National Library of Energy BETA

Sample records for research area working

  1. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Biosciences The Biosciences Area forges multidisciplinary teams to solve national challenges in energy, environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three divisions and is enabled by Berkeley

  2. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  3. Research Subject Areas for IGPPS Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Subject Areas Research Subject Areas for IGPPS Proposals High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and...

  4. INL@Work Armor Researcher

    SciTech Connect (OSTI)

    Chu, Henry

    2011-01-01

    INL researcher Henry Chu explains how his mechanical engineering skills are being used to create better armor for our military.

  5. INL@Work Armor Researcher

    ScienceCinema (OSTI)

    Chu, Henry

    2013-05-28

    INL researcher Henry Chu explains how his mechanical engineering skills are being used to create better armor for our military.

  6. NREL: Water Power Research - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Us NREL works with industry in a public-private contracting environment to research, design, and build advanced water power technologies. NREL's National Wind ...

  7. NREL: Wind Research - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Us NREL works with industry in a public-private contracting environment to research, design, and build advanced wind energy technologies. We have an outstanding ...

  8. NREL: Buildings Research - Working With Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to learn more about the depth of our expertise. Find a Position with Us Photo of researcher Dane Christensen, wearing a red sweater, working on an energy recovery...

  9. NREL: Transportation Research - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Us Partnerships Drive Transportation Solutions Photo of two men standing in front of a large solar panel and an electric vehicle. NREL offers industry, academia, and government agencies opportunities to work with us and leverage our research expertise and capabilities. There are several ways for your organization to get involved with us: Partner with NREL through a Cooperative Research and Development Agreement or a Work-for-Others Agreement. License NREL-developed technologies. The

  10. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas High Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought in the following subfields and cross-cutting areas of HEDLP: High Energy Density Hydrodynamics Specific areas of interest include, but are not limited to, turbulent mixing, probing properties of high energy density (HED) matter through hydrodynamics, solid-state hydrodynamics at high pressures, new hydrodynamic instabilities, and hydrodynamic scaling. Radiation-Dominated

  11. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms, laboratory

  12. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms, laboratory

  13. Research Subject Areas for CSES Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Subject Areas Research Subject Areas for CSES Proposals High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia D. Sanchez (505) 665-0855 Email Science Discipline Leaders Astrophysics & Cosmology Hui Li (505) 665-3131 Email Climate Keeley Costigan (505) 665-4788 Email Geophysics David Coblentz (505) 667-2781 Email Space

  14. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas Properties of Materials under Extreme Conditions and Hydrodynamics During open solicitations research proposals are solicited for grants and Centers of Excellence in the area of fundamental properties and response of materials under extreme conditions (condensed matter physics and materials science, hydrodynamics and fluid dynamics). Extreme conditions include material response when subjected to one or more of the following: high-pressure (> 100 kbar), high-temperature (near

  15. Applying User Centered Design to Research Work

    SciTech Connect (OSTI)

    Scholtz, Jean; Love, Oriana J.; Pike, William A.; Bruce, Joseph R.; Kim, Dee DH; McBain, Arthur S.

    2014-07-01

    The SuperIdentity (SID) research project is a collaboration between six universities in the UK (Bath, Dundee, Kent, Leicester, Oxford, and Southampton) and the Pacific Northwest National Laboratory (PNNL). SID offers an innovative and exciting new approach to the concept of identity. The assumption underlying our hypothesis is that while there may be many dimensions to an identity - some more stable than others - all should ultimately reference back to a single core identity or a 'SuperIdentity.' The obvious consequence is that identification is improved by the combination of measures. Our work at PNNL has focused on the developing use cases to use in developing a model of identity and in developing visualizations for both researchers to explore the model and in the future for end users to use in determining various paths that may be possible to obtain various identity attributes from a set that is already known.

  16. NREL: Electricity Integration Research - Working With Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that support electricity integration research, development, and testing. To help advance research and strengthen product marketability in electricity integration research, ...

  17. Working at GE Global Research | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why GE Why GE Fostering curiosity and work that makes a big impact on the world. That's how GE helps keep talented researchers motivated. Inspire For our scientists, inspiration can come from a rock or a sunset or a supercomputer. But mostly it comes from our dream of what the future can be. A world that's cleaner, greener, more efficient, more intelligent and more connected, where people have greater access to essentials like energy, water and healthcare. A better world. Innovate GE Global

  18. NREL: Photovoltaics Research - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Us At the National Renewable Energy Laboratory (NREL), our photovoltaic (PV) expertise can be leveraged by industry, university, and government agencies through a variety of opportunities. Find out more about working with us based on what you want to do. Partner with Us A wide angle photo from the ceiling of a laboratory. A man is adjusting something on a circular machine. You can work with our experts and take advantage of NREL's outstanding facilities and technical capabilities to

  19. Work and Life Balance | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Balancing Work with Life Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on ...

  20. Research Areas | National Nuclear Security Administration | ...

    National Nuclear Security Administration (NNSA)

    Magnetized High Energy Density Plasma Physics Specific areas of interest include, but are ... Nonlinear Optics of Plasmas and Laser-Plasma Interactions Specific areas of interest ...

  1. Research Highlights Sorted by Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group Aerosol Life Cycle | Cloud Life Cycle | Cloud-Aerosol-Precipitation Interactions | Aerosol | Cloud Modeling | Cloud Properties | Radiative Processes Aerosol Life Cycle 2016 Berg, L. Two-Column Aerosol Project: Impact of Elevated Particle Layers on Particle Optical Depth ASR Ching, J. Three Dimensions Are Better Than Two, When It Comes to Representing Aerosols ASR de Boer, G. An Update on Unmanned Platforms at Oliktok Point ARM ASR Fast, J. D. Impact of External Industrial Sources

  2. NREL: Hydrogen and Fuel Cells Research - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Us Photo of people working in laboratory setting. NREL interns contribute to hydrogen and fuel cell R&D. Photo by Dennis Schroeder, NREL NREL offers industry, academia, and government agencies opportunities to work with us and leverage our research expertise and unique facilities. Form a Research Partnership NREL offers a variety of technology partnership agreements: Work collaboratively with NREL through a cooperative research and development agreement, the most used means of

  3. Research Areas | National Nuclear Security Administration | ...

    National Nuclear Security Administration (NNSA)

    ... of traditional ideal-plasma theory and standard condensed matter theory do not apply. ... This includes investigations in related areas of plasma physics, inertial fusion, atomic ...

  4. NREL, German Solar Energy Researchers to Work Together - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL, German Solar Energy Researchers to Work Together Scientists from the two nations to collaborate on next-generation PV and fuels June 23, 2011 German and American researchers ...

  5. Research Areas | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Print Text Size: A A A FeedbackShare Page To meet the challenge of supporting basic research programs that are also energy relevant, the Division manages portfolio components that consist of distinct Core Research Activities

  6. Research Areas | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas High Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought in the following subfields and cross-cutting areas of HEDLP: High Energy Density Hydrodynamics Specific areas of interest include, but are not limited to, turbulent mixing, probing properties of high energy density (HED) matter through hydrodynamics, solid-state hydrodynamics at high pressures, new hydrodynamic instabilities, and hydrodynamic scaling. Radiation-Dominated

  7. Expansion of DOE-DOT Tight Oil Research Work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expansion of DOE-DOT Tight Oil Research Work - Sandia Energy Energy Search Icon Sandia ... Twitter Google + Vimeo Newsletter Signup SlideShare Expansion of DOE-DOT Tight Oil ...

  8. Building America Puts Residential Research Results To Work; Building America Research That Works (Fact Sheet)

    SciTech Connect (OSTI)

    2009-01-18

    Residential buildings use more than 20% of the energy consumed annually in the United States. To help reduce that energy use, the Department of Energy (DOE) and its Building America partners conduct research to develop advanced building energy systems tha

  9. Research Sheds Light on Workings of Anti-cancer Drug

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Sheds Light on Workings of Anti-cancer Drug The copper sequestering drug tetrathiomolybdate (TM) has been shown in studies to be effective in the treatment of Wilson disease, a disease caused by an overload of copper, and certain metastatic cancers. That much is known. Very little, however, is known about how the drug works at the molecular level. A new study led by Northwestern University researchers now has provided an invaluable clue: the three-dimensional structure of TM bound to

  10. Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    1995-08-01

    US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure.

  11. Gambit Satellite Work Declassified After 25 Years | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gambit Satellite Work Declassified After 25 Years Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Gambit Satellite Work Declassified After 25 Years GE Global Research 2011.11.07 As much as we can, and do, share information about what we're working on at Global Research on this blog, I don't think it comes as any

  12. Baseline risk assessment for groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    1999-07-14

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are evaluating conditions in groundwater and springs at the DOE chemical plant area and the DA ordnance works area near Weldon Spring, Missouri. The two areas are located in St. Charles County, about 48 km (30 mi) west of St. Louis. The 88-ha (217-acre) chemical plant area is chemically and radioactively contaminated as a result of uranium-processing activities conducted by the U.S. Atomic Energy Commission in the 1950s and 1960s and explosives-production activities conducted by the U.S. Army (Army) in the 1940s. The 6,974-ha (17,232-acre) ordnance works area is primarily chemically contaminated as a result of trinitrotoluene (TNT) and dinitrotoluene (DNT) manufacturing activities during World War II. This baseline risk assessment (BRA) is being conducted as part of the remedial investigation/feasibility study (RUFS) required under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended. The purpose of the BRA is to evaluate potential human health and ecological impacts from contamination associated with the groundwater operable units (GWOUs) of the chemical plant area and ordnance works area. An RI/FS work plan issued jointly in 1995 by the DOE and DA (DOE 1995) analyzed existing conditions at the GWOUs. The work plan included a conceptual hydrogeological model based on data available when the report was prepared; this model indicated that the aquifer of concern is common to both areas. Hence, to optimize further data collection and interpretation efforts, the DOE and DA have decided to conduct a joint RI/BRA. Characterization data obtained from the chemical plant area wells indicate that uranium is present at levels slightly higher than background, with a few concentrations exceeding the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 20 {micro}g/L (EPA 1996c). Concentrations of other radionuclides (e

  13. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect (OSTI)

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  14. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect (OSTI)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  15. Idaho Cold War Waste Removal Advancing as Work on Eighth Area Begins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Danielle Miller, (208) 569-7806 Erik Simpson, (208) 390-9464 For Immediate Release: January 13, 2014 Idaho Cold War Waste Removal Advancing as Work on Eighth Area Begins IDAHO FALLS, ID - The U.S. Department of Energy and Idaho site cleanup contractor CH2M-WG Idaho (CWI) have begun removing Cold War weapons waste at the eighth area of the 97-acre Subsurface Disposal Area (SDA). The Idaho Site contains a total of nine targeted waste areas within the SDA. To date, six retrieval areas have been

  16. Engineering research, development and technology. Thrust area report, FY93

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  17. Arctic Airspace Warning Area Established to Aid Research & Exploration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Airspace Warning Area Established to Aid Research & Exploration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy

  18. Idaho Cleanup Project completes work at Test Area North complex at DOE�s

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho site Idaho Cleanup Project completes work at Test Area North complex at DOE�s Idaho site Loss-Of-Fluid Test Reactor Facility (before) Idaho Cleanup Project workers have completed all the original contract work scope at the U.S. Department of Energy�s Idaho Site�s Test Area North (TAN) complex. The work involved close cooperation among the Department of Energy, the Environmental Protection Agency and the Idaho Department of Environmental Quality, with public input incorporated

  19. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  20. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M.; Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  1. Engineering Research and Development and Technology thrust area report FY92

    SciTech Connect (OSTI)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  2. Plutonium Focus Area research and development plan. Revision 1

    SciTech Connect (OSTI)

    1996-11-01

    The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

  3. Flexible Work Arrangements Go Outside the Box | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible Work Arrangements Go Outside the Box Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) ...

