Powered by Deep Web Technologies
Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Requirements of Cask-Storage and Cask-Transport Licensing According to IAEA 1996 Rules for On-Site Storage of Spent Fuel in Germany - From the Utility's Point of View  

SciTech Connect (OSTI)

As agreed between the German government and the utilities in 2001, all spent fuel assemblies (FAs) are now stored inside spent-fuel casks in on-site storage buildings. With the cask being the only route of FA disposal, cask licensing has become vital not only for cask vendors, but also for the utilities. Recently, the German authorities have taken the switch from the IAEA 1985 to the IAEA 1996 rules as the basis of the cask transport license as an opportunity to open new areas of discussion. One example is the behavior of the fuel assemblies inside the cask during and after the most harmful design accidents. Radiation-induced embrittlement of high-burn-up fuel rods (55-65 GWd/tHM FA-avg.) may cause failure of fuel rods after the 9 m drop. If one conservatively assumes the leak-tight cask to be flooded with water and if one conservatively considers at the same time the fuel released from the high-burn-up rods to be fresh fuel, one can construct a situation with questionable criticality safety. Because of these and similar considerations, the cask licensing procedure in Germany has become difficult and slow. As a result, the German utilities can not reach the FA burn-up levels granted in their operating licenses, as there is no cask type licensed that would suffice. Cask vendors, fuel vendors and utilities must work together to solve this problem. (authors)

Schmidt, Paul; Schmidt, Konrad [EnKK, Obrigheim (Germany); Geiser, Heinz [GNS, Essen (Germany); Schmidt, Paul [EnBW Kernkraft GmbH, KKP-UP, Rheinschanzinsel, 76661 Philippsburg (Germany)

2007-07-01T23:59:59.000Z

2

International Symposium on Site Characterization for CO2Geological Storage  

SciTech Connect (OSTI)

Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

Tsang, Chin-Fu

2006-02-23T23:59:59.000Z

3

Webinar: Hydrogen Storage Materials Requirements  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

4

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

FEASIBILITY: TEAPOT DOME EOR PILOT L. Chiaramonte, M.TO IDENTIFY OPTIMAL CO 2 EOR STORAGE SITES V. Núńez Lopez,from a carbon dioxide EOR/sequestration project. Energy

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

5

On-site storage of low and intermediate level radwaste at INER, R.O.C.  

SciTech Connect (OSTI)

The radwaste on-site storage at INER has operated since 1977. In this paper the storage facilities including liquid ILW tanks, solid ILW vaults, silos and LLW warehouses were reported. For the sake of complying with the new radiation protection regulations, a facility upgrading plan which contains three programs is on schedule. The main upgrading program is storage buildings construction. This paper also briefly describes the contents of the plan.

Pen, B.L. [Inst. of Nuclear Energy Research, Lung-Tan (Taiwan, Province of China). Chemical Engineering Div.

1993-12-31T23:59:59.000Z

6

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

efficiency requirements - Maximum emission limits Investment constraints: - Payback period is constrained Storage constraints: - Electricity stored is limited by battery

Stadler, Michael

2008-01-01T23:59:59.000Z

7

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect (OSTI)

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

8

Monitored Retrievable Storage System Requirements Document. Revision 1  

SciTech Connect (OSTI)

This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design.

Not Available

1994-03-01T23:59:59.000Z

9

Hydrogen Storage Materials Requirements to Meet the 2017 On Board...  

Energy Savers [EERE]

Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets Hydrogen Storage Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical...

10

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

could be acquired, e.g. battery storage, the costs for whichlead/acid battery, and thermal storage, capabilities, withis limited by battery size - Heat storage is limited by

Stadler, Michael

2008-01-01T23:59:59.000Z

11

Spent fuel storage requirements 1993--2040  

SciTech Connect (OSTI)

Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges.

Not Available

1994-09-01T23:59:59.000Z

12

Large Scale Computing and Storage Requirements for Nuclear Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Nuclear Physics (NP) Large Scale Computing and Storage Requirements for Nuclear Physics:...

13

Sandia National Laboratories: energy storage requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accomplishments On March 3, 2015, in Capabilities, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

14

Optimized Energy Management for Large Organizations Utilizing an On-Site PHEV fleet, Storage Devices and Renewable Electricity Generation  

SciTech Connect (OSTI)

Abstract This paper focuses on the daily electricity management problem for organizations with a large number of employees working within a relatively small geographic location. The organization manages its electric grid including limited on-site energy generation facilities, energy storage facilities, and plug-in hybrid electric vehicle (PHEV) charging stations installed in the parking lots. A mixed integer linear program (MILP) is modeled and implemented to assist the organization in determining the temporal allocation of available resources that will minimize energy costs. We consider two cost compensation strategies for PHEV owners: (1) cost equivalent battery replacement reimbursement for utilizing vehicle to grid (V2G) services from PHEVs; (2) gasoline equivalent cost for undercharging of PHEV batteries. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results and substantiates the importance of controlled PHEV fleet charging as opposed to uncontrolled charging methods. We further established the importance of realizing V2G capabilities provided by PHEVs in terms of significantly reducing energy costs for the organization.

Dashora, Yogesh [University of Texas, Austin; Barnes, J. Wesley [University of Texas, Austin; Pillai, Rekha S [ORNL; Combs, Todd E [ORNL; Hilliard, Michael R [ORNL

2012-01-01T23:59:59.000Z

15

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect (OSTI)

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6. This Introduction to the WASTE STORAGE FACILITIES TSRs is not part of the TSR limits or conditions and contains no requirements related to WASTE STORAGE FACILITIES operations or to the safety analyses of the DSA.

Larson, H L

2007-09-07T23:59:59.000Z

16

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect (OSTI)

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

Laycak, D T

2008-06-16T23:59:59.000Z

17

Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements  

SciTech Connect (OSTI)

In 1998, a major change in the technical strategy for managing Multi Canister Overpacks (MCO) while stored within the Canister Storage Building (CSB) occurred. The technical strategy is documented in Baseline Change Request (BCR) No. SNF-98-006, Simplified SNF Project Baseline (MCO Sealing) (FDH 1998). This BCR deleted the hot conditioning process initially adopted for the Spent Nuclear Fuel Project (SNF Project) as documented in WHC-SD-SNF-SP-005, Integrated Process Strategy for K Basins Spent Nuclear Fuel (WHC 199.5). In summary, MCOs containing Spent Nuclear Fuel (SNF) from K Basins would be placed in interim storage following processing through the Cold Vacuum Drying (CVD) facility. With this change, the needs for the Hot Conditioning System (HCS) and inerting/pressure retaining capabilities of the CSB storage tubes and the MCO Handling Machine (MHM) were eliminated. Mechanical seals will be used on the MCOs prior to transport to the CSB. Covers will be welded on the MCOs for the final seal at the CSB. Approval of BCR No. SNF-98-006, imposed the need to review and update the CSB functions and requirements baseline documented herein including changing the document title to ''Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements.'' This revision aligns the functions and requirements baseline with the CSB Simplified SNF Project Baseline (MCO Sealing). This document represents the Canister Storage Building (CSB) Subproject technical baseline. It establishes the functions and requirements baseline for the implementation of the CSB Subproject. The document is organized in eight sections. Sections 1.0 Introduction and 2.0 Overview provide brief introductions to the document and the CSB Subproject. Sections 3.0 Functions, 4.0 Requirements, 5.0 Architecture, and 6.0 Interfaces provide the data described by their titles. Section 7.0 Glossary lists the acronyms and defines the terms used in this document. Section 8.0 References lists the references used for this document.

KLEM, M.J.

2000-10-18T23:59:59.000Z

18

Optimization of compression and storage requirements at hydrogen refueling stations.  

SciTech Connect (OSTI)

The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

2008-01-01T23:59:59.000Z

19

Preliminary requirements for thermal storage subsystems in solar thermal applications  

SciTech Connect (OSTI)

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

20

An advanced control method for cascaded SMPS to reduce the energy storage requirements  

E-Print Network [OSTI]

An advanced control method for cascaded SMPS to reduce the energy storage requirements Damien Frost supplies con- tain large energy storage components that filter the pulsating power that is created by an AC strategies to reduce the size of those energy storage components to reduce the overall size and cost

Prodiæ, Aleksandar

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The united kingdom's changing requirements for spent fuel storage  

SciTech Connect (OSTI)

The UK is adopting an open fuel cycle, and is necessarily moving to a regime of long term storage of spent fuel, followed by geological disposal once a geological disposal facility (GDF) is available. The earliest GDF receipt date for legacy spent fuel is assumed to be 2075. The UK is set to embark on a programme of new nuclear build to maintain a nuclear energy contribution of 16 GW. Additionally, the UK are considering a significant expansion of nuclear energy in order to meet carbon reduction targets and it is plausible to foresee a scenario where up to 75 GW from nuclear power production could be deployed in the UK by the mid 21. century. Such an expansion, could lead to spent fuel storage and its disposal being a dominant issue for the UK Government, the utilities and the public. If the UK were to transition a closed fuel cycle, then spent fuel storage should become less onerous depending on the timescales. The UK has demonstrated a preference for wet storage of spent fuel on an interim basis. The UK has adopted an approach of centralised storage, but a 16 GW new build programme and any significant expansion of this may push the UK towards distributed spent fuel storage at a number of reactors station sites across the UK.

Hodgson, Z.; Hambley, D.I.; Gregg, R.; Ross, D.N. [National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington, Cheshire WA3 6AE (United Kingdom)

2013-07-01T23:59:59.000Z

22

Design requirements document for project W-465, immobilized low activity waste interim storage  

SciTech Connect (OSTI)

The scope of this design requirements document is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste produced by the privatized Tank Waste Remediation System treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized low-activity waste interim storage facility project and provides traceability from the program level requirements to the project design activity.

Burbank, D.A.

1997-01-27T23:59:59.000Z

23

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

SciTech Connect (OSTI)

IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

Gerber, Richard A.; Wasserman, Harvey J.

2012-03-02T23:59:59.000Z

24

Large Scale Computing and Storage Requirements for High Energy Physics  

SciTech Connect (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

Gerber, Richard A.; Wasserman, Harvey

2010-11-24T23:59:59.000Z

25

Waste encapsulation storage facility (WESF) standards/requirements identification document (S/RIDS)  

SciTech Connect (OSTI)

This Standards/Requirements Identification Document (S/RID) sets forth the Environmental Safety and Health (ES{ampersand}H) standards/requirements for the Waste Encapsulation Storage Facility (WESF). This S/RID is applicable to the appropriate life cycle phases of design, construction, operation, and preparation for decommissioning. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

Maddox, B.S., Westinghouse Hanford

1996-07-29T23:59:59.000Z

26

Supplemental design requirements document enhanced radioactive and mixed waste storage Phase V Project W-112  

SciTech Connect (OSTI)

This document provides additional and supplemental information to WHC-SD-W112-FDC-001, Project W-112 for radioactive and mixed waste storage. It provides additional requirements for the design and summarizes Westinghouse Hanford Company key design guidance and establishes the technical baseline agreements to be used for definitive design of the Project W-112 facilities.

Ocampo, V.P.; Boothe, G.F.; Greager, T.M.; Johnson, K.D.; Kooiker, S.L.; Martin, J.D.

1994-11-01T23:59:59.000Z

27

TRU waste certification compliance requirements for contact-handled wastes retrieved from storage for shipment to the WIPP  

SciTech Connect (OSTI)

Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable DOE Orders must continue to be met. The compliance requirements for certified waste retrieved from certified storage are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste.

Not Available

1982-09-01T23:59:59.000Z

28

A COMPARISON OF THE CONDUCTOR REQUIREMENTS FOR ENERGY STORAGE DEVICES MADE WITH IDEAL COIL GEOMETRIES  

E-Print Network [OSTI]

Superconducting Magnetic Energy Storage Program," Los AlamosWisconsin Superconductive Energy Storage Project. Y2!.l,J. J. Stekly, "Magnetic Energy Storage Using Superconducting

Hassenzahl, W.

2011-01-01T23:59:59.000Z

29

Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements  

E-Print Network [OSTI]

Leaks from Underground Storage Tanks by Media Affected Soilfrom Underground Storage Tank Facilities Cities CountiesCities Counties Leaks per Underground Storage Tank Facility

Cutter, W. Bowman

2008-01-01T23:59:59.000Z

30

Design requirements document for Project W-465, immobilized low-activity waste interim storage  

SciTech Connect (OSTI)

The scope of this Design Requirements Document (DRD) is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste (ILAW) produced by the privatized Tank Waste Remediation System (TWRS) treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the TWRS ILAW Interim Storage facility project and provides traceability from the program level requirements to the project design activity. Technical and programmatic risk associated with the TWRS planning basis are discussed in the Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The design requirements provided in this document will be augmented by additional detailed design data documented by the project.

Burbank, D.A.

1998-05-19T23:59:59.000Z

31

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

SciTech Connect (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

Gerber, Richard

2014-05-02T23:59:59.000Z

32

DOE nuclear material packaging manual: storage container requirements for plutonium oxide materials  

SciTech Connect (OSTI)

Loss of containment of nuclear material stored in containers such as food-pack cans, paint cans, or taped slip lid cans has generated concern about packaging requirements for interim storage of nuclear materials in working facilities such as the plutonium facility at Los Alamos National Laboratory (LANL). In response, DOE has recently issued DOE M 441.1 'Nuclear Material Packaging Manual' with encouragement from the Defense Nuclear Facilities Safety Board. A unique feature compared to transportation containers is the allowance of filters to vent flammable gases during storage. Defining commonly used concepts such as maximum allowable working pressure and He leak rate criteria become problematic when considering vented containers. Los Alamos has developed a set of container requirements that are in compliance with 441.1 based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide. The pre and post drop-test He leak rates depend upon container size as well as the material contents. For containers that are routinely handled, ease of handling and weight are a major consideration. Relatively thin-walled containers with flat bottoms are desired yet they cannot be He leak tested at a differential pressure of one atmosphere due to the potential for plastic deformation of the flat bottom during testing. The He leak rates and He leak testing configuration for containers designed for plutonium bearing materials will be presented. The approach to meeting the other manual requirements such as corrosion and thermal degradation resistance will be addressed. The information presented can be used by other sites to evaluate if their conditions are bounded by LANL requirements when considering procurement of 441.1 compliant containers.

Veirs, D Kirk [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

33

Large Scale Computing and Storage Requirements for Biological and Environmental Research  

SciTech Connect (OSTI)

In May 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of Biological and Environmental Research (BER) held a workshop to characterize HPC requirements for BER-funded research over the subsequent three to five years. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. Chief among them: scientific progress in BER-funded research is limited by current allocations of computational resources. Additionally, growth in mission-critical computing -- combined with new requirements for collaborative data manipulation and analysis -- will demand ever increasing computing, storage, network, visualization, reliability and service richness from NERSC. This report expands upon these key points and adds others. It also presents a number of"case studies" as significant representative samples of the needs of science teams within BER. Workshop participants were asked to codify their requirements in this"case study" format, summarizing their science goals, methods of solution, current and 3-5 year computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel,"multi-core" environment that is expected to dominate HPC architectures over the next few years.

DOE Office of Science, Biological and Environmental Research Program Office (BER),

2009-09-30T23:59:59.000Z

34

High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6  

SciTech Connect (OSTI)

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

Not Available

1994-04-01T23:59:59.000Z

35

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4  

SciTech Connect (OSTI)

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

Not Available

1994-04-01T23:59:59.000Z

36

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2  

SciTech Connect (OSTI)

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction.

Not Available

1994-04-01T23:59:59.000Z

37

Fractured rock modeling in the National Waste Terminal Storage Program: a review of requirements and status  

SciTech Connect (OSTI)

Generalized computer codes capable of forming the basis for numerical models of fractured rock masses are being used within the NWTS program. Little additional development of these codes is considered justifiable, except in the area of representation of discrete fractures. On the other hand, model preparation requires definition of medium-specific constitutive descriptions and site characteristics and is therefore legitimately conducted by each of the media-oriented projects within the National Waste Terminal Storage program. However, it is essential that a uniform approach to the role of numerical modeling be adopted, including agreement upon the contribution of modeling to the design and licensing process and the need for, and means of, model qualification for particular purposes. This report discusses the role of numerical modeling, reviews the capabilities of several computer codes that are being used to support design or performance assessment, and proposes a framework for future numerical modeling activities within the NWTS program.

St. John, C.; Krug, A.; Key, S.; Monsees, J.

1983-05-01T23:59:59.000Z

38

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network [OSTI]

photovoltaics; hydrogen storage; ultrathin epitaxial filmsstorage to obtain an accurate power spectrum, especially if the relatively rapid vibrational behavior of hydrogen

Gerber, Richard

2012-01-01T23:59:59.000Z

39

Potential Federal On-Site Solar Aggregation in Washington, D...  

Broader source: Energy.gov (indexed) [DOE]

Requirements * On-site Renewable Energy Purchase Overview * Washington DCMaryland Solar Options * Case Studies * Federal Interest * Q&A * Resources 2 3 Federal Renewable...

40

TRU waste certification compliance requirements for acceptance of contact-handled wastes retrieved from storage to be shipped to the WIPP. Revision 1  

SciTech Connect (OSTI)

Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid defense wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable DOE orders must continue to be met. The compliance requirements for certified waste retrieved from certified storage are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 2 refs., 1 fig.

Not Available

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Systems Modeling, Simulation and Material Operating Requirements for Chemical Hydride Based Hydrogen Storage  

SciTech Connect (OSTI)

Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydride based hydrogen storage. AB was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A new systems concept based on augers, ballast tank, hydrogen heat exchanger and H2 burner was designed and implemented in simulation. In this design, the chemical hydride material was assumed to produce H2 on the augers itself, thus minimizing the size of ballast tank and reactor. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure, in various components of the storage system. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. The control variable AB (or alane) flow rate was determined through a simple expression based on the ballast tank pressure, H2 demand from the fuel cell and hydrogen production from AB (or alane) in the reactor. System simulation results for solid AB, liquid AB and alane for both steady state and transient drive cycle cases indicate the usefulness of the model for further analysis and prototype development.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.

2012-02-01T23:59:59.000Z

42

Reducing Energy Costs And Minimizing Capital Requirements: Case Studies of Thermal Energy Storage (TES)  

E-Print Network [OSTI]

, and thus during those times when power has its highest cost or value. Thermal Energy Storage (TES) provides a means of de-coupling the generation of cooling from the provision of cooling to the peak cooling loads. In this manner, peak power demand...

Andrepont, J. S.

2007-01-01T23:59:59.000Z

43

Functional and operational requirements document : building 1012, Battery and Energy Storage Device Test Facility, Sandia National Laboratories, New Mexico.  

SciTech Connect (OSTI)

This report provides an overview of information, prior studies, and analyses relevant to the development of functional and operational requirements for electrochemical testing of batteries and energy storage devices carried out by Sandia Organization 2546, Advanced Power Sources R&D. Electrochemical operations for this group are scheduled to transition from Sandia Building 894 to a new Building located in Sandia TA-II referred to as Building 1012. This report also provides background on select design considerations and identifies the Safety Goals, Stakeholder Objectives, and Design Objectives required by the Sandia Design Team to develop the Performance Criteria necessary to the design of Building 1012. This document recognizes the Architecture-Engineering (A-E) Team as the primary design entity. Where safety considerations are identified, suggestions are provided to provide context for the corresponding operational requirement(s).

Johns, William H.

2013-11-01T23:59:59.000Z

44

High level waste storage tanks 242-A evaporator standards/requirement identification document  

SciTech Connect (OSTI)

This document, the Standards/Requirements Identification Document (S/RIDS) for the subject facility, represents the necessary and sufficient requirements to provide an adequate level of protection of the worker, public health and safety, and the environment. It lists those source documents from which requirements were extracted, and those requirements documents considered, but from which no requirements where taken. Documents considered as source documents included State and Federal Regulations, DOE Orders, and DOE Standards

Biebesheimer, E.

1996-01-01T23:59:59.000Z

45

Improved understanding of geologic CO{sub 2} storage processes requires risk-driven field experiments  

SciTech Connect (OSTI)

The need for risk-driven field experiments for CO{sub 2} geologic storage processes to complement ongoing pilot-scale demonstrations is discussed. These risk-driven field experiments would be aimed at understanding the circumstances under which things can go wrong with a CO{sub 2} capture and storage (CCS) project and cause it to fail, as distinguished from accomplishing this end using demonstration and industrial scale sites. Such risk-driven tests would complement risk-assessment efforts that have already been carried out by providing opportunities to validate risk models. In addition to experimenting with high-risk scenarios, these controlled field experiments could help validate monitoring approaches to improve performance assessment and guide development of mitigation strategies.

Oldenburg, C.M.

2011-06-01T23:59:59.000Z

46

High Performance Computing and Storage Requirements for Biological and Environmental Research Target 2017  

E-Print Network [OSTI]

Journal   of   High   Performance  Computing  Applications  and   high-­?performance   computing   is   critical   in  context   requires   High  Performance   Computing  (HPC)  

Gerber, Richard

2014-01-01T23:59:59.000Z

47

A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI  

SciTech Connect (OSTI)

(OAK/B204) A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI

Hiroshi Takahashi; Upendra Rohatgi; T.J. Downar

2000-08-04T23:59:59.000Z

48

Assessment of the Electrical Power Requirements for Continued Safe Storage and Waste Feed Delivery Phase 1  

SciTech Connect (OSTI)

This study evaluated the ability of the electrical distribution system to support safe storage as well as the first phase of the Waste Feed Delivery. Several recommendations are made to improve the electrical system. The ability to assure adequate Waste Feed Delivery (WFD) to the Privatization Contractor's vitrification facility is a key element in the overall Hanford cleanup schedule. An important aspect of this WFD is the availability of sufficient and appropriate electrical power in the single- and double-shell tank farms. The methodology for performing this review and the results are described.

MAY, T.H.

2000-04-07T23:59:59.000Z

49

Large Scale Computing and Storage Requirements for Biological and Environmental Research  

E-Print Network [OSTI]

climate and earth system models, based on theoreticalemerging class of Earth System Models that include detailedof integrated earth system model predictions requires

DOE Office of Science, Biological and Environmental Research Program Office BER,

2010-01-01T23:59:59.000Z

50

ASME AG-1 REQUIREMENT EXEMPTION JUSTIFICATIONS FOR VENTILATION SYSTEMS AT NUCLEAR WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect (OSTI)

Washington State Department of Health regulations require compliance with the American Society of Mechanical Engineers (ASME) AG-1, ''Code on Nuclear Air and Gas Treatment,'' for all new radioactive air emission units. As a result, these requirements have been applied to systems that ventilate the radioactive waste storage tanks in the tank farm facilities on the U.S. Department of Energy's Hanford Site. ASME AG-1 is applied as a regulatory constraint to waste tank ventilation systems at the Hanford Site, even though the code was not intended for these systems. An assessment was performed to identify which requirements should be exempted for waste tank ventilation systems. The technical justifications for requirement exemptions were prepared and presented to the regulator. The technical justifications were documented so that select requirement exemptions for specific projects and systems can be sought through the regulator's permitting process. This paper presents the rationale for attempting to receive requirement exemption and presents examples of the technical justifications that form the basis for these exemptions.

GUSTAVSON, R.D.

2004-09-03T23:59:59.000Z

51

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7  

SciTech Connect (OSTI)

This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining the facility and executing the mission of the High-Level Waste Storage Tank Farms.

Not Available

1994-04-01T23:59:59.000Z

52

Guidance on site selection for  

E-Print Network [OSTI]

harvestingbrash materialfollowingtimber harvestingto supply biomass for heat and power generation. A numberGuidance on site selection for brash removal Forest Research, May 2009 The Research Agency SELECTION FOR BRASH REMOVAL | Forest Research | May 09 #12;Brash Removal Background Interest is growingin

53

On-Site Wastewater Treatment Systems: Selecting and Permitting  

E-Print Network [OSTI]

This publication explains factors to consider when choosing an on-site wastewater treatment system and lists the nine steps required to obtain a permit for one. It includes addresses and phone numbers of Texas Natural Resource Conservation...

Lesikar, Bruce J.

2005-04-30T23:59:59.000Z

54

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1  

SciTech Connect (OSTI)

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

Burt, D.L.

1994-04-01T23:59:59.000Z

55

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

SciTech Connect (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues raised by researchers at the workshop.

Gerber, Richard; Wasserman, Harvey

2011-03-31T23:59:59.000Z

56

Supplemental design requirements document enhanced radioactive and mixed waste storage: Phase 5, Project W-113  

SciTech Connect (OSTI)

This Supplemental Design Requirements Document (SDRD) is used to communicate Project W-113 specific plant design information from Westinghouse Hanford Company (WHC) to the United States Department of Energy (DOE) and the cognizant Architect Engineer (A/E). The SDRD is prepared after the completion of the project Conceptual Design report (CDR) and prior to the initiation of definitive design. Information in the SDRD serves two purposes: to convey design requirements that are too detailed for inclusion in the Functional Design Criteria (FDC) report and to serve as a means of change control for design commitments in the Title I and Title II design. The Solid Waste Retrieval Project (W-113) SDRD has been restructured from the equipment based outline used in previous SDRDs to a functional systems outline. This was done to facilitate identification of deficiencies in the information provided in the initial draft SDRD and aid design confirmation. The format and content of this SDRD adhere as closely as practicable to the requirements of WHC-CM-6-1, Standard Engineering Practices for Functional Design Criteria.

Ocampo, V.P.

1994-11-01T23:59:59.000Z

57

CTBT on-site inspections  

SciTech Connect (OSTI)

On-site inspection (OSI) is a critical part of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The OSI verification regime provides for international inspectors to make a suite of measurements and observations on site at the location of an event of interest. The other critical component of the verification regime is the International Monitoring System (IMS), which is a globally distributed network of monitoring stations. The IMS along with technical monitoring data from CTBT member countries, as appropriate, will be used to trigger an OSI. After the decision is made to carry out an OSI, it is important for the inspectors to deploy to the field site rapidly to be able to detect short-lived phenomena such as the aftershocks that may be observable after an underground nuclear explosion. The inspectors will be on site from weeks to months and will be working with many tens of tons of equipment. Parts of the OSI regime will be tested in a field exercise in the country of Jordan late in 2014. The build-up of the OSI regime has been proceeding steadily since the CTBT was signed in 1996 and is on track to becoming a deterrent to someone considering conducting a nuclear explosion in violation of the Treaty.

