Powered by Deep Web Technologies
Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Interim On-Site Storage of Low Level Waste: Volume 1: Licensing and Regulatory Issues  

Science Conference Proceedings (OSTI)

This report is an all-inclusive resource guide for evaluating a utility's on-site storage licensing requirements. Specifically, the report offers an extensive review of licensing and regulatory documents related to on-site storage of low level waste as well as a methodology for evaluating on-site storage licensing issues.

1992-06-01T23:59:59.000Z

2

International Symposium on Site Characterization for CO2Geological Storage  

SciTech Connect

Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

Tsang, Chin-Fu

2006-02-23T23:59:59.000Z

3

Guide for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility  

Science Conference Proceedings (OSTI)

As a result of increasing low-level waste (LLW) disposal site uncertainty, the industry expects that utilities will have to rely on their own on-site storage LLW storage programs in the near future. This report captures essential information related to the operation of an on-site LLW storage program. The report is a comprehensive reference to which utilities can routinely refer throughout the development and implementation of the storage program and operation of the storage facility.

2004-11-16T23:59:59.000Z

4

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

containment, then the natural gas storage model would haveApplication of the natural gas storage model for geo-VSP data recorded at a natural gas storage field in Indiana,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

5

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

VSP data recorded at a natural gas storage field in Indiana,and in some locations is used for natural gas storage.These natural gas storage fields have provided significant

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

6

Low Level Waste On Site Storage Operating Guidelines -- Supplemental Information Manual  

Science Conference Proceedings (OSTI)

This Supplemental Information Manual captures essential information related to the implementation of an on-site low level waste (LLW) storage program. It summarizes the guidance and experience provided in the Interim On-Site Storage series of reports and should be used in concert with EPRI report 1018644, "Guidelines for Operating an Interim On Site Low Level Radioactive Waste Storage FacilityRevision 1," 2009.

2009-02-26T23:59:59.000Z

7

Guidelines for Operating an Interim On Site Low Level Radioactive Waste Storage Facility - Revision 1  

Science Conference Proceedings (OSTI)

The majority of commercial USA nuclear stations have constructed on-site LLW storage facilities, and most of these same utilities are experiencing or have experienced at least one period of interim on-site storage. These Guidelines focus on operational considerations and incorporate many of the lessons learned while operating various types of LLW storage facilities. This document was reviewed by the USNRC. Subsequently, the USNRC issued RIS 2008-32, Interim LLRW Storage at NPPs, which recognizes the meth...

2009-02-23T23:59:59.000Z

8

DOE Best Practices Manual Focuses on Site Selection for CO2 Storage |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Practices Manual Focuses on Site Selection for CO2 Storage Best Practices Manual Focuses on Site Selection for CO2 Storage DOE Best Practices Manual Focuses on Site Selection for CO2 Storage January 5, 2011 - 12:00pm Addthis Washington, DC - The most promising methods for assessing potential carbon dioxide (CO2) geologic storage sites - a crucial component of Carbon Capture and Storage (CCS) technology - is the focus of the latest in a series of U.S. Department of Energy (DOE) CCS "best practices" manuals. Developed by the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), the manual - Site Screening, Site Selection and Initial Characterization for Storage of CO2 in Deep Geologic Formations - is a resource for future project developers and CO2 producers and transporters. It can also be used to apprise government agencies of the

9

DOE Best Practices Manual Focuses on Site Selection for CO2 Storage |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Practices Manual Focuses on Site Selection for CO2 Storage Best Practices Manual Focuses on Site Selection for CO2 Storage DOE Best Practices Manual Focuses on Site Selection for CO2 Storage January 5, 2011 - 12:00pm Addthis Washington, DC - The most promising methods for assessing potential carbon dioxide (CO2) geologic storage sites - a crucial component of Carbon Capture and Storage (CCS) technology - is the focus of the latest in a series of U.S. Department of Energy (DOE) CCS "best practices" manuals. Developed by the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), the manual - Site Screening, Site Selection and Initial Characterization for Storage of CO2 in Deep Geologic Formations - is a resource for future project developers and CO2 producers and transporters. It can also be used to apprise government agencies of the

10

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

11

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

12

Interim On-Site Storage of Low-Level Waste: Volume 4, Part 3: Waste Container Closures, Seals, and Gas Vents  

Science Conference Proceedings (OSTI)

This volume of the Interim On-Site Storage report series supplements Volume 4, Part 1, which includes an extensive methodology and detailed information on the types and availability of low-level waste (LLW) containers and container coatings for extended storage. Part 2, soon to be published, addresses monitoring and inspection requirements for stored LLW containers. Part 3 continues the series by providing detailed guidance on container closures, seals, and gas vents, including performance goals and key ...

1993-11-11T23:59:59.000Z

13

Recommended Changes to Guidelines for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility - For NRC Review  

Science Conference Proceedings (OSTI)

The majority of commercial U.S. nuclear stations have constructed on-site low-level waste (LLW) storage facilities, and most of these same utilities are experiencing or have experienced at least one period of interim on-site storage. EPRI has issued two revisions of Guidelines for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility. Revision 1 of these Guidelines focused on operational considerations and incorporated many of the lessons learned while operating various types of LLW s...

2011-12-19T23:59:59.000Z

14

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Computing and Storage Requirements for High Energy Physics [for High Energy Physics Computational  and  Storage  for High Energy Physics Computational  and  Storage  

Gerber, Richard A.

2011-01-01T23:59:59.000Z

15

Alternative Fuels Data Center: Biodiesel Retail and Storage Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Retail and Biodiesel Retail and Storage Requirements to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Retail and Storage Requirements on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Retail and Storage Requirements on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Retail and Storage Requirements on Google Bookmark Alternative Fuels Data Center: Biodiesel Retail and Storage Requirements on Delicious Rank Alternative Fuels Data Center: Biodiesel Retail and Storage Requirements on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Retail and Storage Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Retail and Storage Requirements

16

Large Scale Computing and Storage Requirements for Advanced Scientific...  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2014 ASCRFrontcover.png Large Scale Computing and Storage Requirements for...

17

Hydrogen Storage Requirements for Fuel Cell Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

GENERAL MOTORS GENERAL MOTORS HYDROGEN STORAGE REQUIREMENTS FOR FUEL CELL VEHICLES Brian G. Wicke GM R&D and Planning DOE Hydrogen Storage Workshop August 14-15, 2002 Argonne National Laboratory General Motors Fuel Cell Vehicles * GM fuel cell vehicle Goal - be the first to profitably sell one million fuel cell vehicles * Fuel cell powerplant must be suitable for a broad range of light-duty vehicles (not just niche) * UNCOMPROMISED performance & reliability are REQUIRED * SAFETY IS A GIVEN * Evolutionary and Revolutionary vehicle designs are included-GM AUTONOMY-as long as the customer is (more than) satisfied GENERAL MOTORS AUTONOMY GENERAL MOTORS AUTONOMY General Motors Fuel Cell Vehicles * Focus on PEM fuel cell technology * Must consider entire hydrogen storage & (unique) fuel delivery systems,

18

Interim On-Site Storage of Low-Level Waste: Volume 3, Part 2: User's Manual and Lotus Spreadsheet for Estimating LLW Volumes and Act ivities  

Science Conference Proceedings (OSTI)

This volume of the "Interim On-Site Storage" report series supplements Volume 3, Part 1, "Waste Volume Projections and Data Management." Because that volume includes an extensive methodology and a number of worksheets requiring many calculations, users requested a computer program for easily storing, managing, and manipulating applicable data. Volume 3, Part 2 consists of a user's manual and a Lotus spreadsheet macro to meet this utility need.

1993-11-01T23:59:59.000Z

19

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

investment; 3. a low storage and PV price run; 4. to assessFigure 5. Low Storage and PV Price (run 3) Diurnal Heat6. Low storage and PV Price (run 3) Diurnal Electricity

Stadler, Michael

2008-01-01T23:59:59.000Z

20

Large Scale Computing and Storage Requirements for Fusion Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Fusion Energy Sciences (FES) Large Scale Computing and Storage Requirements for Fusion Energy...

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Large Scale Computing and Storage Requirements for Basic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Basic Energy Sciences (BES) Large Scale Computing and Storage Requirements for Basic Energy...

22

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations”,and J.L. Edwards, “Distributed Energy Resources CustomerN ATIONAL L ABORATORY Distributed Energy Resources On-Site

Stadler, Michael

2008-01-01T23:59:59.000Z

23

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

by heat activated absorption cooling, direct-fired naturalsince electric cooling loads can be offset by the absorptioncooling loads: utility purchases of electricity, on-site generation of electricity, absorption

Stadler, Michael

2008-01-01T23:59:59.000Z

24

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

and N. Zhou, “Distributed Generation with Heat Recovery andattractiveness of distributed generation with storage. Thecosts for distributed generation (DG) investments. The

Stadler, Michael

2008-01-01T23:59:59.000Z

25

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

and heat-driven absorption chillers. Figure 1 shows a high-contains also heat for absorption chillers, and therefore,storage 11 flow battery absorption chiller solar thermal

Stadler, Michael

2008-01-01T23:59:59.000Z

26

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

and installed DG equipment (PV, solar thermal, natural gas5. a low storage, PV, and solar thermal price run; and 6. aenergy sources such as PV or solar thermal. However, this

Stadler, Michael

2008-01-01T23:59:59.000Z

27

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

outlined in the 2011 DOE Strategic Plan†. † U.S. Departmentstrategic plans. Large Scale Computing and Storage Requirements for Nuclear Physics DOE  

Gerber, Richard A.

2012-01-01T23:59:59.000Z

28

Fuel Cell Technologies Office: Hydrogen Storage Materials Requirements...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage Materials Requirements (Text Version) on Facebook Tweet about Fuel Cell Technologies...

