Powered by Deep Web Technologies
Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Foresight Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Foresight Wind Energy LLC Jump to: navigation, search Name: Foresight Wind Energy LLC Place: San Francisco, California Zip: 94105 Sector: Wind energy Product: San Francisco-based...

2

DVD: Energy Foresight  

Science Journals Connector (OSTI)

WE RECOMMEND Energy Foresight Valuable and original GCSE curriculum support on DVD Developing Scientific Literacy: Using News Media in the Classroom This book helpfully evaluates science stories in today's media Radioactivity Explained and Electricity Explained Interactive software ideal for classroom use TEP Generator Wind-up generator specially designed for schools SEP Energymeter A joule meter with more uses than its appearance suggests Into the Cool: Energy Flow, Thermodynamics and Life This book explores the physics behind biology CmapTools Handy software for mapping knowledge and resources LogIT Black Box This hub contains multiple sensors for endless experimental fun WEB WATCH Water Web 2.0

3

Nordic H2 Energy Foresight Action Report  

E-Print Network [OSTI]

Innovation Centre Nordic Energy Research Cover : Pages: 48 Tables: References: Abstract (max. 2000 charNordic H2 Energy Foresight Action Report Annele Eerola Nordic Hydrogen Energy Foresight www.h2foresight.info Risø National Laboratory November 2004 #12;Author: Annele Eerola Title: Nordic H2 Energy

4

Best-Practices in Corporate Foresight  

Science Journals Connector (OSTI)

The following chapter presents eight best practices. They are structured along the capability dimension of the Maturity Model of corporate foresight.

Dr. René Rohrbeck

2011-01-01T23:59:59.000Z

5

AEO Assumptions  

Gasoline and Diesel Fuel Update (EIA)

for the for the Annual Energy Outlook 1997 December 1996 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 Energy Information Administration/Assumptions for the Annual Energy Outlook 1997 Contents Page Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Commercial Demand Module . . . . . . . . . . . . . . . . . .

6

NORDIC HYDROGEN ENERGY FORESIGHT CHALLENGES OF MANAGING THE INTERACTIVE PROCESS  

E-Print Network [OSTI]

1 NORDIC HYDROGEN ENERGY FORESIGHT ­ CHALLENGES OF MANAGING THE INTERACTIVE PROCESS Annele Eerola the managerial challenges of the Nordic Hydrogen Energy Foresight, a joint effort of the five Nordic countries (Denmark, Finland, Iceland, Norway, Sweden). Interaction between research, industry and government

7

Danish Green Technology Foresight -Opportunities and risks from nanotechnology, biotech and ICT  

E-Print Network [OSTI]

Danish Green Technology Foresight - Opportunities and risks from nanotechnology, biotech and ICT findings from the nano analysis of the Green Technology Foresight Maj Munch Andersen1 Risø National Foresight. 1 #12;Danish Green Technology Foresight - Opportunities and risks from nanotechnology, biotech

8

Key Assumptions Policy Issues  

E-Print Network [OSTI]

11/13/2014 1 Key Assumptions and Policy Issues RAAC Steering Committee November 17, 2014 Portland Supply Limitations 8 Withi h B l i8. Within-hour Balancing 9. Capacity and Energy Values for Wind/Solar t b it d d li d¡ Thermal: must be sited and licensed ¡ Wind/solar: must be sited and licensed ¡ EE

9

Foresight of development of Taiwanese solar photovoltaic industry  

Science Journals Connector (OSTI)

This research attempts to carry out an in-depth exploration into the strategy of Taiwan for the future development of its solar photovoltaic industry from the perspective of technology industry foresight. After the in-depth discussion of problems, the two main suggestions ''make good use of existing advantages of Taiwan'' and ''allocation and proper use of external resources of the industry'' are proposed for the reference of relevant enterprises, industries and government agencies in their future planning for the future development of the solar photovoltaic industry of Taiwan.

Benjamin J.C. Yuan; Kuang-Pin Li; Tsai-Hua Kang; Jia-Horng Shieh

2012-01-01T23:59:59.000Z

10

Insights from qualitative methodologies for R&D priority setting -experiences from the Nordic Hydrogen Foresight project  

E-Print Network [OSTI]

of scenarios in energy ¡ Predictive scenarios: (IEA - WEO) ¡ Predicting the future - often using large computer setting Quality (history) -publications -impact factors -quotations -peer review Relevance (foresight

11

Assumptions  

Gasoline and Diesel Fuel Update (EIA)

to the to the Annual Energy Outlook 1998 December 1997 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Household Expenditures Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Oil and Gas Supply Module

12

Assumptions  

Gasoline and Diesel Fuel Update (EIA)

1 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Natural Gas Transmission and Distribution Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Petroleum Market Module. . . . . . . . . . . . .

13

Section 25: Future State Assumptions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Compliance Certification Application (CCA), Chapter 6.0, Section 6.2 and Appendices SCR and MASS (U.S. DOE 1996). Many of these future state assumptions were derived from the...

14

Annual Energy Outlook 96 Assumptions  

Gasoline and Diesel Fuel Update (EIA)

for for the Annual Energy Outlook 1996 January 1996 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 Introduction This paper presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook 1996 (AEO96). In this context, assumptions include general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports listed in the Appendix. 1 A synopsis of NEMS, the model components, and the interrelationships of the modules is presented in The National Energy Modeling System: An Overview. The National Energy Modeling System The projections

15

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Assumptions to the Annual Energy Outlook 2004 Assumptions to the Annual Energy Outlook 2004 143 Appendix A: Handling of Federal and Selected State Legislation and Regulation in the Annual Energy Outlook Legislation Brief Description AEO Handling Basis Residential Sector A. National Appliance Energy Conservation Act of 1987 Requires Secretary of Energy to set minimum efficiency standards for 10 appliance categories a. Room Air Conditioners Current standard of 8.82 EER Federal Register Notice of Final Rulemaking, b. Other Air Conditioners (<5.4 tons) Current standard 10 SEER for central air conditioner and heat pumps, increasing to 12 SEER in 2006. Federal Register Notice of Final Rulemaking, c. Water Heaters Electric: Current standard .86 EF, incr easing to .90 EF in 2004. Gas: Curren

16

Forging the way with vision and foresight | OSTI, US Dept of Energy, Office  

Office of Scientific and Technical Information (OSTI)

Forging the way with vision and foresight Forging the way with vision and foresight Feature Archive DOE's Office of Scientific and Technical Information launched the Information Bridge in 1998 as a free public access database containing the Department's full-text DOE research reports. OSTI envisioned there would be a dramatic increase in access to DOE research reports in the coming years. See growth statistics below. 1998 2012 Full-text research reports 32,000 292,000 Searchable pages (millions) 1.4 168 Website transactions 500,000+ 69 million OSTI Homepage Mobile Gallery Subscribe to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading... Stop news scroll Most Visited Adopt-A-Doc DOE Data Explorer

17

Assumptions to the Annual Energy Outlook 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Demand Module Demand Module This page inTenTionally lefT blank 27 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing

18

The EFMN is financed by the European Commission Directorate General for Research as part of a series of initiatives intended to provide a Foresight Knowledge Sharing Platform for foresight practitioners and policy makers in the European Union. More  

E-Print Network [OSTI]

to commercialization of hydrogen production, distribution, storage and utilization. ¡ To contribute as decision support The Nordic H2 Energy Foresight put equal weight on process and content, both for the intrinsic quality of the outputs of the process and for the networking and commitment it created. Therefore, the project centered

19

EIA - Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

7 7 Assumptions to the Annual Energy Outlook 2007 This report summarizes the major assumptions used in the NEMS to generate the AEO2007 projections. Contents (Complete Report) Download complete Report. Need help, contact the National Energy Information Center at 202-586-8800. Introduction Introduction Section to the Assumptions to the Annual Energy Outlook 2007 Report. Need help, contact the National Energy Information Center at 202-586-8800. Introduction Section to the Assumptions to the Annual Energy Outlook 2007 Report. Need help, contact the National Energy Information Center at 202-586-8800. Macroeconomic Activity Module Macroeconomic Activity Module Section to the Assumptions to the Annual Energy Outlook 2007 Report. Need help, contact the National Energy Information Center at 202-586-8800.

20

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2003, DOE/EIA-M060(2003) (Washington, DC, January 2003). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of capacity utilization of mines, mining capacity, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Climate Action Planning Tool Formulas and Assumptions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CLIMATE ACTION PLANNING TOOL FORMULAS AND ASSUMPTIONS Climate Action Planning Tool Formulas and Assumptions The Climate Action Planning Tool calculations use the following formulas and assumptions to generate the business-as-usual scenario and the greenhouse gas emissions reduction goals for the technology options. Business-as-Usual Scenario All Scope 1 (gas, oil, coal, fleet, and electricity) and Scope 2 calculations increase at a rate equal to the building growth rate. Scope 3 calculations (commuters and business travel) increase at a rate equal to the population growth rate. Assumptions New buildings will consume energy at the same rate (energy use intensity) as existing campus buildings. Fleet operations will be proportional to total building area.

22

Integrating technology foresight methods with environmental life cycle assessment to promote sustainable agriculture  

Science Journals Connector (OSTI)

The research addressed priority-setting in research and development of environmentally-friendly technologies. A two-step compilation of the opinions of a large number of experts, based on technology foresight methods, is used to define directions for technological advancement and assess the probability of success in each area. The life cycle assessment method is used to quantify the impacts of the expected changes in agricultural production technologies across a wide range of environmental impact categories. Based on case studies of tomato, potato and citrus crop production in Israel, we conclude that technological improvements addressing the use of fertilisers and packing materials show the greatest potential to reduce the environmental impacts. We also conclude that agricultural research on field-grown crops should focus on increasing the yield per hectare, and research on greenhouse grown crops should focus on reducing the impact of the materials used in covering the greenhouse.

Nava Haruvy; Sarit Shalhevet

2012-01-01T23:59:59.000Z

23

Assumptions to the Annual Energy Outlook 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction This page inTenTionally lefT blank 3 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Introduction This report presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook 2013 [1] (AEO2013), including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are the most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports [2]. The National Energy Modeling System Projections in the AEO2013 are generated using the NEMS, developed and maintained by the Office of Energy Analysis of the U.S.

24

Assumptions to the Annual Energy Outlook 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Assumptions to the Annual Assumptions to the Annual Energy Outlook 2013 May 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table of Contents Introduction .................................................................................................................................................. 3

25

Assumptions to the Annual Energy Outlook 2008  

Gasoline and Diesel Fuel Update (EIA)

8) 8) Release date: June 2008 Next release date: March 2009 Assumptions to the Annual Energy Outlook 2008 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Commercial Demand Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Natural Gas Transmission and Distribution Module. . . . . . . . . . . . . . . . . . . . . . 113 Petroleum Market Module

26

Preliminary Assumptions for Natural Gas Peaking  

E-Print Network [OSTI]

Preliminary Assumptions for Natural Gas Peaking Technologies Gillian Charles and Steve Simmons GRAC, Reciprocating Engines Next steps 2 #12;Definitions Baseload Energy: power generated (or conserved) across a period of time to serve system demands for electricity Peaking Capacity: capability of power generating

27

Preliminary Assumptions for Natural Gas Peaking  

E-Print Network [OSTI]

Preliminary Assumptions for Natural Gas Peaking Technologies Gillian Charles GRAC 2/27/14 #12;Today Vernon, WA PSE Klamath Generation Peakers June 2002 (2) 54 MW P&W FT8 Twin- pac 95 MW Klamath, OR IPP; winter-only PPA w/ PSE Dave Gates Generating Station Jan 2011 (3) P&W SWIFTPAC 150 MW Anaconda, MT North

28

Empirically Revisiting the Test Independence Assumption  

E-Print Network [OSTI]

Empirically Revisiting the Test Independence Assumption Sai Zhang, Darioush Jalali, Jochen Wuttke}@cs.washington.edu ABSTRACT In a test suite, all the test cases should be independent: no test should affect any other test's result, and running the tests in any order should produce the same test results. Techniques such as test

Ernst, Michael

29

PROJECT MANGEMENT PLAN EXAMPLES Policy & Operational Decisions, Assumptions  

Broader source: Energy.gov (indexed) [DOE]

Policy & Operational Decisions, Assumptions Policy & Operational Decisions, Assumptions and Strategies Examples 1 & 2 Example 1 1.0 Summary The 322-M Metallurgical Laboratory is currently categorized as a Radiological Facility. It is inactive with no future DOE mission. In May of 1998 it was ranked Number 45 in the Inactive Facilities Risk Ranking database which the Facilities Decommissioning Division maintains. A short-term surveillance and maintenance program is in-place while the facility awaits final deactivation. Completion of the end points described in this deactivation project plan will place the 322-M facility into an End State that can be described as "cold and dark". The facility will be made passively safe requiring minimal surveillance and no scheduled maintenance.

30

Assumptions to the Annual Energy Outlook 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Module Energy Module This page inTenTionally lefT blank 21 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 International Energy Module The LFMM International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of future U.S. and world crude-like liquids production and consumption to estimate the effects of changes in U.S. liquid fuels markets on the international petroleum market. For each year of the forecast, the LFMM IEM computes BRENT and WTI prices, provides a supply curve of world crude-like liquids, and generates a worldwide oil supply- demand balance with regional detail. The IEM also provides, for each year of the projection period, endogenous and

31

Assumptions to the Annual Energy Outlook - Introduction  

Gasoline and Diesel Fuel Update (EIA)

Introduction Introduction Assumption to the Annual Energy Outlook Introduction This report presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook 20041 (AEO2004), including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports.2 A synopsis of NEMS, the model components, and the interrelationships of the modules is presented in The National Energy Modeling System: An Overview3, which is updated once every two years. The National Energy Modeling System The projections in the AEO2004 were produced with the National Energy Modeling System. NEMS is developed and maintained by the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) to provide projections of domestic energy-economy markets in the midterm time period and perform policy analyses requested by decisionmakers in the U.S. Congress, the Administration, including DOE Program Offices, and other government agencies.

32

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. In addition, natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of gas supply options as translated to the represented market “hubs.” The major assumptions used within the NGTDM are grouped into five general categories. They relate to (1) the classification of demand into core and noncore transportation service classes, (2) the pricing of transmission and distribution services, (3) pipeline and storage capacity expansion and utilization, and (4) the implementation of recent regulatory reform. A complete listing of NGTDM assumptions and in-depth methodology descriptions are presented in Model Documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System, Model Documentation 2003, DOE/EIA- M062(2003) (Washington, DC, January 2003).

33

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Introduction Introduction This report presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook 20031 (AEO2003), including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports.2 A synopsis of NEMS, the model components, and the interrelationships of the modules is presented in The National Energy Modeling System: An Overview.3 The National Energy Modeling System The projections in the AEO2003 were produced with the National Energy Modeling System. NEMS is developed and maintained by the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) to provide projections of domestic energy-economy markets in the midterm time period and perform policy analyses requested by decisionmakers and analysts in the U.S. Congress, the Department of Energy’s Office of Policy and International Affairs, other DOE offices, and other government agencies.

34

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2003, DOE/EIA-M068(2003) April 2003. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described.

35

Manufacturing Energy and Carbon Footprint Definitions and Assumptions, October 2012  

Broader source: Energy.gov [DOE]

Definitions of parameters and table of assumptions for the Manufacturing Energy and Carbon Footprint

36

Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on AddThis.com...

37

Assumptions to the Annual Energy Outlook - Contacts  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts Assumption to the Annual Energy Outlook Contacts Specific questions about the information in this report may be directed to: Introduction Paul D. Holtberg 202/586-1284 Macroeconomic Activity Module Ronald F. Earley Yvonne Taylor 202/586-1398 202/586-1398 International Energy Module G. Daniel Butler 202/586-9503 Household Expenditures Module/ Residential Demand Module John H. Cymbalsky 202/586-4815 Commercial Demand Module Erin E. Boedecker 202/586-4791 Industrial Demand Module T. Crawford Honeycutt 202/586-1420 Transportation Demand Module John D. Maples 202/586-1757 Electricity Market Module Laura Martin 202/586-1494 Oil and Gas Supply Module/Natural Gas Transmission and Distribution Module Joseph Benneche 202/586-6132 Petroleum Market Module Bill Brown 202/586-8181

38

Assumptions to the Annual Energy Outlook 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Demand Module Industrial Demand Module This page inTenTionally lefT blank 53 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Industrial Demand Module The NEMS Industrial Demand Module (IDM) estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are subdivided further into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure. The non-manufacturing industries are modeled with less detail because processes are simpler and there is less available data. The petroleum refining

39

Assumptions to the Annual Energy Outlook 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Macroeconomic Activity Module Macroeconomic Activity Module This page inTenTionally lefT blank 17 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) represents interactions between the U.S. economy and energy markets. The rate of growth of the economy, measured by the growth in gross domestic product (GDP), is a key determinant of growth in the demand for energy. Associated economic factors, such as interest rates and disposable income, strongly influence various elements of the supply and demand for energy. At the same time, reactions to energy markets by the aggregate economy, such as a slowdown in economic growth resulting from increasing energy prices, are also reflected

40

Assumptions to the Annual Energy Outlook 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Demand Module Demand Module This page inTenTionally lefT blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2040. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for each Census Division using the assumptions and methods described below.106

42

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division. Key Assumptions The historical input data used to develop the HEM version for the AEO2003 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2003 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS).

43

Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumption to the Annual Energy Outlook Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2004, DOE/EIA-M060(2004) (Washington, DC, 2004). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of capacity utilization of mines, mining capacity, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

44

2010 Manufacturing Energy and Carbon Footprints: Definitions and Assumptions  

Broader source: Energy.gov [DOE]

This 13-page document provides definitions and assumptions used in the Manufacturing Energy and Carbon Footprints (MECS 2010)

45

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

International Energy Module International Energy Module Assumptions to the Annual Energy Outlook 2006 The International Energy Module determines changes in the world oil price and the supply prices of crude oils and petroleum products for import to the United States in response to changes in U.S. import requirements. A market clearing method is used to determine the price at which worldwide demand for oil is equal to the worldwide supply. The module determines new values for oil production and demand for regions outside the United States, along with a new world oil price that balances supply and demand in the international oil market. A detailed description of the International Energy Module is provided in the EIA publication, Model Documentation Report: The International Energy Module of the National Energy Modeling System, DOE/EIA-M071(06), (Washington, DC, February 2006).

46

Assumptions to the Annual Energy Outlook 1999 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

coal.gif (4423 bytes) coal.gif (4423 bytes) The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Model Documentation: Coal Market Module of the National Energy Modeling System, DOE/EIA-MO60. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of coal production, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

47

EIA - Assumptions to the Annual Energy Outlook 2010 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2010 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock,

48

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2006 Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment

49

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

50

Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumption to the Annual Energy Outlook Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

51

EIA - Assumptions to the Annual Energy Outlook 2009 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2009 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the projection horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the projection horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

52

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).119 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

53

EIA - Assumptions to the Annual Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Assumptions to the Annual Energy Outlook 2010 This report summarizes the major assumptions used in the NEMS to generate the AEO2010 projections. Introduction Macroeconomic Activity Module International Energy Module Residential Demand Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Oil and Gas Supply Module Natural Gas Transmission and Distribution Module Petroleum Market Module Coal Market Module Renewable Fuels Module PDF (GIF) Appendix A: Handling of Federal and Selected State Legislation and Regulation In the Annual Energy Outlook Past Assumptions Editions Download the Report Assumptions to the Annual Energy Outlook 2010 Report Cover. Need help, contact the National Energy Information Center at 202-586-8800.

54

Assumption-Commitment Support for CSP Model Checking  

E-Print Network [OSTI]

AVoCS 2006 Assumption-Commitment Support for CSP Model Checking Nick Moffat1 Systems Assurance using CSP. In our formulation, an assumption-commitment style property of a process SYS takes the form-Guarantee, CSP, Model Checking, Compositional Reasoning 1 Introduction The principle of compositional program

Paris-Sud XI, UniversitĂŠ de

55

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

6 6 Assumptions to the Annual Energy Outlook 2006 This report presents major assumptions of NEMS that are used to generate the projections in the AEO2006. Contents (Complete Report) Download complete Report. Need help, contact the National Energy Information Center at 202-586-8800. Introduction Introduction Section to the Assumptions to the Annual Energy Outlook 2006 Report. Need help, contact the National Energy Information Center at 202-586-8800. Introduction Section to the Assumptions to the Annual Energy Outlook 2006 Report. Need help, contact the National Energy Information Center at 202-586-8800. Macroeconomic Activity Module Macroeconomic Activity Module Section to the Assumptions to the Annual Energy Outlook 2006 Report. Need help, contact the National Energy Information Center at 202-586-8800.

56

Assumptions to the Annual Energy Outlook 2000 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2000, DOE/EIA-M060(2000) January 2000. The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2000, DOE/EIA-M060(2000) January 2000. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of coal production, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

57

Assumptions to the Annual Energy Outlook - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumption to the Annual Energy Outlook Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).109 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

58

EIA - Assumptions to the Annual Energy Outlook 2008 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2008 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind1. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon the availability of low-cost energy storage systems.

59

EIA - Assumptions to the Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

Assumptions to the Annual Energy Outlook 2009 The Early Release for next year's Annual Energy Outlook will be presented at the John Hopkins Kenney Auditorium on December 14th This report summarizes the major assumptions used in the NEMS to generate the AEO2009 projections. Introduction Macroeconomic Activity Module International Energy Module Residential Demand Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Oil and Gas Supply Module Natural Gas Transmission and Distribution Module Petroleum Market Module Coal Market Module Renewable Fuels Module PDF (GIF) Appendix A: Handling of Federal and Selected State Legislation and Regulation In the Annual Energy Outlook Past Assumptions Editions

60

MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT  

SciTech Connect (OSTI)

The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

R.E. Sweeney

2001-02-08T23:59:59.000Z

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Assumptions to Annual Energy Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Assumptions to AEO2013 Assumptions to AEO2013 Release Date: May 14, 2013 | Next Release Date: May 2014 | full report Introduction This report presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook 2013 [1] (AEO2013), including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are the most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports [2]. The National Energy Modeling System Projections in the AEO2013 are generated using the NEMS, developed and maintained by the Office of Energy Analysis of the U.S. Energy Information Administration (EIA). In addition to its use in developing the Annual

62

Assumptions to Annual Energy Outlook - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Assumptions to AEO2012 Assumptions to AEO2012 Release Date: August 2, 2012 | Next Release Date: August 2013 | Full report Introduction This report presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook 2012 [1] (AEO2012), including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are the most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports [2]. The National Energy Modeling System The projections in AEO2012 are generated using the NEMS, developed and maintained by the Office of Energy Analysis (OEA) of the U.S. Energy Information Administration (EIA). In addition to its use in developing the

63

Notes 01. The fundamental assumptions and equations of lubrication theory  

E-Print Network [OSTI]

The fundamental assumption in Lubrication Theory. Derivation of thin film flow equations from Navier-Stokes equations. Importance of fluid inertia effects in thin film flows. Some fluid physical properties...

San Andres, Luis

2009-01-01T23:59:59.000Z

64

Idaho National Engineering Laboratory installation roadmap assumptions document. Revision 1  

SciTech Connect (OSTI)

This document is a composite of roadmap assumptions developed for the Idaho National Engineering Laboratory (INEL) by the US Department of Energy Idaho Field Office and subcontractor personnel as a key element in the implementation of the Roadmap Methodology for the INEL Site. The development and identification of these assumptions in an important factor in planning basis development and establishes the planning baseline for all subsequent roadmap analysis at the INEL.

Not Available

1993-05-01T23:59:59.000Z

65

Assumptions to the Annual Energy Outlook 1999 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

link.gif (1946 bytes) link.gif (1946 bytes) bullet1.gif (843 bytes) Assumptions to the AEO99 bullet1.gif (843 bytes) Supplemental Tables to the AEO99 bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage introduction.gif (4117 bytes) This paper presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook 19991 (AEO99), including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports.2 A synopsis of NEMS, the model components, and the interrelationships of the modules is presented in The National Energy Modeling System: An Overview.3

66

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

Introduction Introduction Assumptions to the Annual Energy Outlook 2006 Introduction This report presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook 20061 (AEO2006), including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports.2 A synopsis of NEMS, the model components, and the interrelationships of the modules is presented in The National Energy Modeling System: An Overview3, which is updated once every few years. The National Energy Modeling System

67

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

States. States. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes unconventional gas recovery from low permeability formations of sandstone and shale, and coalbeds. Energy Information Administration/Assumptions to the Annual Energy Outlook 2007 93 Figure 7. Oil and Gas Supply Model Regions Source: Energy Information Administration, Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2007) Release date: April 2007 Next release date: March 2008 Primary inputs for the module are varied. One set of key assumptions concerns estimates of domestic technically recoverable oil and gas resources. Other factors affecting the projection include the assumed

68

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Release date: April 2007 Next release date: March 2008 Assumptions to the Annual Energy Outlook 2007 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Commercial Demand Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Natural Gas Transmission and Distribution Module. . . . . . . . . . . . . . . . . . . . . . 107 Petroleum Market Module

69

COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1  

E-Print Network [OSTI]

1 COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1 Matthew Berman In a recent analysis comparing the current oil production tax, More Alaska Production Act (MAPA, also known as SB 21 oil prices, production rates, and costs. He noted that comparative revenues are highly sensitive

Pantaleone, Jim

70

Reasoning by Assumption: Formalisation and Analysis of Human Reasoning Traces  

E-Print Network [OSTI]

for the traces acquired in experiments undertaken. 1 Introduction Practical reasoning processes are often not limited to single reasoning steps, but extend to traces or trajectories of a number of interrelated by assumption'. This (non-deductive) practical reasoning pattern in- volves a number of interrelated reasoning

Treur, Jan

71

Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives  

SciTech Connect (OSTI)

The High Level Waste (HLW) Salt Disposition Systems Engineering Team was formed on March 13, 1998, and chartered to identify options, evaluate alternatives, and recommend a selected alternative(s) for processing HLW salt to a permitted wasteform. This requirement arises because the existing In-Tank Precipitation process at the Savannah River Site, as currently configured, cannot simultaneously meet the HLW production and Authorization Basis safety requirements. This engineering study was performed in four phases. This document provides the technical bases, assumptions, and results of this engineering study.

Dimenna, R.A.; Jacobs, R.A.; Taylor, G.A.; Durate, O.E.; Paul, P.K.; Elder, H.H.; Pike, J.A.; Fowler, J.R.; Rutland, P.L.; Gregory, M.V.; Smith III, F.G.; Hang, T.; Subosits, S.G.; Campbell, S.G.