Zucca, J. J. [Principal Deputy, Global Security Directorate, Lawrence Livermore National Laboratory, Livermore, California (United States)

2014-05-09T23:59:59.000Z

58

Assessor Training Evaluating OnSite Reports  

E-Print Network [OSTI]

NVLAP Assessor Training Evaluating OnSite Reports and Corrective Actions #12;Assessor Training 2009Site Report form ·NVLAP OnSite Assessment Review form #12;Assessor Training 2009: Evaluating OnSite Reports · Nonconformities cited #12;Assessor Training 2009: Evaluating OnSite Reports & Corrective Actions 44 Evaluating

59

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4  

SciTech Connect (OSTI)

Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

Not Available

1994-04-01T23:59:59.000Z

60

Solid low level waste forms and extended storage  

SciTech Connect (OSTI)

This paper presents regulatory, technical, and economic aspects of selecting solid waste forms for the extended on-site storage of power plant low level wastes (LLW) in the United States. The author explains current uncertainties and disposal site shortages, defines power plant waste types, addresses regulatory requirements for disposal, discusses basic waste form storage considerations, outlines possible strategies for the management of individual waste types, and offers methodological steps for selecting a waste form for extended storage. Broader issues closely associated with waste form selection are also presented.

Kohout, R. [R. Kohout & Associates, Ltd., Toronto, Ontario (Canada)

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

and A.M. Jessop, Hydraulic fracturing experiment at theor pressures at which hydraulic fracturing of the cap rocka high potential for hydraulic fracturing occurs in the case

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

62

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

in depleted or abandoned oil and gas reservoirs; how- ever,abandoned wells represent a potentially direct route from reservoirabandoned in the 1930s with no barrier installed after it encountered a natural CO 2 reservoir

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

63

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

in depleted or abandoned oil and gas reservoirs; how- ever,oil well abandoned in the 1930s with no barrier installed after it encountered a natural CO 2 reservoir

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

64

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

IN DEPLETED AND NEAR- DEPLETED OIL RESERVOIRS V. A. KuuskraaDEPLETED AND NEAR-DEPLETED OIL RESERVOIRS Vello A. Kuuskraaof CO 2 in a depleted oil reservoir: an overview,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

65

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

coal bed methane recovery (ECBM). Data from reservoirs incoal bed methane (ECBM) recovery. Also, since oil and gas reservoirs

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

66

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

Marchetti, C. , On geoengineering and the CO2 prob- lem.to the location of geoengineering activities seems to be

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

67

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

of the rock volume. Oil-production data indicate that theal. , 2006). Historical oil production at depths around 2400logs in regionally dis- oil production tributed wells Well

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

68

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

Basin. The successful drill stem test re- covered 84.1 m (and fluid data from drill stem tests (as shown in Figure 3

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

69

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

be necessary to extract coal seam methane or groundwater inCalifornia, March 20-22, 2006 Unmineable coal seams Finally,unmineable coal seams pose substantial chal- lenges in all

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

70

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

157 WELL INTEGRITY IN CO 2 ENVIRONMENTS: PERFORMANCE, RISK,of CO 2 injection, wells integrity and long term behavior ofcan compromise the well integrity and thus its functional

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

71

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

Treatise of Petroleum Geology, Atlas of Oil and Gas Fields,A-A’). phy, geology, stratigraphic contacts, oil and gas andgeology, initial information available from hydrogeology, oil

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

72

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

EOR) and enhanced coalbed methane recovery (ECBMR) becauseand potential for coalbed methane. The Mannville coals areCO 2 injectivity and coalbed methane producibility. Thus,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

73

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

carbon dioxide-enhanced oil recovery project as a prototypeCO 2 injection for enhanced oil recovery. Indeed, most near-as well as Enhanced Oil Recovery projects. REFERENCES

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

74

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

CONSTRAIN CO2 INJECTION FEASIBILITY: TEAPOT DOME EOR PILOTEOR, and coupled process modeling will investigate the total system including preliminary estimates of CO2

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

75

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

Watrous Formation, Williston Basin, Canada: a preliminaryaccumulation in the northern Williston Basin. The Watrous

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

76

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

Geo- logic Carbon Dioxide Sequestration: An Analysis of86 MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP,MONITORING OF GEOLOGIC CARBON SEQUESTRATION B. R. Strazisar,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

77

On-Site and Bulk Hydrogen Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy SecondEfficiencyGuide, July 29,Program

78

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

host hydrocarbon reservoirs and oil and gas produc- tionthroat radius mm Radius (m) Reservoirs Oil Gas um GeologicalIn each of these reservoirs, oil fields have been dis-

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

79

TRU (transuranic) waste certification compliance requirements for acceptance of contact-handled wastes retrieved from storage to be shipped to the Waste Isolation Pilot Plant: Revision 2  

SciTech Connect (OSTI)

Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid defense wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable Department of Energy (DOE) orders must continue to be met. The compliance requirements for acceptance of newly generated CH waste to be shipped to the WIPP are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 10 refs., 1 fig.

Not Available

1989-01-01T23:59:59.000Z

80

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Microgrids: distributed on-site generation  

E-Print Network [OSTI]

electricity and heat supply; · Need for energy storage, both electrical and thermal; · Relationship between

Watson, Andrew

82

Hydrogen Storage DOI: 10.1002/anie.200801163  

E-Print Network [OSTI]

, is the development of a safe and practical storage system. As opposed to stationary storage, in which the tank volume required for storage near room temperature. 2. Hydrogen Storage Requirements 2.1. The US DoE Storage System

83

Corporate Training On-Site Online Global  

E-Print Network [OSTI]

MAKE THE RIGHT MOVE Corporate Training On-Site · Online · Global IMPROVE YOUR COMPETITIVE ADVANTAGE WITH WORLD-CLASS ON-SITE AND ONLINE SOLUTIONS TAILORED TO MEET YOUR BUSINESS AND EMPLOYEE TRAINING NEEDS a competitive advantage depends on how well your staff executes. UCIrvineExtension's Corporate Training helps

Barrett, Jeffrey A.

84

Underground Storage Tank Regulations  

Broader source: Energy.gov [DOE]

The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

85

Interim storage cask (ISC), a concrete and steel dry storage cask  

SciTech Connect (OSTI)

General Atomics (GA) has designed and is currently fabricating the Interim Storage Cask (ISC) for Westinghouse Hanford Company (WHC). The ISC is a dry storage cask that will safely store a Core Component Container (CCC) with Fast Flux Test Facility (FFTF) spent fuel assemblies or fuel pin containers for a period of up to 50 years at the US Department of Energy (DOE) Hanford site. The cask may also be used to transfer the fuel to different areas within the Hanford site. The ISC is designed to stringent criteria from both 10CFR71 and 10CFR72 for safe storage and on-site transportation of FFTF spent fuel and fuel pin containers. The cask design uses a combination of steel and concrete materials to achieve a cost-effective means of storing spent fuel. The casks will be extensively tested before use to verify that the design and construction meet the design requirements.

Grenier, R.M.; Koploy, M.A. [General Atomics, San Diego, CA (United States)

1995-12-31T23:59:59.000Z

86

High level waste storage tank farms/242-A evaporator standards/requirements identification document phase 1 assessment report  

SciTech Connect (OSTI)

This document, the Standards/Requirements Identification Document (S/RID) Phase I Assessment Report for the subject facility, represents the results of an Administrative Assessment to determine whether S/RID requirements are fully addressed by existing policies, plans or procedures. It contains; compliance status, remedial actions, and an implementing manuals report linking S/RID elements to requirement source to implementing manual and section.

Biebesheimer, E., Westinghouse Hanford Co.

1996-09-30T23:59:59.000Z

87

REPORT OF ON-SITE INSPECTION WORKSHOP-16  

SciTech Connect (OSTI)

The central issue addressed by this workshop was the task of making the on-site inspection (OSI) part of the Comprehensive Nuclear-Test-Ban Treaty verification system operationally ready at entry into force of the Treaty. It is recognized, and this was emphasized by the 2008 OSI Integrated Field Exercise (IFE), that it is not possible to develop every part of the OSI regime simultaneously. Therefore, it is necessary to prioritize the approach to OSI readiness. The reviews of the IFE have pointed to many elements of OSI readiness that still need development. The objective of this workshop was to provide priorities for the path forward for Working Group B to consider. Several critical areas have been identified that are related to the development of OSI readiness: (1) Technology development: Priorities are radionuclide and noble gas sampling and analysis, visual observation, multispectral/infrared imaging methods, active seismic methods and the recognition of the importance of signatures. (2) Organizational development: Priorities are health and safety, the Operations Support Centre, the Equipment Storage and Maintenance Facility, information technology data flow and communications. (3) Resources: The expertise to develop key parts of the OSI regime is not available within the current OSI Division staff. To develop these aspects of the regime will require more staff or supplements to the staff with cost-free experts or other means. Aspects of the system that could benefit from more staff include radionuclide and noble gas detection methods, data flow and communications, visual observation, multispectral/infrared methods and health and safety. As the path forward, participants of this workshop recognized a need to optimize the development of OSI priorities. The outcome of this workshop is to suggest for consideration an operational approach to OSI readiness that utilizes results of an evaluation of the relative effectiveness of OSI elements versus their relative maturity. By integrating such an assessment with considerations of integrated operational capabilities and the anticipated level of inspection team self-sufficiency and measurable milestone criteria, a set of priorities for OSI development can be developed. Once these priorities have been established, the Policy Making Organs can decide upon the milestones, strategic plan and action plan to serve as guidance for implementation by the Provisional Technical Secretariat. The suggested operational approach is as follows: (1) Assess the relative effectiveness (importance) of OSI elements versus their relative maturity; (2) Determine the anticipated level of self-sufficiency; (3) Define measurable milestone criteria; and (4) Result: Milestones for OSI readiness.

Sweeney, J J

2009-07-07T23:59:59.000Z

88

Lower-Energy Requirements for Power-Assist HEV Energy Storage Systems--Analysis and Rationale (Presentation)  

SciTech Connect (OSTI)

Presented at the 27th International Battery Seminar and Exhibit, 15-18 March 2010, Fort Lauderdale, Florida. NREL conducted simulations and analysis of vehicle test data with research partners in response to a USABC request; results suggest that power-assist hybrid electric vehicles (HEVs), like conventional HEVs, can achieve high fuel savings with lower energy requirements at potentially lower cost.

Gonder, J.; Pesaran, A.

2010-03-18T23:59:59.000Z

89

On-Site Hydrogen Generation & Refueling Station  

E-Print Network [OSTI]

of FC vehicles under real-world conditions Cost analysis vs. target of $3/gge in 2008 On-site Auto Reforming based refueling station DOE Objectives Public education on hydrogen and fuel cells Evaluation cell & HCNG busses in commercial operation ­ Refueling fuel cell & HCNG street sweepers and cars

90

On-Site Sewage Treatment Alternatives  

E-Print Network [OSTI]

-site Wastewater Treatment and Disposal Options, VCE publication 448-403, and Individual Homeowner & Small Community Wastewa- ter Treatment & Disposal Options, VCE publication 448-406. Figure 1. Many ruralOn-Site Sewage Treatment Alternatives C. Zipper,Extension specialist and associate professor

Liskiewicz, Maciej

91

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 5  

SciTech Connect (OSTI)

The Fire Protection functional area for the Hanford Site Tank Farm facilities and support structures is based on the application of relevant DOE orders, regulations, and industry codes and standards. The fire protection program defined in this document may be divided into three areas: (1) organizational, (2) administrative programmatic features, and (3) technical features. The information presented in each section is in the form of program elements and orders, regulations, industry codes, and standards that serve as the attributes of a fire protection program for the Tank Farm facilities. Upon completion this document will be utilized as the basis to evaluate compliance of the fire protection program being implemented for the Tank Farm facilities with the requirements of DOE orders and industry codes and standards.

Not Available

1994-04-01T23:59:59.000Z

92

Underground Storage Tank Act (West Virginia)  

Broader source: Energy.gov [DOE]

New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored...

93

Environmental Assessment and Finding of No Significant Impact: On-Site Treatment of Low Level Mixed Waste  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1292) to evaluate the proposed treatment of low level mixed waste (LLMW) at the Rocky Flats Environmental Technology Site (Site). The purpose of the action is to treat LLMW in order to meet the Land Disposal Restrictions specified by the Resource Conservation and Recovery Act and the waste acceptance criteria of the planned disposal site(s). Approximately 17,000 cubic meters (m{sup 3}) of LLMW are currently stored at the Site. Another 65,000 m{sup 3}of LLMW are likely to be generated by Site closure activities (a total of 82,000 m{sup 3} of LLMW). About 35,000 m{sup 3} can be directly disposed of off-site without treatment, and most of the remaining 47,000 m{sup 3} of LLMW can be treated at off-site treatment, storage, and disposal facilities. However, some LLMW will require treatment on-site, either because it does not meet shipping requirements or because off-site treatment is not available for these particular types of LLMW. Currently, this LLMW is stored at the Site pending the development and implementation of effective treatment processes. The Site needs to treat this LLMW on-site prior to shipment to off-site disposal facilities, in order to meet the DOE long-term objective of clean up and closure of the Site. All on-site treatment of LLMW would comply with applicable Federal and State laws designed to protect public health and safety and to enhance protection of the environment. The EA describes and analyzes the environmental effects of the proposed action (using ten mobile treatment processes to treat waste on-site), and the alternatives of treating waste onsite (using two fixed treatment processes), and of taking no action. The EA was the subject of a public comment period from February 3 to 24, 1999. No written or other comments regarding the EA were received.

N /A

1999-03-22T23:59:59.000Z

94

Storage Tanks (Arkansas)  

Broader source: Energy.gov [DOE]

The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters...

95

On-Site Renewable Power Purchase Agreements | Department of Energy  

Office of Environmental Management (EM)

On-site renewable power purchase agreements (PPAs) allow Federal agencies to fund on-site renewable energy projects with no up-front capital costs incurred. With a PPA, a developer...

96

On-Site Wastewater Treatment Systems: Selecting and Permitting (Spanish)  

E-Print Network [OSTI]

This publication explains how to select and obtain a permit for an on-site wastewater treatment system in Texas....

Lesikar, Bruce J.

2005-04-30T23:59:59.000Z

97

Underground Storage Tanks (West Virginia)  

Broader source: Energy.gov [DOE]

This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install,...

98

On the dynamics of lattice systems with unbounded on-site terms in the Hamiltonian  

E-Print Network [OSTI]

We supply the mathematical arguments required to complete the proofs of two previously published results: Lieb-Robinson bounds for the dynamics of quantum lattice systems with unbounded on-site terms in the Hamiltonian and the existence of the thermodynamic limit of the dynamics of such systems.

Bruno Nachtergaele; Robert Sims

2014-10-29T23:59:59.000Z

99

NREL: Energy Storage - BLAST for Behind-the-Meter Applications...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lite (BLAST-BTM Lite) provides a quick, user-friendly tool to size behind-the-meter energy storage devices used on site by utility customers for facility demand charge...

100

Adapting On-site Electrical Generation Platforms for Producer Gas  

Broader source: Energy.gov [DOE]

Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

On-Site Wastewater Treatment Systems: Constructed Wetland Media  

E-Print Network [OSTI]

This publication explains the functions, characteristics, choices, configurations and maintenance needs for constructed wetland media in on-site wastewater treatment systems....

Lesikar, Bruce J.; Weaver, Richard; Richter, Amanda; O'Neill, Courtney

2005-02-19T23:59:59.000Z

102

NUHOWS - Storage and Transportation of Irradiated Reactor Components in Large Packages - 13439  

SciTech Connect (OSTI)

Most irradiated reactor components (hardware such as Control Rod Blades, Fuel Channels, Poison Curtains, etc.) generated at reactors previously required significant processing for size reduction due to the available transportation casks not being physically capable of containing unprocessed material. As of July 1, 2008, disposal for this typical waste class (B and C) became inaccessible (for the major part of the nation) due to the Barnwell, SC disposal facility being closed to all but its three compact states (CT, NJ and SC). Currently in the United States, most facilities are storing their irradiated hardware on-site in the spent fuel pools. Until recently with the opening of the Waste Control Specialists' Texas disposal facility, utilities faced the challenges of spent fuel pool space and capacity management. However, even with WCS's disposal availability, the site currently has annual Curie limitations for disposal, which will continue to promote interim on-site storage until such time as disposal is available. In response, Transnuclear Inc., (TN) an AREVA company, proceeded with designing a new large Radioactive Waste Container (RWC) that can be used to package irradiated hardware without the need for significant processing. The design features of the RWC allows for intermittent loadings of the hardware for better packaging efficiency, higher packaging density, space savings and reduced cost. This RWC is also compatible with TN's on-site modular vault storage system. Once completely loaded, the RWC can be transported to an on-site storage facility, an off-site storage facility and/or an available disposal facility. To accommodate the transportation, TN has designed a large transportation cask, the MP197HB. As the original design was for transporting fuel, it contains the necessary shielding to allow for the transport of unprocessed irradiated reactor components, while significantly reducing the amount of irradiated hardware shipments required with the use of the new RWC. This paper provides information on the unique design features of the RWC, storage module vaults, MP197HB Transportation Cask and cost saving benefits of using the large RWC for packaging, storage, transport and disposal. (authors)

Rae, Glen A. [Transnuclear, Inc., 7135 Minstrel Way, Columbia, MD 21045 (United States)] [Transnuclear, Inc., 7135 Minstrel Way, Columbia, MD 21045 (United States)

2013-07-01T23:59:59.000Z

103

Energy Storage  

ScienceCinema (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-23T23:59:59.000Z

104

Energy Storage  

SciTech Connect (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-03T23:59:59.000Z

105

Realization of the German Concept for Interim Storage of Spent Nuclear Fuel - Current Situation and Prospects  

SciTech Connect (OSTI)

The German government has determined a phase out of nuclear power. With respect to the management of spent fuel it was decided to terminate transports to reprocessing plants by 2005 and to set up interim storage facilities on power plant sites. This paper gives an overview of the German concept for spent fuel management focused on the new on-site interim storage concept and the applied interim storage facilities. Since the end of the year 1998, the utilities have applied for permission of on-site interim storage in 13 storage facilities and 5 storage areas; one application for the interim storage facility Stade was withdrawn due to the planned final shut down of Stade nuclear power plant in autumn 2003. In 2001 and 2002, 3 on-site storage areas and 2 on-site storage facilities for spent fuel were licensed by the Federal Office for Radiation Protection (BfS). A main task in 2002 and 2003 has been the examination of the safety and security of the planned interim storage facilities and the verification of the licensing prerequisites. In the aftermath of September 11, 2001, BfS has also examined the attack with a big passenger airplane. Up to now, these aircraft crash analyses have been performed for three on-site interim storage facilities; the fundamental results will be presented. It is the objective of BfS to conclude the licensing procedures for the applied on-site interim storage facilities in 2003. With an assumed construction period for the storage buildings of about two years, the on-site interim storage facilities could then be available in the year 2005.

Thomauske, B. R.

2003-02-25T23:59:59.000Z

106

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

in peak shaving by the battery and PV. Therefore, to satisfyin Figure 7 and PV is not used for battery charging. p a p eBattery Efficiency Near Top-of-Charge and the Impact on PV

Stadler, Michael

2008-01-01T23:59:59.000Z

107

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

photovoltaics and solar thermal collectors; electricalfor application of solar thermal and recovered heat to end-absorption chiller solar thermal photovoltaics Results

Stadler, Michael

2008-01-01T23:59:59.000Z

108

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

utility electricity and natural gas purchases, amortized capital and maintenance costs for distributed generation (

Stadler, Michael

2008-01-01T23:59:59.000Z

109

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

Modeling with Combined Heat and Power Applications”,emissions credits) of combined heat and power (CHP), and 2)

Stadler, Michael

2008-01-01T23:59:59.000Z

110

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

www.pge.com/tariffs/pdf/G-NR2.pdf SCE time of use. http://SCE time of use and SoCal natural gas tariffs. Summer on-

Stadler, Michael

2008-01-01T23:59:59.000Z

111

DOE Best Practices Manual Focuses on Site Selection for CO2 Storage |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergyDevelopingSolid-State Lighting

112

Sample Documents for On-Site Renewable Power Purchase Agreements  

Broader source: Energy.gov [DOE]

The Federal Energy Management Program (FEMP) works with Federal agencies and partners to assemble sample documents from past on-site renewable power purchase agreement (PPA) projects to help streamline the PPA process.

113

On-Site Wastewater Treatment Systems: Spray Distribution (Spanish)  

E-Print Network [OSTI]

Spray distribution systems for wastewater treated on site are much like lawn irrigation systems. This publication explains the advantages, disadvantages, maintenance steps and estimated costs of spray distribution systems....

Lesikar, Bruce J.; Enciso, Juan

1999-08-12T23:59:59.000Z

114

High level waste storage tank farms/242-A evaporator standards/requirements identification document phase 1 assessment corrective actions/compliance schedule approval report  

SciTech Connect (OSTI)

This document, the Standards/Requirements Identification Document (S/RID) Phase I Assessment Corrective Actions/Compliance Schedule Approval Report for the subject facility, contains the corrective actions required to bring the facility into compliance as a result of an Administrative Assessment to determine whether S/RID requirements are fully addressed by existing policies, plans or procedures. These actions are delineated in the Compliance Schedule Approvals which also contain; noncompliances, risks, compensatory measures, schedules for corrective actions, justifications for approval, and resource impacts.

Biebesheimer, E.

1996-09-30T23:59:59.000Z

115

On-Site Wastewater Treatment Systems: Trickling Filter  

E-Print Network [OSTI]

Soil absorption field Septic tank Clarifier/Dosing tank Trickling filter On-site wastewater treatment systems Trickling filter Bruce Lesikar and Russell Persyn Extension Agricultural Engineering Specialist, Extension Assistant-Water Conservation... municipal wastewater before cities began using activated sludge aeration systems. Now, homes and businesses use trickling filters in on-site wastewater treatment systems. Each trickling filter system has several components: 3 A septic tank, which removes...

Lesikar, Bruce J.

2000-02-04T23:59:59.000Z

116

Study Abroad in Venezuela ON-SITE GUIDE 201415  

E-Print Network [OSTI]

Study Abroad in Venezuela ON-SITE GUIDE 2014­15 S T U D Y A B R O A D THE AMERICAS #12;2 Important and can contact the on-site director if needed. In Venezuela VENUSA College 49-49 Avenida Urdaneta Edificio Guilam Mérida, Venezuela Phone: 58.274.263.7631 Fax: 58.274.263.3525 www

Weiblen, George D

117

Study Abroad in Venezuela ON-SITE GUIDE 201415  

E-Print Network [OSTI]

Study Abroad in Venezuela ON-SITE GUIDE 2014­15 S T U D Y A B R O A D THE AMERICAS #12;2 Important and can contact the on-site director if needed. In Venezuela VENUSA College 49-49 Avenida Urdaneta Edificio Guilam Mérida, Venezuela Phone: 58.274.263.7631 Fax: 58.274.263.3525 www.VENUSAcollege.org Francy

Minnesota, University of

118

Predicting on-site environmental impacts of municipal engineering works  

SciTech Connect (OSTI)

The research findings fill a gap in the body of knowledge by presenting an effective way to evaluate the significance of on-site environmental impacts of municipal engineering works prior to the construction stage. First, 42 on-site environmental impacts of municipal engineering works were identified by means of a process-oriented approach. Then, 46 indicators and their corresponding significance limits were determined on the basis of a statistical analysis of 25 new-build and remodelling municipal engineering projects. In order to ensure the objectivity of the assessment process, direct and indirect indicators were always based on quantitative data from the municipal engineering project documents. Finally, two case studies were analysed and found to illustrate the practical use of the proposed model. The model highlights the significant environmental impacts of a particular municipal engineering project prior to the construction stage. Consequently, preventive actions can be planned and implemented during on-site activities. The results of the model also allow a comparison of proposed municipal engineering projects and alternatives with respect to the overall on-site environmental impact and the absolute importance of a particular environmental aspect. These findings are useful within the framework of the environmental impact assessment process, as they help to improve the identification and evaluation of on-site environmental aspects of municipal engineering works. The findings may also be of use to construction companies that are willing to implement an environmental management system or simply wish to improve on-site environmental performance in municipal engineering projects. -- Highlights: • We present a model to predict the environmental impacts of municipal engineering works. • It highlights significant on-site environmental impacts prior to the construction stage. • Findings are useful within the environmental impact assessment process. • They also help contractors to implement environmental management systems.

Gangolells, Marta, E-mail: marta.gangolells@upc.edu; Casals, Miquel, E-mail: miquel.casals@upc.edu; Forcada, Núria, E-mail: nuria.forcada@upc.edu; Macarulla, Marcel, E-mail: marcel.macarulla@upc.edu

2014-01-15T23:59:59.000Z

119

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

120

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage  

E-Print Network [OSTI]

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage Developing safe, reliable, compact, and cost of space. Where and How Will Hydrogen be Stored? Hydrogen storage will be required onboard vehicles to storing hydrogen include: · Physical storage of compressed hydrogen gas in high pressure tanks (up to 700

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Introduction On-site power generation is rising. Currently 35% of total  

E-Print Network [OSTI]

's vehicles using the Ballard's PEM fuel cell. These engines are expected to meet the performance and range between refueling requirements of transportation vehicles at a pro- jected fuel cell cost of $200 per k, photovoltaics, fuel cells, and storage devices, with capacities in the 1 kW to 10MW range. Deployment of DR

122

Underground storage of oil and gas  

SciTech Connect (OSTI)

The environmental and security advantages of underground storage of oil and gas are well documented. In many cases, underground storage methods such as storage in salt domes, abandoned mines, and mined rock caverns have proven to be cost effective when compared to storage in steel tanks constructed for that purpose on the surface. In good rock conditions, underground storage of large quantities of hydrocarbon products is normally less costly--up to 50-70% of the surface alternative. Under fair or weak rock conditions, economic comparisons between surface tanks and underground caverns must be evaluated on a case to case basis. The key to successful underground storage is enactment of a realistic geotechnical approach. In addition to construction cost, storage of petroleum products underground has operational advantages over similar storage above ground. These advantages include lower maintenance costs, less fire hazards, less land requirements, and a more even storage temperature.

Bergman, S.M.