29

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

COMPUTING AND STORAGE REQUIREMENTS Basic Energy SciencesEnergy  Sciences   8.2.1.4   Computational  and  Storage  Computing  and  Storage  Requirements  for  Basic  Energy  

Gerber, Richard

2012-01-01T23:59:59.000Z

30

Fusion reactor requirements and systems for energy storage and transfer  

DOE Green Energy (OSTI)

Energy storage and transfer requirements for many of the present day reactor systems are listed. Two ohmic heating (OH) requirements, those for toroidal Z-pinches and Tokamaks, are described in more detail. Technologies envisioned for the power conditioning circuitry are discussed.

Thomassen, K.I.; Hagenson, R.L.; Thullin, P.

1978-05-08T23:59:59.000Z

31

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6. This Introduction to the WASTE STORAGE FACILITIES TSRs is not part of the TSR limits or conditions and contains no requirements related to WASTE STORAGE FACILITIES operations or to the safety analyses of the DSA.

Larson, H L

2007-09-07T23:59:59.000Z

32

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.4.

Laycak, D T

2010-03-05T23:59:59.000Z

33

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

Laycak, D T

2008-06-16T23:59:59.000Z

34

Hydrogen Storage Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets Donald Anton Savannah River National Laboratory Troy Semelsberger Don Siegel Los Alamos National Laboratory University of Michigan Bruce Hardy Kriston Brooks Savannah River National Laboratory Pacific Northwest National Laboratory Materials Requirements Webinar June 25, 2013 2 Webinar Objective Give guidance to the materials development community as to the important materials characteristic for both adsorbent and chemical hydrides required to meet the DoE Technical Targets for Onboard Hydrogen Storage Systems This work has been fully funded by the U.S. Department of Energy, through the Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office 3

35

Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements  

SciTech Connect

In 1998, a major change in the technical strategy for managing Multi Canister Overpacks (MCO) while stored within the Canister Storage Building (CSB) occurred. The technical strategy is documented in Baseline Change Request (BCR) No. SNF-98-006, Simplified SNF Project Baseline (MCO Sealing) (FDH 1998). This BCR deleted the hot conditioning process initially adopted for the Spent Nuclear Fuel Project (SNF Project) as documented in WHC-SD-SNF-SP-005, Integrated Process Strategy for K Basins Spent Nuclear Fuel (WHC 199.5). In summary, MCOs containing Spent Nuclear Fuel (SNF) from K Basins would be placed in interim storage following processing through the Cold Vacuum Drying (CVD) facility. With this change, the needs for the Hot Conditioning System (HCS) and inerting/pressure retaining capabilities of the CSB storage tubes and the MCO Handling Machine (MHM) were eliminated. Mechanical seals will be used on the MCOs prior to transport to the CSB. Covers will be welded on the MCOs for the final seal at the CSB. Approval of BCR No. SNF-98-006, imposed the need to review and update the CSB functions and requirements baseline documented herein including changing the document title to ''Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements.'' This revision aligns the functions and requirements baseline with the CSB Simplified SNF Project Baseline (MCO Sealing). This document represents the Canister Storage Building (CSB) Subproject technical baseline. It establishes the functions and requirements baseline for the implementation of the CSB Subproject. The document is organized in eight sections. Sections 1.0 Introduction and 2.0 Overview provide brief introductions to the document and the CSB Subproject. Sections 3.0 Functions, 4.0 Requirements, 5.0 Architecture, and 6.0 Interfaces provide the data described by their titles. Section 7.0 Glossary lists the acronyms and defines the terms used in this document. Section 8.0 References lists the references used for this document.

KLEM, M.J.

2000-10-18T23:59:59.000Z

36

Optimization of compression and storage requirements at hydrogen refueling stations.  

SciTech Connect

The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

2008-01-01T23:59:59.000Z

37

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

strategic plans. Large  Scale  Computing  and  Storage  Requirements  for  Fusion  Energy  Sciences   DOE  

Gerber, Richard

2012-01-01T23:59:59.000Z

38

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

39

Measured leak rates of the temporary seals in DWPF canistered waste forms after three years of on site storage  

SciTech Connect

In the summer of 1990 a study was carried out to determine the-internal pressure, relative humidity, and chemical composition of the gas within the free volume of four canistered waste forms produced at TNX in May of 1988. Three of these canistered waste forms were sealed only by temporary seals and subsequently stored in the TNX boneyard' with no protection. The fourth canister was sealed by upset resistance welding. All three canisters with temporary seals were decontaminated by aqueous frit blasting. It was important to remeasure the leak rates of these seals to ensure that leaktightness had not deteriorated during canister handling and storage prior to the time the experiment were performed. This paper details the results of two separate measurements of the leak rates of these seals.

Harbour, J.R.; Miller, T.J.

1992-04-06T23:59:59.000Z

40

Measured leak rates of the temporary seals in DWPF canistered waste forms after three years of on site storage  

SciTech Connect

In the summer of 1990 a study was carried out to determine the-internal pressure, relative humidity, and chemical composition of the gas within the free volume of four canistered waste forms produced at TNX in May of 1988. Three of these canistered waste forms were sealed only by temporary seals and subsequently stored in the TNX `boneyard` with no protection. The fourth canister was sealed by upset resistance welding. All three canisters with temporary seals were decontaminated by aqueous frit blasting. It was important to remeasure the leak rates of these seals to ensure that leaktightness had not deteriorated during canister handling and storage prior to the time the experiment were performed. This paper details the results of two separate measurements of the leak rates of these seals.

Harbour, J.R.; Miller, T.J.

1992-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Preliminary requirements for thermal storage subsystems in solar thermal applications  

DOE Green Energy (OSTI)

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

42

Market Driven Distributed Energy Storage Requirements for Load Management Applications  

Science Conference Proceedings (OSTI)

Electric energy storage systems are an enabling technology that could help meet the needs of electric utility by managing peak energy demands, helping shift the peak loads to off peak hours and improving the load factor of the electric distribution system. Applications of distributed energy storage systems (DESS) could also provide power quality and reliability benefits to customers and to the electric system. EPRI collaborated with several investor owned utilities to conduct a study to understand the te...

2007-04-18T23:59:59.000Z

43

NERSC/DOE ASCR Requirements Workshop Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

Participants Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research An ASCR NERSC Workshop January 5-6, 2011 On-Site Participants Name...

44

Large Scale Computing and Storage Requirements for Biological...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy's Office of Biological & Environmental Research and Advanced Scientific Computing Research (ASCR) to elucidate computing requirements for biological and...

45

Market Requirements and Opportunities for Distributred Energy Storage Systems in the Commercial Sector  

Science Conference Proceedings (OSTI)

Energy storage systems sited at customer locations could enable and complement utility end-use efficiency programs. As a dispatchable resource, energy storage systems can provide utility distribution planners and grid operators with more certainty in terms of peak reduction, demand response, and load shifting. This research was conducted to identify and scope ideal energy storage systems configurations and cost requirements which best leverage utility end-use energy efficiency programs.

2008-12-08T23:59:59.000Z

46

Storage and network requirements of a low-cost computer-based virtual classroom  

Science Conference Proceedings (OSTI)

In this paper we investigate the network and storage requirements of a virtual classroom. The virtual classroom replaces traditional class methodologies by using the computer as the sole instrument for all class activity. The instructor and the students ...

Paul Juell; Daniel Brekke; Ronald Vetter; John Wasson

1994-07-01T23:59:59.000Z

47

Large Scale Computing and Storage Requirements for High Energy Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

for High Energy Physics for High Energy Physics Accelerator Physics P. Spentzouris, Fermilab Motivation Accelerators enable many important applications, both in basic research and applied sciences Different machine attributes are emphasized for different applications * Different particle beams and operation principles * Different energies and intensities Accelerator science and technology objectives for all applications * Achieve higher energy and intensity, faster and cheaper machine design, more reliable operation a wide spectrum of requirements for very complex instruments. Assisting their design and operation requires an equally complex set of computational tools. High Energy Physics Priorities High energy frontier * Use high-energy colliders to discover new particles and

48

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

SciTech Connect

IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

Gerber, Richard A.; Wasserman, Harvey J.

2012-03-02T23:59:59.000Z

49

Large Scale Computing and Storage Requirements for High Energy Physics  

Science Conference Proceedings (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. The effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.

Gerber, Richard A.; Wasserman, Harvey

2010-11-24T23:59:59.000Z

50

Design requirements document for project W-465, immobilized low activity waste interim storage  

SciTech Connect

The scope of this design requirements document is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste produced by the privatized Tank Waste Remediation System treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized low-activity waste interim storage facility project and provides traceability from the program level requirements to the project design activity.

Burbank, D.A.

1997-01-27T23:59:59.000Z

51

A comparison of the conductor requirements for energy storage devices made with ideal coil geometries  

DOE Green Energy (OSTI)

Superconducting Magnetic Energy Storage (SMES) plants have been proposed in both solenoidal and toroidal geometries. The former is efficient in terms of the quantity of superconductor required per unit of stored energy. For applications where a fringe field could be a problem, the toroidal geometry, which requires at least a factor of two more material, has been proposed. In addition to the solenoid and toroid, other geometries are possible, such as linear multipoles and spherical coils. These geometries have been considered for use in applications other than energy storage. In this report, the effectiveness (quantity of superconductor/stored energy) is calculated for various coil geometries. 7 refs., 4 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

52

Spent Nuclear Fuel project stage and store K basin SNF in canister storage building functions and requirements. Revision 1  

SciTech Connect

This document establishes the functions and requirements baseline for the implementation of the Canister Storage Building Subproject. The mission allocated to the Canister Storage Building Subproject is to provide safe, environmentally sound staging and storage of K Basin SNF until a decision on the final disposition is reached and implemented

Womack, J.C.