2001-03-26T23:59:59.000Z

72

NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions  

SciTech Connect (OSTI)

This document is intended to provide a Next Generation Nuclear Plant (NGNP) Project tool in which to collect and identify key definitions, plant capabilities, and inputs and assumptions to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor (HTGR). These definitions, capabilities, and assumptions are extracted from a number of sources, including NGNP Project documents such as licensing related white papers [References 1-11] and previously issued requirement documents [References 13-15]. Also included is information agreed upon by the NGNP Regulatory Affairs group's Licensing Working Group and Configuration Council. The NGNP Project approach to licensing an HTGR plant via a combined license (COL) is defined within the referenced white papers and reference [12], and is not duplicated here.

Phillip Mills

2012-02-01T23:59:59.000Z

73

Assumption Parish, Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Assumption Parish, Louisiana: Energy Resources Assumption Parish, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.9232544°, -91.09694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.9232544,"lon":-91.09694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

74

Cost and Performance Assumptions for Modeling Electricity Generation Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost and Performance Cost and Performance Assumptions for Modeling Electricity Generation Technologies Rick Tidball, Joel Bluestein, Nick Rodriguez, and Stu Knoke ICF International Fairfax, Virginia Subcontract Report NREL/SR-6A20-48595 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Cost and Performance Assumptions for Modeling Electricity Generation Technologies Rick Tidball, Joel Bluestein, Nick Rodriguez, and Stu Knoke ICF International Fairfax, Virginia NREL Technical Monitor: Jordan Macknick

75

Assumptions to the Annual Energy Outlook 2002 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

Introduction This report presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook 20021 (AEO2002), including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports.2 A synopsis of NEMS, the model components, and the interrelationships of the modules is presented in The National Energy Modeling System: An Overview.3 The National Energy Modeling System The projections in the AEO2002 were produced with the National Energy Modeling System. NEMS is developed and maintained by the Office of

76

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

7, DOE/EIA- 7, DOE/EIA- M068(2007). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described. EMM Regions The supply regions used in EMM are based on the North American Electric Reliability Council regions and

77

Assumptions to the Annual Energy Outlook 2001 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

Outlook2001 Outlook2001 Supplemental Data to the AEO2001 NEMS Conference To Forecasting Home Page EIA Homepage Introduction This report presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook 20011 (AEO2001), including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports.2 A synopsis of NEMS, the model components, and the interrelationships of the modules is presented in The National Energy Modeling System: An Overview.3 The National Energy Modeling System The projections in the AEO2001 were produced with the National Energy

78

Assumptions to the Annual Energy Outlook 2000 - Errata  

Gasoline and Diesel Fuel Update (EIA)

Assumptions to the Annual Energy Outlook 2000 Assumptions to the Annual Energy Outlook 2000 as of 4/4/2000 1. On table 20 "the fractional fuel efficiency change for 4-Speed Automatic" should be .045 instead of .030. On table 20 "the fractional fuel efficiency change for 5-Speed Automatic" should be .065 instead of .045. (Change made on 3/6/2000) 2. Table 28 should be labeled: "Alternative-Fuel Vehicle Attribute Inputs for Compact Cars for Two Stage Logit Model". (Change made on 3/6/2000) 3. The capital costs in Table 29 should read 1998 dollars not 1988 dollars. (Change made on 3/6/2000) 4. Table 37 changed the label "Year Available" to "First Year Completed." Changed the second sentence of Footnote 1 to read "these estimates are costs of new projects

79

Assumptions to the Annual Energy Outlook 2000 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Key Assumptions Key Assumptions The historical input data used to develop the HEM version for the AEO2000 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2000 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and transportation sectors as inputs to the disaggregation algorithm that results in the direct fuel expenditure analysis. Household end-use and personal transportation service consumption are obtained by HEM from the NEMS Residential and Transportation Demand Modules. Household disposable income is adjusted with forecasts of total disposable income from the NEMS Macroeconomic Activity Module.

80

EIA - Assumptions to the Annual Energy Outlook 2009 - Petroleum Market  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumptions to the Annual Energy Outlook 2009 Petroleum Market Module Figure 9., Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. Table 11.1. Petroleum Product Categories. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 11.2. Year Round Gasoline Specifications by Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 11.3. Gasolline Sulfur Content Assumptions, by Region and Gasoline Type, Parts per Million (PPM). Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EIA - Assumptions to the Annual Energy Outlook 2010 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

Introduction Introduction Assumptions to the Annual Energy Outlook 2010 Introduction This report presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook 2010 [1] (AEO2010), including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are the most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports [2]. The National Energy Modeling System The projections in the AEO2010 were produced with the NEMS, which is developed and maintained by the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) to provide projections of domestic energy-economy markets in the long term and perform policy analyses requested by decisionmakers in the White House, U.S. Congress, offices within the Department of Energy, including DOE Program Offices, and other government agencies. The Annual Energy Outlook (AEO) projections are also used by analysts and planners in other government agencies and outside organizations.

82

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module Assumptions to the Annual Energy Outlook 2006 The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand electricity, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2006, DOE/EIA- M068(2006). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described.

83

EIA - Assumptions to the Annual Energy Outlook 2008 - Electricity Market  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module Assumptions to the Annual Energy Outlook 2008 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand electricity, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2008, DOE/EIA-M068(2008). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described.

84

EIA - Assumptions to the Annual Energy Outlook 2008 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

Introduction Introduction Assumptions to the Annual Energy Outlook 2008 Introduction This report presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook 20081 (AEO2008), including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are the most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports.2 The National Energy Modeling System The projections in the AEO2008 were produced with the NEMS, which is developed and maintained by the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) to provide projections of domestic energy-economy markets in the long term and perform policy analyses requested by decisionmakers in the White House, U.S. Congress, offices within the Department of Energy, including DOE Program Offices, and other government agencies. The AEO projections are also used by analysts and planners in other government agencies and outside organizations.

85

EIA - Assumptions to the Annual Energy Outlook 2009 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

Introduction Introduction Assumptions to the Annual Energy Outlook 2009 Introduction This report presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook 2009 (AEO2009),1 including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are the most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports.2 The National Energy Modeling System The projections in the AEO2009 were produced with the NEMS, which is developed and maintained by the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) to provide projections of domestic energy-economy markets in the long term and perform policy analyses requested by decisionmakers in the White House, U.S. Congress, offices within the Department of Energy, including DOE Program Offices, and other government agencies. The Annual Energy Outlook (AEO) projections are also used by analysts and planners in other government agencies and outside organizations.

86

Assumptions to the Annual Energy Outlook - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module Assumption to the Annual Energy Outlook Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2004, DOE/EIA- M068(2004). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described.

87

Assumptions to the Annual Energy Outlook - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumption to the Annual Energy Outlook Petroleum Market Module Figure 8. Petroleum Administration for Defense Districts. Having problems, call our National Energy Information Center at 202-586-8800 for help. The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohols, ethers, and bioesters natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of U.S. refining

88

Assumptions to the Annual Energy Outlook - Household Expenditures Module  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module Assumption to the Annual Energy Outlook Household Expenditures Module Figure 5. United States Census Divisions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division (see

89

Diversion assumptions for high-powered research reactors  

SciTech Connect (OSTI)

This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

Binford, F.T.

1984-01-01T23:59:59.000Z

90

Assumptions to the Annual Energy Outlook 2000 - Electricity Market Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. The major assumptions are summarized below.

91

Assumptions to the Annual Energy Outlook 2000 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

Introduction Introduction This paper presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook 20001 (AEO2000), including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports.2 A synopsis of NEMS, the model components, and the interrelationships of the modules is presented in The National Energy Modeling System: An Overview.3 The National Energy Modeling System The projections in the AEO2000 were produced with the National Energy Modeling System. NEMS is developed and maintained by the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) to provide projections of domestic energy-economy markets in the midterm time period and perform policy analyses requested by decisionmakers and analysts in the U.S. Congress, the Department of Energy’s Office of Policy, other DOE offices, and other government agencies.

92

Assumptions to the Annual Energy Outlook 1999 - Natural Gas Transmission  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by obtaining market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. In addition, natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of gas supply options as translated to the represented market “hubs.” The major assumptions used within the NGTDM are grouped into five general categories. They relate to (1) the classification of demand into core and noncore transportation service classes, (2) the pricing of transmission and distribution services, (3) pipeline and storage capacity expansion and utilization, (4) the implementation of recent regulatory reform, and (5) the implementation of provisions of the Climate Change Action Plan (CCAP). A complete listing of NGTDM assumptions and in-depth methodology descriptions are presented in Model Documentation Report: Natural Gas Transmission and Distribution Model of the National Energy Modeling System, DOE/EIA-MO62/1, January 1999.

93

Assumptions to the Annual Energy Outlook 2000 - Natural Gas Transmission  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. In addition, natural gas flow patterns are a function of the pattern in the previous year, coupled with the relative prices of gas supply options as translated to the represented market “hubs.” The major assumptions used within the NGTDM are grouped into five general categories. They relate to (1) the classification of demand into core and noncore transportation service classes, (2) the pricing of transmission and distribution services, (3) pipeline and storage capacity expansion and utilization, (4) the implementation of recent regulatory reform, and (5) the implementation of provisions of the Climate Change Action Plan (CCAP). A complete listing of NGTDM assumptions and in-depth methodology descriptions are presented in Model Documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System, Model Documentation 2000, DOE/EIA-M062(2000), January 2000.

94

The contour method cutting assumption: error minimization and correction  

SciTech Connect (OSTI)

The recently developed contour method can measure 2-D, cross-sectional residual-stress map. A part is cut in two using a precise and low-stress cutting technique such as electric discharge machining. The contours of the new surfaces created by the cut, which will not be flat if residual stresses are relaxed by the cutting, are then measured and used to calculate the original residual stresses. The precise nature of the assumption about the cut is presented theoretically and is evaluated experimentally. Simply assuming a flat cut is overly restrictive and misleading. The critical assumption is that the width of the cut, when measured in the original, undeformed configuration of the body is constant. Stresses at the cut tip during cutting cause the material to deform, which causes errors. The effect of such cutting errors on the measured stresses is presented. The important parameters are quantified. Experimental procedures for minimizing these errors are presented. An iterative finite element procedure to correct for the errors is also presented. The correction procedure is demonstrated on experimental data from a steel beam that was plastically bent to put in a known profile of residual stresses.

Prime, Michael B [Los Alamos National Laboratory; Kastengren, Alan L [ANL

2010-01-01T23:59:59.000Z

95

Assumptions to the Annual Energy Outlook 1999 - Table 1  

Gasoline and Diesel Fuel Update (EIA)

Summary of AEO99 Cases Summary of AEO99 Cases Case Name Description Integration mode Reference Baseline economic growth, world oil price, and technology assumptions Fully Integrated Low Economic Growth Gross Domestic product grows at an average annual rate of 1.5 percent, compared to the reference case growth of 2.1 percent. Fully Integrated High Economic Growth Gross domestic product grows at an average annual rate of 2.6 percent, compared to the reference case growth of 2.1 percent. Fully Integrated Low World Oil Price World oil prices are $14.57 per barrel in 2020, compared to $22.73 per barrel in the reference case. Partially Integrated High World Oil Price World oil prices are $29.35 per barrel in 2020, compared to $22.73 per barrel in the reference case. Partially Integrated Residential: 1999 Technology

96

EIA - Assumptions to the Annual Energy Outlook 2009 - Electricity Market  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module Assumptions to the Annual Energy Outlook 2009 Electricity Market Module figure 6. Electricity Market Model Supply Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules—electricity capacity planning, electricity fuel dispatching, load and demand electricity, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2009, DOE/EIA-M068(2009). Based on fuel prices and electricity demands provided by the other modules

97

EIA - Assumptions to the Annual Energy Outlook 2008 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumptions to the Annual Energy Outlook 2008 Natural Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and Distribution Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution

98

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

99

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2006 The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS27 data.

100

EIA - Assumptions to the Annual Energy Outlook 2008 - Petroleum Market  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumptions to the Annual Energy Outlook 2008 Petroleum Market Module Figure 9. Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, bioesters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EIA-Assumptions to the Annual Energy Outlook - Macroeconomic Activity  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic Activity Module Macroeconomic Activity Module Assumptions to the Annual Energy Outlook 2007 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) represents the interaction between the U.S. economy as a whole and energy markets. The rate of growth of the economy, measured by the growth in gross domestic product (GDP) is a key determinant of the growth in demand for energy. Associated economic factors, such as interest rates and disposable income, strongly influence various elements of the supply and demand for energy. At the same time, reactions to energy markets by the aggregate economy, such as a slowdown in economic growth resulting from increasing energy prices, are also reflected in this module. A detailed description of the MAM is provided in the EIA publication, Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System, DOE/EIA-M065(2007), (Washington, DC, January 2007).

102

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

7 7 1 (AEO2007), including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are the most significant to formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports. 2 A synopsis of NEMS, the model components, and the interrelationships of the modules is presented in The National Energy Modeling System: An Overview 3 , which is updated once every few years. The National Energy Modeling System The projections in the AEO2007 were produced with the National Energy Modeling System. NEMS is developed and maintained by the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) to provide projections of domestic energy-economy markets in the long term and

103

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2006 The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

104

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

105

EIA - Assumptions to the Annual Energy Outlook 2009 - Macroeconomic  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic Activity Module Macroeconomic Activity Module Assumptions to the Annual Energy Outlook 2010 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) represents the interaction between the U.S. economy as a whole and energy markets. The rate of growth of the economy, measured by the growth in gross domestic product (GDP) is a key determinant of the growth in demand for energy. Associated economic factors, such as interest rates and disposable income, strongly influence various elements of the supply and demand for energy. At the same time, reactions to energy markets by the aggregate economy, such as a slowdown in economic growth resulting from increasing energy prices, are also reflected in this module. A detailed description of the MAM is provided in the EIA publication, Model Document>ation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System, DOE/EIA-M065(2009), (Washington, DC, January 2009).

106

EIA - Assumptions to the Annual Energy Outlook 2010 - International Energy  

Gasoline and Diesel Fuel Update (EIA)

International Energy Module International Energy Module Assumptions to the Annual Energy Outlook 2010 International Energy Module Figure 2. World Oil Prices in Three Cases, 1995-2035 Figure 2. World Oil Prices in three Cases, 1995-2035 (2008 dollars per barrel). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 3. OPEC Total Liquids Production in the Reference Case, 1980-2035 Figure 3. OPEC Total Liquids Production in the Reference Case, 1995-2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 4. Non-OPEC Total Liquids Production in the Reference Case, 1980-2035 Figure 4. Non-OPEC Total Liquids Production in the Reference Case, 1995-2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800.

107

Assumptions to the Annual Energy Outlook 2001 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Completed Copy in PDF Format Completed Copy in PDF Format Related Links Annual Energy Outlook2001 Supplemental Data to the AEO2001 NEMS Conference To Forecasting Home Page EIA Homepage Household Expenditures Module Key Assumptions The historical input data used to develop the HEM version for the AEO2001 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2001 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and

108

Assumptions to the Annual Energy Outlook 2001 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2001, DOE/EIA-M060(2001) January 2001. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves

109

EIA - Assumptions to the Annual Energy Outlook 2009 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumptions to the Annual Energy Outlook 2009 Natural Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and distribution Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution

110

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

7), 7), (Washington, DC, January 2007). Key Assumptions The output of the U.S. economy, measured by GDP, is expected to increase by 2.9 percent between 2005 and 2030 in the reference case. Two key factors help explain the growth in GDP: the growth rate of nonfarm employment and the rate of productivity change associated with employment. As Table 3 indicates, for the Reference Case GDP growth slows down in each of the periods identified, from 3.0 percent between 2005 and 2010, to 2.9 percent between 2010 and 2020, to 2.8 percent in the between 2020 and 2030. In the near term from 2005 through 2010, the growth in nonfarm employment is low at 1.2 percent compared with 2.4 percent in the second half of the 1990s, while the economy is expected to experiencing relatively strong

111

EIA - Assumptions to the Annual Energy Outlook 2009 - International Energy  

Gasoline and Diesel Fuel Update (EIA)

International Energy Module International Energy Module Assumptions to the Annual Energy Outlook 2009 International Energy Module Figure 2. World Oil Prices in three Cases, 1995-2030 (2006 dollars per barrel). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 3. OPEC Total Liquids Production in the Reference Case, 1995-2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 4. Non-OPEC Total Liquids Production in the Reference Case, 1995-2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800. figure data The International Energy Module (IEM) performs two tasks in all NEMS runs. First, the module reads exogenously global and U.S.A. petroleum liquids

112

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2006 The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.14

113

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

114

Assumptions to the Annual Energy Outlook - International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

International Energy Module International Energy Module Assumption to the Annual Energy Outlook International Energy Module Figure 2. World Oil Prices in three Cases, 1970-2025. Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure Data Figure 3. OPEC Oil Production in the Reference Case, 1970-2025. Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure Data Figure 4. Non-OPEC Production in the Reference Case, 1970-2025. Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure Data Table 4. Worldwide Oil Reserves as of January 1, 2002 (Billion Barrels) Printer Friendly Version Region Proved Oil Reserves Western Hemisphere 313.6 Western‘Europe 18.1 Asia-Pacific 38.7

115

Assumptions to the Annual Energy Outlook - Natural Gas Transmission and  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumption to the Annual Energy Outlook Natural Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and Distribution Model Regions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution

116

EIA - Assumptions to the Annual Energy Outlook 2008 - Macroeconomic  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic Activity Module Macroeconomic Activity Module Assumptions to the Annual Energy Outlook 2008 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) represents the interaction between the U.S. economy as a whole and energy markets. The rate of growth of the economy, measured by the growth in gross domestic product (GDP) is a key determinant of the growth in demand for energy. Associated economic factors, such as interest rates and disposable income, strongly influence various elements of the supply and demand for energy. At the same time, reactions to energy markets by the aggregate economy, such as a slowdown in economic growth resulting from increasing energy prices, are also reflected in this module. A detailed description of the MAM is provided in the EIA publication, Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System, DOE/EIA-M065(2007), (Washington, DC, January 2007).

117

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

118

EIA - Assumptions to the Annual Energy Outlook 2009 - Macroeconomic  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic Activity Module Macroeconomic Activity Module Assumptions to the Annual Energy Outlook 2009 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) represents the interaction between the U.S. economy as a whole and energy markets. The rate of growth of the economy, measured by the growth in gross domestic product (GDP) is a key determinant of the growth in demand for energy. Associated economic factors, such as interest rates and disposable income, strongly influence various elements of the supply and demand for energy. At the same time, reactions to energy markets by the aggregate economy, such as a slowdown in economic growth resulting from increasing energy prices, are also reflected in this module. A detailed description of the MAM is provided in the EIA publication, Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System, DOE/EIA-M065(2008), (Washington, DC, January 2008).

119

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

7, DOE/EIA-M060(2007) (Washington, 7, DOE/EIA-M060(2007) (Washington, DC, 2007). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

120

EIA - Assumptions to the Annual Energy Outlook 2008 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2008 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2006 Figure 7. Oil and Gas Supply Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply on a regional basis (Figure 7). A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2006), (Washington, DC, 2006). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural

122

Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumption to the Annual Energy Outlook Industrial Demand Module Table 17. Industry Categories Printer Friendly Version Energy-Intensive Manufacturing Nonenergy-Intensive Manufacturing Nonmanufacturing Industries Food and Kindred Products (NAICS 311) Metals-Based Durables (NAICS 332-336) Agricultural Production -Crops (NAICS 111) Paper and Allied Products (NAICS 322) Balance of Manufacturing (all remaining manufacturing NAICS) Other Agriculture Including Livestock (NAICS112- 115) Bulk Chemicals (NAICS 32B) Coal Mining (NAICS 2121) Glass and Glass Products (NAICS 3272) Oil and Gas Extraction (NAICS 211) Hydraulic Cement (NAICS 32731) Metal and Other Nonmetallic Mining (NAICS 2122- 2123) Blast Furnaces and Basic Steel (NAICS 331111) Construction (NAICS233-235)

123

EIA - Assumptions to the Annual Energy Outlook 2009 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

124

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

125

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

clothes drying, ceiling fans, coffee makers, spas, home security clothes drying, ceiling fans, coffee makers, spas, home security systems, microwave ovens, set-top boxes, home audio equipment, rechargeable electronics, and VCR/DVDs. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric appliances. The module's output includes number Energy Information Administration/Assumptions to the Annual Energy Outlook 2007 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central

126

EIA - Assumptions to the Annual Energy Outlook 2009 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2009 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind1. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy.

127

EIA - Assumptions to the Annual Energy Outlook 2010 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services [1].

128

Assumptions to the Annual Energy Outlook 1999 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

petroleum.gif (4999 bytes) petroleum.gif (4999 bytes) The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for each Census Division using the assumptions and methods described below. 75

129

EIA - Assumptions to the Annual Energy Outlook 2010 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumptions to the Annual Energy Outlook 2010 Natural Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and distribution Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and

130

EIA - Assumptions to the Annual Energy Outlook 2010 - Petroleum Market  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumptions to the Annual Energy Outlook 2010 Petroleum Market Module The NEMS Petroleum Market Module (PMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, bioesters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. Figure 9. Petroleum Administration for Defense Districts. The PMM contains a linear programming (LP) representation of U.S. refining activities in the five Petroleum Area Defense Districts (PADDs) (Figure 9),

131

EIA - Assumptions to the Annual Energy Outlook 2009 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2009 Industrial Demand Module Table 6.1. Industry Categories. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 6.2.Retirement Rates. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process flow or end use accounting

132

Assumptions to the Annual Energy Outlook 2002 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2002, DOE/EIA-M060(2002) (Washington, DC, January 2002). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves

133

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

134

EIA - Assumptions to the Annual Energy Outlook 2008 - International Energy  

Gasoline and Diesel Fuel Update (EIA)

International Energy Module International Energy Module Assumptions to the Annual Energy Outlook 2008 International Energy Module The International Energy Module (IEM) performs two tasks in all NEMS runs. First, the module reads exogenously global and U.S.A. petroleum liquids supply and demand curves (1 curve per year; 2008-2030; approximated, isoelastic fit to previous NEMS results). These quantities are not modeled directly in NEMS. Previous versions of the IEM adjusted these quantities after reading in initial values. In an attempt to more closely integrate the AEO2008 with IEO2007 and the STEO some functionality was removed from IEM while a new algorithm was implemented. Based on the difference between U.S. total petroleum liquids production (consumption) and the expected U.S. total liquids production (consumption) at the current WTI price, curves for global petroleum liquids consumption (production) were adjusted for each year. According to previous operations, a new WTI price path was generated. An exogenous oil supply module, Generate World Oil Balances (GWOB), was also used in IEM to provide annual regional (country) level production detail for conventional and unconventional liquids.

135

Assumptions to the Annual Energy Outlook 2000 - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, other refinery inputs including alcohol and ethers, natural gas plant liquids production, and refinery processing gain. In addition, the PMM estimates capacity expansion and fuel consumption of domestic refineries. The PMM contains a linear programming representation of refining activities in three U.S. regions. This representation provides the marginal costs of production for a number of traditional and new petroleum products. The linear programming results are used to determine end-use product prices for each Census Division using the assumptions and methods described below.100

136

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2006, DOE/EIA-M060(2006) (Washington, DC, 2006). Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2006, DOE/EIA-M060(2006) (Washington, DC, 2006). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

137

Functions and Requirements for the Transition Project  

SciTech Connect (OSTI)

This document describes the functional requirement baseline for the Transition of 100 K Area Facilities Project (Transition Project). This baseline information consists of top-level functions, requirements, concept description, interface description, issues, and enabling assumptions.

YANOCHKO, R.M.

2000-04-24T23:59:59.000Z

138

EIA-Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2007 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new

139

On the self-similarity assumption in dynamic models for large eddy simulations  

E-Print Network [OSTI]

that the present formulation of the DP is usually incompatible with its under- lying self-similarity assumption SSAOn the self-similarity assumption in dynamic models for large eddy simulations Daniele Carati eddy simulations and their underlying self-similarity assumption is discussed. The interpretation

Van Den Eijnden, Eric

140

Assumptions to the Annual Energy Outlook 1999 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

residential.gif (5487 bytes) residential.gif (5487 bytes) The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Assumptions to the Annual Energy Outlook 2000 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module (RFM) consists of five distinct submodules that represent the major renewable energy technologies. Although it is described here, conventional hydroelectric is included in the Electricity Market Module (EMM) and is not part of the RFM. Similarly, ethanol modeling is included in the Petroleum Market Module (PMM). Some renewables, such as municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not require the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using wind, solar, and geothermal energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

142

Assumptions to the Annual Energy Outlook 1999 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

renewable.gif (4875 bytes) renewable.gif (4875 bytes) The NEMS Renewable Fuels Module (RFM) consists of five distinct submodules that represent the major renewable energy technologies. Although it is described here, conventional hydroelectric is included in the Electricity Market Module (EMM) and is not part of the RFM. Similarly, ethanol modeling is included in the Petroleum Market Module (PMM). Some renewables, such as municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not require the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using wind, solar, and geothermal energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittence, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

143

Assumptions to the Annual Energy Outlook 2000 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

144

Comparison of risk-dominant scenario assumptions for several TRU waste facilities in the DOE complex  

SciTech Connect (OSTI)

In order to gain a risk management perspective, the DOE Rocky Flats Field Office (RFFO) initiated a survey of other DOE sites regarding risks from potential accidents associated with transuranic (TRU) storage and/or processing facilities. Recently-approved authorization basis documents at the Rocky Flats Environmental Technology Site (RFETS) have been based on the DOE Standard 3011 risk assessment methodology with three qualitative estimates of frequency of occurrence and quantitative estimates of radiological consequences to the collocated worker and the public binned into three severity levels. Risk Class 1 and 2 events after application of controls to prevent or mitigate the accident are designated as risk-dominant scenarios. Accident Evaluation Guidelines for selection of Technical Safety Requirements (TSRs) are based on the frequency and consequence bin assignments to identify controls that can be credited to reduce risk to Risk Class 3 or 4, or that are credited for Risk Class 1 and 2 scenarios that cannot be further reduced. This methodology resulted in several risk-dominant scenarios for either the collocated worker or the public that warranted consideration on whether additional controls should be implemented. RFFO requested the survey because of these high estimates of risks that are primarily due to design characteristics of RFETS TRU waste facilities (i.e., Butler-type buildings without a ventilation and filtration system, and a relatively short distance to the Site boundary). Accident analysis methodologies and key assumptions are being compared for the DOE sites responding to the survey. This includes type of accidents that are risk dominant (e.g., drum explosion, material handling breach, fires, natural phenomena, external events, etc.), source term evaluation (e.g., radionuclide material-at-risk, chemical and physical form, damage ratio, airborne release fraction, respirable fraction, leakpath factors), dispersion analysis (e.g., meteorological assumptions, distance to receptors, plume meander, deposition, and other factors affecting the calculated {chi}/Q), dose assessments (specific activities, inhalation dose conversion factors, breathing rates), designated frequency of occurrence, and risk assignment per the DOE Standard 3011 methodology. Information from the sites is being recorded on a spreadsheet to facilitate comparisons. The first response from Westinghouse Safety Management Solutions for the Savannah River Site (SRS) also provided a detailed analysis of the major differences in methods and assumptions between RFETS and SRS, which forms much of the basis for this paper. Other sites responding to the survey include the Idaho National Engineering and Environmental Laboratory (INEEL), Hanford, and the Los Alamos National Laboratory (LANL).