1984-09-01T23:59:59.000Z

123

Modeling On-Site Utility Systems Using "APLUS"  

E-Print Network [OSTI]

MODELING ON-SITE UTILITY SYSTEMS USING "APLUS" S. M. RANADE D. H. JONES S. C. SHREC Res. & Tech.Coord. Consultant Engineer ConsultantEngineer ICI-TENSA Services, Houston, Texas ABSTRACT Most energy saving schemes on industrial sites lead... to reductions in the steam and/or power demands on an on-site utility system. Accurate knowledge of the marginal and incremental costs of the available levels of steam and shaft power from such systems is, therefore, essential for the correct economic...

Ranade, S. M.; Jones, D. H.; Shrec, S. C.

124

Silo Storage Preconceptual Design  

SciTech Connect (OSTI)

The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

2012-09-01T23:59:59.000Z

125

On-Site Wastewater Treatment Systems: Soil Particle Analysis Procedure  

E-Print Network [OSTI]

Soil is an important component of an on-site wastewater treatment system. This publication explains the composition of soils, the sizing of soil particles, and the ways soil particles are analyzed to determine whether a site is suitable for a...

Lesikar, Bruce J.

2005-08-18T23:59:59.000Z

126

On-Site Recording of Excavation Data Using Mobile GIS  

E-Print Network [OSTI]

attributes, and digital media in a single system and enablesB. Multiple forms of media Digital excavation methods alsonature of digital storage of data and media is cause for

Tripcevich, Nicholas; Wernke, Steven A.

2010-01-01T23:59:59.000Z

127

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

128

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

129

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

Hassenzahl, W.

2011-01-01T23:59:59.000Z

130

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

131

On the Energy Overhead of Mobile Storage Systems Anirudh Badam*  

E-Print Network [OSTI]

On the Energy Overhead of Mobile Storage Systems Jing Li Anirudh Badam* Ranveer Chandra* Steven the energy consumption of the storage stack on mobile platforms. We conduct several experiments on mobile plat- forms to analyze the energy requirements of their re- spective storage stacks. Software storage

Narasayya, Vivek

132

On-Site Generation Simulation with EnergyPlus for Commercial Buildings  

E-Print Network [OSTI]

L ABORATORY On-Site Generation Simulation with EnergyPlusemployer. On-Site Generation Simulation with EnergyPlus forin modeling distributed generation (DG), including DG with

Stadler, Michael; Firestone, Ryan; Curtil, Dimitri; Marnay, Chris

2006-01-01T23:59:59.000Z

133

On-Site Wastewater Treatment Systems: Mound System  

E-Print Network [OSTI]

Septic tank Pump tank Distribution pipe Sand Gravel Geotextile fabric On-site wastewater treatment systems Mound system Bruce Lesikar and Vance Weynand Associate Professor and Extension Agricultural Engineering Specialist, Extension Assistant... The Texas A&M University System L-5414 4-02 Figure 1: A mound system for distributing treated wastewater to the soil. A mound system for wastewater is a soil absorption system placed above the natural surface of the ground. Mound systems are used...

Lesikar, B.; Waynard, V.

134

Commissioning & Optimization of On-Site Renewable Energy Systems  

E-Print Network [OSTI]

to the documents provided. At this point, the system is energized in steps to verify the electrical design. This procedure starts at the solar modules and works its way to the inverter and finally to the interconnection with the building electrical... specification Measurements within specifications Make corrections Inverter Insure Voc is the same as in the DC disconnect switch Measurements within specifications Make corrections Inverter Energize (AC and DC disconnects closed) Final on site...

Gardner, J.C.

2011-01-01T23:59:59.000Z

135

Investigating leaking underground storage tanks  

E-Print Network [OSTI]

INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989... Major Subject: Geology INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Approved as to sty)e and content by: P. A, Domenico (Chair of Committee) jj K. W. Brown (Member) C. C Mathewson (Member) J. H. S ng Head...

Upton, David Thompson

1989-01-01T23:59:59.000Z

136

Optimal selection of on-site generation with combined heat andpower applications  

SciTech Connect (OSTI)

While demand for electricity continues to grow, expansion of the traditional electricity supply system, or macrogrid, is constrained and is unlikely to keep pace with the growing thirst western economies have for electricity. Furthermore, no compelling case has been made that perpetual improvement in the overall power quality and reliability (PQR)delivered is technically possible or economically desirable. An alternative path to providing high PQR for sensitive loads would generate close to them in microgrids, such as the Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid. Distributed generation would alleviate the pressure for endless improvement in macrogrid PQR and might allow the establishment of a sounder economically based level of universal grid service. Energy conversion from available fuels to electricity close to loads can also provide combined heat and power (CHP) opportunities that can significantly improve the economics of small-scale on-site power generation, especially in hot climates when the waste heat serves absorption cycle cooling equipment that displaces expensive on-peak electricity. An optimization model, the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed at Berkeley Lab identifies the energy bill minimizing combination of on-site generation and heat recovery equipment for sites, given their electricity and heat requirements, the tariffs they face, and a menu of available equipment. DER-CAM is used to conduct a systemic energy analysis of a southern California naval base building and demonstrates atypical current economic on-site power opportunity. Results achieve cost reductions of about 15 percent with DER, depending on the tariff.Furthermore, almost all of the energy is provided on-site, indicating that modest cost savings can be achieved when the microgrid is free to select distributed generation and heat recovery equipment in order to minimize its over all costs.

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; HamachiLaCommare, Kristina

2004-11-30T23:59:59.000Z

137

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

of Discharge Using Ground- Water Storage," Transactions1971. "Storage of Solar Energy in a Sandy-Gravel Ground,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

138

Characterization and High Throughput Analysis of Metal Hydrides for Hydrogen Storage.  

E-Print Network [OSTI]

??Efficient hydrogen storage is required for fuel cell vehicles to be competitive with those driven by internal combustion engines. Current methods of storage such as… (more)

Barcelo, Steven James

2009-01-01T23:59:59.000Z

139

Underground pumped hydroelectric storage  

SciTech Connect (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

140

Customer adoption of small-scale on-site power generation  

SciTech Connect (OSTI)

The electricity supply system is undergoing major regulatory and technological change with significant implications for the way in which the sector will operate (including its patterns of carbon emissions) and for the policies required to ensure socially and environmentally desirable outcomes. One such change stems from the rapid emergence of viable small-scale (i.e., smaller than 500 kW) generators that are potentially competitive with grid delivered electricity, especially in combined heat and power configurations. Such distributed energy resources (DER) may be grouped together with loads in microgrids. These clusters could operate semi-autonomously from the established power system, or macrogrid, matching power quality and reliability more closely to local end-use requirements. In order to establish a capability for analyzing the effect that microgrids may have on typical commercial customers, such as office buildings, restaurants, shopping malls, and grocery stores, an economic mod el of DER adoption is being developed at Berkeley Lab. This model endeavors to indicate the optimal quantity and type of small on-site generation technologies that customers could employ given their electricity requirements. For various regulatory schemes and general economic conditions, this analysis produces a simple operating schedule for any installed generators. Early results suggest that many commercial customers can benefit economically from on-site generation, even without considering potential combined heat and power and reliability benefits, even though they are unlikely to disconnect from the established power system.

Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

2001-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hydrogen Storage Materials Requirements (Text Version) | Department...  

Broader source: Energy.gov (indexed) [DOE]

with all of the balance of plant components, balance of plant components being valves, pumps, sensors, etcetera. The system components of primary interest that are material...

142

Releases of UF{sub 6} to the atmosphere after a potential fire in a cylinder storage yard  

SciTech Connect (OSTI)

Uranium hexafluoride (UF{sub 6}), a toxic material, is stored in just over 6200 cylinders at the K-25 site in Oak Ridge, Tennessee. The safety analysis report (SAR) for cylinder yard storage operations at the plant required the development of accident scenarios for the potential release of UF{sub 6} to the atmosphere. In accordance with DOE standards and guidance, the general approach taken in this SAR was to examine the functions and contents of the cylinder storage yards to determine whether safety-significant hazards were present for workers in the immediate vicinity, workers on-site, the general public off-site, or the environment. and to evaluate the significance of any hazards that were found. A detailed accident analysis was performed to determine a set of limiting accidents that have potential for off-site consequences. One of the limiting accidents identified in the SAR was the rupture of a cylinder engulfed in a fire.

Lombardi, D.A.; Williams, W.R.; Anderson, J.C. [and others

1997-06-01T23:59:59.000Z

143

On site relay transient testing for a series compensation upgrade  

SciTech Connect (OSTI)

This paper describes tests on the relays on a long 500kV ac line carried out on site using the RTDS (Real Time Digital Simulator) of the Manitoba HVDC Research Centre. The purpose of the tests was to examine the relay behavior when series compensation is inserted in the line in 1993. New settings for the relays have been found which will give adequate cover for all faults although some faults will be entirely dependent on the communication link for short clearance times.

McLaren, P.G.; Kuffel, R.; Giesbrecht, J.; Keerthipala, W. (Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)); Castro, A.; Fedirchuk, D.; Innes, S. (Manitoba Hydro, Winnipeg, Manitoba (Canada)); Mustaphi, K. (Northern States Power, Minneapolis, MN (United States)); Sletten, K. (Minnesota Power, Duluth, MN (United States))

1994-07-01T23:59:59.000Z

144

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

145

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

146

Characterization and High Throughput Analysis of Metal Hydrides for Hydrogen Storage  

E-Print Network [OSTI]

Metal Hydrides for Hydrogen Storage by Steven James BarceloMetal Hydrides for Hydrogen Storage by Steven James BarceloCo-chair Efficient hydrogen storage is required for fuel

Barcelo, Steven James

2009-01-01T23:59:59.000Z

147

Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation  

E-Print Network [OSTI]

Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation sources are likely to be intermittent, requiring storage capacity energy storage for uninterrupted power supply units, the electrical grid, and transportation. Of all

Kemner, Ken

148

Membraneless hydrogen bromine laminar flow battery for large-scale energy storage  

E-Print Network [OSTI]

Electrochemical energy storage systems have been considered for a range of potential large-scale energy storage applications. These applications vary widely, both in the order of magnitude of energy storage that is required ...

Braff, William Allan

2014-01-01T23:59:59.000Z

149

Operational Challenges of Extended Dry Storage of Spent Nuclear Fuel - 12550  

SciTech Connect (OSTI)

As a result of the termination of the Yucca Mountain used fuel repository program and a continuing climate of uncertainty in the national policy for nuclear fuel disposition, the likelihood has increased that extended storage, defined as more than 60 years, and subsequent transportation of used nuclear fuel after periods of extended storage may become necessary. Whether at the nation's 104 nuclear energy facilities, or at one or more consolidated interim storage facilities, the operational challenges of extended storage and transportation will depend upon the future US policy for Used Fuel Management and the future Regulatory Framework for EST, both of which should be developed with consideration of their operational impacts. Risk insights into the regulatory framework may conclude that dry storage and transportation operations should focus primarily on ensuring canister integrity. Assurance of cladding integrity may not be beneficial from an overall risk perspective. If assurance of canister integrity becomes more important, then mitigation techniques for potential canister degradation mechanisms will be the primary source of operational focus. If cladding integrity remains as an important focus, then operational challenges to assure it would require much more effort. Fundamental shifts in the approach to design a repository and optimize the back-end of the fuel cycle will need to occur in order to address the realities of the changes that have taken place over the last 30 years. Direct disposal of existing dual purpose storage and transportation casks will be essential to optimizing the back end of the fuel cycle. The federal used fuel management should focus on siting and designing a repository that meets this objective along with the development of CIS, and possibly recycling. An integrated approach to developing US policy and the regulatory framework must consider the potential operational challenges that they would create. Therefore, it should be integral to these efforts to redefine retrievability to apply to the dual purpose cask, and not to apply to individual assemblies. (authors)

Nichol, M. [Nuclear Energy Institute, Washington DC (United States)

2012-07-01T23:59:59.000Z

150

The High Performance Storage System  

SciTech Connect (OSTI)

The National Storage Laboratory (NSL) was organized to develop, demonstrate and commercialize technology for the storage system that will be the future repositories for our national information assets. Within the NSL four Department of Energy laboratories and IBM Federal System Company have pooled their resources to develop an entirely new High Performance Storage System (HPSS). The HPSS project concentrates on scalable parallel storage system for highly parallel computers as well as traditional supercomputers and workstation clusters. Concentrating on meeting the high end of storage system and data management requirements, HPSS is designed using network-connected storage devices to transfer data at rates of 100 million bytes per second and beyond. The resulting products will be portable to many vendor`s platforms. The three year project is targeted to be complete in 1995. This paper provides an overview of the requirements, design issues, and architecture of HPSS, as well as a description of the distributed, multi-organization industry and national laboratory HPSS project.

Coyne, R.A.; Hulen, H. [IBM Federal Systems Co., Houston, TX (United States); Watson, R. [Lawrence Livermore National Lab., CA (United States)

1993-09-01T23:59:59.000Z

151

Inspection of Used Fuel Dry Storage Casks  

SciTech Connect (OSTI)

ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

2012-09-01T23:59:59.000Z

152

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

153

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

154

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

to MW/40 MWI-IR Battery Energy Storage Facility", proc. 23rdcompressed air, and battery energy storage are all only 65

Hassenzahl, W.

2011-01-01T23:59:59.000Z

155

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

156

ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE  

SciTech Connect (OSTI)

Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

NONE

1998-09-01T23:59:59.000Z

157

Assessing the Benefits of On-Site Combined Heat and Power During...  

Broader source: Energy.gov (indexed) [DOE]

Assessing the Benefits of On-Site Combined Heat and Power During the August 14, 2003, Blackout, June 2004 Assessing the Benefits of On-Site Combined Heat and Power During the...

158

Local Board of Health Guide to On-Site Wastewater Treatment Systems  

E-Print Network [OSTI]

Local Board of Health Guide to On-Site Wastewater Treatment Systems ©2006 National Association Side of Cover and is Blank #12;Local Board of Health Guide to On-Site Wastewater Treatment Systems............................................................................................................. 9 WHAT IS WASTEWATER

159

Management and Storage of Surface Waters (Florida)  

Broader source: Energy.gov [DOE]

The Department of Environmental Protection regulates the use and storage of surface waters in the state. A permit from either the Department or the local Water Management District is required for...

160

Dry Cask Storage Study Feb 1989  

Broader source: Energy.gov [DOE]

This report on the use of dry-cask-storage technologies at the sites of civilian nuclear power reactors has been prepared by the U.S. Department of Energy (DOE} in response to the requirements of...

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Waste Toolkit A-Z Food waste (recycling on-site)  

E-Print Network [OSTI]

Waste Toolkit A-Z Food waste (recycling on-site) How can I recycle food waste on-site? Recycling to be recycled. While this is better than sending waste to landfill, there is a more sustainable way to recycle and parks. See examples of Tidy Planet's customers recycling on-site: www.tidyplanet.co.uk/our-news Short

Melham, Tom

162

Benefits of On-Site Management of Environmental Restoration Wastes  

SciTech Connect (OSTI)

As Sandia National Laboratories/New Mexico (SNL/NM) began assessing options under which to conduct the remediation of environmental restoration sites, it became clear that the standard routes for permanent disposal of waste contaminated with hazardous materials would be difficult. Publicly, local citizens' groups resisted the idea of large volumes of hazardous waste being transported through their communities. Regulations for the off-site disposal are complicated due to the nature of the environmental restoration waste, which included elevated tritium levels. Waste generated from environmental restoration at SNL/NM included debris and soils contaminated with a variety of constituents. Operationally, disposal of environmental restoration waste was difficult because of the everchanging types of waste generated during site remediation. As an alternative to standard hazardous waste disposal, SNL/NM proposed and received regulatory approval to construct a Corrective Action Management Unit (CAMU). By containing the remediation wastes on-site, SNL/NM's Environmental Restoration (ER) Program managed to eliminate transportation concerns from the public, worked with regulatory agencies to develop a safe, permanent disposal, and modified the waste disposal procedures to accommodate operational changes. SNL/NM accomplished the task and saved approximately $200 million over the life of the CAMU project, as compared to off-site disposal options.

Irwin, Michael J. ,P.E.; Wood, Craig, R.E.M.; Kwiecinski, Daniel, P.E.; Alanis, Saul

2003-02-27T23:59:59.000Z

163

H2A Delivery: Forecourt Compression & Storage Optimization (Part...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the required storage to meet new demand profile 582007 11 Model Implementation MATLAB model and results used as the foundation for an Excel tool that performs these...

164

Investigation of energy storage options for sustainable energy systems.  

E-Print Network [OSTI]

??Determination of the possible energy storage options for a specific source of energy requires a thorough analysis from the points of energy, exergy, and exergoeconomics.… (more)

Hosseini, Mehdi

2013-01-01T23:59:59.000Z

165

A FRAMEWORK TO DEVELOP FLAW ACCEPTANCE CRITERIA FOR STRUCTURAL INTEGRITY ASSESSMENT OF MULTIPURPOSE CANISTERS FOR EXTENDED STORAGE OF USED NUCLEAR FUEL  

SciTech Connect (OSTI)

A multipurpose canister (MPC) made of austenitic stainless steel is loaded with used nuclear fuel assemblies and is part of the transfer cask system to move the fuel from the spent fuel pool to prepare for storage, and is part of the storage cask system for on-site dry storage. This weld-sealed canister is also expected to be part of the transportation package following storage. The canister may be subject to service-induced degradation especially if exposed to aggressive environments during possible very long-term storage period if the permanent repository is yet to be identified and readied. Stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone because the construction of MPC does not require heat treatment for stress relief. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defects be detected by periodic Inservice Inspection. The external loading cases include thermal accident scenarios and cask drop conditions with the contribution from the welding residual stresses. The determination of acceptable flaw size is based on the procedure to evaluate flaw stability provided by American Petroleum Institute (API) 579 Fitness-for-Service (Second Edition). The material mechanical and fracture properties for base and weld metals and the stress analysis results are obtained from the open literature such as NUREG-1864. Subcritical crack growth from stress corrosion cracking (SCC), and its impact on inspection intervals and acceptance criteria, is not addressed.

Lam, P.; Sindelar, R.; Duncan, A.; Adams, T.

2014-04-07T23:59:59.000Z

166

Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis  

SciTech Connect (OSTI)

This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

Akhil, A.A.; Butler, P.; Bickel, T.C.

1993-11-01T23:59:59.000Z

167

Quality characteristics of vacuum-packaged beef as affected by postmortem chill, storage temperature and storage interval  

E-Print Network [OSTI]

QUALITY CHARACTERISTICS OF VACUUM-PACKAGED BEEF AS AFFECTED BY POSTMORTEM CHILL, STORAGE TEMPERATURE AND STORAGE INTERVAL A Thesis by SAMMY DENZIL BEEBE Submitted to the Graduate College of Texas A1IM University in partial fulfillment... of the requirement for the deoree of MASTER OF SCIENCE December 1975 Major Subject: Animal Science QUALITY CHARACTERISTICS OF VACUUM-PACKAGED BEEF AS AFFECTED BY POSTMORTEM CHILL, STORAGE TEMPERATURE AND STORAGE INTERVAL A Thesis by SAMMY DENZIL BEEBE...

Beebe, Sammy Denzil

1975-01-01T23:59:59.000Z

168

Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies  

SciTech Connect (OSTI)

The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

NONE

1995-08-01T23:59:59.000Z

169

A C. elegans-based foam for rapid on-site detection of residual live virus.  

SciTech Connect (OSTI)

In the response to and recovery from a critical homeland security event involving deliberate or accidental release of biological agents, initial decontamination efforts are necessarily followed by tests for the presence of residual live virus or bacteria. Such 'clearance sampling' should be rapid and accurate, to inform decision makers as they take appropriate action to ensure the safety of the public and of operational personnel. However, the current protocol for clearance sampling is extremely time-intensive and costly, and requires significant amounts of laboratory space and capacity. Detection of residual live virus is particularly problematic and time-consuming, as it requires evaluation of replication potential within a eukaryotic host such as chicken embryos. The intention of this project was to develop a new method for clearance sampling, by leveraging Sandia's expertise in the biological and material sciences in order to create a C. elegans-based foam that could be applied directly to the entire contaminated area for quick and accurate detection of any and all residual live virus by means of a fluorescent signal. Such a novel technology for rapid, on-site detection of live virus would greatly interest the DHS, DoD, and EPA, and hold broad commercial potential, especially with regard to the transportation industry.

Negrete, Oscar A.; Branda, Catherine; Hardesty, Jasper O. E. (Sandia National Laboratories, Albuquerque, NM); Tucker, Mark David (Sandia National Laboratories, Albuquerque, NM); Kaiser, Julia N. (Global Product Management, Hilden, Germany); Kozina, Carol L.; Chirica, Gabriela S.

2012-02-01T23:59:59.000Z

170

Energy Storage for Use in Load Frequency Control  

E-Print Network [OSTI]

Certain energy storage technologies are well-suited to the high-frequency, high-cycling operation which is required in provision of load frequency control (LFC). To limit the total stored energy capacity required while ...

Leitermann, Olivia

171

Sandia National Laboratories: Energy Storage Multimedia Gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

StorageEnergy Storage Multimedia Gallery Energy Storage Multimedia Gallery Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory...

172

Permanent Closure of the TAN-664 Underground Storage Tank  

SciTech Connect (OSTI)

This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

Bradley K. Griffith

2011-12-01T23:59:59.000Z

173

Cool Storage Performance  

E-Print Network [OSTI]

Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

Eppelheimer, D. M.

1985-01-01T23:59:59.000Z

174

Safe Home Food Storage  

E-Print Network [OSTI]

Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

Van Laanen, Peggy

2002-08-22T23:59:59.000Z

175

Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report  

SciTech Connect (OSTI)

Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage caverns, and gas market area storage needs of these regions.

none

1998-09-30T23:59:59.000Z

176

Energy Storage Systems  

SciTech Connect (OSTI)

Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

Conover, David R.

2013-12-01T23:59:59.000Z

177

FOREST CENTRE STORAGE BUILDING  

E-Print Network [OSTI]

FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI PURPOSE COURT STUDENT RESIDENCES GREEN HOUSE STUDENT RESIDENCES STUDENT RESIDENCES RECPLEX STORAGE BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE

deYoung, Brad

178

Bioremediation demonstration on Kwajalein Island: Site characterization and on-site biotreatability studies  

SciTech Connect (OSTI)

An environmental study was conducted during February 1991 on Kwajalein Island, a US Army Kwajalein Atoll (USAKA) Base in the Republic of the Marshall Islands (RMI). This study was undertaken for the US Department of Energy (DOE) Hazardous Waste Remedial Actions Program (HAZWRAP) acting in behalf of USAKA. The purpose of the study was to determine if selected locations for new construction on Kwajalein Island were contaminated by petroleum hydrocarbons as suspected and, if so, whether bioremediation appeared to be a feasible technology for environmental restoration. Two different sites were evaluated: (1) the site planned freshwater production facility and (2) a site adjacent to an aboveground diesel fuel storage tank. Within the proposed construction zone for the freshwater production facility (a.k.a desalination plant), total petroleum hydrocarbons (TPH) where either absent or at low levels. Characterization data for another potential construction site adjacent to an aboveground diesel fuel storage tank southeast of the old diesel power plant revealed high concentrations of diesel fuel in the soil and groundwater beneath the site. Results of this investigation indicate that there are petroleum-contaminated soils on Kwajalein Island and bioremediation appears to be a viable environmental restoration technique. Further experimentation and field demonstration are required to determine the design and operating conditions that provide for optimum biodegradation and restoration of the petroleum-contaminated soils. 17 refs., 7 figs., 26 figs.

Siegrist, R.L.; Korte, N.E.; Pickering, D.A. (Oak Ridge National Lab., TN (United States)); Phelps, T.J. (Tennessee Univ., Knoxville, TN (United States))

1991-09-01T23:59:59.000Z

179

Storage opportunities in Arizona bedded evaporites  

SciTech Connect (OSTI)

Arizona is endowed with incredibly diverse natural beauty, and has also been blessed with at least seven discrete deposits of bedded salt. These deposits are dispersed around the state and cover some 2, 500 square miles; they currently contain 14 LPG storage caverns, with preliminary plans for more in the future. The areal extent and thickness of the deposits creates the opportunity for greatly expanded storage of LPG, natural gas, and compressed air energy storage (CAES). The location of salt deposits near Tucson and Phoenix may make CAES an attractive prospect in the future. The diversity of both locations and evaporate characteristics allows for much tailoring of individual operations to meet specific requirements.

Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Rauzi, S.L. [Arizona Geological Survey, Tucson, AZ (United States)

1996-10-01T23:59:59.000Z

180

Storage Ring Revised March 1994  

E-Print Network [OSTI]

.5.4.3. Ground Plane Epoxy #12; 136 Storage Ring #12; Storage Ring 137 8.5.5. Coil Winding Process #12; 138Chapter 8. Storage Ring Revised March 1994 8.1. Introduction -- 107 -- #12; 108 Storage Ring 8.2. Magnetic Design and Field Calculations 8.2.1. Conceptual Approach #12; Storage Ring 109 #12; 110 Storage

Brookhaven National Laboratory - Experiment 821

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Innovative On-site Integrated Energy System Tested World Renewable Energy Congress VIII  

E-Print Network [OSTI]

and institutional settings. Recycling Waste Heat--a Key to Improving the Efficiency of Energy Supply In an eraInnovative On-site Integrated Energy System Tested World Renewable Energy Congress VIII August 29-September 3, 2004 Denver, Colorado #12;Innovative On-site Integrated Energy System Tested Jeanette B. Berry

Oak Ridge National Laboratory

182

On-Site Renewable Power Purchase Agreements for Renewable Energy Projects  

Broader source: Energy.gov [DOE]

An on-site renewable power purchase agreement (PPA) enables Federal agencies to fund a renewable energy project by contracting to purchase the power generated by the system. The renewable energy equipment is installed and owned by a developer but located on-site at the agency facility.

183

The Role of Energy Storage in Commercial Building  

SciTech Connect (OSTI)

Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of active DOE/BTP R&D activities in this space.

Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

2010-09-30T23:59:59.000Z

184

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability:A Study of Commercial Buildings in California and New York States  

SciTech Connect (OSTI)

In past work, Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model (DER-CAM). Given end-use energy details for a facility, a description of its economic environment and a menu of available equipment, DER-CAM finds the optimal investment portfolio and its operating schedule which together minimize the cost of meeting site service, e.g., cooling, heating, requirements. Past studies have considered combined heat and power (CHP) technologies. Methods and software have been developed to solve this problem, finding optimal solutions which take simultaneity into account. This project aims to extend on those prior capabilities in two key dimensions. In this research storage technologies have been added as well as power quality and reliability (PQR) features that provide the ability to value the additional indirect reliability benefit derived from Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid capability. This project is intended to determine how attractive on-site generation becomes to a medium-sized commercial site if economical storage (both electrical and thermal), CHP opportunities, and PQR benefits are provided in addition to avoiding electricity purchases. On-site electrical storage, generators, and the ability to seamlessly connect and disconnect from utility service would provide the facility with ride-through capability for minor grid disturbances. Three building types in both California and New York are assumed to have a share of their sensitive electrical load separable. Providing enhanced service to this load fraction has an unknown value to the facility, which is estimated analytically. In summary, this project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York; (2) to extend the analysis capability of DER-CAM to include both heat and electricity storage; and (3) to make an initial effort towards adding consideration of PQR into the capabilities of DER-CAM.

Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

2008-12-01T23:59:59.000Z

185

ALUMINUM HYDRIDE: A REVERSIBLE STORAGE MATERIAL FOR HYDROGEN STORAGE  

SciTech Connect (OSTI)

One of the challenges of implementing the hydrogen economy is finding a suitable solid H{sub 2} storage material. Aluminium (alane, AlH{sub 3}) hydride has been examined as a potential hydrogen storage material because of its high weight capacity, low discharge temperature, and volumetric density. Recycling the dehydride material has however precluded AlH{sub 3} from being implemented due to the large pressures required (>10{sup 5} bar H{sub 2} at 25 C) and the thermodynamic expense of chemical synthesis. A reversible cycle to form alane electrochemically using NaAlH{sub 4} in THF been successfully demonstrated. Alane is isolated as the triethylamine (TEA) adduct and converted to unsolvated alane by heating under vacuum. To complete the cycle, the starting alanate can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride (NaH) This novel reversible cycle opens the door for alane to fuel the hydrogen economy.

Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

2009-01-09T23:59:59.000Z

186

Fuel cell systems for first lunar outpost -- Reactant storage options  

SciTech Connect (OSTI)

A Lunar Surface Power Working Group was formed to review candidate systems for providing power to the First Lunar Outpost habitat. The working group met for five days in the fall of 1992 and concluded that the most attractive candidate included a photovoltaic unit, a fuel cell, a regenerator to recycle the reactants, and storage of oxygen and hydrogen gases. Most of the volume (97%) and weight (64%) are taken up by the reactants and their storage tanks. The large volume is difficult to accommodate, and therefore, the working group explored ways of reducing the volume. An alternative approach to providing separate high pressure storage tanks is to use two of the descent stage propellant storage tanks, which would have to be wrapped with graphite fibers to increase their pressure capability. This saves 90% of the volume required for storage of fuel cell reactants. Another approach is to use the descent storage propellant tanks for storage of the fuel cell reactants as cryogenic liquids, but this requires a gas liquefaction system, increases the solar array by 40%, and increases the heat rejection rate by 170% compared with storage of reactants as high pressure gases. For a high power system (>20 kW) the larger energy storage requirement would probably favor the cryogenic storage option.

Nelson, P.A. [Argonne National Lab., IL (United States). Chemical Technology Div.

1995-06-01T23:59:59.000Z

187

Findings and Recommendations by the California Carbon Capture and Storage Review Panel  

E-Print Network [OSTI]

............................................................13 Standards and Reporting Requirements for Geological CO2 Storage Projects ...........................................15 Ownership and Use of Pore Space for CO2 Storage Commission ­ California Energy Commission EOR ­ enhanced oil recovery EPS ­ Emissions Performance Standard

188

Heat storage duration  

SciTech Connect (OSTI)

Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

189

Spent fuel storage system for LMFBR fuel experiments  

SciTech Connect (OSTI)

Fuel that had been irradiated in the Argonne National Laboratory Experimental Breeder Reactor II (EBR-II) at Idaho Falls, Idaho, and examined at the Hanford Engineering Development Laboratory at Richland, Washington, was placed in long term retrievable storage utilizing a system designed at Hanford. The Spent Fuel Storage Cask system was designed for transport and storage of a large quantity of spent fuel at the Hanford 200 Area transuranic (TRU) asphalt storage pad. The entire system is designed for long term retrievable storage to allow future reprocessing of the fuel. The system was designed to meet the criticality, shielding, and thermal requirements for a maximum fuel load of four kilograms fissile. The Spent Fuel Storage Cask was built to transport and store the fuel from EBR-II on the TRU asphalt storage pad.

Seay, J.M.; Gruber, W.J.

1983-01-01T23:59:59.000Z

190

Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage  

E-Print Network [OSTI]

Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher Yongdae Kim players. While storage outsourcing is cost-effective, many companies are hesitating to outsource their storage due to security concerns. The success of storage outsourcing is highly dependent on how well

Minnesota, University of

191

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

and R. W . BOOIll, "Superconductive Energy Storage Inducand H. A. Peterson, "Superconductive E nergy S torage forMeeting, Janua ry N. Mohan, "Superconductive Energy S torage

Hassenzahl, W.

2011-01-01T23:59:59.000Z

192

Energy Storage and Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage and Transportation INL Logo Search Skip Navigation Links Home Newsroom About INL Careers Research Programs Energy and Environment National and Homeland Security New Energy...

193

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

194

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

Design of the BPA Superconducting 30-MJ Energy Storagefor a Utility Scale Superconducting Magnetic Energy Storagefor a Lnrge Scale Superconducting Magnetic Energy Storage

Hassenzahl, W.

2011-01-01T23:59:59.000Z

195

1 BASEMENT STORAGE 3 MICROSCOPE LAB  

E-Print Network [OSTI]

MECHANICAL ROOM 13 SHOWER ROOMSAIR COMPRESSOR 14 NITROGEN STORAGE 15 DIESEL FUEL STORAGE 16 ACID NEUT. TANK 17a ACID STORAGE 17b INERT GAS STORAGE 17c BASE STORAGE 17d SHELVES STORAGE * KNOCK-OUT PANEL

Boonstra, Rudy

196

Structural Integrity Program for INTEC Calcined Solids Storage Facilities  

SciTech Connect (OSTI)

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Jeffrey Bryant

2008-08-30T23:59:59.000Z

197

Development of Thermal Analysis Capability of Dry Storage Cask for Spend Fuel Interim Storage  

SciTech Connect (OSTI)

As most of the nuclear power plants, on-site spent fuel pools (SFP) of Taiwan's plants were not originally designed with a storage capacity for all the spent fuel generated over the operating life by their reactors. For interim spent fuel storage, dry casks are one of the most reliable measures to on-site store over-filled assemblies from SFPs. The NUHOMS{sup R}-52B System consisting of a canister stored horizontally in a concrete module is selected for thermal evaluation in this paper. The performance of each cask in criticality, radioactive, material and thermal needs to be carefully addressed to ensure its enduring safety. Regarding the thermal features of dry storage casks, three different kinds of heat transfer mechanisms are involved, which include natural convection heat transfer outside and/or inside the canister, radiation heat transfer inside and outside the canister, and conduction heat transfer inside the canister. To analyze the thermal performance of dry storage casks, RELAP5-3D is adopted to calculate the natural air convection and radiation heat transfer outside the canister to the ambient environment, and ANSYS is applied to calculate the internal conduction and radiation heat transfer. During coupling iteration between codes, the heat energy across the canister wall needs to be conserved, and the inner wall temperature of the canister needs to be converged. By the coupling of RELAP5-3D and ANSYS, the temperature distribution within each fuel assembly inside canisters can be calculated and the peaking cladding temperature can be identified. (authors)

Fu-Kuang Ko; Liang, Thomas K.S.; Chung-Yu Yang [Institute of Nuclear Energy Research P.O. Box 3-3, Longtan, 32500, Taiwan (China)

2002-07-01T23:59:59.000Z

198

E-Print Network 3.0 - adjunct on-site treaty Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Search All NYTimes.com Environment Summary: Solutions www.Nexamp.com Free Solar Panel Quote Incentives Make Solar Solutions Cheap. Get an On-site Quote... their thoughts on...

199

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth...  

Office of Environmental Management (EM)

of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did...

200

On-Site Diesel Generation- How You Can Reduce Your Energy Costs  

E-Print Network [OSTI]

Interruptible power rates, Utility special rate negotiations, and the emergence of a spot electrical power market all can lead to lower industrial energy costs. The installation of low cost on-site diesel powered generation, or the proposed...

Charles, D.

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Investigating the Relationship between the Perceptions of Principals and Teachers on Site-Based Decision Making  

E-Print Network [OSTI]

The purpose of this record of study was to investigate the nature of relationships between the perceptions of principals and teachers on site-based decision making (SBDM) and to uncover patterns existing in relationships between and among state...

Owens, Sandra Deshon

2013-12-06T23:59:59.000Z

202

Influence of woody dominated rangelands on site hydrology and herbaceous production, Edwards Plateau, Texas  

E-Print Network [OSTI]

Station at Sonora, Texas. The objective was to characterize interception by juniper canopy and litter, and to determine the redistributive effects of throughfall and stemflow on site hydrology. Based on a 10-year distribution pattern of rainfall, 66...

Hester, Justin Wayne

1996-01-01T23:59:59.000Z

203

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

The Legalization of Ground Water Storage," Water Resourcesprocedure to above ground storage of heat in huge insulatedthis project is heat storage in ground-water regions storage

Authors, Various

2011-01-01T23:59:59.000Z

204

Sandia National Laboratories: Batteries & Energy Storage Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

205

Energy storage capacitors  

SciTech Connect (OSTI)

The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

Sarjeant, W.J.

1984-01-01T23:59:59.000Z

206

Statement of position of the United States Department of Energy in the matter of proposed rulemaking on the storage and disposal of nuclear waste (waste confidence rulemaking)  

SciTech Connect (OSTI)

Purpose of this proceeding is to assess generically the degree of assurance that the radioactive waste can be safely disposed of, to determine when such disposal or off-site storage will be available, and to determine whether wastes can be safely stored on-site past license expiration until off-site disposal/storage is available. (DLC)

None

1980-04-15T23:59:59.000Z

207

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

Joel L. Morrison; Sharon L. Elder

2006-07-06T23:59:59.000Z

208

Hydrogen Storage -Overview George Thomas, Hydrogen Consultant to SNL*  

E-Print Network [OSTI]

Forecourt storage (refueling stations) requirements being developed (IHIG) Distribution storage (delivery 75 100 125 hydrogen m ethane ethane propane butane pentane hexane heptane octane (gasoline) cetane (diesel) octane (gasoline) heptane hexane pentane butane ethane propane ethanol m ethane m ethanol am m

209

Paper K-05, in: B.C. Alleman and M.E. Kelley (Conference Chairs), In Situ and On-Site Bioremediation--2005. Proceedings of the Eighth International In Situ and On-Site Bioremediation Symposium (Baltimore, Maryland; June 69,  

E-Print Network [OSTI]

Paper K-05, in: B.C. Alleman and M.E. Kelley (Conference Chairs), In Situ and On-Site Bioremediation--2005. Proceedings of the Eighth International In Situ and On-Site Bioremediation Symposium

Ma, Lena

210

Stormwater Pollution Prevention Plan (SWPPP) for Coal Storage Area Stabilization Project  

SciTech Connect (OSTI)

The scope of this project is to stabilize the abandoned coal storage area and redirect the storm water runoff from sanitary sewer system to the storm drain system. Currently, the existing storm water runoff is directed to a perimeter concrete drainage swale and collected in a containment basin. The collected water is then pumped to a treatment facility and after treatment, is discharged to the Y-12 sanitary sewer system. The existing drainage swale and collection basin along with silt fencing will be used during aggregate placement and grading to provide erosion and sediment control. Inlet protection will also be installed around existing structures during the storm water diversion construction. This project scope will include the installation of a non-woven geotextile fabric and compacted mineral aggregate base (paving optional) to stabilize the site. The geotextile specifications are provided on the vendor cut sheets in Appendix B. The installation of a storm water collection/retention area will also be installed on the southern side of the site in accordance with EPA Technical Guidance on Implementing the Stormwater Runoff Requirements for federal Projects under Section 438 of the Energy Independence and Security Act. The total area to be disturbed is approximately 2.5 acres. The order of activities for this Stormwater Pollution Prevention Plan (SWPPP) will be: (1) post notice of coverage (NOC) in a prominent display near entrance of the site; (2) install rain gauge on site or contact Y-12 Plant Shift Superintendent daily for Met tower rain gauge readings; (3) install stabilized construction exit on site; (4) install silt fencing along perimeter as indicated on the attached site plan; (5) regrade site; (6) install geotextile fabric and compacted mineral aggregate base; (7) install catch basin inlet protection where required; (8) excavate and lower existing catch basin tops, re-grade and asphalt to drain; and (9) when all disturbed areas are re-stabilized, remove silt fencing and any other temporary erosion control.

Project and Design Engineering

2011-03-01T23:59:59.000Z

211

MPEG-aware disk storage system  

E-Print Network [OSTI]

In the past decades the demand for systems that can process and deliver massive amount of storage has increased. Multimedia applications such as streaming audio and video require large amounts of data to be read from disk and processed for timely...

Ren, Qian

2000-01-01T23:59:59.000Z

212

RESIDENTIAL ON SITE SOLAR HEATING SYSTEMS: A PROJECT EVALUATION USING THE CAPITAL ASSET PRICING MODEL  

E-Print Network [OSTI]

solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating

Schutz, Stephen Richard

2011-01-01T23:59:59.000Z

213

Ultrafine hydrogen storage powders  

DOE Patents [OSTI]

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

214

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

215

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

216

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

Joel Morrison

2005-09-14T23:59:59.000Z

217

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

Joel L. Morrison; Sharon L. Elder

2006-05-10T23:59:59.000Z

218

Long-Term Management and Storage of Elemental Mercury | Department...  

Office of Environmental Management (EM)

Mercury Export Ban Act of 2008 (MEBA) (Public Law No. 110-414) requires the Department of Energy (DOE) to establish a facility for the long-term management and storage of elemental...

219

Robotic Inspection System for Bulk Liquid Storage Tanks  

E-Print Network [OSTI]

for aboveground storage tanks (ASTs) requires: drainage of the product; cleaning of the vessel with water or solvents; physical removal, collection and containment of petroleum and chemical waste residues, including the waste streams created by the cleaning...

Hartsell, D. R.; Hakes, K. J.

220

Technical requirements specification for tank waste retrieval  

SciTech Connect (OSTI)

This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

Lamberd, D.L.

1996-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Carbon Aerogels for Hydrogen Storage  

SciTech Connect (OSTI)

This effort is focused on the design of new nanostructured carbon-based materials that meet the DOE 2010 targets for on-board vehicle hydrogen storage. Carbon aerogels (CAs) are a unique class of porous materials that possess a number of desirable structural features for the storage of hydrogen, including high surface areas (over 3000 m{sup 2}/g), continuous and tunable porosities, and variable densities. In addition, the flexibility associated with CA synthesis allows for the incorporation of modifiers or catalysts into the carbon matrix in order to alter hydrogen sorption enthalpies in these materials. Since the properties of the doped CAs can be systematically modified (i.e. amount/type of dopant, surface area, porosity), novel materials can be fabricated that exhibit enhanced hydrogen storage properties. We are using this approach to design new H{sub 2} sorbent materials that can storage appreciable amounts of hydrogen at room temperature through a process known as hydrogen spillover. The spillover process involves the dissociative chemisorption of molecular hydrogen on a supported metal catalyst surface (e.g. platinum or nickel), followed by the diffusion of atomic hydrogen onto the surface of the support material. Due to the enhanced interaction between atomic hydrogen and the carbon support, hydrogen can be stored in the support material at more reasonable operating temperatures. While the spillover process has been shown to increase the reversible hydrogen storage capacities at room temperature in metal-loaded carbon nanostructures, a number of issues still exist with this approach, including slow kinetics of H{sub 2} uptake and capacities ({approx} 1.2 wt% on carbon) below the DOE targets. The ability to tailor different structural aspects of the spillover system (i.e. the size/shape of the catalyst particle, the catalyst-support interface and the support morphology) should provide valuable mechanistic information regarding the critical aspects of the spillover process (i.e. kinetics of hydrogen dissociation, diffusion and recombination) and allow for optimization of these materials to meet the DOE targets for hydrogen storage. In a parallel effort, we are also designing CA materials as nanoporous scaffolds for metal hydride systems. Recent work by others has demonstrated that nanostructured metal hydrides show enhanced kinetics for reversible hydrogen storage relative to the bulk materials. This effect is diminished, however, after several hydriding/dehydriding cycles, as the material structure coarsens. Incorporation of the metal hydride into a porous scaffolding material can potentially limit coarsening and, therefore, preserve the enhanced kinetics and improved cycling behavior of the nanostructured metal hydride. Success implementation of this approach, however, requires the design of nanoporous solids with large accessible pore volumes (> 4 cm{sup 3}/g) to minimize the gravimetric and volumetric capacity penalties associated with the use of the scaffold. In addition, these scaffold materials should be capable of managing thermal changes associated with the cycling of the incorporated metal hydride. CAs are promising candidates for the design of such porous scaffolds due to the large pore volumes and tunable porosity of aerogel framework. This research is a joint effort with HRL Laboratories, a member of the DOE Metal Hydride Center of Excellence. LLNL's efforts have focused on the design of new CA materials that can meet the scaffolding requirements, while metal hydride incorporation into the scaffold and evaluation of the kinetics and cycling performance of these composites is performed at HRL.

Baumann, T F; Worsley, M; Satcher, J H

2008-08-11T23:59:59.000Z

222

SNL/VNIIEF Storage Monitoring Collaboration  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) and the Russian Federal Nuclear Center-All Russian Research Institute for Experimental Physics (VNIIEF)(also know as Arzamas-16) are collaborating on ways to assure the highest standards on safety, security, and international accountability of fissile material. This includes systems used to reduce the need for human access to fissile material, reduce radiation exposure, and provide prompt safety-related information, and provide continuous international accountability information while reducing the need for intrusive, on-site visits. This paper will report on the ongoing SNL/VNIIEF efforts to develop technologies and monitoring systems to meet these goals. Specific topics covered will include: the Smart Bolt tag/seal development, development and testing of electronic sensor platforms (U.S. T-1 ESP and VNIIEF Radio Tag) for monitoring and transportation applications, the ''Magazine-to-Magazine'' remote monitoring system field test, and the ''Facility-to-Facility'' storage monitoring system field trial.

Barkanov, Boris P.; Bartberger, Jack C.; Blagin, Sergei V.; Croessmann, C. Dennis; Gruda, Jeffrey D.; Lupsha, Vitali A.; Moroskin, Dimitri V.; Nilsen, Curt A.

1999-07-12T23:59:59.000Z

223

Multiported storage devices  

E-Print Network [OSTI]

In the past decade the demand for systems that can process and deliver massive amounts of storage has increased. Traditionally, large disk farms have been deployed by connecting several disks to a single server. A problem with this configuration...

Grande, Marcus Bryan

2012-06-07T23:59:59.000Z

224

Monitored Retrievable Storage Background  

Broader source: Energy.gov [DOE]

`The U.S. Government is seeking a site for a monitored retrievable storage facility (MRS). Employing proven technologies used in this country and abroad, the MRS will be an Integral part of the...

225

Gas Storage Act (Illinois)  

Broader source: Energy.gov [DOE]

Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

226

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

Encrgy Storage Plant" , EPRI Report EM-3457, April 1984. [4521st century. REFERENCES The EPRI Regional Systems preparedby J. J. Mulvaney, EPRI Report EPRI P-19S0SR, (1981). [2J O.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

227

Hydrogen storage compositions  

DOE Patents [OSTI]

Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH4- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH4- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

2011-04-19T23:59:59.000Z

228

Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.  

SciTech Connect (OSTI)

This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

2011-04-01T23:59:59.000Z

229

Analog storage integrated circuit  

DOE Patents [OSTI]

A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

1989-03-07T23:59:59.000Z

230

Hydrogen storage with titanium-functionalized graphene  

E-Print Network [OSTI]

We report on hydrogen adsorption and desorption on titanium-covered graphene in order to test theoretical proposals to use of graphene functionalized with metal atoms for hydrogen storage. At room temperature titanium islands grow with an average diameter of about 10 nm. Samples were then loaded with hydrogen, and its desorption kinetics was studied by thermal desorption spectroscopy. We observe the desorption of hydrogen in the temperature range between 400K and 700 K. Our results demonstrate the stability of hydrogen binding at room temperature and show that hydrogen desorbs at moderate temperatures in line with what required for practical hydrogen-storage applications.

Mashoff, Torge; Tanabe, Shinichi; Hibino, Hiroki; Beltram, Fabio; Heun, Stefan

2013-01-01T23:59:59.000Z

231

Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)  

SciTech Connect (OSTI)

This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units, and the < 90 day accumulation areas.

LEBARON, G.J.

1999-12-03T23:59:59.000Z

232

Workload-Based Configuration of MEMS-Based Storage Devices for Mobile Systems  

E-Print Network [OSTI]

Data layout, MEMS, Probe-Based Storage 1. INTRODUCTION Users of battery-powered mobile systems requireWorkload-Based Configuration of MEMS-Based Storage Devices for Mobile Systems Mohammed G. Khatib.h.hartel@utwente.nl ABSTRACT Because of its small form factor, high capacity, and expected low cost, MEMS-based storage

Miller, Ethan L.

233

ReseaRch at the University of Maryland Innovating Energy Storage at the Nanoscale  

E-Print Network [OSTI]

ReseaRch at the University of Maryland Innovating Energy Storage at the Nanoscale Growing demands for energy, particularly renewable energy, require not only new sources but new methods of storage tests newly created nanostructures for their energy storage capacities. His work in micro

Hill, Wendell T.

234

A Comparison of Open Versus Closed Systems in Thermal Storage Applications  

E-Print Network [OSTI]

The use of thermal storage, by its very nature, requires a large storage vessel. Depending upon the technology employed, this can vary from as little as 1.6cuft./ton-hour, up to 15cuft./ton-hour. The result can be storage tanks with volumes...

Salbodkin, A.

1990-01-01T23:59:59.000Z

235

Optimal Demand Response with Energy Storage Management  

E-Print Network [OSTI]

In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

Huang, Longbo; Ramchandran, Kannan

2012-01-01T23:59:59.000Z

236

US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges  

SciTech Connect (OSTI)

On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.

Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States); Suttora, Linda C. [U.S. Department of Energy, Office of Site Restoration, Germantown, MD (United States); Phifer, Mark [Savannah River Site (SRS), Aiken, SC (United States)

2014-03-01T23:59:59.000Z

237

COLD STORAGE DESIGN REFRIGERATION EQUIPMENT  

E-Print Network [OSTI]

COLD STORAGE DESIGN AND REFRIGERATION EQUIPMENT REFRIGERATION OF FISH - PART 1 \\ "..\\- ,,, T I (Section 1), and F. Bruce Sanford (Section 1) Table of Contents Pages Section 1 - Cold Storage Design to be Considered in the Freezing and Cold Storage of Fishery Products - Preparing, Freezing, and Cold Storage

238

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

239

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

240

DOE Global Energy Storage Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

efficiency requirements - Maximum emission limits Investment constraints: - Payback period is constrained Storage constraints: - Electricity stored is limited by battery

Stadler, Michael

2009-01-01T23:59:59.000Z

242

Airborne Emissions from Storage Tanks: What's New on the Regulatory Front and How to Cope with the Changes  

E-Print Network [OSTI]

The U.S. EPA is developing new maximum achievable control technology (MACT) rules, which include provisions for aboveground storage tanks (AST's). While each industry category will have its own MACT rule, the trend for storage tank requirements...

Ferry, R. L.

243

Standard review plan for dry cask storage systems. Final report  

SciTech Connect (OSTI)

The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 {open_quotes}Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Cask{close_quotes} contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed.

NONE

1997-01-01T23:59:59.000Z

244

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing negotiations of the four sub-awards working toward signed contracts with the various organizations involved. Second, an Executive Council meeting was held at Penn State September 9, 2004. And third, the GSTC participated in the SPE Eastern Regional Meeting in Charleston, West Virginia, on September 16th and 17th. We hosted a display booth with the Stripper Well Consortium.

Robert W. Watson

2004-10-18T23:59:59.000Z

245

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

246

Energy storage connection system  

DOE Patents [OSTI]

A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

2012-07-03T23:59:59.000Z

247

State of structures of the Kolyma hydroelectric station according to data of on-site observations  

SciTech Connect (OSTI)

On-site inspections of the Kolyma hydroelectric power station have been performed since 1979. A large quantity of data has been obtained pertaining to the dam, underground powerhouse, and other structures. Over 2000 measuring instruments were installed for checking the structures and foundations.

Kuznetsov, V.S.; Voinovich, A.P.; Matroshilina, T.V.; Krupin, V.A.; Bulatov, S.N.

1995-10-01T23:59:59.000Z

248

Accelerator Physics Accelerators form the backbone of SLAC's on-site experimental program. Research at SLAC  

E-Print Network [OSTI]

#12;Accelerator Physics Accelerators form the backbone of SLAC's on-site experimental program. Research at SLAC is continually improving accelerators, both here and at other laboratories, and paving the way for a new generation of particle acceleration technology. SLAC's famous linear accelerator

Wechsler, Risa H.

249

NITROGEN REMOVAL FOR ON-SITE SEWAGE DISPOSAL: A RECIRCULATING SAND FILTER/ROCK TANK DESIGN  

E-Print Network [OSTI]

NITROGEN REMOVAL FOR ON-SITE SEWAGE DISPOSAL: A RECIRCULATING SAND FILTER/ROCK TANK DESIGN, C. G. McKiel ABSTRACT: The nitrogen removal abilities of recirculating sand filter/rock tank (RSF) systems and conventional septic tank/soil absorption trench systems were compared in a field laboratory

Gold, Art

250

Non Destructive Testing of Concrete: Transfer from Laboratory to On-site Measurement  

E-Print Network [OSTI]

Non Destructive Testing of Concrete: Transfer from Laboratory to On-site Measurement Vincent Vincent.garnier@univ-amu.fr ABSTRACT The evaluation of mechanical and chemical properties of concrete laws from the laboratory between non-destructive measurements and characteristics of the concrete

Boyer, Edmond

251

Monday, February 23, 2004 Decision on site for fusion project is put off again  

E-Print Network [OSTI]

Monday, February 23, 2004 Decision on site for fusion project is put off again VIENNA (Kyodo) The six parties involved in an international nuclear fusion project have again failed to decide on either in March. Senior officials of the parties to the International Thermonuclear Experimental Reactor project

252

SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY  

SciTech Connect (OSTI)

The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.

RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

2009-04-29T23:59:59.000Z

253

STORAGE OF CHILLED NATURAL GAS IN BEDDED SALT STORAGE CAVERNS  

SciTech Connect (OSTI)

This report provides the results of a two-phase study that examines the economic and technical feasibility of converting a conventional natural gas storage facility in bedded salt into a refrigerated natural gas storage facility for the purpose of increasing the working gas capacity of the facility. The conceptual design used to evaluate this conversion is based on the design that was developed for the planned Avoca facility in Steuben County, New York. By decreasing the cavern storage temperature from 43 C to -29 C (110 F to -20 F), the working gas capacity of the facility can be increased by about 70 percent (from 1.2 x 10{sup 8} Nm{sup 3} or 4.4 billion cubic feet (Bcf) to 2.0 x 10{sup 8} Nm{sup 3} or 7.5 Bcf) while maintaining the original design minimum and maximum cavern pressures. In Phase I of the study, laboratory tests were conducted to determine the thermal conductivity of salt at low temperatures. Finite element heat transfer calculations were then made to determine the refrigeration loads required to maintain the caverns at a temperature of -29 C (-20 F). This was followed by a preliminary equipment design and a cost analysis for the converted facility. The capital cost of additional equipment and its installation required for refrigerated storage is estimated to be about $13,310,000 or $160 per thousand Nm{sup 3} ($4.29 per thousand cubic feet (Mcf)) of additional working gas capacity. The additional operating costs include maintenance refrigeration costs to maintain the cavern at -29 C (-20 F) and processing costs to condition the gas during injection and withdrawal. The maintenance refrigeration cost, based on the current energy cost of about $13.65 per megawatt-hour (MW-hr) ($4 per million British thermal units (MMBtu)), is expected to be about $316,000 after the first year and to decrease as the rock surrounding the cavern is cooled. After 10 years, the cost of maintenance refrigeration based on the $13.65 per MW-hr ($4 per MMBtu) energy cost is estimated to be $132,000. The gas processing costs are estimated to be $2.05 per thousand Nm{sup 3} ($0.055 per Mcf) of gas injected into and withdrawn from the facility based on the $13.65 per MW-hr ($4 per MMBtu) energy cost. In Phase II of the study, laboratory tests were conducted to determine mechanical properties of salt at low temperature. This was followed by thermomechanical finite element simulations to evaluate the structural stability of the cavern during refrigerated storage. The high thermal expansion coefficient of salt is expected to result in tensile stresses leading to tensile failure in the roof, walls, and floor of the cavern as it is cooled. Tensile fracturing of the cavern roof may result in loss of containment of the gas and/or loss of integrity of the casing shoe, deeming the conversion of this facility not technically feasible.

JOel D. Dieland; Kirby D. Mellegard

2001-11-01T23:59:59.000Z

254

Marketing Cool Storage Technology  

E-Print Network [OSTI]

storage has been substantiated. bv research conducted by Electric Power Research Institute, and by numerous installations, it has become acknowledged that cool stora~e can provide substantial benefits to utilities and end-users alike. A need was reco...~ned to improve utility load factors, reduce peak electric demands, and other-wise mana~e the demand-side use of electricity. As a result of these many pro~rams, it became apparent that the storage of coolin~, in the form of chilled water, ice, or other phase...

McCannon, L.

255

Storage tracking refinery trends  

SciTech Connect (OSTI)

Regulatory and marketplace shakeups have made the refining and petrochemical industries highly competitive. The fight to survive has forced refinery consolidations, upgrades and companywide restructurings. Bulk liquid storage terminals are following suit. This should generate a flurry of engineering and construction by the latter part of 1997. A growing petrochemical industry translates into rising storage needs. Industry followers forecasted flat petrochemical growth in 1996 due to excessive expansion in 1994 and 1995. But expansion is expected to continue throughout this year on the strength of several products.

Saunders, J. [ed.

1996-05-01T23:59:59.000Z

256

Storage Ring Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'! ITransportStorage RingStorage

257

NV energy electricity storage valuation : a study for the DOE Energy Storage Systems program.  

SciTech Connect (OSTI)

This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority (%22BA%22) as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 (%22Pay-for-performance%22). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader [Pacific Northwest National Laboratory, Richland, WA; Jin, Chunlian [Pacific Northwest National Laboratory, Richland, WA

2013-06-01T23:59:59.000Z

258

Spent-fuel-storage alternatives  

SciTech Connect (OSTI)

The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

Not Available

1980-01-01T23:59:59.000Z

259

Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

Guenther, R.J.; Johnson, A.B. Jr.; Lund, A.L.; Gilbert, E.R. [and others

1996-07-01T23:59:59.000Z

260

Fuel Pond Sludge - Lessons Learned from Initial De-sludging of Sellafield's Pile Fuel Storage Pond - 12066  

SciTech Connect (OSTI)

The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took over fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site facilities to allow the fuel to be reprocessed or conditioned for long term storage. - Sludge Retrieval: In excess of 300 m{sup 3} of sludge has accumulated in the pond over many years and is made up of debris arising from fuel and metallic corrosion, wind blown debris and bio-organic materials. The Sludge Retrieval Project has provided the equipment necessary to retrieve the sludge, including skip washer and tipper machines for clearing sludge from the pond skips, equipment for clearing sludge from the pond floor and bays, along with an 'in pond' corral for interim storage of retrieved sludge. Two further projects are providing new plant processing routes, which will initially store and eventually passivate the sludge. - Metal Fuel Retrieval: Metal Fuel from early Windscale Pile operations and various other sources is stored within the pond; the fuel varies considerably in both form and condition. A retrieval project is planned which will provide fuel handling, conditioning, sentencing and export equipment required to remove the metal fuel from the pond for export to on site facilities for interim storage and disposal. - Solid Waste Retrieval: A final retrieval project will provide methods for handling, retrieval, packaging and export of the remaining solid Intermediate Level Waste within the pond. This includes residual metal fuel pieces, fuel cladding (Magnox, aluminium and zircaloy), isotope cartridges, reactor furniture, and miscellaneous activated and contaminated items. Each of the waste streams requires conditioning to allow it to be and disposed of via one of the site treatment plants. - Pond Dewatering and Dismantling: Delivery of the above projects will allow operations to progressively remove the radiological inventory, thereby reducing the hazard/risk posed by the plant. This will then allow subsequent dewatering of the pond and dismantling of the structure. (authors)

Carlisle, Derek; Adamson, Kate [Sellafield Ltd, Sellafield, Cumbria (United Kingdom)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Cryogenic Hydrogen Storage Systems Workshop Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartners with Siemens onSite |DepartmentHydrogen Storage

262

Gas Hydrate Storage of Natural Gas  

SciTech Connect (OSTI)

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

263

Underground storage tank management plan  

SciTech Connect (OSTI)

The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

NONE

1994-09-01T23:59:59.000Z

264

Understanding Long-Term Storage Access Patterns  

E-Print Network [OSTI]

4 Scientific Tertiary Storage System Behavior 4.1 Datasetof analyses based on storage system traces. Bibliography [1]in heterogeneous archival storage systems. In Proceedings of

Adams, Ian Forrest

2013-01-01T23:59:59.000Z

265

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

for Electrochemical Energy Storage Nanostructured Electrodesof the batteries and their energy storage efficiency. viifor Nanostructure-Based Energy Storage and Generation Tech-

Khan, Javed Miller

2012-01-01T23:59:59.000Z

266

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

267

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedLow Temperature Thermal Energy Storage Program of Oak Ridge

Authors, Various

2011-01-01T23:59:59.000Z

268

NERSC Frontiers in Advanced Storage Technology Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage R&D Frontiers in Advanced Storage Technologies (FAST) project Working with vendors to develop new functionality in storage technologies generally not yet available to...

269

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

270

NV Energy Electricity Storage Valuation  

SciTech Connect (OSTI)

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

271

NGLW RCRA Storage Study  

SciTech Connect (OSTI)

The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

2000-06-01T23:59:59.000Z

272

Seed Cotton Handling & Storage  

E-Print Network [OSTI]

Seed Cotton Handling & Storage #12;S.W. Searcy Texas A&M University College Station, Texas M) Lubbock, Texas E.M. Barnes Cotton Incorporated Cary, North Carolina Acknowledgements: Special thanks for the production of this document has been provided by Cotton Incorporated, America's Cotton Producers

Mukhtar, Saqib

273

HYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES  

E-Print Network [OSTI]

, Michael D. HamptonDarlene K. Slattery, Michael D. Hampton FL Solar Energy Center, U. of Central FLFL Solar Energy Center, U. of Central FL #12;Objective · Identify a hydrogen storage system that meets the DOEHYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES Darlene K. Slattery

274

Canister storage building hazard analysis report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

Krahn, D.E.; Garvin, L.J.

1997-07-01T23:59:59.000Z

275

Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013  

SciTech Connect (OSTI)

This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

Kerry L. Nisson

2012-10-01T23:59:59.000Z

276

EIS-0109: Long-Term Management of the Existing Radioactive Wastes and Residues at the Niagara Falls Storage Site  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate the environmental impacts of several alternatives for management and control of the radioactive wastes and residues at the Niagara Falls Storage Site, including a no action alternative, an alternative to manage wastes on-site, and two off-site management alternatives.

277

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. Battery Energy Storage  

E-Print Network [OSTI]

as presented, with the exception of pagination. INVITED P A P E R Battery Energy Storage System (BESS of battery management systems for grid-scale energy storage applications. By Matthew T. Lawder, Bharatkumar using battery energy storage systems (BESS) for grid storage, advanced modeling is required

Subramanian, Venkat

278

RATIONAL MATERIALS DESIGN THROUGH THEORY AND MODELING The rational design of novel electrical energy storage (EES) systems with high energy and  

E-Print Network [OSTI]

energy storage (EES) systems with high energy and power density will require the development of a full breakthroughs. Although chemical energy storage (batteries) and ECs share common components such as electrodes the research directions for each are presented separately. Chemical Energy Storage Storage of electrical charge

Bazant, Martin Z.

279

Compressed Air Energy Storage System  

E-Print Network [OSTI]

/expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the

Farzad A. Shirazi; Mohsen Saadat; Bo Yan; Perry Y. Li; Terry W. Simon

280

Chernobyl NPP: Completion of LRW Treatment Plant and LRW Management on Site - 12568  

SciTech Connect (OSTI)

Since a beginning of ChNPP operation, and after a tragedy in 1986, a few thousands m3 of LRW have been collected in a storage tanks. In 2004 ChNPP started the new project on creation of LRW treatment plant (LRWTP) financed from EBRD fund. But it was stopped in 2008 because of financial and contract problems. In 2010 SIA RADON jointly with Ukrainian partners has won a tender on completion of LRWTP, in particular I and C system. The purpose of LRTP is to process liquid rad-wastes from SSE 'Chernobyl NPP' site and those liquids stored in the LRWS and SLRWS tanks as well as the would-be wastes after ChNPP Power Units 1, 2 and 3 decommissioning. The LRTP design lifetime - 20 years. Currently, the LRTP is getting ready to perform the following activities: 1. retrieval of waste from tanks stored at ChNPP LWS using waste retrieval system with existing equipment involved; 2. transfer of retrieved waste into LRTP reception tanks with partial use of existing transfer pipelines; 3. laboratory chemical and radiochemical analysis of reception tanks contest to define the full spectrum of characteristics before processing, to acknowledge the necessity of preliminary processing and to select end product recipe; 4. preliminary processing of the waste to meet the requirements for further stages of the process; 5. shrinkage (concentrating) of preliminary processed waste; 6. solidification of preliminary processed waste with concrete to make a solid-state (end product) and load of concrete compound into 200-l drums; 7. curing of end product drums in LRTP curing hall; 8. radiologic monitoring of end product drums and their loading into special overpacks; 9. overpack radiological monitoring; 10. send for disposal (ICSRM Lot 3); The current technical decisions allow to control and return to ChNPP of process media and supporting systems outputs until they satisfy the following quality norms: salt content: < 100 g/l; pH: 1 - 11; anionic surface-active agent: < 25 mg/l; oil dissipated in the liquid: < 2 mg/l; overall gamma-activity: < 3,7 x10{sup 5} Bq/l. (authors)

Fedorov, Denis; Adamovich, Dmitry [SIA 'RADON', Moscow (Russian Federation); Klimenko, I.; Taranenko, L. [IVL Engineering, Kiev (Ukraine)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Covered Product Category: Residential Gas Storage Water Heaters  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

282

Normal matter storage of antiprotons  

SciTech Connect (OSTI)

Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

Campbell, L.J.

1987-01-01T23:59:59.000Z

283

Electrical Energy Storage: Stan Whittingham  

E-Print Network [OSTI]

1 p. 1 Electrical Energy Storage: Stan Whittingham Report of DOE workshop, April 2007 A Cleaner and Energy Independent America through Chemistry Chemical Storage: Batteries, today and tomorrow http needed in Energy Storage Lithium Economy not Hydrogen Economy #12;9 p. 9 Batteries are key to an economy

Suzuki, Masatsugu

284

The Power of Energy Storage  

E-Print Network [OSTI]

The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

Sadoulet, Elisabeth

285

Re-evaluation of monitored retrievable storage concepts  

SciTech Connect (OSTI)

In 1983, as a prelude to the monitored retrievable storage (MRS) facility conceptual design, the Pacific Northwest Laboratory (PNL) conducted an evaluation for the US Department of Energy (DOE) that examined alternative concepts for storing spent LWR fuel and high- level wastes from fuel reprocessing. The evaluation was made considering nine concepts for dry away-from-reactor storage. The nine concepts evaluated were: concrete storage cask, tunnel drywell, concrete cask-in-trench, open-cycle vault, metal casks (transportable and stationary), closed-cycle vault, field drywell, and tunnel-rack vault. The purpose and scope of the re-evaluation did not require a repetition of the expert-based examinations used earlier. Instead, it was based on more detailed technical review by a small group, focusing on changes that had occurred since the initial evaluation was made. Two additional storage concepts--the water pool and the horizontal modular storage vault (NUHOMS system)--were ranked along with the original nine. The original nine concepts and the added two conceptual designs were modified as appropriate for a scenario with storage capacity for 15,000 MTU of spent fuel. Costs, area requirements, and technical and historical data pertaining to MRS storage were updated for each concept.

Fletcher, J.F.; Smith, R.I.

1989-04-01T23:59:59.000Z

286

PC-Cluster based Storage System Architecture for Cloud Storage  

E-Print Network [OSTI]

Design and architecture of cloud storage system plays a vital role in cloud computing infrastructure in order to improve the storage capacity as well as cost effectiveness. Usually cloud storage system provides users to efficient storage space with elasticity feature. One of the challenges of cloud storage system is difficult to balance the providing huge elastic capacity of storage and investment of expensive cost for it. In order to solve this issue in the cloud storage infrastructure, low cost PC cluster based storage server is configured to be activated for large amount of data to provide cloud users. Moreover, one of the contributions of this system is proposed an analytical model using M/M/1 queuing network model, which is modeled on intended architecture to provide better response time, utilization of storage as well as pending time when the system is running. According to the analytical result on experimental testing, the storage can be utilized more than 90% of storage space. In this paper, two parts...

Yee, Tin Tin

2011-01-01T23:59:59.000Z

287

The liquid helium storage system for the Large Hadron Collider.  

E-Print Network [OSTI]

The cryogenic system of the Large Hadron Collider (LHC) under operation at CERN has a total helium inventory of 140 t. Up to 50 t can be stored in gas storage tanks. The remaining inventory will be stored in a liquid helium storage system consisting of six 15-t liquid helium tanks in 4 locations. The two liquid helium tanks of specific low heat inleak design and the required infrastructure of the first location were recently commissioned. Four additional tanks shall be operational end 2010. The paper describes the features and characteristics of the liquid helium storage system and presents the measurement of the thermal performance of the two first tanks.

Benda, V; Fathallah, M; Goiffon, T; Parente, C; Perez-Duenas, E; Perret, Ph; Pirotte, O; Serio, L; Vullierme, B

2011-01-01T23:59:59.000Z

288

Criteria for safe storage of plutonium metals and oxides  

SciTech Connect (OSTI)

This standard establishes safety criteria for safe storage of plutonium metals and plutonium oxides at DOE facilities; materials packaged to meet these criteria should not need subsequent repackaging to ensure safe storage for at least 50 years or until final disposition. The standard applied to Pu metals, selected alloys (eg., Ga and Al alloys), and stabilized oxides containing at least 50 wt % Pu; it does not apply to Pu-bearing liquids, process residues, waste, sealed weapon components, or material containing more than 3 wt % {sup 238}Pu. Requirements for a Pu storage facility and safeguards and security considerations are not stressed as they are addressed in detail by other DOE orders.

Not Available

1994-12-01T23:59:59.000Z

289

Renewable generation and storage project industry and laboratory recommendations  

SciTech Connect (OSTI)

The US Department of Energy Office of Utility Technologies is planning a series of related projects that will seek to improve the integration of renewable energy generation with energy storage in modular systems. The Energy Storage Systems Program and the Photovoltaics Program at Sandia National Laboratories conducted meetings to solicit industry guidance and to create a set of recommendations for the proposed projects. Five possible projects were identified and a three pronged approach was recommended. The recommended approach includes preparing a storage technology handbook, analyzing data from currently fielded systems, and defining future user needs and application requirements.

Clark, N.H.; Butler, P.C.; Cameron, C.P.

1998-03-01T23:59:59.000Z

290

Panel 4, Hydrogen Energy Storage Policy Considerations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern California Gas Company May 15, 2014 0 Methane is a Great Storage Medium 1 SoCalGas' storage...

291

105-H Reactor Interim Safe Storage Project Final Report  

SciTech Connect (OSTI)

The following information documents the decontamination and decommissioning of the 105-H Reactor facility, and placement of the reactor core into interim safe storage. The D&D of the facility included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, decontamination, demolition of the structure, and restoration of the site. The ISS work also included construction of the safe storage enclosure, which required the installation of a new roofing system, power and lighting, a remote monitoring system, and ventilation components.

E.G. Ison

2008-11-08T23:59:59.000Z

292

Modeling of thermal energy storage in groundwater aquifers  

E-Print Network [OSTI]

MODELING OF THERMAL ENERGY STORAGE IN GROUNDWATER AQUIFERS A Thesis by DAVID BRYAN REED Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1979... ABSTRACT Modeling of Thermal Energy Storage in Groundwater Aquifers. (December 1979) David Bryan Reed, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Donald L. Reddell Solar energy is a promising alternate energy source for space heat...

Reed, David Bryan

2012-06-07T23:59:59.000Z

293

Regulatory Policy and Markets for Energy Storage in North America  

SciTech Connect (OSTI)

The last 5 years have been one of the most exciting times for the energy storage industry. We have seen significant advancements in the regulatory process to make accommodations for valuing and monetizing energy storage for what it provides to the grid. The most impactful regulatory decision for the energy storage industry has come from California, where the California Public Utilities Commission issued a decision that mandates procurement requirements of 1.325 GW for energy storage to 3 investor-own utilities in 4 stages: in 2014, 2016, 2018, and 2020. Furthermore, at the Federal level, FERC’s Order 755, requires the transmission operators to develop pay for performance tariffs for ancillary services. This has had direct impact on the market design of US competitive wholesale markets and the monetization of fast responding grid assets. While this order is technology neutral, it clearly plays into the fast-responding capability of energy storage technologies. Today PJM, CAISO, MISO, NYISO, and NE-ISO have implemented Order 755 and offer new tariff for regulation services based on pay-for-performance principles. Furthermore, FERC Order 784, issued in July 2013 requires transmission providers to consider speed and accuracy in determining the requirements for ancillary services. In November 2013, FERC issued Order 972, which revises the small generator interconnection agreement which declares energy storage as a power source. This order puts energy storage on par with existing generators. This paper will discuss the implementation of FERC’s Pay for Performance Regulation order at all ISOs in the U.S. under FERC regulatory authority (this excludes ERCOT). Also discussed will be the market impacts and overall impacts on the NERC regulation performance indexes. The paper will end with a discussion on the California and Ontario, Canada procurement mandates and the opportunity that it may present to the energy storage industry.

Kintner-Meyer, Michael CW

2014-05-14T23:59:59.000Z

294

Evaluation of postharvest quality of onion varieties during storage  

E-Print Network [OSTI]

EVALUATION OF POSTHARVEST QUALITY OF ONION VARIETIES DURING STORAGE A Thesis NIHAL CHANDRAKUMARA RAJAPAESE Submitted to the Graduate College of Texas ALM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1983 Major Subject: Horticulture EVALUATION OF POSTHARVEST QUALITY OF ONION VARIETIES DURING STORAGE A Thesis NIHAL CHANDRAKUMARA RAJAPAKSE Approved as to style and content by: Leonard M. Pike (Chairman of Committee) J. Benton...

Rajapakse, Nihal Chandrakumara

1983-01-01T23:59:59.000Z

295

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network [OSTI]

number modeling of type ia supernovae. I. Hydrodynamics.number modeling of type ia supernovae. II. Energy evolution.Mach number modeling of type ia supernovae. III. Reactions.

Gerber, Richard A.

2011-01-01T23:59:59.000Z

296

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network [OSTI]

in the process of thermonuclear incineration of theircore-collapse and thermonuclear events to test predictionsprocesses. In contrast to thermonuclear supernova modeling,

Gerber, Richard A.

2012-01-01T23:59:59.000Z

297

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network [OSTI]

second resulting from a thermonuclear explosion of materialresult from the thermonuclear burning of a carbon-oxygensensitive to how the thermonuclear runaway is ignited (

Gerber, Richard A.

2011-01-01T23:59:59.000Z

298

Hydrogen Storage Materials Requirements to Meet the 2017 On Board...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fill & Drain Ports P S PS T P Rupture Disk @ 2 bar (INS-01) L Flapper Doors " Plastic " Plastic 38" SS Reactor Heater (H-1) 38" SS PRV @ 5 bar (V-4) INS-08 INS-07 PRV...

299

Large Scale Computing and Storage Requirements for Basic Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biological and Environmental Science (BER) Fusion Energy Sciences (FES) High Energy Physics (HEP) Nuclear Physics (NP) Overview Published Reports Case Study FAQs Home Science at...

300

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network [OSTI]

proceedings of High Performance Computing – 2011 (HPC-2011)In recent years, high performance computing has becomeNERSC is the primary high-performance computing facility for

Gerber, Richard A.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network [OSTI]

Type Ia supernovae, gamma-ray bursts, X-ray bursts and corerelativistic jet, making a gamma-ray burst, the luminositythose that lead to gamma-ray bursts. The current frontier is

Gerber, Richard A.

2011-01-01T23:59:59.000Z

302

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network [OSTI]

neutrino matrix. Neutrinoless double beta decay experiments,process called neutrinoless double beta decay in nuclei,

Gerber, Richard A.

2012-01-01T23:59:59.000Z

303

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network [OSTI]

Low-Energy Nuclear Physics National Joseph Carlson / HPC Initiative: Building a Universal Joseph Carlson Jonathan Engel Nuclear Energy Density Functional Structure and Reactions

Gerber, Richard A.

2012-01-01T23:59:59.000Z

304

Large Scale Computing and Storage Requirements for High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11Large areaLargefor High Energy

305

Large Scale Production Computing and Storage Requirements for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research. Final Report PDF version Date and Location April 29-30, 2014 Hyatt Regency Bethesda One Bethesda Metro Center (7400 Wisconsin Ave) Bethesda, Maryland, USA 20814...

306

Large Scale Computing and Storage Requirements for Advanced Scientific  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValues shown

307

Large Scale Computing and Storage Requirements for Basic Energy Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValues shownBiological and

308

Large Scale Computing and Storage Requirements for Biological and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValues shownBiological

309

Large Scale Computing and Storage Requirements for Biological and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValues shownBiologicalEnvironmental

310

Large Scale Computing and Storage Requirements for Fusion Energy Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValues

311

Large Scale Computing and Storage Requirements for Nuclear Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValues Participants Organizing

312

Large Scale Production Computing and Storage Requirements for Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space CombinedValues Participants

313

Hydrogen Compression, Storage, and Dispensing Cost Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional...

314

Combinatorial Approaches for Hydrogen Storage Materials (presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial Methods at the...

315

Webinar: Hydrogen Storage Materials Database Demonstration |...  

Broader source: Energy.gov (indexed) [DOE]

Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

316

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

317

Superconducting magnetic energy storage  

SciTech Connect (OSTI)

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

318

Test profiles for stationary energy storage applications  

SciTech Connect (OSTI)

Evaluation of battery and other energy storage technologies for stationary uses is progressing rapidly toward application-specific testing that uses computer-based data acquisition and control equipment, active electronic loads and power supplies, and customized software, to enable sophisticated test regimes that simulate actual use conditions. These simulated-use tests provide more accurate performance and life evaluations than simple constant resistance or current testing regimes. Some of the tests use stepped constant-power charge and discharge regimes to simulate conditions created by electric utility applications such as frequency regulation and spinning reserve. Other test profiles under development simulate conditions for the energy storage component of Remote Area Power Supplies (RAPS) that include renewable and/or fossil-fueled generators. Various RAPS applications have unique sets of service conditions that require specialized test profiles. However, almost all RAPS tests and many tests that represent other stationary applications need to simulate significant time periods during which storage devices operate at low-to-medium states-of-charge without full recharge. Consideration of these and similar issues in simulated-use test regimes is necessary to effectively predict the responses of the various types of batteries in specific stationary applications. This paper describes existing and evolving stationary applications for energy storage technologies and test regimes that are designed to simulate them. The paper also discusses efforts to develop international testing standards.

Butler, P.C. [Sandia National Labs., Albuquerque, NM (United States); Cole, J.F. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Taylor, P.A. [Energetics, Inc., Columbia, MD (United States)

1998-09-01T23:59:59.000Z

319

Sulfuric acid-sulfur heat storage cycle  

DOE Patents [OSTI]

A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

Norman, John H. (LaJolla, CA)

1983-12-20T23:59:59.000Z

320

French gas-storage project nearing completion  

SciTech Connect (OSTI)

Geomethane, jointly formed by Gaz de France and Geostock, is currently converting 7 of 36 solution-mined salt cavities at Manosque in southeast France from liquid hydrocarbon storage to natural-gas storage. In view of the large diameter (13 3/8 in.) of the original production wells and safety requirements, a unique high-capacity well completion has been developed for this project. It will have two fail-safe valves and a flow crossover 30 m below ground to isolate the production well in the event of problems at the surface. The project lies in the wooded Luberon Nature Reserve and due consideration has been given to locating the surface plant and blending it with the surroundings. The production wellheads are extra-low designs, the main plant was located outside the sensitive area, and the pipeline routes were landscaped. The paper discusses the history of salt cavern storage of natural gas; site characteristics; Manosque salt geology; salt mining and early storage; siting; engineering and construction; completion and monitoring; nature reserve protection; and fire and earthquake hazard mitigation.