1995-10-24T23:59:59.000Z

53

A COMPARISON OF THE CONDUCTOR REQUIREMENTS FOR ENERGY STORAGE DEVICES MADE WITH IDEAL COIL GEOMETRIES  

E-Print Network (OSTI)

Superconducting Magnetic Energy Storage Program," Los AlamosWisconsin Superconductive Energy Storage Project. Y2!.l,J. J. Stekly, "Magnetic Energy Storage Using Superconducting

Hassenzahl, W.

2011-01-01T23:59:59.000Z

54

Design requirements document for Project W-465, immobilized low-activity waste interim storage  

SciTech Connect

The scope of this Design Requirements Document (DRD) is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste (ILAW) produced by the privatized Tank Waste Remediation System (TWRS) treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the TWRS ILAW Interim Storage facility project and provides traceability from the program level requirements to the project design activity. Technical and programmatic risk associated with the TWRS planning basis are discussed in the Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The design requirements provided in this document will be augmented by additional detailed design data documented by the project.

Burbank, D.A.

1998-05-19T23:59:59.000Z

55

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

56

Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume I. Final report  

DOE Green Energy (OSTI)

Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, that can help achieve national energy conservation goals and can be dispersed throughout the distribution portion of an electric utility system. A study of trends reveals that the need for DSG monitoring and control equipment by 1990 to 2000 will be great, measured in tens of thousands. Criteria for assessing DSG integration have been defined and indicate that economic and institutional as well as technical and other factors must be included. The principal emphasis in this report is on the functional requirements for DSG monitoring and control in six major categories. Twenty-four functional requirements have been prepared under these six categories and serve to indicate how to integrate the DSGs with the distribution and other portions of the electric utility system. The results indicate that there are no fundamental technical obstacles to prevent the connection of dispersed storage and generation to the distribution system. However, a communication system of some sophistication will be required to integrate the distribution system and the dispersed generation sources for effective control. The large-size span of generators from 10 kW to 30 MW means that a variety of remote monitoring and control may be required. The results show that an increased effort is required to develop demonstration equipment to perform the DSG monitoring and control functions and to acquire experience with this equipment in the utility distribution environment.

Not Available

1980-10-01T23:59:59.000Z

57

Comparative economics for DUCRETE spent fuel storage cask handling, transportation, and capital requirements  

SciTech Connect

This report summarizes economic differences between a DUCRETE spent nuclear fuel storage cask and a conventional concrete storage cask in the areas of handling, transportation, and capital requirements. The DUCRETE cask is under evaluation as a new technology that could substantially reduce the overall costs of spent fuel and depleted U disposal. DUCRETE incorporates depleted U in a Portland cement mixture and functions as the cask`s primary radiation barrier. The cask system design includes insertion of the US DOE Multi-Purpose Canister inside the DUCRETE cask. The economic comparison is from the time a cask is loaded in a spent fuel pool until it is placed in the repository and includes the utility and overall US system perspectives.

Powell, F.P. [Sierra Nuclear Corp., Roswell, GA (United States)

1995-04-01T23:59:59.000Z

58

DOE nuclear material packaging manual: storage container requirements for plutonium oxide materials  

Science Conference Proceedings (OSTI)

Loss of containment of nuclear material stored in containers such as food-pack cans, paint cans, or taped slip lid cans has generated concern about packaging requirements for interim storage of nuclear materials in working facilities such as the plutonium facility at Los Alamos National Laboratory (LANL). In response, DOE has recently issued DOE M 441.1 'Nuclear Material Packaging Manual' with encouragement from the Defense Nuclear Facilities Safety Board. A unique feature compared to transportation containers is the allowance of filters to vent flammable gases during storage. Defining commonly used concepts such as maximum allowable working pressure and He leak rate criteria become problematic when considering vented containers. Los Alamos has developed a set of container requirements that are in compliance with 441.1 based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide. The pre and post drop-test He leak rates depend upon container size as well as the material contents. For containers that are routinely handled, ease of handling and weight are a major consideration. Relatively thin-walled containers with flat bottoms are desired yet they cannot be He leak tested at a differential pressure of one atmosphere due to the potential for plastic deformation of the flat bottom during testing. The He leak rates and He leak testing configuration for containers designed for plutonium bearing materials will be presented. The approach to meeting the other manual requirements such as corrosion and thermal degradation resistance will be addressed. The information presented can be used by other sites to evaluate if their conditions are bounded by LANL requirements when considering procurement of 441.1 compliant containers.

Veirs, D Kirk [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

59

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network (OSTI)

Energy  Sciences   8.2.3.4   Computational  and  Storage  Energy  Sciences   13.1.1.4   Computational  and  Storage  Energy  Sciences   8.2.4.4   Computational  and  Storage  

Gerber, Richard

2012-01-01T23:59:59.000Z

60

Large Scale Computing and Storage Requirements for Biological and Environmental Research  

Science Conference Proceedings (OSTI)

In May 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of Biological and Environmental Research (BER) held a workshop to characterize HPC requirements for BER-funded research over the subsequent three to five years. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. Chief among them: scientific progress in BER-funded research is limited by current allocations of computational resources. Additionally, growth in mission-critical computing -- combined with new requirements for collaborative data manipulation and analysis -- will demand ever increasing computing, storage, network, visualization, reliability and service richness from NERSC. This report expands upon these key points and adds others. It also presents a number of"case studies" as significant representative samples of the needs of science teams within BER. Workshop participants were asked to codify their requirements in this"case study" format, summarizing their science goals, methods of solution, current and 3-5 year computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel,"multi-core" environment that is expected to dominate HPC architectures over the next few years.

DOE Office of Science, Biological and Environmental Research Program Office (BER),

2009-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fractured rock modeling in the National Waste Terminal Storage Program: a review of requirements and status  

Science Conference Proceedings (OSTI)

Generalized computer codes capable of forming the basis for numerical models of fractured rock masses are being used within the NWTS program. Little additional development of these codes is considered justifiable, except in the area of representation of discrete fractures. On the other hand, model preparation requires definition of medium-specific constitutive descriptions and site characteristics and is therefore legitimately conducted by each of the media-oriented projects within the National Waste Terminal Storage program. However, it is essential that a uniform approach to the role of numerical modeling be adopted, including agreement upon the contribution of modeling to the design and licensing process and the need for, and means of, model qualification for particular purposes. This report discusses the role of numerical modeling, reviews the capabilities of several computer codes that are being used to support design or performance assessment, and proposes a framework for future numerical modeling activities within the NWTS program.

St. John, C.; Krug, A.; Key, S.; Monsees, J.

1983-05-01T23:59:59.000Z

62

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID)  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 3) presents the standards and requirements for the following sections: Safeguards and Security, Engineering Design, and Maintenance.

Not Available

1994-04-01T23:59:59.000Z

63

High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

Not Available

1994-04-01T23:59:59.000Z

64

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2  

Science Conference Proceedings (OSTI)

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction.

Not Available

1994-04-01T23:59:59.000Z

65

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

Not Available

1994-04-01T23:59:59.000Z

66

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 5  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 5) outlines the standards and requirements for the Fire Protection and Packaging and Transportation sections.

1994-04-01T23:59:59.000Z

67

Storage Resource Managers: Recent International Experience on Requirements and Multiple Co-Operating Implementations  

Science Conference Proceedings (OSTI)

Storage management is one of the most important enabling technologies for large-scale scientific investigations. Having to deal with multiple heterogeneous storage and file systems is one of the major bottlenecks in managing, replicating, and accessing ...

Lana Abadie; Paolo Badino; Jean-Philippe Baud; Ezio Corso; Matt Crawford; Shaun De Witt; Flavia Donno; Alberto Forti; Akos Frohner; Patrick Fuhrmann; Gilbert Grosdidier; Junmin Gu; Jens Jensen; Birger Koblitz; Sophie Lemaitre; Maarten Litmaath; Dmitry Litvinsev; Giuseppe Lo Presti; Luca Magnoni; Tigran Mkrtchan; Alexander Moibenko; Remi Mollon; Vijaya Natarajan; Gene Oleynik; Timur Perelmutov; Don Petravick; Arie Shoshani; Alex Sim; David Smith; Massimo Sponza; Paolo Tedesco; Riccardo Zappi

2007-09-01T23:59:59.000Z

68

Report on interim storage of spent nuclear fuel  

SciTech Connect

The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

1993-04-01T23:59:59.000Z

69

Systems Modeling, Simulation and Material Operating Requirements for Chemical Hydride Based Hydrogen Storage  

Science Conference Proceedings (OSTI)

Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydride based hydrogen storage. AB was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A new systems concept based on augers, ballast tank, hydrogen heat exchanger and H2 burner was designed and implemented in simulation. In this design, the chemical hydride material was assumed to produce H2 on the augers itself, thus minimizing the size of ballast tank and reactor. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure, in various components of the storage system. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. The control variable AB (or alane) flow rate was determined through a simple expression based on the ballast tank pressure, H2 demand from the fuel cell and hydrogen production from AB (or alane) in the reactor. System simulation results for solid AB, liquid AB and alane for both steady state and transient drive cycle cases indicate the usefulness of the model for further analysis and prototype development.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.

2012-02-01T23:59:59.000Z

70

Mixed Waste Storage and Treatment: Regulatory Compliance Manual  

Science Conference Proceedings (OSTI)

The management and storage of mixed wastes represents one of the most challenging regulatory issues currently facing NRC licensees. This report provides instructions and guidance regarding the on-site storage and treatment of mixed waste in compliance with Resource Conservation and Recovery Act (RCRA) requirements.

