National Library of Energy BETA

Sample records for research areas include

  1. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Biosciences The Biosciences Area forges multidisciplinary teams to solve national challenges in energy, environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three divisions and is enabled by Berkeley

  2. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  3. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Research Areas High Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought in the following subfields and cross-cutting areas of HEDLP: High Energy Density Hydrodynamics Specific areas of interest include, but are not limited to, turbulent mixing, probing properties of high energy density (HED) matter through hydrodynamics, solid-state hydrodynamics at high pressures, new hydrodynamic instabilities, and hydrodynamic scaling. Radiation-Dominated

  4. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms, laboratory

  5. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms, laboratory

  6. Research Subject Areas for IGPPS Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Subject Areas Research Subject Areas for IGPPS Proposals High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and...

  7. Research Areas | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, ...

  8. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Research Areas Properties of Materials under Extreme Conditions and Hydrodynamics During open solicitations research proposals are solicited for grants and Centers of Excellence in the area of fundamental properties and response of materials under extreme conditions (condensed matter physics and materials science, hydrodynamics and fluid dynamics). Extreme conditions include material response when subjected to one or more of the following: high-pressure (> 100 kbar), high-temperature (near

  9. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought in the following subfields and cross-cutting areas of HEDLP: High Energy ...

  10. Research Subject Areas for CSES Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Subject Areas Research Subject Areas for CSES Proposals High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia D. Sanchez (505) 665-0855 Email Science Discipline Leaders Astrophysics & Cosmology Hui Li (505) 665-3131 Email Climate Keeley Costigan (505) 665-4788 Email Geophysics David Coblentz (505) 667-2781 Email Space

  11. Research Areas | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas High Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought in the following subfields and cross-cutting areas of HEDLP: High Energy Density Hydrodynamics Specific areas of interest include, but are not limited to, turbulent mixing, probing properties of high energy density (HED) matter through hydrodynamics, solid-state hydrodynamics at high pressures, new hydrodynamic instabilities, and hydrodynamic scaling. Radiation-Dominated

  12. Low-rank coal research annual report, July 1, 1989--June 30, 1990 including quarterly report, April--June 1990

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    Research programs in the following areas are presented: control technology and coal preparation; advance research and technology development; combustion; liquefaction; and gasification. Sixteen projects are included. Selected items have been processed separately for inclusion in the Energy Science and Technology Database.

  13. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    knowledge. For more information on the NLUF program, the capabilities of the OMEGA (including OMEGA EP) laser system, and the updated users guide can be found on the NLUF web site

  14. Research Areas | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Print Text Size: A A A FeedbackShare Page To meet the challenge of supporting basic research programs that are also energy relevant, the Division manages portfolio components that consist of distinct Core Research Activities

  15. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  16. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M.; Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  17. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect (OSTI)

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  18. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect (OSTI)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  19. Engineering research, development and technology. Thrust area report, FY93

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  20. Arctic Airspace Warning Area Established to Aid Research & Exploration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Airspace Warning Area Established to Aid Research & Exploration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle

  1. Updated Reporting Requirement Checklist including the Research Performance Progress Report (RPPR)

    Broader source: Energy.gov [DOE]

    Policy Flash 2011-63 transmitted the previous versions of the Reporting Requirements Checklists and the Research Performance Progress Report (RPPR) which was an attachment to the checklist.

  2. Plutonium Focus Area research and development plan. Revision 1

    SciTech Connect (OSTI)

    1996-11-01

    The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

  3. DOE Research Set-Aside Areas of the Savannah River Site

    SciTech Connect (OSTI)

    Davis, C.E.; Janecek, L.L.

    1997-08-31

    Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site`s total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside.

  4. An aerial radiological survey of the Tonopah Test Range including Clean Slate 1,2,3, Roller Coaster, decontamination area, Cactus Springs Ranch target areas. Central Nevada

    SciTech Connect (OSTI)

    Proctor, A.E.; Hendricks, T.J.

    1995-08-01

    An aerial radiological survey was conducted of major sections of the Tonopah Test Range (TTR) in central Nevada from August through October 1993. The survey consisted of aerial measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. The initial purpose of the survey was to locate depleted uranium (detecting {sup 238}U) from projectiles which had impacted on the TTR. The examination of areas near Cactus Springs Ranch (located near the western boundary of the TTR) and an animal burial area near the Double Track site were secondary objectives. When more widespread than expected {sup 241}Am contamination was found around the Clean Slates sites, the survey was expanded to cover the area surrounding the Clean Slates and also the Double Track site. Results are reported as radiation isopleths superimposed on aerial photographs of the area.

  5. Office of Science Priority Research Areas for SCGSR Program | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Apply » Office of Science Priority Research Areas for SCGSR Program DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Identifying a Collaborating DOE Laboratory Scientist Research Proposal Guidelines Office of Science Priority Research Areas for SCGSR Program About the Office of Science Office of Science User Facilities Priority Areas For Past SCGSR Solicitations Letters of Support

  6. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-11-30

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA) to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  7. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-05-15

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA)to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  8. 300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan

    SciTech Connect (OSTI)

    Freshley, Mark D.

    2008-12-31

    Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energys (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.

  9. Engineering Research and Development and Technology thrust area report FY92

    SciTech Connect (OSTI)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  10. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  11. Carbon dioxide and climate. [Appendix includes names and addresses of the Principal Investigators for the research projects funded in FY1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO{sub 2} Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO{sub 2} concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration.

  12. Recent research efforts in the area of biotechnology for fuels and chemicals: Poster session papers

    SciTech Connect (OSTI)

    Antonopoulos, A.A. ); Grohmann, K. )

    1992-01-01

    This report presents research presented at the poster session of the Symposium covering a wide spectrum of current biotechnological research activities. Research focused mostly on ethanol production and methane generation from biomass material via microbial processing, as well as on enhanced hydrogen yield from algae. Several of the posters dealt with the pretreatment of cellulosic materials, and enzyme production/characterization, while a good number of papers displayed research efforts on bioremediation, photosynthesis, production of various useful chemicals from biomass by bioprocessing, and on other miscellaneous subjects. One of the papers treated a very interesting topic of cellulose-cellulase complexes. Many of the poster papers are included in this volume, and a synopsis of all the poster/papers presented is the subject of this article.

  13. Recent research efforts in the area of biotechnology for fuels and chemicals: Poster session papers

    SciTech Connect (OSTI)

    Antonopoulos, A.A.; Grohmann, K.

    1992-09-01

    This report presents research presented at the poster session of the Symposium covering a wide spectrum of current biotechnological research activities. Research focused mostly on ethanol production and methane generation from biomass material via microbial processing, as well as on enhanced hydrogen yield from algae. Several of the posters dealt with the pretreatment of cellulosic materials, and enzyme production/characterization, while a good number of papers displayed research efforts on bioremediation, photosynthesis, production of various useful chemicals from biomass by bioprocessing, and on other miscellaneous subjects. One of the papers treated a very interesting topic of cellulose-cellulase complexes. Many of the poster papers are included in this volume, and a synopsis of all the poster/papers presented is the subject of this article.

  14. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-29

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

  15. Perspective: The Climate-Population-Infrastructure Modeling and Simulation Fertile Area for New Research

    SciTech Connect (OSTI)

    Allen, Melissa R; Fernandez, Steven J; Walker, Kimberly A; Fu, Joshua S

    2014-01-01

    Managing the risks posed by climate change and extreme weather to energy production and delivery is a challenge to communities worldwide. As climate conditions change, populations will shift, and demand will re-locate; and networked infrastructures will evolve to accommodate new load centers, and, hopefully, minimize vulnerability to natural disaster. Climate effects such as sea level rise, increased frequency and intensity of natural disasters, force populations to move locations. Displaced population creates new demand for built infrastructure that in turn generates new economic activity that attracts new workers and associated households to the new locations. Infrastructures and their interdependencies will change in reaction to climate drivers as the networks expand into new population areas and as portions of the networks are abandoned as people leave. Thus, infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Forecasting the location of these vulnerabilities by combining climate predictions and agent based population movement models shows promise for defining these future population distributions and changes in coastal infrastructure configurations. By combining climate and weather data, engineering algorithms and social theory it has been only recently possible to examine electricity demand response to increased climactic temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. These emerging results suggest a research agenda of coupling these disparate modelling approaches to understand the implications of climate change for protecting the nation s critical infrastructure.

  16. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil target for proof-of-concept actinium-225 production In addition to our routine isotope products, the LANL Isotope Program is focused on developing the next suite of isotopes and services to meet the Nation's emerging needs. The LANL Isotope Program's R&D strategy is focused on four main areas (see

  17. Dallas area-wide intelligent transportation system plan. Draft research report, August 1992-August 1996

    SciTech Connect (OSTI)

    Carvell, J.D.; Seymour, E.J.; Walters, C.H.; Starr, T.R.; Balke, K.

    1996-07-01

    This report documents the development of a comprehensive plan for implementation of Intelligent Transportation Systems (ITS) in the Dallas Urban Area. The contract defined objectives: Develop a Broadly Based Steering Committee; Assess Existing Transportation Management Systems and Potential ITS Technology; Identify Institutional Issues and Legal Barriers; Develop an Implementable, Area-Wide Multi-Jurisdictional ITS Plan; and Develop Cost, Benefits, and an Implementation Plan.

  18. Priority research areas to accelerate the development of practical ultraconductive copper conductors

    SciTech Connect (OSTI)

    Lee, Dominic F.; Burwell, Malcolm; Stillman, H.

    2015-09-01

    This report documents the findings at an Ultraconductive Copper Strategy Meeting held on March 11, 2015 in Washington DC. The aim of this meeting was to bring together researchers of ultraconductive copper in the U.S. to identify and prioritize critical non-proprietary research activities that will enhance the understanding in the material and accelerate its development into practical conductors. Every effort has been made to ensure that the discussion and findings are accurately reported in this document.

  19. EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    This PEIS will evaluate the potential environmental impacts of the proposed enhancement of the existing infrastructure, including the possible role of the Fast Flux Test Facility (FFTF), located at...

  20. Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect (OSTI)

    Burgos, W.D.

    2009-09-02

    This report summarizes research conducted in conjunction with a project entitled “Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2.

  1. Research on stable, high-efficiency, large-area, amorphous-silicon-based submodules

    SciTech Connect (OSTI)

    Delahoy, A.E.; Tonon, T.; Macneil, J. (Chronar Corp., Princeton, NJ (USA))

    1991-06-01

    The primary objective of this subcontract is to develop the technology for same bandgap, amorphous silicon tandem junction photovoltaic modules having an area of at least 900 cm{sup 2} with the goal of achieving an aperture area efficiency of 9%. A further objective is to demonstrate modules that retain 95% of their under standard light soaking conditions. Our approach to the attainment of these objective is based on the following distinctive technologies: (a) in-house deposition of SiO{sub 2}/SnO{sub 2}:F onto soda lime glass by APCVD to provide a textured, transparent electrode, (b) single chamber r.f. flow discharge deposition of the a-Si:H layers onto vertical substrates contained with high package density in a box carrier'' to which the discharge is confined (c) sputter deposition of highly reflecting, ZnO-based back contacts, and (d) laser scribing of the a-Si:H and electrodes with real-time scribe tracking to minimize area loss. Continued development of single junction amorphous silicon was aggressively pursued as proving ground for various optical enhancement schemes, new p-layers, and i-layers quality. We have rigorously demonstrated that the introduction of a transitional i-layer does not impair stability and that the initial gain in performance is retained. We have demonstrated a small improvement in cell stability through a post-fabrication treatment consisting of multiple, intense light flashes followed by sufficient annealing. Finally, several experiments have indicated that long term stability can be improved by overcoating the SnO{sub 2} with ZnO. 25 refs., 17 figs.

  2. Reaction-based Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect (OSTI)

    Tsyh Yeh, Gour

    2007-12-21

    This research sought to examine biogeochemical processes likely to take place in the less conductive materials above and below the gravel during the in situ ethanol biostimulation experiment conducted at Area 2 during 2005-2006. The in situ experiment in turn examined the hypothesis that injection of electron donor into this layer would induce formation of a redox barrier in the less conductive materials, resulting in decreased mass transfer of uranium out these materials and attendant declines in groundwater U(VI) concentration. Our project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This report summarizes research activities conducted at The University of Central Florida (2004-2007), the development of biogeochemical and reactive transport models and the conduction of numerical simulations at laboratory, column, and field scales.

  3. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

  4. Reaction-Based Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect (OSTI)

    Yeh, Gour-Tsyh

    2006-06-01

    This research project (started Fall 2004) was funded by a grant to The Pennsylvania State University, University of Central Florida, and The University of Alabama in the Integrative Studies Element of the NABIR Program (DE-FG04-ER63914/63915/63196). Dr. Eric Roden, formerly at The University of Alabama, is now at the University of Wisconsin - Madison. Our project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and is directly aligned with the Scheibe et al. NABIR FRC Field Project at Area 2.

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Area of Research: Journal Reference: N/A

  6. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    SciTech Connect (OSTI)

    Saffer, Shelley I.

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  7. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil ...

  8. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    1988-01-01

    Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

  9. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical ...

  10. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  11. Research

    SciTech Connect (OSTI)

    1999-10-01

    Subjects covered in this section are: (1) PCAST panel promotes energy research cooperation; (2) Letter issued by ANS urges funding balance in FFTF restart consideration and (3) FESAC panel releases report on priorities and balance.

  12. Research Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Gallery Research Gallery Exhibits in this gallery capture Laboratory's leading-edge research in many areas of science and technology to help solve national problems...

  13. Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Four Research Thrusts organizational chart of four research thrusts (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses for leaders.) CMI has more than 30 projects focused in four areas. Project titles are available in a table, which can be sorted by project leader, location of project leader, project title or project number. CMI research is conducted at partner institutions, including national laboratories, universities and

  14. Technoeconomic evaluation of the extractive fermentation of butanol as a guide to research in this area of biotechnology

    SciTech Connect (OSTI)

    Busche, R.M. )

    1991-09-01

    This report represents the completion of a part of an overall project to evaluate the technical and economic status of several newly conceptualized processes for producing butanol, acetone, acetic acid, and aerobically produced specialty chemicals, which are candidates for research support. The objective of the project are to identify strengths and weaknesses in the proposed and to assist in developing an ongoing research strategy along economically relevant lines. The products to be studied presently comprise a collective US market for 10.7 billion lb valued at $2.8 billion. If their manufacturing processes were converted from petroleum feedstocks to corn, they could consume 556 million bushels. Furthermore, if ethanol could be produced at a low enough price to serve as the precursor to ethylene and butadiene, it an its derivatives could account for 159 billion lb, or 50% of the US production of 316 billion lb of synthetic organic chemicals, presently valued at $113 billion. This use would consume 3.4 billion bushels, or {approximately}45% of the corn crop. In addition, the use of butanol for diesel blends or in jet fuel blends to enhance the range of military aircraft could further increase its market.

  15. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 1, Part A: Chapters 1 and 2

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 750 refs., 123 figs., 42 tabs.

  16. Site Characterization Plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 3, Part A: Chapters 6 and 7

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 218 figs., 50 tabs.

  17. 2014-09-30 Issuance: Buildings-to-Grid Integration and Related Areas of Research; Notice of Availability and Request for Public Comment

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of availability and request for public comment regarding buildings-to-grid integration and related areas of research, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 30, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  18. Research Highlights Sorted by Research Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Long, C. N., Min, Q., Wang, T., Duan, M. Estimating Fractional Sky Cover from Spectral Measurements ARM Long, C. N., Dupont, J., Haeffelin, M. P. How Much Condensed Water Does It ...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistics of Vertical Velocities from Monsoonal Convection with Verification Download a printable PDF Submitter: Collis, S. M., Argonne National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Collis S, A Protat, PT May, and C Williams. 2013. "Statistics of storm updraft velocities from TWP-ICE including verification with profiling measurements." Journal of Applied Meteorology and Climatology, 52(8), 10.1175/jamc-d-12-0230.1. A

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A "Little" Respect: Droplet Nucleation Finally Included in Global Climate Model Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Reflection of sunlight by clouds simulated with predicted droplet number with (dark blue) and without (green) the autoconversion feedback agrees remarkably well with the reflection

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2007 Floods Not a Complete Washout in U.S. Great Plains Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Lamb PJ, DH Portis, and A Zangvil. 2012. "Investigation of Large-Scale Atmospheric Moisture Budget and Land Surface Interactions over U.S. Southern Great Plains including for CLASIC (June 2007)." Journal of

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotstayn, L., Commonwealth Scientific and Industrial Research Organization Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Rotstayn, L.,...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chinese Researchers Report Reliable Method for Monitoring Soil Moisture Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Surface Properties...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing and Comparing the Modified Anomalous Diffraction Approximation Submitter: Mitchell, D. L., Desert Research Institute Area of Research: Cloud DistributionsCharacterizations...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Schmid, B., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: ARM Climate Research...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Ensemble Simulation with the ARM IOP Data Submitter: Xu, K., NASA - Langley Research Center Area of Research: General Circulation and Single Column ModelsParameterizations ...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Measurements Validate New Satellite Multilayer Cloud Remote Sensing Method Submitter: Minnis, P., NASA - Langley Research Center Area of Research: Cloud Distributions...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Terrestrial Radiation Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Area of Research: General Circulation and Single Column Models...

  9. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Thermodynamics Affect Radiative Impact of Deep Convective Cloud Systems Submitter: Jensen, M., Brookhaven National Laboratory Area of Research: Atmospheric...

  11. Sandia National Laboratories: Technology Training and Demonstration Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Training and Demonstration Area Visiting Research Scholars CMC Publications The Center for Global Security and Cooperation (CGSC) Cooperative Monitoring Center Technology Training and Demonstration Area Training and Technology Demonstration Area Sandia's Technology Training and Demonstration Area (TTD) showcases technologies that can be cooperatively applied to a range of monitoring applications across the globe: Nonproliferation Counterterrorism International security (including

  12. Cooperative research program in coal liquefaction

    SciTech Connect (OSTI)

    Huffman, G.P.