Laguerie, P. de (Geostock, Rueil-Malmaison (France)); Durup, J.G. (Gaz de France, La Pluine St. Denis (France))

1994-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

HYDROGEN USAGE AND STORAGE  

E-Print Network [OSTI]

It is thought that it will be useful to inform society and people who are interested in hydrogen energy. The study below has been prepared due to this aim can be accepted as an article to exchange of information between people working on this subject. This study has been presented to reader to be utilized as a “technical note”. Main Energy sources coal, petroleum and natural gas are the fossil fuels we use today. They are going to be exhausted since careless usage in last decades through out the world, and human being is going to face the lack of energy sources in the near future. On the other hand as the fossil fuels pollute the environment makes the hydrogen important for an alternative energy source against to the fossil fuels. Due to the slow progress in hydrogen’s production, storage and converting into electrical energy experience, extensive usage of Hydrogen can not find chance for applications in wide technological practices. Hydrogen storage stands on an important point in the development of Hydrogen energy Technologies. Hydrogen is volumetrically low energy concentration fuel. Hydrogen energy, to meet the energy quantity necessary for the nowadays technologies and to be accepted economically and physically against fossil fuels, Hydrogen storage technologies have to be developed in this manner. Today the most common method in hydrogen storage may be accepted as the high pressurized composite tanks. Hydrogen is stored as liquid or gaseous phases. Liquid hydrogen phase can be stored by using composite tanks under very high pressure conditions. High technology composite material products which are durable to high pressures, which should not be affected by hydrogen embrittlement and chemical conditions.[1

322

Treatment, storage, and disposal alternatives for the gunite and associated tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The gunite and associated tanks (GAAT) are inactive, liquid low-level waste tanks located in and around the North and South Tank Farms at Oak Ridge National Laboratory. These underground tanks are the subject of an ongoing treatability study that will determine the best remediation alternatives for the tanks. As part of the treatability study, an assessment of viable treatment, storage, and disposal (TSD) alternatives has been conducted. The report summarizes relevant waste characterization data and statistics obtained to date. The report describes screening and evaluation criteria for evaluating TSD options. Individual options that pass the screening criteria are described in some detail. Order-or-magnitude cost estimates are presented for each of the TSD system alternatives. All alternatives are compared to the baseline approach of pumping all of the GAAT sludge and supernate to the Melton Valley Storage Tank (MVST) facility for eventual TSD along with the existing MOST waste. Four TSD systems are identified as alternatives to the baseline approach. The baseline is the most expensive of the five identified alternatives. The least expensive alternative is in-situ grouting of all GAAT sludge followed by in-situ disposal. The other alternatives are: (1) ex-situ grouting with on-site storage and disposal at Nevada Test Site (NTS); (2) ex-situ grouting with on-site storage and disposal at NTS and the Waste Isolation Pilot Plant (WIPP); and (3) ex-situ vitrification with on-site storage and disposal at NTS and WIPP.

DePew, R.E.; Rickett, K. [Advanced Systems Technology, Inc., Oak Ridge, TN (United States); Redus, K.S. [MACTEC, Oak Ridge, TN (United States); DuMont, S.P. [Hazardous and Medical Waste Services, Inc. (United States); Lewis, B.E.; DePaoli, S.M.; Van Hoesen, S.D. Jr. [Oak Ridge National Lab., TN (United States)

1996-05-01T23:59:59.000Z

323

Home and community composting for on-site treatment of urban organic waste: perspective for Europe and Canada  

E-Print Network [OSTI]

Home and community composting for on-site treatment of urban organic waste: perspective for Europe practice (Base Sce), this paper examines on-site UOW composting strategies using a combination of centralized composting facilities (CCF), community composting centres (CCC) and home composting (HC) (Sce 1, 2

Paris-Sud XI, Université de

324

Maui energy storage study.  

SciTech Connect (OSTI)

This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

2012-12-01T23:59:59.000Z

325

Deployment of Behind-The-Meter Energy Storage for Demand Charge Reduction  

SciTech Connect (OSTI)

This study investigates how economically motivated customers will use energy storage for demand charge reduction, as well as how this changes in the presence of on-site photovoltaic power generation, to investigate the possible effects of incentivizing increased quantities of behind-the-meter storage. It finds that small, short-duration batteries are most cost effective regardless of solar power levels, serving to reduce short load spikes on the order of 2.5% of peak demand. While profitable to the customer, such action is unlikely to adequately benefit the utility as may be desired, thus highlighting the need for modified utility rate structures or properly structured incentives.

Neubauer, J.; Simpson, M.

2015-01-01T23:59:59.000Z

326

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Broader source: Energy.gov [DOE]

The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

327

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Broader source: Energy.gov [DOE]

 The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

328

On-site demonstration procedure for solid-state fluorescent ballast  

SciTech Connect (OSTI)

The report was presented to plant engineers and managers who were involved in an on-site demonstration of EETech solid-state ballasts for two 40-watt T12 fluorescent lamps. The report includes a brief review of the operating principles of solid-state fluorescent ballasts and the status of development achieved during the LBL program. The remainder of the test describes the techniques of managing and instrumenting a test area for assessing the performance of solid-state fluorescent ballasts at an occupied site.

Verderber, R.; Morse, O.

1980-09-01T23:59:59.000Z

329

Calcined solids storage facility closure study  

SciTech Connect (OSTI)

The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others] [and others

1998-02-01T23:59:59.000Z

330

Hydrogen Storage Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProduction TechnicalSensor WorkshopM M a a|

331

These special appetizers are assembled on site for maximum freshness and require that an attendant be on site at your event. Minimum order is 2 dozen for each item.  

E-Print Network [OSTI]

- west Ranch Dressing. $20 per person Jalapeño Marinated Tenderloin Blackberry & Brie Crostini Our ENTR�ES All Entrées are served as China Plated Meals. Entrees include House Salad and Dressing, Artisan Soup & Strawberry Salad with Balsamic Dressing A cup of creamy Potato Soup loaded with Celery

Schladow, S. Geoffrey

332

Interim storage study report  

SciTech Connect (OSTI)

High-level radioactive waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) in the form of calcine and liquid and liquid sodium-bearing waste (SBW) will be processed to provide a stable waste form and prepare the waste to be transported to a permanent repository. Because a permanent repository will not be available when the waste is processed, the waste must be stored at ICPP in an Interim Storage Facility (ISF). This report documents consideration of an ISF for each of the waste processing options under consideration.

Rawlins, J.K.

1998-02-01T23:59:59.000Z

333

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

334

NERSC HPSS Storage Statistics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscale SubsurfaceExascalePhase-1 HPSS ChargingArchive Storage

335

Energy Storage Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009Applications - Report |ofSectorSTORAGE 101The

336

Sandia National Laboratories: Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandards Solar ThermochemicalStorage Protected: Hydrogen and

337

Storage Ring Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'! ITransportStorage Ring

338

Storage Ring Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'! ITransportStorage

339

Storage Ring Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849 127,174 126,924Storage Ring Parameters

340

Storage Ring Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849 127,174 126,924Storage Ring

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Storage Ring Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849 127,174 126,924Storage RingPhoton

342

Storage Ring Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849 127,174 126,924Storage

343

Heat storage with CREDA  

SciTech Connect (OSTI)

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

344

On-Site Oxy-Lance Size Reduction of South Texas Project Reactor Vessel Heads - 12324  

SciTech Connect (OSTI)

On-Site Oxy-Lance size reduction of mildly radioactive large components has been accomplished at other operating plants. On-Site Oxy-Lance size reduction of more radioactive components like Reactor Vessel Heads had previously been limited to decommissioning projects. Building on past decommissioning and site experience, subcontractors for South Texas Project Nuclear Operating Company (STPNOC) developed an innovative integrated system to control smoke, radioactive contamination, worker dose, and worker safety. STP's innovative, easy to use CEDM containment that provided oxy lance access, smoke control, and spatter/contamination control was the key to successful segmentation for cost-effective and ALARA packaging and transport for disposal. Relative to CEDM milling, STP oxy-lance segmentation saved approximately 40 person- REM accrued during 9,000 hours logged into the radiological controlled area (RCA) during more than 3,800 separate entries. Furthermore there were no personnel contamination events or respiratory uptakes of radioactive material during the course of the entire project. (authors)

Posivak, Edward [WMG, inc. (United States); Keeney, Gilbert; Wheeler, Dean [Shaw Group (United States)

2012-07-01T23:59:59.000Z

345

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.  

E-Print Network [OSTI]

??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility… (more)

Peng, Dan

2013-01-01T23:59:59.000Z

346

Systems analysis of thermal storage  

SciTech Connect (OSTI)

During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

Copeland, R.J.

1981-08-01T23:59:59.000Z

347

Design and installation manual for thermal energy storage  

SciTech Connect (OSTI)

The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

1980-01-01T23:59:59.000Z

348

Gas hydrate cool storage system  

DOE Patents [OSTI]

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

349

Underground caverns for hydrocarbon storage  

SciTech Connect (OSTI)

Large, international gas processing projects and growing LPG imports in developing countries are driving the need to store large quantities of hydrocarbon liquids. Even though underground storage is common in the US, many people outside the domestic industry are not familiar with the technology and the benefits underground storage can offer. The latter include lower construction and operating costs than surface storage, added safety, security and greater environmental acceptance.

Barron, T.F. [Exeter Energy Services, Houston, TX (United States)

1998-12-31T23:59:59.000Z

350

Article for thermal energy storage  

DOE Patents [OSTI]

A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

Salyer, Ival O. (Dayton, OH)

2000-06-27T23:59:59.000Z

351

Natural gas storage - end user interaction. Final report, September 1992--May 1996  

SciTech Connect (OSTI)

The primary purpose of this project is to develop an understanding of the market for natural gas storage that will provide for rigorous evaluation of federal research and development opportunities in storage technologies. The project objectives are: (1) to identify market areas and end use sectors where new natural gas underground storage capacity can be economically employed; (2) to develop a storage evaluation system that will provide the analytical tool to evaluate storage requirements under alternate economic, technology, and market conditions; and (3) to analyze the economic and technical feasibility of alternatives to conventional gas storage. An analytical approach was designed to examine storage need and economics on a total U.S. gas system basis, focusing on technical and market issues. Major findings of each subtask are reported in detail. 79 figs.

NONE

1998-12-31T23:59:59.000Z

352

Savannah River Hydrogen Storage Technology  

Broader source: Energy.gov (indexed) [DOE]

Member of DOE Carbon Working Group - Developed novel method for forming doped carbon nanotubes as part of DOE Storage Program (patent pending) - Collaborated with universities and...

353

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

354

Underground Storage Tank Program (Vermont)  

Broader source: Energy.gov [DOE]

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

355

Underground Storage Tanks (New Jersey)  

Broader source: Energy.gov [DOE]

This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and...

356

CO2 Geologic Storage (Kentucky)  

Broader source: Energy.gov [DOE]

Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon...

357

Flywheel energy storage workshop  

SciTech Connect (OSTI)

Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

O`Kain, D.; Carmack, J. [comps.

1995-12-31T23:59:59.000Z

358

Fire Hazards Analysis for the 200 Area Interim Storage Area  

SciTech Connect (OSTI)

This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards.

JOHNSON, D.M.

2000-01-06T23:59:59.000Z

359

Reference value developed for mechanical integrity of storage caverns  

SciTech Connect (OSTI)

A reference value to verify the mechanical integrity of salt-cavern wells used in hydrocarbon storage has been developed. Salt caverns play important roles in large-scale storage of hydrocarbon gases and liquids. Required for safe and economical operation of these storage caverns is verification of the external mechanical integrity of the access (injection and withdrawal) wells. This study had the following goals: Provision of an overview of current practice; and Development of a reference for external well mechanical-integrity testing with respect to performance, data evaluation, and assessment. The storage cavern operators expected to gain the following: Comparability between method and assessments; Aid in influencing the movement towards standardization by regulators; and A firm technical base for use in litigation between the operator and other parties.

Crotogino, F. [Kavernen Bau- and Betriebs-GmbH, Hannover (Germany)

1996-10-28T23:59:59.000Z

360

Electrochemical hydrogen Storage Systems  

SciTech Connect (OSTI)

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Demonstrating the Safety of Long-Term Dry Storage - 13468  

SciTech Connect (OSTI)

Commercial nuclear plants in the United States were originally designed with the expectation that used nuclear fuel would be moved directly from the reactor pools and transported off site for either reprocessing or direct geologic disposal. However, Federal programs intended to meet this expectation were never able to develop the capability to remove used fuel from reactor sites - and these programs remain stalled to this day. Therefore, in the 1980's, with reactor pools reaching capacity limits, industry began developing dry cask storage technology to provide for additional on-site storage. Use of this technology has expanded significantly since then, and has today become a standard part of plant operations at most US nuclear sites. As this expansion was underway, Federal programs remained stalled, and it became evident that dry cask systems would be in use longer than originally envisioned. In response to this challenge, a strong technical basis supporting the long term dry storage safety has been developed. However, this is not a static situation. The technical basis must be able to address future challenges. Industry is responding to one such challenge - the increasing prevalence of high burnup (HBU) used fuel and the need to provide long term storage assurance for these fuels equivalent to that which has existed for lower burnup fuels over the past 25 years. This response includes a confirmatory demonstration program designed to address the aging characteristics of HBU fuel and set a precedent for a learning approach to aging management that will have broad applicability across the used fuel storage landscape. (authors)

McCullum, Rod [Nuclear Energy Institute, 1201 F St. NW, Washington, DC, 20004 (United States)] [Nuclear Energy Institute, 1201 F St. NW, Washington, DC, 20004 (United States); Brookmire, Tom [Dominion Energy, 5000 Dominion Boulevard Glen Allen, VA 23060 (United States)] [Dominion Energy, 5000 Dominion Boulevard Glen Allen, VA 23060 (United States); Kessler, John [Electric Power Research Institute, 1300 West W.T. Harris Boulevard, Charlotte, NC 28262 (United States)] [Electric Power Research Institute, 1300 West W.T. Harris Boulevard, Charlotte, NC 28262 (United States); Leblang, Suzanne [Entergy, 1340 Echelon Parkway, Jackson, MS 39211 (United States)] [Entergy, 1340 Echelon Parkway, Jackson, MS 39211 (United States); Levin, Adam [Exelon, 4300 Winfield Road, Warrenville, IL 60555 (United States)] [Exelon, 4300 Winfield Road, Warrenville, IL 60555 (United States); Martin, Zita [Tennessee Valley Authority, 1101 Market Street, Chattanooga, TN 37402 (United States)] [Tennessee Valley Authority, 1101 Market Street, Chattanooga, TN 37402 (United States); Nesbit, Steve [Duke Energy, 550 South Tryon Street, Charlotte, NC 28202 (United States)] [Duke Energy, 550 South Tryon Street, Charlotte, NC 28202 (United States); Nichol, Marc [Nuclear Energy Institute, 1201 F St. NW Washington DC, 2004 (United States)] [Nuclear Energy Institute, 1201 F St. NW Washington DC, 2004 (United States); Pickens, Terry [Xcel Energy, 414 Nicollet Mall, Minneapolis, MN 55401 (United States)] [Xcel Energy, 414 Nicollet Mall, Minneapolis, MN 55401 (United States)

2013-07-01T23:59:59.000Z

362

NVLAP ON-SITE ASSESSMENT SUMMARY (REV. 2005-10-25) PAGE 1 OF 1 NVLAP ON-SITE ASSESSMENT SUMMARY  

E-Print Network [OSTI]

(s): ____________________________________________________________________ Date of Pre-assessment Review of Quality Manual: __________________________________________ Date to NVLAP in writing about their resolution. 4 Management requirements 4.1 Organization 4.2 Management system 4.3 Document control 4.4 Review of requests, tenders and contracts 4.5 Subcontracting of tests

363

Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes  

SciTech Connect (OSTI)

The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

Not Available

1984-01-01T23:59:59.000Z

364

On-site vs off-site management of environmental restoration waste: A cost effectiveness analysis  

SciTech Connect (OSTI)

The Sandia National Laboratories Environmental Restoration Project is expected to generate relatively large volumes of hazardous waste as a result of cleanup operations. These volumes will exceed the Laboratories existing waste management capacity. This paper presents four options for managing remediation wastes, including three alternatives for on-site waste management utilizing a corrective action management unit (CAMU). Costs are estimated for each of the four options based on current volumetric estimates of hazardous waste. Cost equations are derived for each of the options with the variables being waste volumes, the major unknowns in the analysis. These equations provide a means to update cost estimates as volume estimates change. This approach may be helpful to others facing similar waste management decisions.

Morse, M.A. [Terradigm, Inc., Albuquerque, NM (United States); Aamodt, P.L. [Los Alamos National Lab., NM (United States); Cox, W.B. [Sandia National Labs., Albuquerque, NM (United States)

1996-02-01T23:59:59.000Z

365

Interconnection of on-site photovoltaic generation to the electric utility. [Conference paper  

SciTech Connect (OSTI)

Electrical interconnection with the local electric utility of small, privately owned, on-site photovoltaic generating systems will be necessary. Legal guidelines exist through PURPA, administered by FERC, to establish interconnection, but economic viability will be the deciding factor in constructing photovoltaic generating systems. Although nationally recognized technical standards do not yet exist for interconnecting photovoltaic generation with an electric utility, most utilities have considered the need for developing cogeneration standards, and a few have developed such standards independently. Additional costs incurred by utilities in providing service interconnections to customers with cogeneration will be passed along to those customers, either as a direct assessment or as part of the applicable rate schedule. An economic-analysis methodology has been developed to allow comparing various possible photovoltaic-generating-system configurations under different utility rate structures and varying economic climates on a consistent basis.

Eichler, C.H.; Kilar, L.A.; Stiller, P.H.

1980-01-01T23:59:59.000Z

366

Reversible hydrogen storage materials  

DOE Patents [OSTI]

In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

2012-04-10T23:59:59.000Z

367

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

trates a design load profile for a partial storage system.load management / full storage / ice storage / partialfor partial storage) because part of the cooling load is

Akbari, H.

2010-01-01T23:59:59.000Z

368

Grid Storage and the Energy Frontier Research Centers | Department...  

Broader source: Energy.gov (indexed) [DOE]

Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

369

MATERIAL HANDLING, STORAGE, AND DISPOSAL  

E-Print Network [OSTI]

Materials shall be stored in a manner that allows easy identification and access to labels, identification entering storage areas. All persons shall be in a safe position while materials are being loadedEM 385-1-1 XX Jun 13 14-1 SECTION 14 MATERIAL HANDLING, STORAGE, AND DISPOSAL 14.A MATERIAL

US Army Corps of Engineers

370

Nanostructured materials for hydrogen storage  

DOE Patents [OSTI]

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

371

Canister storage building hazard analysis report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis was performed in accordance with the DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', and meets the intent of HNF-PRO-704, ''Hazard and Accident Analysis Process''. This hazard analysis implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports''.

POWERS, T.B.

1999-05-11T23:59:59.000Z

372

Value of storage with increased renewable penetration.  

SciTech Connect (OSTI)

The problem statement for this project is: (1) Renewable energy portfolio standards - (a) high penetration of intermittent and variable renewable generation on the grid, (b) utilities constrained by NERC Control Performance Standards, (c) requires additional resources to match generation with load; and (2) mitigation of impacts with energy storage - at what level of renewable penetration does energy storage become an attractive value proposition. Use a simplified, yet robust dispatch model that: (a) incorporates New Mexico Balance Area load and wind generation data, (b) distributes the load among a suite of generators, (c) quantifies increased generation costs with increased penetration of intermittent and variable renewable generation - fuel, startup, shut down, ramping, standby, etc., (d) tracks and quantifies NERC pentalties and violations, and (e) quantifies storage costs. Dispatch model has been constructed and it: (a) accurately distributes a load among a suite of generators, (b) quantifies duty cycle metrics for each of the generators - cumulative energy production, ramping and non ramping duration, spinning reserves, number of start-ups, and shut down durations, etc., (c) quantifies energy exchanges - cumulative exchanges, duration, and number of exchanges, (d) tracks ACE violations.

Brainard, James Robert; Roach, Jesse Dillon

2010-10-01T23:59:59.000Z

373

Systems analysis of thermal storage  

SciTech Connect (OSTI)

During FY80 analyses were conducted on thermal storage concepts for solar thermal applications. These studies include both estimates of the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, promising thermal storage concepts are being identified. A preliminary screening was completed in FY80 and a more in-depth study was initiated. Value studies are being conducted to establish cost goals. A ranking of storage concepts based on value in solar thermal electric plants was conducted for both diurnal and long duration applications. Ground mounted thermal storage concepts for a parabolic dish/Stirling systtem are also being evaluated.

Copeland, R. J.

1980-08-01T23:59:59.000Z

374

Extending dry storage of spent LWR fuel for 100 years.  

SciTech Connect (OSTI)

Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72 [1]. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and excessive creep and mechanical property changes. Postulated accident scenarios would be the same for 20-year or 100-year storage, because they are mostly governed by operational or outside events, and not by the cask or fuel. Analyses of accident scenarios during extended dry storage could be impacted by fuel and cask changes that would result from the extended period of storage. Overall, the results of this work indicate that, based on fuel behavior, spent fuel at burnups below {approximately}45 GWd/MTU can be dry stored for 100 years. Long-term storage of higher burnup fuel or fuels with newer cladding will require the determination of temperature limits based on evaluation of stress-driven degradation mechanisms of the cladding.

Einziger, R. E.

1998-12-16T23:59:59.000Z

375

Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage  

SciTech Connect (OSTI)

The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

Hobson, M.J.

1981-11-01T23:59:59.000Z

376

Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization  

E-Print Network [OSTI]

Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization Ravi applications, the ability to recharge quickly and efficiently is a critical requirement for a storage battery The optimal profile of charging current for a lithium-ion battery is estimated using dynamic optimization

Subramanian, Venkat

377

REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)  

SciTech Connect (OSTI)

Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified additional components and actions in Section 3.0 and Table 3 that require further evaluation. The purpose of this report is to evaluate another portion of the remaining inventory (i.e., delayed neutron signal fuel, blanket assemblies, highly enriched assemblies, newly loaded Ident-69 pin containers, and returned fuel) to ensure it can be safely off loaded to the FFTF spent fuel storage system.

CHASTAIN, S.A.

2005-10-24T23:59:59.000Z

378

The Influence of Graphene Curvature on Hydrogen Adsorption: Towards Hydrogen Storage Devices  

E-Print Network [OSTI]

The ability of atomic hydrogen to chemisorb on graphene makes the latter a promising material for hydrogen storage. Based on scanning tunneling microscopy techniques, we report on site-selective adsorption of atomic hydrogen on convexly curved regions of monolayer graphene grown on SiC(0001). This system exhibits an intrinsic curvature owing to the interaction with the substrate. We show that at low coverage hydrogen is found on convex areas of the graphene lattice. No hydrogen is detected on concave regions. These findings are in agreement with theoretical models which suggest that both binding energy and adsorption barrier can be tuned by controlling the local curvature of the graphene lattice. This curvature-dependence combined with the known graphene flexibility may be exploited for storage and controlled release of hydrogen at room temperature making it a valuable candidate for the implementation of hydrogen-storage devices.

Goler, Sarah; Tozzini, Valentina; Piazza, Vincenzo; Mashoff, Torge; Beltram, Fabio; Pellegrini, Vittorio; Heun, Stefan

2013-01-01T23:59:59.000Z

379

Technical Assessment: Cryo-Compressed Hydrogen Storage  

E-Print Network [OSTI]

Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications October 30, 2006 .....................................................................................................................................................................8 APPENDIX A: Review of Cryo-Compressed Hydrogen Storage Systems ......................................................................................18 APPENDIX C: Presentation to the FreedomCAR & Fuel Hydrogen Storage Technical Team

380

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

Khan, Javed Miller

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

in floor tiles for thermal energy storage,” working paper,D. R. (2000). Thermal energy storage for space cooling,A simple model of thermal energy storage is developed as a

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

382

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

Authors, Various

2011-01-01T23:59:59.000Z

383

NATURAL GAS STORAGE ENGINEERING Kashy Aminian  

E-Print Network [OSTI]

NATURAL GAS STORAGE ENGINEERING Kashy Aminian Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Shahab D. Mohaghegh Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Keywords: Gas Storage, Natural Gas, Storage, Deliverability, Inventory

Mohaghegh, Shahab

384

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network [OSTI]

solid-fluid heat storage systems in the ground; extractions0 Thermal storage of cold water in ground water aquifers forA. 8 1971, Storage of solar energy in a sandy-gravel ground:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

385

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

and J. Schwarz, Survey of Thermal Energy Storage in AquifersB. Quale. Seasonal storage of thermal energy in water in theSecond Annual Thermal Energy Storage Contractors'

Authors, Various

2011-01-01T23:59:59.000Z

386

Harvesting and StorageHarvesting and Storage Importance of safe food handling during harvest and storage  

E-Print Network [OSTI]

Harvesting and StorageHarvesting and Storage Importance of safe food handling during harvest illness. Steps to take prior to harvest When washing and sanitizing surfaces, use the appropriate. Pressure washing is a good way to clean. Clean and sanitize harvesting tools such as knives, pruners

Liskiewicz, Maciej

387

Investigations in cool thermal storage: storage process optimization and glycol sensible storage enhancement  

E-Print Network [OSTI]

device in order to meet the utility's mandate. The first part of this study looks at the effects of adding propylene glycol to a static-water ice thermal storage tank, in the pursuit of increasing storage capacity. The effects of glycol addition...

Abraham, Michaela Marie

1993-01-01T23:59:59.000Z

388

Waste Encapsulation and Storage Facility (WESF) Hazards Assessment  

SciTech Connect (OSTI)

This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

COVEY, L.I.