  4. NREL: Climate Neutral Research Campuses - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Close-up photo of a photovoltaic panel on Cornell University's Day Hall with the campus clock tower standing in the background. Cornell University is representative of a research ...

  5. Work & Life at Rio de Janeiro | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and share great moments with their teams. Local Color The Global Research Center in Brazil is located in Rio de Janeiro, the capital city of Rio de Janeiro state, also known...

  6. Work & Life at Munich | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work & Life at Munich Work & Life at Munich Living at Germany's Cosmopolitan Crossroads offers easy access to outdoor pursuits in the Alps and travel throughout Europe. Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Employee Organizations GE Volunteers Our volunteers commit each year to multiple events such as

  7. Work & Life at Niskayuna | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work & Life at Niskayuna Work & Life at Niskayuna Living in New York's Tech Valley provides easy access to arts, culture and the great outdoors. Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Employee Organizations Newcomers Club The Newcomers Club is a social organization that aids and supports recent hires (3

  8. Work & Life at Shanghai | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work & Life at Shanghai Work & Life at Shanghai China's Cradle of Industrial Technology brings together ancient tradition with futuristic advances in a fascinating melting pot. Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Employee Organizations Photo Club This club organizes a series of photo-shooting events

  9. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented.

  10. Small Businesses Nationwide Begin Work on Cutting-Edge Innovative Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects | Department of Energy Nationwide Begin Work on Cutting-Edge Innovative Research Projects Small Businesses Nationwide Begin Work on Cutting-Edge Innovative Research Projects February 21, 2012 - 12:18pm Addthis Washington, D.C. - Energy Secretary Steven Chu today announced that with support from the Department of Energy, 142 small businesses around the nation are starting work this week on 180 innovative research projects ranging from designing better wind turbines to developing a

  11. PEV Grid Integration Research: Vehicles, Buildings, and Renewables Working Together (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2014-06-01

    Presented at the Electric Power Research Institute (EPRI) Infrastructure Working Council (IWC) Meeting, 18-19 June 2014, White Plains, New York

  12. Office of Science Priority Research Areas for SCGSR Program | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Office of Science Priority Research Areas for SCGSR Program DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Identifying a Collaborating DOE Laboratory Scientist Research Proposal Guidelines Office of Science Priority Research Areas for SCGSR Program About the Office of Science Office of Science User Facilities Priority Areas For Past SCGSR Solicitations Letters of Support Graduate

  13. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-03-05

    This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable

  14. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-03-05

    his 2002 Facility Work Plan (FWP) has been prepared as required by Module VII,Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received onDecember 6, 2000 (NMED, 2000a). This February 2002 FWP describes the program-matic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the mostrecent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA)Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may beused for any SWMU or AOC (NMED, 1998). This accelerated approach is used toreplace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to

  15. Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development

    Broader source: Energy.gov [DOE]

    Slide Presentation by Rich Davies, Kami Lowry, Mike Schlender, Pacific Northwest National Laboratory (PNNL) and Ted Pietrok, Pacific Northwest Site Office (PNSO). Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development. Work Planning and Control (WP&C) is essential to assuring the safety of workers and the public regardless of the scope of work Research and Development (R&D) activities are no exception.

  16. SECTION L … ATTACHMENT xx … KEY PERSONNEL AND CRITICAL WORK AREA PERSONNEL RESUME ELEMENTS

    National Nuclear Security Administration (NNSA)

    2] Attachment L-3a KEY PERSONNEL RESUME ELEMENTS 1. Name of Offeror: 2. Name of Key Person: 3. Proposed Position: 4. Duties and Responsibilities in Proposed Position including elements of SOW assigned: 5. Chronological Work History: Start with current position and work backwards. A. Name and Address of Firm: B. Position(s) Held: C. Dates of Employment: D. General Summary of Responsibilities: Provide a concise description of major duties and responsibilities for each job relevant to the proposed

  17. (Rain)cloud computing: Researchers work to improve how we predict climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    change | Argonne National Laboratory (Rain)cloud computing: Researchers work to improve how we predict climate change By Louise Lerner * March 3, 2016 Tweet EmailPrint Rao Kotamarthi and Jiali Wang spend their days looking at a future Earth. At the U.S. Department of Energy's (DOE's) Argonne National Laboratory, the two scientists work on simulations and techniques to project what the climate will look like 100 years from now. Last year, they completed the highest resolution climate forecast

  18. Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas

    SciTech Connect (OSTI)

    ROGERS, P.M.

    2000-06-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted.

  19. Phase 1 RCRA Facility Investigation & Corrective Measures Study Work Plan for Single Shell Tank (SST) Waste Management Areas

    SciTech Connect (OSTI)

    MCCARTHY, M.M.

    1999-08-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly.

  20. DOE Research Set-Aside Areas of the Savannah River Site

    SciTech Connect (OSTI)

    Davis, C.E.; Janecek, L.L.

    1997-08-31

    Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site`s total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside.

  1. Results and Analysis of the Research and Development Work Scope Request for Information (DE-SOL-0008246)

    SciTech Connect (OSTI)

    Heidrich, Brenden John

    2015-07-01

    The Department of Energy (DOE) Office of Nuclear Energy (NE) released a request for information (RFI) (DE-SOL-0008246) for “University, National Laboratory, Industry and International Input to the Office of Nuclear Energy’s Competitive Research and Development Work Scope Development” on April 13, 2015. DOE-NE solicited information for work scopes for the four main program areas as well as any others suggested by the community. The RFI proposal period closed on June 19, 2015. From the 124 responses, 238 individual work scopes were extracted. Thirty-three were associated with a DOE national laboratory, including Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Idaho National Laboratory (INL), Los Alamos National Laboratory (LANL), Pacific Northwest National Laboratory (PNNL) and Oak Ridge National Laboratory (ORNL). Thirty US universities submitted proposals as well as ten industrial/commercial institutions. Four major R&D areas emerged from the submissions, appearing in more than 15% of the proposed work scopes. These were: nuclear fuel studies, safety and risk analysis, nuclear systems analysis and design and advanced instrumentation and controls. Structural materials for nuclear power plants, used nuclear fuel disposition and various types of systems analysis were also popular, each appearing in more than 10% of the proposals. Nuclear Energy Enabling Technologies (NEET) was the most popular program area with 42% of the proposals referencing the NEET-CTD program. The order of the remaining programs was Fuel Cycle Technologies (FC) at 34%, Nuclear Energy Advanced Modeling and Simulation (NEAMS) at 29% and Reactor Concepts at 17%.

  2. 300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan

    SciTech Connect (OSTI)

    Freshley, Mark D.

    2008-12-31

    Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energy’s (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.

  3. Reaction-Based Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect (OSTI)

    Yeh, Gour-Tsyh

    2006-06-01

    This research project (started Fall 2004) was funded by a grant to The Pennsylvania State University, University of Central Florida, and The University of Alabama in the Integrative Studies Element of the NABIR Program (DE-FG04-ER63914/63915/63196). Dr. Eric Roden, formerly at The University of Alabama, is now at the University of Wisconsin - Madison. Our project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and is directly aligned with the Scheibe et al. NABIR FRC Field Project at Area 2.

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Paine SN, DD Turner, ...

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Roobik" Is Part of the Answer, Not a Puzzle Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): ...

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Turner, D. D., National Oceanic and Atmospheric Administration Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Turner DD. ...

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spiraling Through a Storm PI Contact: Giangrande, S., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: ...

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Entrainment Rate Parameterization Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud ...

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hagos, S. M., Pacific Northwest National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: NA...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Westwater, E. R., University of Colorado Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference:...

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties, Radiative Processes...

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fall Speeds of Cirrus Crystals Faster Than Expected PI Contact: Fridlind, A. M., NASA - Goddard Institute for Space Studies Area of Research: Cloud Processes Working Group(s): ...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions...

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burning on the Prairies Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Albedo Observations in the Southern Great Plains Submitter: Lamb, P. J., University of Oklahoma Area of Research: Aerosol Properties Working Group(s): Aerosol Journal...

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Get Organized Download a printable PDF Submitter: Del Genio, A. D., National Aeronautics and Space Administration Area of Research: Cloud Processes Working Group(s): Cloud...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nucleation Events Download a printable PDF Submitter: McMurry, P. ., University of Minnesota Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal ...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Differences Between Tropical and Trade-Wind Shallow Cumuli Download a printable PDF Submitter: Ghate, V. P., Argonne National Laboratory Area of Research: Vertical Velocity Working...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Life Cycle Journal Reference: Zhao Y, GG Mace, and JM Comstock. 2011. "The occurrence of particle ...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a printable PDF Submitter: Lin, Y., Geophysical Fluid Dynamics Laboratory Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s):...

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and ARM Data Submitter: Somerville, R. C., Scripps Institution of Oceanography Area of Research: General Circulation and Single Column ModelsParameterizations Working Group(s):...

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PDF Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Aerosol Life Cycle,...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chamber Studies Uncover New Pathways for Atmospheric Aerosol Growth PI Contact: Smith, J., University of California, Irvine Area of Research: Aerosol Processes Working Group(s): ...

  4. Feasibility study for remedial action for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Army (DA) are conducting an evaluation to identify the appropriate response action to address groundwater contamination at the Weldon Spring Chemical Plant (WSCP) and the Weldon Spring Ordnance Works (WSOW), respectively. The two areas are located in St. Charles County, about 48 km (30 rni) west of St. Louis. The groundwater operable unit (GWOU) at the WSCP is one of four operable units being evaluated by DOE as part of the Weldon Spring Site Remedial Action Project (WSSRAP). The groundwater operable unit at the WSOW is being evaluated by the DA as Operable Unit 2 (OU2); soil and pipeline contamination are being managed under Operable Unit 1 (OU1). Remedial activities at the WSCP and the WSOW are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. A remedial investigation/feasibility study (RI/FS) work plan summarizing initial site conditions and providing site hydrogeological and exposure models was published in August of 1995 (DOE 1995). The remedial investigation (RI) and baseline risk assessment (BRA) have also recently been completed. The RI (DOE and DA 1998b) discusses in detail the nature, extent, fate, and transport of groundwater and spring water contamination. The BRA (DOE and DA 1998a) is a combined baseline assessment of potential human health and ecological impacts and provides the estimated potential health risks and ecological impacts associated with groundwater and springwater contamination if no remedial action were taken. This feasibility study (FS) has been prepared to evaluate potential options for addressing groundwater contamination at the WSCP and the WSOW. A brief description of the history and environmental setting of the sites is presented in Section 1.1, key information relative to the

  5. FY 1990 environmental research programs for the Nevada Operations Office. Work plan and quarterly reports, first through fourth quarter reports

    SciTech Connect (OSTI)

    1990-11-01

    This work includes a wide range of research and support activities associated with the Weapons Testing Program conducted at the Nevada Test Site (NTS). Ongoing and new environmental research programs to be conducted by DRI over the period of this contract include archaeological studies and site mitigation plans; offsite community radiation monitoring support; environmental compliance activities related to state and federal regulations; hydrologic assessment of containment of underground nuclear detonations; hydrology/radionuclide investigations designed to better understand and predict the possible subsurface movement of radionuclides at the NTS; and support of various statistical and data management and design activities. In addition to these, archaeological and other activities will be carried out in support of the Yucca Mountain Project. Other areas of the overall program which require DRI support are classified security activities, radiation safety and training, quality assurance and control, computer protection and historical data management, derivative classification of DRI documents, and preparation of any special reports not included in the requirements of the individual projects.