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  13. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo; Zhang, Sisi

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

  14. MHK technologies include current energy conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies include current energy conversion (CEC) devices, e.g., hydrokinetic turbines that extract power from water currents (riverine, tidal, and ocean) and wave energy conversion (WEC) devices that extract power from wave motion. Sandia's MHK research leverages decades of experience in engineering and design and analysis (D&A) of wind power technologies, and its vast research complex, including high-performance computing (HPC), advanced materials and coatings, nondestructive

  15. Implementing Arrangement Between the U.S. Department of Energy and the Department of Natural Resources of Canada and Atomic Energy of Canada Limited For Collaboration in the Area of Nuclear Research

    Broader source: Energy.gov [DOE]

    Implementing Arrangement Between the U.S. Department of Energy and the Department of Natural Resources of Canada and Atomic Energy of Canada Limited For Collaboration in the Area of Nuclear Research

  16. Research Staff | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Staff Directors Photo of Adam Bratis Adam Bratis Associate Lab Director Dr. Adam Bratis' role as Associate Lab Director is to guide NREL's research to accomplish the objectives of the Department of Energy's Bioenergy Technologies Office, and to serve as a spokesperson for the bioenergy research effort at NREL, both internally and externally. This includes oversight in the areas of biochemical conversion, thermochemical conversion, algae, techno-economic and life-cycle analyses, and

  17. EA-1924: Consolidation and Relocation of Lawrence Berkeley National Laboratory (LBNL) OffSite Research Programs to a New Off-Site Location that also Allows for Future Growth, San Francisco East Bay Area, California

    Broader source: Energy.gov [DOE]

    This EA will evaluate the potential environmental impacts of a proposal to consolidate and relocate LBNL research programs that are currently in leased off-site buildings at various locations around the San Francisco East Bay Area in California, to a new single location that also provides room for future growth of LBNL research programs.

  18. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    The summaries in this document describe the scope of the individual programs and detail the research performed during 1984-1985. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas.

  19. Microsoft PowerPoint - 300 Area Perspective.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area Perspective 300 Area Perspective River and Plateau Committee February 15, 2012 February 15, 2012 John B. Price Business/Research Park in N Richland h d l h High Density Residential is the norm MSA Bldg and Townhouses "Smartpark" includes Townhouses High Density Residential Infiltration from Impervious Areas & Irrigation Townhouses Grass Townhouse Townhouses Grass Bare Ground from Construction Storm Sewer Asphalt Grass Grate p Remediated 1100 Area -Industrial Area f h l ff

  20. Corrective Action Investigation Plan for Corrective Action Unit 168: Areas 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada (Rev. 0) includes Record of Technical Change No. 1 (dated 8/28/2002), Record of Technical Change No. 2 (dated 9/23/2002), and Record of Technical Change No. 3 (dated 6/2/2004)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada

    2001-11-21

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 168 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 168 consists of a group of twelve relatively diverse Corrective Action Sites (CASs 25-16-01, Construction Waste Pile; 25-16-03, MX Construction Landfill; 25-19-02, Waste Disposal Site; 25-23-02, Radioactive Storage RR Cars; 25-23-18, Radioactive Material Storage; 25-34-01, NRDS Contaminated Bunker; 25-34-02, NRDS Contaminated Bunker; CAS 25-23-13, ETL - Lab Radioactive Contamination; 25-99-16, USW G3; 26-08-01, Waste Dump/Burn Pit; 26-17-01, Pluto Waste Holding Area; 26-19-02, Contaminated Waste Dump No.2). These CASs vary in terms of the sources and nature of potential contamination. The CASs are located and/or associated wit h the following Nevada Test Site (NTS) facilities within three areas. The first eight CASs were in operation between 1958 to 1984 in Area 25 include the Engine Maintenance, Assembly, and Disassembly Facility; the Missile Experiment Salvage Yard; the Reactor Maintenance, Assembly, and Disassembly Facility; the Radioactive Materials Storage Facility; and the Treatment Test Facility Building at Test Cell A. Secondly, the three CASs located in Area 26 include the Project Pluto testing area that operated from 1961 to 1964. Lastly, the Underground Southern Nevada Well (USW) G3 (CAS 25-99-16), a groundwater monitoring well located west of the NTS on the ridgeline of Yucca Mountain, was in operation during the 1980s. Based on site history and existing characterization data obtained to support the data quality objectives process, contaminants of potential concern (COPCs) for CAU 168 are primarily radionuclide; however, the COPCs for several CASs were not defined. To address COPC uncertainty, the analytical program for most CASs will include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons, polychlorinated biphenyls, and radionuclides. Upon reviewing historical data and current site conditions, it has been determined that no further characterization is required at USW G3 (CAS 25-99-16) to select the appropriate corrective action. A cesium-137 source was encased in cement within the vadous zone during the drilling of the well (CAS 25-99-16). A corrective action of closure in place with a land-use restriction for drilling near USW G3 is appropriate. This corrective action will be documented in the Corrective Action Decision Document (CADD) for CAU 168. The results of the remaining field investigation will support a defensible evaluation of corrective action alternatives for the other CASs within CAU 168 in this CADD.

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Differences Between Tropical and Trade-Wind Shallow Cumuli Download a printable PDF Submitter: Ghate, V. P., Argonne National Laboratory Area of Research: Vertical Velocity Working...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nucleation Events Download a printable PDF Submitter: McMurry, P. ., University of Minnesota Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal ...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zhang, Q., University of California, Davis Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Lose Download a printable PDF Submitter: Laskin, A., Pacific Northwest National Laboratory Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: NA...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Westwater, E. R., University of Colorado Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference:...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties, Radiative Processes...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Xie, S., Lawrence Livermore National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Xie...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Sea Spray on the Thermodynamics of the Hurricane Boundary Layer Download a printable PDF Submitter: Khain, A., The Hebrew University of Jerusalem Area of Research:...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of MBL Cloud Properties over the Azores Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Radiation Processes Working Group(s): Cloud...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: de Boer, G., University of Colorado, BoulderCIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: de...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simple Equation Is Good Enough Submitter: Barnard, J., University of Nevada Reno Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Properties Journal...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Paine SN, DD Turner, ...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Roobik" Is Part of the Answer, Not a Puzzle Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): ...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Turner DD. ...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Shupe MD, DD Turner, VP ...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud-Radiation Effects on Sea Ice Loss Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud DistributionsCharacterizations...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Dust Composition on Cloud Droplet Formation Download a printable PDF Submitter: Chuang, C., Lawrence Livermore National Laboratory Area of Research: Aerosol Properties...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burning on the Prairies Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Long-Term Impacts of Aerosols on the Vertical Development of Clouds and Precipitation Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research:...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Complexity of Arctic Clouds Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Albedo Observations in the Southern Great Plains Submitter: Lamb, P. J., University of Oklahoma Area of Research: Aerosol Properties Working Group(s): Aerosol Journal...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    over the MJO Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: Cloud DistributionsCharacterizations...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Get Organized Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: Cloud Processes Working Group(s): Cloud...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Into the (Cold) Pool Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: General Circulation and Single Column...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: NA Figure 1. MFRSR data from the TWP site (970910) Figure 2. Aerosol...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Climate Models Submitter: Zhang, G., University of California, San Diego Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s):...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference:...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Experiment Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Properties Journal...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Download a printable PDF Submitter: Moffet, R., University of the Pacific Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: O'Brien...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Download a printable PDF Submitter: Alexandrov, M. D., Columbia University Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Applied Optics,...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDF Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Life Cycle Journal...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kulkarni...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Long, C. N., NOAA Global Monitoring DivisionCIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Riihimaki...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Ronfeld, D., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Properties Journal Reference: NA The...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Laskin, A., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Aerosol Life Cycle...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    printable PDF Submitter: Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s):...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raman Lidar Observations of Aerosol Humidification Near Clouds Submitter: Ferrare, R. A., NASA LaRC Area of Research: Aerosol Properties Working Group(s): Aerosol Journal ...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Technique Successful for Measuring Thickness of Broken Clouds Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Cloud DistributionsCharacterizations ...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP Observations Help Validate Soil Temperature Simulations Download a printable PDF Submitter: Huang, M., Pacific Northwest National Laboratory Area of Research: Surface...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Life Cycle Journal Reference: Zhao Y, GG Mace, and JM Comstock. 2011. "The occurrence of particle ...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Wilson J, D Imre, J Bernek, M Shrivastava, and A Zelenyuk. 2014. "Evaporation ...

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K-Distribution Method for a SW Radiative Transfer Model Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Doppler Radar to Characterize Cloud Parameters Download a printable PDF Submitter: Kogan, Y., University of Oklahoma - CIMMS Area of Research: Cloud Distributions...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Lin, Y., Geophysical Fluid Dynamics Laboratory Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s):...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ARM Data Submitter: Somerville, R. C., Scripps Institution of Oceanography Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s):...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDF Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Aerosol Life Cycle,...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fog and Rain in the Amazon Download a printable PDF Submitter: Gentine, P., Columbia University Sobel, A., Columbia University Area of Research: Cloud-Aerosol-Precipitation...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production Flux of Sea-Spray Aerosol Download a printable PDF Submitter: Schwartz, S. E., Brookhaven National Laboratory Area of Research: Aerosol Properties Working Group(s):...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Sites Enable Assessment of Cluster Analysis for Identifying Cloud Regimes Submitter: Jakob, C., Monash University Area of Research: Cloud DistributionsCharacterizations...

  12. Technical Area 21

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Area 21 Technical Area 21 Technical Area 21 was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. August 1, 2013 Technical Area 21 in 2011 Technical Area 21 in 2011 Technical Area 21 (TA-21), also known as DP Site was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. Between 2008 and 2011, MDAs B, U, and V were excavated and removed. 24 buildings were demolished in 2010 and 2011

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPartICus Submitter: Mishra, S., DOE - SunShot Initiative, AAAS S&T Policy Fellow Mitchell, D. L., Desert Research Institute Area of Research: General Circulation and Single...

  14. Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for 2001-2006 Office of Science Abstracts Database Research Highlights Summaries Research Highlights Members of ARM's science team are major contributors to radiation and cloud research. ARM investigators publish about 150 refereed journal articles per year, and ARM data are used in many studies published by other scientific

  15. Crosscutting Research | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crosscutting Research diagram for focus area four, crosscutting research (A click on the org chart image will lead to a pdf version that includes hotlinks for the e-mail addresses of the leaders.) The Ames Laboratory offers more information about the rapid assessment project in this news release and video

  16. Research Input Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HighlightsSubmit Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for...

  17. Focus Areas | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus Areas FA 1: Diversifying Supply FA 2: Developing Substitutes FA 3: Improving Reuse and Recycling FA 4: Crosscutting Research...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Particle Projected Area- and Mass-Dimension Expressions for Cirrus Clouds Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Erfani E and DL Mitchell. 2015. "Developing and bounding ice particle mass- and area-dimension expressions for use in atmospheric models and remote sensing." Atmospheric Chemistry and Physics, 15(20),

  19. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1983-09-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries in the document describe the scope of the individual programs and detail the research performed during 1982 to 1983. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  20. Bay Area | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development...

  1. Rockies Area | Open Energy Information

    Open Energy Info (EERE)

    Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development...

  2. Texas Area | Open Energy Information

    Open Energy Info (EERE)

    Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the...

  3. Sandia National Laboratories: Research: Research Foundations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Foundations Bioscience Computing and Information Science Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Foundations Leadership in innovation Integrating unique resources and technical excellence to benefit our nation. Certain research areas are considered key to the success of Sandia's national security programs. These areas - known as research foundations - underpin Sandia's innovations

  4. Biological & Environmental Research Abstracts Database

    Office of Scientific and Technical Information (OSTI)

    Welcome to the Biological and Environmental Research Abstracts Database The U.S. Department of Energy's Office of Biological and Environmental Research (BER) conducts research in the areas of Climate and Environmental Sciences and Biological Systems Science. This database contains abstracts of research projects supported by the program. Work was performed at DOE Laboratories as well as at nearly 300 universities and other research institutions. This is a historical database that includes the

  5. Ecological Research Division, Marine Research Program

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

  6. Geological hazards programs and research in the U. S. A

    SciTech Connect (OSTI)

    Filson, J.R. )

    1988-01-01

    Geological hazards have been studied for centuries, but government support of research to lessen their effects is relatively new. This article briefly describes government programs and research underway in the U.S.A. that are directed towards reducing losses of life and property from earthquakes, volcanic eruptions and landslides. The National Earthquake program is described, including four basic research areas: plate tectonics; estimation of the earthquakes; and effects and hazards assessment. The Volcano Studies Program has three areas of research: fundamentals of volcanoes; hazards assessments; and volcano monitoring. Three research areas are included in landslide studies: land slide processes; prediction; inventory and susceptibility studies.

  7. Research Facility,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy Research Experience in Carbon Sequestration 2013 Now Accepting Applications Research Experience in Carbon Sequestration 2013 Now Accepting Applications March 12, 2013 - 1:43pm Addthis Washington, DC - Graduate students and early career professionals can gain hands-on field research experience in areas related to carbon capture and storage (CCS) by participating in the Research Experience in Carbon Sequestration (RECS) program. The initiative, supported by DOE's Office

  8. Current Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Research The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and Analysis Computing Center (TRACC) features a state-of-the-art massively parallel computer system, advanced scientific visualization capability, high-speed network

  9. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1987-09-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas that are germane to the Department of Energy's many missions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  10. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries describe the scope of the individual programs and detail the research performed during 1980 to 1981. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas.

  11. DOE Releases Request for Information on Critical Materials, Including...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sector, including fuel cell platinum group metal catalysts. The RFI is soliciting feedback from industry, academia, research laboratories, government agencies, and other ...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observing Warm Clouds in 3D Using ARM Scanning Cloud Radars and a Novel Ensemble Method Download a printable PDF Submitter: Fielding, M. D., University of Reading Area of Research:...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: China S, G Kulkarni, BV Scarnato, N Sharma, M Pekour, JE Shilling, J Wilson, A ...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To Rain or Not to Rain...Aerosols May Be the Answer Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud-Aerosol-Precipitation Interactions...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During MC3E Download a printable PDF Submitter: Pu, Z., University of Utah Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Pu Z and C...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wu D, B Xi, Z...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Modeling Journal Reference: Naud, C, A Del Genio, GG Mace, S Benson, EE Clothiaux, and P Kollias. ...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Properties Journal Reference: Wang X, KN Liou, SS Ou, GG Mace, and M Deng. 2009. "Remote sensing of ...

  19. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  20. Transportation R and D included in thermal and mechanical sciences program

    SciTech Connect (OSTI)

    1995-03-01

    Argonne National Laboratory is a multiprogram research and development laboratory operated by The University of Chicago for the US Department of Energy. At Argonne, applied research in thermal and mechanical sciences is performed within the Thermal and Mechanical Sciences Section of the Energy Technology Division. Current program areas include compact evaporators and condensers for the process and transportation industries, ice slurries for district cooling, advanced fluids for improved heat transfer and reduced pressure drop, flow-induced vibration and flow distribution in shell-and-tube heat exchangers, and dynamics and control of maglev systems. In general, the objective of the research is to extend the technology base in each of these areas and to facilitate its application in solving problems of importance to US industries and utilities. This is accomplished by developing validated design correlations and predictive methods. The staff of the Thermal and Mechanical Sciences Section have extensive experimental and analytical experience in heat transfer, multiphase flow, structural dynamics and control, fluid-structure interaction, transient flow and mixing, thermally driven flows, and flow visualization using ultra-high-speed video. Large, general-purpose test facilities and smaller, single-purpose test apparatuses are available for experiments and component design evaluation. A world-class capability in the study of flow-induced vibrations exists within the Section. Individual fact sheets, describing currently active research program areas, related facilities, and listing, as a contact, the principal investigator, are included.

  1. Energy Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Research and Development Energy Research and Development 1. In General GC-52 provides legal advice to DOE regarding energy research and development projects supported by DOE for the advancement of basic and applied science in a variety of subject-matter areas including nuclear energy, fusion energy, and climate change research. GC-52 attorneys provide advice on matters related to scientific conduct and activities, review program reports and activities for compliance with applicable

  2. Bay Area

    National Nuclear Security Administration (NNSA)

    8%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  3. Information regarding previous INCITE awards including selected highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | U.S. DOE Office of Science (SC) Information regarding previous INCITE awards including selected highlights Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities User Facilities Accessing ASCR Facilities Innovative & Novel Computational Impact on Theory & Experiement (INCITE) ASCR Leadership Computing Challenge (ALCC) Industrial Users Computational Science Graduate Fellowship (CSGF) Research & Evaluation Prototypes (REP) Science Highlights Benefits of

  4. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 2, Part A: Chapters 3, 4, and 5

    SciTech Connect (OSTI)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1--5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 575 refs., 84 figs., 68 tabs.

  5. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 4, Part B: Chapter 8, Sections 8.0 through 8.3.1.4

    SciTech Connect (OSTI)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 74 figs., 32 tabs.

  6. Research Finds Vitamin D Deficiency Affects Bone Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms, laboratory

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Partial Mechanistic Understanding of the North American Monsoon Download a printable PDF Submitter: Erfani, E., Desert Research Institute Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Erfani E and DL Mitchell. 2014. "A partial mechanistic understanding of the North American monsoon." Journal of Geophysical Research - Atmospheres, 119(23), 10.1002/2014JD022038. a) Dependence of

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Models Download a printable PDF Submitter: Iacono, M. J., Atmospheric & Environmental Research, Inc. Delamere, J. S., Tech-X Corporation Mlawer, E. J., Atmospheric & Environmental Research, Inc. Collins, W. D., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Radiative Processes Journal Reference: Iacono, MJ, JS Delamere, EJ

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climatology of Aerosol Optical Depth in North-Central Oklahoma: 1992-2008 Download a printable PDF Submitter: Michalsky, J. J., Cooperative Institute for Research in Environmental Sciences Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Michalsky J, F Denn, C Flynn, G Hodges, P Kiedron, A Koontz, J Schlemmer, and SE Schwartz. 2010. "Climatology of aerosol optical depth in north-central Oklahoma: 1992-2008." Journal of Geophysical Research -

  10. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  11. Summaries of FY 1993 geosciences research

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the DOE`s many missions. The Geosciences Research Program is supported by the Office of Energy Research. The participants in this program include DOE laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the DOE and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar-atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  12. Cooperative research program in coal liquefaction. Quarterly report, August 1, 1991--October 31, 1991

    SciTech Connect (OSTI)

    Huffman, G.P.