2000-11-28T23:59:59.000Z

389

Achieving increased spent fuel storage capacity at the High Flux Isotope Reactor (HFIR)  

SciTech Connect (OSTI)

The HFIR facility was originally designed to store approximately 25 spent cores, sufficient to allow for operational contingencies and for cooling prior to off-site shipment for reprocessing. The original capacity has now been increased to 60 positions, of which 53 are currently filled (September 1994). Additional spent cores are produced at a rate of about 10 or 11 per year. Continued HFIR operation, therefore, depends on a significant near-term expansion of the pool storage capacity, as well as on a future capability of reprocessing or other storage alternatives once the practical capacity of the pool is reached. To store the much larger inventory of spent fuel that may remain on-site under various future scenarios, the pool capacity is being increased in a phased manner through installation of a new multi-tier spent fuel rack design for higher density storage. A total of 143 positions was used for this paper as the maximum practical pool capacity without impacting operations; however, greater ultimate capacities were addressed in the supporting analyses and approval documents. This paper addresses issues related to the pool storage expansion including (1) seismic effects on the three-tier storage arrays, (2) thermal performance of the new arrays, (3) spent fuel cladding corrosion concerns related to the longer period of pool storage, and (4) impacts of increased spent fuel inventory on the pool water quality, water treatment systems, and LLLW volume.

Cook, D.H.; Chang, S.J.; Dabs, R.D.; Freels, J.D.; Morgan, K.A.; Rothrock, R.B. [Oak Ridge National Lab., TN (United States); Griess, J.C. [Griess (J.C.), Knoxville, TN (United States)

1994-12-31T23:59:59.000Z

390

Documented Safety Analysis for the Waste Storage Facilities  

SciTech Connect (OSTI)

This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

Laycak, D

2008-06-16T23:59:59.000Z

391

Documented Safety Analysis for the Waste Storage Facilities March 2010  

SciTech Connect (OSTI)

This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

Laycak, D T

2010-03-05T23:59:59.000Z

392

Panel 2, Geologic Storage of Hydrogen  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geologic Storage - Types Types of Underground Storage Aquifers Aquifers are similar in geology to depleted reservoirs, but have not been proven to trap gas and must be developed....

393

Combinatorial Approach for Hydrogen Storage Materials (presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Approach for Hydrogen Storage Materials (presentation) Combinatorial Approach for Hydrogen Storage Materials (presentation) Presented at the U.S. Department of Energy's Hydrogen...

394

Subsea Pumped Hydro Storage -A Technology Assessment.  

E-Print Network [OSTI]

??A novel technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources… (more)

Falk, Johan

2013-01-01T23:59:59.000Z

395

NREL: Vehicles and Fuels Research - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Vehicles and Fuels Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

396

Structured Storage in ATLAS Distributed Data Management  

E-Print Network [OSTI]

CHEP'12 Talk Structured Storage - Concepts - Technologies ATLAS DDM Use Cases - Storage facility - Data intensive analytics Operational Experiences - Software - Hardware Conclusions

Lassnig, M; The ATLAS collaboration; Molfetas, A; Beermann, T; Dimitrov, G; Canali, L; Zang, D

2012-01-01T23:59:59.000Z

397

Overview of Gridscale Rampable Intermittent Dispatchable Storage...  

Broader source: Energy.gov (indexed) [DOE]

Rampable Intermittent Dispatchable Storage (GRIDS) Program Presentation by Mark Johnson, Advanced Research Projects Agency - Energy, at the Flow Cells for Energy Storage...

398

Migrating enterprise storage applications to the cloud  

E-Print Network [OSTI]

2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

Vrable, Michael Daniel

2011-01-01T23:59:59.000Z

399

DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

400

Webinar Presentation: Energy Storage Solutions for Microgrids...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012, Clean...

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Panel 3, Electrolysis for Grid Energy Storage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM...

402

Georgia Underground Storage Tank Act (Georgia)  

Broader source: Energy.gov [DOE]

The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks (“USTs”) of “regulated substances” other than...

403

Thermal Energy Storage Potential in Supermarkets.  

E-Print Network [OSTI]

?? The objective of this research is to evaluate the potential of thermal energy storage in supermarkets with CO2 refrigeration systems. Suitable energy storage techniques… (more)

Ohannessian, Roupen

2014-01-01T23:59:59.000Z

404

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Broader source: Energy.gov (indexed) [DOE]

Final Report for the DOE Metal Hydride Center of Excellence Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials...

405

Mixed reality training application for an oil refinery: user requirements  

E-Print Network [OSTI]

Introducing mixed reality (MR) into safety-critical environment like oil refinery is difficult, since the environment and organization lays demanding restrictions for the application. In order to develop usable and safe MR application, we need to study the context of use and derive user requirements from it. This paper describes the user requirements for an MR based oil refinery training tool. The application is aimed to train employees of a specific process unit in the refinery. Training is currently done mainly in a classroom and on-site only when the process is closed down. On-site training is necessary, but expensive and rarely possible. The use of mixed reality offers a way to train employees on-site while the process is running. Users can virtually see “inside ” the columns and can modify virtually the process..

Marjaana Träskbäck

2004-01-01T23:59:59.000Z

406

Fire hazard analysis for the fuel supply shutdown storage buildings  

SciTech Connect (OSTI)

The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

REMAIZE, J.A.

2000-09-27T23:59:59.000Z

407

Thermal energy storage for cooling of commercial buildings  

SciTech Connect (OSTI)

The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

Akbari, H. (Lawrence Berkeley Lab., CA (USA)); Mertol, A. (Science Applications International Corp., Los Altos, CA (USA))

1988-07-01T23:59:59.000Z

408

Market and policy barriers to energy storage deployment : a study for the energy storage systems program.  

SciTech Connect (OSTI)

Electric energy storage technologies have recently been in the spotlight, discussed as essential grid assets that can provide services to increase the reliability and resiliency of the grid, including furthering the integration of variable renewable energy resources. Though they can provide numerous grid services, there are a number of factors that restrict their current deployment. The most significant barrier to deployment is high capital costs, though several recent deployments indicate that capital costs are decreasing and energy storage may be the preferred economic alternative in certain situations. However, a number of other market and regulatory barriers persist, limiting further deployment. These barriers can be categorized into regulatory barriers, market (economic) barriers, utility and developer business model barriers, crosscutting barriers and technology barriers. This report, through interviews with stakeholders and review of regulatory filings in four regions roughly representative of the United States, identifies the key barriers restricting further energy storage development in the country. The report also includes a discussion of possible solutions to address these barriers and a review of initiatives around the country at the federal, regional and state levels that are addressing some of these issues. Energy storage could have a key role to play in the future grid, but market and regulatory issues have to be addressed to allow storage resources open market access and compensation for the services they are capable of providing. Progress has been made in this effort, but much remains to be done and will require continued engagement from regulators, policy makers, market operators, utilities, developers and manufacturers.

Bhatnagar, Dhruv; Currier, Aileen B.; Hernandez, Jacquelynne; Ma, Ookie [U.S. Department of Energy, Washington, D.C.; Kirby, Brendan [U.S. Department of Energy, Washington, D.C.

2013-09-01T23:59:59.000Z

409

Storage containers for radioactive material  

DOE Patents [OSTI]

A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

Groh, E.F.; Cassidy, D.A.; Dates, L.R.

1980-07-31T23:59:59.000Z

410

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z, or (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries.

Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T; Andersson, Anna M

2014-10-07T23:59:59.000Z

411

Impact of Fractures on CO2 Storage Monitoring: Keys for an Integrated Approach  

E-Print Network [OSTI]

storage in fractured reservoirs (depleted hydrocarbon fields or brine aquifers) requires the study fluids, connected and/or non-connected fractures, the presence of Oil & Gas Science and Technology ­ Rev

Boyer, Edmond

412

E-Print Network 3.0 - acid storage tank Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 Attachment A PPOP 08.10 Summary: < Refrigerant Storage Tanks Ventilated vaults: < Acid Vaults (May or may not require a permit depending... Side of...

413

Viability of Existing INL Facilities for Dry Storage Cask Handling  

SciTech Connect (OSTI)

This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

2013-04-01T23:59:59.000Z

414

On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010  

SciTech Connect (OSTI)

This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)] [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

2013-07-01T23:59:59.000Z

415

PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY  

SciTech Connect (OSTI)

It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

Phifer, M.

2012-01-31T23:59:59.000Z

416

HGMS: Glasses and Nanocomposites for Hydrogen Storage.  

SciTech Connect (OSTI)

The primary goal of this project is to fabricate and investigate different glass systems and glass-derived nanocrystalline composite materials. These glass-based, two-phased materials will contain nanocrystals that can attract hydrogen and be of potential interest as hydrogen storage media. The glass materials with intrinsic void spaces that are able to precipitate functional nanocrystals capable to attract hydrogen are of particular interest. Proposed previously, but never practically implemented, one of promising concepts for storing hydrogen are micro-containers built of glass and shaped into hollow microspheres. The project expanded this concept to the exploration of glass-derived nanocrystalline composites as potential hydrogen storage media. It is known that the most desirable materials for hydrogen storage do not interact chemically with hydrogen and possess a high surface area to host substantial amounts of hydrogen. Glasses are built of disordered networks with ample void spaces that make them permeable to hydrogen even at room temperature. Glass-derived nanocrystalline composites (two-phased materials), combination of glasses (networks with ample voids) and functional nanocrystals (capable to attract hydrogen), appear to be promising candidates for hydrogen storage media. Key advantages of glass materials include simplicity of preparation, flexibility of composition, chemical durability, non-toxicity and mechanical strength, as well as low production costs and environmental friendliness. This project encompasses a fundamental research into physics and chemistry of glasses and nanocrystalline composite materials, derived from glass. Studies are aimed to answer questions essential for considering glass-based materials and composites as potential hydrogen storage media. Of particular interest are two-phased materials that combine glasses with intrinsic voids spaces for physisorption of hydrogen and nanocrystals capable of chemisorption. This project does not directly address any hydrogen storage technical barriers or targets in terms of numbers. Specifically, hydrogen sorption and desorption tests or kinetics measurements were not part of the project scope. However, the insights gained from these studies could help to answer fundamental questions necessary for considering glass-based materials as hydrogen storage media and could be applied indirectly towards the DOE hydrogen storage technical targets such as system weight and volume, system cost and energy density. Such questions are: Can specific macro-crystals, proven to attract hydrogen when in a macroscopic form (bulk), be nucleated in glass matrices as nanocrystals to create two-phased materials? What are suitable compositions that enable to synthetize glass-based, two-phase materials with nanocrystals that can attract hydrogen via surface or bulk interactions? What are the limits of controlling the microstructure of these materials, especially limits for nanocrystals density and size? Finally, from a technological point of view, the fabrication of glass-derived nanocomposites that we explore is a very simple, fast and inexpensive process that does not require costly or specialized equipment which is an important factor for practical applications.

Lipinska, Kris [PI] [PI; Hemmers, Oliver

2013-02-17T23:59:59.000Z

417

Lithium Ion Cell Development for Photovoltaic Energy Storage Applications  

SciTech Connect (OSTI)

The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component â?? the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program â?? even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials â?? specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge with this material will be to maintain proven performance when this composite is coated onto a thicker electrode; as well the high temperature storage must meet application requirements. One continuing program challenge was the lack of specific performance variables for this PV application and so the low power requirements of PHEV/EV transportation markets were again used.

Susan Babinec

2012-02-08T23:59:59.000Z

418

Production, Storage, and FC Analysis  

Broader source: Energy.gov [DOE]

Presentation on Production, Storage, and FC Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

419

A Successful Cool Storage Rate  

E-Print Network [OSTI]

Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's extensive commercial air...

Ahrens, A. C.; Sobey, T. M.

1994-01-01T23:59:59.000Z

420

Efficient storage of versioned matrices  

E-Print Network [OSTI]

Versioned-matrix storage is increasingly important in scientific applications. Various computer-based scientific research, from astronomy observations to weather predictions to mechanical finite-element analyses, results ...

Seering, Adam B

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CFES RESEARCH THRUSTS: Energy Storage  

E-Print Network [OSTI]

CFES RESEARCH THRUSTS: Energy Storage Wind Energy Solar Energy Smart Grids Smart Buildings For our with the student to finalize the project plan. To sponsor an Energy Scholar, a company agrees to: · Assign

Lü, James Jian-Qiang

422

Complex Hydrides for Hydrogen Storage  

SciTech Connect (OSTI)

This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

Slattery, Darlene; Hampton, Michael

2003-03-10T23:59:59.000Z

423

Device-transparent personal storage  

E-Print Network [OSTI]

Users increasingly store data collections such as digital photographs on multiple personal devices, each of which typically presents the user with a storage management interface isolated from the contents of all other ...

Strauss, Jacob A. (Jacob Alo), 1979-

2010-01-01T23:59:59.000Z

424

ADVANTAGES AND DISADVANTAGES TO OPERATING AN ON-SITE LABORATORY AT THE SANDIA NATIONAL LABORATORIES CHEMICAL WASTE LANDFILL  

SciTech Connect (OSTI)

During the excavation of the Sandia National Laboratories, New Mexico (SNL/NM) Chemical Waste Landfill (CWL), operations were realized by the presence of URS' (formerly known as United Research Services) On-site Mobile Laboratory (OSML) and the close proximity of the SNL/NM Environmental Restoration Chemical Laboratory (ERCL). The laboratory was located adjacent to the landfill in order to provide soil characterization, health and safety support, and waste management data. Although the cost of maintaining and operating an analytical laboratory can be higher than off-site analysis, there are many benefits to providing on site analytical services. This paper describes the synergies between the laboratory, as well as the advantages and disadvantages to having a laboratory on-site during the excavation of SNL/NM CWL.

Young, S.G.; Creech, M.N.

2003-02-27T23:59:59.000Z

425

Compressed air energy storage system  

DOE Patents [OSTI]

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01T23:59:59.000Z

426

The Storage of Shelled Pecans.  

E-Print Network [OSTI]

AGRIC - KPERIA .. -. STATIC t,4L EI rlENT ! C. H. MCUOSELL, Act~ng mrector Collegz Station. Texas 'LLETIN NO. 667 MARCH, THE STORAGE OF SHELLED PEC-4NS FRED R. BRISON Division of Horticulture . AGRICULTURAL AND MECHANICAL COLLEGE OF TE... Gibb Gilchrist, President [Blank Page in Original Bulletin] Shelled pecans may change in flavor, texture, and color, while in storage. They may also change as a result of insect or disease damage. Kernels change in flavor by becoming progressively...

Brison, Fred R. (Fred Robert)

1945-01-01T23:59:59.000Z

427

Lih thermal energy storage device  

DOE Patents [OSTI]

A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

Olszewski, Mitchell (Knoxville, TN); Morris, David G. (Knoxville, TN)

1994-01-01T23:59:59.000Z

428

A Cassette Based System for Hydrogen Storage and Delivery  

SciTech Connect (OSTI)

A hydrogen storage system is described and evaluated. This is based upon a cassette, that is a container for managing hydrogen storage materials. The container is designed to be safe, modular, adaptable to different chemistries, inexpensive, and transportable. A second module receives the cassette and provides the necessary infrastructure to deliver hydrogen from the cassette according to enduser requirements. The modular concept has a number of advantages over approaches that are all in one stand alone systems. The advantages of a cassette based system are discussed, along with results from model and laboratory testing.

Britton Wayne E.

2006-11-29T23:59:59.000Z

429

Legal and regulatory issues affecting aquifer thermal energy storage  

SciTech Connect (OSTI)

This document updates and expands the report with a similar title issued in October 1980. This document examines a number of legal and regulatory issues that potentially can affect implementation of the aquifer thermal energy storage (ATES) concept. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

Hendrickson, P.L.

1981-10-01T23:59:59.000Z

430

Hydrogen Storage in Metal-Organic Frameworks  

SciTech Connect (OSTI)

Conventional storage of large amounts of hydrogen in its molecular form is difficult and expensive because it requires employing either extremely high pressure gas or very low temperature liquid. Because of the importance of hydrogen as a fuel, the DOE has set system targets for hydrogen storage of gravimetric (5.5 wt%) and volumetric (40 g L-1) densities to be achieved by 2015. Given that these are system goals, a practical material will need to have higher capacity when the weight of the tank and associated cooling or regeneration system is considered. The size and weight of these components will vary substantially depending on whether the material operates by a chemisorption or physisorption mechanism. In the latter case, metal-organic frameworks (MOFs) have recently been identified as promising adsorbents for hydrogen storage, although little data is available for their sorption behavior. This grant was focused on the study of MOFs with these specific objectives. (1) To examine the effects of functionalization, catenation, and variation of the metal oxide and organic linkers on the low-pressure hydrogen adsorption properties of MOFs. (2) To develop a strategy for producing MOFs with high surface area and porosity to reduce the dead space and increase the hydrogen storage capacity per unit volume. (3) To functionalize MOFs by post synthetic functionalization with metals to improve the adsorption enthalpy of hydrogen for the room temperature hydrogen storage. This effort demonstrated the importance of open metal sites to improve the adsorption enthalpy by the systematic study, and this is also the origin of the new strategy, which termed isoreticular functionalization and metalation. However, a large pore volume is still a prerequisite feature. Based on our principle to design highly porous MOFs, guest-free MOFs with ultrahigh porosity have been experimentally synthesized. MOF-210, whose BET surface area is 6240 m2 g-1 (the highest among porous solids), takes up 15 wt% of total H2 uptake at 80 bar and 77 K. More importantly, the total H2 uptake by MOF-210 was 2.7 wt% at 80 bar and 298 K, which is the highest number reported for physisorptive materials.

Omar M. Yaghi

2012-04-26T23:59:59.000Z

431

2015 -2016 A clean energy economy requires the integration of energy  

E-Print Network [OSTI]

requires the integration of energy conversions devices, smart grid, and storage technology. The Clean2015 - 2016 A clean energy economy requires the integration of energy conversion devices, smart energy conversion, energy storage, and grid integration technologies to the UW. We are recruiting

Hochberg, Michael

432

FAFCO Ice Storage test report  

SciTech Connect (OSTI)

The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. FAFCO provided a storage tank equipped with coils designed for use with a secondary fluid system. The FAFCO ice storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank fully, storing from 150 to 200 ton-h. However, the charging rate showed significant variations during the latter portion of the charge cycle. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate and tank state of charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend on both charge and discharge conditions. This report describes FAFCO system performance fully under both charging and discharging conditions. While the test results reported here are accurate for the prototype 1990 FAFCO Model 200, currently available FAFCO models incorporate significant design enhancements beyond the Model 200. At least one major modification was instituted as a direct result of the ISTF tests. Such design improvements were one of EPRI`s primary goals in founding the ISTF.

Stovall, T.K.

1993-11-01T23:59:59.000Z

433

On-Site Wastewater Treatment Systems: Low-Pressure Dosing System  

E-Print Network [OSTI]

A low-pressure dosing system treats wastewater and then pumps it into the soil several times daily. This publication explains the advantages and disadvantages of low-pressure dosing systems as well as estimated costs and maintenance requirements....

Lesikar, Bruce J.

1999-09-06T23:59:59.000Z

434

National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC  

SciTech Connect (OSTI)

To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancing requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.

Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.; Elizondo, Marcelo A.; Jin, Chunlian; Nguyen, Tony B.; Viswanathan, Vilayanur V.; Zhang, Yu

2012-06-01T23:59:59.000Z

435

Optimize Storage Placement in Sensor Networks  

E-Print Network [OSTI]

of limited storage, communication capacity, and battery power is ameliorated. Placing storage nodesOptimize Storage Placement in Sensor Networks Bo Sheng, Member, IEEE, Qun Li, Member, IEEE, and Weizhen Mao Abstract--Data storage has become an important issue in sensor networks as a large amount

Li, Qun

436

Energy Storage Management for VG Integration (Presentation)  

SciTech Connect (OSTI)

This presentation describes how you economically manage integration costs of storage and variable generation.

Kirby, B.

2011-10-01T23:59:59.000Z

437

Energy Storage: Current landscape for alternative energy  

E-Print Network [OSTI]

Energy Storage: Current landscape for alternative energy storage technologies and what the future may hold for multi-scale storage applications Presented by: Dave Lucero, Director Alternative Energy · Industry initiatives · Technology · Energy Storage Market · EaglePicher initiatives · Summary #12

438

Presented by Robust Storage Management in the  

E-Print Network [OSTI]

, intermediate checkpoint storage or a staging ground ­ Job's own allocated nodes can contribute storage spacePresented by Robust Storage Management in the Machine Room and Beyond Sudharshan Vazhkudai Computer Problem space: HPC storage crisis · Data checkpointing, staging, and offloading are all affected by data

Vazhkudai, Sudharshan

439

Carbon dioxide storage professor Martin Blunt  

E-Print Network [OSTI]

of CCS storage there are over a hundred sites worldwide where Co2 is injected under- ground as partCarbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS and those for injection and storage in deep geological formations. all the individual elements operate today

440

Thermal storage module for solar dynamic receivers  

DOE Patents [OSTI]

A thermal energy storage system comprising a germanium phase change material and a graphite container.

Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydrogen Storage Technologies Roadmap, November 2005  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing plan for research into and development of hydrogen storage technology for transportation applications.

442

Seneca Compressed Air Energy Storage (CAES) Project  

SciTech Connect (OSTI)

Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for further development. As a result of all of these factors, the Phase 1 FEED developed an installe

None

2012-11-30T23:59:59.000Z

443

Safety Aspects of Dry Spent Fuel Storage and Spent Fuel Management - 13559  

SciTech Connect (OSTI)

Dry storage systems are characterized by passive and inherent safety systems ensuring safety even in case of severe incidents or accidents. After the events of Fukushima, the advantages of such passively and inherently safe dry storage systems have become more and more obvious. As with the storage of all radioactive materials, the storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Following safety aspects must be achieved throughout the storage period: - safe enclosure of radioactive materials, - safe removal of decay heat, - securing nuclear criticality safety, - avoidance of unnecessary radiation exposure. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. Furthermore, transport capability must be guaranteed during and after storage as well as limitation and control of radiation exposure. The safe enclosure of radioactive materials in dry storage casks can be achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat must be ensured by the design of the storage containers and the storage facility. The safe confinement of radioactive inventory has to be ensured by mechanical integrity of fuel assembly structures. This is guaranteed, e.g. by maintaining the mechanical integrity of the fuel rods or by additional safety measures for defective fuel rods. In order to ensure nuclear critically safety, possible effects of accidents have also to be taken into consideration. In case of dry storage it might be necessary to exclude the re-positioning of fissile material inside the container and/or neutron moderator exclusion might be taken into account. Unnecessary radiation exposure can be avoided by the cask or canister vault system itself. In Germany dry storage of SF in casks fulfills both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground, but due to regional constraints, one storage facility has also been built as a rock tunnel. The decay heat is always removed by natural air flow; further technical equipment is not needed. The removal of decay heat and shielding had been modeled and calculated by state-of-the-art computer codes before such a facility has been built. TueV and BAM present their long experience in the licensing process for sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel. Different storage systems and facilities in Germany, Europe and world-wide are compared with respect to the safety aspects mentioned above. Initial points are the safety issues of wet storage of SF, and it is shown how dry storage systems can ensure the compliance with the mentioned safety criteria over a long storage period. The German storage concept for dry storage of SF and HLW is presented and discussed. Exemplarily, the process of licensing, erection and operation of selected German dry storage facilities is presented. (authors)

Botsch, W.; Smalian, S.; Hinterding, P. [TUV NORD Nuclear c/o TUV NORD EnSys Hannover GmbH and Co.KG, Dept. Radiation Protection and Waste Disposal, Am TueV 1, 30519 Hannover (Germany)] [TUV NORD Nuclear c/o TUV NORD EnSys Hannover GmbH and Co.KG, Dept. Radiation Protection and Waste Disposal, Am TueV 1, 30519 Hannover (Germany); Voelzke, H.; Wolff, D.; Kasparek, E. [BAM Federal Institute for Materials Research and Testing Division 3.4 Safety of Storage Containers Unter den Eichen 44-46, 12203 Berlin (Germany)] [BAM Federal Institute for Materials Research and Testing Division 3.4 Safety of Storage Containers Unter den Eichen 44-46, 12203 Berlin (Germany)

2013-07-01T23:59:59.000Z

444

Dry Storage of Research Reactor Spent Nuclear Fuel - 13321  

SciTech Connect (OSTI)

Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. The initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)

Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Moore, E.N. [Moore Nuclear Energy, LLC (United States)] [Moore Nuclear Energy, LLC (United States)

2013-07-01T23:59:59.000Z

445

Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher and Yongdae Kim  

E-Print Network [OSTI]

Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher and Yongdae. While storage outsourcing is cost-effective, many compa- nies are hesitating to outsource their storage due to security concerns. The success of storage outsourcing is highly de- pendent on how well

Kim, Dae-Shik

446

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

2008-03-18T23:59:59.000Z

447

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

448

CHARACTERIZATION THROUGH DATA QUALITY OBJECTIVES AND CERTIFICATION OF REMOTE-HANDLED TRANSURANIC WASTE GENERATOR/STORAGE SITES FOR SHIPMENT TO THE WIPP  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) is operating to receive and dispose of contact-handled (CH) transuranic (TRU) waste. The Department of Energy (DOE) Carlsbad Field Office (CBFO) is seeking approval from the Environmental Protection Agency (EPA) and the New Mexico Environment Department (NMED) of the remote-handled (RH) TRU characterization plan to allow disposal of RH TRU waste in the WIPP repository. In addition, the DOE-CBFO has received approval from the Nuclear Regulatory Commission (NRC) to use two shipping casks for transporting RH TRU waste. Each regulatory agency (i.e., EPA, NMED, and NRC) has different requirements that will have to be met through the use of information collected by characterizing the RH TRU waste. Therefore, the DOE-CBFO has developed a proposed characterization program for obtaining the RH TRU waste information necessary to demonstrate that the waste meets the applicable regulatory requirements. This process involved the development of a comprehensive set of Data Quality Objectives (DQOs) comprising the various regulatory requirements. The DOE-CBFO has identified seven DQOs for use in the RH TRU waste characterization program. These DQOs are defense waste determination, TRU waste determination, RH TRU determination, activity determination, RCRA physical and chemical properties, prohibited item determination, and EPA physical and chemical properties. The selection of the DQOs were based on technical, legal and regulatory drivers that assure the health and safety of the workers, the public, to protect the environment, and to comply with the requirements of the regulatory agencies. The DOE-CBFO also has the responsibility for the certification of generator/storage sites to ship RH TRU mixed waste to the WIPP for disposal. Currently, thirteen sites across the DOE complex are generators of RH TRU waste or store the waste at their location for other generators. Generator/storage site certification involves review and approval of site-specific programmatic documents that demonstrate compliance with the WIPP waste characterization and transportation requirements. Additionally, procedures must be developed to implement programmatic requirements and adequacy of those procedures determined. Finally, on-site audits evaluate the technical and administrative implementation and effectiveness of the operating procedures.