  6. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-29

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

  7. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The LANL Isotope Program's R&D strategy is focused on four main areas (see article list below for recent efforts in these areas): Medical Applications are a key focus for research ...

  8. Preservation of Records, Knowledge and Memory Across Generations. An emerging Multidisciplinary Work Area and an NEA Project - 12218

    SciTech Connect (OSTI)

    Schroeder, Jantine; Pescatore, Claudio

    2012-07-01

    Disposal in engineered facilities built in stable, deep geological formations is the reference means for permanently isolating long-lived radioactive waste from the human biosphere. This management method is designed to be intrinsically safe and final, i.e. not dependent on human presence and intervention in order to fulfil its safety goal. There is however no intention to forgo, at any time, knowledge and awareness either of the repository or of the waste that it contains. The preservation of Records, Knowledge and Memory (RK and M) is seen as an integral part of radioactive waste management, supporting lengthy and complex socio-technical processes across pre-operational, operational and post-operational lifetimes. Long-term preservation of RK and M is an emerging multidisciplinary work area in which much learning is expected over the coming years. Novel methods are being sought that are least vulnerable to both natural degradation and to changes in socio-economic conditions. Progress has been made in individual countries, but there is a need to internationalise the thinking, compare approaches, investigate potential solutions and share decisions. This is the task of the NEA RK and M project. A major outcome of the project will be a 'menu-driven document' that will allow people to identify the main elements of a strategic action plan for RK and M preservation. In sum, the preservation of RK and M is a unprecedented task in which technical, scientific and social information is interwoven and needs to be developed and preserved across generations and across specialist boundaries. Important studies have been undertaken in the past decades to explore a variety of approaches to preserving RK and M across different timescales, including archives and markers. The work of the past in this area is useful, but innovative thinking is also needed. Seen from today's perspective, very little work is available on for example the contextualization of data for later use; on the

  9. How Does Gravity Work to Hold a Human Down? | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Does Gravity Work to Hold a Human Down? Click to email this to a friend (Opens in new ... How Does Gravity Work to Hold a Human Down? 2012.04.13 Chief Scientist Jim Bray discusses ...

  10. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-11-30

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA) to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  11. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-05-15

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA)to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  12. PEV Grid Integration Research - Vehicles, Buildings, and Renewables Working Together; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-29

    This presentation will discuss current research activities in PEV grid integration at NREL. Presented at the 2015 IEEE Power and Energy Systems General Meeting, Denver, Colorado.

  13. GE, NASA Work to Relaunch Supersonic Air Travel | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as part of a research project with NASA. While achieving an acceptable sonic boom ... principal investigator on the NASA program and member of the Aerodynamics and ...

  14. Perspective: The Climate-Population-Infrastructure Modeling and Simulation Fertile Area for New Research

    SciTech Connect (OSTI)

    Allen, Melissa R; Fernandez, Steven J; Walker, Kimberly A; Fu, Joshua S

    2014-01-01

    Managing the risks posed by climate change and extreme weather to energy production and delivery is a challenge to communities worldwide. As climate conditions change, populations will shift, and demand will re-locate; and networked infrastructures will evolve to accommodate new load centers, and, hopefully, minimize vulnerability to natural disaster. Climate effects such as sea level rise, increased frequency and intensity of natural disasters, force populations to move locations. Displaced population creates new demand for built infrastructure that in turn generates new economic activity that attracts new workers and associated households to the new locations. Infrastructures and their interdependencies will change in reaction to climate drivers as the networks expand into new population areas and as portions of the networks are abandoned as people leave. Thus, infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Forecasting the location of these vulnerabilities by combining climate predictions and agent based population movement models shows promise for defining these future population distributions and changes in coastal infrastructure configurations. By combining climate and weather data, engineering algorithms and social theory it has been only recently possible to examine electricity demand response to increased climactic temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. These emerging results suggest a research agenda of coupling these disparate modelling approaches to understand the implications of climate change for protecting the nation s critical infrastructure.

  15. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    Nelson, L. O.

    2007-06-12

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  16. Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for 2001-2006 Office of Science Abstracts Database Research Highlights Summaries Research Highlights Members of ARM's science team are major contributors to radiation and cloud research. ARM investigators publish about 150 refereed journal articles per year, and ARM data are used in many studies published by other scientific

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Download a printable PDF Submitter: Albrecht, B. A., University of Miami Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Albrecht B, M Fang, ...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kulkarni G, S China, S Liu, M Nandasiri, N Sharma, J Wilson, AC Aiken, D Chand, A ...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Modeling Journal Reference: Naud, C, A Del Genio, GG Mace, S Benson, EE Clothiaux, and P Kollias. ...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area of Research: Cloud DistributionsCharacterizations Working Group(s): Cloud Properties Journal Reference: Wang X, KN Liou, SS Ou, GG Mace, and M Deng. 2009. "Remote sensing of ...

  1. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil target for proof-of-concept actinium-225 production In addition to our routine isotope products, the LANL Isotope Program is focused on developing the next suite of isotopes and services to meet the Nation's emerging needs. The LANL Isotope Program's R&D strategy is focused on four main areas (see

  2. Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect (OSTI)

    Burgos, W.D.

    2009-09-02

    This report summarizes research conducted in conjunction with a project entitled “Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2.

  3. Dallas area-wide intelligent transportation system plan. Draft research report, August 1992-August 1996

    SciTech Connect (OSTI)

    Carvell, J.D.; Seymour, E.J.; Walters, C.H.; Starr, T.R.; Balke, K.

    1996-07-01

    This report documents the development of a comprehensive plan for implementation of Intelligent Transportation Systems (ITS) in the Dallas Urban Area. The contract defined objectives: Develop a Broadly Based Steering Committee; Assess Existing Transportation Management Systems and Potential ITS Technology; Identify Institutional Issues and Legal Barriers; Develop an Implementable, Area-Wide Multi-Jurisdictional ITS Plan; and Develop Cost, Benefits, and an Implementation Plan.

  4. Fatigue Life Prediction in Rapid Die Casting - Preliminary Work in View of Current Research

    SciTech Connect (OSTI)

    Chuan Huat Ng [Faculty of Mechanical and Manufacturing Engineering (FKMP), Kolej Universiti Teknologi Tun Hussein Onn (KUiTTHO), P.O.Box 101, 86400 Parit Raja, Batu Pahat, Johor (Malaysia); Grote, Karl-Heinrich [Institut fuer Maschinenkonstruktion, Lehrstuhl Konstruktionstechnik, Otto-von-Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg (Germany); Baehr, Ruediger [Institut fuer Fertigungstechnik und Qualitaetssicherung, Ur und Umformtechnik, Otto-von-Guericke University Magdeburg, Universitaetsplatz 2, 39106 Magdeburg (Germany)

    2007-05-17

    Numerical simulation technique as a prediction tool is slowly adopted in metal casting industry for predicting design modelling solidification analysis. The reasons for this activity is found in the need to further enhance the geometrical design and mechanical properties of the tool design and the correct prediction methodology to fulfil industrial needs. The present state of numerical simulation capabilities in rapid die casting technologies is reviewed and the failure mode mechanisms of thermal fatigue, aimed at developing a numerical simulation with a systematic design guidance for predicting the thermal cyclic loading analysis and improvement is presented along with several other methods. The economic benefits of a numerical simulation technique in die casting are limited to tool life time, mechanical properties and design guidance. The extensive computer capabilities of a numerical simulation with a systematic design guidance methodology are exploited to provide a solution for flexible design, mechanical properties and mould life time. Related research carried out worldwide by different organisations and academic institutions are discussed.

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Particle Projected Area- and Mass-Dimension Expressions for Cirrus Clouds Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Erfani E and DL Mitchell. 2015. "Developing and bounding ice particle mass- and area-dimension expressions for use in atmospheric models and remote sensing." Atmospheric Chemistry and Physics, 15(20),

  6. Recent research efforts in the area of biotechnology for fuels and chemicals: Poster session papers

    SciTech Connect (OSTI)

    Antonopoulos, A.A. ); Grohmann, K. )

    1992-01-01

    This report presents research presented at the poster session of the Symposium covering a wide spectrum of current biotechnological research activities. Research focused mostly on ethanol production and methane generation from biomass material via microbial processing, as well as on enhanced hydrogen yield from algae. Several of the posters dealt with the pretreatment of cellulosic materials, and enzyme production/characterization, while a good number of papers displayed research efforts on bioremediation, photosynthesis, production of various useful chemicals from biomass by bioprocessing, and on other miscellaneous subjects. One of the papers treated a very interesting topic of cellulose-cellulase complexes. Many of the poster papers are included in this volume, and a synopsis of all the poster/papers presented is the subject of this article.

  7. Recent research efforts in the area of biotechnology for fuels and chemicals: Poster session papers

    SciTech Connect (OSTI)

    Antonopoulos, A.A.; Grohmann, K.

    1992-09-01

    This report presents research presented at the poster session of the Symposium covering a wide spectrum of current biotechnological research activities. Research focused mostly on ethanol production and methane generation from biomass material via microbial processing, as well as on enhanced hydrogen yield from algae. Several of the posters dealt with the pretreatment of cellulosic materials, and enzyme production/characterization, while a good number of papers displayed research efforts on bioremediation, photosynthesis, production of various useful chemicals from biomass by bioprocessing, and on other miscellaneous subjects. One of the papers treated a very interesting topic of cellulose-cellulase complexes. Many of the poster papers are included in this volume, and a synopsis of all the poster/papers presented is the subject of this article.

  8. Priority research areas to accelerate the development of practical ultraconductive copper conductors

    SciTech Connect (OSTI)

    Lee, Dominic F.; Burwell, Malcolm; Stillman, H.

    2015-09-01

    This report documents the findings at an Ultraconductive Copper Strategy Meeting held on March 11, 2015 in Washington DC. The aim of this meeting was to bring together researchers of ultraconductive copper in the U.S. to identify and prioritize critical non-proprietary research activities that will enhance the understanding in the material and accelerate its development into practical conductors. Every effort has been made to ensure that the discussion and findings are accurately reported in this document.

  9. Reaction-based Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    SciTech Connect (OSTI)

    Tsyh Yeh, Gour

    2007-12-21

    This research sought to examine biogeochemical processes likely to take place in the less conductive materials above and below the gravel during the in situ ethanol biostimulation experiment conducted at Area 2 during 2005-2006. The in situ experiment in turn examined the hypothesis that injection of electron donor into this layer would induce formation of a redox barrier in the less conductive materials, resulting in decreased mass transfer of uranium out these materials and attendant declines in groundwater U(VI) concentration. Our project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This report summarizes research activities conducted at The University of Central Florida (2004-2007), the development of biogeochemical and reactive transport models and the conduction of numerical simulations at laboratory, column, and field scales.