    1991-12-31

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  13. Final Scientific/Technical Report – DE-FG02-06ER64172 – Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center – Subproject to Co-PI Eric E. Roden

    SciTech Connect (OSTI)

    Eric E. Roden

    2009-03-17

    This report summarizes research conducted in conjunction with a project entitled “Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2. Area 2 is a shallow pathway for migration of contaminated groundwater to seeps in the upper reach of Bear Creek at ORNL, mainly through a ca. 1 m thick layer of gravel located 4-5 m below the ground surface. The gravel layer is sandwiched between an overlying layer of disturbed fill material, and 2-3 m of undisturbed shale saprolite derived from the underlying Nolichucky Shale bedrock. The fill was put in place when contaminated soils were excavated and replaced by native saprolite from an uncontaminated area within Bear Creek Valley; the gravel layer was presumably installed prior to addition of the fill in order to provide a stable surface for the operation of heavy machinery. The undisturbed saprolite is highly weathered bedrock that has unconsolidated character but retains much of the bedding and fracture structure of the parent rock (shale with interbedded limestone). Hydrological tracer studies conducted during the Scheibe et al. field project indicate that the gravel layer receives input of uranium from both upstream sources and from diffusive mass transfer out of highly contaminated fill and saprolite materials above and below the gravel layer. This research sought to examine biogeochemical processes likely to take place in the less conductive materials above and below the gravel during the in situ ethanol biostimulation experiment conducted at Area 2 during 2005-2006. The in situ experiment in turn examined the hypothesis that injection of electron donor into this layer would induce formation of a redox barrier in the less conductive materials, resulting in decreased mass transfer of uranium out these materials and attendant declines in groundwater U(VI) concentration. Our research was directed toward the following three major objectives relevant to formation of this redox barrier: (1) elucidate the kinetics and mechanisms of reduction of solid-phase Fe(III) and U(VI) in Area 2 sediments; (2) evaluate the potential for long-term sustained U(IV) reductive immobilization in Area 2 sediments; (3) numerically simulate the suite of hydrobiogeochemical processes occurring in experimental systems so as to facilitate modeling of in situ U(IV) immobilization at the field-scale.

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overly Intense Convective Updrafts Exposed as a Significant Contributor to Model Biases Submitter: Varble, A., University of Utah Zipser, E., University of Utah Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Varble A, EJ Zipser, AM Fridlind, P Zhu, AS Ackerman, J Chaboureau, S Collis, J Fan, A Hill, and B Shipway. 2014. "Evaluation of cloud-resolving and limited area model simulations using TWP-ICE observations. Part 1: Deep convective updraft

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding the Causes for Consistently Low Biased Stratiform Rainfall in Models Submitter: Varble, A., University of Utah Zipser, E., University of Utah Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Varble A, EJ Zipser, AM Fridlind, P Zhu, AS Ackerman, J Chaboureau, J Fan, A Hill, B Shipway, and C Williams. 2014. "Evaluation of cloud-resolving and limited area model simulations using TWP-ICE observations. 2. Precipitation microphysics." Journal of

  16. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ... physics experimental diagnostic techniques for laser or pulsed power implosion systems. ... Development of experimental diagnostic techniques for laser or pulsed power implosion ...

  17. Plant Products a Growing Research Area

    Office of Energy Efficiency and Renewable Energy (EERE)

    For every barrel of crude oil used in the United States, 16% goes toward making products ranging from everyday plastics to specialty chemicals in addition to making liquid fuels. From deli...

  18. SULI Areas of Research | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Shihuai Zhou) Growth and discovery of novel materials (Paul Canfield) Molecular design of extractants (Theresa Windus) Nanomaterials by Design (Ludovico Cademartiri) ...

  19. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    cross sections of stable and unstable nuclei and corresponding reaction rates for neutron, gamma, and ion-induced reactions. Development of advanced simulations and...

  20. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  1. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  2. Percentage of Total Natural Gas Residential Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  3. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S.

  4. Research Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Capabilities Research Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy, to supercomputing. thumbnail of Bioscience At Los Alamos, scientists and engineers are working to unlock many of the mechanisms found in nature to improve humanity's ability to battle diseases, create new forms of environmentally friendly and abundant

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Decade and Counting Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Long CN, SA McFarlane, A Del Genio, P Minnis, TP Ackerman, J Mather, J Comstock, GG Mace, M Jensen, and C Jakob. 2013. "ARM research in the equatorial western Pacific - a decade and counting." Bulletin of the American Meteorological Society, 94(5),

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Campaign Resource Allocation Using Statistical Decision Analysis Download a printable PDF Submitter: Hanlon, C., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Hanlon CJ, JB Stefik, AA Small, J Verlinde, and GS Young. 2013. "Statistical decision analysis for flight decision support: The SPartICus campaign." Journal of Geophysical Research - Atmospheres, , . ACCEPTED. In many atmospheric science field

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pointing Scanning Cloud Radar in the Right Direction Download a printable PDF Submitter: Fielding, M. D., University of Reading Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Fielding MD, JC Chiu, RJ Hogan, and G Feingold. 2013. "3D cloud reconstructions: Evaluation of scanning radar scan strategy with a view to surface shortwave radiation closure." Journal of Geophysical Research -

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Brass Ring of Climate Modeling Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ghan SJ, SJ Smith, M Wang, K Zhang, K Pringle, K Carslaw, J Pierce, S Bauer, and P Adams. 2013. "A simple model of global aerosol indirect effects." Journal of Geophysical Research - Atmospheres, 118, 1-20. The simple model of aerosol effects on clouds

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Digging Into Climate Models' Needs with SPADE Download a printable PDF Submitter: Gustafson, W. I., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Gustafson WI, PL Ma, H Xiao, B Singh, PJ Rasch, and JD Fast. 2013. "The separate physics and dynamics experiment (SPADE) framework for determining resolution awareness: A case study of microphysics." Journal of Geophysical Research -

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Invisible Giants in the Sky Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Photo

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nailing Down Ice in a Cloud Model Download a printable PDF Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Comstock JM, A Protat, SA McFarlane, J Delanoë, and M Deng. 2013. "Assessment of uncertainty in cloud radiative effects and heating rates through retrieval algorithm differences: Analysis using 3 Years of ARM data at Darwin, Australia." Journal of Geophysical Research -

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Overambitious Other Carbon Submitter: Church, J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Song C, M Gyawali, RA Zaveri, JE Shilling, and WP Arnott. 2013. "Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity." Journal of Geophysical Research - Atmospheres, 118, doi:10.1002/jgrd.50767. Time-dependent Mass Absorption

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observational Analysis of Land-Atmosphere Coupling for Climate Model Evaluation Download a printable PDF Submitter: Phillips, T. J., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: Phillips TJ and SA Klein. 2014. "Land-atmosphere coupling manifested in warm-season observations on the U.S. southern great plains." Journal of Geophysical Research -

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBL Aerosol Properties and Their Impact on CCN at the Azores-AMF Site Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Aerosol Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Logan T, B Xi, and X Dong. 2014. "Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores." Journal of Geophysical Research - Atmospheres, 119(8),

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accuracy of GFS and ECMWF Hurricane Sandy Track Forecasts Dependent on Cumulus Parameterization Download a printable PDF Submitter: Bassill, N. P., University of Utah Zipser, E., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Bassill NP. 2014. "Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: Evidence for a dependence on cumulus parameterization." Geophysical Research Letters, ,

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Masters the Misunderstood Mixed-Phase Cloud Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Ovchinnikov M, AS Ackerman, A Avramov, A Cheng, J Fan, AM Fridland, S Ghan, J Harrington, C Hoose, A Korolev, GM McFarquhar, H Morrison, M Paukert, J Savre, BJ Shipway, MD Shupe, A Solomon, and K

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Are Increases in Thunderstorm Activity in Southeast China Related to Air Pollution? Download a printable PDF Submitter: Li, Z., UALBANY Cribb, M. C., University of Maryland Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Yang X and Z Li. 2014. "Increases in thunderstorm activity and relationships with air pollution in southeast China." Journal of Geophysical Research - Atmospheres, 119(4),

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying the Importance of Cold Pool Mechanisms for Convection Triggering Download a printable PDF Submitter: Kuang, Z., Harvard University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Torri G, Z Kuang, and Y Tian. 2015. "Mechanisms for convection triggering by cold pools." Geophysical Research Letters, , . ACCEPTED. Horizontal sections of (left) potential temperature and (right) water vapor specific humidity at 25 m from the model surface.

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observed Relations Between Snowfall Microphysics and Triple-Frequency Radar Observations Download a printable PDF Submitter: Kneifel, S., McGill University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Kneifel S, A von Lerber, J Tiira, D Moisseev, P Kollias, and J Leinonen. 2015. "Observed relations between snowfall microphysics and triple-frequency radar measurements." Journal of Geophysical Research - Atmospheres, 120(12),

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Well Are Shallow Convective Clouds Simulated in the CAM5 Model? Download a printable PDF Submitter: Chandra, A. S., University of Miami Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Chandra AS, C Zhang, SA Klein, and H Ma. 2015. "Low-cloud characteristics over the tropical western Pacific from ARM observations and CAM5 simulations." Journal of Geophysical Research - Atmospheres, 120, 52402, doi:10.1002/2015JD02.

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stereo Photogrammetry Reveals Substantial Drag on Cloud Thermals Download a printable PDF Submitter: Romps, D., Lawrence Berkeley National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Romps DM and R Oktem. 2015. "Stereo photogrammetry reveals substantial drag on cloud thermals." Geophysical Research Letters, , doi:10.1002/2015GL064009. ONLINE. A 14-minute sequence of cloud growth as observed by a camera located at the MAST Academy

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieving Cloud and Aerosol Properties from the ARM Raman Lidar Download a printable PDF Submitter: Thorsen, T., NASA - Langley Research Center Fu, Q., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Thorsen TJ, Q Fu, RK Newsom, DD Turner, and JM Comstock. 2015. "Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, Part I: Feature detection." Journal of

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Ice Nuclei Recycling in the Maintenance of Cloud Ice in Arctic Mixed-phase Stratocumulus Download a printable PDF Submitter: Solomon, A., NOAA/ESRL/Physical Sciences Division Feingold, G., NOAA - Earth System Research Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle Journal Reference: Solomon A, G Feingold, and MD Shupe. 2015. "The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Arctic Mixed-Phase Cloud Structure Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Qiu S, X Dong, B Xi, and F Li. 2015. "Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations." Journal of Geophysical Research - Atmospheres, 120, 10.1002/2014JD023022.

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scale-Aware Parameterization of Liquid Cloud Inhomogeneity and Its Impact on Simulated Climate Download a printable PDF Submitter: Zhang, M., Stony Brook University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Xie X and M Zhang. 2015. "Scale-aware parameterization of liquid cloud inhomogeneity and its impact on simulated climate in CESM." Journal of Geophysical Research - Atmospheres, 120(16),

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Fire to Ice Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Kulkarni GR, M Nandasiri, A Zelenyuk, J Beranek, N Madaan, A Devaraj, V Shutthanandan, S Thevuthasan, and T Varga. 2015. "Effects of crystallographic properties on the ice nucleation properties of volcanic ash particles." Geophysical Research Letters, 42(8), doi:10.1002/2015GL063270. Tons of

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Changes Clouds' Ice Crystal Genesis Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Kulkarni GR, K Zhang, C Zhao, M Nandasiri, V Shutthanandan, X Liu, L Berg, and J Fast. 2015. "Ice formation on nitric acid-coated dust particles: Laboratory and modeling studies." Journal of Geophysical Research - Atmospheres, 120(15), doi:10.1002/2014JD022637.

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bell-Shaped Curve Captures Cloud System Variability Submitter: Lamb, P. J., University of Oklahoma Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Journal of Geophysical Research, 110, D18205, doi:10.1029/2005JD006158. Figure 1. Reflectivity standard deviation PDFs, resampled as a function of timescale and contoured by equal values of probability, show an increase in variability with scale. The PDF modes lie mostly along the mean

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Birth and Growth of an Aerosol Download a printable PDF Submitter: Fast, J. ., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A An aerosol particle journey. New modeling approaches developed by a research team led by PNNL show how aerosol particles are born and grow to affect the atmosphere and ultimately climate. Tiny atmospheric aerosols are some of the most highly

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dependence of Entrainment in Shallow Cumulus Convection on Vertical Velocity and Distance to Cloud Edge PI Contact: Kuang, Z., Harvard University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Tian Y and Z Kuang. 2016. "Dependence of entrainment in shallow cumulus convection on vertical velocity and distance to cloud edge." Geophysical Research Letters, , doi:10.1002/2016GL069005. ONLINE. Percentage change in (a) vertical velocity, (b) distance

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying Error in the Radiative Forcing of the First Aerosol Indirect Effect Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Submitted to Geophysical Research Letters, 06-27-2007. Radiative forcing of aerosol indirect as function of CCN number density and LWP in units of W/m2 per 5% IE error. A survey of recently published works shows that values used to represent the magnitude of

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Atmospheric Aerosols Using MFRSR Measurements Download a printable PDF Submitter: Alexandrov, M. D., Columbia University Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Alexandrov, MD, AA Lacis, BE Carlson, and B Cairns. 2007. "Characterization of atmospheric aerosols using MFRSR measurements." (Journal of Geophysical Research 113, DO8204. Sample spectral optical depths of atmospheric constituents in 300 - 900 nm spectral range:

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Science Applications of AERI Measurements Submitter: Smith, W. L., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Cloud Modeling Journal Reference: DeSlover, D. H. 1996. Analysis of Visible and Infrared Cirrus Cloud Optical Properties Using High Spectral Resolution Remote Sensing, M.S. Thesis, University of Wisconsin - Madison. Ho, S.-P. 1997. Atmospheric Profiles From Simultaneous Observations of Upwelling and Downwelling Spectral Radiance, Ph.D.

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model Download a printable PDF Submitter: Zhang, G., University of California, San Diego Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Li, G, and GJ Zhang. 2008. "Understanding biases in shortwave cloud radiative forcing in the National Center for Atmospheric Research Community Atmosphere Model (CAM3) during El

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wide Angle Imaging Lidar: Active Optical Sensor Technology for Ground-Based Probing of Dense Clouds Download a printable PDF Submitter: Davis, A. B., Jet Propulsion Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Davis, AB. 2008. "Multiple-scattering lidar from both sides of the clouds: Addressing internal structure." Journal of Geophysical Research 113, D14S10, doi:10.1029/2007JD009666. Figure 1. Lidar

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minimal Shortwave Anomalous Absorption Found over ACRF Sites Download a printable PDF Submitter: Dong, X., University of North Dakota Minnis, P., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Dong, X, BA Wielicki, B Xi, Y Hu, GG Mace, S Benson, F Rose, S Kato, T Charlock, and P Minnis. 2008. "Using observations of deep convective systems to constrain atmospheric column absorption of solar radiation in the

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Surprisingly Large Contribution of Small Marine Clouds to Cloud Fraction and Reflectance Download a printable PDF Submitter: Oreopoulos, L., NASA Feingold, G., NOAA - Earth System Research Laboratory Koren, I., Weizmann Institute of Science Remer, L., NASA - GSFC, Laboratory for Atmospheres Area of Research: Clouds with Low Optical [Water] Depths (CLOWD) Working Group(s): Cloud Properties Journal Reference: Koren, I, L Oreopoulos, G Feingold, LA Remer, and O Altaratz. 2008. "How small

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Aerosol Measurements on Cloudy Days: a New Method Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Kassianov, EI, and M Ovtchinnikov. 2008. "On reflectance ratios and aerosol optical depth retrieval in the presence of cumulus clouds." Geophysical Research Letters doi:10.1029/2008GL033231.

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detection and Retrieval of Cirrus Clouds in the Tropics from AIRS: Validation from ARM Data Submitter: Yue, Q., Jet Propulsion Laboratory/California Institute of Technology Liou, K., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Yue Q and KN Liou. 2009. "Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra." Geophysical Research Letters, 36, L05810,

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Influence of Parameterized Ice Habit on Simulated Mixed-Phase Arctic Clouds Download a printable PDF Submitter: Harrington, J. Y., Pennsylvania State University Avramov, A., Columbia University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Avramov A and JY Harrington. 2010. "Influence of parameterized ice habit on simulated mixed phase Arctic clouds." Journal of Geophysical Research - Atmospheres, 115, D03205,

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds Brighten Up the Sky Near Them Download a printable PDF Submitter: Varnai, T., University of Maryland, Baltimore County/JCEST Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Varnai T and A Marshak. 2009. "MODIS observations of enhanced clear sky reflectance near clouds." Geophysical Research Letters, 36, L06807, doi:10.1029/2008GL037089. Figure 1. Illustration of clouds enhancing the

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Ground-Based Millimeter-Wave Observations During RHUBC I Submitter: Cimini, D., CETEMPS - Dipartimento di Fisica Westwater, E. R., University of Colorado Payne, V., Jet Propulsion Laboratory/California Institute of Technology Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Exner, M., Radiometrics Corporation Cadeddu, M. P., Argonne National Laboratory Area of Research: Radiation Processes Working Group(s):

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Method for Retrieving Cloud Heights from Satellite Data Download a printable PDF Submitter: Chang, F., Science Systems and Applications, Inc. Minnis, P., NASA - Langley Research Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Chang F, P Minnis, B Lin, MM Khaiyer, R Palikonda, and DA Spangenberg. 2010. "A modified method for inferring cloud top height using GOES-12 imager 10.7- and 13.3-µm data." Journal of

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Summertime Radiative Forcing by Shallow Cumuli at the ARM SGP Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Berg LK, EI Kassianov, CN Long, and DL Mills. 2011. "Surface summertime radiative forcing by shallow cumuli at the ARM SGP." Journal of Geophysical Research - Atmospheres, 116, D01202, 10.1029/2010JD014593. Histogram of hourly average shortwave

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adoption of RRTMG in the NCAR CAM5 and CESM1 Global Climate Models Download a printable PDF Submitter: Iacono, M. J., Atmospheric & Environmental Research, Inc. Collins, W. D., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A Figure 1. Shortwave cloud forcing for three versions of the NCAR Community Atmosphere Model (CAM) with CERES

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations of the First Aerosol Indirect Effect in Shallow Cumuli Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Berg LK, CM Berkowitz, JC Barnard, G Senum, and SR Springston. 2011. "Observations of the first aerosol indirect effect in shallow cumuli." Geophysical Research Letters, 38, L03809, 10.1029/2010GL046047. Mean value of (a)

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cumuli Impact on Solar Radiation at Surface: Spectral Changes Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, J Barnard, LK Berg, CN Long, and C Flynn. 2011. "Shortwave spectral radiative forcing of cumulus clouds from surface observations." Geophysical Research Letters, 38, L07801,

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Possible Impact of Homogeneous Freezing Nucleation on in Situ Measurements Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Mishra, S., DOE - SunShot Initiative, AAAS S&T Policy Fellow Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mitchell DL, S Mishra, and RP Lawson. 2011. Cirrus Clouds and Climate Engineering: New Findings on Ice Nucleation and Theoretical

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Putting the Pieces Together Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Fan J, S Ghan, M Ovchinnikov, X Liu, P Rasch, and A Korolev. 2011. "Representation of arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study." Journal of Geophysical Research - Atmospheres, 116,

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Science Applications of AERI Measurements: 1997 Progress Submitter: Smith, W. L., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Cloud Modeling Journal Reference: N/A Figure 1. Figs. 1a and 1b contain rms differences from 72 radiosondes for AERI retrievals (blue), GOES retrievals (black), and AERI+GOES retrievals (red) for temperature and mixing ratio respectively during the 1997 Water Vapor IOP. A measure of meteorological the variability of the

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Recent Evaluation of the MT_CKD Model of Continuum Absorption Download a printable PDF Submitter: Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi:

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution + Storm Clouds = Warmer Atmosphere Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Fan J, D Rosenfeld, Y Ding, L Leung, and Z Li. 2012. "Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection." Geophysical Research Letters, 39, L09806,

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How to Catch Aerosols in the Act Download a printable PDF Submitter: Wang, M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wang M, S Ghan, X Liu, TS L'Ecuyer, K Zhang, H Morrison, M Ovchinnikov, R Easter, R Marchand, D Chand, Y Qian, and JE Penner. 2012. "Constraining cloud lifetime effects of aerosols using A-Train satellite observations." Geophysical Research Letters, 39, L15709, doi:

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Invisible" Giants in the Sky Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Daily averaged values of (a, b) the direct

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying the Magnitude of Anomalous Solar Absorption Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Figure 1 Spurred by a series of articles published in 1995 claiming solar absorption in cloudy atmospheres far exceeded model predictions, Atmospheric Radiation Measurement (ARM) Program researchers at the Southern Great Plains (SGP) site in Oklahoma

  16. Zelenay wins Electrochemical Society's Research Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins Electrochemical Society's Research Award December 11, 2012 Piotr Zelenay of LANL's Sensors and Electrochemical Devices group has won the 2012 Research Award presented by the Energy Technology Division of The Electrochemical Society. The award recognizes Zelenay's "outstanding and original contributions to the science and technology of energy-related research areas that include scientific and technological aspects of fossil fuels and alternative energy sources, energy management and

  17. Quantitative Analysis of Biofuel Sustainability, Including Land...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions ...