Spangler, L.R.; Most, Wm.A.; Kehrman, R.F.; Gist, C.S.

2003-02-27T23:59:59.000Z

449

US Department of Energy Storage of Spent Fuel and High Level Waste  

SciTech Connect (OSTI)

ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

Sandra M Birk

2010-10-01T23:59:59.000Z

450

Final Report: Metal Perhydrides for Hydrogen Storage  

SciTech Connect (OSTI)

Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One LiH molecule contains one hydrogen atom because the valence of a Li ion is +1. One MgH2 molecule contains two hydrogen atoms because the valence of a Mg ion is +2. In metal perhydrides, a molecule could contain more hydrogen atoms than expected based on the metal valance, i.e. LiH1+n and MgH2+n (n is equal to or greater than 1). When n is sufficiently high, there will be plenty of hydrogen storage capacity to meet future requirements. The existence of hydrogen clusters, Hn+ (n = 5, 7, 9, 11, 13, 15) and transition metal ion-hydrogen clusters, M+(H2)n (n = 1-6), such as Sc(H2)n+, Co(H2)n+, etc., have assisted the development of this concept. Clusters are not stable species. However, their existence stimulates our approach on using electric charges to enhance the hydrogen adsorption in a hydrogen storage system in this study. The experimental and modeling work to verify it are reported here. Experimental work included the generation of cold hydrogen plasma through a microwave approach, synthesis of sorbent materials, design and construction of lab devices, and the determination of hydrogen adsorption capacities on various sorbent materials under various electric field potentials and various temperatures. The results consistently show that electric potential enhances the adsorption of hydrogen on sorbents. NiO, MgO, activated carbon, MOF, and MOF and platinum coated activated carbon are some of the materials studied. Enhancements up to a few hundred percents have been found. In general, the enhancement increases with the electrical potential, the pressure applied, and the temperature lowered. Theoretical modeling of the hydrogen adsorption on the sorbents under the electric potential has been investigated with the density functional theory (DFT) approach. It was found that the interaction energy between hydrogen and sorbent is increased remarkably when an electric field is applied. This increase of binding energy offers a potential solution for DOE when looking for a compromise between chemisorption and physisorption for hydrogen storage. Bonding of chemisorption is too

Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

2011-07-26T23:59:59.000Z

451

SRS K-AREA MATERIAL STORAGE - EXPANDING CAPABILITIES  

SciTech Connect (OSTI)

In support of the Department of Energy’s continued plans to de-inventory and reduce the footprint of Cold War era weapons’ material production sites, the K-Area Material Storage (KAMS) facility, located in the K-Area Complex (KAC) at the Savannah River Site reservation, has expanded since its startup authorization in 2000 to accommodate DOE’s material consolidation mission. During the facility’s growth and expansion, KAMS will have expanded its authorization capability of material types and storage containers to allow up to 8200 total shipping containers once the current expansion effort completes in 2014. Recognizing the need to safely and cost effectively manage other surplus material across the DOE Complex, KAC is constantly evaluating the storage of different material types within K area. When modifying storage areas in KAC, the Documented Safety Analysis (DSA) must undergo extensive calculations and reviews; however, without an extensive and proven security posture the possibility for expansion would not be possible. The KAC maintains the strictest adherence to safety and security requirements for all the SNM it handles. Disciplined Conduct of Operations and Conduct of Projects are demonstrated throughout this historical overview highlighting various improvements in capability, capacity, demonstrated cost effectiveness and utilization of the KAC as the DOE Center of Excellence for safe and secure storage of surplus SNM.

Koenig, R.

2013-07-02T23:59:59.000Z

452

ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY  

SciTech Connect (OSTI)

A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the Berea sandstone aquiver over time and does not conform to standard private water well construction practices. The bottom-line is that all predicted doses from the base case and five sensitivity cases fall well below the DOE all-pathways 25 mrem/yr Performance Objective.

Smith, F.; Phifer, M.

2014-04-10T23:59:59.000Z

453

Making the case for direct hydrogen storage in fuel cell vehicles  

SciTech Connect (OSTI)

Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1997-12-31T23:59:59.000Z

454

Lessons learned -- a comparison of the proposed on-site waste management facilities at the various Department of Energy sites  

SciTech Connect (OSTI)

The Department of Energy Sites (DOE) are faced with the challenge of managing several categories of waste generated from past or future cleanup activities, such as 11(e)2 byproduct material, low-level radioactive (LL), low-level radioactive mixed (LLM), transuranic (TRU), high level radioactive (HL), and hazardous waste (HW). DOE must ensure safe and efficient management of these wastes while complying with all applicable federal and state laws. Proposed waste management strategies for the EM-40 Environmental Restoration (ER) program at these sites indicate that on-site disposal is becoming a viable option. For purposes of this paper, on-site disposal cells managed by the EM-40 program at Hanford, Weldon Spring, Fernald Environmental Management Project (FEMP) and Rocky Flats were compared. Programmatic aspects and design features were evaluated to determine what comparisons can be made, and to identify benefits lessons learned that may be applicable to other sites. Based on comparative analysis, it can be concluded that the DOE EM-40 disposal cells are very unique. Stakeholders played a major role in the decision to locate the various DOE on-site disposal facilities. The disposal cells will be used to manage 11(e)2 by-product materials, LL, LLM, and/or HLW. The analysis further suggests that the design criteria are comparable. Lessons learned relative to the public involvement activities at Weldon Spring, and the design approach at Hanford should be considered when planning future on-site disposal facilities at DOE sites. Further, a detailed analysis of progress made at Hanford should be evaluated for application at sites such as Rocky Flats that are currently planning on-site disposal facilities.

Ciocco, J. [Dept. of Energy, Germantown, MD (United States); Singh, D. [Booz Allen and Hamilton, Germantown, MD (United States); Survochak, S. [DOE RFETS, Golden, CO (United States); Elo, M. [Burns and Roe, Germantown, MD (United States)

1996-12-31T23:59:59.000Z

455

Status of the Nevada Nuclear Waste Storage investigations  

SciTech Connect (OSTI)

The Nevada Nuclear Waste Storage Investigations (NNWSI) are part of the National Waste Terminal Storage (NWTS) program being conducted by the Department of Energy. Within the NWTS program, the NNWSI is the component that focuses on siting evaluations on and near the Nevada Test Site (NTS). The objectives of the Nevada project include evaluating the suitability of a Test and Evaluation Facility (TEF) site on or near the NTS, evaluating the suitability of a commercial nuclear waste repository site on or near the NTS, and supporting the NWTS program with research that is uniquely possible at NTS. Current engineering studies suggest that TEF and repository surface facilities would need to be located on gently sloping alluvium east of Yucca Mountain. Access from surface facilities to underground waste emplacement areas would be by vertical shafts and horizontal drifts, or possibly by inclined adits. The current NNWSI schedule includes an exploratory shaft location and horizon recommendation in 12/82, with a start of exploratory shaft drilling in 9/83. Because of the complexities of horizon selection, it is possible that the exploratory shaft depth or horizon recommendation may involve the exploration of more than one horizon. Phase I of the exploratory shaft, determination of TEF site suitability, is currently scheduled for 7/85. Phase II of the exploratory shaft, determination of repository site suitability, is currently scheduled for 3/87. This schedule is consistent with the current NWTS TEF and repository site selection schedules.

Lincoln, R. C.

1982-01-01T23:59:59.000Z

456

REACTOR REFUELING - INTERIM DECAY STORAGE (FFTF)  

SciTech Connect (OSTI)

The IDS facility is located between the CLEM rails and within the FFTF containment building. It is located in a rectangular steel-lined concrete cell which lies entirely below the 550 ft floor level with the top flush with the 550 ft floor level. The BLTC rails within containment traverse the IDS cover (H-4-38001). The facility consists of a rotatable storage basket submerged in liquid sodium which is contained in a stainless steel tank. The storage positions within the basket are arranged so that it is not physically possible to achieve a critical array. The primary vessel is enclosed in a secondary guard tank of such size and arrangement that, should a leak develop in the primary tank, the sodium level would not fall below the top of the fueled section of the stored core components or test assemblies. The atmosphere outside the primary vessel, but within the concrete cell, is nitrogen which also serves as a heat transfer medium to control the cell temperature. To provide space for the storage of test assemblies such as the OTA and CLIRA, 10 storage tubes (each approximately 43-1/4 ft long) are included near the center of the basket. This arrangement requires that the center of the primary vessel be quite deep. In this region, the primary vessel extends downward to elevation 501 ft 6 inches while the guard tank reaches 500 ft 4 inches. The floor of the cell is at 499 ft a inches which is 51 ft below the operating room floor. Storage positions are provided for 112 core components in the upper section of the storage basket. These positions are arranged in four circles, all of which are concentric with the test element array and the storage basket. The primary vessel and the guard tank are shaped to provide the necessary space with a minimum of excess volume. Both these vessels have a relatively small cylindrical lower section connected to a larger upper cylinder by a conical transition. The primary vessel is supported from a top flange by a vessel support structure. The guard tank is supported by a skirt which rests on a ledge at elevation 527 ft 2 inches. The skirt is an extension of the upper cylinder of the guard tank. The storage basket is supported by a gear-driven, mechanically indexed, ball bearing that rests on the bearing support, which in turn rests on the vessel support structure. The interior of the primary vessel above the sodium level is blanketed with argon at 6 inches of water gage pressure. The vessel is designed to allow the pressure to be increased to 3 psig to assist drainage of the sodium from the vessel. The structure which supports the primary vessel also serves as the cover to the IDS cell. The support structure rests on a shelf cast into the cell wall at the 544 ft 6 inch level. In addition to supporting the primary vessel and the storage basket bearing, this structure also provides support for the top shield which is a 16 inch thick by 15 ft 10 inch diameter laminated steel assembly, which in turn supports the impact absorber neutron shield, and the BLTC tracks where they cross the IDS. Storage position access ports are provided on the centerline of the IDS facility between the BLTC rails. Basket rotation and indexing allows any storage position to be located in alignment with its proper access port. Double buffered seals are provided for the removable plugs and removable lids for all components and access ports where necessary to seal between the vessel cover gas and the FFTF containment atmosphere. Buffering gas for these seals is argon. Capability of a 10 cfm argon purge rate is provided although normal argon flow into the cover gas cavity will be less than 1 cfm. Argon cover gas exits through a vapor trap located in the southwest corner of the support structure and then to the Cell Atmosphere Processing System. Vessel overpressure protection is provided by rupture discs on the inlet and outlet argon piping. Rupture discs vent to the IDS cell. Biological shielding is provided to maintain the radiation contribution in the operating area below 0.2 mrem/h. The primary gamma shield directly above

MCFADDEN NR; OMBERG RP

1990-06-18T23:59:59.000Z

457

Development of ammonia-sodium bromide heat pump/dual temperature storage concept. Final report  

SciTech Connect (OSTI)

An effective dual temperature heat pump/storage system can be based on the use of ammoniated complex compounds as the storage medium and heat pump working fluid. This report describes the development of an ammoniated complex system, suitable for dual temperature storage, chill storage and heat pumping, as well as the hardware design required for the heat pump/storage operation. Several storage media modifications, heat exchanger designs, and reaction related parameters were investigated in terms of effective heat pumping, dual temperature storage and chill storage characteristics. The modifications were tested in a subscale prototype and compared to the results of the basic experiments performed in Phase I of this project. The computer model developed in Phase I was refined. The sorption reactions and their thermodynamic properties are described as a function of reaction progress allowing coefficient of performance (COP) predictions at varying building loads. A comparison of this system with state-of-the-art thermal storage systems was performed considering the energy density, operating cost, and the environmental impact reflected in building codes.

Rockenfeller, U.

1986-10-01T23:59:59.000Z

458

Positive electrode for electrical energy storage device  

SciTech Connect (OSTI)

A rechargeable electrical energy storage device is described that includes a spaced-apart negative electrode and positive electrode structures immersed in an electrolyte which is molten at the operating temperature of the device wherein the positive electrode structure comprises a housing for containing a body of electropositive active material, said housing having at least one open face, an electrolyte permeable member affixed to the housing and covering said open face for retaining said active material in said housing and said housing and electrolyte permeable member comprising material selected from the group consisting of steel, nickel, copper and alloys thereof having at least an 8 ..mu..M thick electroless nickel coating thereon. In accordance with the present invention, it has been found that such an electroless nickel coating permits the use of relatively inexpensive conductive materials such as steel, nickel, copper and alloys thereof and provides the corrosion resistance required in the molten electrolyte. The present invention is particularly applicable to electrical energy storage devices which utilize a transition metal chalcogenide as a positive electrode active material and a lithium alloy as the negative electrode active material.

Heredy, L.A.; McCoy, L.R.

1980-10-14T23:59:59.000Z

459

Source storage and transfer cask: Users Guide  

SciTech Connect (OSTI)

The storage and shield cask for the dual californium source is designed to shield and transport up to 3.7 mg (2 Ci) of /sup 252/Cf. the cask meets Department of Transportation (DOT) license requirements for Type A materials (DOT-7A). The cask is designed to transfer sources to and from the Flourinel and Fuel Storage (FAST) facility delayed-neutron interrogator. Californium sources placed in the cask must be encapsulated in the SR-CF-100 package and attached to Teleflex cables. The cask contains two source locations. Each location contains a gear box that allows a Teleflex cable to be remotely moved by a hand crank into and out of the cask. This transfer procedure permits sources to be easily removed and inserted into the delayed-neutron interrogator and reduces personnel radiation exposure during transfer. The radiation dose rate with the maximum allowable quantity of californium (3.7 mg) in the cask is 30 mR/h at the surface and less than 2 mR/h 1 m from the cask surface. This manual contains information about the cask, californium sources, describes the method to ship the cask, and how to insert and remove sources from the cask. 28 figs.

Eccleston, G.W.; Speir, L.G.; Garcia, D.C.

1985-04-01T23:59:59.000Z

460

GPUs as Storage System Accelerators  

E-Print Network [OSTI]

Massively multicore processors, such as Graphics Processing Units (GPUs), provide, at a comparable price, a one order of magnitude higher peak performance than traditional CPUs. This drop in the cost of computation, as any order-of-magnitude drop in the cost per unit of performance for a class of system components, triggers the opportunity to redesign systems and to explore new ways to engineer them to recalibrate the cost-to-performance relation. This project explores the feasibility of harnessing GPUs' computational power to improve the performance, reliability, or security of distributed storage systems. In this context, we present the design of a storage system prototype that uses GPU offloading to accelerate a number of computationally intensive primitives based on hashing, and introduce techniques to efficiently leverage the processing power of GPUs. We evaluate the performance of this prototype under two configurations: as a content addressable storage system that facilitates online similarity detectio...

Al-Kiswany, Samer; Ripeanu, Matei

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Natural gas cavern storage regulation  

SciTech Connect (OSTI)

Investigation of an incident at an LPG storage facility in Texas by U.S. Department of Transportation resulted in recommendation that state regulation of natural gas cavern storage might be improved. Interstate Oil & Gas Compact Commission has established a subcommittee to analyze the benefits and risks associated with natural gas cavern storage, and to draft a regulation model which will suggest engineering and performance specifications. The resulting analysis and regulatory language will be reviewed by I.O.G.C.C., and if approved, distributed to member states (including New York) for consideration. Should the states desire assistance in modifying the language to reflect local variables, such as policy and geology, I.O.G.C.C. may offer assistance. The proposed presentation will review the I.O.G.C.C. product (if published at that date), and discuss implications of its application in New York.

Heneman, H.

1995-09-01T23:59:59.000Z

462

Thermal analysis of the failed equipment storage vault system  

SciTech Connect (OSTI)

A storage facility for failed glass melters is required for radioactive operation of the Defense Waste Processing Facility (DWPF). It is currently proposed that the failed melters be stored in the Failed Equipment Storage Vaults (FESV`s) in S area. The FESV`s are underground reinforced concrete structures constructed in pairs, with adjacent vaults sharing a common wall. A failed melter is to be placed in a steel Melter Storage Box (MSB), sealed, and lowered into the vault. A concrete lid is then placed over the top of the FESV. Two melters will be placed within the FESV/MSB system, separated by the common wall. There is no forced ventilation within the vault so that the melter is passively cooled. Temperature profiles in the Failed Equipment Storage Vault Structures have been generated using the FLOW3D software to model heat conduction and convection within the FESV/MSB system. Due to complexities in modeling radiation with FLOW3D, P/THERMAL software has been used to model radiation using the conduction/convection temperature results from FLOW3D. The final conjugate model includes heat transfer by conduction, convection, and radiation to predict steady-state temperatures. Also, the FLOW3D software has been validated as required by the technical task request.

Jerrell, J.; Lee, S.Y.; Shadday, A.

1995-07-01T23:59:59.000Z

463

Storage containers for radioactive material  

DOE Patents [OSTI]

A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or

Groh, Edward F. (Naperville, IL); Cassidy, Dale A. (Valparaiso, IN); Dates, Leon R. (Elmwood Park, IL)

1981-01-01T23:59:59.000Z

464

Prestressed elastomer for energy storage  

DOE Patents [OSTI]

Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

Hoppie, Lyle O. (Birmingham, MI); Speranza, Donald (Canton, MI)

1982-01-01T23:59:59.000Z

465

Carbon Capture and Storage, 2008  

SciTech Connect (OSTI)

The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

2009-03-19T23:59:59.000Z

466

Carbon Capture and Storage, 2008  

ScienceCinema (OSTI)

The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

None

2010-01-08T23:59:59.000Z

467

Catalyzed borohydrides for hydrogen storage  

DOE Patents [OSTI]

A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

Au, Ming (Augusta, GA)

2012-02-28T23:59:59.000Z

468

Elastomeric member for energy storage device  

DOE Patents [OSTI]

An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16), disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section, transition end sections, and is attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the member, a substantially uniform diameter assembly results to minimize the required volume of the surrounding housing (14). During manufacture, woven wire mesh sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle. Each sleeve (26, 28) contracts with the contraction of the associated transition section to maintain the bond therebetween.

Hoppie, Lyle O. (Birmingham, MI); Chute, Richard (Birmingham, MI)

1985-01-01T23:59:59.000Z

469

Primer on Use of Multi-Spectral and Infra Red Imaging for On-Site Inspections  

SciTech Connect (OSTI)

The purpose of an On-Site Inspection (OSI) is to determine whether a nuclear explosion has occurred in violation of the Comprehensive Nuclear Test Ban Treaty (CTBT), and to gather information which might assist in identifying the violator (CTBT, Article IV, Paragraph 35) Multi-Spectral and Infra Red Imaging (MSIR) is allowed by the treaty to detect observables which might help reduce the search area and thus expedite an OSI and make it more effective. MSIR is permitted from airborne measurements, and at and below the surface to search for anomalies and artifacts (CTBT, Protocol, Part II, Paragraph 69b). The three broad types of anomalies and artifacts MSIR is expected to be capable of observing are surface disturbances (disturbed earth, plant stress or anomalous surface materials), human artifacts (man-made roads, buildings and features), and thermal anomalies. The purpose of this Primer is to provide technical information on MSIR relevant to its use for OSI. It is expected that this information may be used for general background information, to inform decisions about the selection and testing of MSIR equipment, to develop operational guidance for MSIR use during an OSI, and to support the development of a training program for OSI Inspectors. References are provided so readers can pursue a topic in more detail than the summary information provided here. The following chapters will provide more information on how MSIR can support an OSI (Section 2), a short summary what Multi-Spectral Imaging and Infra Red Imaging is (Section 3), guidance from the CTBT regarding the use of MSIR (Section 4), and a description of several nuclear explosion scenarios (Section 5) and consequent observables (Section 6). The remaining sections focus on practical aspects of using MSIR for an OSI, such as specification and selection of MSIR equipment, operational considerations for deployment of MISR equipment from an aircraft, and the conduct of field exercises to mature MSIR for an OSI. Finally, an appendix provides detail describing the magnitude and spatial extent of the surface shock expected from an underground nuclear explosion. If there is a seismic event or other data to suggest there has been a nuclear explosion in violation of the CTBT, an OSI may be conducted to determine whether a nuclear explosion has occurred and to gather information which may be useful in identifying the party responsible for conducting the explosion. The OSI must be conducted in the area where the event that triggered the inspection request occurred, and the inspected area must not exceed 1,000 square kilometers, or be more than 50 km on aside (CTBT Protocol, Part II, Paragraphs 2 and 3). One of the guiding principles for an inspection is that it be effective, minimally intrusive, timely, and cost-effective [Hawkins, Feb 1998]. In that context, MSIR is one of several technologies that can be used during an aircraft overflight to identify ground regions of high interest in a timely and cost-effective manner. This allows for an optimized inspection on the ground. The primary purpose for MSIR is to identify artifacts and anomalies that might be associated with a nuclear explosion, and to use the location of those artifacts and anomalies to reduce the search area that must be inspected from the ground. The MSIR measurements can have additional utility. The multi-spectral measurements of the ground can be used for terrain classification, which can aid in geological characterization of the Inspected Area. In conditions of where light smoke or haze is present, long-wave infrared imaging can provide better imaging of the ground than is possible with standard visible imagery.

Henderson, J R

2010-10-26T23:59:59.000Z

470

Amineborane Based Chemical Hydrogen Storage - Final Report  

SciTech Connect (OSTI)

The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2­-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic­-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also demonstrated that H2-­release from chemical hydrides can occur by a number of different mechanistic pathways and strongly suggest that optimal chemical ­hydride based H2­release systems may require the use of synergistic dehydrogenation methods to induce H2­-loss from chemically different intermediates formed during release reactions. The efficient regeneration of ammonia borane from BNHx spent fuel is one of the most challenging problems that will have to be overcome in order to utilize AB-based hydrogen storage. Three Center partners, LANL, PNNL and Penn, each took different complimentary approaches to AB regeneration. The Penn approach focused on a strategy involving spent-fuel digestion with superacidic acids to produce boron-halides (BX3) that could then be converted to AB by coordination/reduction/displacement processes. While the Penn boron-halide reduction studies successfully demonstrated that a dialkylsulfide-based coordination/reduction/displacement process gave quantitative conversions of BBr3 to ammonia borane with efficient and safe product separations, the fact that AB spent-fuels could not be digested in good yields to BX3 halides led to a No-Go decision on this overall AB-regeneration strategy.

Sneddon, Larry G.

2011-04-21T23:59:59.000Z

471

Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy  

SciTech Connect (OSTI)

The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded. (DMC)

None

1980-09-05T23:59:59.000Z

472

Canister Storage Building (CSB) Hazard Analysis Report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safety analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.

POWERS, T.B.

2000-03-16T23:59:59.000Z

473

Agenda for the Hydrogen Delivery and Onboard Storage Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage...

474

Grand Challenge for Basic and Applied Research in Hydrogen Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Grand Challenge for Basic and Applied Research in Hydrogen Storage Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC....

475

The U.S. National Hydrogen Storage Project Overview (presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The U.S. National Hydrogen Storage Project Overview (presentation) The U.S. National Hydrogen Storage Project Overview (presentation) Status of Hydrogen Storage Materials R&D...

476

Rational Material Architecture Design for Better Energy Storage  

E-Print Network [OSTI]

and their cryogenic hydrogen storage capacities. J. Phys.Hydrogen Spillover for Hydrogen Storage J. Am. Chem. Soc.electrostatic energy storage, hydrogen (H 2 )-based chemical

Chen, Zheng

2012-01-01T23:59:59.000Z

477

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network [OSTI]

Vehicular Hydrogen Storage http://www.hydrogen.energy.gov/et al. , Reversible hydrogen storage in calcium borohydridereversible hydrogen storage. Chemical Communications, 2010.

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

478

Virtual Center of Excellence for Hydrogen Storage - Chemical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Presentation from the Hydrogen Storage...

479

POTSHARDS: Secure Long-Term Storage Without Encryption  

E-Print Network [OSTI]

E. Deep Store: An archival storage system architecture. InP. K. Survivable storage systems. IEEE Computer (Aug. 2000),POT- SHARDS, an archival storage system that provides long-

Storer, Mark W.; Greenan, Kevin M.; Miller, Ethan L; Voruganti, Kaladhar

2008-01-01T23:59:59.000Z

480

Fundamental Studies of Diffusion and Reactions in Hydrogen Storage Materials  

E-Print Network [OSTI]

novel reversible hydrogen storage materials”, J. Alloysrelationship to enhanced hydrogen storage properties”, J.on the reversi- ble hydrogen storage properties of the

Van de Walle, Chris G; Peles, Amra; Janotti, Anderson; Wilson-Short, Gareth

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design  

E-Print Network [OSTI]

impact of improved hydrogen storage may be through makingand M. Gardiner, Hydrogen Storage Options: Technologies andscience related to hydrogen storage could change how a

Ogden, Joan M; Yang, Christopher

2005-01-01T23:59:59.000Z

482

carbon storage rd index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage Publications Patents Awards Partnering With Us About Us Contacts Staff Search Fact Sheet Research Team Members Key Contacts Carbon Storage Carbon capture and storage...

483

Rational Material Architecture Design for Better Energy Storage  

E-Print Network [OSTI]

energy and power storage systems, Renewable and Sustainable Energyeconomical and sustainable energy storage devices. Moreover,performance and sustainable energy storage systems. Figure.

Chen, Zheng

2012-01-01T23:59:59.000Z

484

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

For the ice storage system, during direct cooling, thethe building cooling load. In dynamic systems, ice is formedcooling/demand-limited storage / electric load management / full storage / ice

Akbari, H.

2010-01-01T23:59:59.000Z

485

ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES  

E-Print Network [OSTI]

temperature underground thermal energy storage. In Proc. Th~al modeling of thermal energy storage in aquifers. In ~~-Mathematical modeling; thermal energy storage; aquifers;

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

486

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

ADVANCED THERMAL ENERGY STORAGE CONCEPT DEFINITION STUDY FORSchilling. F. E. , Thermal Energy Storage Using PrestressedNo ~cumulate thermal energy storage. Estimate ESTrof2(

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

487

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z