Foppe, T.L. [Foppe and Associates, Inc., Golden, CO (United States); Marx, D.R. [Westinghouse Safety Management Solutions, Inc., Aiken, SC (United States)

1999-06-01T23:59:59.000Z

145

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

12 12 . Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon the availability of low-cost

146

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

2 2 The commercial module forecasts consumption by fuel 13 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 14 for eleven building categories 15 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

147

Assumptions to the Annual Energy Outlook 2000 - International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

International Energy Module determines changes in the world oil price and the supply prices of crude oils and petroleum products for import to the United States in response to changes in U.S. import requirements. A market clearing method is used to determine the price at which worldwide demand for oil is equal to the worldwide supply. The module determines new values for oil production and demand for regions outside the United States, along with a new world oil price that balances supply and demand in the international oil market. A detailed description of the International Energy Module is provided in the EIA publication, Model Documentation Report: The International Energy Module of the National Energy Modeling System, DOE/EIA-M071(99), (Washington, DC, February 1999).

148

Assumptions to the Annual Energy Outlook 2002 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

149

Assumptions to the Annual Energy Outlook 2001 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

150

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind108. Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind108. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon the availability of low-cost energy storage systems.

151

OIKOS 101: 499504, 2003 Do seedlings in gaps interact? A field test of assumptions in ESS  

E-Print Network [OSTI]

OIKOS 101: 499­504, 2003 Do seedlings in gaps interact? A field test of assumptions in ESS seed seedlings in gaps interact? A field test of assumptions in ESS seed size models. ­ Oikos 101: 499­504. ESS for the occupancy of `safe sites' or vegetation gaps. If mortality rates are high and/or frequency-independent, ESS

Silvertown, Jonathan

152

Granular Matter 4(3) (2002) How good is the equipartition assumption for the transport  

E-Print Network [OSTI]

Granular Matter 4(3) (2002) How good is the equipartition assumption for the transport properties of a granular mixture? Meheboob Alam (1) , Stefan Luding (1;2) ? Abstract Kinetic-theory, with the assumption of equipar- tition of granular energy, suggests that the pressure and viscosity of a granular mixture vary

Luding, Stefan

153

Impact of assumption of log-normal distribution on monthly rainfall estimation from TMI  

E-Print Network [OSTI]

The log-normal assumption for the distribution of the rain rates used for the estimation of monthly rain totals proposed in Wilheit et al 1991 was examined. Since the log-normal assumption was originally used for the SSM/I, it is now necessary to re...

Lee, Dong Heon

2012-06-07T23:59:59.000Z

154

A new scenario framework for climate change research: The concept of Shared Climate Policy Assumptions  

SciTech Connect (OSTI)

The paper presents the concept of shared climate policy assumptions as an important element of the new scenario framework. Shared climate policy assumptions capture key climate policy dimensions such as the type and scale of mitigation and adaptation measures. They are not specified in the socio-economic reference pathways, and therefore introduce an important third dimension to the scenario matrix architecture. Climate policy assumptions will have to be made in any climate policy scenario, and can have a significant impact on the scenario description. We conclude that a meaningful set of shared climate policy assumptions is useful for grouping individual climate policy analyses and facilitating their comparison. Shared climate policy assumptions should be designed to be policy relevant, and as a set to be broad enough to allow a comprehensive exploration of the climate change scenario space.

Kriegler, Elmar; Edmonds, James A.; Hallegatte, Stephane; Ebi, Kristie L.; Kram, Tom; Riahi, Keywan; Winkler, Harald; Van Vuuren, Detlef

2014-04-01T23:59:59.000Z

155

EIA-Assumptions to the Annual Energy Outlook - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2007 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind.112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon the availability of low-cost energy storage systems.

156

Moldy Assumptions  

E-Print Network [OSTI]

sustainability movements. 2 Despite these noble intentions, using human responsibility as a base for architecture

Heully, Gustave Paul

2012-01-01T23:59:59.000Z

157

CBE UFAD cost analysis tool: Life cycle cost model, issues and assumptions  

E-Print Network [OSTI]

Building Maintenance and Repair Cost Reference. ” WhitestoneJ. Wallis and H. Lin. 2008. “CBE UFAD Cost Analysis Tool:UFAD First Cost Model, Issues and Assumptions. ” Center for

Webster, Tom; Benedek, Corinne; Bauman, Fred

2008-01-01T23:59:59.000Z

158

Microwave Properties of Ice-Phase Hydrometeors for Radar and Radiometers: Sensitivity to Model Assumptions  

Science Journals Connector (OSTI)

A simplified framework is presented for assessing the qualitative sensitivities of computed microwave properties, satellite brightness temperatures, and radar reflectivities to assumptions concerning the physical properties of ice-phase ...

Benjamin T. Johnson; Grant W. Petty; Gail Skofronick-Jackson

2012-12-01T23:59:59.000Z

159

Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report)  

Broader source: Energy.gov [DOE]

This paper examines the behavioral assumptions that underlie California’s residential sector energy efficiency programs and recommends improvements that will help to advance the state’s ambitious greenhouse gas reduction goals.

160

Length measurement of a moving rod by a single observer without assumptions concerning its magnitude  

E-Print Network [OSTI]

We extend the results presented by Weinstein concerning the measurement of the length of a moving rod by a single observer, without making assumptions concerning the distance between the moving rod and the observer who measures its length.

Bernhard Rothenstein; Ioan Damian

2005-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Assumptions about the U.S., the EU, NATO, and their Impact on the Transatlantic Agenda  

Science Journals Connector (OSTI)

I propose in this paper to discuss, from an American perspective, the assumptions and assertions that influence the way that I look at foreign policy events at the end of this decade. I will conclude with a fe...

Stanley Sloan

2000-01-01T23:59:59.000Z

162

Annual Energy Outlook 2001-Appendix G: Major Assumptions for the Forecasts  

Gasoline and Diesel Fuel Update (EIA)

Forecasts Forecasts Summary of the AEO2001 Cases/ Scenarios - Appendix Table G1 bullet1.gif (843 bytes) Model Results (Formats - PDF, ZIP) - Appendix Tables - Reference Case - 1998 to 2020 bullet1.gif (843 bytes) Download Report - Entire AEO2001 (PDF) - AEO2001 by Chapters (PDF) bullet1.gif (843 bytes) Acronyms bullet1.gif (843 bytes) Contacts Related Links bullet1.gif (843 bytes) Assumptions to the AEO2001 bullet1.gif (843 bytes) Supplemental Data to the AEO2001 (Only available on the Web) - Regional and more detailed AEO 2001 Reference Case Results - 1998, 2000 to 2020 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) Forecast Homepage bullet1.gif (843 bytes) EIA Homepage Appendix G Major Assumptions for the Forecasts Component Modules Major Assumptions for the Annual Energy Outlook 2001

163

Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions  

SciTech Connect (OSTI)

The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

Drury, E.; Denholm, P.; Margolis, R.

2013-01-01T23:59:59.000Z

164

Functional requirements and technical criteria for the 241-SY-101 RAPID mitigation system  

SciTech Connect (OSTI)

This document provides functional, performance, and design criteria for the RAPID Mitigation System. In addition, critical interface, design assumptions, and analytical requirements are identified.

ERHART, M.F.

1999-02-26T23:59:59.000Z

165

Campus Recreation at Sonoma State University RELEASE OF LIABILITY -PROMISE NOT TO SUE ASSUMPTION OF  

E-Print Network [OSTI]

Campus Recreation at Sonoma State University RELEASE OF LIABILITY - PROMISE NOT TO SUE ASSUMPTION OF RISK - AGREEMENT TO PAY CLAIMS PERMISSION TO USE VISUAL LIKENESS Activities: a) USE OF SSU RECREATION RECREATION PROGRAMS. Effective Locations and Time Periods: a) RECREATION CENTER: DURING HOURS OF OPERATION

Ravikumar, B.

166

Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric IRT  

E-Print Network [OSTI]

Cognitive Assessment Models with Few Assumptions, and Connections with Nonparametric IRT Brian of the monotonicity conditions discussed in Section 4. #12;Abstract In recent years, as cognitive theories of learning" on student achievement relative to theory-driven lists of examinee skills, beliefs and other cognitive

Junker, Brian

167

Draft -F. Nicoud 1 About the zero Mach number assumption in  

E-Print Network [OSTI]

Draft - F. Nicoud 1 About the zero Mach number assumption in the calculation of thermoacoustic as the the flame forcing ('Rayleigh') term. Besides, the net effect of the non zero Mach number terms the frequency of oscillation and growth rate are modified when the Mach number is not zero. It is demonstrated

Nicoud, Franck

168

Models of transcription factor binding: Sensitivity of activation functions to model assumptions  

E-Print Network [OSTI]

on statistical physics, a Markov-chain model and a computational simulation. Comparison of these models suggests for cooperativity. The simulation model suggests that direct interactions between TFs are unlikely to be the main in this contribution, the assumption of the cell being a well stirred reactor makes a qualitative difference

Kent, University of

169

EIA-Assumptions to the Annual Energy Outlook - International Energy Module  

Gasoline and Diesel Fuel Update (EIA)

International Energy Module International Energy Module Assumptions to the Annual Energy Outlook 2007 International Energy Module The International Energy Module (IEM) performs two tasks in all NEMS runs. First, the module reads exogenously derived supply curves, initial price paths and international regional supply and demand levels into NEMS. These quantities are not modeled directly in NEMS because NEMS is not an international model. Previous versions of the IEM adjusted these quantities after reading in initial values. In an attempt to more closely integrate the AEO2007 with the IEO2006 and the STEO some functionality was removed from the IEM. More analyst time was devoted to analyzing price relationships between marker crude oils and refined products. A new exogenous oil supply model, Generate World Oil Balances (GWOB), was also developed to incorporate actual investment occurring in the international oil market through 2015 and resource assumptions through 2030. The GWOB model provides annual country level oil production detail for eight conventional and unconventional oils.

170

Paducah DUF6 Conversion Final EIS - Chapter 4: Environmental Impact Assessment Approach, Assumptions, and Methodology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS 4 ENVIRONMENTAL IMPACT ASSESSMENT APPROACH, ASSUMPTIONS, AND METHODOLOGY This EIS evaluates potential impacts on human health and the natural environment from building and operating a DUF 6 conversion facility at three alternative locations at the Paducah site and for a no action alternative. These impacts might be positive, in that they would improve conditions in the human or natural environment, or negative, in that they would cause a decline in those conditions. This chapter provides an overview of the methods used to estimate the potential impacts associated with the EIS alternatives, summarizes the major assumptions that formed the basis of the evaluation, and provides some background information on human health

171

EIA-Assumptions to the Annual Energy Outlook - Electricity Market Module  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module Assumptions to the Annual Energy Outlook 2007 Electricity Market Module The NEMS Electricity Market Module (EMM) represents the capacity planning, dispatching, and pricing of electricity. It is composed of four submodules-electricity capacity planning, electricity fuel dispatching, load and demand electricity, and electricity finance and pricing. It includes nonutility capacity and generation, and electricity transmission and trade. A detailed description of the EMM is provided in the EIA publication, Electricity Market Module of the National Energy Modeling System 2007, DOE/EIA- M068(2007). Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. This section describes the model parameters and assumptions used in EMM. It includes a discussion of legislation and regulations that are incorporated in EMM as well as information about the climate change action plan. The various electricity and technology cases are also described.

172

Diversion assumptions for high-powered research reactors. ISPO C-50 Phase 1  

SciTech Connect (OSTI)

This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

Binford, F.T.

1984-01-01T23:59:59.000Z

173

Competition Requirements  

Broader source: Energy.gov (indexed) [DOE]

Chapter 6.1 (July 2011) Chapter 6.1 (July 2011) 1 Competition Requirements [Reference: FAR 6 and DEAR 906] Overview This section discusses competition requirements and provides a model Justification for Other than Full and Open Competition (JOFOC). Background The Competition in Contracting Act (CICA) of 1984 requires that all acquisitions be made using full and open competition. Seven exceptions to using full and open competition are specifically identified in Federal Acquisition Regulation (FAR) Subpart 6.3. Documentation justifying the use of any of these exceptions is required. The exception, with supporting documentation, must be certified and approved at certain levels that vary according to the dollar value of the

174

Competition Requirements  

Broader source: Energy.gov (indexed) [DOE]

----------------------------------------------- ---------------------------------------- Chapter 6.1 (February 2011) 1 Competition Requirements [Reference: FAR 6 and DEAR 906] Overview This section discusses competition requirements and provides a model Justification for Other than Full and Open Competition (JOFOC). Background The Competition in Contracting Act (CICA) of 1984 requires that all acquisitions be made using full and open competition. Seven exceptions to using full and open competition are specifically identified in Federal Acquisition Regulation (FAR) Subpart 6.3. Documentation justifying the use of any of these exceptions is required. The exception, with supporting documentation, must

175

EIA-Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2007 Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2007, DOE/EIA-M060(2007) (Washington, DC, 2007). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

176

Assumptions to the Annual Energy Outlook 2001 - Table 3. Coal-Related  

Gasoline and Diesel Fuel Update (EIA)

Coal-Related Methane Assumptions Coal-Related Methane Assumptions Northern Appalachia Central Appalachia Southern Appalachia Eastern Interior Western Fraction of underground coal production at: Gassy mines 0.885 0.368 0.971 0.876 0.681 Nongassy mines 0.115 0.632 0.029 0.124 0.319 Production from mines with degasification systems (fraction of underground production) 0.541 0.074 0.810 0.067 0.056 Emission factors (kilograms methane per short ton of coal produced) Underground Mining Gassy mines 6.047 5.641 27.346 2.988 6.027 Nongassy mines 0.362 0.076 15.959 0.285 0.245 Degassified mines 4.085 37.724 22.025 0.310 0.000 Surface Mining 0.706 0.706 0.706 0.706 0.706 Post-Mining, underground-mined 1.505 1.505 1.505 1.505 1.505 Post-Mining, surface-mined 0.061 0.061 0.061 0.061 0.061 Methane recovery at active coal mines

177

EIA - Assumptions to the Annual Energy Outlook 2010 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2010 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2010, DOE/EIA-M060(2010) (Washington, DC, 2010). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, the cost of factor inputs (labor and fuel), and other mine supply costs.

178

EIA - Assumptions to the Annual Energy Outlook 2008 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2008 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2008, DOE/EIA-M060(2008) (Washington, DC, 2008). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

179

Required Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Required Documents Required Documents Required Documents All foreign nationals, including students and postdocs, must select the foreign nationals employment category to complete the new-hire process. Contact (505) 665-7158 Email Complete following forms before New-Hire Orientation Be sure to bring the forms with you for the orientation event, but do not sign and date: Form I-9, Employment Eligibility Verification (pdf) - original, unexpired documents for verification of employment eligibility. Please refer to the I-9 verification form titled, "Lists of Acceptable Documents", which was included with your offer letter. (Laminated documents or hospital/temporary birth certificates are not accepted.) Note: Failure to provide required documents will result in delay and/or

180

Competition Requirements  

Broader source: Energy.gov (indexed) [DOE]

Chapter 6.1 (April 2009) Chapter 6.1 (April 2009) Competition Requirements [Reference: FAR 6 and DEAR 906] Overview This section discusses competition requirements and provides a model Justification for Other than Full and Open Competition (JOFOC). Background The Competition in Contracting Act (CICA) of 1984 requires that all acquisitions be made using full and open competition. Seven exceptions to using full and open competition are specifically identified in FAR Part 6. Documentation justifying the use of any of these exceptions is required. The exception, with supporting documentation, must be certified and approved at certain levels that vary according to the dollar value of the acquisition. The information that must be included in each justification is

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Competition Requirements  

Broader source: Energy.gov (indexed) [DOE]

Chapter 6.1 (April 2010) Chapter 6.1 (April 2010) 1 Competition Requirements [Reference: FAR 6 and DEAR 906] Overview This section discusses competition requirements and provides a model Justification for Other than Full and Open Competition (JOFOC). Background The Competition in Contracting Act (CICA) of 1984 requires that all acquisitions be made using full and open competition. Seven exceptions to using full and open competition are specifically identified in Federal Acquisition Regulation (FAR) Subpart 6.3. Documentation justifying the use of any of these exceptions is required. The exception, with supporting documentation, must be certified and approved at certain levels that vary according to the dollar value of the acquisition. The information that must be included in each justification is identified in FAR

182

EIA-Assumptions to the Annual Energy Outlook - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2007 Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply on a regional basis (Figure 7). A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2006), (Washington, DC, 2006). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural

183

EIA - Assumptions to the Annual Energy Outlook 2008 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2008 Oil and Gas Supply Module Figure 7. Oil and Gas Supply Module. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply on a regional basis (Figure 7). A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2007), (Washington, DC, 2007). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural

184

EIA-Assumptions to the Annual Energy Outlook - Petroleum Market Module  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module Assumptions to the Annual Energy Outlook 2007 Petroleum Market Module Figure 9. Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Petroleum Market Module (PMM) forecasts petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, and bioesters), natural gas plant liquids production, and refinery processing gain. In addition, the PMM projects capacity expansion and fuel consumption at domestic refineries. The PMM contains a linear programming (LP) representation of U.S. refining

185

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

186

EIA-Assumptions to the Annual Energy Outlook - National Gas Transmission  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module Assumptions to the Annual Energy Outlook 2007 National Gas Transmission and Distribution Module Figure 8. Natural Gas Transmission and Distribution Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each forecast year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution

187

EIA-Assumptions to the Annual Energy Outlook - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2007 Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

188

Assumptions to the Annual Energy Outlook 2000-Table 1. Summary of the  

Gasoline and Diesel Fuel Update (EIA)

0 Cases 0 Cases Case Name Description Integration mode Reference Baseline economic growth, world oil price, and technology assumptions Fully Integrated Low Economic Growth Gross Domestic product grows at an average annual rate of 1.7 percent, compared to the reference case growth of 2.2 percent. Fully Integrated High Economic Growth Gross domestic product grows at an average annual rate of 2.6 percent, compared to the reference case growth of 2.2 percent. Fully Integrated Low World Oil Price World oil prices are $14.90 per barrel in 2020, compared to $22.04 per barrel in the reference case. Fully Integrated High World Oil Price World oil prices are $28.04 per barrel in 2020, compared to $22.04 per barrel in the reference case. Fully Integrated Residential: 2000 Technology

189

Assumptions to the Annual Energy Outlook - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumption to the Annual Energy Outlook Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Having problems, call our National Energy Information Center at 202-586-8800 for help. Table 50. Crude Oil Technically Recoverable Resources (Billion barrels) Printer Friendly Version Crude Oil Resource Category As of January 1, 2002 Undiscovered 56.02 Onshore 19.33 Northeast 1.47 Gulf Coast 4.76 Midcontinent 1.12 Southwest 3.25 Rocky Moutain 5.73 West Coast 3.00 Offshore 36.69 Deep (>200 meter W.D.) 35.01 Shallow (0-200 meter W.D.) 1.69 Inferred Reserves 49.14 Onshore 37.78 Northeast 0.79 Gulf Coast 0.80 Midcontinent 3.73 Southwest 14.61 Rocky Mountain 9.91 West Coast 7.94

190

EIA - Assumptions to the Annual Energy Outlook 2009 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2009 Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. Table 9.1. Crude Oil Technically Recoverable Resources. Need help, contact the Naitonal Energy Information Center at 202-586-8800. printer-friendly version Table 9.2. Natural Gas Technically Recoverable Resources. Need help, contact the National Energy Information Center at 202-586-8800. Table 9.2. Continued printer-friendly version Table 9.3. Assumed Size and Initial Production year of Major Announced Deepwater Discoveries. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 9.4. Assumed Annual Rates of Technological Progress for Conventional Crude Oil and Natural Gas Sources. Need help, contact the National Energy Information Center at 202-586-8800.

191

Assumptions to the Annual Energy Outlook 2001 - Table 1. Summary of AEO2001  

Gasoline and Diesel Fuel Update (EIA)

1 Cases 1 Cases Case name Description Integration mode Reference Baseline economic growth, world oil price, and technology assumptions Fully integrated Low Economic Growth Gross domestic product grows at an average annual rate of 2.5 percent, compared to the reference case growth of 3.0 percent. Fully integrated High Economic Growth Gross domestic product grows at an average annual rate of 3.5 percent, compared to the reference case growth of 3.0 percent. Fully integrated Low World Oil Price World oil prices are $15.10 per barrel in 2020, compared to $22.41 per barrel in the reference case. Fully integrated High World Oil Price World oil prices are $28.42 per barrel in 2020, compared to $22.41 per barrel in the reference case. Fully integrated Residential: 2001 Technology

192

EIA - Assumptions to the Annual Energy Outlook 2010 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2010 Oil and Gas Supply Module Figure 8. Natural Gas Transmission and Distribution Model Regions. The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas natural gas exploration and development on a regional basis (Figure 7). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2010), (Washington, DC, 2010). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural

193

EIA-Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2007 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS25 data.

194

Paper for the International Conference: Foresight Management in Corporations and Public Organisations New Visions for Sustainability, Helsinki, June 9-10, 2005  

E-Print Network [OSTI]

with sustainability. This builds both on the arguments and different points of critiques there have been made Organisations ­ New Visions for Sustainability, Helsinki, June 9-10, 2005 Sustainability requirements, Risø National Laboratory, mads.borup@risoe.dk Building 110, Frederiksborgvej 399, Postbox 49, 4000

195

Competition Requirements  

Broader source: Energy.gov (indexed) [DOE]

--------------------------- Chapter 6.5 (January 2011) 1 Competition Advocate Responsibilities [Reference: FAR 6.5, FAR 7 and DEAR 906.501] Overview This section discusses the competition advocate requirements and provides a Federal Procurement Data System-New Generation (FPDS-NG) coding assistance sheet and screen shots for the FPDS-NG Competition Report. Background FAR Part 6.5, -Competition Advocates,‖ implements section 20 of the Office of Federal Procurement Policy Act, which requires the head of each executive agency to designate an Agency Competition Advocate and Procuring Activity Advocates (hereafter referred to as Activity Competition Advocates). In accordance with DEAR 906.501, the Secretary of

196

50-year-old assumptions about strength muscled aside | Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C. David Williams with an X-ray diffraction apparatus used to measure lattice spacing of filaments in moth wing muscle samples. To view a larger version of the image, click on it. Credit: A. Kidder/University of Washington. C. David Williams with an X-ray diffraction apparatus used to measure lattice spacing of filaments in moth wing muscle samples. To view a larger version of the image, click on it. Credit: A. Kidder/University of Washington. C. David Williams with an X-ray diffraction apparatus used to measure lattice spacing of filaments in moth wing muscle samples. To view a larger version of the image, click on it. Credit: A. Kidder/University of Washington. To view a larger, downloadable version of the image, click on it. To view a larger, downloadable version of the image, click on it. 50-year-old assumptions about strength muscled aside July 11, 2013 Tweet EmailPrint LEMONT, Ill. - Doctors have a new way of thinking about how to treat heart and skeletal muscle diseases. Body builders have a new way of

197

Special relativity as the limit of an Aristotelian universal friction theory under Reye's assumption  

E-Print Network [OSTI]

This work explores a classical mechanical theory under two further assumptions: (a) there is a universal dry friction force (Aristotelian mechanics), and (b) the variation of the mass of a body due to wear is proportional to the work done by the friction force on the body (Reye's hypothesis). It is shown that mass depends on velocity as in Special Relativity, and that the velocity is constant for a particular characteristic value. In the limit of vanishing friction the theory satisfies a relativity principle as bodies do not decelerate and, therefore, the absolute frame becomes unobservable. However, the limit theory is not Newtonian mechanics, with its Galilei group symmetry, but rather Special Relativity. This result suggests to regard Special Relativity as the limit of a theory presenting universal friction and exchange of mass-energy with a reservoir (vacuum). Thus, quite surprisingly, Special Relativity follows from the absolute space (ether) concept and could have been discovered following studies of Aristotelian mechanics and friction. We end the work confronting the full theory with observations. It predicts the Hubble law through tired light, and hence it is incompatible with supernova light curves unless both mechanisms of tired light (locally) and universe expansion (non-locally) are at work. It also nicely accounts for some challenging numerical coincidences involving phenomena under low acceleration.

E. Minguzzi

2014-11-28T23:59:59.000Z

198

Competition Requirements  

Broader source: Energy.gov (indexed) [DOE]

- Chapter 5.2 (April 2008) - Chapter 5.2 (April 2008) Synopsizing Proposed Non-Competitive Contract Actions Citing the Authority of FAR 6.302-1 [Reference: FAR 5 and DEAR 905] Overview This section discusses publicizing sole source actions as part of the approval of a Justification for Other than Full and Open Competition (JOFOC) using the authority of FAR 6.302-1. Background The Competition in Contracting Act (CICA) of 1984 requires that all acquisitions be made using full and open competition. Seven exceptions to using full and open competition are specifically identified in FAR Part 6. One exception permits contracting without full and open competition when the required supplies or services are available from only one responsible source (FAR 6.302-1). This exception is

199

Sensitivity of economic performance of the nuclear fuel cycle to simulation modeling assumptions  

E-Print Network [OSTI]

Comparing different nuclear fuel cycles and assessing their implications require a fuel cycle simulation model as complete and realistic as possible. In this thesis, methodological implications of modeling choices are ...