  18. Southern CA Area | Open Energy Information

    Open Energy Info (EERE)

    CA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Southern CA Area 1.1 Products and Services in the Southern CA Area 1.2 Research and Development...

  19. Focus Area 3 Deliverables

    Office of Environmental Management (EM)

    3 - Commercial Grade item and Services Dedication Implementation and Nuclear Services Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task # and Description Deliverable Project Area 3-Commercial Grade Item and Services Dedication 3.1-Complete a survey of selected EM contractors to identify the process and basis for their CGI dedication program including safety classification of items being dedicated for

  20. Environmental research program: FY 1987, annual report

    SciTech Connect (OSTI)

    Not Available

    1988-03-01

    This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. The Program's Annual Report contains summaries of research performed during FY 1987 in the areas of atmospheric aerosols, flue gas chemistry, combustion, membrane bioenergetics, and analytical chemistry. The main research interests of the Atmospheric Aerosol Research group concern the chemical and physical processes that occur in haze, clouds, and fogs. For their studies, the group is developing novel analytical and research methods for characterizing aerosol species. Aerosol research is performed in the laboratory and in the field. Studies of smoke emissions from fires and their possible effects on climatic change, especially as related to nuclear winter, are an example of the collaboration between the Atmospheric Aerosol Research and Combustion Research Groups.

  1. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  2. Research Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Techniques Research Techniques Print Coming Soon

  3. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    The Department of Energy supports research in the geosciences in order to provide a sound underlay of fundamental knowledge in those areas of the earth, atmospheric, and solar/terrestrial sciences that relate to the Department of Energy's many missions. The Division of Engineering, Mathematical and Geosciences, which is a part of the Office of Basic Energy Sciences and comes under the Director of Energy Research, supports under its Geosciences program major Department of Energy laboratories, industry, universities and other governmental agencies. The summaries in this document, prepared by the investigators, describe the overall scope of the individual programs and details of the research performed during 1979-1980. The Geoscience program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related to the Department's technological needs, either directly or indirectly.

  4. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    SciTech Connect (OSTI)

    1999-06-01

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  5. University Turbine Systems Research Program

    SciTech Connect (OSTI)

    Leitner, Robert; Wenglarz, Richard

    2010-12-31

    The primary areas of university research were combustion, aerodynamics/heat transfer, and materials, with a few projects in the area of instrumentation, sensors and life (ISL).

  6. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 2. Ecological sciences

    SciTech Connect (OSTI)

    Vaughan, B.E.

    1984-02-01

    The 1983 annual report highlights research in five areas funded by the Ecological Sciences Division of the Office of Energy Research. The five areas include: western semi-arid ecosystems; marine sciences; mobilization fate and effects of chemical wastes; radionuclide fate and effects; and statistical and quantitative research. The work was accomplished under 19 individual projects. Individual projects are indexed separately.

  7. DOE Research and Development Accomplishments Blog Archive 2008-2009

    Office of Scientific and Technical Information (OSTI)

    08 - 2009 Archive Date: 12/1/09 The Year of Science 2009 theme for December is science and health. DOE and predecessor agency researchers have made multiple contributions to these areas of research, including decoding DNA, radiation and cancer therapy, and medical radiography for CAT and MRIscanning. DOE-associated researchers include Nobel Laureates in Medicine. Date: 11/2/09 The Year of Science 2009 theme for November is chemistry. We join the celebration of this theme by featuring the

  8. NREL: Photovoltaics Research - Solar Energy Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Research Facility Photo of the Solar Energy Research Facility. The exterior stepped clerestory of the Solar Energy Research Facility. Photovoltaics (PV) and basic energy sciences are two major research areas conducted in the Solar Energy Research Facility (SERF). The building incorporates a multitude of energy saving features that make it one of the government's most energy efficient buildings with 40 percent lower energy costs than similar buildings designed to meet federal energy

  9. Environmental Protection Agency Research Triangle Park (RTP) Research Facility

    High Performance Buildings Database

    Research Triangle Park, NC The EPA's new RTP campus houses over 2,000 people in 600 laboratory modules--one of the largest multi-disciplinary groups of environmental scientists in the world. The complex includes four 5-story laboratory blocks, three 3-story office blocks, and a 6-story office building that also houses special program areas. The facility design embodies the EPA's environmental ethics.

  10. INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION

    Office of Scientific and Technical Information (OSTI)

    interval technical basis document Chiaro, P.J. Jr. 44 INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION DETECTORS; RADIATION MONITORS; DOSEMETERS;...

  11. Annual Technology Baseline (Including Supporting Data); NREL...

    Office of Scientific and Technical Information (OSTI)

    Annual Technology Baseline (Including Supporting Data); NREL (National Renewable Energy Laboratory) Citation Details In-Document Search Title: Annual Technology Baseline ...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China's Aerosol Malady Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Qiu Y, Q Wang, and F Hu. 2012. "Shouxian aerosol radiative properties measured by DOE AMF and compared with CERES-MODIS." Advanced Materials Research, 518-523(2), doi:10.4028/www.scientific.net/AMR.518-523.1973. Tiananmen tower enveloped by heavy fog and haze in January 2013. Many of

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Madden-Julian Oscillation Heating: to Tilt or Not to Tilt Download a printable PDF Submitter: Schumacher, C., Texas A&M University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lappen C and C Schumacher. 2014. "The role of tilted heating in the evolution of the MJO." Journal of Geophysical Research - Atmospheres, , 10.1002/2013JD020638. ACCEPTED. In this figure, November through April wavenumber frequency spectrum of OLR (colors) and 850

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of CERES-MODIS Cloud Retrievals Using the Azores Data Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Xi B, P Minnis, and S Sun-Mack. 2014. "Comparison of marine boundary layer cloud properties from CERES-MODIS edition 4 and DOE ARM AMF measurements at the Azores." Journal of Geophysical Research - Atmospheres, 119, doi:10.1002/2014JD021813. Figure 1. The ARM

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Warming Due to Soot and Smoke? Maybe Not. Submitter: Penner, J. E., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Penner, J.E., S.Y. Zhang, and C.C. Chuang, Soot and smoke aerosol may not warm climate, J. Geophys. Res., 108(D21), 4657, doi:10.1029/2003JD003409, 2003. New research results from the Department of Energy's Atmospheric Radiation Measurement (ARM) Program suggest that fossil fuel soot emissions and biomass smoke may

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Program Achieves Milestone in Global Cloud Properties Research Submitter: Revercomb, H. E., University of Wisconsin, Madison Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Knuteson, R.O., Best, F.A., Dedecker, R.G., Feltz, W.F., Revercomb, H.E., and Tobin, D.C., 2004: "10 Years of AERI Data from the DOE ARM Southern Great Plains Site," In Proceedings from the Fourteenth ARM Science Team Meeting, U.S. Department of Energy,Washington,

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bimodal CCN Spectra Download a printable PDF Submitter: Hudson, J. G., Desert Research Institute Area of Research: Cloud Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A Figure 1. Differential CCN concentrations (per cm3) against critical supersaturation (Sc) for MASE below cloud CCN spectra for each of the 8 modal categories. (a) cat 1, (b) cat 2, (c) cat 3, (d) cat 4, (e) cat 5, (f) cat 6, (g) cat 7, (h) cat 8. Sc in percent for, Hoppel minima are

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM M-PACE Data Used to Evaluate and Improve Arctic Mixed-Phase Clouds Simulated in Climate Models Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Xie, S, J Boyle, SA Klein, X Liu, and S Ghan. 2008. "Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE." Journal of Geophysical Research 113,

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Apparent Bluing of Aerosols Near Clouds Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marshak, A, G Wen, JA Coakley, LA Remer, NG Loeb, and RF Cahalan. 2008. "A simple model of the cloud adjacency effect and the apparent bluing of aerosols near clouds." Journal of Geophysical Research 113, D14S17, doi: 10.1029/2007JD009196. (upper panel) A schematic

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Sensing of Mineral Dust Using AERI Download a printable PDF Submitter: Hansell, R. A., University of California, Los Angeles Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Hansell R, KN Liou, SC Ou, SC Tsay, Q Ji, and JS Reid. 2008. "Remote sensing of mineral dust aerosol using AERI during the UAE2: A modeling and sensitivity study." Journal of Geophysical Research - Atmospheres, 113, D18202, doi:10.1029/2008JD010246. BT sensitivity to dust

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Term Observations of Convective Boundary Layer Using Insect Returns at SGP Download a printable PDF Submitter: Chandra, A. S., McGill University Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Chandra AS, P Kollias, SE Giangrande, and SA Klein. 2010. "Long-term observations of the convective boundary layer using insect radar returns at the SGP ARM Climate Research Facility." Journal of Climate, 23, 5699-5714. Example of time-height mapping

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving the Treatment of Radiation in Climate Models Download a printable PDF Submitter: Delamere, J. S., Tech-X Corporation Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Delamere JS, SA Clough, VH Payne, EJ Mlawer, DD Turner, and RR Gamache. 2010. "A far-infrared radiative closure study in the Arctic: Application to water vapor." Journal of Geophysical Research - Atmospheres, 115, D17106, 10.1029/2009JD012968. The

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predicting Arctic Sea Ice Loss Download a printable PDF Submitter: Liu, X., University of Wyoming Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Liu X, S Xie, J Boyle, SA Klein, X Shi, Z Wang, W Lin, SJ Ghan, M Earle, PS Liu, and A Zelenyuk. 2011. "Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations." Journal of Geophysical Research, 116, D00T11,

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Method for Three-Dimensional Imaging of Cirrus Clouds Submitter: Liou, K., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Liou, K.N, S.C. Ou, Y. Takano, J. Roskovensky, G.G. Mace, K. Sassen, and M. Poellot, 2002: "Remote sensing of three-dimensional inhomogeneous cirrus clouds using satellite and mm-wave cloud radar data," Geophysical Research Letters 29(9): 1360. Figure 1 ARM Data

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partly Cloudy with a Chance of Aerosol Download a printable PDF Submitter: Chand, D., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Chand D, R Wood, SJ Ghan, M Wang, M Ovchinnikov, PJ Rasch, S Miller, B Schichtel, and T Moore. 2012. "Aerosol optical depth increase in partly cloudy conditions." Journal of Geophysical Research, 117, D17207, doi:10.1029/2012JD017894. The sky can appear nearly clear or

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Short and the Long of Storms: Tracing a Deep Convective System's Life in the Midlatitude Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, X Dong, B Xi, S McFarlane, A Kennedy, B Lin, and P Minnis. 2012. "Life cycle of midlatitude deep convective systems in a Lagrangian framework." Journal of Geophysical Research - Atmospheres, 117(D23), D23201,

  7. Plutonium focus area

    SciTech Connect (OSTI)

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  8. Overview | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Overview PARC2 brings together a core of twenty-one diverse scientists to form an international interdisciplinary team that brings extraordinary breadth and depth of intellectual and technical expertise to this important research area. The team includes: Robert E. Blankenship, Washington University in St. Louis, Director Dewey Holten, Washington University in St. Louis, Associate Director David Bocian, University of California, Riverside Donald Bryant, The Pennsylvania State University

  9. Hawaii Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hawaii Geothermal Area Hawaii Geothermal Area The Hawaii geothermal area includes the Puna Geothermal Venture, which is located about 21 miles south of Hilo on the Big Island of ...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagnosing Raindrop Evaporation, Breakup, and Coalescence in Vertical Radar Observations PI Contact: Williams, C. R., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Williams CR. 2016. "Reflectivity and Liquid Water Content Vertical Decomposition Diagrams to Diagnose Vertical Evolution of Raindrop Size Distributions." Journal of Atmospheric and Oceanic Technology, 33(3), doi: 10.1175/jtech-d-15-0208.1. Example of

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microphysical Piggybacking: Understanding the Coupling Between Cloud Dynamics and Microphysics PI Contact: Grabowski, W., NCAR Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Grabowski WW. 2014. "Extracting microphysical impacts in large-eddy simulations of shallow convection." Journal of the Atmospheric Sciences, 71(12), 10.1175/JAS-D-14-0231.1. Grabowski WW. 2015. "Untangling microphysical

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regime Dependence of Cloud Water Variability Observed at the ARM Sites PI Contact: Ahlgrimm, M., European Centre for Medium-Range Weather Forecasts Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Ahlgrimm M and RM Forbes. 2016. "Regime dependence of cloud condensate variability observed at the Atmospheric Radiation Measurement sites." Quarterly Journal Royal Meteorological Society, ,

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Aerosols in Fair-Weather Clouds During CHAPS Download a printable PDF Submitter: Shrivastava, M., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Shrivastava M, LK Berg, J Fast, R Easter, A Laskin, WI Gustafson, Y Liu, and CM Berkowitz. 2013. "Modeling aerosols and their interactions with shallow cumuli during the 2007 CHAPS field study." Journal of

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fair-Weather Clouds Hold Dirty Secret Download a printable PDF Submitter: Shrivastava, M., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Shrivastava MB, JD Fast, RC Easter, WI Gustafson, RA Zaveri, JL Jimenez, P Saide, and A Hodzic. 2011. "Modeling organic aerosols in a megacity: Comparison of simple and complex representations of the volatility basis set

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Controls the Vertical Extent of Continental Shallow Cumulus? Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Zhang Y and SA Klein. 2013. "Factors controlling the vertical extent of fair-weather shallow cumulus clouds over land: investigation of diurnal-cycle observations collected at the ARM Southern Great Plains site." Journal of the Atmospheric Sciences,

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Importance of Environmental Instability to the Sensitivity of the Rimed Ice Species in Convection Download a printable PDF Submitter: Van Weverberg, K., Brookhaven National Laboratory Vogelmann, A. M., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Van Weverberg K. 2013. "Impact of environmental instability on convective precipitation uncertainty associated with the nature of the rimed ice species in a bulk microphysics

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Different Strokes for Different Folks-Not Any More, Say Scientists at the UK Met Office Submitter: Morcrette, C., Met Office Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Morcrette CJ, EJ O'Connor, and JC Petch. 2012. "Evaluation of two cloud parametrization schemes using ARM and Cloud-Net observations." Quarterly Journal Royal Meteorological Society, 138(665), doi:10.1002/qj.969. Errors

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Finer Mesh to Improve Cloud Representation in Climate Models? Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Boutle IA, SJ Abel, PG Hill, and CJ Morcrette. 2013. "Spatial variability of liquid cloud and rain: observations and microphysical effects." Quarterly Journal Royal Meteorological Society, , doi:10.1002/qj.2140. Different sizes of water droplets as well as varying water

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Survey over West Africa Reveals Climate Impact of Mid-Level Clouds Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Bouniol D, F Couvreux, PH Kamsu-Tamo, M Leplay, F Guichard, F Favot, and EJ O'Connor. 2012. "Diurnal and seasonal cycles of cloud occurrences, types, and radiative impact over West Africa." Journal of Applied Meteorology and Climatology, 51(3),

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Ice Cloud Simulations Using Scripps Single Column Model (SCM) Reveal Range of Model Uncertainties Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: McFarquhar, G.M., S. Iacobellis, R.C.J. Somerville. SCM Simualtions of Tropical Ice Clouds Using Observationally Based Parameterizations of Microphysics, Journal of Climate: Vol 15, No. 11, pp.

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Microphysics Parameterization in Simulating Tropical Mesoscale Convective Systems Download a printable PDF Submitter: Van Weverberg, K., Brookhaven National Laboratory Vogelmann, A. M., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Van Weverberg K, AM Vogelmann, W Lin, EP Luke, AT Cialella, P Minnis, MM Khaiyer, ER Boer, and MP Jensen. 2013. "The role of cloud microphysics parameterization in the simulation

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Application of Linear Programming Techniques to ARM Polarimetric Radar Processing Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, R McGraw, and L Lei. 2013. "An application of linear programming to polarimetric radar differential phase processing." Journal of Atmospheric and Oceanic Technology, , . ACCEPTED. C-band scanning ARM precipitation radar

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insights Into Deep Convective Core Vertical Velocities Using ARM UHF Wind Profilers Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, S Collis, J Straka, A Protat, C Williams, and S Krueger. 2013. "A summary of convective core vertical velocity properties using ARM UHF wind profilers in Oklahoma." Journal of Applied Meteorology and Climatology, ,

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linking Ice Nucleation to Aerosols and Its Impact on CAM5 Simulated Arctic Clouds and Radiation Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Xie S, X Liu, C Zhao, and Y Zhang. 2013. "Sensitivity of CAM5 simulated arctic clouds and radiation to ice nucleation parameterization." Journal of Climate, 26(16),

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wildfires Lead to More Warming Than Climate Models Predict, a New Mexico Fire Study Reports Download a printable PDF Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: China S, C Mazzoleni, K Gorkowski, AC Aiken, and MK Dubey. 2013. "Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles." Nature Communications, 4, 2122, doi:10.1038/ncomms3122.

