapidly. Because of the above, as well as the natural elongation ?, which makes its plasma shape appear spherical, the ST configuration can yield exceptionally high tokamak performance in a compact geometry. Due to its compactness and high performance, the ST configuration has various near term applications, including a compact fusion neutron source with low tritium consumption, in addition to its longer term goal of attractive fusion energy power source. Since the start of the two megaampere class ST facilities in 2000, National Spherical Torus Experiment (NSTX) in the US and Mega Ampere Spherical Tokamak (MAST) in UK, active ST research has been conducted worldwide. More than sixteen ST research facilities operating during this period have achieved remarkable advances in all of fusion science areas, involving fundamental fusion energy science as well as innovation. These results suggest exciting future prospects for ST research both near term and longer term. The present paper reviews the scientific progress made by the worldwide ST research community during this new mega-ampere-ST era.

  14. Dealing with software: the research data issues 

    E-Print Network [OSTI]

    Hong, Neil Chue

    2014-08-26T23:59:59.000Z

    Software underpins much of the scientific research undertaken today. As well as the “traditional” use of software for modelling and simulation, it is used to manage and control instruments, and analyse and visualise data. This permeation of the use...

  15. http://www.rois.ac.jp Research Organization ofResearch Organization of

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    http://www.rois.ac.jp Research Organization ofResearch Organization of Information and Systems established as the third scientific methodology, next to theory and experiment, and the need. With the incorporation in 2004 of the Inter-University Research Institutes, the Research Organization of Information

  16. Evaluating Florida's Coastal Protected Areas: A Model for Coastal Management Plan Evaluation

    E-Print Network [OSTI]

    Bernhardt, Sarah Praeger

    2011-02-22T23:59:59.000Z

    This research presents the first coastal and marine protected areas specific quantitative management plan evaluation protocol. This critical research gap in the coastal and marine protected area (CMPA) research literature was addressed by creating a...

  17. Slide05 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    European Commission, May 2005, "Energy RTD Information Systems in the European Research Area") Broad coverage of energy and environmental subjects: "Renewables" - 225,202 records...

  18. Slide05 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    information system of reference; many national websites on energy RTD link to ETDEWEB." - Energy RTD Information Systems in the European Research Area, European Commission, 2007...

  19. Slide25 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    research areas. Understanding how countries deal with energy-related environmental and climate change issues. Contracting party has right to determine ETDEWEB access within its...

  20. Slide23 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    research areas * Understanding how countries deal with energy-related environmental and climate change issues * Contracting party determines ETDEWEB access within its national...

  1. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    SciTech Connect (OSTI)

    Chavez, Francesca C. [Editor; Benson, Jody [Editor; Hanson, Stephanie [Editor; Mark, Carol [Editor; Wetovsky, Marvin A. [Editor

    2004-09-21T23:59:59.000Z

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  2. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    SciTech Connect (OSTI)

    Chavez, Francesca C. [Editor; Mendius, E. Louise [Editor

    2003-09-23T23:59:59.000Z

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25T23:59:59.000Z

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21T23:59:59.000Z

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20T23:59:59.000Z

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor

    2010-09-21T23:59:59.000Z

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    SciTech Connect (OSTI)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

    2008-09-23T23:59:59.000Z

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19T23:59:59.000Z

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  9. Climate Research Roadmap Workshop: Summary Report, May 13-14, 2010

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    In recognition of the ongoing advances and challenges of climate change research, DOE's Office of Biological and Environmental Research (BER) organized a workshop asking the scientific community to identify the current state of climate science. The goal of the workshop was to determine the research challenges important for developing a predictive understanding of global climate. Participants were asked to focus on interdisciplinary research that capitalized on BER's scientific strengths in Atmospheric System Research, Terrestrial Ecosystem Science, and Climate and Earth System Modeling. Approximately 50 scientists representing these three areas were asked to identify desired outcomes for the next 10 years. Goals were identified for the near (1--3 years), mid (4--7 years), and long term (8--10 years). Discussions were focused by discipline (atmospheric, terrestrial, and modeling) and by latitude (high, temperate, and tropical). In addition, opportunities and needs for integration across disciplines and latitudes were identified with a specific focus on crosscutting challenges and outcomes. BER will use this workshop output to update its strategic plan for climate research.