Bonnet, Nicéphore

2007-01-01T23:59:59.000Z

200

Dimension Reduction and Covariance Structure for Multivariate Data, Beyond Gaussian Assumption  

E-Print Network [OSTI]

is de ned as f(yijj ) = 8 >: y ij 1 , 6= 0; log(yij) , = 0: (2.6) Since the transformation parameter = is one dimensional, the 3rd step of the PSVD procedure becomes a simple optimization problem for a univariate concave function... on the criterion de ned in subsection 2.2.2. On the other hand, the second component is required by 1; 044 nonspiked-in genes without the transformation, but only by 38 with the transformation. We focus on the 6 spiked-in genes that require the two dimensional...

Maadooliat, Mehdi

2012-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DSM of Newton type for solving operator equations F(u) = f with minimal smoothness assumptions on F  

Science Journals Connector (OSTI)

This paper is a review of the authors' results on the Dynamical Systems Method (DSM) for solving operator equation (*) F(u) = f. It is assumed that (*) is solvable. The novel feature of the results is the minimal assumption on the smoothness of F. It is assumed that F is continuously Frechet differentiable, but no smoothness assumptions on F?(u) are imposed. The DSM for solving equation (*) is developed. Under weak assumptions global existence of the solution u(t) is proved, the existence of u(?) is established, and the relation F(u(?)) = f is obtained. The DSM is developed for a stable solution of equation (*) when noisy data f? are given, ''f ? f?'' ? ?.

N.S. Hoang; A.G. Ramm

2010-01-01T23:59:59.000Z

202

Older People With Dementia Cared for Mostly at Home Study challenges assumption that most patients die in nursing homes  

E-Print Network [OSTI]

Older People With Dementia Cared for Mostly at Home Study challenges assumption that most patients die in nursing homes -- Robert Preidt FRIDAY, May 11 (HealthDay News) -- Many elderly people with dementia live and die at home rather than in nursing homes, a new study has found. The findings challenge

Belogay, Eugene A.

203

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

LBL-34045 UC-1600 Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting-uses include Heating, Ventilation and Air Conditioning (HVAC). Our analysis uses the modeling framework provided by the HVAC module in the Residential End-Use Energy Planning System (REEPS), which was developed

204

Requirements Reflection: Requirements as Runtime Entities  

E-Print Network [OSTI]

. ICSE '10, May 2-8 2010, Cape Town, South Africa Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10 energy costs. Further, it has the domain assumption energy is cheapest at night. To satisfy the avoid activity is detected. Night operation satisfies the minimize energy costs goal. Thus all the goals

Finkelstein, Anthony

205

Sample variance in photometric redshift calibration: cosmological biases and survey requirements  

Science Journals Connector (OSTI)

......measurements from the Dark Energy Survey could obtain 1sigma...galaxies. Upcoming surveys such as the Dark Energy Survey1 (DES...stringent requirements on dark energy parameter biases, or implements different survey assumptions? The......

Carlos E. Cunha; Dragan Huterer; Michael T. Busha; Risa H. Wechsler

2012-06-11T23:59:59.000Z

206

Int. J. Spray and Comb. Dynamics -Accepted for publication 1 About the zero Mach number assumption in  

E-Print Network [OSTI]

as much as the the flame forcing ('Rayleigh') term. Besides, the net effect of the non zero Mach numberInt. J. Spray and Comb. Dynamics - Accepted for publication 1 About the zero Mach number assumption in the calculation of thermoacoustic instabilities By F. N I C O U D1 AND K. W I E C Z O R E K1,2 1 University

Paris-Sud XI, UniversitĂŠ de

207

Assessment of Gasification-Based Biorefining at Kraft Pulp and Paper Mills in the United States, Part A: Background and Assumptions  

SciTech Connect (OSTI)

Commercialization of black liquor and biomass gasification technologies is anticipated in the 2010-2015 time frame, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are already commercially established in the gas-to-liquids or coal-to-liquids industries. This set of two papers describes key results from a major assessment of the prospective energy, environmental, and financial performance of commercial gasification-based biorefineries integrated with kraft pulp and paper mills [1]. Seven detailed biorefinery designs were developed for a reference mill in the southeastern United States, together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which could be refined to vehicle fuels at an existing petroleum refinery), dimethyl ether (a diesel engine fuel or propane substitute), or an ethanol-rich mixed-alcohol product. This paper describes the key assumptions that underlie the biorefinery designs. Part B will present analytical results.

Larson, E. D.; Consonni, S.; Katofsky, R. E.; Iisa, K.; Frederick, W. J., Jr.

2008-11-01T23:59:59.000Z

208

Transportation radiological risk assessment for the programmatic environmental impact statement: An overview of methodologies, assumptions, and input parameters  

SciTech Connect (OSTI)

The U.S. Department of Energy is considering a broad range of alternatives for the future configuration of radioactive waste management at its network of facilities. Because the transportation of radioactive waste is an integral component of the management alternatives being considered, the estimated human health risks associated with both routine and accident transportation conditions must be assessed to allow a complete appraisal of the alternatives. This paper provides an overview of the technical approach being used to assess the radiological risks from the transportation of radioactive wastes. The approach presented employs the RADTRAN 4 computer code to estimate the collective population risk during routine and accident transportation conditions. Supplemental analyses are conducted using the RISKIND computer code to address areas of specific concern to individuals or population subgroups. RISKIND is used for estimating routine doses to maximally exposed individuals and for assessing the consequences of the most severe credible transportation accidents. The transportation risk assessment is designed to ensure -- through uniform and judicious selection of models, data, and assumptions -- that relative comparisons of risk among the various alternatives are meaningful. This is accomplished by uniformly applying common input parameters and assumptions to each waste type for all alternatives. The approach presented can be applied to all radioactive waste types and provides a consistent and comprehensive evaluation of transportation-related risk.

Monette, F.; Biwer, B.; LePoire, D.; Chen, S.Y.

1994-02-01T23:59:59.000Z

209

Feed tank transfer requirements  

SciTech Connect (OSTI)

This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

Freeman-Pollard, J.R.

1998-09-16T23:59:59.000Z

210

Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions  

SciTech Connect (OSTI)

The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

2013-04-01T23:59:59.000Z

211

Feed tank transfer requirements  

SciTech Connect (OSTI)

This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

Freeman-Pollard, J.R.

1998-09-16T23:59:59.000Z

212

User Requirements Gathered for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshops to derive and document each DOE SC Office's HPC requirements for NERSC in 2013-14" * Deliverables: Reports that includes both the HPC requirements and supporting...

213

BES Science Network Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Basic Energy Sciences Network Requirements Workshop Conducted June 4-5, 2007 BES Science Network Requirements Workshop Basic Energy Sciences Program Office, DOE Office of...

214

Regulators, Requirements, Statutes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Statutes Regulators, Requirements, Statutes The Laboratory must comply with environmental laws and regulations that apply to Laboratory operations. Contact Environmental...

215

PIT Coating Requirements Analysis  

SciTech Connect (OSTI)

This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

MINTEER, D.J.

2000-10-20T23:59:59.000Z

216

Transportation System Requirements Document  

SciTech Connect (OSTI)

This Transportation System Requirements Document (Trans-SRD) describes the functions to be performed by and the technical requirements for the Transportation System to transport spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from Purchaser and Producer sites to a Civilian Radioactive Waste Management System (CRWMS) site, and between CRWMS sites. The purpose of this document is to define the system-level requirements for Transportation consistent with the CRWMS Requirement Document (CRD). These requirements include design and operations requirements to the extent they impact on the development of the physical segments of Transportation. The document also presents an overall description of Transportation, its functions, its segments, and the requirements allocated to the segments and the system-level interfaces with Transportation. The interface identification and description are published in the CRWMS Interface Specification.

Not Available

1993-09-01T23:59:59.000Z

217

Mandatory Supervisory Training Requirements  

Broader source: Energy.gov (indexed) [DOE]

Mandatory Supervisory Training Requirements Mandatory Supervisory Training Requirements All DOE supervisors, managers, and executives will comply with mandatory supervisory training requirements (5 CFR 412; 5 CFR 315.801; 5 CFR 315.901; DOE O 360.1; and DOE O 320.1): * New supervisors: 80 hours of supervisory training, with 40 hours required to be completed during the supervisory probationary period. * Experienced supervisors: minimum of 8 hours of supervisory training each year. The Office of Learning and Workforce Development has developed an inventory of training and developmental activities that will meet the supervisory training requirements. The DOE courses Supervisory Essentials (32 hours) and Navigating the Federal Hiring Process (8 hours) are required to fulfill the first year 40-hour training

218

Microsoft Word - AMI System Security Requirements - v1_01-1.doc  

Broader source: Energy.gov (indexed) [DOE]

UCAIUG: AMI-SEC-ASAP UCAIUG: AMI-SEC-ASAP AMI System Security Requirements V1.01 ASAP 12/17/2008 AMI System Security Specification v1.0 Page i Executive Summary 1 This document provides the utility industry and vendors with a set of security requirements for 2 Advanced Metering Infrastructure (AMI). These requirements are intended to be used in the 3 procurement process, and represent a superset of requirements gathered from current cross- 4 industry accepted security standards and best practice guidance documents. 5 6 This document provides substantial supporting information for the use of these requirements 7 including scope, context, constraints, objectives, user characteristics, assumptions, and 8

219

ASCR Science Network Requirements  

E-Print Network [OSTI]

ASCR Science Network Requirements Office of AdvancedScientific Computing Research, DOE Office of ScienceEnergy Sciences Network Gaithersburg, MD — April 15 and 16,

Dart, Eli

2010-01-01T23:59:59.000Z

220

Transuranic Waste Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

1999-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Science Requirements Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Presentations Galleries ESnet Awards and Honors ESnet Live Blog Home Science Engagement Science Requirements Reviews Science Engagement Move your data Programs...

222

General Responsibilities and Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The material presented in this guide provides suggestions and acceptable ways of implementing DOE M 435.1-1 and should not be viewed as additional or mandatory requirements. The objective of the guide is to ensure that responsible individuals understand what is necessary and acceptable for implementing the requirements of DOE M 435.1-1.

1999-07-09T23:59:59.000Z

223

ADVERTISING MAJOR REQUIREMENTS CHECKLIST  

E-Print Network [OSTI]

ADVERTISING MAJOR REQUIREMENTS CHECKLIST Name: ID#: Expected Graduation Date: Course Number and Title Waiver/Substitution Semester Units FOUNDATION (16 units required) ADVT 341 Advertising Principles & Practice (4) PLUS COMS 202 Rhetoric and the Public Sphere (4) OR RHET 216 Writing for Advertising (4) PLUS

Galles, David

224

NISTIR 7933 Requirements and  

E-Print Network [OSTI]

NISTIR 7933 Requirements and Conformance Test Assertions for ANSI/NIST-ITL 1-2011 Record Type 18 #12;ii NISTIR 7933 Requirements and Conformance Test Assertions for ANSI/NIST-ITL 1-2011 Record Type/CTS designed to test implementations of ANSI/NIST-ITL 1- 2011 (AN-2011) "Data Format for the Interchange

225

Integrated Management Requirements mapping  

SciTech Connect (OSTI)

This document contains five appendices documenting how Sandia implemented the DOE Conduct of Operations (5480.19) and DOE Quality Assurance (5700.6C) orders. It provides a mapping of the Sandia integrated requirements to the specific requirements of each Order and a mapping to Sandia`s approved program for implementing the Conduct of Operations Order.

Holmes, J.T.; Andrews, N.S.

1992-06-01T23:59:59.000Z

226

Integrated Management Requirements mapping  

SciTech Connect (OSTI)

This document contains five appendices documenting how Sandia implemented the DOE Conduct of Operations (5480.19) and DOE Quality Assurance (5700.6C) orders. It provides a mapping of the Sandia integrated requirements to the specific requirements of each Order and a mapping to Sandia's approved program for implementing the Conduct of Operations Order.

Holmes, J.T.; Andrews, N.S.

1992-06-01T23:59:59.000Z

227

High School if required  

E-Print Network [OSTI]

Chemistry II CHEM AP 4-5 Lab required @ UNLV; contact Chemistry PHYS 182 & 182L Engineering Physics III PHYS General Chemistry I CHEM AP 3 Lab required @ UNLV; contact Chemistry CHEM 241 Organic Chemistry I & CHEM 347 Lab Techniques of Organic Chem I CHEM 242 Organic Chemistry II & CHEM 348 Lab Techniques

Walker, Lawrence R.

228

Full SPP Partnership Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership Requirements: Partnership Requirements: ENERGY STAR Partnership for Commercial & Industrial Service and Product Providers (SPP) Eligible Organizations Companies providing energy efficiency services and products to commercial buildings and industrial manufacturing facilities/plants are eligible for the Service and Product Provider (SPP) partnership, but must meet certain requirements as specified below. Types of eligible companies include: architecture, distributor, energy consultant/energy management services, energy improvement contractor, energy information services, energy services company (ESCO), engineering, equipment manufacturer, financial services, on-site energy production services, unregulated energy retailer and marketer, or other supplier of standard energy-efficient products and/or services for commercial buildings and/or

229

Technical Safety Requirements  

Broader source: Energy.gov (indexed) [DOE]

Safety Requirements Safety Requirements FUNCTIONAL AREA GOAL: Contractor has developed, maintained, and received DOE Field Office Approval for the necessary operating conditions of a facility. The facility has also maintained an inventory of safety class and safety significant systems and components. REQUIREMENTS:  10 CFR 830.205, Nuclear Safety Rule.  DOE-STD-3009-2002, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses.  DOE-STD-1186-2004, Specific Administrative Controls. Guidance:  DOE G 423.1-1, Implementation Guide for Use in Developing Technical Safety Requirements.  NSTP 2003-1, Use of Administrative Controls for Specific Safety Functions. Performance Objective 1: Contractor Program Documentation

230

Promulgating Nuclear Safety Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

1996-05-15T23:59:59.000Z

231

Requirements for security signalling  

SciTech Connect (OSTI)

There has been some interest lately in the need for ``authenticated signalling``, and the development of signalling specifications by the ATM Forum that support this need. The purpose of this contribution is to show that if authenticated signalling is required, then supporting signalling facilities for directory services (i.e. key management) are also required. Furthermore, this contribution identifies other security related mechanisms that may also benefit from ATM-level signalling accommodations. For each of these mechanisms outlined here, an overview of the signalling issues and a rough cut at the required fields for supporting Information Elements are provided. Finally, since each of these security mechanisms are specified by a number of different standards, issues pertaining to the selection of a particular security mechanism at connection setup time (i.e. specification of a required ``Security Quality of Service``) are also discussed.

Pierson, L.G.; Tarman, T.D.

1995-02-05T23:59:59.000Z

232

Timeline for Net Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

17.5 7302010 Yes Biennially x By July 31 of each Forecast Year, BPA publishes all Load Following customers' Net Requirements data for the two years of the upcoming Rate...

233

Transportation Infrastructure Requirement Resources  

Broader source: Energy.gov [DOE]

Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992, though they are also entitled to choose a petroleum...

234

BES Science Network Requirements  

E-Print Network [OSTI]

the Directors of the Office of Science, Office of AdvancedOffice of Basic Energy Sciences. This is LBNL report LBNL-BES Science Network Requirements Report of the Basic Energy

Dart, Eli

2011-01-01T23:59:59.000Z

235

Goals and Requirements  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) is committed to meeting the goals of Executive Order (E.O.) 13514, E.O. 13423, and related statutory requirements through the Strategic Sustainability Performance Plan (SSPP).

236

7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily.  

E-Print Network [OSTI]

7-47 7-117 The claim of a heat pump designer regarding the COP of the heat pump is to be evaluated. Assumptions The heat pump operates steadily. HP Wnet,in QH QL TL TH Analysis The maximum heat pump coefficient of performance would occur if the heat pump were completely reversible, 5.7 K026K300 K300 COP maxHP, LH H TT

Bahrami, Majid

237

Review of technical justification of assumptions and methods used by the Environmental Protection Agency for estimating risks avoided by implementing MCLs for radionuclides  

SciTech Connect (OSTI)

The Environmental Protection Agency (EPA) has proposed regulations for allowable levels of radioactive material in drinking water (40 CFR Part 141, 56 FR 33050, July 18, 1991). This review examined the assumptions and methods used by EPA in calculating risks that would be avoided by implementing the proposed Maximum Contaminant Levels for uranium, radium, and radon. Proposed limits on gross alpha and beta-gamma emitters were not included in this review.

Morris, S.C.; Rowe, M.D.; Holtzman, S.; Meinhold, A.F.

1992-11-01T23:59:59.000Z

238

VFP: Program Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Requirements Program Requirements Home Welcome Researcher! Preparing for Your Visit Your Arrival Your First Day Weekly Activities Program Requirements Checkout FAQ The DOE WDTS site has comprehensive information on Participant Obligations. Consult that site for more information on all deliverables except the Fermilab Summer Interns website. Attendance: Complete the full ten-week program and attend all scheduled events including lectures, tours and group activities. Entrance Survey: Complete the entrance survey within your first week at Fermilab. One-page Peer Review Provide a one-page written peer review of another SULI intern' talk or poster. Abstract for General Audience Complete and submit an abstract summarizing your research experience. Oral or Poster Presentation: Deliver an oral or poster presentation to mentors and peers the final week

239

BER Science Network Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Network Network Requirements Report of the Biological and Environmental Research Network Requirements Workshop Conducted July 26 and 27, 2007 BER Science Network Requirements Workshop Biological and Environmental Research Program Office, DOE Office of Science Energy Sciences Network Bethesda, MD - July 26 and 27, 2007 ESnet is funded by the US Dept. of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) program. Dan Hitchcock is the ESnet Program Manager. ESnet is operated by Lawrence Berkeley National Laboratory, which is operated by the University of California for the US Department of Energy under contract DE-AC02-05CH11231. This work was supported by the Directors of the Office of Science, Office of Advanced Scientific Computing Research, Facilities Division, and the Office of Biological &

240

SULI: Program Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Requirements Program Requirements Home Welcome Intern! Preparing for Your Internship Your Arrival Your First Day Weekly Activities Program Requirements Checkout FAQ The DOE WDTS site has comprehensive information on Participant Obligations. Consult that site for more information on all deliverables except the Fermilab Summer Interns website. Attendance: Complete the full ten-week program and attend all scheduled events including lectures, tours and group activities. Entrance Survey: First create an account by following the link, educationLink New Account Setup. After creating the account, you can login to the educationLink site. Complete the entrance survey posted on your EduLink site within your first week at Fermilab. One-page Peer Review Provide a one-page written peer review of another SULI intern' talk or

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Federal Metering Requirements  

Broader source: Energy.gov (indexed) [DOE]

Metering Requirements Metering Requirements FUPWG - May 23, 2013 Brad Gustafson Federal Energy Management Program 2 42 USC 8253 - ENERGY MANAGEMENT REQUIREMENT (e) Metering By October 1, 2012, in accordance with guidelines established by the Secretary under paragraph (2), all Federal buildings shall, for the purposes of efficient use of energy and reduction in the cost of electricity used in such buildings, be metered. Each agency shall use, to the maximum extent practicable, advanced meters or advanced metering devices that provide data at least daily and that measure at least hourly consumption of electricity in the Federal buildings of the agency. Not later than October 1, 2016, each agency shall provide for equivalent metering of natural gas and steam, in accordance with guidelines established by the Secretary

242

Regulators, Requirements, Statutes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regulators, Requirements, Statutes Regulators, Requirements, Statutes Regulators, Requirements, Statutes The Laboratory must comply with environmental laws and regulations that apply to Laboratory operations. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Environmental laws and regulations LANL complies with more than 30 state and federal regulations and policies designed to protect human health and the environment. Regulators Regulators Environmental Protection Agency (EPA) EPA Homepage EPA - Region VI U.S. Department of Energy (DOE) DOE Homepage DOE Environmental Policy DOE Citizen's Advisory Board U.S. Fish and Wildlife Service (FWS) Southwest Region 2 New Mexico Environment Department (NMED) NMED Homepage NMED DOE Oversight Office

243

Federal Metering Requirements  

Broader source: Energy.gov [DOE]

Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the 42 USC 8253 Energy Management Requirement; Executive Order 13514(g) High-Performance Sustainable Federal Buildings; federal metering needs, history, and status; and utility/agency opportunities.

244

Minor in Philosophy Requirements  

E-Print Network [OSTI]

2012-05-23 Minor in Philosophy Requirements: 1. 18 hours of work in philosophy with grades of C- or better. 2. A 2.0 grade point average for all work attempted in philosophy. 3. 9 hours of upper division work in philosophy, with grades of C- or better. 4. Completion of at least one course, with a grade

Stowell, Michael

245

Requirements Definition Stage  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter addresses development of a Software Configuration Management Plan to track and control work products, analysis of the system owner/users' business processes and needs, translation of those processes and needs into formal requirements, and planning the testing activities to validate the performance of the software product.

1997-05-21T23:59:59.000Z

246

Documents Notes Requirements  

E-Print Network [OSTI]

Documents Notes Common Requirements Application Form(typed) with 3 photos attached(3.5 x 4.5cm(including National Intelligence & Security Track), International Trade, International Finance, Korea and East Asia for Application : November 13(Tue), 2012 ¡ Announcement of Documents Screening Results : 2 pm on November 21(Wed

Jang, Ju-Wook

247

Heat Requirements of Buildings  

Science Journals Connector (OSTI)

... and Ventilating Engineers in a publication entitled “Recommendations for the Computation of Heat Requirements for Buildings” (Pp. iii+41. Is. 9d.) This comprises a section of the ... parts. That on temperature-rise and rates of change gives the recommended values applicable to buildings ranging alphabetically from aircraft sheds to warehouses. The design of heating and ventilating installations ...

1942-02-28T23:59:59.000Z

248

NERSC Requirements Workshop November  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Requirements Requirements Workshop November 2009 Lattice gauge theory and some other HE theory Doug Toussaint (University of Arizona) Help from: Paul Mackenzie (Fermilab) Crude comparison of lattice hadron spec- trum to the real world. Lattice Gauge Theory First-principles computations in QCD Also, computations in other strongly coupled field theories * Find hadronic factors to get fundamental physics from experi- ments * Understand structure and interactions of hadrons, maybe even nuclei * Understand QCD: confinement and chiral symmetry breaking * Other strongly interacting theories (what if we don't find the Higgs?) * Quark-gluon matter at high temeratures (RHIC, LHC, early uni- verse) or high densities (neutron stars) HEP theory projects at NERSC now: * Production and analysis of QCD configurations with dynamical quarks, (Doug Toussaint) (MILC collaboration) * Heavy quarks, using

249

LEGACY MANAGEMENT REQUIRES INFORMATION  

SciTech Connect (OSTI)

''Legacy Management Requires Information'' describes the goal(s) of the US Department of Energy's Office of Legacy Management (LM) relative to maintaining critical records and the way those goals are being addressed at Hanford. The paper discusses the current practices for document control, as well as the use of modern databases for both storing and accessing the data to support cleanup decisions. In addition to the information goals of LM, the Hanford Federal Facility Agreement and Consent Order, known as the ''Tri-Party Agreement'' (TPA) is one of the main drivers in documentation and data management. The TPA, which specifies discrete milestones for cleaning up the Hanford Site, is a legally binding agreement among the US Department of Energy (DOE), the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The TPA requires that DOE provide the lead regulatory agency with the results of analytical laboratory and non-laboratory tests/readings to help guide them in making decisions. The Agreement also calls for each signatory to preserve--for at least ten years after the Agreement has ended--all of the records in its or its contractors, possession related to sampling, analysis, investigations, and monitoring conducted. The tools used at Hanford to meet TPA requirements are also the tools that can satisfy the needs of LM.

CONNELL, C.W.; HILDEBRAND, R.D.

2006-12-14T23:59:59.000Z

250

BER Science Network Requirements  

SciTech Connect (OSTI)

The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2010 ESnet and the Office of Biological and Environmental Research, of the DOE Office of Science, organized a workshop to characterize the networking requirements of the science programs funded by BER. The requirements identified at the workshop are summarized and described in more detail in the case studies and the Findings section. A number of common themes emerged from the case studies and workshop discussions. One is that BER science, like many other disciplines, is becoming more and more distributed and collaborative in nature. Another common theme is that data set sizes are exploding. Climate Science in particular is on the verge of needing to manage exabytes of data, and Genomics is on the verge of a huge paradigm shift in the number of sites with sequencers and the amount of sequencer data being generated.

Dart, Eli; Tierney, Brian

2010-11-01T23:59:59.000Z

251

D:\assumptions_2001\assumptions2002\currentassump\demand.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Petroleum Market Module. . . . . . . . . . . . .

252

The harmonization of Canadian and U.S. window programs and standards. Impact on U-factor and SHGC of differences in simulation styles and assumptions  

SciTech Connect (OSTI)

The thermal performance of a window is currently characterized by the window`s thermal transmittance (U-factor) and its solar heat gain coefficient. The National Fenestration Rating Council (NFRC) has established a system for rating the thermal performance of windows. the U-factor is determined through computer simulation and validated with physical tests. The solar heat gain coefficient is determined for homogeneous products through computer simulation. Test methods exist for measuring solar heat gain through more complex products, although there is currently no standard. Under the NFRC`s rating program, a window must be simulated using the Window 4.1 and Frame 3.1 computer programs. There is some debate as to how accurately these computer programs simulate actual windows. This report addresses the differences in simulation styles and assumptions and what impact these differences have on the U-factor and solar heat gain coefficient. Section 2.0 covers center-of-glass modeling, section 3.0 covers spacer modeling, section 4.0 covers frame modeling, and section 5.0 concludes by weight the relative importance of the assumptions discussed. The focus of this research is on U-factor. For a more detailed study of solar heat gain coefficients refer to Wright (1995). This report also addresses the efficacy of various techniques, such as increasing glazing gap width or applying low-emittance coatings to interior glazing surfaces, at reducing total window U-factors.

NONE

1995-05-31T23:59:59.000Z

253

Part B - Requirements & Funding Information PART B - Requirements...  

Office of Environmental Management (EM)

b. Part B 1 Part B - Requirements & Funding Information PART B - Requirements and Funding Information Gray highlights are instructions. Remove the instructions from the interagency...

254

Preliminary Assumptions for Wind Technologies  

E-Print Network [OSTI]

of operation Investment Tax Credit (ITC) alternative 30% towards developer's income tax for qualifying solar" prior to 12/31/16 Post-2016, credit drops to 10% - solar PV, geothermal 6 #12;Status of Regional RPS utilities Wind development in the PNW has slowed down significantly compared to the past decade Little new

255

World nuclear fuel cycle requirements 1990  

SciTech Connect (OSTI)

This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management.