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Impact of Instrument Selection and Sampling on Cloud Fraction at the ARM Southern Great Plains Site Download a printable PDF Submitter: Kennedy, A. D., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Kennedy AD, X Dong, and B Xi. 2013. "Cloud Fraction at the ARM SGP Site: Instrument and sampling considerations from 14 years of ARSCL." Theoretical and Applied Climatology (Springer), 115(1-2),

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modified Climate Model Better Replicates Global Rainfall Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Song X, GJ Zhang, and JF Li. 2012. "Evaluation of microphysics parameterization for convective clouds in the NCAR Community Atmosphere Model CAM5." Journal of Climate, 25(24), doi:10.1175/JCLI-D-11-00563.1. Rainfall in the

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Tall Order: Climate Models Fall Short in Predicting African Sahel Rainfall Download a printable PDF Submitter: Roehrig, R., Meteo-France CNRM/GMME/MOANA Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Roehrig R, D Bouniol, F Guichard, F Hourdin, and JL Redelsperger. 2013. "The present and future of the West African Monsoon: A process-oriented assessment of CMIP5 simulations along

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Comes the Thunder: Precursors to Local Rainfall in the West African Monsoon Download a printable PDF Submitter: Roeder, L. R., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Dione C, M Lothon, D Badiane, B Campistron, F Couvreau, F Guichard, and S Sall. 2013. "Phenomenology of Sahelian convection observed in Niamey during the early monsoon." Quarterly Journal Royal Meteorological Society, , . ACCEPTED.

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Addressing the "Light Precipitation Problem" in the ECMWF Global Model Download a printable PDF Submitter: Ahlgrimm, M., European Centre for Medium-Range Weather Forecasts Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Ahlgrimm M and R Forbes. 2013. "Improving the representation of low clouds and drizzle in the ECMWF model based on ARM observations from the Azores." Monthly Weather Review,

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determining the Future of CO2 Using an Earth System Model Download a printable PDF Submitter: Keppel-Aleks, G., University of Michigan Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol Life Cycle Journal Reference: Keppel-Aleks G, JT Randerson, K Lindsay, BB Stephens, JK Moore, SC Doney, PE Thornton, NM Mahowald, FM Hoffman, C Sweeney, PP Tans, PO Wennberg, and SC Wofsy. 2013. "Atmospheric carbon dioxide variability in the Community

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ground Stations Likely Get a Boost from Satellites to Estimate Carbon Dioxide Emissions Download a printable PDF Submitter: Roeder, L. R., Pacific Northwest National Laboratory Area of Research: Surface Properties Working Group(s): Aerosol Life Cycle Journal Reference: Basu S, S Guerlet, A Butz, S Houweling, OP Hasekamp, I Aben, PB Krummel, LP Steele, RL Langenfelds, MS Torn, SC Biraud, B Stephens, A Andrews, and D Worthy. 2013. "Global CO2 fluxes estimated from GOSAT retrievals of total

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All Mixed Up-Probing Large and Small Scale Turbulence Structures in Continental Stratocumulus Clouds Download a printable PDF Submitter: Fang, M., University of Miami Albrecht, B. A., University of Miami Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Fang M, BA Albrecht, VP Ghate, and P Kollias. 2013. "Turbulence in continental stratocumulus, Part I: External forcings and turbulence structures." Boundary-Layer Meteorology, 149(454),

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Does Glyoxal Contribute Significantly to Regional SOA Formation? Download a printable PDF Submitter: Knote, C., Atmospheric Chemistry Division Hodzic, A., NCAR Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Knote C, A Hodzic, J Jimenez, R Volkamer, JJ Orlando, S Baidar, J Brioude, J Fast, DR Gentner, AH Goldstein, PL Hayes, BW Knighton, H Oetjen, A Setyan, H Stark, R Thalman, G Tyndall, R Washenfelder, E Waxman, and Q Zhang. 2014. "Simulation of

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Stratocumulus Clouds: Turbulence-Raidation-Thermodynamics Coupling Download a printable PDF Submitter: Ghate, V. P., Argonne National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Ghate VP, BA Albrecht, MA Miller, A Brewer, and CW Fairall. 2014. "Turbulence and radiation in stratocumulus-topped marine boundary layers: A case study from VOCALS-REx." Journal of Applied Meteorology and Climatology, 53, 117-135. Figure 1.

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial Aerosol Concentration Is Key Contributor to Low-Level Cloud Reflectivity Submitter: Penner, J. E., University of Michigan Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Penner, J., Dong, X., Chen. Y., Observational evidence of a change in radiative forcing due to the indirect aerosol effect, Nature, Vol. 427, 15 January 2004. Cloud optical depth, as determined from the parcel model, is indicated by the dots. Red lines show best fit data of cloud liquid

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most Systematic Errors in Climate Models Appear in Only a Few Days of Model Integration Download a printable PDF Submitter: Ma, H., Lawrence Livermore National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Ma H, S Xie, SA Klein, KD Williams, JS Boyle, S Bony, H Douville, S Fermepin, B Medeiros, S Tyteca, M Watanabe, and DL Williamson. 2014. "On the correspondence between mean forecast errors and climate errors in

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reality Check: Estimates for Human-Caused Methane Emissions in the U.S. Appear Off by 50% Download a printable PDF Submitter: Biraud, S. C., Lawrence Berkeley National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Miller SM, SC Wofsy, AM Michalak, EA Kort, AE Andrews, SC Biraud, EJ Dlugokencky, J Elszkeiwicz, ML Fischer, G Janssens-Maenhout, BR Miller, JB Miller, SA Montzka, T Nehrkorn, and C Sweeney. 2013. "Anthropogenic emissions

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Winter Frost Flowers Have Negligible Influence on Cloud Longwave Warming Download a printable PDF Submitter: Xu, L., University of California, San Diego Russell, L. M., Scripps Institution of Oceanography Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Xu L, LM Russell, RC Somerville, and PK Quinn. 2013. "Frost flower aerosol effects on Arctic wintertime longwave cloud radiative forcing."

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multi-scale Variations of Decade-long Cloud Fractions from Six Different Platforms over the SGP Download a printable PDF Submitter: Wu, W., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Wu W, Y Liu, MP Jensen, T Toto, MJ Foster, and CN Long. 2014. "A comparison of multiscale variations of decade-long cloud fractions from six different platforms over the Southern Great Plains in the United

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Organic Molecules Explaining New Particle Growth in the Boreal Forest Download a printable PDF Submitter: Thornton, J., University of Washington Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Ehn M, JA Thornton, E Kleist, M Sipila, H Junninen, I Pullinen, M Springer, F Rubach, R Tillmann, B Lee, F Lopez-Hilfiker, S Andres, I Acir, M Rissanen, T Jokinen, S Schobesberger, J Kangasluoma, J Kontkanen, T Nieminen, T Kurten, LB Nielsen, S Jorgensen, HG

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Which Absorption Model Should Be Used for Supercooled Liquid Water in the Microwave? Download a printable PDF Submitter: Kneifel, S., McGill University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Kneifel S, S Redl, E Orlandi, U Löhnert, MP Cadeddu, DD Turner, and M Chen. 2014. "Absorption properties of supercooled liquid water between 31 and 225 GHz: evaluation of absorption models using ground-based observations." Journal of Applied

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Emergence of Open Source Software for the Weather Radar Community Download a printable PDF Submitter: Collis, S. M., Argonne National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Heistermann M, S Collis, MJ Dixon, SE Giangrande, JJ Helmus, B Kelley, J Koistinen, DB Michelson, P Markus, T Pfaff, and DB Wolff. 2014. "The Emergence of Open Source Software for the Weather Radar Community."

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Merging Cloud and Precipitation Radar Data Provides a Better View of Tropical Rain Clouds Download a printable PDF Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, SA McFarlane, C Schumacher, S Ellis, J Comstock, and N Bharadwaj. 2014. "Constructing a merged cloud-precipitation radar dataset for tropical convective clouds during the DYNAMO/AMIE experiment at Addu Atoll."

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists Uncover Combustion Mechanism to Better Predict Warming by Wildfires Download a printable PDF Submitter: Dubey, M. K., Los Alamos National Laboratory Donahue, N., Carnegie Mellon University Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Saleh R, E Robinson, D Tkacik, A Ahern, S Liu, A Aiken, R Sullivan, A Presto, M Dubey, R Yokelson, N Donahue, and A Robinson. 2014. "Brownness of organics in aerosols from biomass burning linked to

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase State and Physical Properties of Ambient and Lab Generated Aerosols: X-ray Microscopy Download a printable PDF Submitter: OBrien, R. E., Lawrence Berkeley National Laboratory Gilles, M., Lawrence Berkeley National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: O'Brien RE, A Neu, SA Epstein, AC MacMillan, B Wang, ST Kelly, SA Nizkorodov, A Laskin, RC Moffet, and MK Gilles. 2014. "Physical properties of ambient and

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Concentration Retrieval in Stratiform Mixed-Phase Clouds Using Cloud Radar Measurements Download a printable PDF Submitter: Zhang, D., University of Wyoming Wang, Z., University of Wyoming Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Zhang D, Z Wang, A Heymsfield, J Fan, and T Luo. 2014. "Ice concentration retrieval in stratiform mixed-phase clouds using cloud radar reflectivity measurements and 1-D ice-growth model simulations." Journal

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Anatomy and Physics of ZDR Columns Submitter: Kumjian, M., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Kumjian MR, AP Khain, N Benmoshe, E Ilotoviz, AV Ryzhkov, and VT Phillips. 2014. "The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model." Journal of Applied Meteorology and Climatology, 53(7),

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Theory of Time-dependent Freezing and Its Application to Investigation of Formation of Hail Download a printable PDF Submitter: Khain, A., The Hebrew University of Jerusalem Phillips, V., University of Leeds Area of Research: Cloud Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Phillips VT, A Khain, N Benmoshe, E Ilotoviz, and A Ryzhkov. 2014. "Theory of time-dependent freezing. II: Scheme for freezing raindrops and simulations by a cloud model

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observations of Tracking Clouds Using Scanning ARM Cloud Radars Download a printable PDF Submitter: Borque, P., McGill University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Borque P, P Kollias, and S Giangrande. 2014. "First observations of tracking clouds using scanning ARM cloud radars." Journal of Applied Meteorology and Climatology, , . ONLINE. A 2.5-hour long observing sequence from 25 May 2011 of (a) the Total Sky Imager (TSI)

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: an ARM Mobile Facility Deployment Download a printable PDF Submitter: Wood, R., University of Washington Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A Composite seasonal cycles of (a) cloud droplet concentration retrieved using a variety of methods; (b) surface measured cloud condensation nuclei concentrations at four supersaturations.

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Growing More Effective Ways to Measure Climate Change Download a printable PDF Submitter: Maseyk, K. S., Universite Pierre et Marie Curie, Paris 6 Area of Research: Surface Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Maseyk K, JA Berry, D Billesbach, JE Campbell, MS Torn, M Zahniser, and U Seibt. 2014. "Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains." Proceedings of the National Academy of

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hail Generation and Melting in Deep Convective Clouds from the Perspective of Dual-polarization Download a printable PDF Submitter: Ryzhkov, A., National Severe Storms Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Ryzhkov AV, MR Kumjian, SM Ganson, and AP Khain. 2014. "Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling." Journal of Applied Meteorology and

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of Climate Model Ice Cloud Properties Download a printable PDF Submitter: Eidhammer, T., NCAR Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Eidhammer T, H Morrison, A Bansemer, A Gettelman, and AJ Heymsfield. 2014. "Comparison of ice cloud properties simulated by the Community Atmosphere Model (CAM5) with in situ observations." Atmospheric Chemistry and Physics, 14(18), doi:10.5194/acp-14-10103-2014. Mass weighted terminal fall

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Dust as Component Minerals in the Community Atmosphere Model Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Scanza R, N Mahowald, S Ghan, CS Zender, JF Kok, Y Zhang, and S Albani. 2015. "Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing."

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Filling Gaps Within Instrument Records Submitter: Kennedy, A. D., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Kennedy AD, X Dong, and B Xi. 2015. "Cloud fraction at the ARM SGP site: reducing uncertainty with self-organizing maps." Theoretical and Applied Climatology, , . ONLINE. Example of a large, 40x30 (1200 class) SOM generated from 14 years of synoptic states provided by the North American

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite Inference of Thermals and Cloud Base Updraft Speeds Download a printable PDF Submitter: Zheng, Y., University of Maryland Area of Research: Vertical Velocity Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Zheng Y, D Rosenfeld, and Z Li. 2015. "Satellite inference of thermals and cloud base updraft speeds based on retrieved surface and cloud base temperatures." Journal of the Atmospheric Sciences, , . ONLINE. Validation of satellite-estimated

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intersecting Cold Pools: Convective Cloud Organization by Cold Pools over Tropical Ocean Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, S Hagos, AK Rowe, CD Burleyson, MN Martini, and SP de Szoeke. 2015. "Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign." Journal of Advances in

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Precipitating Cumulus Congestus Observed by the ARM Radar Suite During the MC3E Field Campaign Download a printable PDF Submitter: Mechem, D. B., University of Kansas Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mechem DB, SE Giangrande, CS Wittman, P Borque, T Toto, and P Kollias. 2015. "Insights from modeling and observational evaluation of a precipitating continental cumulus event observed

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Uncertainties in Ice Particle Size Distributions Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: McFarquhar GM, T Hsieh, M Freer, JR Mascio, and BF Jewett. 2015. "The characterization of ice hydrometeor gamma size distributions as volumes in N0/lambda/mu phase space: implications for microphysical process modeling." Journal of

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regime Analysis to Identify the Contribution of Clouds to Surface Temperature Errors in GCMs Submitter: Van Weverberg, K., Met Office Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Van Weverberg K, CJ Morcrette, H Ma, SA Klein, and JC Petch. 2015. "Using regime analysis to identify the contribution of clouds to surface temperature errors in weather and climate models." Quarterly Journal Royal

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Absorption of Primary Organic Aerosol Paper Named ACS Editors' Choice Download a printable PDF Submitter: Lu, Z., Argonne National Laboratory Streets, D. ., Argonne National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Lu Z, DG Streets, E Winijkul, F Yan, Y Chen, TC Bond, Y Feng, MK Dubey, S Liu, JP Pinto, and GR Carmichael. 2015. "Light absorption properties and radiative effects of primary organic aerosol emissions."

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid Water the Key to Arctic Cloud Radiative Closure Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Shupe MD, DD Turner, A Zwink, MM Thieman, EJ Mlawer, and T Shippert. 2015. "Deriving Arctic cloud microphysics at Barrow, Alaska: Algorithms, results, and radiative closure." Journal of Applied Meteorology and Climatology, 54(7),

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Prediction and Climate Simulation: a Meeting of the Models Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Phillips, T. J. G.L. Potter, D.L. Williamson, R.T. Cederwall, J.S. Boyle, M. Fiorino, J.J. Hnilo, J.G. Olson, S. Xie, J.J. Yio, Evaluating Parameterizations in General Circulation Models: Climate Simulation Meets Weather Prediction, Bulletin

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sticky Thermals: Evidence for a Dominant Balance Between Buoyancy and Drag in Cloud Updrafts Download a printable PDF Submitter: Romps, D., Lawrence Berkeley National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Romps DM and AB Charn. 2015. "Sticky thermals: Evidence for a dominant balance between buoyancy and drag in cloud updrafts." Journal of the Atmospheric Sciences, , doi:10.1175/JAS-D-15-0042.1. ONLINE. Hill's vortex (shown

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Deeper Look Into Shallow Boundary Layer Clouds Submitter: Bretherton, C. S., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Bretherton, C. S., J. R. McCaa, and H. Grenier. A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results, Monthly Weather Review, 132(1), 864-882, 2004, doi:

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Haze: Effect of Anthropogenic and Biomass Burning Aerosols Transported from Europe to the Arctic Download a printable PDF Submitter: Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Marelle L, J Raut, JL Thomas, KS Law, B Quennehen, G Ancellet, J Pelon, A Schwarzenboeck, and JD Fast. 2015. "Transport of anthropogenic and biomass burning aerosols from Europe to the

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three-Dimensional Constrained Variational Analysis: Approach and Application Download a printable PDF Submitter: Zhang, M., Stony Brook University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Tang S and M Zhang. 2015. "Three-dimensional constrained variational analysis: Approach and application to analysis of atmospheric diabatic heating and derivative fields during an ARM SGP intensive observational period." Journal of Geophysical

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Out with the Old, in with the New: McICA to Replace Traditional Cloud Overlap Assumptions Submitter: Pincus, R., NOAA - CIRES Climate Diagnostics Center Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Modeling Journal Reference: Pincus, R., R. Hemler, and S.A. Klein, 2006: Using Stochastically Generated Subcolumns to Represent Cloud Structure in a Large-Scale Model. Mon. Wea. Rev., 134, 3644-3656. As shown by the difference between the two panels, the

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Good Is Not Enough: Improving Measurements of Atmospheric Particles Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, LK Berg, M Pekour, J Barnard, D Chand, C Flynn, M Ovchinnikov, A Sedlacek, B Schmid, J Shilling, J Tomlinson, and J Fast. 2015. "Airborne aerosol in situ measurements during TCAP: A closure study of total scattering."

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Program Surface Measurements for Aerosol Profiles Shown to Represent Integrated Column Measurements Submitter: Andrews, E., University of Colorado Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Andrews, E., P. J. Sheridan, J. A. Ogren, and R. Ferrare (2004), In situ aerosol profiles over the Southern Great Plains cloud and radiation test bed site: 1. Aerosol optical properties, J. Geophys. Res., 109, D06208, doi:10.1029/2003JD004025. Delle Monache, L., K.