  10. Research on stable, high-efficiency, large-area, amorphous-silicon-based submodules

    SciTech Connect (OSTI)

    Delahoy, A.E.; Tonon, T.; Macneil, J. (Chronar Corp., Princeton, NJ (USA))

    1991-06-01

    The primary objective of this subcontract is to develop the technology for same bandgap, amorphous silicon tandem junction photovoltaic modules having an area of at least 900 cm{sup 2} with the goal of achieving an aperture area efficiency of 9%. A further objective is to demonstrate modules that retain 95% of their under standard light soaking conditions. Our approach to the attainment of these objective is based on the following distinctive technologies: (a) in-house deposition of SiO{sub 2}/SnO{sub 2}:F onto soda lime glass by APCVD to provide a textured, transparent electrode, (b) single chamber r.f. flow discharge deposition of the a-Si:H layers onto vertical substrates contained with high package density in a box carrier'' to which the discharge is confined (c) sputter deposition of highly reflecting, ZnO-based back contacts, and (d) laser scribing of the a-Si:H and electrodes with real-time scribe tracking to minimize area loss. Continued development of single junction amorphous silicon was aggressively pursued as proving ground for various optical enhancement schemes, new p-layers, and i-layers quality. We have rigorously demonstrated that the introduction of a transitional i-layer does not impair stability and that the initial gain in performance is retained. We have demonstrated a small improvement in cell stability through a post-fabrication treatment consisting of multiple, intense light flashes followed by sufficient annealing. Finally, several experiments have indicated that long term stability can be improved by overcoating the SnO{sub 2} with ZnO. 25 refs., 17 figs.

  11. Interim remedial action work plan for the cesium plots at Waste Area Grouping 13 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This remedial action work plan (RAWP) is issued under the Federal Facility Agreement to provide a basic approach for implementing the interim remedial action (IRA) described in Interim Record of Decision for the Oak Ridge National Laboratory Waste Area Grouping 13 Cesium Plots, Oak Ridge, Tennessee. This RAWP summarizes the interim record of decision (IROD) requirements and establishes the strategy for the implementation of the field activities. As documented in the IROD document, the primary goal of this action is to reduce the risk to human health and the environment resulting from current elevated levels of gamma radiation on the site and at areas accessible to the public adjacent to the site. The major steps of this IRA are to: Excavate cesium-contaminated soil; place the excavated soils in containers and transport to Waste Area Grouping (WAG) 6; and backfill excavated plots with clean fill materials. The actual remedial action will be performed by Department of Energy prime contractor, MK-Ferguson of Oak Ridge Company. Remediation of the cesium plots will require approximately 60 days to complete. During this time, all activities will be performed according to this RAWP and the applicable specifications, plans, and procedures referred to in this document. The IRA on WAG 13 will prevent a known source of cesium-contaminated soil from producing elevated levels of gamma radiation in areas accessible to the public, eliminate sources of contamination to the environment, and reduce the risks associated with surveillance and maintenance of the WAG 13 site.

  12. The energy investment decision in the nonresidential building sector: Research into the areas of influence

    SciTech Connect (OSTI)

    Harkreader, S.A.; Ivey, D.L.

    1987-04-01

    The purpose of this report is to describe and to characterize the decision process in the nonresidential building sector as well as the variables influencing energy investment decisions, both of which impact the development of R and D agendas for the Office of Building and Community Systems (BCS). The report reviews the available information on the factors that influence energy investment decisions and identifies information gaps where additional research is needed. This report focuses on variables and combinations of these variables (descriptive states) that influence the non residential energy investment decision maker. Economic and demographic descriptors, energy investment decision maker characteristics, and variables affecting energy investments are identified. This response examines the physical characteristics of buildings, characteristics of the legal environment surrounding buildings, demographic factors, economic factors, and decision processes, all of which impact the nonresidential energy investment market. The emphasis of the report is on providing possible methodologies for projecting the future of the nonresidential energy investment market, as well as, collecting the data necessary for such projections. The use of alternate scenarios is suggested as a projection tool and suggestions for collecting the appropriate data are made in the recommendations.

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying Error in the Radiative Forcing of the First Aerosol Indirect Effect Submitter: McComiskey, A. C., National Oceanic and Atmospheric Administration Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Submitted to Geophysical Research Letters, 06-27-2007. Radiative forcing of aerosol indirect as function of CCN number density and LWP in units of W/m2 per 5% IE error. A survey of recently published works shows that values used to represent the magnitude of

  14. Research Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Capabilities Research Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy, to supercomputing. thumbnail of Bioscience At Los Alamos, scientists and engineers are working to unlock many of the mechanisms found in nature to improve humanity's ability to battle diseases, create new forms of environmentally friendly and abundant

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submitter: Area of Research: Journal Reference: N/A

  16. Report on the activities of the ASME-NQA Committee Working Group on Quality Assurance Requirements for Research and Development, April 1990 to August 1991

    SciTech Connect (OSTI)

    Dronkers, J.J.

    1991-09-01

    This report transmits to the public eye the activities of the American Society of Mechanical Engineers-Nuclear Quality Assurance (ASME-NQA) Committee Working Group on Quality Assurance Requirements for Research and Development. The appendix lists the members of this group as of August 1991. The report covers a period of 17 months. The working group met eight times in this period, and much intellectual ground was traversed. There was seldom agreement on the nature of the task, but there was no doubt as to its urgency. The task was how to adapt the nuclear quality assurance standard, the NQA-1, to research and development work. 1 fig., 7 tabs.

  17. Work with Us | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Us We are eager to pursue materials science research with partners in industry, universities, and other organizations. Contact Us Photo of Nancy Haegel Nancy Haegel Center Director, Materials Science Center Email | 303-384-6548 For lead researcher contacts, see our research areas. To find research group managers or specific researchers, see our listing of research staff. Interested in Joining Our Team? Find an opportunity: Job | Internship | Post-doc Plan Your Visit Map to NREL Golden,

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Models Download a printable PDF Submitter: Iacono, M. J., Atmospheric & Environmental Research, Inc. Delamere, J. S., Tech-X Corporation Mlawer, E. J., Atmospheric & Environmental Research, Inc. Collins, W. D., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Radiative Processes Journal Reference: Iacono, MJ, JS Delamere, EJ

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climatology of Aerosol Optical Depth in North-Central Oklahoma: 1992-2008 Download a printable PDF Submitter: Michalsky, J. J., Cooperative Institute for Research in Environmental Sciences Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Michalsky J, F Denn, C Flynn, G Hodges, P Kiedron, A Koontz, J Schlemmer, and SE Schwartz. 2010. "Climatology of aerosol optical depth in north-central Oklahoma: 1992-2008." Journal of Geophysical Research -

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Partial Mechanistic Understanding of the North American Monsoon Download a printable PDF Submitter: Erfani, E., Desert Research Institute Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Erfani E and DL Mitchell. 2014. "A partial mechanistic understanding of the North American monsoon." Journal of Geophysical Research - Atmospheres, 119(23), 10.1002/2014JD022038. a) Dependence of

  1. ARM - Research Highlights: Notable Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HighlightsNotable Research Findings Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for 2001-2006 Office of Science Abstracts Database Research Highlights Summaries Notable Research Findings for the Past Five Years Aerosols Cloud Parameterization and Modeling (Currently Cloud Modeling) Cloud Properties Instantaneous Radiative Flux (Currently Radiative Processes)

  2. UNIVERSITY RESEARCH PROGRAMS IN ROBOTICS, TECHNOLOGIES FOR MICROELECTROMECHANICAL SYSTEMS IN DIRECTED STOCKPILE WORK RADIATION AND ENGINEERING CAMPAIGNS - 2005-06 FINAL ANNUAL REPORT

    SciTech Connect (OSTI)

    James S. Tulenko; Dean Schoenfeld; David Hintenlang; Carl Crane; Shannon Ridgeway; Jose Santiago; Charles Scheer

    2006-11-30

    The research performed by the University of Florida (UF) is directed to the development of technologies that can be utilized at a micro-scale in varied environments. Work is focused on micro-scale energy systems, visualization, and mechanical devices. This work will impact the NNSA need related to micro-assembly operations. The URPR activities are executed in a University environment, yet many applications of the resulting technologies may be classified or highly restrictive in nature. The NNSA robotics technologists apply an NNSA needs focus to the URPR research, and actively work to transition relevant research into the deployment projects in which they are involved. This provides a Research to Development to Application structure within which innovative research has maximum opportunity for impact without requiring URPR researchers to be involved in specific NNSA projects. URPR researchers need to be aware of the NNSA applications in order to ensure the research being conducted has relevance, the URPR shall rely upon the NNSA sites for direction.

  3. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    1988-01-01

    Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

  4. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    SciTech Connect (OSTI)

    Saffer, Shelley I.

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  5. Links for Scientists and Researchers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links for Scientists and Researchers Below you will find links commonly used by scientists, users and others who conduct research at Jefferson Lab. Experimental Areas Hall A Hall B Hall C Hall D Other Work Areas Physics Division Work Planning Requirements Physics Division Work Governance Area Access for Students Training requirements for experimental areas Nuclear Physics Program Physics Home Page Experiment Schedule Three-Year Accelerator Schedule Program Advisory Committee (PAC) Experiment

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overly Intense Convective Updrafts Exposed as a Significant Contributor to Model Biases Submitter: Varble, A., University of Utah Zipser, E., University of Utah Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Varble A, EJ Zipser, AM Fridlind, P Zhu, AS Ackerman, J Chaboureau, S Collis, J Fan, A Hill, and B Shipway. 2014. "Evaluation of cloud-resolving and limited area model simulations using TWP-ICE observations. Part 1: Deep convective updraft

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding the Causes for Consistently Low Biased Stratiform Rainfall in Models Submitter: Varble, A., University of Utah Zipser, E., University of Utah Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Varble A, EJ Zipser, AM Fridlind, P Zhu, AS Ackerman, J Chaboureau, J Fan, A Hill, B Shipway, and C Williams. 2014. "Evaluation of cloud-resolving and limited area model simulations using TWP-ICE observations. 2. Precipitation microphysics." Journal of

  8. 25 Years Of Environmental Remediation In The General Separations Area Of The Savannah River Site: Lessons Learned About What Worked And What Did Not Work In Soil And Groundwater Cleanup

    SciTech Connect (OSTI)

    Blount, Gerald; Thibault, Jeffrey; Millings, Margaret; Prater, Phil

    2015-03-16

    environmental remediation projects tend to be managed under tri-party agreement (DOE, Environmental Protection Agency, and SCDHEC) through the Federal Facilities Agreement. During 25 years of environmental remediation SRS has stabilized and capped seepage basins, and consolidated and capped waste units and burial grounds in the GSA. Groundwater activities include: pump and treat systems in the groundwater, installation of deep subsurface barrier systems to manage groundwater flow, in situ chemical treatments in the groundwater, and captured contaminated groundwater discharges at the surface for management in a forest irrigation system. Over the last 25 years concentrations of contaminants in the aquifers beneath the GSA and in surface water streams in the GSA have dropped significantly. Closure of 65 waste sites and 4 RCRA facilities has been successfully accomplished. Wastes have been successfully isolated in place beneath a variety of caps and cover systems. Environmental clean-up has progressed to the stage where most of the work involves monitoring, optimization, and maintenance of existing remedial systems. Many lessons have been learned in the process. Geotextile covers outperform low permeability clay caps, especially with respect to the amount of repairs required to upkeep the drainage layers as the caps age. Passive, enhanced natural processes to address groundwater contamination are much more cost effective than pump and treat systems. SRS operated two very large pump and treat systems at the F and H Seepage Basins to attempt to limit the release of tritium to Fourmile Branch, a tributary of the Savannah River. The systems were designed to extract contaminated acidic groundwater, remove all contamination except tritium (not possible to remove the tritium from the water), and inject the tritiated groundwater up-gradient of the source area and the plume. The concept was to increase the travel time of the injected water for radioactive decay of the tritium. The two