Not Available

1990-10-26T23:59:59.000Z

256

BIOMEDICAL ENGINEERING BSE PLAN REQUIREMENTS Campus: UMICH RG = Requirement Group  

E-Print Network [OSTI]

BIOMEDICAL ENGINEERING BSE PLAN REQUIREMENTS Campus: UMICH RG = Requirement Group Career: UENG RQ = Requirement Program: LN = Line Plan: 0880BSE Sub-Plan: RG 6856 BIOMEDICAL ENGINEERING MAJOR REQUIREMENTS Effective FA05/1560 (09/06/2005) RQ 4996 Program Subjects Effective FA05/1560 (09/06/2005) LN 0010 BIOMEDE

Shyy, Wei

257

Quantified maintainability requirements  

E-Print Network [OSTI]

c'. 1UIE f. r failures. A ti: ~ for reoair is a'Iso . . :-. . rat. ' Us i!!g a ran::", m number generator a;!d tne duns i tv fuiiction for repa Tile;Eiato raLa Of aVailai'ilitleS ES ii. "U olott"d ~'vine th. o nsit, : f'one+ion fnr C, ol avai Iaui...QU/'ZITI F IF!3 !r A I!'! TA I I'!AD I L I TY;E OUI PE"! EI! TS A Thesis by Ponald Scott Vorri s Submitted to th= Fraduate ColleOo of th Texas AA!! UniyersitJ in partial fulfillment of the requirements for the de, ro of' !1ASTEP. OF SCIE...

Morris, Ronald Scott

2012-06-07T23:59:59.000Z

258

Repository seals requirement study  

SciTech Connect (OSTI)

The Yucca Mountain Site Characterization Project, managed by the Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) is conducting investigations to support the Viability Assessment and the License Application for a high-level nuclear waste repository at Yucca Mountain, Nevada. The sealing subsystem is part of the Yucca Mountain Waste Isolation System. The Yucca Mountain Site Characterization Project is currently evaluating the role of the sealing subsystem (shaft, ramp and exploratory borehole seals) in achieving the overall performance objectives for the Waste Isolation System. This report documents the results of those evaluations. The objective of the study is to provide water or air flow performance based requirements for shafts, ramps, and exploratory boreholes located near the repository. Recommendations, as appropriate, are provided for developing plans, seals component testing, and other studies relating to sealing.

NONE

1997-11-03T23:59:59.000Z

259

Equipment Operational Requirements  

SciTech Connect (OSTI)

The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

2009-06-11T23:59:59.000Z

260

The Effects of Anchor Length, Test Difficulty, Population Ability Differences, Mixture of Populations and Sample Size on the Psychometric Properties of Levine Observed Score Linear Equating Method for Different Assumptions  

E-Print Network [OSTI]

+ b?A, and ?Y = c + d?A. i.e. the true scores of X and A and Y and A are linearly related. This is the congenericity assumption. However, the two sets differ on the third assumption that they make. For the first set, the third assumption is L3... is equity, which states that it must be a matter of indifference to the test taker whether he or she takes X or Y. Although equatability is a prerequisite for equity, it does not imply equity because two tests that measure the same construct can differ...

Carvajal, Jorge E.

2011-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel  

SciTech Connect (OSTI)

A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

2006-02-01T23:59:59.000Z

262

Software and House Requirements Engineering  

E-Print Network [OSTI]

a requirements engineer who puts her knowledge of software construction together with her creativity to come upSoftware and House Requirements Engineering: Lessons Learned in Combatting Requirements Creep creativity to try to come up with a plan for a house that will meet the customer's requirements. The customer

Berry, Daniel M.

263

Match Pumps to System Requirements  

SciTech Connect (OSTI)

BestPractices Program tip sheet discussing pumping system efficiency matching pumps to system requirements

Not Available

2005-10-01T23:59:59.000Z

264

Requirements-driven software evolution  

Science Journals Connector (OSTI)

It is often the case that stakeholders want to strengthen/weaken or otherwise change their requirements for a system-to-be when certain conditions apply at runtime. For example, stakeholders may decide that if requirement R is violated more ... Keywords: Adaptive systems, Evolution, Modeling, Requirements, Requirements engineering

Vítor E. Souza; Alexei Lapouchnian; Konstantinos Angelopoulos; John Mylopoulos

2013-11-01T23:59:59.000Z

265

Engineered Barrier System performance requirements systems study report. Revision 02  

SciTech Connect (OSTI)

This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS include the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken.

Balady, M.A.

1997-01-14T23:59:59.000Z

266

Paper Number Whole Lifecycle Electrical Design Analysis in Foresight  

E-Print Network [OSTI]

and Effects Analysis (FMEA) or Sneak Circuit Analysis (SCA) is typically carried out once in the lifecycle techniques have been developed. FMEA. Failure mode and effects analysis considers the effect on an overall

Snooke, Neal

267

Energy ForesightNordic H2 Building the Nordic Research  

E-Print Network [OSTI]

International Co-Operation 29 References 32 Abbreviations APU Auxiliary Power Unit CHP Combined Heat and Power FC Fuel Cell IEA International Energy Agency ICE Internal Combustion Engine IPHE International-period developments (`hydrocarbon security-of-supply problems', `undisputable CO2 problems', `a smooth path

268

Journal of Peasant Studies 37(4), 2010, forthcoming [version that was sent to the journal for production] Franco et al_EU biofuels_JPS_prodn-corr, 21/07/2010 Assumptions in the European Union biofuels policy:  

E-Print Network [OSTI]

The biofuel project is an agro-industrial development and politically contested policy process where governments increasingly become global actors. European Union (EU) biofuels policy rests upon arguments about societal benefits of three main kinds – namely, environmental protection (especially greenhouse gas savings), energy security and rural development, especially in the global South. Each argument involves optimistic assumptions about what the putative benefits mean and how they can be fulfilled. After examining those assumptions, we

unknown authors

269

SG Network System Requirements Specification  

Broader source: Energy.gov (indexed) [DOE]

SG Network System Requirements Specification SG Network System Requirements Specification Interim Release 3 5/17/2010 - 2 - Table of Contents Document History ....................................................................................................................................... - 3 - Revision History .......................................................................................................................................... - 3 - Preface........................................................................................................................................................ - 4 - Authors........................................................................................................................................................ - 6 -

270

4.5 Audit Requirements  

Broader source: Energy.gov (indexed) [DOE]

Audit Requirements Audit Requirements Audit requirements are now contained in 2 separate sub-sections. Subsection 4.5.1 contains the audit requirements for States, Local Governments and Non-Profit Organizations while subsection 4.5.2 contains the audit requirements for For-Profit Organizations. 4.5.1 Audit Requirements for States, Local Governments and Non-Profit Organizations (a) General. All States, Local Governments and Non-Profit Organizations that expend over $500,000 in Federal funds in any year are required to have a single audit conducted in accordance with OMB Circular A-133. This requirement flows down to subrecipients that meet the dollar threshold. An independent auditor shall perform the audit in accordance with the Government Auditing Standards and must: 1) audit and provide opinions on the fair presentation of the

271

Energy requirements for nuclear transformations  

Science Journals Connector (OSTI)

Energy requirements for nuclear transformations ... There are several conservation requirements that must be met in nuclear reactions, including the conservation of energy (E = mc2), charge, angular and linear momentum. ... Nuclear / Radiochemistry ...

Benjamin Carrol; Peter F. E. Marapodi

1951-01-01T23:59:59.000Z

272

Webinar: Hydrogen Storage Materials Requirements  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

273

Randomness Requirement on CHSH Bell Test in the Multiple Run Scenario  

E-Print Network [OSTI]

The Clauser-Horne-Shimony-Holt inequality test is widely used as a mean of invalidating the local deterministic theories and a tool of device independent quantum cryptographic tasks. There exists a randomness (freewill) loophole in the test, which is widely believed impossible to be closed perfectly. That is, certain random inputs are required for the test. Following a randomness quantification method used in literature, we investigate the randomness required in the test under various assumptions. By comparing the results, one can conclude that the key to make the test result reliable is to rule out correlations between multiple runs.

Xiao Yuan; Zhu Cao; Xiongfeng Ma

2014-09-28T23:59:59.000Z

274

Evaluation of Energy Efficiency, Water Requirements and Availability, and CO  

Broader source: Energy.gov (indexed) [DOE]

05/14/2012 1 05/14/2012 1 Evaluation of Energy Efficiency, Water Requirements and Availability, and CO 2 Emissions Associated With the Production of Oil & Gas From Oil Shale in the Piceance Basin of Western Colorado, Based on Shell's In-Situ Conversion Process (ICP) F. Dexter Sutterfield, Ph.D., INTEK Inc. Peter M. Crawford and Jeffrey Stone, INTEK Inc. James C. Killen, United States Department of Energy I. Summary A detailed description of background information, the purpose of this paper, methodologies and major assumptions, and results are provided below, beginning with Section II. A summary of this information follows: The United States has been endowed with vast oil shale resources in the Green River Formation in Colorado, Utah and Wyoming, about three-fourths of which are located on public lands. Green River

275

ANSI Essential Requirements: Due process requirements for American  

E-Print Network [OSTI]

ANSI Essential Requirements: Due process requirements for American National Standards Edition: January 2010 Copyright by the American National Standards Institute (ANSI), 25 West 43rd Street, 4th Floor, New York, New York 10036. This material may be copied without permission from ANSI only

276

Fusion Energy Sciences Network Requirements  

E-Print Network [OSTI]

Division, and the Office of Fusion Energy Sciences. This isFusion Energy Sciences NetworkRequirements Office of Fusion Energy Sciences Energy

Dart, Eli

2014-01-01T23:59:59.000Z

277

Vice President, Northwest Requirements Marketing  

Broader source: Energy.gov [DOE]

The Northwest Requirements Marketing organization develops power rates, products, services, and contracts, administers long-term power contracts and other related contracts, manages third-party...

278

Degree Requirements COLLEGE OF ENGINEERING  

E-Print Network [OSTI]

or better is required in ECON 2000 (Engineering Economics), Philosophy 2244 (Engineering Ethics), and ENGLDegree Requirements COLLEGE OF ENGINEERING B.S. in Electrical Engineering Effective Date: 08) 6 Total 30 MUST SELECT ONE Computer Engineering Concentration Course Name/ # Credit Hours Course

Kulp, Mark

279

Handbook of Academic Requirements & Procedures  

E-Print Network [OSTI]

Handbook of Academic Requirements & Procedures for the Chemistry/Biotechnology Graduate Program. A detailed account of the academic requirements and procedures is provided for graduate students in chemistry; to promote consistency in procedures and standards; and to provide a basis for communication between

Kounaves, Samuel P.

280

Humidity requirements in WSCF Laboratories  

SciTech Connect (OSTI)

The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment.

Evans, R.A.

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Part B - Requirements & Funding Information PART B - Requirements...  

Energy Savers [EERE]

to support the determinations and findings (D&F) required by FAR 17.502-2 to the contracting officer. Provide this information as an attachment or coordinate with the...

282

Home: Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

content. | Skip to navigation content. | Skip to navigation Site Map Contact Us Current Documents Archived Documents Entire Site only in current section Advanced Search... U.S. Department of Energy Office of Management Directives, Delegations, and Requirements Sections Home Directives Current Directives Draft Directives Archives Delegations Current Delegations Current Designations Rescinded Organizations' Assignment of Responsibility Development & Review RevCom Writers' Tools DPC Corner References News and Updates Help Personal tools You are here: Office of Management Âť Directives, Delegations, and Requirements Info Home Directives are the Department of Energy's primary means of establishing policies, requirements, responsibilities, and procedures for Departmental elements and contractors. Directive

283

Cyber Security Issues and Requirements  

Broader source: Energy.gov (indexed) [DOE]

Program Program (SGIG) Cyber Security Issues and Requirements Jeff Dagle November 19, 2009 Communication and Information Technology will be Central to Smart Grid Deployment Final Interim Smart Grid Roadmap, prepared by the Electric Power Research Institute (EPRI) for the National Institute of Standards and Technology (NIST) Cyber Security Requirements Associated with ARRA Projects Proposals were required to include:  Discussion of how cyber security risks will be mitigated  What criteria will be used for vendor and technology selection  Relevant cyber security standards that will be followed (or industry best practices)  How emerging smart grid cyber security standards that are currently being developed will be adopted Cyber Security Objectives for Smart

284

land requirements | OpenEI  

Open Energy Info (EERE)

requirements requirements Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

285

Psychology Department Mandatory Advising Requirement  

E-Print Network [OSTI]

10/2011 Psychology Department Mandatory Advising Requirement Instructions 1) Student completes Part advisor's signature. 4) Once the form is signed, submit form to Psychology Department, EP 301 to clear

286

Meeting Federal Energy Security Requirements  

Broader source: Energy.gov [DOE]

Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the opportunity to increase the scope of federal-utility partnerships for meeting energy security requirements.

287

Materials Requirements for Offshore Structures  

Science Journals Connector (OSTI)

...effect temporary simple repairs underwater but the...for the submarine repair of offshore platforms...possibility exists that pipelines at this depth may require local repair. For such simple...connection of bolts for patch repairs etc. and...

1976-01-01T23:59:59.000Z

288

Quality Assurance Requirements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Requirements Quality Assurance Requirements The QARD provides the framework for both the achievement and verification of quality. Quality Assurance Requirements and Description...

289

Laws and Requirements | Department of Energy  

Office of Environmental Management (EM)

Laws and Requirements Laws and Requirements To help agencies comply with federal laws and requirements, the Federal Energy Management Program (FEMP) analyzes energy management...

290

Equivalence of safety requirements between CANDU and US NRC requirements  

SciTech Connect (OSTI)

The Canada deuterium uranium (CANDU) technology has been built on an original pressurized heavy-water reactor (PHWR) concept, which has several characteristics different from those of light water reactors (LWRs). However, the philosophy of defense-in-depth, based on multiple levels of safety and implemented through the provision of several physical and functional barriers against the release of radioactivity to the environment, is applied to both types of reactor. It is not surprising, therefore, that there is conceptual convergence of safety objectives between the CANDU and the LWR designs, which in turn translates into an equivalence of CANDU safety requirements with the US Nuclear Regulatory Commission (NRC) requirements established for LWRS. The demonstration of this safety requirements equivalence has been an important activity for the licensing of CANDU reactors in countries whose regulatory environment has been influenced by the NRC approach and has more recently acquired a special emphasis in the context of a preapplication review of an advanced CANDU design, the CANDU 3, for its design certification in the United States. This paper highlights results of a comparative exercise dealing with the fundamental principles of the CANDU safety philosophy and the corresponding NRC requirements.

Azeez, S.; Bonechi, M. (Sheridan Park Research Community, Mississauga, Ontario (Canada)); Rib, L. (AECL Technologies, Rockville, MD (United States))

1993-01-01T23:59:59.000Z

291

Analysis of Plug Load Capacities and Power Requirements in Commercial Buildings: Preprint  

SciTech Connect (OSTI)

Plug and process load power requirements are frequently overestimated because designers often use estimates based on 'nameplate' data, or design assumptions are high because information is not available. This generally results in oversized heating, ventilation, and air-conditioning systems; increased initial construction costs; and increased energy use caused by inefficiencies at low, part-load operation. Rightsizing of chillers in two buildings reduced whole-building energy use by 3%-4%. If an integrated design approach could enable 3% whole-building energy savings in all U.S. office buildings stock, it could save 34 TBtu of site energy per year.

Sheppy, M.; Torcellini, P.; Gentile-Polese, L.

2014-08-01T23:59:59.000Z

292

OMB Requirements | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OMB Requirements OMB Requirements OMB Requirements Acquisitions OMB Circular A-109, Acquisition of Major Systems (04-05-76) (Available in hard copy only) OMB M-04-08, Maximizing Use of SmartBuy and Avoiding Duplication of Agency Activities with with the President's 24 E-Gov Initiatives (02-25-2004) (pdf) OMB M-04-16, Software Acquisition (07-01-2004) Budget/Capital Planning OMB Circular A-11 OMB M-05-23, Improving Informational Technology (IT) Project Planning and Execution (8-04-2005) (pdf) Cyber Security & Privacy OMB M-00-07, Incorporating and Funding Security in Information Systems Investments (02-28-2000) OMB M-02-01, Guidance for Preparing and Submitting Security Plans of Action and Milestones(10-19-2001) OMB M-02-09, Reporting Instructions for the Government Information

293

New Solutions Require New Thinking  

Broader source: Energy.gov (indexed) [DOE]

Solutions Require Solutions Require New Thinking America's demand for power threatens to overburden an already congested electric system. The U.S. Department of Energy is addressing these energy challenges with innovative solutions to energy generation. Its Renewable and Distributed Systems Integration (RDSI) Program is helping to alleviate congestion, reduce greenhouse gas emissions, and improve reliability by investigating answers such as * Microgrid technologies * Distributed generation * Two-way communication systems * Demand response programs Reducing Peak Demand The RDSI program aims to reduce peak load on distribution feeders 20% by 2015. To help achieve this goal, RDSI is sponsoring demonstration projects nationwide. From California to New York, these projects are

294

Meeting Federal Energy Security Requirements  

Broader source: Energy.gov (indexed) [DOE]

Markel Markel SRA International Lawrence_Markel@sra.com Federal Utility Partnership Working Group Fall 2012 - October 16-17 Mobile, AL Sponsored by Alabama Power Theme Meeting energy security requirements in federal facilities provides opportunities for additional types of cooperation between utilities and the federal agencies. However, there are significant barriers to pursuing these opportunities - constraints on utilities and on federal agencies, as well as sometimes-competing objectives. Energy security encompasses sufficiency, surety, and sustainability.  Above all, energy security means having adequate power to conduct critical operations for the duration required (sufficiency).  Secondarily, and leading to sufficiency, is ensuring resilient energy supplies that are accessible when

295

RPAM & Energy Order Requirements  

Broader source: Energy.gov (indexed) [DOE]

430.1C, Real Property Asset Management 430.1C, Real Property Asset Management and DOE O 430.2B, Departmental Energy, Renewable Energy and Transportation Management Requirements, Overlap & Differences Office of Engineering and Construction Management September 2009 2 10/27/2009 Energy Order & RPAM Order Requirements DOE O 430.1C - RPAM DOE O 430.2B ENERGY ORDER Energy Efficiency Water Consumption Utility Metering ESPCs & USPCs Personnel - Energy Training Environmental Management System (EMS) Real Property Performance Indicators Sustainable Buildings Facilities Information Management System (FIMS) Personnel - Certified Realty Specialists Ten Year Site Plans Sustainable & Integrated Design TEAM Executable Plans High Performance Building Plan OVERLAP Real Property

296

Project X functional requirements specification  

SciTech Connect (OSTI)

Project X is a multi-megawatt proton facility being developed to support a world-leading program in Intensity Frontier physics at Fermilab. The facility is designed to support programs in elementary particle and nuclear physics, with possible applications to nuclear energy research. A Functional Requirements Specification has been developed in order to establish performance criteria for the Project X complex in support of these multiple missions, and to assure that the facility is designed with sufficient upgrade capability to provide U.S. leadership for many decades to come. This paper will briefly review the previously described Functional Requirements, and then discuss their recent evolution.

Holmes, S.D.; Henderson, S.D.; Kephart, R.; Kerby, J.; Kourbanis, I.; Lebedev, V.; Mishra, S.; Nagaitsev, S.; Solyak, N.; Tschirhart, R.; /Fermilab

2012-05-01T23:59:59.000Z

297

Stellar Astrophysics Requirements NERSC Forecast  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Requirements for Requirements for m461:Stellar Explosions in Three Dimensions Tomek Plewa (Florida State University) + 3 graduate students, Artur Gawryszczak (Warsaw), Konstantinos Kifonidis (Munich), Andrzej Odrzywolek (Cracow), Ju Zhang (FIT), Andrey Zhiglo (Kharkov) 1. m461: Stellar Explosions in Three Dimensions * Summarize your projects and expected scientific objectives through 2014 * Modeling and simulations of transient phenomena in stellar astrophysics driven by either radiation or thermonuclear processes * Numerical solution of a coupled system of PDEs and ODEs * Tame nonlinearity! * Our goal is to ... * Explain observed properties of exploding stellar objects * Present focus is ... * Neutrino-driven core-collapse supernova explosions * In the next 3 years we expect to ...

298

Network Requirements Workshop - Documents and Background Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Requirements Reviews Network Requirements Reviews Documents and Background Materials Science Engagement Move your data Programs & Workshops Science...

299

HEAT Loan Minimum Standards and Requirements  

Broader source: Energy.gov [DOE]

Presents additional resources on loan standards and requirements from Elise Avers' presentation on HEAT Loan Minimum Standards and Requirements.

300

Using SCR Requirements Marsha Chechik  

E-Print Network [OSTI]

Using SCR Requirements Marsha Chechik University of Toronto Department of Computer Science October of this project came from development and analysis of specifications. The SCR community was able to develop the following developments in this area: ffl informal description and formal semantics of SCR; ffl techniques

Chechik, Marsha

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Handbook of Academic Requirements & Procedures  

E-Print Network [OSTI]

Handbook of Academic Requirements & Procedures for the Chemistry Graduate Program PLEASE NOTE and procedures is provided. The intent is to describe the programs and explain the rationale behind them of the Department; to promote consistency in procedures and standards; and to provide a basis for communication

Kounaves, Samuel P.

302

DEGREE REQUIREMENTS BIOLOGICAL ENGINEERING TECHNOLOGY  

E-Print Network [OSTI]

DEGREE REQUIREMENTS BIOLOGICAL ENGINEERING TECHNOLOGY ENVIRONMENTAL ENGINEERING TECHNOLOGY The curriculum in the technology programs must satisfy the College of Agriculture and Life Sciences (CALS for the technology programs are listed by subject matter in three major categories: (A) Basic Subjects, (B) Advanced

Walter, M.Todd

303

Quality Assurance Requirements and Description  

Broader source: Energy.gov (indexed) [DOE]

QjCivilianRadioactive QjCivilianRadioactive Was'fe Management QA: QA QVALITY ASSURANCE REQUIREMENTS AND DESCRIPTION DOEIRW-0333P Revisiol1 20 Effective Date: 10-01-2008 LarrY Newman, DlrectQr Office of Quality As,surance ~~--~-_._._- Edward F. Spr at III, Di or Office of Civilian Radioactive Waste Management Date I/Jf/4t' , . - - - Date OCRWM Title: Quality Assurance Requirements and Description DOEIRW-0333P, Revision 20 Office of Civilian Radioactive Waste Management Quality Assurance Policy Page: 2 of 160 Successful implementation of the Office of Civilian Radioactive Waste Management (OCRWM) Quality Assurance (QA) program is essential for the OCRWM to carry out its mission. Our mission is to manage and dispose ofbigh-Ievel radioactive waste and spent nuclear fuel in a manner that protects health, safety, and the environment; enhances national and energy security; and merits

304

Nano-science Safety Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nano-science Safety Requirements Effective Date 12/6/2011 Nano-science Safety Requirements Effective Date 12/6/2011 The only official copy of this file is the one on-line. Before using a printed copy, verify that it is the most current version by checking the effective date. Page 1 of 3 Prepared By: L. Stiegler Low Risk - Embedded or Fixed Nanostructures (nanomaterials, incapable as a practical matter, of becoming airborne) Ensure that fixed nanomaterials are not subjected to actions that may generate Unbound NanoParticles (UNP). * For work outside of a HEPA filtered exhaust hood: o No Mechanical stresses e.g., (grinding, scraping, or pressing). o No thermal stresses o Cover samples when practical e.g., (slide cover, Kapton tape, Mylar tape, or cellophane tape). Samples/container must be labeled if not used immediately.

305

Present and Future Computing Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Computational Cosmology for Computational Cosmology DES LSST Presenter: Salman Habib Argonne National Laboratory Jim Ahrens (LANL) Scott Dodelson (FNAL) Katrin Heitmann (ANL) Peter Nugent (LBNL) Anze Slosar (BNL) Risa Wechsler (SLAC) 1 Cosmic Frontier Computing Collaboration Computational Cosmology SciDAC-3 Project Ann Almgren (LBNL) Nick Gnedin (FNAL) Dave Higdon (LANL) Rob Ross (ANL) Martin White (UC Berkeley/ LBNL) Large Scale Production Computing and Storage Requirements for High Energy Physics Research A DOE Technical Program Review November 27-28, 2012

306

Dipole aperture and superconductor requirements  

SciTech Connect (OSTI)

The cost of an accelerator is not proportional to the aperture. A change in aperture by a certain percentage results in an overall accelerator cost change by only a fraction of that percentage; the fraction may be between 0.1 and 0.5 and is almost independent of the bending field. This estimate is obtained by analyzing the superconductor requirements as a function of aperture and by making rough estimates of the largest cost items of the accelerator such as magnets and ring tunnel.

Wipf, S.L.

1983-12-11T23:59:59.000Z

307

Requirements for Bridge Inspection | Department of Energy  

Energy Savers [EERE]

Requirements for Bridge Inspection Requirements for Bridge Inspection 2009.09.14 OECM-Requirements for Bridge Insp.pdf More Documents & Publications 2009.09.14OECM-Requirementsfo...

308

Physics Degree Requirements 2008 -2010 Bulletin  

E-Print Network [OSTI]

Physics Degree Requirements 2008 -2010 Bulletin Professional Option Student: __________________________ Advisor: ____________________________ Updated 2/8/08 Physics Required Cr Gr Taken PHYS 137 1 ___ ______ PHYS 461 4 ___ ______ PHYS 490 3 ___ ______ Subtotal 47 (C- or better required) Physics Electives (8 cr

Dyer, Bill

309

Alternative Fuels Data Center: Emissions Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions Reduction Emissions Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Emissions Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Emissions Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Emissions Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Emissions Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Emissions Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Emissions Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Emissions Reduction Requirements Recognizing the impact of carbon-emitting fuels on climate change and to

310

Supervisory Training Requirements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Supervisory Training Requirements Supervisory Training Requirements Supervisory Training Requirements The Office of Learning and Workforce Development has developed an inventory of training and developmental activities that will meet the supervisory training requirements. The DOE courses, Supervisory Essentials and Navigating the Federal Hiring Process are required to fulfill the first 40-hour of the probationary period mandatory training requirement for new supervisors. All other courses listed in the training framework are suggested to meet overall continual learning requirements. Supervisory Training Requirements More Documents & Publications EM's Development Program for New Managers/Supervisors Presentation DOE F 3315.1 Supervisory - Non-Supervisory Employee Performance Management and

311

Studying the Communications Requirements of Electric Utilities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities...