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Improved Hindcast Approach for Evaluation and Diagnosis of Physical Processes in GCMs Download a printable PDF Submitter: Ma, H., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Ma H, C Chuang, SA Klein, M Lo, Y Zhang, S Xie, X Zheng, P Ma, Y Zhang, and TJ Phillips. 2015. "An improved hindcast approach for evaluation and

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds' Role in Sunlight Stopping Download a printable PDF Submitter: Burleyson, C. D., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Burleyson CD, CN Long, and JM Comstock. 2015. "Quantifying diurnal cloud radiative effects by cloud type in the Tropical Western Pacific." Journal of Applied Meteorology and Climatology, , doi:10.1175/JAMC-D-14-0288.1. ONLINE. Sunlight streaks through clouds over the

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Observations Validate Climate Model for Tropical Cirrus Clouds Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Comstock, J.M., C. Jakob, Evaluation of tropical cirrus cloud properties derived from ECMWF model output and ground based measurements over Nauru Island, 2004, Geophys. Res. Ltr, Vol.31, L10106, doi:10.1029/2004GL019539. Composite

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continuous Dataset of Water Vapor Measurements Throws Water on Assumptions of Cirrus Cloud Formation Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Comstock, J. M., T. P. Ackerman, and D. D. Turner, 2004: Evidence of high ice supersaturation in cirrus clouds using ARM Raman lidar measurements. Geophys. Res. Letters, doi:10.1029/2004GL019705. To illustrate their

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probabilistic Approach Useful for Evaluating Cloud System Models Submitter: Jakob, C., Monash University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Jakob, C., R. Pincus, C. Hannay, and K.M. Xu (2004). Use of cloud radar observations for model evaluation: A probabilistic approach, J. Geophys. Res., 109, D03202, doi:10.1029/2003JD003473. In evaluating climate models, time and space represent key challenges

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Regulation Strikes a Balance Between Hydrological Cycle, Radiation Processes, and Intraseasonal Dynamic Variations Submitter: Stephens, G. L., Colorado State University Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Stephens, Graeme L., Webster, Peter J., Johnson, Richard H., Engelen, Richard, L'Ecuyer, Tristan. 2004: Observational Evidence for the Mutual Regulation of the Tropical Hydrological Cycle and Tropical

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Splitting the Solar Spectrum: Sometimes Less Is Better Than More Submitter: Pawlak, D. T., Pennsylvania State University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Pawlak, DT, EJ Clothiaux, MF Modest, and JNS Cole. 2004. Full-Spectrum Correlated-k Distribution for Shortwave Atmospheric Radiative Transfer. Journal of the Atmospheric Sciences 61: 2588-2601. Of all the physical and dynamical calculations

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth Lightens Up Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Wild, M., H. Gilgen, A. Roesch, A. Ohmura, C. N. Long, E. G. Dutton, B. Forgan, A. Kallis, V. Russak, and A. Tsvetkov, (2005): From dimming to brightening: Decadal changes in solar radiation at the Earth's surface, Science, 308, Issue 5723, 847-850, [DOI:10.1126/science.1103215] Global distribution of surface observation

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Experiment Results Featured in Technical Journal Submitter: Sheridan, P., U.S. Department of Commerce/NOAA Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Sheridan, P, W Arnott, J Ogren, E Andrews, D Atkinson, D Covert, H Moosmuller, A Petzold, B Schmid, A Strawa, R Varma, and A Virkkula. 2005. "The Reno Aerosol Optics Study: An evaluation of aerosol absorption measurement methods." Aerosol Science and Technology 39(1):1-16. This magnification

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Correction Method for Infrared Detector Confirmed; Error in Clear Sky Bias Condition Remains Unresolved Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: N/A AERI data from January 2004 at the ARM North Slope of Alaska locale shows the observed radiance for two AERI systems with significantly different hot blackbody temperatures. Residuals are within 1% of the ambient radiance

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Processes Make a Big Difference in Model Outcomes Submitter: Cole, J. N., Canadian Centre for Climate Modelling and Analysis Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Cole, J. N. S., H. W. Barker, D. A. Randall, M. F. Khairoutdinov, and E. E. Clothiaux (2005), Global consequences of interactions between clouds and radiation at scales unresolved by global climate models, Geophys. Res. Lett., 32,

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosols Help Clouds Warm Up Arctic Submitter: Lubin, D., National Science Foundation Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Lubin, D., and A.M. Vogelmann, 2006: A climatologically significant aerosol longwave indirect effect in the Arctic, Nature, 439, 26 January, 453-456, doi:10.1038/nature04449 In a process known as the first aerosol indirect effect, enhanced aerosol concentrations cause the droplets in a cloud to be smaller and more

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Comparison of Integrated Water Vapor Sensors: WVIOP-96 Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 The 1996 Water Vapor Intensive Operations Period (WVIOP-96) was conducted at the SGP CART central facility in September in order to assess the skill of a wide variety of sensors in measuring atmospheric water

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Forecasts Help to Understand Climate Model Biases Submitter: Klein, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Klein, Stephen A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U. S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33,

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On Thin Ice: Retrieval Algorithms for Ice Clouds Examined for Improvements Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: An Intercomparison of Microphysical Retrieval Algorithms for Upper Tropospheric Ice Clouds. Jennifer M. Comstock, Robert d'Entremont, Daniel DeSlover, Gerald G. Mace, Sergey Y. Matrosov, Sally A. McFarlane, Patrick Minnis, David Mitchell,Kenneth

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shallow Clouds Make the Case for Remote Sensing Instrumentation Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: McFarlane, S. A., and W. W. Grabowski (2007). Optical properties of shallow tropical cumuli derived from ARM ground-based remote sensing, Geophys. Res. Lett., 34, L06808, doi:10.1029/2006GL028767. In this figure, the lines indicate theoretical calculations of cloud

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative and Thermodynamic Responses to Uncertainty in Aerosol Extinction Profiles Download a printable PDF Submitter: Feng, Y., Argonne National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Feng Y, R Kotamarthi, R Coulter, C Zhao, and M Cadeddu. 2016. "Radiative and Thermodynamic Responses to Aerosol Extinction Profiles during the Pre-monsoon Month over South Asia." Atmospheric Chemistry and Physics, 16(1), 247-264. WRF-Chem

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Download a printable PDF Submitter: Albrecht, B. A., University of Miami Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Albrecht B, M Fang, and V Ghate. 2016. "Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Cloud Radar Observations." Journal of the Atmospheric Sciences, 73(2), 10.1175/JAS-D-15-0147.1.

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ensemble-Constrained Variational Analysis of Atmospheric Forcing Data and Its Application Download a printable PDF Submitter: Zhang, M., Stony Brook University Tang, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Tang S, M Zhang, and S Xie. 2016. "An ensemble constrained variation alanalysis of atmospheric forcing data and its application to evaluate clouds in

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Back to Basics: Theoretical Studies on Storm Clouds and Implications for Modeling Download a printable PDF Submitter: Morrison, H. C., NCAR Lebo, Z., University of Wyoming Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Morrison H. 2016. "Impacts of Updraft Size and Dimensionality on the Perturbation Pressure and Vertical Velocity in Cumulus Convection. Part II: Comparison of Theoretical and Numerical Solutions and Fully Dynamical Simulations."

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Droplet Spectral Shape Sheds New Light on Aerosol-Cloud-Interaction Regimes Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Zhang, M., Stony Brook University Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Chen J, Y Liu, M Zhang, and Y Peng. 2016. "New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Vertical Structure of Cloud Radiative Forcing at the ACRF SGP Revealed by 8 Years of Continuous Measurements Submitter: Mace, G., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Accepted to Journal of Climate, 2007. Figure 1. Cloud occurrence, coverage, radiative forcing, and radiation effects over a composite annual cycle that is derived by averaging all observations collected during a

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Formulation for Representing Cloud-to-Rain Transition in Atmospheric Models Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol, Cloud Modeling, Cloud Properties Journal Reference: Liu, Y., P. H. Daum, R. McGraw, M. Miller, and S. Niu, 2007: Theoretical formulation for autoconversion rate of cloud droplet concentration. Geophys. Res. Lett., 34, L116821, doi:10.1029/2007GL030389

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Water Vapor and Cloud Liquid Water at MCTEX Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Integrated water vapor and cloud liquid water measurements were obtained during the Maritime Continent Thunderstorm Experiment (MCTEX) by Eugene Clothiaux and Tom Ackerman of Penn State University using an ARM

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Climatology of Midlatitude Continental Cloud Properties and Their Impact on the Surface Radiation Budget Submitter: Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Dong, X., P. Minnis, and B. Xi, 2005: A climatology of midlatitude continental clouds from ARM SGP site. Part I: Low-level Cloud Macrophysical, microphysical and radiative properties. J. Climate. 18, 1391-1410. Dong, X., B. Xi, and P.

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Matthews, S., J. M. Hacker, J. Cole, J. Hare, C. N. Long, and R. M. Reynolds, (2007): Modification of the atmospheric boundary layer by a small island: observations from Nauru, MWR, Vol. 135, No. 3, pages 891–905. Figure 1.

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate? Submitter: Prenni, A. J., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Prenni, A. J., J. Y. Harrington, M. Tjernstrom, P. J. DeMott, A. Avramov, C. N. Long, S. M. Kreidenweis, P. Q. Olsson, and J. Verlinde, (2006): Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate?, BAMS, Vol.88, Iss. 4; pg. 541-550. ACIA, 2004: Impacts of a Warming

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Aerosol Humidity Effects Using the ARM Measurements Submitter: Li, Z., University of Maryland Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Jeong, M.-J., Z. Li, E. Andrews, and S.-C. Tsay (2007). Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site, J. Geophys. Res., 112, D10202, doi:10.1029/2006JD007176. (a)-(j) Column-mean aerosol humidification factor as

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Bulk Parameterization of Giant Cloud Condensation Nuclei Download a printable PDF Submitter: Kogan, Y., University of Oklahoma - CIMMS Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Mechem, D. B., and Y. L. Kogan, 2007: A bulk parameterization of giant CCN. J. Atmos. Sci., conditionally accepted. Mean quantities as a function of GCCN concentration for polluted (squares) and clean (diamonds) background CCN conditions. Radiative

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Use of ARM Products in Reanalysis Applications and IPCC Model Assessment Download a printable PDF Submitter: Walsh, J. E., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Walsh, J. E., W. L. Chapman, and D. H. Portis: Arctic clouds and radiative fluxes in large-scale atmospheric reanalysis. Submitted to the Journal of Climate. Figure 1. Monthly mean cloud fraction is shown here from ARM-observations

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of a New Method for Estimating Evapotranspiration Using ARM Measurements Submitter: Li, Z., University of Maryland Area of Research: Surface Properties Working Group(s): Radiative Processes Journal Reference: Wang, K., P. Wang, Z. Li, M. Cribb, and M. Sparrow (2007). A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature, J. Geophys. Res., 112, D15107, doi:10.1029/2006JD008351. Wang, K., Z. Li, and M. Cribb (2006).

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Significance of Multilayer Cloud Systems in Tropical Convection Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Stephens, GL, and NB Wood. 2007. "Properties of tropical convection observed by millimeter-wave radar systems." Monthly Weather Review 135: 821-842. Storm classifications (derived from k-means clustering analysis) applied to MWR

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with SCAM, CAPT Forecasts and M-PACE Observations Download a printable PDF Submitter: Liu, X., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Liu, X, S Xie, and SJ Ghan. 2007. "Evaluation of a new mixed-Phase cloud microphysics parameterization with the NCAR single column climate model (SCAM) and ARM M-PACE

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Cloud-Resolving Model to Identify the Role of Aerosols on Clouds and Precipitation Download a printable PDF Submitter: GSFC, N., NASA GSFC Area of Research: Cloud Distributions/Characterizations Working Group(s): Aerosol, Cloud Modeling Journal Reference: Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophy. Res., (accepted). Zeng, X., W.-K. Tao, S.

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Tomography: a Novel Method for Determining 3D Cloud Liquid Water Distribution Download a printable PDF Submitter: Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Huang, D., Y. Liu, and W. Wiscombe, 2007a: Determination of cloud liquid water distribution using 3D cloud tomography. J. Geophys. Res., submitted. Cloud tomography is a novel method for determining cloud water

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Five-Year Statistics of Shallow Clouds at the ACRF SGP Site Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Kassianov, E., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Berg, LK, and EI Kassianov. 2008. "Temporal variability of fair-weather cumulus statistics at the ARM SGP site." Journal of Climate 21, 3344-3358. Figure 1. Five-year mean ARSCL VAP

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intercomparison of Longwave Radiative Heating Algorithms Submitter: Baer, F., University of Maryland Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Baer, F., N. Arsky, J. J. Charney, and R. G. Ellingson. 1996. "Intercomparison of Heating Rates Generated by Global Climate Model Longwave Radiation Codes." J. Geoph. Res., 101, D21, 26589-26603. 30 levels of longwave heating rates for all algorithms

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM QCRad Goes Global Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Long, CN, and Y Shi. 2008. "An automated quality assessment and control algorithm for surface radiation measurements." The Open Atmospheric Science Journal 2: 23-37, doi: 10.2174/1874282300802010023. Figure: QCRad downwelling (top) and upwelling (bottom) longwave (LW) comparison

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Mixed-Phase Clouds from the Ground: a Status Report Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, JS Daniel, G De Boer, EW Eloranta, P Kollias, E Luke, CN Long, DD Turner, and J Verlinde. 2008. "A focus on mixed-phase clouds: The status of ground-ba sed observational methods." Bulletin of the American Meteorological Society,

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Susceptibility Measures Potential Cloud Sensitivity to First Aerosol Indirect Effect Download a printable PDF Submitter: Oreopoulos, L., NASA Platnick, S., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Platnick, S, and L Oreopoulos. 2008. "Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 1. Theoretical analysis and examples from MODIS." Journal of

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single-Scattering Properties of Aggregates of Bullet Rosettes in Cirrus Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Um, J, and GM McFarquhar. 2007. "Single-scattering properties of aggregates of bullet rosettes in cirrus." Journal of Applied Meteorology and Climatology 46, 757-775. Two images of idealized geometry

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shortwave Absorption in Tropical Clouds Download a printable PDF Submitter: McFarlane, S. A., U.S. Department of Energy Mather, J. H., Pacific Northwest National Laboratory Ackerman, T. P., University of Washington Liu, Z., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: McFarlane, SA, JH Mather, TP Ackerman, and Z Liu. 2008. "Effect of clouds on the vertical distribution of SW absorption in the

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring Climate Model Skill in Producing Present-Day Clouds Download a printable PDF Submitter: Pincus, R., NOAA - CIRES Climate Diagnostics Center Batstone, C., NOAA - CIRES Climate Diagnostics Center Hofmann, R. P., University of Colorado, Boulder/NOAA - ESRL Taylor, K. E., Lawrence Livermore National Laboratory Gleckler, P. J., Lawrence Livermore National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Modeling Journal Reference: Pincus, R, CP Batstone, RJP Hofmann,

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of CloudSat Using ARM, AMF, and CloudNet Observations Download a printable PDF Submitter: Protat, A., Australian Bureau of Meterology May, P. T., Bureau of Meteorology O'Connor, E. J., University of Reading Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Submitted. PDF of cloud reflectivity (upper-left), cloud top height (upper-right), thickness (lower-left), and cloud base height (lower right) as measured by the Darwin

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Simple Algorithm to Find Cloud Optical Depth Applied to Thin Ice Clouds Download a printable PDF Submitter: Barnard, J., University of Nevada Reno Long, C. N., NOAA Global Monitoring Division/CIRES Kassianov, E., Pacific Northwest National Laboratory McFarlane, S. A., U.S. Department of Energy Comstock, J. M., Pacific Northwest National Laboratory Freer, M., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluate the Diurnal Cycle in the Multiscale Modeling Framework Using Satellite and ARM Data Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Zhang, Y, SA Klein, C Liu, B Tian, RT Marchand, JM Haynes, RB McCoy, Y Zhang, and TP Ackerman. 2008. "On the diurnal cycle of deep

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical Variation of Cloud Droplet Size Using Ship and Space-borne R/S Data Download a printable PDF Submitter: Li, Z., University of Maryland Chen, R., University of Maryland Wood, R., University of Washington Chang, F., Science Systems and Applications, Inc. Ferraro, R., NOAA/NESDIS, WWBG Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Chen, R, R Wood, Z Li, R Ferraro, and F Chang. 2008. "Studying the vertical variation of

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of Cirrus Properties and Its Coupling with the State of the Large-Scale Atmosphere Download a printable PDF Submitter: Ivanova, K., Pennsylvania State University Ackerman, T. P., University of Washington Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Ivanova K and TP Ackerman. 2009. "Tracking nucleation-growth-sublimation in cirrus clouds using ARM millimeter wavelength radar observations." Journal of

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating Fractional Sky Cover from Spectral Measurements Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Min, Q., State University of New York, Albany Wang, T., State University of New York, Albany Duan, M., Institute of Atmospheric Physics/Chinese Academy of Science Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Min Q, T Wang, CN Long, and M Duan. 2008. "Estimating fractional sky

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Significant Decadal Brightening over the Continental United States Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Dutton, E. G., NOAA/OAR/ESRL Augustine, J., National Oceanic and Atmospheric Administration Wiscombe, W. J., Brookhaven National Laboratory Wild, M., Institute for Atmospheric and Climate Science - ETH Zurich McFarlane, S. A., U.S. Department of Energy Flynn, C. J., Pacific Northwest National Laboratory Area of Research: Radiation Processes

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single-Scattering Properties of Aggregates of Plates Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Um J and GM McFarquhar. 2009. "Single-scattering properties of aggregates of plates." Quarterly Journal Royal Meteorological Society, 135(639), 10.1002/qj.378. Aggregates of plates imaged by Cloud

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thawing the Mystery of Extra Ice Crystals Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Ovchinnikov, M., Pacific Northwest National Laboratory Comstock, J. M., Pacific Northwest National Laboratory McFarlane, S. A., U.S. Department of Energy Khain, A., The Hebrew University of Jerusalem Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Fan J, M Ovtchinnikov, JM Comstock, SA McFarlane, and A Khain.

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analyzing the Contribution of Aerosols to an Observed Increase in Direct Normal Irradiance Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Riihimaki, L., Pacific Northwest National Laboratory Vignola, F., University of Oregon Area of Research: Radiation Processes Working Group(s): Aerosol, Radiative Processes Journal Reference: Riihimaki LD, FE Vignola, and CN Long. 2009. "Analyzing the contribution of aerosols to an observed increase in direct normal

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Variations of Meridional Aerosol Distribution and Solar Dimming Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Kishcha, P., Tel-Aviv University Starobinets, B., Tel-Aviv University Kalashnikova, O., Jet Propulsion Laboratory Alpert, P., Tel-Aviv University Area of Research: Radiation Processes Working Group(s): Aerosol, Radiative Processes Journal Reference: Kishcha P, B Starobinets, O Kalashnikova, CN Long, and P Alpert. 2009. "Variations of

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Dimming and Brightening: an Update Beyond 2000 Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Wild, M., Institute for Atmospheric and Climate Science - ETH Zurich Truessel, B., Institute for Atmospheric and Climate Science - ETH Zurich Ohmura, A., Swiss Federal Institute of Technology Koenig-Langlo, G., Alfred Wegener Institute Dutton, E. G., NOAA/OAR/ESRL Tsvetkov, A. V., World Radiation Data Centre Area of Research: Radiation Processes Working

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using the ACRF Shortwave Spectrometer to Study the Transition Between Clear and Cloudy Regions Download a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Chiu, J., University of Reading Knyazikhin, Y., Boston University Pilewskie, P., University of Colorado Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Chiu C, A Marshak, Y Knyazikhin, P Pilewskie, and W Wiscombe. 2009.