  10. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13T23:59:59.000Z

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  11. Thermo Scientific Pierce High-Performance Dialysis and

    E-Print Network [OSTI]

    Lebendiker, Mario

    Thermo Scientific Pierce® High-Performance Dialysis and Desalting Technical Handbook Featuring Thermo Scientific Slide-A-Lyzer® Dialysis Cassettes #12;MWCO Membrane 10-100 µl Thermo Scientific Slide-A-Lyzer® MINI Dialysis Unit Page 4 0.1-30 ml Thermo Scientific Slide-A-Lyzer Dialysis Cassette Page 5 15-100 ml

  12. Parallel Processing Letters fc World Scientific Publishing Company

    E-Print Network [OSTI]

    Calheiros, Rodrigo N.

    World Scientific Publishing Company http://ejournals.wspc.com.sg/ppl/ppl.shtml SCHEDULING AND MANAGEMENT

  13. Computer Science Faculty Dr. Stephen Beale, Research Assistant Professor

    E-Print Network [OSTI]

    Adali, Tulay

    Computer Science Faculty Dr. Stephen Beale, Research Assistant Professor Syntactic and semantic, multi-engine NLP applications Dr. Richard Chang, Associate Professor Computational complexity theory, natural language processing, intelligent agents Dr. Milton Halem, Research Professor Scientific computing

  14. COLLABORATION INNOVATION INTEROPERABILITY DISCOVERY PARTNERSHIP External Research Division

    E-Print Network [OSTI]

    Narasayya, Vivek

    and excitement for how computing technologies can help address major scientific and educational challenges. Tony Hey Corporate Vice President, External Research Division, Microsoft Research 1 Advancing a New Era

  15. Independent Scientific Advisory Board Northwest Power Planning Council National Marine Fisheries Service

    E-Print Network [OSTI]

    by the respective agencies on matters that relate to their fish and wildlife programs. Effective the date to fish and wildlife recovery and the use of sound scientific methods in research related to the programs to anadromous fish conservation and management, while those of the Council and the Tribes include all fish

  16. Nuclear Databases: National Resource Nuclear databases consists of carefully organized scientific

    E-Print Network [OSTI]

    Ohta, Shigemi

    Nuclear Databases: National Resource Nuclear databases consists of carefully organized scientific information that has been gathered over 50 years of low-energy nuclear physics research worldwide. These powerful databases have enormous value and they represent a genuine national resource. Six core nuclear

  17. An Examination of Children's Scientific Argumentation Danielle B. Harlow and Valerie K. Otero

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    of scientific knowledge [1]. Findings from educational research show that elementary students have of a completed simple circuit. The conversation began as a whole-class discussion about electricity and progressed to a debate between two students, David and Ricardo, about how electricity travels through

  18. TOOLS TO MODEL ROAD IMPACTS Providing scientific knowledge and technology to sustain

    E-Print Network [OSTI]

    Fried, Jeremy S.

    TOOLS TO MODEL ROAD IMPACTS Providing scientific knowledge and technology to sustain our nation://www.fs.fed.us/rm/boise/AWAE_home.shtml BACKGROUND The Rocky Mountain Research Station has a long his- tory of developing tools that meet the needs. Existing tools have been optimized to answer particular man- agement questions at specific spatial scales

  19. New DOE-Sponsored Study Helps Advance Scientific Understanding of Potential CO2 Storage Impacts

    Broader source: Energy.gov [DOE]

    In another step forward toward improved scientific understanding of potential geologic carbon dioxide storage impacts, a new U.S. Department of Energy sponsored study has confirmed earlier research showing that proper site selection and monitoring is essential for helping anticipate and mitigate possible risks.

  20. EWEC2006 Scientific Track Offshore Meteorology for Multi-Mega-Watt Turbines

    E-Print Network [OSTI]

    Heinemann, Detlev

    resource assessments, to calculate loads and wakes as well as for reliable short-term wind power forecastsEWEC2006 ­ Scientific Track Offshore Meteorology for Multi-Mega-Watt Turbines Jens Tambke1 Durante5 , Jörg-Olaf Wolff6 1 ForWind - Center for Wind Energy Research, Institute of Physics, University

  1. 38th COSPAR Scientific Assembly 2010 Space Plasmas in the Solar System, including Planetary Magnetospheres (D)

    E-Print Network [OSTI]

    California at Berkeley, University of

    38th COSPAR Scientific Assembly 2010 Space Plasmas in the Solar System, including Planetary Agency, Kanagawa, Japan Satoshi Kasahara, kshr@stp.isas.jaxa.jp Institute of Space and Astronautical.retino@oeaw.ac.at Space Research Institute, Austrian Academy of Sciences, Graz, Austria Rumi Nakamura, rumi

  2. Global climate change and the scientific consensus Stephen Mulkey, PhD

    E-Print Network [OSTI]

    Watson, Craig A.