1994-12-31T23:59:59.000Z

71

Reducing Energy Costs And Minimizing Capital Requirements: Case Studies of Thermal Energy Storage (TES)  

E-Print Network (OSTI)

Large cooling systems typically represent substantial capital investments and incur high operating energy costs. Cooling loads tend to peak during times of year and times of day when high ambient temperatures create a maximum demand for power, and thus during those times when power has its highest cost or value. Thermal Energy Storage (TES) provides a means of de-coupling the generation of cooling from the provision of cooling to the peak cooling loads. In this manner, peak power demand is reduced, time-of day energy costs can be minimized, and real-time variations in power value can be used to the advantage of the energy consumer.

Andrepont, J. S.

2007-01-01T23:59:59.000Z

72

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

E-Print Network (OSTI)

Sciences Report of the NERSC / BES / ASCR RequirementsScientific Computing Center (NERSC) Editors Richard A.Gerber, NERSC Harvey J. Wasserman, NERSC Lawrence Berkeley

Gerber, Richard

2012-01-01T23:59:59.000Z

73

Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume II. Final report, Appendix A: selected DSG technologies and their general control requirements  

SciTech Connect

A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. The purpose of this survey and identification of DSG technologies is to present an understanding of the special characteristics of each of these technologies in sufficient detail so that the physical principles of their operation and the internal control of each technology are evident. In this way, a better appreciation can be obtained of the monitoring and control requirements for these DSGs from a remote distribution dispatch center. A consistent approach is being sought for both hardware and software which will handle the monitoring and control necessary to integrate a number of different DSG technologies into a common distribution dispatch network. From this study it appears that the control of each of the DSG technologies is compatible with a supervisory control method of operation that lends itself to remote control from a distribution dispatch center.

1980-10-01T23:59:59.000Z

74

A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI  

Science Conference Proceedings (OSTI)

(OAK/B204) A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI

Hiroshi Takahashi; Upendra Rohatgi; T.J. Downar

2000-08-04T23:59:59.000Z

75

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

SciTech Connect

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues raised by researchers at the workshop.

Gerber, Richard; Wasserman, Harvey

2011-03-31T23:59:59.000Z

76

Large Scale Computing and Storage Requirements for Basic Energy Sciences Research  

SciTech Connect

The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues raised by researchers at the workshop.

Gerber, Richard; Wasserman, Harvey

2011-03-31T23:59:59.000Z

77

Supplemental design requirements document enhanced radioactive and mixed waste storage: Phase 5, Project W-113  

SciTech Connect

This Supplemental Design Requirements Document (SDRD) is used to communicate Project W-113 specific plant design information from Westinghouse Hanford Company (WHC) to the United States Department of Energy (DOE) and the cognizant Architect Engineer (A/E). The SDRD is prepared after the completion of the project Conceptual Design report (CDR) and prior to the initiation of definitive design. Information in the SDRD serves two purposes: to convey design requirements that are too detailed for inclusion in the Functional Design Criteria (FDC) report and to serve as a means of change control for design commitments in the Title I and Title II design. The Solid Waste Retrieval Project (W-113) SDRD has been restructured from the equipment based outline used in previous SDRDs to a functional systems outline. This was done to facilitate identification of deficiencies in the information provided in the initial draft SDRD and aid design confirmation. The format and content of this SDRD adhere as closely as practicable to the requirements of WHC-CM-6-1, Standard Engineering Practices for Functional Design Criteria.

Ocampo, V.P.

1994-11-01T23:59:59.000Z

78

Shipping Preparations and Storage of Turbine and Generator Components  

Science Conference Proceedings (OSTI)

Many utilities are replacing major components in their units and are becoming increasingly concerned with shipping as well as long- and short-term storage of these replacement components, which arrive on site for immediate use or as backup in case of emergency. The choice of storage location depends on space availability, site security, environment, tracking and accessibility of stored equipment, original equipment manufacturer (OEM) requirements, and component inspection or maintenance requirements duri...

2010-11-01T23:59:59.000Z

79

H[sub 2]OTREAT: An acid for evaluating water treatment requirements for Aquifer Thermal Energy Storage  

DOE Green Energy (OSTI)

A public-domain software package is available to aid engineers in the design of water treatment systems for Aquifer Thermal Energy Storage (ATES). Geochemical phenomena that cause problems in ATES systems include formation of scale in heat exchangers, clogging of wells, corrosion in piping and heat exchangers, and degradation of aquifer materials. Preventing such problems frequently requires employing water treatment systems. Individual water treatment methods vary in cost. effectiveness, environmental impact, corrosion potential, and acceptability to regulatory bodies. Evaluating these water treatment options is generally required to determine the feasibility of ATFS systems. The H20TREAT software was developed by Pacific Northwest Laboratory for use by engineers with limited or no experience in geochemistry. At the feasibility analysis and design stages, the software utilizes a recently revised geochemical model,MINTEQ, to calculate the saturation indices of selected carbonate, oxide, and hydroxide minerals based on water chemistry and temperature data provided by the user. The saturation indices of key calcium, iron. silica, and manganese carbonates, oxides, and hydroxides (calcite, rhodochrosite, siderite, Fe(OH)[sub 3][a], birnessite, chalcedony, and SiO[sub 2]) are calculated. Currently, H20TREAT does not perform cost calculations; however, treatment capacity requirements are provided. Treatments considered include (1) Na and H ion exchangers and pellet reactors to avoid calcite precipitation, and (2) in situ nitrate addition and cascade precipitation. The H20TREAT software also provides the user with guidance on other geochemical problems that must be considered, such as SiO[sub 2] precipitation, corrosion, and environmental considerations. The sodium adsorption ratio and sodium hazard are calculated to evaluate the likelihood of clay swelling and dispersion caused by high Na concentrations. H20TREAT is available for DOS and UNIX computers.

Vail, L.W.; Jenne, E.A.; Eary, L.E.

1992-08-01T23:59:59.000Z

80

H{sub 2}OTREAT: An acid for evaluating water treatment requirements for Aquifer Thermal Energy Storage  

DOE Green Energy (OSTI)

A public-domain software package is available to aid engineers in the design of water treatment systems for Aquifer Thermal Energy Storage (ATES). Geochemical phenomena that cause problems in ATES systems include formation of scale in heat exchangers, clogging of wells, corrosion in piping and heat exchangers, and degradation of aquifer materials. Preventing such problems frequently requires employing water treatment systems. Individual water treatment methods vary in cost. effectiveness, environmental impact, corrosion potential, and acceptability to regulatory bodies. Evaluating these water treatment options is generally required to determine the feasibility of ATFS systems. The H20TREAT software was developed by Pacific Northwest Laboratory for use by engineers with limited or no experience in geochemistry. At the feasibility analysis and design stages, the software utilizes a recently revised geochemical model,MINTEQ, to calculate the saturation indices of selected carbonate, oxide, and hydroxide minerals based on water chemistry and temperature data provided by the user. The saturation indices of key calcium, iron. silica, and manganese carbonates, oxides, and hydroxides (calcite, rhodochrosite, siderite, Fe(OH){sub 3}[a], birnessite, chalcedony, and SiO{sub 2}) are calculated. Currently, H20TREAT does not perform cost calculations; however, treatment capacity requirements are provided. Treatments considered include (1) Na and H ion exchangers and pellet reactors to avoid calcite precipitation, and (2) in situ nitrate addition and cascade precipitation. The H20TREAT software also provides the user with guidance on other geochemical problems that must be considered, such as SiO{sub 2} precipitation, corrosion, and environmental considerations. The sodium adsorption ratio and sodium hazard are calculated to evaluate the likelihood of clay swelling and dispersion caused by high Na concentrations. H20TREAT is available for DOS and UNIX computers.

Vail, L.W.; Jenne, E.A.; Eary, L.E.

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

PUREX storage tunnels waste analysis plan  

SciTech Connect

Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX Plant, as well as waste received from other on-site sources.

Haas, C.R., Westinghouse Hanford

1996-07-10T23:59:59.000Z

82

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

Geo- logic Carbon Dioxide Sequestration: An Analysis of86 MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP,MONITORING OF GEOLOGIC CARBON SEQUESTRATION B. R. Strazisar,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

83

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

and A.M. Jessop, Hydraulic fracturing experiment at theor pressures at which hydraulic fracturing of the cap rocka high potential for hydraulic fracturing occurs in the case

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

84

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

SMALL SCALE FEATURES INTRODUCTION Seismic attribute technology is a standard reservoir characterization component for assessment of hydro-

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

85

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

Department of Energy/Office of Fossil Energy, contract nos.supported by DOE’s Office of Fossil Energy through theTechnology Program, Office of Fossil Energy, U.S. Department

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

86

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

from hazardous waste injection wells, test wells, and oilthe permitting of CO2 injection wells. PROCEEDINGS, CO2SCand completed CO 2 injection wells and continuous monitoring

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

87

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

integral part of oil and gas exploration and production andwell known from oil and gas explorations (1950´s to 70´s)a Michigan-based oil and gas exploration and development

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

88

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

such as a thermal power plant, and CO 2 sequestration tech-statistics at the thermal power plants in different statesis from eighty one thermal power plants across the country.

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

89

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

the arrival of CO 2 . The drilling fluids were tagged withSeismic survey Drilling phase Fluid loss record, PWD Leak-as fluid path should be investigated during drilling phase.