312

Bioinformatics and Genomics Degree Requirements Booklet  

E-Print Network [OSTI]

Bioinformatics and Genomics Degree Requirements Booklet Fall 2010 #12;Contents Course Requirements Bioinformatics and Genomics Curriculum -------------------------------------------------------8 General #12;Bioinformatics and Genomics Option (BG

dePamphilis, Claude

313

Civilian Radioactive Waste Management System Requirements Document...  

Office of Environmental Management (EM)

Civilian Radioactive Waste Management System Requirements Document Civilian Radioactive Waste Management System Requirements Document This document specifies the top-level...

314

DOE Challenge Home, Washington Program Requirements | Department...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications DOE Challenge Home, California Program Requirements Version Tracking Document for DOE Challenge Homes, National Program Requirements (Rev. 03) DOE...

315

NBP RFI: Communications Requirements- Honeywell Responses To...  

Broader source: Energy.gov (indexed) [DOE]

the National Broadband Plan by Studying the Communications Requirements of Electric Utilities To Inform Federal Smart NBP RFI: Communications Requirements- Honeywell Responses To...

316

California Waste Discharge Requirements Website | Open Energy...  

Open Energy Info (EERE)

Requirements Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California Waste Discharge Requirements Website Abstract This website contains...

317

Alternative Fuels Data Center: Petroleum Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Petroleum Reduction Petroleum Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Petroleum Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Petroleum Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Petroleum Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Petroleum Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Petroleum Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Petroleum Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Petroleum Reduction Requirements The Wisconsin Department of Administration's fleet management policy

318

Alternative Fuels Data Center: Vehicle Registration Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Registration Vehicle Registration Requirement to someone by E-mail Share Alternative Fuels Data Center: Vehicle Registration Requirement on Facebook Tweet about Alternative Fuels Data Center: Vehicle Registration Requirement on Twitter Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Google Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Delicious Rank Alternative Fuels Data Center: Vehicle Registration Requirement on Digg Find More places to share Alternative Fuels Data Center: Vehicle Registration Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle Registration Requirement Motor vehicle registration applicants must provide proof of compliance with

319

Visitor Security Requirements | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Visitor Security Requirements NOTE: These requirements do not apply to events held at the SREL Conference Center, which is located outside the security barricade. Before you...

320

Microsoft Word - Requirements 0819.doc  

Broader source: Energy.gov (indexed) [DOE]

Studying the ) DOE-HQ-2009-0003-0819 Studying the ) DOE-HQ-2009-0003-0819 Communications Requirements of Electric ) (Noticed May 11, 2010) Utilities to Inform Federal Smart Grid Policy ) ) Comments of San Diego Gas & Electric Company San Diego Gas & Electric Company ("SDG&E") files these comments in response to the above-enumerated Request for Information noticed by the Department on May 11, 2010. SDG&E is a regulated public electric and gas utility operating pursuant to authorities granted to it by the Federal Energy Regulatory Commission and the State of California. SDG&E serves 3.4 million consumers in the San Diego and southern Orange County areas of California via 1.4 million electric meters and 830,000 gas meters. SDG&E's sister company, the Southern California Gas

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Grantee Checklist for the Inspection & Monitoring Requirement  

Broader source: Energy.gov [DOE]

This document walks Grantees through the Inspection & Monitoring requirement of the Quality Work Plan.

322

Quality Work Plan Inspection and Monitoring Requirement  

Broader source: Energy.gov [DOE]

Inspection and monitoring requirements for Weatherization Assistance Program's comprehensive Quality Work Plan.

323

A systematic review of security requirements engineering  

Science Journals Connector (OSTI)

One of the most important aspects in the achievement of secure software systems in the software development process is what is known as Security Requirements Engineering. However, very few reviews focus on this theme in a systematic, thorough and unbiased ... Keywords: Requirements engineering, Secure development, Security, Security engineering, Security requirements, Security requirements engineering, Systematic review

Daniel Mellado; Carlos Blanco; Luis E. Sánchez; Eduardo Fernández-Medina

2010-06-01T23:59:59.000Z

324

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 20). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data. The energy-intensive industries (food and kindred products, paper and allied products, bulk chemicals, glass and glass products, hydraulic cement, blast furnace and basic steel products, and aluminum) are modeled in considerable detail. Each industry is modeled as three separate but interrelated components consisting of the Process Assembly (PA) Component, the Buildings Component (BLD), and the Boiler/Steam/Cogenera- tion (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces byproducts that are consumed in the BSC Component. For the manufacturing industries, the PA Component is separated into the major production processes or end uses.

325

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

326

Assumptions to the Annual Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Release date: March 2006 Next release date: March 2007 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 International Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Commercial Demand Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Natural Gas Transmission and Distribution Module. . . . . . . . . . . . . . . . . . . . . . 101 Petroleum Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Coal Market Module

327

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Commercial Demand Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Natural Gas Transmission and Distribution Module . . . . . . . . . . . . . . . . . . . . . . 99 Petroleum Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Coal Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Renewable Fuels Module . . . . . . . . . . .

328

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2003), (Washington, DC, February 2003). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural gas from domestic fields throughout the United States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers.

329

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic Activity Module Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) represents the interaction between the U.S. economy as a whole and energy markets. The rate of growth of the economy, measured by the growth in gross domestic product (GDP) is a key determinant of the growth in demand for energy. Associated economic factors, such as interest rates and disposable income, strongly influence various elements of the supply and demand for energy. At the same time, reactions to energy markets by the aggregate economy, such as a slowdown in economic growth resulting from increasing energy prices, are also reflected in this module. A detailed description of the MAM is provided in the EIA publication, Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System, DOE/EIA-M065(2003), (Washington, DC, January 2003).

330

Assumptions to the Annual Energy Outlook 2013  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

set using a discount rate of 10 percent. The model limits the annual builds to one two-train facility a year, with total annual export capacity of 400 billion cubic feet. The...

331

Assumptions to the Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

for EIA (SENTECH Incorporated, 2010). Wind: The Cost and Performance of Distributed Wind Turbines, 2010-35 (ICF International, 2010). 31 U.S. Energy Information Administration |...

332

Assumptions to the Annual Energy Outlook 2013  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

and U.S. Energy Information Administration, The Cost and Performance of Distributed Wind Turbines, 2010-35 Final Report, ICF International, August 2010. 43 U.S. Energy Information...

333

Assumptions to the Annual Energy Outlook 2014  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule 1, and Alaska Oil and Gas Supply Submodule. A detailed...

334

Supply-side Resources & Planning Assumptions  

E-Print Network [OSTI]

with forecast escalation/deescalation. Capital cost expressed as "overnight" total plant cost; w 90% 100% 16% 55% 26% 10% 20% 30% 40% 50% 60% 70% 80% Cash expended Annual expenditure Cumulative expenditure (excl EDC & IDC) 1% 2% 0% 10% 1 2 3 4 5 Year 96/19/2013 Construction schedule & cash flow

335

Appendix MASS: Performance Assessment Modeling Assumptions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rock Units MASS-12.2 Historical Context of the Salado Conceptual Model MASS-12.3 The Fracture Model MASS-12.4 Flow in the DRZ MASS-12.5 Actinide Transport in the Salado MASS-13.0...

336

Assumptions to the Annual Energy Outlook 2013  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Act of 2006 (AB32) AB32 established a comprehensive, multi-year program to reduce Green House Gas (GHG) emissions in California, including a cap-and-trade program. In...

337

Assumptions to the Annual Energy Outlook 2013  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Rule (CAIR), which was reinstated as binding legislation after the Cross- State Air Pollution Rule (CSAPR) 4 was vacated on August 21, 2012; updated handling of the...

338

Phenomenology: history, its methodological assumptions and application .  

E-Print Network [OSTI]

??This study aims to provide a deeper understanding of phenomenology firstly by tracing its historical roots and locating it within its philosophical framework. This aim… (more)

Mohamed-Patel, Rahima

2008-01-01T23:59:59.000Z

339

Part B - Requirements & Funding Information  

Broader source: Energy.gov (indexed) [DOE]

B - Requirements & Funding Information B - Requirements & Funding Information PART B - Requirements & Funding Information .......................................................................................... 2 PART B - Requirements & Funding Information B.1. Purpose This Part of the IA (hereinafter 'Part B') serves as the funding document. It provides specific information on the requirements of the Department of Energy, hereinafter 'the Requesting Agency' sufficient to demonstrate a bona fide need and identifies funds associated with the requirement to allow [insert the name of agency/organization that will provide acquisition services for the Department of Energy], hereinafter 'the Servicing Agency,' to provide acquisition assistance and conduct an interagency acquisition.

340

Selected Guidance & Requirements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Selected Guidance & Requirements Selected Guidance & Requirements Selected Guidance & Requirements This page contains the most requested NEPA guidance and requirement documents and those most often recommended by the Office of NEPA Policy and Compliance. Documents are listed by agency, in reverse chronological order. More extensive collections of documents are available on the individual pages for Guidance and Requirements pages. Requirements - Statutes National Environmental Policy Act of 1969 Environmental Quality Improvement Act of 1970 Clean Air Act, Section 309 Guidance - Council on Environmental Quality NEPA at 19: A Primer on an "Old" Law with Solutions to New Problems 40 Most Asked Questions Concerning CEQ's NEPA Regulations Guidance - Department of Energy DOE, NEPA, and You

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative Fuels Data Center: Biodiesel Sales Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Sales Biodiesel Sales Requirements to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Sales Requirements on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Sales Requirements on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Sales Requirements on Google Bookmark Alternative Fuels Data Center: Biodiesel Sales Requirements on Delicious Rank Alternative Fuels Data Center: Biodiesel Sales Requirements on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Sales Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Sales Requirements It is unlawful for any person to sell, offer for sale, assist in the sale of, deliver, or permit to be sold or offered for sale any biodiesel,

342

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A vehicle may not idle at a loading zone, parking or service area, route terminal, or other off-street areas, except for the following situations:

343

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A motor vehicle engine may not operate for more than five consecutive minutes when the vehicle is not in motion, with the following exceptions:

344

Alternative Fuels Data Center: Idle Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirements Effective May 1, 2014, a driver may not idle his or her motor vehicle for more than five minutes in a 60-minute period. This limit does not apply if

345

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement Diesel vehicles with a gross vehicle weight rating over 10,000 pounds may not idle for more than five minutes in any continuous 60 minute period.

346

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Reduction Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement The owner or operator of a diesel powered vehicle must limit the length of time their vehicle remains idle. The limit is based on the outside

347

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement Any motor vehicle fuel sold at retail containing more than 1% ethanol or methanol must be labeled according to Connecticut Department of Consumer

348

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement Motor vehicles may not idle unnecessarily for longer than five consecutive minutes during any 60-minute period. This includes heavy-duty diesel

349

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement Diesel truck or bus engines may not idle for more than 15 consecutive minutes. Exemptions apply to diesel trucks or buses for which the Nevada

350

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement All gasoline containing 1% or more ethanol by volume offered for sale must be conspicuously identified as "with ethanol" or "containing ethanol."

351

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A person that operates a diesel powered motor vehicle in certain counties and townships may not cause or allow the motor vehicle, when it is not in

352

Alternative Fuels Data Center: Biodiesel Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Use Biodiesel Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Use Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Use Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Use Requirement At least 75% of the Missouri Department of Transportation (MoDOT) vehicles and heavy equipment that use diesel fuel must be fueled with biodiesel

353

Alternative Fuels Data Center: Biofuel Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Use Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biofuel Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biofuel Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biofuel Use Requirement on Google Bookmark Alternative Fuels Data Center: Biofuel Use Requirement on Delicious Rank Alternative Fuels Data Center: Biofuel Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biofuel Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Use Requirement State agencies must take all reasonable actions to develop the infrastructure necessary to increase the availability and use of E85 and biodiesel throughout the state. Employees using state-owned vehicles are

354

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Reduction Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A commercial vehicle or gasoline powered vehicle may not idle for more than five minutes during any 60-minute period. Exemptions are allowed for the

355

Alternative Fuels Data Center: Biodiesel Warranty Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Warranty Warranty Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Warranty Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Warranty Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Warranty Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Warranty Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Warranty Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Warranty Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Warranty Requirement All new state government diesel vehicles must have a manufacturer's warranty that allows the use of biodiesel blends of 20% (B20) in the

356

Alternative Fuels Data Center: Biofuels Blender Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuels Blender Biofuels Blender Requirements to someone by E-mail Share Alternative Fuels Data Center: Biofuels Blender Requirements on Facebook Tweet about Alternative Fuels Data Center: Biofuels Blender Requirements on Twitter Bookmark Alternative Fuels Data Center: Biofuels Blender Requirements on Google Bookmark Alternative Fuels Data Center: Biofuels Blender Requirements on Delicious Rank Alternative Fuels Data Center: Biofuels Blender Requirements on Digg Find More places to share Alternative Fuels Data Center: Biofuels Blender Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Blender Requirements Blenders of ethanol and gasoline and biodiesel and diesel fuels outside of the bulk transfer terminal system must obtain a blender's license and are

357

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A gasoline-fueled motor vehicle is not allowed to operate for more than three consecutive minutes when the vehicle is not in motion, with the

358

Crop Water Requirement and Water Use Efficiency  

Science Journals Connector (OSTI)

Water use efficiency is defined as ratio of yield to irrigation water requirement (De Pascale and Maggio 2005) WUE=yield/irrigation water requirement (kg crop/m3 irrigation water) ...

Christian von Zabeltitz

2011-01-01T23:59:59.000Z

359

Nutritional Requirements of the Angora Goat.  

E-Print Network [OSTI]

.-....-.---------------------...-...-..-.--.....--------------.------ 3 Nutrient Requirements ...-...--------..................---------------------- 3 Energy ........-..-.---------------------.-.------------------------------------- 3 Protein 4 Vitamins... ......--...--------------------------------------------------- 6 Minerals 6 Water 6 Recommended Nutrient Allowances .-...- 6 Diet and Its Influence on Deficiencies 7 Meeting the Energy and Protein Requirements 9 Literature Cited...

Huston, J. E.; Shelton, Maurice; Ellis, W. C.

1971-01-01T23:59:59.000Z

360

Physics Degree Requirements 2008-2010 Bulletin  

E-Print Network [OSTI]

Physics Degree Requirements 2008-2010 Bulletin Interdisciplinary Option Student: ___________________ Advisor: ________________ Option: ________________ Updated 2/8/08 Physics Required Cr Gr Taken PHYS 137 1) Physics Electives (3 cr; 253 and 300) PHYS _____ ___ ___ ______ PHYS _____ ___ ___ ______ PHYS

Dyer, Bill

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Secondary Mathematics Teacher Certification Requirements Mathematics  

E-Print Network [OSTI]

Secondary Mathematics Teacher Certification Requirements Mathematics Undergraduate Program:______________ Date:______________ Date:______________ Date:______________ MATHEMATICS CORE REQUIREMENTS MATH 151 Introduction to Mathematical Analysis I CMSC 201 Computer Science I MATHEMATICS EDUCATION CONCENTRATION

Maryland, Baltimore County, University of

362

Considering Project Requirements and Recommendations | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

toward the EPAct 2005 requirements and the Executive Order (E.O.) 13514 greenhouse gas (GHG) requirements, as well as toward individual agency mandates. By using solar power to...

363

EPA State Manifest Requirements | Open Energy Information  

Open Energy Info (EERE)

Manifest Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: EPA State Manifest RequirementsLegal Abstract Provided by the...

364

Alternative Fuels Data Center: Emissions Control Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions Control Emissions Control Requirement to someone by E-mail Share Alternative Fuels Data Center: Emissions Control Requirement on Facebook Tweet about Alternative Fuels Data Center: Emissions Control Requirement on Twitter Bookmark Alternative Fuels Data Center: Emissions Control Requirement on Google Bookmark Alternative Fuels Data Center: Emissions Control Requirement on Delicious Rank Alternative Fuels Data Center: Emissions Control Requirement on Digg Find More places to share Alternative Fuels Data Center: Emissions Control Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Emissions Control Requirement Heavy-duty diesel vehicles used to perform federally funded state public works contracts must be powered by engines with Level 3 emissions control

365

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A diesel- or gasoline-powered motor vehicle may not idle for more than three consecutive minutes, except under the following conditions: 1) to

366

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement Motor fuel containing more than 1% ethanol or methanol may not be sold or offered for sale from a motor fuel dispenser unless the individual selling

367

Alternative Fuels Data Center: Biodiesel Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Use Biodiesel Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Use Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Use Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Use Requirement At least 20% of all diesel fuel used to fuel state agency vehicles, vessels, and construction equipment must be biodiesel. The Washington

368

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement Motor vehicles licensed for commercial or public service may not idle for more than three minutes in commercial or residential urban areas, unless

369

Alternative Fuels Data Center: Biodiesel Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Labeling Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Labeling Requirement Biodiesel fuel retailers may not advertise or offer for sale fuel labeled as pure biodiesel unless the fuel contains no other type of petroleum

370

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement Idling of any unattended vehicle is prohibited in Utah. Violators are subject to a penalty of up to $750 and/or up to 90 days imprisonment.

371

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Reduction Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement On-road heavy-duty motor vehicles with a gross vehicle weight rating of 8,500 pounds or greater may not idle for more than three consecutive

372

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A motor vehicle may not idle for more than five consecutive minutes. This regulation does not apply to: 1) vehicles being serviced, provided that

373

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Reduction Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement Vehicle operators may not idle any commercial diesel vehicle with a gross vehicle weight rating of more than 10,000 pounds for more than 10 minutes

374

Alternative Fuels Data Center: Biodiesel Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Use Biodiesel Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Use Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Use Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Use Requirement All diesel-powered motor vehicles, light trucks, and equipment owned or leased by a state agency must operate using diesel fuel that contains a

375

Alternative Fuels Data Center: Ethanol Blend Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Requirement Suppliers that import gasoline for sale in North Carolina must offer fuel that is not pre-blended with fuel alcohol but that is suitable for future

376

Alternative Fuels Data Center: Propane Supplier Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Supplier Propane Supplier Requirements to someone by E-mail Share Alternative Fuels Data Center: Propane Supplier Requirements on Facebook Tweet about Alternative Fuels Data Center: Propane Supplier Requirements on Twitter Bookmark Alternative Fuels Data Center: Propane Supplier Requirements on Google Bookmark Alternative Fuels Data Center: Propane Supplier Requirements on Delicious Rank Alternative Fuels Data Center: Propane Supplier Requirements on Digg Find More places to share Alternative Fuels Data Center: Propane Supplier Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Supplier Requirements A retail supplier may only distribute liquefied petroleum gas (LPG or propane) if the supplier holds a license from the Wisconsin Department of

377

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement School bus operators may not idle a school bus engine for more than three consecutive minutes except under the following conditions: uncontrollable

378

Alternative Fuels Data Center: Biofuels Feedstock Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuels Feedstock Biofuels Feedstock Requirements to someone by E-mail Share Alternative Fuels Data Center: Biofuels Feedstock Requirements on Facebook Tweet about Alternative Fuels Data Center: Biofuels Feedstock Requirements on Twitter Bookmark Alternative Fuels Data Center: Biofuels Feedstock Requirements on Google Bookmark Alternative Fuels Data Center: Biofuels Feedstock Requirements on Delicious Rank Alternative Fuels Data Center: Biofuels Feedstock Requirements on Digg Find More places to share Alternative Fuels Data Center: Biofuels Feedstock Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Feedstock Requirements Renewable fuel production plants operating in Louisiana and deriving ethanol from the distillation of corn must use corn crops harvested in

379

Alternative Fuels Data Center: Biofuels Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuels Use Biofuels Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Biofuels Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Biofuels Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Biofuels Use Requirement on Google Bookmark Alternative Fuels Data Center: Biofuels Use Requirement on Delicious Rank Alternative Fuels Data Center: Biofuels Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Biofuels Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Use Requirement State-owned diesel-powered vehicles and equipment must use a biodiesel blend that contains at least 2% biodiesel (B2), where available, as long as

380

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Reduction Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A commercial motor vehicle with a gross vehicle weight rating of 10,000 pounds or more may not idle for more than 15 minutes in any 60-minute

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Tire Inflation Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tire Inflation Tire Inflation Requirement to someone by E-mail Share Alternative Fuels Data Center: Tire Inflation Requirement on Facebook Tweet about Alternative Fuels Data Center: Tire Inflation Requirement on Twitter Bookmark Alternative Fuels Data Center: Tire Inflation Requirement on Google Bookmark Alternative Fuels Data Center: Tire Inflation Requirement on Delicious Rank Alternative Fuels Data Center: Tire Inflation Requirement on Digg Find More places to share Alternative Fuels Data Center: Tire Inflation Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Tire Inflation Requirement The California Air Resources Board (ARB) enforces regulations to reduce greenhouse gas emissions from vehicles operating inefficiently with under

382

Alternative Fuels Data Center: Biofuel Use Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuel Use Biofuel Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Biofuel Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Biofuel Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Biofuel Use Requirements on Google Bookmark Alternative Fuels Data Center: Biofuel Use Requirements on Delicious Rank Alternative Fuels Data Center: Biofuel Use Requirements on Digg Find More places to share Alternative Fuels Data Center: Biofuel Use Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Use Requirements To reduce fossil fuel dependence and statewide greenhouse gas emissions, New Jersey state departments, agencies, offices, universities, and colleges

383

Alternative Fuels Data Center: Biodiesel Producer Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Producer Biodiesel Producer Requirements to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Producer Requirements on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Producer Requirements on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Producer Requirements on Google Bookmark Alternative Fuels Data Center: Biodiesel Producer Requirements on Delicious Rank Alternative Fuels Data Center: Biodiesel Producer Requirements on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Producer Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Producer Requirements Biodiesel is defined as a fuel that is composed of mono-alkyl esters of long-chain fatty acids derived from plant or animal matter, meets the

384

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A vehicle may not idle for more than five minutes from April through October in cities and counties where the local government has signed a

385

Alternative Fuels Data Center: Idle Reduction Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction Idle Reduction Requirement to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Requirement on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Requirement on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Google Bookmark Alternative Fuels Data Center: Idle Reduction Requirement on Delicious Rank Alternative Fuels Data Center: Idle Reduction Requirement on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Requirement A driver may not idle a vehicle on a roadway outside a business or residential district when it is practical to stop and park the vehicle. A

386

Delegation Procedures - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy's primary means of establishing policies, requirements, responsibilities, and procedures for Departmental elements and contractors. Directives Program Management Camille...

387

Building America Retrofit Participation Requirements and Release  

Broader source: Energy.gov [DOE]

This form is for Building America team members and homeowners to complete verifying health and safety requirements have been met.

388

DOE Challenge Home, California Program Requirements  

Broader source: Energy.gov [DOE]

DOE Challenge Home, California Program Requirements, as posted on the U.S. Department of Energy's DOE Challenge Home website.

389

Price Corrected Domestic Technology Assumption—A Method To Assess Pollution Embodied in Trade Using Primary Official Statistics Only. With a Case on CO2 Emissions Embodied in Imports to Europe  

Science Journals Connector (OSTI)

For various countries, it has been shown that apparent decoupling of CO2 emissions or primary material use from GDP growth is actually the result of the relocation of material and energy-intensive production abroad. ... Compiling MR EE IO databases demands a high level of harmonization and consolidation of different data sources which often conflict (e.g., trade statistics usually differ from trade data in SUIOT). ... Figure 3. CO2 emissions per capita, 2000–2006: (a) emitted at EU27 territory; (b) embodied in EU27 imports; (c) embodied in EU27 exports; and (d) embodied in EU27 domestic final demand, calculated with Domestic Technology Assumption (“standard”) and with price adjustments. ...

Arnold Tukker; Arjan de Koning; Richard Wood; Stephan Moll; Maaike C. Bouwmeester

2012-12-26T23:59:59.000Z

390

Technical Safety Requirements for the B695 Segment  

SciTech Connect (OSTI)

This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment (LLNL 2007). The analysis presented there determined that the B695 Segment is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment are shown in the B695 Segment DSA. Activities typically conducted in the B695 Segment include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive, mixed, and hazardous waste. Operations specific to the SWPA include sorting and segregating waste, lab-packing, sampling, and crushing empty drums that previously contained waste. Furthermore, a Waste Packaging Unit will be permitted to treat hazardous and mixed waste. RHWM generally processes LLW with no, or extremely low, concentrations of transuranics (i.e., much less than 100 nCi/g). Wastes processed often contain only depleted uranium and beta- and gamma-emitting nuclides, e.g., {sup 90}Sr, {sup 137}Cs, {sup 3}H. Chapter 5 of the DSA documents the derivation of TSRs and develops the operational limits that protect the safety envelope defined for this facility. The DSA is applicable to the handling of radioactive waste stored and treated in the B695 Segment. Section 5 of the TSR, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the B695 Segment. A basis explanation for each of the requirements described in Section 5.5, Specific Administrative Controls is provided in Appendix B. The basis explanation does not constitute an additional requirement, but is intended as an expansion of the logic and reasoning behind development of the requirement. Programmatic Administrative Controls are addressed in Section 5.6. This introduction to the B695 Segment TSRs is not part of the TSR limits or conditions and contains no requirements related to B695 Segment operations or to the safety analyses in the DSA.

Laycak, D

2008-09-11T23:59:59.000Z

391

Special Contract Requirements Enclosure 2 INSTRUCTIONS TO CONTRACTING OFFICERS: The Special Contract Requirement "Workers  

E-Print Network [OSTI]

Special Contract Requirements Enclosure 2 INSTRUCTIONS TO CONTRACTING OFFICERS: The Special Contract Requirement "Workers Compensation Insurance (Defense Base Act) (APRIL 2011)" shall be included in the contract as applicable. Whenever Defense Base Act (DBA) insurance is required under the contract

US Army Corps of Engineers

392

Requirements in DOE O 5480.19, Conduct of Operations Requirements...  

Broader source: Energy.gov (indexed) [DOE]

Requirements in DOE O 5480.19, Conduct of Operations Requirements for DOE Facilities Cross-referenced to DOE O 422.1, Conduct of Operations. Requirements in DOE O 5480.19, Conduct...