  9. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    SciTech Connect (OSTI)

    Stovall, Therese K; Biswas, Kaushik; Song, Bo; Zhang, Sisi

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dependence of Entrainment in Shallow Cumulus Convection on Vertical Velocity and Distance to Cloud Edge PI Contact: Kuang, Z., Harvard University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Tian Y and Z Kuang. 2016. "Dependence of entrainment in shallow cumulus convection on vertical velocity and distance to cloud edge." Geophysical Research Letters, , doi:10.1002/2016GL069005. ONLINE. Percentage change in (a) vertical velocity, (b) distance

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three Dimensions Are Better Than Two, When It Comes to Representing Aerosols PI Contact: Ching, J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Ching J, RA Zaveri, RC Easter, N Riemer, and JD Fast. 2016. "A three-dimensional sectional representation of aerosol mixing state for simulating optical properties and cloud condensation nuclei." Journal of Geophysical Research - Atmospheres, 121(10),

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing and Comparing the Modified Anomalous Diffraction Approximation Submitter: Mitchell, D. L., Desert Research Institute Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Mitchell, D.L., A.J. Baran, W.P. Arnott, C. Schmitt, 2006: Testing and comparing the anomalous diffraction approximation. J. Atmos. Sci., 63, 2948-2962. Comparison of MADA and T-matrix with measured Qext. Regions without data were contaminated by water vapor or

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Atmospheric Aerosols Using MFRSR Measurements Download a printable PDF Submitter: Alexandrov, M. D., Columbia University Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Alexandrov, MD, AA Lacis, BE Carlson, and B Cairns. 2007. "Characterization of atmospheric aerosols using MFRSR measurements." (Journal of Geophysical Research 113, DO8204. Sample spectral optical depths of atmospheric constituents in 300 - 900 nm spectral range:

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model Download a printable PDF Submitter: Zhang, G., University of California, San Diego Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Li, G, and GJ Zhang. 2008. "Understanding biases in shortwave cloud radiative forcing in the National Center for Atmospheric Research Community Atmosphere Model (CAM3) during El

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wide Angle Imaging Lidar: Active Optical Sensor Technology for Ground-Based Probing of Dense Clouds Download a printable PDF Submitter: Davis, A. B., Jet Propulsion Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Davis, AB. 2008. "Multiple-scattering lidar from both sides of the clouds: Addressing internal structure." Journal of Geophysical Research 113, D14S10, doi:10.1029/2007JD009666. Figure 1. Lidar

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Threshold Radar Reflectivity Separating Precipitating from Non-Precipitating Clouds Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Liu, Y, B Geerts, PH Daum, R McGraw, and M Miller. 2008. "Threshold radar reflectivity for drizzling clouds." Geophysical Research Letters 35, L03807, doi:10.1029/2007GL031201. Figure 1 shows the comparison of the

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud-Radiation Effects on Sea Ice Loss Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Kay, JE, T L'Ecuyer, A Gettelman, G Stephens, and C O'Dell. "The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum." To appear in Geophysical Research Letters. Clouds and downwelling radiation 2007-2006 differences (June

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minimal Shortwave Anomalous Absorption Found over ACRF Sites Download a printable PDF Submitter: Dong, X., University of Arizona Minnis, P., NASA - Langley Research Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Dong, X, BA Wielicki, B Xi, Y Hu, GG Mace, S Benson, F Rose, S Kato, T Charlock, and P Minnis. 2008. "Using observations of deep convective systems to constrain atmospheric column absorption of solar radiation in the optically

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Ice Crystals on Ice Sedimentation Rates in Cirrus Clouds and GCM Simulations Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Rasch, P., Pacific Northwest National Laboratory Ivanova, D., Embry-Riddle Aeronautical University McFarquhar, G., University of Illinois, Urbana Nousiainen, T. P., University of Helsinki Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Properties Journal Reference: Mitchell, DL, P

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Aerosol Study Flies By Download a printable PDF Submitter: Schmid, B., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: ARM Climate Research Facility Operations Update, April 30, 2008, Edition Preliminary screening and analysis of images from the time-resolved aerosol collector indicate particles laden with carbon and sulfur. These data were obtained on April 8, 2008. Image courtesy of Alexander Laskin, PNNL. Images

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Surprisingly Large Contribution of Small Marine Clouds to Cloud Fraction and Reflectance Download a printable PDF Submitter: Oreopoulos, L., NASA Feingold, G., NOAA - Earth System Research Laboratory Koren, I., Weizmann Institute of Science Remer, L., NASA - GSFC, Laboratory for Atmospheres Area of Research: Clouds with Low Optical [Water] Depths (CLOWD) Working Group(s): Cloud Properties Journal Reference: Koren, I, L Oreopoulos, G Feingold, LA Remer, and O Altaratz. 2008. "How small

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Aerosol Measurements on Cloudy Days: a New Method Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Kassianov, EI, and M Ovtchinnikov. 2008. "On reflectance ratios and aerosol optical depth retrieval in the presence of cumulus clouds." Geophysical Research Letters doi:10.1029/2008GL033231.

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detection and Retrieval of Cirrus Clouds in the Tropics from AIRS: Validation from ARM Data Submitter: Yue, Q., Jet Propulsion Laboratory/California Institute of Technology Liou, K., University of California, Los Angeles Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Yue Q and KN Liou. 2009. "Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra." Geophysical Research Letters, 36, L05810,

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Is In Download a printable PDF Submitter: Tomlinson, J., Pacific Northwest National Laboratory Long, C. N., NOAA Global Monitoring Division/CIRES Comstock, J. M., Pacific Northwest National Laboratory Ronfeld, D., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Properties Journal Reference: N/A The Twin Otter takes off to test the onboard instruments for the RACORO field campaign that began in January 2009. Researchers are gathering data

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Influence of Parameterized Ice Habit on Simulated Mixed-Phase Arctic Clouds Download a printable PDF Submitter: Harrington, J. Y., Pennsylvania State University Avramov, A., Columbia University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Avramov A and JY Harrington. 2010. "Influence of parameterized ice habit on simulated mixed phase Arctic clouds." Journal of Geophysical Research - Atmospheres, 115, D03205,

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds Brighten Up the Sky Near Them Download a printable PDF Submitter: Varnai, T., University of Maryland, Baltimore County/JCEST Marshak, A., NASA - Goddard Space Flight Center Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Varnai T and A Marshak. 2009. "MODIS observations of enhanced clear sky reflectance near clouds." Geophysical Research Letters, 36, L06807, doi:10.1029/2008GL037089. Figure 1. Illustration of clouds enhancing the

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Ground-Based Millimeter-Wave Observations During RHUBC I Submitter: Cimini, D., CETEMPS - Dipartimento di Fisica Westwater, E. R., University of Colorado Payne, V., Jet Propulsion Laboratory/California Institute of Technology Turner, D. D., National Oceanic and Atmospheric Administration Mlawer, E. J., Atmospheric & Environmental Research, Inc. Exner, M., Radiometrics Corporation Cadeddu, M. P., Argonne National Laboratory Area of Research: Radiation Processes Working Group(s):

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Method for Retrieving Cloud Heights from Satellite Data Download a printable PDF Submitter: Chang, F., Science Systems and Applications, Inc. Minnis, P., NASA - Langley Research Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Chang F, P Minnis, B Lin, MM Khaiyer, R Palikonda, and DA Spangenberg. 2010. "A modified method for inferring cloud top height using GOES-12 imager 10.7- and 13.3-µm data." Journal of

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Summertime Radiative Forcing by Shallow Cumuli at the ARM SGP Download a printable PDF Submitter: Berg, L., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Berg LK, EI Kassianov, CN Long, and DL Mills. 2011. "Surface summertime radiative forcing by shallow cumuli at the ARM SGP." Journal of Geophysical Research - Atmospheres, 116, D01202, 10.1029/2010JD014593. Histogram of hourly average shortwave

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adoption of RRTMG in the NCAR CAM5 and CESM1 Global Climate Models Download a printable PDF Submitter: Iacono, M. J., Atmospheric & Environmental Research, Inc. Collins, W. D., Lawrence Berkeley National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A Figure 1. Shortwave cloud forcing for three versions of the NCAR Community Atmosphere Model (CAM) with CERES

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cumuli Impact on Solar Radiation at Surface: Spectral Changes Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, J Barnard, LK Berg, CN Long, and C Flynn. 2011. "Shortwave spectral radiative forcing of cumulus clouds from surface observations." Geophysical Research Letters, 38, L07801,

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Possible Impact of Homogeneous Freezing Nucleation on in Situ Measurements Download a printable PDF Submitter: Mitchell, D. L., Desert Research Institute Mishra, S., DOE - SunShot Initiative, AAAS S&T Policy Fellow Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mitchell DL, S Mishra, and RP Lawson. 2011. Cirrus Clouds and Climate Engineering: New Findings on Ice Nucleation and Theoretical

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Heating Up Cold Clouds Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ovchinnikov M, A Korolev, and J Fan. 2011. "Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud." Journal of Geophysical Research - Atmospheres, 116, D00T06, doi:10.1029/2011JD015888. The mighty cloud

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Putting the Pieces Together Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Fan J, S Ghan, M Ovchinnikov, X Liu, P Rasch, and A Korolev. 2011. "Representation of arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study." Journal of Geophysical Research - Atmospheres, 116,

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Recent Evaluation of the MT_CKD Model of Continuum Absorption Download a printable PDF Submitter: Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Mlawer EJ, VH Payne, J Moncet, JS Delamere, MJ Alvarado, and DD Tobin. 2012. "Development and recent evaluation of the MT_CKD model of continuum absorption." Philosophical Transactions of The Royal Society A, 370, doi:

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution + Storm Clouds = Warmer Atmosphere Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Fan J, D Rosenfeld, Y Ding, L Leung, and Z Li. 2012. "Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection." Geophysical Research Letters, 39, L09806,

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosols Help Heat Up the Yangtze River Delta in China Download a printable PDF Submitter: Flynn, C. J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Liu J, Z Li, Y Zheng, C Flynn, and M Cribb. 2012. "Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China." Journal of Geophysical Research, 117, D00K38,

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Measurements Help to Evaluate Radiation Codes Used in Global Modeling Download a printable PDF Submitter: Oreopoulos, L., NASA Mlawer, E. J., Atmospheric & Environmental Research, Inc. Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Oreopoulos L, E Mlawer, J Delamere, T Shippert, J Cole, B Fomin, M Iacono, Z Jin, J Li, J Manners, P Raisanen, F Rose, Y Zhang, MJ Wilson, and WB Rossow. 2012. "The Continual Intercomparison of Radiation Codes:

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Invisible" Giants in the Sky Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Daily averaged values of (a, b) the direct

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lord of the Wings: Elevated Particles a Rising Star Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Radiation Processes Working Group(s): Aerosol Life Cycle Journal Reference: Kassianov E, C Flynn, J Redemann, B Schmid, PB Russell, and A Sinyuk. 2012. "Initial assessment of the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)-based aerosol retrieval: Sensitivity study." Atmosphere, 3,