    1 Global climate change and the scientific consensus Stephen Mulkey, PhD Director of Research scientists. As scientists, our job is to present the data on climate change and to propose plausible recreate the Earth's climate in a laboratory bottle and change its composition to see what happens. Instead

  3. A Scientific and Engineering C ti Cl t F iComputing Cluster Focusing on

    E-Print Network [OSTI]

    Mohanty, Saraju P.

    A Scientific and Engineering C ti Cl t F iComputing Cluster Focusing on the Modeling faculty cover all time and length scales ~50 researchers Combustion chemistry Material fatigue 50;CrossDisciplinary Expertise · Chemistry ­ Bagus · Engineering ­ Boetcher (M&EE) ­ Borden ­ Cundari

  4. University of Malta First Gozo BIODIVMEX scientific workshop (Malta, 9-14 September

    E-Print Network [OSTI]

    van Tiggelen, Bart

    University of Malta First Gozo BIODIVMEX scientific workshop (Malta, 9-14 September 2012) on the initiative of the CNRS and University of Malta Mediterranean young scientists join forces towards research workshop held in Malta in March 2011, which marked the official launch of the internationalization

  5. Interactive terrain visualization enables virtual fieldwork during rapid scientific response to the 2010 Haiti earthquake

    E-Print Network [OSTI]

    Hamann, Bernd

    response to the 2010 Haiti earthquake --Manuscript Draft-- Manuscript Number: GS687R1 Full Title: Interactive terrain visualization enables virtual fieldwork during rapid scientific response to the 2010 Haiti earthquake Short Title: Virtual fieldwork, Haiti Article Type: Research Paper Keywords: Enriquillo fault

  6. Scientific Drilling, Number 1, 2005 Scientific ocean drilling started in the early 1960s with

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Scientific Drilling, Number 1, 2005 Scientific ocean drilling started in the early 1960s, or the Moho). This project, known as Mohole, was succeeded by the Deep Sea Drilling Project, the International Phase of Ocean Drilling, the Ocean Drilling Program, and the current Integrated Ocean Drilling Program

  7. Scientific note A scientific note on the partial nucleotide sequence of a US strain

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Scientific note A scientific note on the partial nucleotide sequence of a US strain of Kashmir bee bee virus / nucleotide sequence / RT-PCR Kashmir bee virus (KBV) was first isolated from a diseased sequence of the amplified product. The BLASTN search of the Nucleotide Sequence Database at the National

  8. Redefining Housing Market Areas in Scotland 

    E-Print Network [OSTI]

    Muir, Christopher Iain

    2009-01-01T23:59:59.000Z

    This research aims to address some of the limitations inherent in the methods currently used for identification of Housing Market Areas (HMAs) in Scotland. Firstly the conventionally defined geography of HMAs for the four ...

  9. The QUEST Large Area CCD Camera

    E-Print Network [OSTI]

    Charlie Baltay; David Rabinowitz; Peter Andrews; Anne Bauer; Nancy Ellman; William Emmet; Rebecca Hudson; Thomas Hurteau; Jonathan Jerke; Rochelle Lauer; Julia Silge; Andrew Szymkowiak; Brice Adams; Mark Gebhard; James Musser; Michael Doyle; Harold Petrie; Roger Smith; Robert Thicksten; John Geary

    2007-02-21T23:59:59.000Z

    We have designed, constructed and put into operation a very large area CCD camera that covers the field of view of the 1.2 m Samuel Oschin Schmidt Telescope at the Palomar Observatory. The camera consists of 112 CCDs arranged in a mosaic of four rows with 28 CCDs each. The CCDs are 600 x 2400 pixel Sarnoff thinned, back illuminated devices with 13 um x 13 um pixels. The camera covers an area of 4.6 deg x 3.6 deg on the sky with an active area of 9.6 square degrees. This camera has been installed at the prime focus of the telescope, commissioned, and scientific quality observations on the Palomar-QUEST Variability Sky Survey were started in September of 2003. The design considerations, construction features, and performance parameters of this camera are described in this paper.