393

Guidance & Requirements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Guidance & Requirements Guidance & Requirements Guidance & Requirements The Office of NEPA Policy and Compliance provides guidance and requirement documents to the NEPA community to ensure that the Department's proposed actions comply with the letter and spirit of the National Environmental Policy Act, and to assist the interested public in reviewing NEPA documents. Guidance Guidance documents from the Council on Environmental Quality, Department of Energy, Environmental Protection Agency, and other federal agencies applicable to NEPA proposed actions. Requirements A collection of statutes, Council on Environmental Quality regulations, Department of Energy regulations, and Executive Orders applicable to NEPA proposed actions. Lessons Learned Quarterly Report A collection of guidance, case studies, analyses, references, litigation

394

NON RESIDENT ALIEN REQUIRED DOCUMENTS CLASSIFICATION REQUIRED ATTACHEMENTS MUST BE SUBMITTED WITH THE  

E-Print Network [OSTI]

NON RESIDENT ALIEN REQUIRED DOCUMENTS CLASSIFICATION REQUIRED ATTACHEMENTS MUST BE SUBMITTED WITH THE PAYROLL DOCUMENTS AND CITIZENSHIP STATUS FORM Permanent Resident Resident Alien Card, or I-551 Stamped

Adali, Tulay

395

NERSC HPC Program Requirements Review Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Published Reports Published Reports NERSC HPC Program Requirements Review Reports These publications comprise the final reports from the HPC requirements reviews presented to the Department of Energy. Downloads NERSC-PRR-HEP-2017.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for High Energy Physics - Target 2017 BER2017FinalJune7.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for Biological and Environmental Research - Target 2017 NERSC-ASCR-WorkshopReport.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research NERSC-NP-WorkshopReport.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for Nuclear Physics Research NERSC-FES-WorkshopReport.pdf | Adobe Acrobat PDF file

396

Committee Role Required/ Optional CSM faculty status Department Advisor Required Full time Home Department  

E-Print Network [OSTI]

Committee Role Required/ Optional CSM faculty status Department Advisor Required Full time Home faculty status Department Advisor Required Full time Home Dept* or familiar with area of study Co-Advisor to specify on form Full time-cannot be advisor or co-advisor Committee Role Required/ Optional CSM faculty

397

Equipment Certification Requirements | Open Energy Information  

Open Energy Info (EERE)

Equipment Certification Requirements Equipment Certification Requirements Jump to: navigation, search Policies requiring renewable energy equipment to meet certain standards serve to protect consumers from buying inferior equipment. These requirements not only benefit consumers; they also protect the renewable energy industry by making it more difficult for substandard systems to reach the market. [1] Contents 1 Equipment Certification Incentives 2 References Equipment Certification Incentives CSV (rows 1 - 19) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Canada Oil and Gas Operations Act (Canada) Environmental Regulations Equipment Certification Fees Generating Facility Rate-Making Generation Disclosure Industry Recruitment/Support Safety and Operational Guidelines

398

Federal / State Legislative & Regulatory Changes Required for...  

Energy Savers [EERE]

Issues Federal and State Blending Restrictions Action by ASTM NCWM to address higher ethanol blends Federal State Legislative & Regulatory Changes Required for Introduction of...

399

Delegation Procedures - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accessibility Text size: (Requires JavaScript) Large Normal Small This site uses the Open Source Content Management System Plone and has been designed to be completely accessible...

400

Automotive Turbocharging: Industrial Requirements and Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

performance will be difficult to achieve requires a proper understanding of the trade-offs and engine effects and impacts must be part of turbocharger development...

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Deriving Policies from Grid Security Requirements Model  

Science Journals Connector (OSTI)

The emerging Grid applications require rigorous approaches to handle security management issues as their scale, heterogeneity, ... , we propose a rigorous method of deriving security policies for grid application...

Syed Naqvi; Alvaro E. Arenas…

2008-01-01T23:59:59.000Z

402

NERSC/DOE ASCR Requirements Workshop Logistics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Logistics Workshop Logistics Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Location The workshop will be held at...

403

NERSC/DOE NP Requirements Workshop Logistics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hotel Hotel Arrangements Large Scale Computing and Storage Requirements for Nuclear Physics May 26-27, 2011 Location The workshop will be held at Hyatt Regency Bethesda One...

404

RPAM & Energy Order Requirements | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Order Requirements More Documents & Publications Three Year Rolling Timeline U.S. Department of Energy High Performance and Sustainable Buildings Implementation Plan Slide 1...

405

Contact Form - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact Form by Diane Johnson Directives are the Department of Energy's Primary means of establishing policies, requirements, responsibilities, and procedures for Departmental...

406

CRAD, Facility Safety - Unreviewed Safety Question Requirements...  

Broader source: Energy.gov (indexed) [DOE]

a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Facility Safety - Unreviewed Safety Question Requirements...

407

Personnel Security - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

472.2 Chg 1, Personnel Security by Mark Pekrul Functional areas: Personnel Security, Security, Human Capital The order establishes requirements that will enable DOE to operate a...

408

Personnel Security - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.2 Admin Chg 1, Personnel Security by Mark Pekrul Functional areas: Administrative Change, Personnel Security, Safety and Security The order establishes requirements that will...

409

Ongoing Software Development without Classical Requirements  

E-Print Network [OSTI]

systems without overt requirements artifacts or processes, contrary to expectations resulting from are evolved and sustained in this way yet provide quality and rich functional capabilities to users In 2002 one of us (Scacchi) published a study of require- ments practices and artifacts in four open

Scacchi, Walt

410

Modelling adaptations requirements in web workflows  

Science Journals Connector (OSTI)

Workflows play a major role in nowadays business and therefore its requirement elicitation must be accurate and clear for achieving the closest solution to business's needs. Due to Web applications popularity, the Web is becoming the standard platform ... Keywords: adaptation, model-driven paradigm, requirements, web

M. Urbieta; W. Retschitzegger; G. Rossi; W. Schwinger; S. Gordillo; E. Robles Luna

2012-12-01T23:59:59.000Z

411

Conduct of Operations Requirements for DOE Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

"To provide requirements and guidelines for Departmental Elements, including the National Nuclear Security Administration (NNSA), to use in developing directives, plans, and/or procedures relating to the conduct of operations at DOE facilities. The implementation of these requirements and guidelines should result in improved quality and uniformity of operations. Change 2, 10-23-2001. Canceled by DOE O 422.1.

1990-07-09T23:59:59.000Z

412

On Linguistic Quality of Natural Language Requirements  

E-Print Network [OSTI]

level quality frameworks for requirements engineering on one hand, and a systematic collection for the analysis of requirements. 1 Motivations Quality in software engineering is following, to some extent, the same historical path as quality in classical engineering has. Many methods and tools have been proposed

Ruggieri, Salvatore

413

What is required for a Philosophy Major?  

E-Print Network [OSTI]

PHILOSOPHY What is required for a Philosophy Major? at Northern Kentucky University For students who entered the University in 2011. The major in philosophy requires a total of at least thirty (30/PHI 280 Classical and Medieval Philosophy (fall) ¡ PHI 355 Socrates and Plato (spring 2014) History II

Acosta, Charles A.

414

What is required for a Philosophy Major?  

E-Print Network [OSTI]

PHILOSOPHY What is required for a Philosophy Major? at Northern Kentucky University For students who entered the University before 2011. The major in philosophy requires a total of at least thirty or PHI 265 Logic (every semester) ¡ PHI 180 or PHI 280 Classical and Medieval Philosophy (fall) ¡ PHI 185

Acosta, Charles A.

415

What is required for a Philosophy Major?  

E-Print Network [OSTI]

PHILOSOPHY What is required for a Philosophy Major? at Northern Kentucky University For students who entered the University in 2012. The major in philosophy requires a total of at least thirty (30) ¡ PHI 280 Classical and Medieval Philosophy (offered fall) ¡ PHI 285 Modern and Contemporary Philosophy

Acosta, Charles A.

416

What is required for a Philosophy Major?  

E-Print Network [OSTI]

PHILOSOPHY What is required for a Philosophy Major? at Northern Kentucky University For students who entered the University in (or after) 2013. The major in philosophy requires a total of at least (every semester) ¡ PHI 280 Classical and Medieval Philosophy (offered fall) ¡ PHI 285 Modern

Acosta, Charles A.

417

EARTH SCIENCES Lower-Division Requirements  

E-Print Network [OSTI]

2012-2013 EARTH SCIENCES Lower-Division Requirements Math 20A_____ 20B_____ 20C_____ 20D (BILD 3) _____ SIO 50* _____ Group A: Earth Science Upper-Division Core Requirements (all courses _____ Introduction to Geophysics SIO 104 _____ Paleobiology and History of Life* Group B: Upper-Division Earth

Constable, Steve

418

Requirements, possible alternatives & international NEUTRON SCATTERING  

E-Print Network [OSTI]

Requirements, possible alternatives & international NEUTRON SCATTERING DETECTORS for Rob Dimeo NIST neutron scattering instruments are the most demanding require background low #12;#12;The Helium-3 Supply Crisis ­ Alternative Techniques to Helium-3 based Detectors for Neutron Scattering Applications

Dimeo, Robert M.

419

Data Modelling and Database Requirements Geographical Data  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Brief history 15 Definitions 15 The three-schema architecture 16 Features/services of databaseData Modelling and Database Requirements for Geographical Data HĂĽvard Tveite January, 1997 #12-Model Substitution, and adds new symbology that is relevant for geographical data. Database system requirements

420

Contracting Requirements and Why They Matter  

E-Print Network [OSTI]

Contracting Requirements and Why They Matter Presented by David E. Broome, Jr., General Counsel Amy's legally binding #12;Getting It Wrong ¡ Case: Your unit contracts with Fun Corp (FC) to provide Student Fun Fair on campus. Contract requires that University indemnify FC for injuries/damage/liability arising

Howitt, Ivan

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MONITORED GEOLOGIC REPOSITORY SYSTEMS REQUIREMENTS DOCUMENT  

SciTech Connect (OSTI)

This document establishes the Monitored Geologic Repository system requirements for the U.S. Department of Energy's (DOE's) Civilian Radioactive Waste Management System (CRWMS). These requirements are based on the ''Civilian Radioactive Waste Management System Requirements Document'' (CRD) (DOE 2004a). The ''Monitored Geologic Repository Systems Requirements Document'' (MGR-RD) is developed in accordance with LP-3.3 SQ-OCRWM, ''Preparation, Review, and Approval of Office of Repository Development Requirements Document''. As illustrated in Figure 1, the MGR-RD forms part of the DOE Office of Civilian Radioactive Waste Management Technical Requirements Baseline. Revision 0 of this document identifies requirements for the current phase of repository design that is focused on developing a preliminary design for the repository and will be included in the license application submitted to the U.S. Nuclear Regulatory Commission for a repository at Yucca Mountain in support of receiving a construction authorization and subsequent operating license. As additional information becomes available, more detailed requirements will be identified in subsequent revisions to this document.

V. Trebules

2006-06-02T23:59:59.000Z

422

CH2M Hill Hanford Group, Inc. Standards and Requirements Identification Document (SRID) Requirements Management System and Requirements Specification  

SciTech Connect (OSTI)

The current Tank Farm Contractor (TFC) for the U. S. Department of Energy, Office of River Protection (ORP), River Protection Project (RPP), CH2M Hill Hanford Group, Inc. (CHG), will use a computer based requirements management system. The system will serve as a tool to assist in identifying, capturing, and maintaining the Standards/Requirements Identification Document (S/RID) requirements and links to implementing procedures and other documents. By managing requirements as one integrated set, CHG will be able to carry out its mission more efficiently and effectively. CHG has chosen the Dynamic Object Oriented Requirements System (DOORS{trademark}) as the preferred computer based requirements management system. Accordingly, the S/RID program will use DOORS{trademark}. DOORS{trademark} will replace the Environmental Requirements Management Interface (ERMI) system as the tool for S/RID data management. The DOORS{trademark} S/RID test project currently resides on the DOORSTM test server. The S/RID project will be migrated to the DOORS{trademark} production server. After the migration the S/RID project will be considered a production project and will no longer reside on the test server.

JOHNSON, A.L.

2000-11-30T23:59:59.000Z

423

Meeting ALWR requirements with the CANDU 3  

SciTech Connect (OSTI)

The successful operation of CANDU reactors in a number of countries has established them as a commercial alternative to light water reactors. CANDU 3 is the most recent CANDU design. When conceptual design work began on the CANDU 3, an important focus was placed on the establishment of appropriate requirements for this new more advanced plant. With the work that has gone forward in the United States and elsewhere on advanced light water reactors, it is natural that the CANDU designers would compare the independently derived CANDU 3 requirements and features with those of the ALWRs. This paper reviews the requirements set for ALWRs. These include safety, simplicity, conservative design margins, reliance on experience, a focus on utility needs, performance, economics, and elimination of regulatory uncertainty. For each of these the paper shows how the CANDU 3 designers have independently established remarkably similar requirements, and how those requirements are met by the CANDU 3 design.

Hedges, K.R.; Bonechi, M.; Hinchley, E.M. (Sheridan Park Research Community, Mississauga, Ontario L5K 1B2 (CA))

1990-01-01T23:59:59.000Z

424

Part B - Requirements & Funding Information PART B - Requirements and Funding Information  

Broader source: Energy.gov (indexed) [DOE]

b. Part B 1 b. Part B 1 Part B - Requirements & Funding Information PART B - Requirements and Funding Information Gray highlights are instructions. Remove the instructions from the interagency agreement. Attachment 3.b. Part B 2 PART B - Requirements & Funding Information B.1. Purpose This is an interagency transaction. An interagency transaction is an intra-governmental transaction when the servicing agency uses internal resources to support the requesting agency requirement and is a reimbursable activity that requires an interagency agreement. This Part of the interagency agreement (IA) (hereinafter 'Part B') serves as the funding document. It provides specific information on the requirements of the Department of Energy, hereinafter 'the Requesting

425

Green Building Requirement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Green Building Requirement Green Building Requirement Green Building Requirement < Back Eligibility Commercial Schools State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info State District of Columbia Program Type Energy Standards for Public Buildings Provider District Department of the Environment The District of Columbia City Council enacted [http://dcclims1.dccouncil.us/images/00001/20061218152322.pdf B16-515] on December 5, 2006, establishing green building standards for public buildings and privately-owned commercial buildings of 50,000 square feet or

426

Statutory Requirements | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Printable Version Development Adoption Compliance Regulations Resource Center Statutory Requirements DOE activities surrounding building energy codes are defined by the following statutory requirements. Specific language outlining federal requirements and associated regulations are outlined below. References are also provided to individual statutes. State Building Energy Efficiency Codes Statutory Authority: Energy Conservation and Production Act (ECPA) (Pub. L. No. 94-385), as amended1 Section 304(a) of ECPA, as amended, provides that when the 1992 Model Energy Code (MEC), or any successor to that code2, is revised, the Secretary must determine, not later than 12 months after the revision, whether the revised code would improve energy efficiency in residential

427

Data requirements and acquisition for reservoir characterization  

SciTech Connect (OSTI)

This report outlines the types of data, data sources and measurement tools required for effective reservoir characterization, the data required for specific enhanced oil recovery (EOR) processes, and a discussion on the determination of the optimum data density for reservoir characterization and reservoir modeling. The two basic sources of data for reservoir characterization are data from the specific reservoir and data from analog reservoirs, outcrops, and modern environments. Reservoir data can be divided into three broad categories: (1) rock properties (the container) and (2) fluid properties (the contents) and (3)interaction between reservoir rock and fluid. Both static and dynamic measurements are required.

Jackson, S.; Chang, Ming Ming; Tham, Min.

1993-03-01T23:59:59.000Z

428

Optical manufacturing requirements for an AVLIS plant  

SciTech Connect (OSTI)

A uranium enrichment plant utilizing Atomic Vapor Laser Isotope Separation (AVLIS) technology is currently being planned. Deployment of the Plant will require tens of thousands of commercial and custom optical components and subsystems. The Plant optical system will be expected to perform at a high level of optical efficiency and reliability in a high-average-power-laser production environment. During construction, demand for this large number of optics must be coordinated with the manufacturing capacity of the optical industry. The general requirements and approach to ensure supply of optical components is described. Dynamic planning and a closely coupled relationship with the optics industry will be required to control cost, schedule, and quality.

Primdahl, K.; Chow, R.; Taylor, J.R.

1997-07-14T23:59:59.000Z

429

Quality Assurance Source Requirements Traceability Database  

SciTech Connect (OSTI)

At the Yucca Mountain Project the Project Requirements Processing System assists in the management of relationships between regulatory and national/industry standards source criteria, and Quality Assurance Requirements and Description document (DOE/R W-0333P) requirements to create compliance matrices representing respective relationships. The matrices are submitted to the U.S. Nuclear Regulatory Commission to assist in the commission's review, interpretation, and concurrence with the Yucca Mountain Project QA program document. The tool is highly customized to meet the needs of the Office of Civilian Radioactive Waste Management Office of Quality Assurance.

MURTHY, R., NAYDENOVA, A., DEKLEVER, R., BOONE, A.

2006-01-30T23:59:59.000Z

430

Estimating pool energy requirements with a thermometer  

SciTech Connect (OSTI)

It is pointed out that there is a need for a simple method of estimating the energy required by a swimming pool. (This is the first step in determining the size of solar pool heaters for a specific application.) Previous methods for estimating pool energy requirements demand mathematical skills. The method proposed here requires only: (1) measurement of the average pool temperature; (2) an estimate of the pool volume; and (3) a knowledge of the desired temperature. Average temperature of the pool is measured using a weighted thermometer at different locations under various weather conditions. Step-by-step instructions complete with a table are provided. (MJJ)

Not Available

1980-04-01T23:59:59.000Z

431

Microsoft Word - Topic A Requirements _2_  

Broader source: Energy.gov (indexed) [DOE]

A Requirements A Requirements Topic A, Interconnection-Level Analysis and Planning Topic A awardees must fulfill the following requirements: 1. The work to be performed must cover the entire Interconnection. 2. Analyses and planning must be developed and performed in a transparent and collaborative manner, and the study processes must be open to participation by state and federal officials, representatives from independent system operators (ISOs) and regional transmission organizations (RTOs), utilities, and relevant stakeholder bodies or non-government organizations (NGO's), including appropriate entities in Canada and Mexico. Discuss approach to ensure consensus among stakeholders on key issues. 3. The awardee must establish a multi-constituency steering group that will provide

432

Microsoft Word - Requirements_list.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SELECTED LIST OF REQUIREMENTS SELECTED LIST OF REQUIREMENTS DESCRIPTION REQUIREMENT APPLICABILITY 1. Federal Motor Carrier Registration 49 CFR 390.19; 390.21 Motor carriers that conduct commercial motor vehicle operations in interstate commerce. 2. Hazardous Materials Safety Permit 49 CFR 385, Subpart E Motor carriers that transport the hazardous materials listed at 49 CFR 385.403. 3. Federal Hazardous Materials Registration 49 CFR 107, Subpart G Offering or transporting a hazardous material listed at 49 CFR 107.601. This list includes hazardous materials requiring placarding. 4. Texas State Motor Carrier Registration 43 TAC, Chap. 18, Subchap. B Motor carriers that conduct commercial motor vehicle operations in Texas. 5. Unified Carrier Registration 49 CFR 367 Motor carriers, motor private carriers, brokers, freight forwarders and leasing companies.

433

Federal Greenhouse Gas Requirements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Requirements Requirements Federal Greenhouse Gas Requirements October 7, 2013 - 10:02am Addthis Executive Order (E.O.) 13514 expands the energy reduction and environmental requirements of Executive Order 13423 by making greenhouse gas (GHG) management a priority for the Federal government. Under Section 2 of E.O. 13514, each Federal agency must: Within 90 days of the order, establish and report to the CEQ Chair and OMB Director a percentage reduction target for agency-wide reductions of Scope 1 and Scope 2 GHG emissions in absolute terms by fiscal year 2020 relative to a fiscal year 2008 baseline of the agency's Scope 1 greenhouse gas emissions. In establishing the target, agencies shall consider reductions associated with: Reducing agency building energy intensity Increasing agency renewable energy use and implementing on-site renewable

434

DOE Challenge Home, Washington Program Requirements  

Broader source: Energy.gov (indexed) [DOE]

DOE Challenge Home Washington Program Requirements 9-1-2013 To qualify as a DOE Challenge Home, a home shall meet the minimum requirements specified below, be verified and field-tested in accordance with HERS Standards by an approved verifier, and meet all applicable codes. Builders may meet the requirements of either the Performance Path or the Prescriptive path to qualify a home. 1 Single family detached and attached dwelling units, and dwelling units in multifamily buildings with 3 stories or fewer above-grade 2,3 are eligible for qualification. DOE Challenge Home Prescriptive Path The prescriptive path provides a single set of measures that can be used to construct a DOE Challenge Home labeled home. Modeling is not required, but no tradeoffs are allowed. Follow these steps to use the prescriptive path:

435

DOE Challenge Home, California Program Requirements  

Broader source: Energy.gov (indexed) [DOE]

DOE Challenge Home California Program Requirements These Program Requirements shall only be used in the State of California. To qualify as a DOE Challenge Home, a home shall meet the minimum requirements specified below, be verified and field-tested in accordance with HERS Standards by an approved verifier, and meet all applicable codes. Builders may meet the requirements of either the Performance Path or the Prescriptive path to qualify a home. 1 Single family detached and attached dwelling units, and dwelling units in multifamily buildings with 3 stories or fewer above-grade 2,3 are eligible for qualification. DOE Challenge Home Prescriptive Path The prescriptive path provides a single set of measures that can be used to construct a DOE Challenge Home labeled

436

CERTIFICATION REQUIREMENTS IN THE CALIFORNIA ENERGY COMMISSION'S  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CERTIFICATION REQUIREMENTS IN THE CALIFORNIA ENERGY COMMISSION'S APPLIANCE REGULATIONS: A Summary Guide, Including Forms for Manufacturers, Trade Associations, and Other ...............................................................................................................1 III. Where to Find the Energy Commission Appliance Efficiency Regulations .....2 IV. Where to Get

437

Requirements & Status for Volume Fuel Cell Manufacturing  

E-Print Network [OSTI]

Requirements & Status for Volume Fuel Cell Manufacturing DOE Hydrogen Program, Washington, DC July ­Eliminate components, parts and process steps ­Standardize core components across products ­Standardize non-core

438

Development Requirements for Advanced Industrial Heat Pumps  

E-Print Network [OSTI]

DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

439

Biological and Environmental Research Network Requirements  

E-Print Network [OSTI]

required for specific climate projects are clearly defined.For example, if a climate project has unique node protocolto this high-profile climate project. ESGF has been used to

Dart, Eli

2014-01-01T23:59:59.000Z

440

NERSC/DOE BER Requirements Workshop Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Christopher Kerr | Global Cloud Resolving Model May 7, 2009 | Author(s): David Randall | IO Requirements for a Global Cloud Resolving Model May 7, 2009 | Author(s): Bruce...

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cook County- LEED Requirements for County Buildings  

Broader source: Energy.gov [DOE]

In 2002, Cook County enacted an ordinance requiring all new county buildings and all retrofitted county buildings to be built to LEED standards. Specifically, all newly constructed buildings and...

442

Microsoft Word - Directives Requiring Additional Documentation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chg 2 Radiation Protection of the Public and the Environment 24 DOE O 5480.19, Chg 2 Conduct of Operations Requirements for DOE Facilities 25 DOE O 5480.20A, Chg 1 Personnel...

443

News & Updates - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cancellation of Directives Document Actions NEW - DOE O 422.1 Admin Chg 2, Conduct of Operations by Diane Johnson The objective of this Order is to define the requirements for...

444

MENTOR: A Computer Aided Requirements Engineering environment  

Science Journals Connector (OSTI)

In this paper, we present the Computer Aided Requirements Engineering (CARE) environment named MENTOR. This environment offers various viewers, editors and tools and can be customised by a method engineer to any ...

S. Si-Said; C. Rolland; G. Grosz

1996-01-01T23:59:59.000Z

445

Requirements and Submission Process for Qualified Software  

Broader source: Energy.gov [DOE]

This document provides a complete list of requirements and submission details to have software qualified for calculating energy and power cost savings for commercial building tax deductions under tax code Section 179D.

446

Automotive Turbocharging: Industrial Requirements and Technology Developments  

Broader source: Energy.gov [DOE]

Significant improvements in turbocharger performance will be difficult to achieve requires a proper understanding of the trade-offs and engine effects and impacts must be part of turbocharger development

447

Siting Requirements for Anaerobic Lagoons (Iowa)  

Broader source: Energy.gov [DOE]

This statute provides regulations for required distances between anaerobic lagoons and residences or public use areas. The separation distances may be waived or reduced with the agreement of the...

448

Technical requirements specification for tank waste retrieval  

SciTech Connect (OSTI)

This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

Lamberd, D.L.

1996-09-26T23:59:59.000Z

449

Metals Production Requirements for Rapid Photovoltaics Deployment  

E-Print Network [OSTI]

If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. In this paper, we quantify the effect of PV deployment levels on the scale of metals production. For example, we find that if cadmium telluride {copper indium gallium diselenide} PV accounts for more than 3% {10%} of electricity generation by 2030, the required growth rates for the production of indium and tellurium would exceed historically-observed production growth rates for a large set of metals. In contrast, even if crystalline silicon PV supplies all electricity in 2030, the required silicon production growth rate would fall within the historical range. More generally, this paper highlights possible constraints to the rate of scaling up metals production for some PV technologies, and outlines an approach to assessing projected metals growth requirements against an ensemble of past growth rates from across the metals production sector. The framework developed in this paper may be...

Kavlak, Goksin; Jaffe, Robert L; Trancik, Jessika E

2015-01-01T23:59:59.000Z

450

Requirements DocumentRequirements Document Jammin Mission StatementJammin Mission Statement  

E-Print Network [OSTI]

Requirements DocumentRequirements Document Jammin Mission StatementJammin Mission Statement backing tracks for songs ¡ Assist beginner musicians in practising to play songs IntroductionIntroduction This document contains a list of requirements divided into sections for each of the main components

Pfahringer, Bernhard

451

LANL surveillance requirements management and surveillance requirements from NA-12 tasking memo  

SciTech Connect (OSTI)

Surveillance briefing to NNSA to support a tasking memo from NA-12 on Surveillance requirements. This talk presents the process for developing surveillance requirements, discusses the LANL requirements that were issued as part of that tasking memo, and presents recommendations on Component Evaluation and Planning Committee activities for FY11.

Hills, Charles R [Los Alamos National Laboratory

2011-01-25T23:59:59.000Z

452

Integrating Customized Test Requirements with Traditional Requirements in Web Application Testing  

E-Print Network [OSTI]

Integrating Customized Test Requirements with Traditional Requirements in Web Application Testing Existing test suite reduction techniques employed for test- ing web applications have either used-based requirements in relation to test suite reduction for web applications. We investigate the use of usage

Sampath, Sreedevi

453

Computer Requirement ALL STUDENTS IN THE SCHOOL OF ARCHITECTURE ARE REQUIRED TO PROVIDE THEIR OWN  

E-Print Network [OSTI]

Computer Requirement ALL STUDENTS IN THE SCHOOL OF ARCHITECTURE ARE REQUIRED TO PROVIDE THEIR OWN PERSONAL LAPTOP COMPUTER. ¡ All ENTERING GRADUATE STUDENTS in the School of Architecture are required to bring a computer. ¡ All SECOND-YEAR UNDERGRADUATE STUDENTS accepted into the School of Architecture

Maxwell, Bruce D.