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

90

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

depth distribution (Texas RRC districts 2, 3, and 4. Key isTexas Railroad Commission (RRC). The remainder are eitherWarner et al. (1997), the RRC well dataset can be sorted

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

91

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

WITH HETEROGENEITY IN OIL AND GAS RESERVOIRS APPLIED TO CO 2sedimentary basins, oil and gas fields, and industrial CO 2Harr, C.L. , 1996, Paradox oil and gas potential of the Ute

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

92

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

EGR), and enhanced coal bed methane recovery (ECBM). Databe offset by enhanced coal- bed methane recovery (ECBM). InEOR) and enhanced coal bed methane (ECBM) recovery. Also,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

93

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

the century-long history of oil and gas ex- ploration andare in areas that have a history of oil, natural gas, and/orGULF COAST OIL RESERVOIRS 1. Production History. The Wellman

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

94

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

groundwater above two Permian Basin oil fields (SACROC Unitin New Mex- ico in the Permian basin. In the field study atPermian boundary in shelf areas of the North Plat- form of the Midland Basin,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

95

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

M. Azaroual and P. Durst, Improvement of the calculationAzaroual, J. Pearce and P. Durst, Geochemical interactions

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

96

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

southern oil fields of Fortescue, Kingfish and Bream (FigureThe second site is the Fortescue Field area, also for 15 Mt/For the Kingfish and Fortescue field areas, the con- cept

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

97

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

fracture characterization in a shale reservoir, North Texas,of intra- aquifer shales and the relative effectiveness ofgreat degree of sandstone/shale inter- beds in channel-fill

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

98

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

undergone a successful waterflood might be better candidatesand direction Rierdon Waterflood Vertical Infillingpast 20 years in spite of waterflood and horizontal drilling

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

99

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

are abundant (Fig. 1). Oil wells in this field were drilledof ~2900 m. An existing oil well, the Sun-Gulf-Humble FeeGeyser (CG), a prospective oil well abandoned in the 1930s

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

100

U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen - Facility Locations and Hydrogen Storage/Delivery Logistics  

NLE Websites -- All DOE Office Websites (Extended Search)

US Army Corps US Army Corps of Engineers ® Engineer Research and Development Center U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen Facility Locations and Hydrogen Storage/Delivery Logistics Nicholas M. Josefik 217-373-4436 N-josefik@cecer.army.mil www.dodfuelcell.com Franklin H. Holcomb Project Leader, Fuel Cell Team 27 OCT 08 Distributed Generation H 2 Generation & Storage Material Handling H2 Vehicles 2 US Army Corps of Engineers ® Engineer Research and Development Center Presentation Outline * DoD Energy Use * Federal Facilities Goals and Requirements * Federal Vehicles and Fuel Goals * Opportunities & Conclusions 3 US Army Corps of Engineers ® Engineer Research and Development Center Where Does the Energy Go? * Tactical and Combat Vehicles (Jets,

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Feasibility studies on the use of TRUPACT-1 for on-site transportation of DOE LLW  

SciTech Connect

In this paper the authors propose using TRUPACT-I, with modifications to its storage system, to facilitate on-site transportation of US Department of Energy (DOE) low-level waste (LLW). TRUPACT-I was designed as a type-B contact-handled transuranic (CH-TRU) waste transportation system for use in Waste Isolation Pilot Plant-related operations and was subjected to the required type-B container accident tests, which it successfully passed. Thus, from a safety standpoint, TRUPACT-1 is provided with double containment, impact limitation, and fire-retardant capabilities. Furthermore, because TRUPACT-1 was developed to transport CH-TRU waste, which is characterized by a higher total activity, larger decay heat, and higher dose rate than LLW, it would be overqualified for the requirements of LLW transportation.

Hills, C.R.; Banjac, V.; Heger, A.S. (Univ. of New Mexico, Albuquerque (United States))

1993-01-01T23:59:59.000Z

102

On-site cogeneration for office buildings  

SciTech Connect

The purpose of this project was to investigate the feasibility of alternative means of enhancing the economic attractiveness of cogeneration for use in office buildings. One course of action designed to achieve this end involves directing the exhaust heat of a cogeneration unit through an absorption chiller to produce cooling energy. Thus, the units could be operated more continuously, particularly if thermal storage is incorporated. A second course of action for improving the economics of cogeneration in office buildings involves the sale of the excess cogenerated waste heat. A potential market for this waste heat is a district heating grid, prevalent in the downtown sections of most urban areas in the US. This project defines a realistic means to guide the integration of cogeneration and district heating. The approach adopted to achieve this end involved researching the issues surrounding the integration of on-site cogeneration in downtown commercial office buildings, and performing an energy and economic feasibility analysis for a representative building. The technical, economic and legal issues involved in this type of application were identified and addressed. The research was also intended as a first step toward implementing a pilot project to demonstrate the feasibility of office building cogeneration in San Francisco. 13 refs., 7 figs., 4 tabs.

Not Available

1985-04-01T23:59:59.000Z

103

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 6  

SciTech Connect

The scope of the Environmental Restoration and Waste Management (EM) Functional Area includes the programmatic controls associated with the management and operation of the Hanford Tank Farm Facility. The driving management organization implementing the programmatic controls is the Tank Farms Waste Management (WM)organization whose responsibilities are to ensure that performance objectives are established; and that measurable criteria for attaining objectives are defined and reflected in programs, policies and procedures. Objectives for the WM Program include waste minimization, establishment of effective waste segregation methods, waste treatment technology development, radioactive (low-level, high-level) hazardous and mixed waste transfer, treatment, and storage, applicability of a corrective action program, and management and applicability of a decontamination and decommissioning (D&D) program in future years.

Not Available

1994-04-01T23:59:59.000Z

104

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 1  

SciTech Connect

The purpose of this Requirements Identification Document (RID) section is to identify, in one location, all of the facility specific requirements and good industry practices which are necessary or important to establish an effective Issues Management Program for the Tank Farm Facility. The Management Systems Functional Area includes the site management commitment to environmental safety and health (ES&H) policies and controls, to compliance management, to development and management of policy and procedures, to occurrence reporting and corrective actions, resource and issue management, and to the self-assessment process.

Not Available

1994-04-01T23:59:59.000Z

105

Lower-Energy Requirements for Power-Assist HEV Energy Storage Systems--Analysis and Rationale (Presentation)  

SciTech Connect

Presented at the 27th International Battery Seminar and Exhibit, 15-18 March 2010, Fort Lauderdale, Florida. NREL conducted simulations and analysis of vehicle test data with research partners in response to a USABC request; results suggest that power-assist hybrid electric vehicles (HEVs), like conventional HEVs, can achieve high fuel savings with lower energy requirements at potentially lower cost.

Gonder, J.; Pesaran, A.

2010-03-18T23:59:59.000Z

106

Microgrids: distributed on-site generation  

E-Print Network (OSTI)

Microgrids: distributed on-site generation Suleiman Abu-Sharkh, Rachel Li, Tom Markvart, Neil Ross for Climate Change Research Technical Report 22 #12;1 Microgrids: distributed on-site generation Tyndall production by small scale generators in close proximity to the energy users, integrated into microgrids

Watson, Andrew

107

On-site Housing | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

On-site Housing On-site Housing Note: All guests wishing to stay on-site must be registered and approved in the BNL Guest Information System (GIS). Welcome to Brookhaven National Laboratory. BNL attracts more than 4,500 visiting scientists from all over the world each year to perform scientific research and work with our staff. To support our guests, there are 333 on-site housing units. These units are comprised of 66 family-style apartments, 39 efficiency apartments, 213 dormitory rooms, 13 Guest House rooms, and 2 year round private houses. Location: Hours of Operation: Research Support Building (400A), 20 Brookhaven Avenue Monday - Friday: 8:00 am to Midnight Reservations: (631) 344-2541 or 344-2551 Saturday: Closed* Fax: (631) 344-3098 Sunday: 4:00 pm to Midnight

108

On-site generated nitrogen cuts cost of underbalanced drilling  

Science Conference Proceedings (OSTI)

The use of on-site generated nitrogen, instead of liquid nitrogen, has reduced the cost of drilling underbalanced horizontal wells in Canada and the western US. Because nitrogen is inert and inflammable, it is the preferred gas for underbalanced drilling. Nitrogen can be supplied for oil field use by three different methods: cryogenic liquid separation, pressure swing adsorption, and hollow fiber membranes. The selection of nitrogen supply from one of these methods depends on the cost of delivered nitrogen, the required flow rates and pressure, the required nitrogen purity, and the availability and reliability of the equipment for nitrogen generation. These three methods are described, as well as the required equipment.

Downey, R.A. [Energy Ingenuity Co., Englewood, CO (United States)

1997-02-24T23:59:59.000Z

109

REPORT OF ON-SITE INSPECTION WORKSHOP-16  

SciTech Connect

The central issue addressed by this workshop was the task of making the on-site inspection (OSI) part of the Comprehensive Nuclear-Test-Ban Treaty verification system operationally ready at entry into force of the Treaty. It is recognized, and this was emphasized by the 2008 OSI Integrated Field Exercise (IFE), that it is not possible to develop every part of the OSI regime simultaneously. Therefore, it is necessary to prioritize the approach to OSI readiness. The reviews of the IFE have pointed to many elements of OSI readiness that still need development. The objective of this workshop was to provide priorities for the path forward for Working Group B to consider. Several critical areas have been identified that are related to the development of OSI readiness: (1) Technology development: Priorities are radionuclide and noble gas sampling and analysis, visual observation, multispectral/infrared imaging methods, active seismic methods and the recognition of the importance of signatures. (2) Organizational development: Priorities are health and safety, the Operations Support Centre, the Equipment Storage and Maintenance Facility, information technology data flow and communications. (3) Resources: The expertise to develop key parts of the OSI regime is not available within the current OSI Division staff. To develop these aspects of the regime will require more staff or supplements to the staff with cost-free experts or other means. Aspects of the system that could benefit from more staff include radionuclide and noble gas detection methods, data flow and communications, visual observation, multispectral/infrared methods and health and safety. As the path forward, participants of this workshop recognized a need to optimize the development of OSI priorities. The outcome of this workshop is to suggest for consideration an operational approach to OSI readiness that utilizes results of an evaluation of the relative effectiveness of OSI elements versus their relative maturity. By integrating such an assessment with considerations of integrated operational capabilities and the anticipated level of inspection team self-sufficiency and measurable milestone criteria, a set of priorities for OSI development can be developed. Once these priorities have been established, the Policy Making Organs can decide upon the milestones, strategic plan and action plan to serve as guidance for implementation by the Provisional Technical Secretariat. The suggested operational approach is as follows: (1) Assess the relative effectiveness (importance) of OSI elements versus their relative maturity; (2) Determine the anticipated level of self-sufficiency; (3) Define measurable milestone criteria; and (4) Result: Milestones for OSI readiness.