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying the Magnitude of Anomalous Solar Absorption Submitter: Ackerman, T. P., University of Washington Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: N/A Figure 1 Spurred by a series of articles published in 1995 claiming solar absorption in cloudy atmospheres far exceeded model predictions, Atmospheric Radiation Measurement (ARM) Program researchers at the Southern Great Plains (SGP) site in Oklahoma

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chinese Researchers Report Reliable Method for Monitoring Soil Moisture Submitter: Bhattacharya, A., Pacific Northwest National Laboratory Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: Sun L, R Sun, XW Li, SL Liang, and RH Zhang. 2012. "Monitoring surface soil moisture status based on remotely sensed surface temperature and vegetation index information." Agricultural and Forest Meteorology, 166, doi:10.1016/j.agrformet.2012.07.015. Shown

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Cloud Properties in Major Reanalyses Download a printable PDF Submitter: Liu, Y., Brookhaven National Laboratory Wu, W., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Wu W, YG Liu, and AK Betts. 2012. "Observationally based evaluation of NWP reanalyses in modeling cloud properties over the Southern Great Plains." Journal of Geophysical Research - Atmospheres, 117, D12202,

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Decade and Counting Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Long CN, SA McFarlane, A Del Genio, P Minnis, TP Ackerman, J Mather, J Comstock, GG Mace, M Jensen, and C Jakob. 2013. "ARM research in the equatorial western Pacific - a decade and counting." Bulletin of the American Meteorological Society, 94(5),

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Campaign Resource Allocation Using Statistical Decision Analysis Download a printable PDF Submitter: Hanlon, C., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Hanlon CJ, JB Stefik, AA Small, J Verlinde, and GS Young. 2013. "Statistical decision analysis for flight decision support: The SPartICus campaign." Journal of Geophysical Research - Atmospheres, , . ACCEPTED. In many atmospheric science field

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Brass Ring of Climate Modeling Download a printable PDF Submitter: Ghan, S. J., Pacific Northwest National Laboratory Area of Research: Aerosol Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Ghan SJ, SJ Smith, M Wang, K Zhang, K Pringle, K Carslaw, J Pierce, S Bauer, and P Adams. 2013. "A simple model of global aerosol indirect effects." Journal of Geophysical Research - Atmospheres, 118, 1-20. The simple model of aerosol effects on clouds

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twenty Years Serving Climate Science Download a printable PDF Submitter: Mather, J. H., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Aerosol Life Cycle, Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Mather JH and JW Voyles. 2013. "The ARM Climate Research Facility: a review of structure and capabilities." Bulletin of the American Meteorological Society, 94(3), doi:10.1175/BAMS-D-11-00218.1. A scanning ARM

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCN and Vertical Velocity Influences Submitter: Hudson, J. G., Desert Research Institute Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Hudson JG and S Noble. 2013. "CCN and vertical velocity influences on droplet concentrations and supersaturations in clean and polluted stratus clouds." Journal of the Atmospheric Sciences, 71(1), 10.1175/JAS-D-13-086.1. Figure 1. Effective cloud supersaturation

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hemispherical Simulations Show Impact of Aerosols on Cloud Reflectivity Submitter: Rotstayn, L., Commonwealth Scientific and Industrial Research Organization Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Rotstayn, L., and Y. Liu, Sensitivity of the First Indirect Aerosol Effect to an Increase in Cloud Droplet Spectral Dispersion with Droplet Number Concentration, Journal of Climate: Vol. 16, No. 21, pp.3476-3481, May 2003. Figure 1. Measurements of the

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Digging Into Climate Models' Needs with SPADE Download a printable PDF Submitter: Gustafson, W. I., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Gustafson WI, PL Ma, H Xiao, B Singh, PJ Rasch, and JD Fast. 2013. "The separate physics and dynamics experiment (SPADE) framework for determining resolution awareness: A case study of microphysics." Journal of Geophysical Research -

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Invisible Giants in the Sky Download a printable PDF Submitter: Kassianov, E., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Kassianov E, M Pekour, and J Barnard. 2012. "Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing." Geophysical Research Letters, 39, L20806, doi:10.1029/2012GL053469. Photo

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nailing Down Ice in a Cloud Model Download a printable PDF Submitter: Comstock, J. M., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Comstock JM, A Protat, SA McFarlane, J Delanoë, and M Deng. 2013. "Assessment of uncertainty in cloud radiative effects and heating rates through retrieval algorithm differences: Analysis using 3 Years of ARM data at Darwin, Australia." Journal of Geophysical Research -

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Overambitious Other Carbon Submitter: Church, J., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Song C, M Gyawali, RA Zaveri, JE Shilling, and WP Arnott. 2013. "Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity." Journal of Geophysical Research - Atmospheres, 118, doi:10.1002/jgrd.50767. Time-dependent Mass Absorption

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observational Analysis of Land-Atmosphere Coupling for Climate Model Evaluation Download a printable PDF Submitter: Phillips, T. J., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: Phillips TJ and SA Klein. 2014. "Land-atmosphere coupling manifested in warm-season observations on the U.S. southern great plains." Journal of Geophysical Research -

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Revealing Look Inside Northern Australian Wet Season Precipitation Download a printable PDF Submitter: Giangrande, S., Brookhaven National Laboratory Area of Research: Surface Properties Working Group(s): Cloud Life Cycle Journal Reference: Giangrande SE, M Bartholomew, M Pope, S Collis, and MP Jensen. 2014. "A Summary of Precipitation Characteristics from the 2006-2011 Northern Australian Wet Seasons as Revealed by ARM Disdrometer Research Facilities (Darwin, Australia)." Journal of

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBL Aerosol Properties and Their Impact on CCN at the Azores-AMF Site Download a printable PDF Submitter: Dong, X., University of Arizona Area of Research: Aerosol Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Logan T, B Xi, and X Dong. 2014. "Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores." Journal of Geophysical Research - Atmospheres, 119(8),

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accuracy of GFS and ECMWF Hurricane Sandy Track Forecasts Dependent on Cumulus Parameterization Download a printable PDF Submitter: Bassill, N. P., University of Utah Zipser, E., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Bassill NP. 2014. "Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: Evidence for a dependence on cumulus parameterization." Geophysical Research Letters, ,

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Masters the Misunderstood Mixed-Phase Cloud Download a printable PDF Submitter: Ovchinnikov, M., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Ovchinnikov M, AS Ackerman, A Avramov, A Cheng, J Fan, AM Fridland, S Ghan, J Harrington, C Hoose, A Korolev, GM McFarquhar, H Morrison, M Paukert, J Savre, BJ Shipway, MD Shupe, A Solomon, and K

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Checking Up on Tropical Sunlight Download a printable PDF Submitter: Riihimaki, L., Pacific Northwest National Laboratory Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Riihimaki LD and CN Long. 2014. "Spatial variability of surface irradiance measurements at the Manus ARM site." Journal of Geophysical Research - Atmospheres, 119(9), 5475-5491. ACCEPTED. The radiometer system used at the

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas-Phase Dry Deposition as a Major Removal Mechanism for Secondary Organic Aerosols (SOA) Download a printable PDF Submitter: Hodzic, A., NCAR Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Hodzic A, B Aumont, C Knote, J Lee-Taylor, S Madronich, and G Tyndall. 2014. "Volatility dependence of Henry's law constants of condensable organics: Application to estimate depositional loss of secondary organic aerosols." Geophysical Research Letters,

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactions Between Cumulus Convection and Its Environment as Revealed by MC3E Download a printable PDF Submitter: Xie, S., Lawrence Livermore National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Xie S, Y Zhang, SE Giangrande, MP Jensen, R McCoy, and M Zhang. 2014. "Interactions between cumulus convection and its environment as revealed by the MC3E sounding array." Journal of Geophysical Research

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Vertical Velocities in Cirrus Derived from Aircraft and Ground-based Radar Download a printable PDF Submitter: Muhlbauer, A., University of Washington Kalesse, H., Leibniz Institute for Tropospheric Research Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Muhlbauer A, H Kalesse, and P Kollias. 2014. "Vertical velocities and turbulence in midlatitude anvil cirrus: A comparison between in situ aircraft measurements and ground-based

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantifying the Importance of Cold Pool Mechanisms for Convection Triggering Download a printable PDF Submitter: Kuang, Z., Harvard University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Torri G, Z Kuang, and Y Tian. 2015. "Mechanisms for convection triggering by cold pools." Geophysical Research Letters, , . ACCEPTED. Horizontal sections of (left) potential temperature and (right) water vapor specific humidity at 25 m from the model surface.

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observed Relations Between Snowfall Microphysics and Triple-Frequency Radar Observations Download a printable PDF Submitter: Kneifel, S., McGill University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Kneifel S, A von Lerber, J Tiira, D Moisseev, P Kollias, and J Leinonen. 2015. "Observed relations between snowfall microphysics and triple-frequency radar measurements." Journal of Geophysical Research - Atmospheres, 120(12),

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Well Are Shallow Convective Clouds Simulated in the CAM5 Model? Download a printable PDF Submitter: Chandra, A. S., University of Miami Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Chandra AS, C Zhang, SA Klein, and H Ma. 2015. "Low-cloud characteristics over the tropical western Pacific from ARM observations and CAM5 simulations." Journal of Geophysical Research - Atmospheres, 120, 52402, doi:10.1002/2015JD02.

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stereo Photogrammetry Reveals Substantial Drag on Cloud Thermals Download a printable PDF Submitter: Romps, D., Lawrence Berkeley National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Romps DM and R Oktem. 2015. "Stereo photogrammetry reveals substantial drag on cloud thermals." Geophysical Research Letters, , doi:10.1002/2015GL064009. ONLINE. A 14-minute sequence of cloud growth as observed by a camera located at the MAST Academy

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieving Cloud and Aerosol Properties from the ARM Raman Lidar Download a printable PDF Submitter: Thorsen, T., NASA - Langley Research Center Fu, Q., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Aerosol Life Cycle, Cloud Life Cycle Journal Reference: Thorsen TJ, Q Fu, RK Newsom, DD Turner, and JM Comstock. 2015. "Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, Part I: Feature detection." Journal of

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Ice Nuclei Recycling in the Maintenance of Cloud Ice in Arctic Mixed-phase Stratocumulus Download a printable PDF Submitter: Solomon, A., NOAA/ESRL/Physical Sciences Division Feingold, G., NOAA - Earth System Research Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud Life Cycle Journal Reference: Solomon A, G Feingold, and MD Shupe. 2015. "The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roles of Wind Shear at Different Vertical Levels in Cloud System Organization and Properties Download a printable PDF Submitter: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Chen Q, J Fan, S Hagos, W Gustafson, and L Berg. 2015. "Roles of wind shear at different vertical levels, Part I: Cloud system organization and properties." Journal of Geophysical Research -

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observation of Fair-weather Cumuli over Land Dynamical Factors Controlling Cloud Size and Cover Download a printable PDF Submitter: Lamer, K., Pennsylvania State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Lamer K and P Kollias. 2015. "Observations of fair-weather cumuli over land: dynamical factors controlling cloud size and cover." Geophysical Research Letters, , . ACCEPTED. Statistics of coherent updrafts

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Arctic Mixed-Phase Cloud Structure Download a printable PDF Submitter: Dong, X., University of Arizona Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Qiu S, X Dong, B Xi, and F Li. 2015. "Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations." Journal of Geophysical Research - Atmospheres, 120, 10.1002/2014JD023022. Figure 1.