454

Requirements and Submission Process for Qualified Software  

Broader source: Energy.gov (indexed) [DOE]

Requirements and Submission Process for Qualified Software The U.S. Department of Energy (DOE) verifies and maintains the list of software that qualifies for the calculation of the energy and power cost savings for commercial building tax deductions under tax code Section 179D. The software requirements are listed under Internal Revenue Service (IRS) Code §179D (c)(1) and (d) Regulations, Notice 2006-52

455

Grand Gulf-prioritization of regulatory requirements  

SciTech Connect (OSTI)

As cost pressures mount, Grand Gulf nuclear station (GGNS) is relying increasingly on various prioritization approaches to implement, modify, eliminate, or defer regulatory requirements. Regulatory requirements can be prioritized through the use of three measures: (1) safety (or risk) significance; (2) cost; and (3) public policy (or political) significance. This paper summarizes GGNS' efforts to implement solutions to regulatory issues using these three prioritization schemes to preserve a balance between cost and safety benefit.

Meisner, M.J. (Entergy Operations Inc., Port Gibson, MS (United States))

1993-01-01T23:59:59.000Z

456

Radiation recommendation series: administratively required dental radiographs  

SciTech Connect (OSTI)

Administrative requirements for radiographs are found in many segments of the United States health care system. This document presents an FDA radiation recommendation on administratively required dental x-ray examinations. In general, such examinations are not requested to further the patient's dental health, but rather as a means of monitoring claims. However, the administrative use of radiographs that have been taken in the normal course of patient care is usually appropriate, as long as the patient's right to privacy is respected.

Not Available

1981-09-01T23:59:59.000Z

457

Weatherization Assistance Program Quality Work Plan Requirements  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's Weatherization Assistance Program (WAP) has introduced a comprehensive Quality Work Plan (QWP) that will establish a benchmark for quality home energy upgrades. This plan defines what is required when federal dollars are used to purchase weatherization services and leverages the resources developed through the Guidelines for Home Energy Professionals project. Below you will find links to QWP guidance, as well as links to the individual requirements.

458

Hanford analytical services quality assurance requirements documents  

SciTech Connect (OSTI)

Hanford Analytical Services Quality Assurance Requirements Document (HASQARD) is issued by the Analytical Services, Program of the Waste Management Division, US Department of Energy (US DOE), Richland Operations Office (DOE-RL). The HASQARD establishes quality requirements in response to DOE Order 5700.6C (DOE 1991b). The HASQARD is designed to meet the needs of DOE-RL for maintaining a consistent level of quality for sampling and field and laboratory analytical services provided by contractor and commercial field and laboratory analytical operations. The HASQARD serves as the quality basis for all sampling and field/laboratory analytical services provided to DOE-RL through the Analytical Services Program of the Waste Management Division in support of Hanford Site environmental cleanup efforts. This includes work performed by contractor and commercial laboratories and covers radiological and nonradiological analyses. The HASQARD applies to field sampling, field analysis, and research and development activities that support work conducted under the Hanford Federal Facility Agreement and Consent Order Tri-Party Agreement and regulatory permit applications and applicable permit requirements described in subsections of this volume. The HASQARD applies to work done to support process chemistry analysis (e.g., ongoing site waste treatment and characterization operations) and research and development projects related to Hanford Site environmental cleanup activities. This ensures a uniform quality umbrella to analytical site activities predicated on the concepts contained in the HASQARD. Using HASQARD will ensure data of known quality and technical defensibility of the methods used to obtain that data. The HASQARD is made up of four volumes: Volume 1, Administrative Requirements; Volume 2, Sampling Technical Requirements; Volume 3, Field Analytical Technical Requirements; and Volume 4, Laboratory Technical Requirements. Volume 1 describes the administrative requirements applicable to each of the other three volumes and is intended to be used in conjunction with the technical volumes.

Hyatt, J.E.

1997-09-25T23:59:59.000Z

459

Large Scale Computing and Storage Requirements for Nuclear Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Nuclear Physics (NP) Large Scale Computing and Storage Requirements for Nuclear Physics:...

460

DOE CYBER SECURITY EBK: CORE COMPETENCY TRAINING REQUIREMENTS...  

Broader source: Energy.gov (indexed) [DOE]

CORE COMPETENCY TRAINING REQUIREMENTS: CA DOE CYBER SECURITY EBK: CORE COMPETENCY TRAINING REQUIREMENTS: CA DOE CYBER SECURITY EBK: CORE COMPETENCY TRAINING REQUIREMENTS. Key Cyber...

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

"Information-Friction" and its implications on minimum energy required for communication  

E-Print Network [OSTI]

Just as there are frictional losses associated with moving masses on a surface, what if there were frictional losses associated with moving information on a substrate? Indeed, many modes of communication suffer from such frictional losses. We propose to model these losses as proportional to "bit-meters," i.e., the product of mass of information (i.e., the number of bits) and the distance of information transport. We use this "information- friction" model to understand fundamental energy requirements on encoding and decoding in communication circuitry. First, for communication across a binary input AWGN channel, we arrive at fundamental limits on bit-meters (and thus energy consumption) for decoding implementations that have a predetermined input-independent length of messages. For encoding, we relax the fixed-length assumption and derive bounds for flexible-message- length implementations. Using these lower bounds we show that the total (transmit + encoding + decoding) energy-per-bit must diverge to infinity as the target error probability is lowered to zero. Further, the closer the communication rate is maintained to the channel capacity (as the target error-probability is lowered to zero), the faster the required decoding energy diverges to infinity.

Pulkit Grover

2014-09-01T23:59:59.000Z

462

Long-Term Stewardship Science and Technology Requirements  

SciTech Connect (OSTI)

To ensure technology developed for long-term stewardship will meet existing requirements, a review of requirements was performed. In addition to identifying existing science and technology related requirements, gaps and conflicts of requirements were identified.

McDonald, J.K.; Nickelson, R.A.

2002-05-16T23:59:59.000Z

463

Long-term Stewardship Science and Technology Requirements  

SciTech Connect (OSTI)

To ensure technology developed for long-term stewardship will meet existing requirements, a review of requirements was performed. In addition to identifying existing science and technology related requirements, gaps and conflicts of requirements were identified.

Mcdonald, Jaimee Kristen; Nickelson, Reva Anne

2002-08-01T23:59:59.000Z

464

NBP RFI: Communications Requirements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

NBP RFI: Communications Requirements NBP RFI: Communications Requirements NBP RFI: Communications Requirements Cleco Corporation greatly appreciates the opportunity to provide information to the Department of Energy (DOE) on the communications needs of utilities. Cleco is an energy services company based in central Louisiana, serving approximately 276,000 residential, commercial and industrial customers since 1934. Cleco manages over 3,000 megawatts of electric capacity through its regulated Cleco Power LLC and unregulated Cleco Midstream Resources LLC businesses, utilizing a diverse fuel mix of lignite, coal, petcoke and natural gas. With 1,300 employees, Cleco manages and operates 70 transmission substations connected via 1,300 miles of transmission lines, together feeding over 350 distribution substations,

465

Requirements for Wind Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Requirements for Wind Development Requirements for Wind Development Requirements for Wind Development < Back Eligibility Commercial Construction Industrial Installer/Contractor Utility Savings Category Wind Buying & Making Electricity Program Info State Oklahoma Program Type Solar/Wind Permitting Standards In 2010, Oklahoma passed HB 2973, known as The Oklahoma Wind Energy Development Act. The bill becomes effective January 1, 2011. The Act provides sets rules for owners of wind energy facilities related to decommissioning, payments, and insurance. * Within one year of abandonment of a project, equipment from wind energy facilities must be removed and the land must be returned to its condition prior to the facility construction, except for roads. * After 15 years of operation, wind energy facility owners must file an

466

MRS Preliminary Site Requirements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

MRS Preliminary Site Requirements MRS Preliminary Site Requirements MRS Preliminary Site Requirements In the November 1989 Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program (DOE/RW-0247), the Secretary of Energy announced an initiative for developing a monitored retrievable storage (MRS) facility that is to start spent-fuel acceptance in 1998. This facility, which will be licensed by the U.S. Nuclear Regulatory Commission (NRC), will receive spent fuel from commercial nuclear power plants and provide a limited amount of storage for this spent fuel. When a geologic repository starts operations, the MRS facility will also stage spent-fuel shipments to the repository. By law, storage at the MRS facility is to be temporary, with permanent disposal provided in a geologic repository to be

467

Stack Height Requirements (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Stack Height Requirements (Ohio) Stack Height Requirements (Ohio) Stack Height Requirements (Ohio) < Back Eligibility Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides regulations for stacks for industrial facilities. "Stack" means any chimney, flue, conduit or duct arranged to conduct any emissions to the ambient air, excluding flares. "Stack height" means the distance from the ground-level elevation at the base of the stack to the crown of the stack. If a stack arises from a building or other structure, the ground-level elevation of that building or structure will be

468

MRS Preliminary Site Requirements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

MRS Preliminary Site Requirements MRS Preliminary Site Requirements MRS Preliminary Site Requirements In the November 1989 Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program (DOE/RW-0247), the Secretary of Energy announced an initiative for developing a monitored retrievable storage (MRS) facility that is to start spent-fuel acceptance in 1998. This facility, which will be licensed by the U.S. Nuclear Regulatory Commission (NRC), will receive spent fuel from commercial nuclear power plants and provide a limited amount of storage for this spent fuel. When a geologic repository starts operations, the MRS facility will also stage spent-fuel shipments to the repository. By law, storage at the MRS facility is to be temporary, with permanent disposal provided in a geologic repository to be

469

Civilian Radioactive Waste Management System Requirements Document  

SciTech Connect (OSTI)

The CRD addresses the requirements of Department of Energy (DOE) Order 413.3-Change 1, ''Program and Project Management for the Acquisition of Capital Assets'', by providing the Secretarial Acquisition Executive (Level 0) scope baseline and the Program-level (Level 1) technical baseline. The Secretarial Acquisition Executive approves the Office of Civilian Radioactive Waste Management's (OCRWM) critical decisions and changes against the Level 0 baseline; and in turn, the OCRWM Director approves all changes against the Level 1 baseline. This baseline establishes the top-level technical scope of the CRMWS and its three system elements, as described in section 1.3.2. The organizations responsible for design, development, and operation of system elements described in this document must therefore prepare subordinate project-level documents that are consistent with the CRD. Changes to requirements will be managed in accordance with established change and configuration control procedures. The CRD establishes requirements for the design, development, and operation of the CRWMS. It specifically addresses the top-level governing laws and regulations (e.g., ''Nuclear Waste Policy Act'' (NWPA), 10 Code of Federal Regulations (CFR) Part 63, 10 CFR Part 71, etc.) along with specific policy, performance requirements, interface requirements, and system architecture. The CRD shall be used as a vehicle to incorporate specific changes in technical scope or performance requirements that may have significant program implications. Such may include changes to the program mission, changes to operational capability, and high visibility stakeholder issues. The CRD uses a systems approach to: (1) identify key functions that the CRWMS must perform, (2) allocate top-level requirements derived from statutory, regulatory, and programmatic sources, and (3) define the basic elements of the system architecture and operational concept. Project-level documents address CRD requirements by further defining system element functions, decomposing requirements into significantly greater detail, and developing designs of system components, facilities, and equipment. The CRD addresses the identification and control of functional, physical, and operational boundaries between and within CRWMS elements. The CRD establishes requirements regarding key interfaces between the CRWMS and elements external to the CRWMS. Project elements define interfaces between CRWMS program elements. The Program has developed a change management process consistent with DOE Order 413.3-Change 1. Changes to the Secretarial Acquisition Executive and Program-level baselines must be approved by a Program Baseline Change Control Board. Specific thresholds have been established for identifying technical, cost, and schedule changes that require approval. The CRWMS continually evaluates system design and operational concepts to optimize performance and/or cost. The Program has developed systems analysis tools to assess potential enhancements to the physical system and to determine the impacts from cost saving initiatives, scientific and technological improvements, and engineering developments. The results of systems analyses, if appropriate, are factored into revisions to the CRD as revised Programmatic Requirements.

C.A. Kouts

2006-05-10T23:59:59.000Z

470

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect (OSTI)

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

Laycak, D T

2008-06-16T23:59:59.000Z

471

Microsoft Word - S07566_Requirements.doc  

Broader source: Energy.gov (indexed) [DOE]

March 2012 LMS/FUSRAP/S07566 Rev. 1 This page intentionally left blank LMS/FUSRAP/S07566 Rev. 1 Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites This document supersedes DOE-LM/GJ1242-2006, Long-Term Surveillance and Maintenance Needs Assessment for the 25 DOE FUSRAP Sites (S01649), December 2006 March 2012 This page intentionally left blank U.S. Department of Energy LTS&M Requirements for Remediated FUSRAP Sites March 2012 Doc. No. S07566, Rev. 1 Page i Contents Executive Summary ....................................................................................................................... iii 1.0 Acid/Pueblo Canyon, New Mexico, Site ...............................................................................1

472

Ootw Tool Requirements in Relation to JWARS  

SciTech Connect (OSTI)

This document reports the results of the CMke of the Secretary of Defense/Program Analysis & Evaluation (OSD/PA&E) sponsored project to identify how Operations Other Than War (OOTW) tool requirements relate to the Joint Warfare Simulation (JWARS) and, more generally, to joint analytical modeling and simulation (M&S) requirements. It includes recommendations about which OOTW tools (and functionality within tools) should be included in JWARS, which should be managed as joint analytical modeling and simulation (M&S) tools, and which should be left for independent development.

Hartley III, D.S.; Packard, S.L.

1998-01-01T23:59:59.000Z

473

Nuclear Power and the World's Energy Requirements  

E-Print Network [OSTI]

The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

V. Castellano; R. F. Evans; J. Dunning-Davies

2004-06-10T23:59:59.000Z

474

Requirements in DOE O 5480.19, Conduct of Operations Requirements for DOE  

Broader source: Energy.gov (indexed) [DOE]

Requirements in DOE O 5480.19, Conduct of Operations Requirements Requirements in DOE O 5480.19, Conduct of Operations Requirements for DOE Facilities Cross-referenced to DOE O 422.1, Conduct of Operations. Requirements in DOE O 5480.19, Conduct of Operations Requirements for DOE Facilities Cross-referenced to DOE O 422.1, Conduct of Operations. This is an open-book evaluation. Complete the questions, and submit your answers (hand-written or electronically) to the Training Center. Someone will check and grade your answers. If you achieve a score of at least 80%, you will receive a completion certificate. Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions More Documents & Publications U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals, Self-Study Guide

475

Department of Psychology Psychology Minor Requirements  

E-Print Network [OSTI]

Department of Psychology Psychology Minor Requirements The minor program in Psychology is designed to expose students to a variety of content areas in the field of Psychology and to provide the student with the ability to evaluate Psychology researcher as a consumer. To declare a Psychology minor, the student must

Chase, Sheila

476

Requirements Engineering Technology Transfer: An Experience Report  

E-Print Network [OSTI]

Requirements Engineering Technology Transfer: An Experience Report Francisco A. C. Pinheiro1 Julio of software engineering technology transfer was identified by Pfleeger (1999). She came to the con- clusion Journal of Technology Transfer, 28, 159­165, 2003 Š2003 Kluwer Academic Publishers. Manufactured

Leite, Julio Cesar Sampaio do Prado

477

Instrumental Requirements for Global Atmospheric Chemistry  

Science Journals Connector (OSTI)

...SIMULTANEOUS MEASUREMENT OF ATMOSPHERIC CH2O, O3, AND NO2...AIRBORNE MEASUREMENTS OF ATMOSPHERIC OH, JOURNAL OF GEOPHYSICAL...HYDROGEN-CHLORIDE AND WATER AT ANTARCTIC STRATOSPHERIC...TOON, O.B., CONDENSATION OF HNO3 AND HCL IN...requirements for global atmospheric chemistry. | The field...

D. L. Albritton; F. C. Fehsenfeld; A. F. Tuck

1990-10-05T23:59:59.000Z

478

Tourism Planning and Development Required Courses  

E-Print Network [OSTI]

Tourism Planning and Development Required Courses TOUR 400, Introduction to Tourism EREC 411 and Applications TOUR 560, Special Topics (8 credits) CEP 614, Fundamentals of Planning TOUR 615, Tourism Planning and Development TOUR 633, Economics of Travel and Tourism TOUR 700, Marketing Communications

New Hampshire, University of

479

Airfoil Optimization Using Practical Aerodynamic Design Requirements  

E-Print Network [OSTI]

Airfoil Optimization Using Practical Aerodynamic Design Requirements Howard P. Buckley, Beckett Y., Toronto, Ontario, M3H 5T6, Canada Practical aerodynamic design problems must balance the goal the aerodynamic constraints imposed at the off-design operating conditions to be treated explicitly. Both methods

Zingg, David W.

480

Mobile Communities Requirements and Features for Success  

E-Print Network [OSTI]

Mobile Communities ­ Requirements and Features for Success Sarah Denis Heldt Media Informatics LMU.broll@ifi.lmu.de Philipp Lehmann Burda Wireless GmbH philipp.lehmann@burda.com ABSTRACT Advancements in mobile technologies and decreasing charges are starting to leverage the mobile usage of the internet and its applications. This paper

Note: This page contains sample records for the topic "requires foresight assumptions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Heat Requirements for Retorting Oil Shale  

Science Journals Connector (OSTI)

Heat Requirements for Retorting Oil Shale ... Converting Oil Shale to Liquid Fuels: Energy Inputs and Greenhouse Gas Emissions of the Shell in Situ Conversion Process ... Converting Oil Shale to Liquid Fuels: Energy Inputs and Greenhouse Gas Emissions of the Shell in Situ Conversion Process ...

H. W. Sohns; L. E. Mitchell; R. J. Cox; W. I. Barnet; W. I. R. Murphy

1951-01-01T23:59:59.000Z

482

Requirements For An Advanced Fueling System  

E-Print Network [OSTI]

supported by DOE grant No. DE-FG03-02ER54686 Supported by 1 #12;Reactor Fueling Requirements Not Adequately for current drive, a fueling system is all that a burning plasma system may be able to rely on to alter core density peaking via. core fuelling provides more flexibility to reach ignition 3Raman/FESAC/7Aug07 #12

Princeton Plasma Physics Laboratory

483

Requirements for a Concentration in Energy Technologies  

E-Print Network [OSTI]

Technologies ­ 4 cr ENG EC 417 ­ Electric Energy Systems: Adapting to Renewable Resources ­ 4 cr Additional* - Methods of Environmental Policy ­ 4 cr ENG ME 533 ­ Energy Conversion ­ 4 cr ENG EC/ME/SE 543Requirements for a Concentration in Energy Technologies The concentration in Energy Technologies

484

REQUIRED COURSES M351: Principles of Marketing  

E-Print Network [OSTI]

REQUIRED COURSES M351: Principles of Marketing M353: Marketing Information Technology M370: Buyer Behavior M379: Marketing Research M489: Developing Marketing Strategies SUGGESTED ELECTIVES (TWO NEEDED) M405: Integrated Marketing Communications M425: Retail Marketing Strategy M445: Multinational

de Lijser, Peter

485

REQUIRED COURSES M351: Principles of Marketing  

E-Print Network [OSTI]

REQUIRED COURSES M351: Principles of Marketing M353: Marketing Information Technology M370: Buyer Behavior M379: Marketing Research M489: Developing Marketing Strategies SUGGESTED ELECTIVES (TWO NEEDED) M425: Retail Marketing Strategy M430: Sports Marketing M455: Strategic Internet Marketing M

de Lijser, Peter

486

REQUIRED COURSES M351: Principles of Marketing  

E-Print Network [OSTI]

REQUIRED COURSES M351: Principles of Marketing M353: Marketing Information Technology M370: Buyer Behavior M379: Marketing Research M489: Developing Marketing Strategies SUGGESTED ELECTIVES (TWO NEEDED) M401: Professional Selling M405: Integrated Marketing Communication M415: Managing the Sales

de Lijser, Peter

487

REQUIRED COURSES M351: Principles of Marketing  

E-Print Network [OSTI]

REQUIRED COURSES M351: Principles of Marketing M353: Marketing Information Technology M370: Buyer Behavior M379: Marketing Research M430: Sports Marketing M489: Developing Marketing Strategies SUGGESTED ELECTIVES (TWO NEEDED) M401: Professional Selling M405: Integrated Marketing Communication M465

de Lijser, Peter

488

REQUIRED COURSES M351: Principles of Marketing  

E-Print Network [OSTI]

REQUIRED COURSES M351: Principles of Marketing M353: Marketing Information Technology M370: Buyer Behavior M379: Marketing Research M425: Retail and Marketing Channel Strategies M489: Developing Marketing Strategies SUGGESTED ELECTIVES (TWO NEEDED) M465: Managing Services Marketing M455

de Lijser, Peter

489

REQUIRED COURSES M351: Principles of Marketing  

E-Print Network [OSTI]

REQUIRED COURSES M351: Principles of Marketing M353: Marketing Information Technology M370: Buyer Behavior M379: Marketing Research M489: Developing Marketing Strategies SUGGESTED ELECTIVES (TWO NEEDED) M425: Retail Marketing Strategy M445: International Marketing M475: Export Marketing M455

de Lijser, Peter

490

REQUIRED COURSES M351: Principles of Marketing  

E-Print Network [OSTI]

REQUIRED COURSES M351: Principles of Marketing M353: Marketing Information Technology M370: Buyer Behavior M379: Marketing Research M489: Developing Marketing Strategies SUGGESTED ELECTIVES (TWO NEEDED) M401: Professional Selling M405: Integrated Marketing Communications M455: Strategic

de Lijser, Peter

491

REQUIRED COURSES M351: Principles of Marketing  

E-Print Network [OSTI]

REQUIRED COURSES M351: Principles of Marketing M370: Buyer Behavior M379: Marketing Research M405: Advertising & Promotions Strategy M489: Developing Marketing Strategies SUGGESTED ELECTIVES (TWO NEEDED) M353: Marketing Information Technology M430: Sport Marketing M455: Strategic Internet

de Lijser, Peter

492

Requirements Document Create-A-Page  

E-Print Network [OSTI]

GROUP 9 Requirements Document Create-A-Page Matthew Currier, John Campbell, and Dan Martin 5/1/2009 This document is an outline of what was originally desired in the application in the Project Abstract, Create be a need to use a database to keep track of their #12;information as well as keep it secure from other

Wolfgang, Paul

493

Library Requirements for New Programs and  

E-Print Network [OSTI]

Library Requirements for New Programs and Major Revisions This form is to be completed the University Library, University of Saskatchewan. Contact the appropriate Liaison Librarian for assistance. 1/College: Degree Level (undergraduate or graduate) 2. Library Resources 2.1 Resources are/will be located mainly

Saskatchewan, University of

494

2020 Foresight: Practicing Ethically While Doing Things That Don’t Yet Exist  

Science Journals Connector (OSTI)

Transhumanism (Schneider, 2009) refers to the notion that in contrast to the generally accepted belief that humans have completely evolved, in fact they have not developed to their potential. Transhumanists conte...

John C. Linton

2010-12-01T23:59:59.000Z

495

SSSJ-A3 Foresight Joint Symposium on Nanomaterials and Nanostructures  

E-Print Network [OSTI]

, Jun Ren, Can-Li Song, Ye-Ping Jiang, Li-Li Wang, Ke He, Xi Chen, Jin-Feng Jia, Sheng Meng, Efthimios cone" of Bi2Te3 film" 17:00-17:15 Xie-Gang Zhu, Jing Wen, Guang Wang, Lili Wang, Ke He, Xucun Ma, Xi Chen, Jin-Feng Ji

Hasegawa, Shuji

496

REQUIREMENTS FOR WEB ACCESS FOR HEARING IMPAIRED 1 Requirements for Maintaining Web Access for  

E-Print Network [OSTI]

REQUIREMENTS FOR WEB ACCESS FOR HEARING IMPAIRED 1 Requirements for Maintaining Web Access to computing, including the Web, is a dream come true for the hearing impaired. However, improved technology "Quality in Web Design for Visually Impaired Users" by Margaret Ross (Ross, 2002) describes the specifics

Berry, Daniel M.

497

Building HVAC Requirements Overview Page 4-1 4 Building HVAC Requirements  

E-Print Network [OSTI]

heating, radiant floor systems, evaporative cooling, gas cooling, ground-source heat pumps, and wood space requirements for additions to existing dwellings and for alterations to existing heating and cooling systems packages. Package C permits electric resistance space heating, but requires significantly greater

498

Proper management of wildlife populations requires an in-depth knowledge of habitat require-  

E-Print Network [OSTI]

Proper management of wildlife populations requires an in-depth knowledge of habitat require- ments not call at wind speeds > 4.8 km/h and with clear to foggy skies. Frogs called at tempera- tures > 14°C and wind speeds

McCallum, Malcolm

499

Requirements for the MINOR in Environmental Science Five courses required. Total credits = minimum of 15  

E-Print Network [OSTI]

Requirements for the MINOR in Environmental Science Five courses required. Total credits = minimum to Environmental Science OR NRC 100 Environment and Society OR GEO-SCI 100 Global Environmental Change Select two (2) of following four courses ENVIRSCI 213 Introduction to Environmental Policy ENVIRSCI 214

Massachusetts at Amherst, University of

500

Federal Prison Industries-Requirement for Market  

Broader source: Energy.gov (indexed) [DOE]

FLASH 2004-12 FLASH 2004-12 April 5, 2004 Federal A4:Quisition Circular (FAC) 2001-21 The following item is available via the internet at httQ://WWVv .acQnet.gov/farlF AC/fac200 1-21.i2Qf Effective Date: March 26, 2004 Federal Prison Industries-Requirement for Market 023) This interira rule amends FAR parts 8, Required Sources of Supplies and Services, 19, Small I~usiness Programs, 42, Contract Administration and Audit Services, and 52, Solicitation Provisions and Contract Clauses. This rule pJ'Ovides that no appropriated funds may be expended for the purchase of products or services offered by the Federal Prison Industries, Inc. (FPI), unless the agency ma1.:ing the purchase determines that the offered product or service provides the best value to the buying agency in accordance with the applicable procurement