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seasonal Variation of the Physical Properties of Marine Boundary Clouds Download a printable PDF Submitter: Zhang, M., Stony Brook University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Lin W, M Zhang, and NG Loeb. 2009. "Seasonal variation of the physical properties of marine boundary layer clouds off the California coast." Journal of Climate, 22(10), doi:10.1175/2008JCLI2478.1. Image (a). Seasonal

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Cloud Parameterizations in Climate Models: Implications from CAM3 and WRF Simulations Download a printable PDF Submitter: Wang, W., Pacific Northwest National Laboratory Liu, X., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Wang W, X Liu, S Xie, J Boyle, and SA McFarlane. 2009. "Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite Retrievals of Mixed-phase Cloud Properties Download a printable PDF Submitter: Ou, S., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Ou SS, KN Liou, XJ Wang, A Dybdahl, M Mussetto, LD Carey, J Niu, JA Kankiewicz, S Kidder, and TH Von der Haar. 2009. "Retrievals of mixed-phase cloud properties during the National Polar-Orbiting Operational Environmental Satellite System."

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multifractal Analysis of Radiation in Clouds: 5000km to 50cm Submitter: Lovejoy, S., McGill University Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Lovejoy, S., D. Schertzer, J. D. Stanway, 2001: "Direct Evidence of planetary scale atmospheric cascade dynamics," Phys. Rev. Lett. 86(22): 5200-5203. Left: Power spectrum of the 5 different aircraft measured liquid water data sets from the FIRE experiment

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving the Numerical Simulation of Squall Lines Download a printable PDF Submitter: Morrison, H. C., NCAR Thompson, G., NCAR Tatarskii, V., Georgia Institute of Technology Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Morrison HC, G Thompson, and V Tatarskii. 2009. "Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes."

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Profiling Capability of High-Resolution Oxygen A-band Spectroscopy for Stratus Cloud Cover Submitter: Davis, A. B., Jet Propulsion Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Davis AB, IN Polonsky, and A Marshak. 2009. Space-Time Green Functions for Diffusive Radiation Transport, in Application to Active and Passive Cloud Probing. In Light Scattering Reviews, Volume 4, pp. 169-292. Ed. by A.A. Kohkanovsky, Heidelberg,

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detangling Convective Oscillations at ARM Tropical Western Pacific Site: Manus Submitter: Wang, Y., Department of Geography Long, C. N., NOAA Global Monitoring Division/CIRES Mather, J. H., Pacific Northwest National Laboratory Liu, X., Institute of Earth Environment Area of Research: Radiation Processes Working Group(s): Cloud Properties Journal Reference: Wang Y, C Long, J Mather, and X Liu. 2010. "Convective signals from surface measurements at ARM Tropical Western Pacific site:

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Water Vapor Variability by Ground-Based Microwave Radiometry Download a printable PDF Submitter: Kneifel, S., McGill University Crewell, S., University of Cologne Loehnert, U., University of Cologne Schween, J. H., Inst. of Geophysics and Meteorology Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: Kneifel S, S Crewell, U Löhnert, and J Schween. 2009. "Investigating water vapor variability by

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Variability of Mesoscale Convective System Anvil Structure from A-train Satellite Data Submitter: Yuan, J., Nanjing University Houze, R., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Yuan J and RA Houze. 2010. "Global variability of mesoscale convective system anvil structure from A-train satellite data." Journal of Climate, 23, 5864-5888. Figure. 1 Annual mean (2007) climatology of anvil

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black Carbon Aerosols and the Third Polar Ice Cap Submitter: Menon, S., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Menon S, D Koch, G Beig, S Sahu, J Fasullo, and D Orlikowski. 2009. "Black carbon aerosols and the third polar ice cap." Atmospheric Chemistry and Physics, 9, 26593-26625. Recent thinning of glaciers over the Himalayas (sometimes referred to as

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCN Activity and Mixing Rules of Isoprene Secondary Organic Aerosol (SOA) and Sulfate Download a printable PDF Submitter: Martin, S. T., Harvard University Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: King SM, T Rosenoern, JH Shilling, Q Chen, Z Wang, G Biskos, KA McKinney, U Poeschl, and ST Martin. 2010. "Cloud droplet activation of mixed organic-sulfate particles produced by the photooxidation of

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Nucleation Link to Aerosols for Global Models Download a printable PDF Submitter: DeMott, P. J., Colorado State University Liu, X., University of Wyoming Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: DeMott PJ, AJ Prenni, X Liu, SM Kreidenweis, MD Petters, CH Twohy, MS Richardson, T Eidhammer, and DC Rogers. 2010. "Predicting global atmospheric ice nuclei distributions and their impacts on

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanisms Affecting the Transition from Shallow to Deep Convection over Land Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Zhang Y and SA Klein. 2010. "Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Horizontal Resolution on Climate Model Simulations of Tropical Moist Processes Download a printable PDF Submitter: Boyle, J., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Boyle JS and SA Klein. 2010. "Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biases in Column Absorption for Fractal Clouds Submitter: Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Marshak, Alexander; Davis, Anthony; Wiscombe, Warren; Ridgway, William; Cahalan, Robert; 1998: "Biases in Shortwave Column Absorption in the Presence of Fractal Clouds," J. Climate 11(3):431-446. Figure 1: Water vapor transmission spectra for solar zenith angle of 60 degree. From the top:

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increased Accuracy for Sky Imager Retrievals Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Long CN. 2010. "Correcting for circumsolar and near-horizon errors in sky cover retrievals from sky images." The Open Atmospheric Science Journal, 4, doi:10.2174/1874282301004010045. Long CN, JM Sabburg, J Calbo, and D Pages. 2006. "Retrieving

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Arctic Clouds Between ECMWF Simulations and ARM Observations at the NSA Download a printable PDF Submitter: Zhao, M., National Oceanic and Atmospheric Administration Wang, Z., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A Figure 1: Monthly-averaged vertical distribution of cloud fraction from the observation (a) and the ECMWF model (b), and their differences (c). Both

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Macrophysical and Microphysical Properties of Deep Convective Clouds as Observed by MODIS Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A Distributions of cloud optical depth from Aqua in four regions. The mean and standard deviation of the distributions are given for each region indicated by latitude and longitude range in each panel. The means and

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating Glaciation Temperature of Deep Convective Clouds with Remote Sensing Data Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: N/A (a) A conceptual diagram of cloud particle size vertical evolution inside a deep convective cloud. (b) Cloud side scanner retrievals of (left) particle size and (right) cloud phase. Homogeneous freezing is inefficient at temperatures

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insight on the Atmosphere's Tiniest Particles Download a printable PDF Submitter: Smith, J., University of California, Irvine McMurry, P. ., University of Minnesota Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Smith JN, KC Barsanti, HR Friedli, M Ehn, M Kulmala, DR Collins, JH Scheckman, BJ Williams, and PH McMurry. 2010. "Observations of aminium salts in atmospheric nanoparticles and possible climatic implications." Proceedings of

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress Towards Climate Projections of Central U.S. Rainfall Using a Global Model with Embedded Explicit Convection Download a printable PDF Submitter: Pritchard, M. S., Scripps Institution of Oceanography Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Pritchard MS, MW Moncrieff, and RC Somerville. 2011. "Orogenic propagating precipitation systems over the US in a global climate model with embedded

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Clouds at Arctic Atmospheric Observatories Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Shupe MD, VP Walden, E Eloranta, T Uttal, JR Campbell, SM Starkweather, and M Shiobara. 2011. "Clouds at Arctic atmospheric observatories, part I: occurrence and macrophysical properties." Journal of Applied Meteorology and Climatology, 50(3), 626-644.

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ground-Based Measurements in Support of Liquid-Dependent Ice Nucleation in Arctic Clouds Download a printable PDF Submitter: de Boer, G., University of Colorado, Boulder/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: de Boer G, H Morrison, MD Shupe, and R Hildner. 2011. "Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Microphysics Schemes in Idealized Supercell Thunderstorm Simulations Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Morrison H and JA Milbrandt. 2011. "Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations." Monthly Weather Review, 139, 1103-1130. Near-surface radar reflectivity after

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of CRM Intercomparison Simulations Using TWP-ICE Observations, Part 1 Download a printable PDF Submitter: Varble, A., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Varble AC, AM Fridlind, EJ Zipser, AS Ackerman, J Chaboureau, J Fan, A Hill, SA McFarlane, J Pinty, and B Shipway. 2011. "Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating the Ice Crystal Enhancement Factor in the Tropics Download a printable PDF Submitter: Zeng, X., Morgan State University GSFC, N., NASA GSFC Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Zeng X, W Tao, T Matsui, S Xie, S Lang, M Zhang, DO Starr, and X Li. 2011. "Estimating the ice crystal enhancement factor in the tropics." Journal of the

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dependence of the Single-Scattering Properties of Small Ice Crystals on Idealized Shape Models Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Um J and GM McFarquhar. 2011. "Dependence of the single-scattering properties of small ice crystals on idealized shape

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Indirect Impact of Atmospheric Aerosols on an Ensemble of Deep Convective Clouds Download a printable PDF Submitter: Grabowski, W., NCAR Morrison, H. C., NCAR Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Grabowski WW and H Morrison. 2011. "Indirect impact of atmospheric aerosols in idealized simulations of convective-radiative quasi-equilibrium. Part II: Double-moment microphysics." Journal of

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors Influencing the Microphysics and Radiative Properties of Liquid-Dominated Arctic Clouds Download a printable PDF Submitter: Earle, M., Environment Canada Liu, P., Environment Canada Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Earle ME, PS Liu, JW Strapp, A Zelenyuk, D Imre, GM McFarquhar, NC Shantz, and WR Leaitch. 2011. "Factors influencing the microphysics and radiative properties of

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Properties of the 1997 TWP Smoke Event Submitter: Spinhirne, J., University of Arizona Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: N/A Figure 1. MPL image showing evolution of early September, 1997 smoke event at Manus, TWP. Figure 2. Selected aerosol extinction cross section profiles at the ARM TWP site during 1997 showing progression of aerosol loading. Figure 3. Cloud-cleared optical measurements at the TWP site from July 27 to

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Surface Albedo Data Set Enables Improved Radiative Transfer Calculations Download a printable PDF Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: McFarlane SA, K Gaustad, E Mlawer, C Long, and J Delamere. 2011. "Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility." Atmospheric Measurement Techniques, 4, 1713-1733. Time

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Snow Particle Observations in Arctic Clouds Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Morrison H, P Zuidema, GM McFarquhar, A Bansemer, and AJ Heymsfield. 2011. "Microphysical observations in shallow mixed-phase and deep frontal Arctic cloud systems." Quarterly Journal Royal Meteorological Society, 137(659), doi:10.1002/qj.840. Fitted size distribution intercept

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Humidified Aerosols on Lidar Depolarization Below Ice-Precipitating Arctic Clouds Download a printable PDF Submitter: Fridlind, A. M., NASA - Goddard Institute for Space Studies van Diedenhoven, B., NASA - Goddard Institute for Space Studies Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: van Diedenhoven B, AM Fridlind, and AS Ackerman. 2011. "Influence of humidified aerosol on lidar depolarization measurements below

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Dance of Aerosols Download a printable PDF Submitter: Song, C., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Song C, RA Zaveri, JE Shilling, ML Alexander, and M Newburn. 2011. "Effect of hydrophilic organic seed aerosols on secondary organic aerosol formation from ozonolysis of α-pinene." Environmental Science & Technology, 45(17), doi:10.1021/es201225c. The injection of alpha-pinene, a

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud-Top Humidity Inversions and the Maintenance of Arctic Mixed-Phase Stratocumulus Submitter: Solomon, A., NOAA/ESRL/Physical Sciences Division Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Solomon A, MD Shupe, O Persson, and H Morrison. 2011. "Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion." Atmospheric

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling the Sensitivity of Convection to Tropospheric Humidity Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Del Genio AD. 2011. "Representing the sensitivity of convective cloud systems to tropospheric humidity in general circulation models." Surveys in Geophysics, , doi:10.1007/s10712-011-9148-9.

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Birth of a Cloud Droplet Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ghan SJ, H Abdul-Razzak, A Nenes, Y Ming, X Liu, M Ovchinnikov, B Shipway, N Meskhidze, J Xu, and X Shi. 2011. "Droplet nucleation: Physically-based parameterizations and comparative evaluation." Journal of Advances

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TOA Radiation Budget of Convective Core/Stratiform Rain/Anvil Clouds from Deep Convection Download a printable PDF Submitter: Feng, Z., Pacific Northwest National Laboratory Dong, X., University of North Dakota Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Feng Z, XQ Dong, BK Xi, C Schumacher, P Minnis, and M Khaiyer. 2011. "Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulating the Impact of Aerosols on Tropical Deep Convection Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Morrison H and WW Grabowski. 2011. "Cloud-system resolving model simulations of aerosol indirect effects on tropical deep convection and its thermodynamic environment." Atmospheric Chemistry and Physics, 11(20),

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Millimeter Wave Scattering from Ice Crystals and Their Aggregates Download a printable PDF Submitter: Botta, G., Pennsylvania State University Verlinde, J., The Pennsylvania State University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Botta G, K Aydin, J Verlinde, A Avramov, A Ackerman, A Fridlind, M Wolde, and G McFarquhar. 2011. "Millimeter wave scattering from ice crystals and their aggregates: Comparing cloud model simulations with X- and

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unraveling the Complexity of Arctic Mixed-Phase Clouds Download a printable PDF Submitter: Morrison, H. C., NCAR Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Morrison H, G de Boer, G Feingold, J Harrington, M Shupe, and K Sulia. 2011. "Resilience of persistent Arctic mixed-phase clouds." Nature Geoscience, 5, doi:10.1038/ngeo1332. A conceptual model that illustrates the primary processes and basic physical structure of persistent Arctic

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Simulated Clouds and Radiation at the ARM Site Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Ghan, S.J. and Leung, L.R., 1999: "A Comparison of Three Different Modeling Strategies for Evaluating Cloud and Radiation Parameterizations," Monthly Weather Review 127( 9): 1967-1984. Observed and Simulated Column Water Vapor Column

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds Get in the Way: How Climate Models Calculate the Effects of Clouds on Earth's Warming Download a printable PDF Submitter: Qian, Y., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Qian Y, CN Long, H Wang, JM Comstock, SA McFarlane, and S Xie. 2012. "Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations."

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black Carbon Reduction of Snow Albedo Submitter: Kirchstetter, T. W., Lawrence Berkeley National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Hadley OL and TW Kirchstetter. 2012. "Black carbon reduction of snow albedo." Nature Climate Change, , doi:10.1038/nclimate1433. Spectrally weighted snow albedo over the 300-2,500 nm solar spectrum: derived from our experiments (dots, 1 standard deviation) and modelled using SNICAR

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modelling Future Changes in Surface Ozone: a Parameterized Approach Download a printable PDF Submitter: Bergmann, D., Lawrence Livermore National Laboratory Chuang, C., Lawrence Livermore National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Wild O, AM Fiore, DT Shindell, RM Doherty, WJ Collins, FJ Dentener, MG Schultz, S Gong, IA MacKenzie, G Zeng, P Hess, DJ Bergmann, S Szopa, JE Jonson, TJ Keating, and A Zuber. 2012. "Modelling

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Rain Clouds Still a Challenge to Cloud-Resolving Models Download a printable PDF Submitter: Fridlind, A. M., NASA - Goddard Institute for Space Studies Ackerman, A., NASA - Goddard Institute for Space Studies Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Fridlind AM, AS Ackerman, J Chaboureau, J Fan, WW Grabowski, AA Hill, TR Jones, MM Khaiyer, G Liu, P Minnis, H Morrison, L Nguyen,

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Simulation of Boundary Layer Clouds Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1. Comparison of Boundary Layer Clouds Schemes in Climate Models with Satellite Observations Key Contributors: James McCaa, as part of his Ph.D. dissertation at University of Washington Chris Bretherton, University of Washington Dennis Hartmann, University of

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexico City Carbon-Containing Particle Composition Simulated Download a printable PDF Submitter: Zaveri, R., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Lee-Taylor J, S Madronich, B Aumont, M Camredon, A Hodzic, GS Tyndall, E Aperl, and RA Zaveri. 2012. "Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume." Atmospheric Chemistry and

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Controls on Ozone Precursors Will Have Different Impacts on Future Climate Download a printable PDF Submitter: Bergmann, D., Lawrence Livermore National Laboratory Chuang, C., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol Life Cycle Journal Reference: Fry MM, V Naik, JJ West, MD Schwartzkopf, AM Fiore, WJ Collins, FJ Dentener, DT Shindell, C Atherton, D Bergmann, BN Duncan, P Hess, IA

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAM5 Shows Reasonable Aerosol First Indirect Effects on Non-Precipitating Low Liquid Clouds Download a printable PDF Submitter: Zhao, C., Beijing Normal University Klein, S., Lawrence Livermore National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Zhao C, SA Klein, S Xie, X Liu, JS Boyle, and Y Zhang. 2012. "Aerosol first indirect effects on non-precipitating low-level

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Many Forecast Errors Are Climate Errors Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Xie S, H Ma, JS Boyle, SA Klein, and Y Zhang. 2012. "On the correspondence between short- and long-timescale systematic errors in CAM4/CAM5 for the years of tropical convection." Journal of Climate, 25(22),

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diurnal Cycle of Monsoon Clouds, Precipitation, and Surface Radiation Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES May, P. T., Bureau of Meteorology Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: May PT, CN Long, and A Protat. 2012. "The diurnal cycle of the boundary layer, convection, clouds, and surface radiation in a coastal monsoon environment (Darwin

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anthropogenic Aerosols: a Clearer Understanding Submitter: Daum, P., Brookhaven National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Liu, Y., and P. H. Daum, 2002: "Indirect warming effect from dispersion forcing," Nature 419(6872):580-581. Figure 1. Key = Green symbols: triangle - FIRE, northeastern Pacific; Crossed circles - SOCEX, Southern Ocean; Filled circle - ACE1, Southern Ocean; Blue symbols: Filled circles - ASTEX 8,

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Aerosols Affect Cloud Properties in Arctic Mixed-Phase Stratocumulus Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Jackson RC, GM McFarquhar, AV Korolev, ME Earle, PS Liu, RP Lawson, S Brooks, M Wolde, A Laskin, and M Freer. 2012. "The dependence of ice microphysics on aerosol concentration in arctic mixed-phase

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Observed Cirrus Microphysical Properties on Shortwave Radiation: a Case Study Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Nousiainen, T. P., University of Helsinki Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Mauno P, GM McFarquhar, T Nousiainen, M Timlin, M Kahnert, and P Raisanen. 2011. "The influence of cloud microphysical properties on shortwave radiation: A case study over Oklahoma."