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scale-Aware Parameterization of Liquid Cloud Inhomogeneity and Its Impact on Simulated Climate Download a printable PDF Submitter: Zhang, M., Stony Brook University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Xie X and M Zhang. 2015. "Scale-aware parameterization of liquid cloud inhomogeneity and its impact on simulated climate in CESM." Journal of Geophysical Research - Atmospheres, 120(16),

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Fire to Ice Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Kulkarni GR, M Nandasiri, A Zelenyuk, J Beranek, N Madaan, A Devaraj, V Shutthanandan, S Thevuthasan, and T Varga. 2015. "Effects of crystallographic properties on the ice nucleation properties of volcanic ash particles." Geophysical Research Letters, 42(8), doi:10.1002/2015GL063270. Tons of

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Birth and Growth of an Aerosol Download a printable PDF Submitter: Fast, J. D., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: N/A An aerosol particle journey. New modeling approaches developed by a research team led by PNNL show how aerosol particles are born and grow to affect the atmosphere and ultimately climate. Tiny atmospheric aerosols are some of the most highly

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Changes Clouds' Ice Crystal Genesis Download a printable PDF Submitter: Kulkarni, G., Pacific Northwest National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Kulkarni GR, K Zhang, C Zhao, M Nandasiri, V Shutthanandan, X Liu, L Berg, and J Fast. 2015. "Ice formation on nitric acid-coated dust particles: Laboratory and modeling studies." Journal of Geophysical Research - Atmospheres, 120(15), doi:10.1002/2014JD022637.

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bell-Shaped Curve Captures Cloud System Variability Submitter: Lamb, P. J., University of Oklahoma Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Journal of Geophysical Research, 110, D18205, doi:10.1029/2005JD006158. Figure 1. Reflectivity standard deviation PDFs, resampled as a function of timescale and contoured by equal values of probability, show an increase in variability with scale. The PDF modes lie mostly along the mean

  17. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens For more than eight years, NREL has worked with the U.S. Department of Energy (DOE) to become an international leader in offshore wind energy research. NREL's offshore wind turbine research capabilities focus on critical areas that reflect the long-term needs of the industry and DOE. National Wind Technology Center (NWTC) researchers are perpetually exploring new wind and water power concepts, materials, and

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Python ARM Radar Toolkit, the World's Leading Interactive Radar Toolkit PI Contact: Helmus, J., Argonne National Laboratory Collis, S. M., Argonne National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Helmus JJ and SM Collis. 2016. "The Python ARM Radar Toolkit (Py-ART), a Library for Working with Weather Radar Data in the Python Programming Language." Journal of Open Research Software., 4(1), doi:10.5334/jors.119. The Python ARM

  19. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    L. O. Nelson

    2003-09-01

    This operations and maintenance plan supports the New Pump and Treat Facility (NPTF) remedial action work plan and identifies the approach and requirements for the operations and maintenance activities specific to the final medical zone treatment remedy. The NPTF provides the treatment system necessary to remediate the medical zone portion of the OU 1-07B contaminated groundwater plume. Design and construction of the New Pump and Treat Facility is addressed in the NPTF remedial action work plan. The scope of this operation and maintenance plan includes facility operations and maintenance, remedy five-year reviews, and the final operations and maintenance report for the NPTF.

  20. Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

    1993-07-01

    This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

  1. Research Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Gallery Research Gallery Exhibits in this gallery capture Laboratory's leading-edge research in many areas of science and technology to help solve national problems...

  2. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2.

  3. Drilling Specifications: Well Installations in the 300 Area to Support PNNL’s Integrated Field-Scale Subsurface Research Challenge (IFC) Project

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Vermeul, Vince R.

    2008-01-21

    Part of the 300 Area Integrated Field-Scale Subsurface Research Challenge (IFC) will be installation of a network of high density borings and wells to monitor migration of fluids and contaminants (uranium), both in groundwater and vadose zone, away from an surface infiltration plot (Figure A-1). The infiltration plot will be located over an area of suspected contamination at the former 300 Area South Process Pond (SPP). The SPP is located in the southeastern portion of the Hanford Site, within the 300-FF-5 Operable Unit. Pacific Northwest National Laboratory (PNNL) with the support of FH shall stake the well locations prior to the start of drilling. Final locations will be based on accessibility and will avoid any surface or underground structures or hazards as well as surface contamination.

  4. Research

    SciTech Connect (OSTI)

    1999-10-01

    Subjects covered in this section are: (1) PCAST panel promotes energy research cooperation; (2) Letter issued by ANS urges funding balance in FFTF restart consideration and (3) FESAC panel releases report on priorities and balance.

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative and Thermodynamic Responses to Uncertainty in Aerosol Extinction Profiles Download a printable PDF Submitter: Feng, Y., Argonne National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Feng Y, R Kotamarthi, R Coulter, C Zhao, and M Cadeddu. 2016. "Radiative and Thermodynamic Responses to Aerosol Extinction Profiles during the Pre-monsoon Month over South Asia." Atmospheric Chemistry and Physics, 16(1), 247-264. WRF-Chem

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ensemble-Constrained Variational Analysis of Atmospheric Forcing Data and Its Application Download a printable PDF Submitter: Zhang, M., Stony Brook University Tang, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Tang S, M Zhang, and S Xie. 2016. "An ensemble constrained variation alanalysis of atmospheric forcing data and its application to evaluate clouds in

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Back to Basics: Theoretical Studies on Storm Clouds and Implications for Modeling Download a printable PDF Submitter: Morrison, H. C., NCAR Lebo, Z., University of Wyoming Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Morrison H. 2016. "Impacts of Updraft Size and Dimensionality on the Perturbation Pressure and Vertical Velocity in Cumulus Convection. Part II: Comparison of Theoretical and Numerical Solutions and Fully Dynamical Simulations."

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagnosing Raindrop Evaporation, Breakup, and Coalescence in Vertical Radar Observations PI Contact: Williams, C. R., University of Colorado Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Williams CR. 2016. "Reflectivity and Liquid Water Content Vertical Decomposition Diagrams to Diagnose Vertical Evolution of Raindrop Size Distributions." Journal of Atmospheric and Oceanic Technology, 33(3), doi: 10.1175/jtech-d-15-0208.1. Example of

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regime Dependence of Cloud Water Variability Observed at the ARM Sites PI Contact: Ahlgrimm, M., European Centre for Medium-Range Weather Forecasts Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Ahlgrimm M and RM Forbes. 2016. "Regime dependence of cloud condensate variability observed at the Atmospheric Radiation Measurement sites." Quarterly Journal Royal Meteorological Society, ,

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the Impacts of Different Definitions of Maximum Dimension for Nonspherical Cloud Particles PI Contact: Wu, W., University of Illinois at Urbana-Champaign McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: McFarquhar GM and W Wu. 2016. "On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes." Journal of Atmospheric

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution from a Megacity in the Amazon: the Case of Manaus, Brazil PI Contact: Fan, J., Pacific Northwest National Laboratory Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Martin ST, P Artaxo, L Machado, AO Manzi, RA Souza, C Schumacher, J Wang, MO Andreae, HJ Barbosa, J Fan, G Fisch, AH Goldstein, A Guenther, JL Jimenez, U Poschl, MA Silva Dias, J Smith, and M Wendisch. 2016. "Introduction:

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Azores Observations Help Identify Deficiencies in Climate Model Simulations of Low Clouds PI Contact: Zheng, X., Lawrence Livermore National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle, Cloud-Aerosol-Precipitation Interactions Journal Reference: Zheng X, SA Klein, H Ma, P Bogenschutz, A Gettelman, and VE Larson. 2016. "Assessment of Marine Boundary Layer Cloud Simulations in the CAM with CLUBB and Updated Microphysics Scheme Based on ARM Observations

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hiding in Plain Sight: a Less-Explored Secret of Secondary Organic Aerosols PI Contact: Shrivastava, M., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: Shrivastava M, C Zhao, RC Easter, Y Qian, A Zelenyuk, JD Fast, Y Liu, Q Zhang, and A Guenther. 2016. "Sensitivity analysis of simulated SOA loadings using a variance-based statistical approach." Journal of Advances in Modeling Earth Systems, ,

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sub-micrometre Particulate Matter Is Primarily in Liquid Form over Amazon Rain Forest PI Contact: Zaveri, R., Pacific Northwest National Laboratory Area of Research: Aerosol Properties Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Bateman AP, Z Gong, P Liu, B Sato, G Cirino, Y Zhang, P Artaxo, AK Bertram, AO Manzi, LV Rizzo, RA Souza, RA Zaveri, and ST Martin. 2016. "Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest."

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopic Foundation of Radiative Forcing of Climate by Carbon Dioxide PI Contact: Torn, M. S., Lawrence Berkeley National Laboratory Feldman, D., Lawrence Berkeley National Laboratory Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Mlynczak MG, T Daniels, D Kratz, DR Feldman, WD Collins, EJ Mlawer, M Alvarado, J Lawler, LW Anderson, D Fahey, L Hunt, and J Mast. 2016. "The Spectroscopic Foundation of Radiative Forcing

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towards Retrieving Critical Relative Humidity from Ground-based Remote-sensing Observations PI Contact: Van Weverberg, K., Met Office Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Life Cycle Journal Reference: Van Weverberg K, IA Boutle, CJ Morcrette, and RK Newsom. 2016. "Towards retrieving critical relative humidity from ground-based remote-sensing observations." Quarterly Journal Royal Meteorological Society, , doi:

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capturing Biogenic Volatile Organic Compounds in a Coupled-Model System Compared to Observation PI Contact: Zhao, C., Pacific Northwest National Laboratory Area of Research: Surface Properties Working Group(s): Aerosol Life Cycle Journal Reference: Zhao C, M Huang, JD Fast, LK Berg, Y Qian, A Guenther, D Gu, M Shrivastava, Y Liu, S Walters, G Pfister, J Jin, JE Shilling, and C Warneke. 2016. "Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observing the Amazon: the Role of Time and Place in Cloud Measurements PI Contact: Burleyson, C. D., Pacific Northwest National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Life Cycle Journal Reference: Burleyson CD, Z Feng, SM Hagos, J Fast, LA Machado, and ST Martin. 2016. "Spatial Variability of the Background Diurnal Cycle of Deep Convection around the GoAmazon2014/5 Field Campaign Sites." Journal of Applied Meteorology and Climatology,

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Testing the Next-Generation of Radiosondes PI Contact: Jensen, M., Brookhaven National Laboratory Holdridge, D., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Life Cycle Journal Reference: Jensen MP, DJ Holdridge, P Survo, R Lehtinen, S Baxter, T Toto, and KL Johnson. 2016. "Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site." Atmospheric Measurement Techniques, 9,

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Vertical Structure of Cloud Radiative Forcing at the ACRF SGP Revealed by 8 Years of Continuous Measurements Submitter: Mace, G., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Accepted to Journal of Climate, 2007. Figure 1. Cloud occurrence, coverage, radiative forcing, and radiation effects over a composite annual cycle that is derived by averaging all observations collected during a

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Importance of Small Ice Crystals to Cirrus Properties: Observations from TWP-ICE Download a printable PDF Submitter: McFarquhar, G., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: McFarquhar, G.M., J. Um, M. Freer, D. Baumgardner, G.L. Kok and G. Mace, 2007: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys.