  10. Summer Research Internship Program (FY94) Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Toler, L.T.; Indusi, J.P.

    1995-02-01T23:59:59.000Z

    The Summer Research Internship Program is a new program that allows high school teachers to participate and assist scientific staff at national laboratories in specific research assignments. This participation allows the high school teachers to become familiar with new technology and have ``hands-on`` experience with experiments and equipment which utilize both mathematics and science skills. Teachers also have the opportunity to advance their new and well-developed software. This enlightenment and experience is brought back into their schools and classrooms in the hopes that their peers and students will realize the excitement that knowledge and education in the areas of mathematics and science can bring. The Safeguards, Safety and Nonproliferation Division of the Department of Advanced Technology at Brookhaven National Laboratory utilized five high school teachers during FY94 in various projects. The project assignments and internship activities are outlined in this paper.

  11. Molecular Science Computing Facility Scientific Challenges: Linking Across Scales

    SciTech Connect (OSTI)

    De Jong, Wibe A.; Windus, Theresa L.

    2005-07-01T23:59:59.000Z

    The purpose of this document is to define the evolving science drivers for performing environmental molecular research at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and to provide guidance associated with the next-generation high-performance computing center that must be developed at EMSL's Molecular Science Computing Facility (MSCF) in order to address this critical research. The MSCF is the pre-eminent computing facility?supported by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research (BER)?tailored to provide the fastest time-to-solution for current computational challenges in chemistry and biology, as well as providing the means for broad research in the molecular and environmental sciences. The MSCF provides integral resources and expertise to emerging EMSL Scientific Grand Challenges and Collaborative Access Teams that are designed to leverage the multiple integrated research capabilities of EMSL, thereby creating a synergy between computation and experiment to address environmental molecular science challenges critical to DOE and the nation.

  12. Hydrologically Sensitive Areas: Variable Source Area Hydrology

    E-Print Network [OSTI]

    Walter, M.Todd

    Hydrologically Sensitive Areas: Variable Source Area Hydrology Implications for Water Quality Risk hydrology was developed and applied to the New York City (NYC) water supply watersheds. According and are therefore hydrologically sensitive with respect to their potential to transport contaminants to perennial

  13. FINAL SCIENTIFIC/TECHNICAL REPORT

    SciTech Connect (OSTI)

    Satish Mohapatra

    2011-12-21T23:59:59.000Z

    Dynalene Inc has developed and patented a fuel cell coolant with the help of DOE SBIR Phase I and Phase II funding (Project DE-FG02-04ER83884). However, this coolant could only be produced in lab scale (500 ml to 2 L) due to problems in the optimization and scale-up of a nanoparticle ingredient. This project optimized the nanoparticle production process in 10 L and 100 L reactors (which translates to about 5000 gallons of coolant), optimized the filtration process for the nanoparticles, and develop a high throughput production as well as quality control method for the final coolant formulation. Scale-up of nanoparticle synthesis (using emulsion polymerization) is an extremely challenging task. Dynalene researchers, in collaboration with a university partner, identified all the parameters affecting the size, charge density and coagulation characteristics of the nanoparticles and then optimized these parameters to achieve the goals and the objectives of this project. Nanoparticle synthesis was demonstrated to be reproducible in the 10 L and 100 L scales.

  14. AREA COORDINATOR RESIDENTIAL EDUCATION

    E-Print Network [OSTI]

    Bordenstein, Seth

    AREA COORDINATOR RESIDENTIAL EDUCATION VANDERBILT UNIVERSITY, NASHVILLE, TENNESSEE The Office of Housing and Residential Education at Vanderbilt University is seeking applicants for an Area Coordinator. The Area Coordinator is responsible for assisting in the management and operation of a residential area

  15. JV Task 6 - Coal Ash Resources Research Consortium Research

    SciTech Connect (OSTI)

    Debra Pflughoeft-Hassett; Tera Buckley; Bruce Dockter; Kurt Eylands; David Hassett; Loreal Heebink; Erick Zacher