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbonaceous Aerosol Aging Mechanisms Improve Agreement of Global Simulations with Data Download a printable PDF Submitter: Dubey, M. K., Los Alamos National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: N/A Longitudinal and vertical distribution of global zonal mean hydrophobic to hydrophilic conversion time for carbonaceous aerosols with new laboratory aging mechanism. Impact of new aging mechanism on global zonal mean black carbon

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite Constraints on Cloud-Top Phase, Ice Size, and Asymmetry Parameter over Deep Convection Download a printable PDF Submitter: van Diedenhoven, B., NASA - Goddard Institute for Space Studies Fridlind, A. M., NASA - Goddard Institute for Space Studies Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: van Diedenhoven B, AM Fridlind, AS Ackerman, and B Cairns. 2012. "Evaluation of hydrometeor phase and ice properties in cloud-resolving model

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress in Understanding Water Vapor's Role in Models Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Time-height cross sections of water vapor mixing ratio, which is observed directly by the ARM Raman lidar at 10-min and approximately 100 m resolution, and relative humidity for 29 November through 2 December 2002. The bottom panel shows the comparison of

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations Guide Low-Cloud Parameterization Development in the ECMWF Model Download a printable PDF Submitter: Ahlgrimm, M., European Centre for Medium-Range Weather Forecasts Forbes, R. M., European Centre for Medium-Range Weather Forecasts Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Ahlgrimm M and R Forbes. 2012. "The impact of low clouds on surface shortwave radiation in the ECMWF model."

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Influence of Regional Anthropogenic Emission Reductions on Aerosol Direct Radiative Forcing Download a printable PDF Submitter: Bergmann, D., Lawrence Livermore National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Yu H, M Chin, J West, C Atherton, N Bellouin, D Bergmann, I Bey, H Bian, T Diehl, G Forberth, P Hess, M Schulz, D Shindell, T Takemura, and Q Tan. 2012. "An HTAP multi-model assessment of the influence of regional

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scale Shows True Weight of Aerosol Effects on Clouds Download a printable PDF Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: McComiskey A and G Feingold. 2012. "The scale problem in quantifying aerosol indirect effects." Atmospheric Chemistry and Physics, 12, doi:10.5194/acp-12-1031-2012. Differing values: Values derived from aircraft and surface observations,

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Hitches Ride to Arctic Download a printable PDF Submitter: Zelenyuk-Imre, A., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Zelenyuk A, D Imre, J Beranek, E Abramson, J Wilson, and M Shrivastava. 2012. "Synergy between secondary organic aerosols and long-range transport of polycyclic aromatic hydrocarbons." Environmental Science & Technology, 46(22), doi:10.1021/es302743z. When airborne

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metrics and Diagnostics for Climate Model Short-Range Hindcasts Download a printable PDF Submitter: Ma, H., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Ma H, S Xie, JS Boyle, SA Klein, and Y Zhang. 2012. "Metrics and diagnostics for precipitation-related processes in climate model short-range hindcasts." Journal of Climate, , . ACCEPTED. Pattern statistics

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shaking Things Up-What Triggers Atmospheric Convection in the West African Sahel? Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Couvreux F, C Rio, F Guichard, M Lothon, G Canut, D Bouniol, and A Gounou. 2012. "Initiation of daytime local convection in a semi-arid region analysed with high-resolution simulations and AMMA observations." Quarterly

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strong Impacts of Vertical Velocity on Cloud Microphysics and Implications for Aerosol Indirect Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Lu, C., Nanjing University of Information Science and Technology Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Lu C, Y Liu, S Niu, and AM Vogelmann. 2012. "Observed impacts of vertical velocity on cloud

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Looking at the Full Spectrum for Water Vapor Download a printable PDF Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi:

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Validation of a Black Carbon Mixing State Resolved Three-Dimensional Model Download a printable PDF Submitter: Fast, J. ., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Matsui H, M Koike, Y Kondo, N Moteki, JD Fast, and RA Zaveri. 2013. "Development and validation of a black carbon mixing state resolved three-dimensional model: Aging processes and radiative impact." Journal of

  15. Medical Applications of Non-Medical Research: Applications Derived from BES-Supported Research and Research at BES Facilities

    DOE R&D Accomplishments [OSTI]

    1998-07-01

    This publication contains stories that illustrate how the Office of Basic Energy Sciences (BES) research and major user facilities have impacted the medical sciences in the selected topical areas of disease diagnosis, treatment (including drug development, radiation therapy, and surgery), understanding, and prevention.

  16. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  17. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  18. Communications circuit including a linear quadratic estimator

    DOE Patents [OSTI]

    Ferguson, Dennis D.

    2015-07-07

    A circuit includes a linear quadratic estimator (LQE) configured to receive a plurality of measurements a signal. The LQE is configured to weight the measurements based on their respective uncertainties to produce weighted averages. The circuit further includes a controller coupled to the LQE and configured to selectively adjust at least one data link parameter associated with a communication channel in response to receiving the weighted averages.

  19. Intentionally Including - Engaging Minorities in Physics Careers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers April 24, 2013 - 4:37pm Addthis Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the American Institute of

  20. Sandia National Laboratories: Cybersecurity Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems About Defense Systems & Assessments Program Areas Accomplishments Cybersecurity Programs Cybersecurity Research Sandia is focused on building science and...

  1. New York State Energy Research and Development Authority. Research projects` update project status as of March 31, 1997

    SciTech Connect (OSTI)

    1997-07-01

    This report provides an update of the New York State Energy Research and Development Authority (NYSERDA) program. The NYSERDA research and development program has five major areas: industry, buildings, energy resources, transportation, and environment. NYSERDA organizes projects within these five major areas based on energy use and supply, and end-use sectors. Therefore, issues such as waste management, energy products and renewable energy technologies are addressed in several areas of the program. The project descriptions presented are organized within the five program areas. Descriptions of projects completed between the period April 1, 1996, and March 31, 1997, including technology-transfer activities, are at the end of each subprogram section.

  2. David S. Ginley - Research Fellow | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David S. Ginley - Research Fellow Photo of David S. Ginley Research Fellows David S. Ginley's current activities are in the areas of the general class of defective transition metal oxides including high temperature superconductors, LiTMO2 rechargable Li battery materials, ferroelectric materials, transparent conducting oxides and electrochromic materials. Another focus of his work is on the development of new nano-materials for organic electronics and as biofilters etc. Dr. Ginley's work is

  3. Scramjet including integrated inlet and combustor

    SciTech Connect (OSTI)

    Kutschenreuter, P.H. Jr.; Blanton, J.C.

    1992-02-04

    This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

  4. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  5. Direct Research & Development Transactions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Research & Development Transactions Direct Research & Development Transactions DOE direct research and development transactions include contracts, grants, and cooperative ...

  6. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens For more than eight years, NREL has worked with the U.S. Department of Energy (DOE) to become an international leader in offshore wind energy research. NREL's offshore wind turbine research capabilities focus on critical areas that reflect the long-term needs of the industry and DOE. National Wind Technology Center (NWTC) researchers are perpetually exploring new wind and water power concepts, materials, and

  7. Base Research Program

    SciTech Connect (OSTI)

    Everett Sondreal; John Hendrikson

    2009-03-31

    In June 2009, the Energy & Environmental Research Center (EERC) completed 11 years of research under the U.S. Department of Energy (DOE) Base Cooperative Agreement No. DE-FC26-98FT40320 funded through the Office of Fossil Energy (OFE) and administered at the National Energy Technology Laboratory (NETL). A wide range of diverse research activities were performed under annual program plans approved by NETL in seven major task areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, (6) advanced materials, and (7) strategic studies. This report summarizes results of the 67 research subtasks and an additional 50 strategic studies. Selected highlights in the executive summary illustrate the contribution of the research to the energy industry in areas not adequately addressed by the private sector alone. During the period of performance of the agreement, concerns have mounted over the impact of carbon emissions on climate change, and new programs have been initiated by DOE to ensure that fossil fuel resources along with renewable resources can continue to supply the nation's transportation fuel and electric power. The agreement has addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration while expanding the supply and use of domestic energy resources for energy security. It has further contributed to goals for near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources (e.g., wind-, biomass-, and coal-based electrical generation).

  8. Transport Research Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Research Laboratory Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transport Research Laboratory AgencyCompany Organization: Transport Research Laboratory Focus Area:...

  9. Subterranean barriers including at least one weld

    DOE Patents [OSTI]

    Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.

    2007-01-09

    A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.

  10. Photoactive devices including porphyrinoids with coordinating additives

    DOE Patents [OSTI]

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  11. Power generation method including membrane separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  12. Nuclear reactor shield including magnesium oxide

    DOE Patents [OSTI]

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  13. Electric power monthly, September 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  14. Rotor assembly including superconducting magnetic coil

    DOE Patents [OSTI]

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  15. Fire in a contaminated area

    SciTech Connect (OSTI)

    Ryan, G.W., Westinghouse Hanford

    1996-08-28

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Fire in Contaminated Area. The calculations needed to quantify the risk associated with this accident scenario are included within.

  16. Crosscutting Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crosscutting Research Crosscutting Research Crosscutting Research The Crosscutting Research program serves as a bridge between basic and applied research by fostering the development of innovative systems for improving availability, efficiency, and environmental performance of fossil energy systems with carbon capture and storage. This crosscutting effort is implemented through the research and development of sensors, controls, and advanced materials. This program area also develops computation,

  17. ARM - Research Highlights: Notable Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HighlightsNotable Research Findings Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for 2001-2006 Office of Science Abstracts Database Research Highlights Summaries Notable Research Findings for the Past Five Years Aerosols Cloud Parameterization and Modeling (Currently Cloud Modeling) Cloud Properties Instantaneous Radiative Flux (Currently Radiative Processes)

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Proposes New Scheme to Characterize Land-Atmosphere Interactions and Improve Climate Models Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Liu G, Y Liu, and S Endo. 2013. "Evaluation of surface flux parameterizations with long-term ARM observations." Monthly Weather Review, 141(2), doi:10.1175/MWR-D-12-00095.1. One of the three

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rain and Cloud Resistance Download a printable PDF Submitter: Flaherty, J., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Deng L, S McFarlane, and J Flaherty. 2013. "Characteristics associated with the Madden-Julian Oscillation at Manus Island." Journal of Climate, 26(10), doi:10.1175/JCLI-D-12-00312.1. Deep tropical clouds are sometimes called the engines of the global climate. They

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unique Properties of the Arctic Stratiform Cloud-Top Region Submitter: Shupe, M., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Sedlar J, MD Shupe, and M Tjernström. 2011. "On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic." Journal of Climate, 25(7), doi:10.1175/JCLI-D-11-00186.1. Occurrence frequency of low-level, stratiform cloud cases used in the analysis

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Method Simulates 3D Ice Crystal Growth Within Clouds Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Harrington JY, K Sulia, and H Morrison. 2013. "A method for adaptive habit prediction in bulk microphysical models. Part I: theoretical development." Journal of the Atmospheric Sciences, 70(2), doi:10.1175/JAS-D-12-040.1. Harrington JY, K Sulia, and H Morrison. 2013.

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When It Rains, It Doesn't Always Pour Download a printable PDF Submitter: Penide, G., Laboratoire d\'Optique Atmospherique Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Penide G, V Kumar, A Protat, and P May. 2013. "Statistics of drop size distribution parameters and rain rates for stratiform and convective precipitation during the North Australian wet season." Monthly Weather Review, 141(9), 10.1175 /mwr-d-12-00262.1. Measurements from the

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seasonal Case Studies Reveal Significant Variance in Large-Scale Forcing Data Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Xie, S, R.T Cederwall, M. Zhang, and J.J. Yio, Comparison of SCM and CSRM forcing data derived from the ECMWF model and from objective analysis at the ARM SGP site, J. Geophys. Res., 108(D16), 4499, doi:10.1029/2003JD003541, 2003.

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cotton-Ball Clouds Contained Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Berg LK, WI Gustafson, EI Kassianov, and D Liping. 2013. "Evaluation of a modified scheme for shallow convection: Implementation of CuP and case studies." Monthly Weather Review, 141, doi:10.1175/MWR-D-12-00136.1. Cumulus Potential (CuP) parameterization leads to improved forecasts of

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automated Rain Rate Estimates Using the Ka-band ARM Zenith Radar (KAZR) Submitter: Chandra, A. S., McGill University Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Chandra A, C Zhang, P Kollias, S Matrosov, and W Szyrmer. 2015. "Automated rain rate estimates using the Ka-band ARM Zenith Radar (KAZR)." Atmospheric Measurement Techniques, 8(1-15), doi:10.5194/amt-8-1-2015. ACCEPTED. Scatter plots of rain rates (R) observed from a video

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dust in the Wind... and the Clouds... and the Atmosphere Submitter: Sassen, K., University of Alaska, Fairbanks Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Sassen, K., P.J. DeMott, J.M. Propsero, and M.R. Poellot, Saharan Dust Storms and Indirect Aerosol Effects on Clouds: CRYSTAL-FACE Results, Geophys. Res. Ltt., 30(12), 1633, doi:10/1029/2003GL017371, 2003. PDL linear depolarization ratio (color scale on top) and relative returned power (in gray scale) of

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBL Cloud Properties Derived from the Azores-AMF Observations Submitter: Dong, X., University of North Dakota Area of Research: Cloud Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Dong X, B Xi, A Kennedy, P Minnis, and R Wood. 2014. "A 19-month record of marine aerosol-cloud-radiation properties derived from DOE ARM AMF deployment at the Azores: Part I: Cloud fraction and single-layered MBL cloud properties." Journal of Climate, 27(10),

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Mixed-layer Heights from Airborne HSRL and WRF-Chem During CARES Download a printable PDF Submitter: Scarino, A. J., Science Systems and Applications, Inc. Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Scarino AJ, MD Obland, JD Fast, SP Burton, RA Ferrare, CA Hostetler, LK Berg, B Lefer, C Haman, JW Hair, RR Rogers, C Butler, AL Cook, and DB Harper. 2014. "Comparison of mixed layer heights from airborne high spectral resolution

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deciphering Raindrop Collisions with Dual-polarization Radar Download a printable PDF Submitter: Kumjian, M., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Kumjian MR and OP Prat. 2014. "The impact of raindrop collisional processes on the polarimetric radar variables." Journal of the Atmospheric Sciences, 71(8), doi:10.1175/JAS-D-13-0357.1. (a) Changes in ZDR as a function

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Island-Induced Cloud Plumes Influence Tropical Atmospheric Measurements, Surface Radiation Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: McFarlane, S.A., Long, C.N., and Flynn, D., Nauru Island Effect Study, Fourteenth ARM Science Team Meeting, March 22 to 26, 2004, Albuquerque, New Mexico. Nauru Island, about 1,200 miles northeast of Papua New Guinea in the western South Pacific, is one of

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Shapes and Phases of Small Particles in Mixed-Phase Clouds Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: McFarquhar GM, J Um, and R Jackson. 2013. "Small cloud particle shapes in mixed-phase clouds." Journal of Applied Meteorology and Climatology, 52(5), doi:10.1175/JAMC-D-12-0114.1. Figure 1. Magnified images of four particles imaged

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Two Faces of Aerosols Download a printable PDF Submitter: Ovink, J., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Berg LK, M Shrivastava, RC Easter, JD Fast, EG Chapman, Y Liu, and RA Ferrare. 2015. "A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud Processes on Aerosol and Trace Gases in Parameterized Cumuli." Geoscientific Model Development, 8, doi:10.5194/gmd-8-409-2015. A new

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Data Used to Evaluate Reanalysis Results Download a printable PDF Submitter: Dong, X., University of North Dakota Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Dolinar E, X Dong, and B Xi. 2015. "Evaluation and intercomparison of clouds, precipitation, and radiation budgets in recent reanalyses using satellite-surface observations." Climate Dynamics, , DOI 10.1007/s00382-0, 10.1007/s00382-0. Figure 1. Monthly means of CF (a), SWDNsfc

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mountain-Induced Dynamics Influence Cloud Phase Distribution and Precipitation Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Dorsi SW, MD Shupe, PG Persson, DE Kingsmill, and LM Avallone. 2015. "Phase-specific characteristics of wintertime clouds across a mid-latitude mountain range." Monthly Weather Review, 143(10), doi:10.1175/MWR-D-15-0135.1. Multi-flight composite

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds Re-gathered by Wind Shear Download a printable PDF Submitter: Yang, Q., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Yang Q, RC Easter, P Campuzano-Jost, JL Jimenez, JD Fast, SJ Ghan, H Wang, LK Berg, MC Barth, Y Liu, MB Shrivastava, B Singh, H Morrison, J Fan, CL Ziegler, M Bela, E Apel, GS Diskin, T Mikoviny, and A Wisthaler. 2015. "Aerosol transport and

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Subgrid-Scale Hydrometeor Transport Using a High-Resolution CRM Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wong M, M Ovchinnikov, and M Wang. 2015. "Evaluation of subgrid-scale hydrometeor transport schemes using a high-resolution cloud-resolving model." Journal of the Atmospheric Sciences, 72(9), doi:10.1175/JAS-D-15-0060.1. Clouds

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storm Clouds Take Rain on Rollercoaster Ride Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Wong M, M Ovchinnikov, and M Wang. 2015. "Evaluation of subgrid-scale hydrometeor transport schemes using a high-resolution cloud-resolving model." Journal of the Atmospheric Sciences, 72(9), doi:10.1175/JAS-D-15-0060.1. Strong updrafts within the cloud propel their

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data from Saharan Dust Storm Reveal Model Deficiencies Submitter: McFarlane, S. A., U.S. Department of Energy Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Slingo, A., T.P. Ackerman, R.P. Allan, E.I. Kassianov, S.A. McFarlane, G.J. Robinson, J.C. Barnard, M.A. Miller, J.E. Harries, J.E. Russell , S. Dewitte, 2006: Observations of the impact of a major Saharan dust storm on the Earth's radiation budget. Geophys. Res. Lett., 33, L24817,

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Entrainment Rate Parameterization Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Lu C, Y Liu, GJ Zhang, X Wu, S Endo, L Cao, Y Li, and X Guo. 2016. "Improving parameterization of entrainment rate for shallow convection with aircraft measurements and large-eddy simulations." Journal of the Atmospheric Sciences, 73(2), doi:10.1175/JAS-D-15-0050.1. Relationships

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quasi-Vertical Profiles - a New Way to Look at Polarimetric Radar Data PI Contact: Ryzhkov, A., National Severe Storms Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Ryzhkov A, P Zhang, H Reeves, M Kumjian, T Tschallener, S Trömel, and C Simmer. 2016. "Quasi-Vertical Profiles - A New Way to Look at Polarimetric Radar Data." Journal of Atmospheric and Oceanic Technology, 33(3), doi:10.1175/JTECH-D-15-0020.1. An example of composite