Sweeney, J J

2009-07-07T23:59:59.000Z

110

H2O[underscore]TREAT users' manual: An aid for evaluating water treatment requirements for aquifer thermal energy storage systems  

DOE Green Energy (OSTI)

This manual addresses the use of a public-domain software package developed to aid engineers in the desip of water treatment systems for aquifer thermal energy storage (ATES). The software, H20[underscore]TREAT, which runs in the DOS or UNIX Environment, was developed by the Pacific Northwest Laboratory and targeted to engineers possessing limited or no experience in geochemistry. To do this, the software provides guidance on geochemical phenomena that can cause problems in ATES systems (i.e., the formation of scale in heat exchangers, clogging of wells, corrosion in piping and heat exchangers, and degradation of aquifer materials causing a reduction in permeability). Preventing such problems frequently requires the use of water treatment systems. Because individual water treatment methods vary in cost, effectiveness, environmental impact, corrosion potential, and acceptability to regulators, proper evaluation of treatment options is required to determine the feasibility of ATES systems. The software is available for DOS- and UNIX-based computers. It uses a recently revised geochemical model, MINTEQ, to calculate the saturation indices of selected carbonate, oxide, and hydroxide minerals based on water chemistry and temperature data provided by the user. The saturation index of a specific mineral defines the point at which that mineral is oversaturated and hence may precipitate at the specified temperature. Cost calculations are not performed by the software; however, treatment capacity requirements are provided. Treatments include Na and H ion exchanger, fluidized-bed heat exchanger or pellet reactors, and CO[sub 2] injection. The H2O[underscore]TREAT software also provides the user with warning of geochemical problems that must be addressed, such as Fe and Mn oxide precipitation, SiO[sub 2] precipitation at high temperatures, corrosion, and clay swelling and dispersion.

Vail, L.W.; Jenne, E.A.; Zipperer, J.P.; McKinley, M.I.

1993-02-01T23:59:59.000Z

111

H2O{underscore}TREAT users` manual: An aid for evaluating water treatment requirements for aquifer thermal energy storage systems  

DOE Green Energy (OSTI)

This manual addresses the use of a public-domain software package developed to aid engineers in the desip of water treatment systems for aquifer thermal energy storage (ATES). The software, H20{underscore}TREAT, which runs in the DOS or UNIX Environment, was developed by the Pacific Northwest Laboratory and targeted to engineers possessing limited or no experience in geochemistry. To do this, the software provides guidance on geochemical phenomena that can cause problems in ATES systems (i.e., the formation of scale in heat exchangers, clogging of wells, corrosion in piping and heat exchangers, and degradation of aquifer materials causing a reduction in permeability). Preventing such problems frequently requires the use of water treatment systems. Because individual water treatment methods vary in cost, effectiveness, environmental impact, corrosion potential, and acceptability to regulators, proper evaluation of treatment options is required to determine the feasibility of ATES systems. The software is available for DOS- and UNIX-based computers. It uses a recently revised geochemical model, MINTEQ, to calculate the saturation indices of selected carbonate, oxide, and hydroxide minerals based on water chemistry and temperature data provided by the user. The saturation index of a specific mineral defines the point at which that mineral is oversaturated and hence may precipitate at the specified temperature. Cost calculations are not performed by the software; however, treatment capacity requirements are provided. Treatments include Na and H ion exchanger, fluidized-bed heat exchanger or pellet reactors, and CO{sub 2} injection. The H2O{underscore}TREAT software also provides the user with warning of geochemical problems that must be addressed, such as Fe and Mn oxide precipitation, SiO{sub 2} precipitation at high temperatures, corrosion, and clay swelling and dispersion.

Vail, L.W.; Jenne, E.A.; Zipperer, J.P.; McKinley, M.I.

1993-02-01T23:59:59.000Z

112

On Site Energy | Open Energy Information  

Open Energy Info (EERE)

On Site Energy On Site Energy Jump to: navigation, search Name On-Site Energy Place Alexandria, Virginia Zip 22307 Sector Geothermal energy Product Virginia-based small geothermal system design and installation firm. Coordinates 31.19224°, 29.88987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.19224,"lon":29.88987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Upgrade of 400,000 gallon water storage tank at Argonne National Laboratory-West to UCRL-15910 high hazard seismic requirements  

SciTech Connect

As part of the Integral Fast Reactor (IFR) Project at Argonne National Laboratory West (ANL-W), it was necessary to strengthen an existing 400,000 gallon flat-bottom water storage tank to meet UCRL-15910 (currently formulated as DOE Standard DOE-STD-1020-92, Draft) high hazard natural phenomena requirements. The tank was constructed in 1988 and preliminary calculations indicated that the existing base anchorage was insufficient to prevent buckling and potential failure during a high hazard seismic event. General design criteria, including ground motion input, load combinations, etc., were based upon the requirements of UCRL-15910 for high hazard facilities. The analysis and capacity assessment criteria were based on the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the foundation and installing additional anchor bolts and chairs, were necessary to increase the capacity of the tank anchorage/support system. The construction of the upgrades took place in 1992 while the tank remained in service to allow continued operation of the EBR-II reactor. The major phases of construction included the installation and testing of 144 1/14in. {times} 15in., and 366 1in. {times} 16in. epoxied concrete anchors, placement of 220 cubic yards of concrete heavily reinforced, and installation of 24 1-1/2in. {times} 60in. tank anchor bolts and chairs. A follow-up inspection of the tank interior by a diver was conducted to determine if the interior tank coating had been damaged by the chair welding. The project was completed on schedule and within budget.

Griffin, M.J. [EQE International, Inc., Irvine, CA (United States); Harris, B.G. [Argonne National Lab., Idaho Falls, ID (United States)

1993-10-01T23:59:59.000Z

114

Storage Sub-committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Sub-committee Storage Sub-committee 2012 Work Plan Confidential 1 2012 Storage Subcommittee Work Plan * Report to Congress. (legislative requirement) - Review existing and projected research and funding - Review existing DOE, Arpa-e projects and the OE 5 year plan - Identify gaps and recommend additional topics - Outline distributed (review as group) * Develop and analysis of the need for large scale storage deployment (outline distributed again) * Develop analysis on regulatory issues especially valuation and cost recovery Confidential 2 Large Scale Storage * Problem Statement * Situation Today * Benefits Analysis * Policy Issues * Technology Gaps * Recommendations * Renewables Variability - Reserves and capacity requirements - Financial impacts - IRC Response to FERC NOI and update

115

Lifetime Evaluation of Elastomeric Polymers for Storage of Nuclear ...  

Science Conference Proceedings (OSTI)

Presentation Title, Lifetime Evaluation of Elastomeric Polymers for Storage of Nuclear Materials. Author(s), Elizabeth Hoffman, Eric Skidmore. On-Site Speaker  ...

116

Energy Storage for Advanced Electric Vehicles - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Energy Storage for Advanced Electric Vehicles. Author(s), Christopher Johnson, David Howell. On-Site Speaker (Planned), Christopher ...

117

On-site Housing Unit Types | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

On-site Housing Unit Types On-site Housing Unit Types Registration is required for all computers, wireless notebooks or other network devices used on the BNL Network. Devices that are not registered will be disconnected from the network. Apartments Apartments are available in 1, 2, 3 and 4 bedrooms. They are fully furnished and supplied with linens, kitchen utensils and cookware. Utilities are included in the rental price. *Note: These units do NOT have air conditioning. Each unit is equipped with DSL connection, satellite television and a microwave. Cisco Wireless Access Points (WAPs) connections are also available in Buildings 2-10. More Photos (PDF) Cavendish House The Cavendish house is a male dormitory consisting of 83 private single occupancy rooms equipped with air conditioning, Ethernet connection and

118

Advances in field-portable mass spectrometers for on-site analytics  

Science Conference Proceedings (OSTI)

Learn how the combination of ambient ionization with portable mass spectroscopy can speed chemical analysis by streamlining sample preparation and throughput requirements. Advances in field-portable mass spectrometers for on-site analytics inform M

119

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Energy Storage: Materials, Systems and Applications: Hydrogen Storage Program Organizers: Zhenguo "Gary" Yang, Pacific Northwest ...

120

Federal Energy Management Program: On-Site Renewable Power Purchase  

NLE Websites -- All DOE Office Websites (Extended Search)

On-Site Renewable On-Site Renewable Power Purchase Agreements to someone by E-mail Share Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on Facebook Tweet about Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on Twitter Bookmark Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on Google Bookmark Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on Delicious Rank Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on Digg Find More places to share Federal Energy Management Program: On-Site Renewable Power Purchase Agreements on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NETL: Carbon Storage - Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

122

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

8947.1 8947.1 09/13 On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 09/13 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 09/13 North Face Cell 1 North Drainage (looking west) 6319D-6206 6319D-6205 8947.4 09/13 East Face Cell 2 West Face Cell 2 6319D-6230 6319D-6209 8947.5 09/13 East Face Cell 3 West Face Cell 3 6319D-6229 6319D-6210 8947.6 09/13 East Face Cell 4 West Face Cell 4 6319D-6227 6319D-62111 8947.7 09/13 East Face Cell 5 West Face Cell 5 6319D-6226 6319D-6213 8947.8 09/13 East Face Cell 6 6319D-6214 6319D-6225 West Face Cell 6 8947.9 09/13 East Face Cell 7 6319D-6215 6319D-6223 West Face Cell 7 8947.10 09/13 East Face Cell 8 6319D-6217 6319D-6220 West Face Cell 8 8947.11 09/13 South Face Cell 8 6319D-6219 6319D-6218 South Drainage (looking west) 8947.12 09/13

123

Interim Storage of Low and Intermediate Level Wastes: Guidelines for Extended Storage  

Science Conference Proceedings (OSTI)

Domestic utilities are responding to impending changes in low-level waste (LLW) disposal site facility availability by extending their capabilities for interim on-site storage of LLW. International utilities likewise face challenges in implementing complete low and intermediate waste disposal options. Therefore, our members asked EPRI to revise and update our series of documents devoted to on-site interim LLW storage. This report represents the key guidelines document for the series.