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Formulation for Representing Cloud-to-Rain Transition in Atmospheric Models Submitter: Liu, Y., Brookhaven National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol, Cloud Modeling, Cloud Properties Journal Reference: Liu, Y., P. H. Daum, R. McGraw, M. Miller, and S. Niu, 2007: Theoretical formulation for autoconversion rate of cloud droplet concentration. Geophys. Res. Lett., 34, L116821, doi:10.1029/2007GL030389

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Water Vapor and Cloud Liquid Water at MCTEX Submitter: Liljegren, J. C., Argonne National Laboratory Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Cloud Properties Journal Reference: N/A Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Integrated water vapor and cloud liquid water measurements were obtained during the Maritime Continent Thunderstorm Experiment (MCTEX) by Eugene Clothiaux and Tom Ackerman of Penn State University using an ARM

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observational Evidence of Changes in Water Vapor, Clouds, and Radiation Submitter: Dong, X., University of Arizona Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Dong, X., B. Xi, and P. Minnis, 2006: Observational Evidence of Changes in Water vapor, Clouds, and Radiation at the ARM SGP site. Geophys. Res. Lett., 33, L19818,doi:10.1029/2006GL027132. Figure 1. This plot shows that atmospheric precipitable water vapor and downwelling

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Climatology of Midlatitude Continental Cloud Properties and Their Impact on the Surface Radiation Budget Submitter: Dong, X., University of Arizona Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Dong, X., P. Minnis, and B. Xi, 2005: A climatology of midlatitude continental clouds from ARM SGP site. Part I: Low-level Cloud Macrophysical, microphysical and radiative properties. J. Climate. 18, 1391-1410. Dong, X., B. Xi, and P.

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raman Lidar Observations of Aerosol Humidification Near Clouds Submitter: Ferrare, R. A., NASA LaRC Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: Ferrare, R., et al., Evaluation of Daytime Measurements of Aerosols and Water Vapor Made by an Operational Raman Lidar over the Southern Great Plains, J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836, 2006. Relative humidity profiles derived from the Raman lidar during the ALIVE 2005 field experiment. Aerosol

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Matthews, S., J. M. Hacker, J. Cole, J. Hare, C. N. Long, and R. M. Reynolds, (2007): Modification of the atmospheric boundary layer by a small island: observations from Nauru, MWR, Vol. 135, No. 3, pages 891–905. Figure 1.

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate? Submitter: Prenni, A. J., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Prenni, A. J., J. Y. Harrington, M. Tjernstrom, P. J. DeMott, A. Avramov, C. N. Long, S. M. Kreidenweis, P. Q. Olsson, and J. Verlinde, (2006): Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate?, BAMS, Vol.88, Iss. 4; pg. 541-550. ACIA, 2004: Impacts of a Warming

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Aerosol Humidity Effects Using the ARM Measurements Submitter: Li, Z., University of Maryland Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Jeong, M.-J., Z. Li, E. Andrews, and S.-C. Tsay (2007). Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site, J. Geophys. Res., 112, D10202, doi:10.1029/2006JD007176. (a)-(j) Column-mean aerosol humidification factor as

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Bulk Parameterization of Giant Cloud Condensation Nuclei Download a printable PDF Submitter: Kogan, Y., University of Oklahoma - CIMMS Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Mechem, D. B., and Y. L. Kogan, 2007: A bulk parameterization of giant CCN. J. Atmos. Sci., conditionally accepted. Mean quantities as a function of GCCN concentration for polluted (squares) and clean (diamonds) background CCN conditions. Radiative

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Doppler Radar to Characterize Cloud Parameters Download a printable PDF Submitter: Kogan, Y., University of Oklahoma - CIMMS Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Kogan, Y.L., Z. N. Kogan, and D. B. Mechem, 2007: Assessing the errors of microphysical retrievals in Marine Stratocumulus based on Doppler radar parameters, J. Hydrometeorol., GEWEX special issue, 8, 665-677. Figure 1. The errors of drizzle flux R retrieval

  12. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Use of ARM Products in Reanalysis Applications and IPCC Model Assessment Download a printable PDF Submitter: Walsh, J. E., University of Illinois, Urbana Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling Journal Reference: Walsh, J. E., W. L. Chapman, and D. H. Portis: Arctic clouds and radiative fluxes in large-scale atmospheric reanalysis. Submitted to the Journal of Climate. Figure 1. Monthly mean cloud fraction is shown here from ARM-observations

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of a New Method for Estimating Evapotranspiration Using ARM Measurements Submitter: Li, Z., University of Maryland Area of Research: Surface Properties Working Group(s): Radiative Processes Journal Reference: Wang, K., P. Wang, Z. Li, M. Cribb, and M. Sparrow (2007). A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature, J. Geophys. Res., 112, D15107, doi:10.1029/2006JD008351. Wang, K., Z. Li, and M. Cribb (2006).

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparisons Between Radiosondes and Remote Sensors During the 2004 NSA Arctic Winter Radiometric Experiment Submitter: Westwater, E. R., University of Colorado Area of Research: Atmospheric Thermodynamics and Vertical Structures Working Group(s): Radiative Processes Journal Reference: Mattioli, V, ER Westwater, D Cimini, JS Liljegren, BM Lesht, SI Gutman, and FJ Schmidlin. 2007. "Analysis of radiosonde and ground-based remotely sensed PWV data from the 2004 North Slope of Alaska Arctic

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Significance of Multilayer Cloud Systems in Tropical Convection Download a printable PDF Submitter: Stephens, G. L., Colorado State University Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Stephens, GL, and NB Wood. 2007. "Properties of tropical convection observed by millimeter-wave radar systems." Monthly Weather Review 135: 821-842. Storm classifications (derived from k-means clustering analysis) applied to MWR

  16. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with SCAM, CAPT Forecasts and M-PACE Observations Download a printable PDF Submitter: Liu, X., University of Wyoming Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Liu, X, S Xie, and SJ Ghan. 2007. "Evaluation of a new mixed-Phase cloud microphysics parameterization with the NCAR single column climate model (SCAM) and ARM M-PACE

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Cloud-Resolving Model to Identify the Role of Aerosols on Clouds and Precipitation Download a printable PDF Submitter: GSFC, N., NASA GSFC Area of Research: Cloud Distributions/Characterizations Working Group(s): Aerosol, Cloud Modeling Journal Reference: Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophy. Res., (accepted). Zeng, X., W.-K. Tao, S.

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Depth Measurements by Shadowband Radiometers and Their Uncertainties Download a printable PDF Submitter: Alexandrov, M. D., Columbia University Area of Research: Radiation Processes Working Group(s): Aerosol Journal Reference: Applied Optics, accepted Sept. 2007. Effective offset to measured optical depths due to tilt of 1-degree in different directions. Offset observed in C1 MFRSR AOD relative to Cimel and representative offset due to tilt. Appearance of shading failure and effect on

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Tomography: a Novel Method for Determining 3D Cloud Liquid Water Distribution Download a printable PDF Submitter: Wiscombe, W. J., Brookhaven National Laboratory Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Huang, D., Y. Liu, and W. Wiscombe, 2007a: Determination of cloud liquid water distribution using 3D cloud tomography. J. Geophys. Res., submitted. Cloud tomography is a novel method for determining cloud water

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed-Phase Cloud Vertical Velocities and Dynamical-Microphysical Interactions Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, P Kollias, M Poellot, and E Eloranta. 2008. "On deriving vertical air motions from cloud radar Doppler spectra." Journal of Atmospheric and Oceanic Technology 25: 547-557. Shupe, MD, P Kollias, POG Persson, and GM

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intercomparison of Longwave Radiative Heating Algorithms Submitter: Baer, F., University of Maryland Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Baer, F., N. Arsky, J. J. Charney, and R. G. Ellingson. 1996. "Intercomparison of Heating Rates Generated by Global Climate Model Longwave Radiation Codes." J. Geoph. Res., 101, D21, 26589-26603. 30 levels of longwave heating rates for all algorithms

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM QCRad Goes Global Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Long, CN, and Y Shi. 2008. "An automated quality assessment and control algorithm for surface radiation measurements." The Open Atmospheric Science Journal 2: 23-37, doi: 10.2174/1874282300802010023. Figure: QCRad downwelling (top) and upwelling (bottom) longwave (LW) comparison

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing Mixed-Phase Clouds from the Ground: a Status Report Download a printable PDF Submitter: Shupe, M., University of Colorado Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Shupe, MD, JS Daniel, G De Boer, EW Eloranta, P Kollias, E Luke, CN Long, DD Turner, and J Verlinde. 2008. "A focus on mixed-phase clouds: The status of ground-ba sed observational methods." Bulletin of the American Meteorological Society,

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Susceptibility Measures Potential Cloud Sensitivity to First Aerosol Indirect Effect Download a printable PDF Submitter: Oreopoulos, L., NASA Platnick, S., NASA - Goddard Space Flight Center Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Platnick, S, and L Oreopoulos. 2008. "Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 1. Theoretical analysis and examples from MODIS." Journal of

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single-Scattering Properties of Aggregates of Bullet Rosettes in Cirrus Download a printable PDF Submitter: Um, J., University of Illinois, Urbana McFarquhar, G., University of Illinois, Urbana Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Um, J, and GM McFarquhar. 2007. "Single-scattering properties of aggregates of bullet rosettes in cirrus." Journal of Applied Meteorology and Climatology 46, 757-775. Two images of idealized geometry

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shortwave Absorption in Tropical Clouds Download a printable PDF Submitter: McFarlane, S. A., U.S. Department of Energy Mather, J. H., Pacific Northwest National Laboratory Ackerman, T. P., University of Washington Liu, Z., University of Washington Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: McFarlane, SA, JH Mather, TP Ackerman, and Z Liu. 2008. "Effect of clouds on the vertical distribution of SW absorption in the

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of CloudSat Using ARM, AMF, and CloudNet Observations Download a printable PDF Submitter: Protat, A., Australian Bureau of Meterology May, P. T., Bureau of Meteorology O'Connor, E. J., University of Reading Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Submitted. PDF of cloud reflectivity (upper-left), cloud top height (upper-right), thickness (lower-left), and cloud base height (lower right) as measured by the Darwin

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluate the Diurnal Cycle in the Multiscale Modeling Framework Using Satellite and ARM Data Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Klein, S., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Zhang, Y, SA Klein, C Liu, B Tian, RT Marchand, JM Haynes, RB McCoy, Y Zhang, and TP Ackerman. 2008. "On the diurnal cycle of deep

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical Variation of Cloud Droplet Size Using Ship and Space-borne R/S Data Download a printable PDF Submitter: Li, Z., University of Maryland Chen, R., University of Maryland Wood, R., University of Washington Chang, F., Science Systems and Applications, Inc. Ferraro, R., NOAA/NESDIS, WWBG Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Chen, R, R Wood, Z Li, R Ferraro, and F Chang. 2008. "Studying the vertical variation of

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulating Mixed-Phase Clouds: Sensitivity to Ice Initiation Download a printable PDF Submitter: Sednev, I., Lawrence Berkeley National Laboratory Menon, S., Lawrence Berkeley National Laboratory McFarquhar, G., University of Illinois, Urbana Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: I Sednev, S Menon, and G McFarquhar. 2008. "Simulating mixed-phase Arctic stratus clouds: Sensitivity to ice initiation