    2008-04-01T23:59:59.000Z

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of coal combustion by-products (CCBs). CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCB utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program (JSRP), which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCB performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 1998 to 2007 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCBs. CARRC topical reports were prepared on several completed tasks. Specific CARRC 1998B2007 accomplishments included: (1) Development of several ASTM International Standard Guides for CCB utilization applications. (2) Organization and presentation of training courses for CCB professionals and teachers. (3) Development of online resources including the Coal Ash Resource Center, Ash from Biomass in Coal (ABC) of cocombustion ash characteristics, and the Buyer's Guide to Coal-Ash Containing Products. In addition, development of expanded information on the environmental performance of CCBs in utilization settings included the following: (1) Development of information on physical properties and engineering performance for concrete, soil-ash blends, and other products. (2) Training of students through participation in CARRC research projects. (3) Participation in a variety of local, national, and international technical meetings, symposia, and conferences by presenting and publishing CCB-related papers.

  16. The choice: evaluating and selecting scientific proposals

    E-Print Network [OSTI]

    Navarra, Antonio

    2015-01-01T23:59:59.000Z

    The selection process of proposals is a crucial component of scientific progress and innovations. Limited resources must be allocated in the most effective way to maximise advancements and the production of new knowledge, especially as it is becoming increasingly clear that technological and scientific innovation and creativity is an instrument of economic policy and social development. The traditional approach based on merit evaluation by experts has been the preferred method, but there is an issue regarding to what extent such a method can also be an instrument of effective policy. This paper discuss some of the basic processes involved in the evaluation and selection of proposals, indicating some criterion for an optimal solution.

  17. Scientific Advisory Committee | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells"03,ScientificScientific Advisory

  18. NEXT-GENERATION Copyright 2001 Scientific American, Inc.Copyright 2001 Scientific American, Inc.Copyright 2001 Scientific American, Inc.

    E-Print Network [OSTI]

    Kammen, Daniel M.

    gases to avoid the potential onset of global warming, more people are recognizing that nuclear reactors satisfy many of our future energy needs but could combat global warming as well R Copyright 2001.Copyright 2001 Scientific American, Inc. #12;ising electricity prices and last summer's rolling blackouts

  19. Crowder College MARET Center Facility Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Rand, Amy

    2013-08-20T23:59:59.000Z

    This project was a research facility construction project and did not include actual research. The new facility will benefit the public by providing training opportunities for students, as well as incubator and laboratory space for entrepreneurs in the areas of alternative and renewable energies. The 9,216 -square-foot Missouri Alternative and Renewable Energy Technology (MARET) Center was completed in late 2011. Classes in the MARET Center began in the spring 2012 semester. Crowder College takes pride in the MARET Center, a focal point of the campus, as the cutting edge in education, applied research and commercial development in the growing field of green technology.

  20. Assessment of Research Needs for Advanced Fuel Cells

    SciTech Connect (OSTI)

    Penner, S.S.

    1985-11-01T23:59:59.000Z

    The DOE Advanced Fuel Cell Working Group (AFCWG) was formed and asked to perform a scientific evaluation of the current status of fuel cells, with emphasis on identification of long-range research that may have a significant impact on the practical utilization of fuel cells in a variety of applications. The AFCWG held six meetings at locations throughout the country where fuel cell research and development are in progress, for presentations by experts on the status of fuel cell research and development efforts, as well as for inputs on research needs. Subsequent discussions by the AFCWG have resulted in the identification of priority research areas that should be explored over the long term in order to advance the design and performance of fuel cells of all types. Surveys describing the salient features of individual fuel cell types are presented in Chapters 2 to 6 and include elaborations of long-term research needs relating to the expeditious introduction of improved fuel cells. The Introduction and the Summary (Chapter 1) were prepared by AFCWG. They were repeatedly revised in response to comments and criticism. The present version represents the closest approach to a consensus that we were able to reach, which should not be interpreted to mean that each member of AFCWG endorses every statement and every unexpressed deletion. The Introduction and Summary always represent a majority view and, occasionally, a unanimous judgment. Chapters 2 to 6 provide background information and carry the names of identified authors. The identified authors of Chapters 2 to 6, rather than AFCWG as a whole, bear full responsibility for the scientific and technical contents of these chapters.