2002-10-30T23:59:59.000Z

124

Transportable Energy Storage Systems Project  

Science Conference Proceedings (OSTI)

This project will define the requirements and specification for a transportable energy storage system and then screen various energy storage options and assess their capability to meet that specification. The application will be designed to meet peak electrical loads (3-4 hours of storage) on the electrical distribution system.

2009-10-23T23:59:59.000Z

125

Distributed Generation with Heat Recovery and Storage  

DOE Green Energy (OSTI)

Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-07-29T23:59:59.000Z

126

Residential on site solar heating systems: a project evaluation using the capital asset pricing model  

SciTech Connect

An energy source ready for immediate use on a commercial scale is solar energy in the form of On Site Solar Heating (OSSH) systems. These systems collect solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating and hot water required by the occupants of the residential or commercial structure on which the system is located. Such systems would take advantage of a free and inexhaustible energy source--sunlight. The principal drawback of such systems is the high initial capital cost. The solution would normally be a carefully worked out corporate financing plan. However, at the moment it is individual homeowners and not corporations who are attempting to finance these systems. As a result, the terms of finance are excessively stringent and constitute the main obstacle to the large scale market penetration of OSSH. This study analyzes the feasibility of OSSH as a private utility investment. Such systems would be installed and owned by private utilities and would displace other investment projects, principally electric generating plants. The return on OSSH is calculated on the basis of the cost to the consumer of the equivalent amount of electrical energy that is displaced by the OSSH system. The hurdle rate for investment in OSSH is calculated using the Sharpe--Lintner Capital Asset Pricing Model. The results of this study indicate that OSSH is a low risk investment having an appropriate hurdle rate of 7.9%. At this rate, OSSH investment appears marginally acceptable in northern California and unambiguously acceptable in southern California. The results also suggest that utility investment in OSSH should lead to a higher degree of financial leverage for utility companies without a concurrent deterioration in the risk class of utility equity.

Schutz, S.R.

1978-12-01T23:59:59.000Z

127

Summary - Proposed On-Site Disposal Facility (OSDF) at the Paducah Gaseous Diffusion Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paducah, KY Paducah, KY EM Project: On-Site Disposal Facility ETR Report Date: August 2008 ETR-16 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Disposal Facility(OSDF) at the Paducah Gaseous Diffusion Plant Why DOE-EM Did This Review The Paducah Gaseous Diffusion Plant (PGDP) is an active uranium enrichment facility that was placed on the National Priorities List. DOE is required to remediate the PGDP in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is evaluating alternatives to dispose of waste generated from the remedial activities at the PGDP. One option is to construct an on-site disposal facility (OSDF) meeting the CERCLA requirements.

128

NIST: Neutron Tomography of Hydrogen Storage Bed  

Science Conference Proceedings (OSTI)

... Future hydrogen fuel cell vehicles will require hydrogen storage vessels that ... will require understanding the coupled heat and mass transport system ...

2013-07-23T23:59:59.000Z

129

Federal Energy Management Program: On-Site Renewable Power Purchase  

NLE Websites -- All DOE Office Websites (Extended Search)

On-Site Renewable Power Purchase Agreements On-Site Renewable Power Purchase Agreements Graphic of the eTraining logo Training Available Federal On-Site Renewable Power Purchase Agreements: Learn how to develop an on-site renewable Power Purchase Agreement (PPA) by taking this FEMP eTraining course. At a Glance Power purchase agreements feature a variety of benefits and considerations for Federal agencies, including: Benefits: No up-front capital costs Ability to monetize tax incentives Typically a known, long-term energy price No operations and maintenance responsibilities Minimal risk to the agency Considerations: Federal sector experience with PPAs is still growing Contract term limitations Inherent transaction costs Challenges with site access contracts and concerns On-site renewable power purchase agreements (PPAs) allow Federal agencies to fund on-site renewable energy projects with no up-front capital costs incurred.

130

Assessment of a Low-Level Waste Outside Storage Pad Design Method  

Science Conference Proceedings (OSTI)

EPRI has developed a method for designing an outside pad and modules for interim on-site storage of low-level waste. A detailed comparison between EPRI's outside storage pad facility design and cost projections and those of Boston Edison revealed excellent agreement between the two estimates. This report provides detailed information on how to approach the design of an outside storage pad facility as well as use of the EPRI method for an on-site storage project.

1996-04-19T23:59:59.000Z

131

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: Hydrogen Storage Sponsored by: Metallurgical Society of the Canadian Institute of ...

132

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

133

Data Requirements from NERSC Requirements Reviews Richard Gerber...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Scientists represented by the NERSC user community have growing requirements for data storage, IO bandwidth, networking bandwidth, and data software and services. Over the...

134

Collector: storage wall systems  

SciTech Connect

Passive Trombe wall systems require massive masonry walls to minimize large temperature swings and movable night insulation to prevent excessive night heat losses. As a solar energy collection system, Trombe wall systems have low efficiencies because of the nature of the wall and, if auxiliary heat is needed, because of absorption of this heat. Separation of collector and storage functions markedly improves the efficiency. A simple fiberglass absorber can provide high efficiency while phase change storage provides a compact storage unit. The need for movable insulation is obviated.

Boardman, H.

1980-01-01T23:59:59.000Z

135

On-Site Diesel Generation- How You Can Reduce Your Energy Costs  

E-Print Network (OSTI)

Interruptible power rates, Utility special rate negotiations, and the emergence of a spot electrical power market all can lead to lower industrial energy costs. The installation of low cost on-site diesel powered generation, or the proposed intention to install, provides the means for obtaining lower purchased power costs. The functionality of a standby power system and its inherent value in the coming free market purchase of electrical energy are added benefits. Project feasibility, conceptual design, on-site generation facility requirements, interconnection requirements, and operation and maintenance costs will be examined. Installation costs in the range of $350 to $400 per KW and operating costs of approximately $0.06 to $0.07 per kWhr compared to purchased power rates determine the feasibility of an on-site generation system. In some cases avoided demand charges offer an opportunity for savings such that special rates are not needed for a feasible project. Depending on the manufacturer, low capital cost diesel generators are available in 1000 to 2000 KW blocks. Capacity requirements determine the number of engines required. Large capacity installations are somewhat restricted by voltage and current ratings. Some variants for multiple engine generator installations will yield greater reliability or lower costs depending on objectives. Specific requirements for basic building blocks of an on-site generation system will be examined as well as an example of a 5,500 KW installation. IEA provides an alternative to installing and operating an on-site generation system. IEA owns and operates diesel standby generation systems for customers, with responsibility for all maintenance and operation as well as associated costs. This allows customers to focus on core business, not the generation of electrical energy.

Charles, D.

1996-04-01T23:59:59.000Z

136

On-Site Renewable Power Purchase Agreements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Funding » On-Site Renewable Power Purchase Agreements Project Funding » On-Site Renewable Power Purchase Agreements On-Site Renewable Power Purchase Agreements October 7, 2013 - 3:35pm Addthis On-site renewable power purchase agreements (PPAs) allow Federal agencies to fund on-site renewable energy projects with no up-front capital costs incurred. With a PPA, a developer installs a renewable energy system on agency property under an agreement that the agency will purchase the power generated by the system. The agency pays for the system through these power payments over the life of the contract. After installation, the developer owns, operates, and maintains the system for the life of the contract. For more information, read the Federal Energy Mangement Program's (FEMP) introductory guide to PPAs and sample documents.

137

Sample Documents for On-Site Renewable Power Purchase Agreements |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding » On-Site Renewable Power Purchase Agreements » Funding » On-Site Renewable Power Purchase Agreements » Sample Documents for On-Site Renewable Power Purchase Agreements Sample Documents for On-Site Renewable Power Purchase Agreements October 7, 2013 - 3:37pm Addthis The Federal Energy Management Program (FEMP) works with Federal agencies and partners to assemble sample documents from past on-site renewable power purchase agreement (PPA) projects to help streamline the PPA process. Requests for Proposal and Contracts Sample documents are available for the following requests for proposal: Photovoltaics at the Department of Energy's (DOE) Princeton Plasma Physics Laboratory: PPA request for proposal issued by DLA Energy on behalf of Princeton Plasma Physics Laboratory. National Renewable Energy Laboratory (NREL) Photovoltaics Opportunity

138

On-Site Renewable Power Purchase Agreements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On-Site Renewable Power Purchase Agreements On-Site Renewable Power Purchase Agreements On-Site Renewable Power Purchase Agreements October 16, 2013 - 5:09pm Addthis An on-site renewable power purchase agreement (PPA) enables Federal agencies to fund a renewable energy project by contracting to purchase the power generated by the system. The renewable energy equipment is installed and owned by a developer but located on-site at the agency facility. As noted in the renewable energy project funding overview, PPAs provide a range of attractive benefits to Federal agencies trying to access renewable energy. These include no up-front capital costs; the ability to monetize tax incentives; typically a known, long-term energy price; no operations and maintenance (O&M) responsibilities; and minimal risk to the agency.

139

HTGR spent fuel storage study  

SciTech Connect

This report documents a study of alternate methods of storing high-temperature gas-cooled reactor (HTGR) spent fuel. General requirements and design considerations are defined for a storage facility integral to a fuel recycle plant. Requirements for stand-alone storage are briefly considered. Three alternate water-cooled storage conceptual designs (plug well, portable well, and monolith) are considered and compared to a previous air-cooled design. A concept using portable storage wells in racks appears to be the most favorable, subject to seismic analysis and economic evaluation verification.

Burgoyne, R.M.; Holder, N.D.

1979-04-01T23:59:59.000Z

140

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

Systems, forthcoming 2008. Microgrid Symposium. Held atand carbon emissions, a microgrid’s distributed energyIn this paper, a microgrid is defined as a cluster of

Stadler, Michael

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

parameters, i.e. , the electricity tariff structure. Due toenergy loads, 2 electricity and natural gas tariff structureelectricity ($/kWh) demand ($/kW) Natural Gas $/kWh fixed ($/day) Sources: PG&E commercial tariffs,

Stadler, Michael

2008-01-01T23:59:59.000Z

142

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

2003. Hatziargyriou, N. et al. , “Microgrids, An Overview ofand Operation of Microgrids in Commercial Buildings”, IEEEsuccessful deployment of microgrids will depend heavily on

Stadler, Michael

2008-01-01T23:59:59.000Z

143

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

that growth in electricity demand in developed countriesof displacement of electricity demand by heat- activatedmeets all of its electricity demand via utility purchases

Stadler, Michael

2008-01-01T23:59:59.000Z

144

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

alter the residual load profile, which can contribute toon the test site, its load profile, and its adopted DERdepends strongly on the load profile as well as solar

Stadler, Michael

2008-01-01T23:59:59.000Z

145

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

electricity ($/kWh) demand ($/kW) Natural Gas $/kWh fixed (electricity ($/kWh) demand ($/kW) Natural Gas $/kWh fixed (demand via utility purchases and burns natural gas to meet

Stadler, Michael

2008-01-01T23:59:59.000Z

146

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

1. However, a part of the battery capacity is replaced bycapacity close to the optimal could be acquired, e.g. battery

Stadler, Michael

2008-01-01T23:59:59.000Z

147

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by...

148

Hydrogen Storage- Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

149

Residential Energy Management system for optimization of on-site...  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Energy Management system for optimization of on-site generation with HVAC Speaker(s): Ram Narayanamurthy Date: October 29, 2009 - 12:00pm Location: 90-3122 As the...

150

Analysis in Support of Storage of Residues in the Pipe Overpack Container  

E-Print Network (OSTI)

The disposition of the large back-log of plutonium residues at the Rocky Flats Environmental Technology Site (Rocky Flats) will require interim storage and subsequent shipment to a waste repository. Current plans call for disposal at the Waste Isolation Pilot Plant (WIPP) and the transportation to WIPP in the TRUPACT-II. The transportation phase will require the residues to be packaged in a container that is more robust than a standard 55-gallon waste drum. Rocky Flats has designed the Pipe Overpack Container to meet this need. The potential for damage to this container during on-site storage in unhardened structures for several hypothetical accident scenarios has been addressed using finite element calculations. This report will describe the initial conditions and assumptions for these analyses and the predicted response of the container. 2 Table of Contents List of Figures ...............................................................................................................

Ludwigsen Ammerman And; J. S. Ludwigsen; D. J. Ammerman; H. D. Radloff

1998-01-01T23:59:59.000Z

151

NREL: Learning - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Hydrogen Storage On the one hand, hydrogen's great asset as a renewable energy carrier is that it is storable and transportable. On the other hand, its very low natural density requires storage volumes that are impractical for vehicles and many other uses. Current practice is to compress the gas in pressurized tanks, but this still provides only limited driving range for vehicles and is bulkier than desirable for other uses as well. Liquefying the hydrogen more than doubles the fuel density, but uses up substantial amounts of energy to lower the temperature sufficiently (-253°C at atmospheric pressure), requires expensive insulated tanks to maintain that temperature, and still falls short of desired driving range. One possible way to store hydrogen at higher density is in the spaces within the crystalline

152

Development of a container for the transportation and storage of plutonium bearing materials  

Science Conference Proceedings (OSTI)

There is a large backlog of plutonium contaminated materials at the Rocky Flats Environmental Technology Site near Denver, Colorado, USA. The clean-up of this site requires this material to be packaged in such a way as to allow for efficient transportation to other sites or to a permanent geologic repository. Prior to off-site shipment of the material, it may be stored on-site for a period of time. For this reason, it is desirable to have a container capable of meeting the requirements for storage as well as the requirements for transportation. Most of the off-site transportation is envisioned to take place using the TRUPACT-II Type B package, with the Waste Isolation Pilot Plant (WIPP) as the destination. Prior to the development of this new container, the TRUPACT-II had a limit of 325 FGE (fissile gram equivalents) of plutonium due to criticality control concerns. Because of the relatively high plutonium content in the material to be transported, transporting 325 FGE per TRUPACT-II is uneconomical. Thus, the purpose of the new containers is to provide criticality control to increase the allowed TRUPACT-II payload and to provide a safe method for on-site storage prior to transport. This paper will describe the analysis and testing used to demonstrate that the Pipe Overpack Container provides safe on-site storage of plutonium bearing materials in unhardened buildings and provides criticality control during transportation within the TRUPACT-II. Analyses included worst-case criticality analyses, analyses of fork-lift time impacts, and analyses of roof structure collapse onto the container. Testing included dynamic crush tests, bare pipe impact tests, a 30-minute totally engulfing pool-fire test, and multiple package impact tests in end-on and side-on orientations.

Ammerman, D. [Sandia National Labs., Albuquerque, NM (United States); Geinitz, R.; Thorp, D. [Safe Sites of Colorado, Golden, CO (United States); Rivera, M. [Los Alamos Technology Associates, Golden, CO (United States)

1998-03-01T23:59:59.000Z

153

The Fermilab data storage infrastructure  

SciTech Connect

Fermilab, in collaboration with the DESY laboratory in Hamburg, Germany, has created a petabyte scale data storage infrastructure to meet the requirements of experiments to store and access large data sets. The Fermilab data storage infrastructure consists of the following major storage and data transfer components: Enstore mass storage system, DCache distributed data cache, ftp and Grid ftp for primarily external data transfers. This infrastructure provides a data throughput sufficient for transferring data from experiments' data acquisition systems. It also allows access to data in the Grid framework.

Jon A Bakken et al.

2003-02-06T23:59:59.000Z

154

Superconducting magnetic energy storage  

DOE Green Energy (OSTI)

Long-time varying-daily, weekly, and seasonal-power demands require the electric utility industry to have installed generating capacity in excess of the average load. Energy storage can reduce the requirement for less efficient excess generating capacity used to meet peak load demands. Short-time fluctuations in electric power can occur as negatively damped oscillations in complex power systems with generators connected by long transmission lines. Superconducting inductors with their associated converter systems are under development for both load leveling and transmission line stabilization in electric utility systems. Superconducting magnetic energy storage (SMES) is based upon the phenomenon of the nearly lossless behavior of superconductors. Application is, in principal, efficient since the electromagnetic energy can be transferred to and from the storage coils without any intermediate conversion to other energy forms. Results from a reference design for a 10-GWh SMES unit for load leveling are presented. The conceptual engineering design of a 30-MJ, 10-MW energy storage coil is discussed with regard to system stabilization, and tests of a small scale, 100-KJ SMES system are presented. Some results of experiments are provided from a related technology based program which uses superconducting inductive energy storage to drive fusion plasmas.

Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.; Schermer, R.I.

1978-01-01T23:59:59.000Z

155

Contractor's Storage Requirements Category Cubic Footage  

NLE Websites -- All DOE Office Websites (Extended Search)

Footage Tunnel of Heat 98.36 Solar fountain 215.16 Tool Boxes 70.1 Bikes 100.66 EV Car Charging Station 22.78 Fuel Cell Booth wCartridges (Part of Hydrogen Booth) 20.79 Fuel...

156

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

157

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems...

158

On-Site Small Wind Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Lesser of $400,000 per site/customer or 50% of installed cost of system Program Info Funding Source RPS surcharge Start Date 01/01/2012 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount First 10,000 kWh of expected annual energy production: $3.50/annual kWh Next 115,000 kWh of expected annual energy production: $1.00/annual kWh Energy production greater than 125,000 kWh: $0.30/annual kWh Provider New York State Energy Research and Development Authority

159

Green Power Network: On-site Renewable Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

On-site Renewable Energy Systems On-site Renewable Energy Systems For consumers or organizations wishing to install on-site renewable energy systems, there are a variety of options available, including electricity generating systems and thermal systems that can displace electricity or fossil fuel use. Solar photovoltaics convert sunlight directly into electricity. Solar hot water systems use the sun's energy to heat water. Wind turbines convert the kinetic energy in wind into mechanical power that runs a generator to produce electricity. Geothermal heat pumps use the constant temperature of the upper 10 feet of the Earth to heat and cool buildings. Fuel cells produce electricity from hydrogen and oxygen and can be powered by a number of sources, including renewables. Biomass power systems use biomass feedstocks such as wood waste or methane from animal waste or other sources to generate electricity. Biomass resources can also be used in direct heat and combined heat and power applications.

160

Modeling On-Site Utility Systems Using "APLUS"  

E-Print Network (OSTI)

Most energy saving schemes on industrial sites lead to reductions in the steam and/or power demands on an on-site utility system. Accurate knowledge of the marginal and incremental costs of the available levels of steam and shaft power from such systems is, therefore, essential for the correct economic evaluation of proposed retrofit schemes. Knowledge of marginal costs is also essential for continuous optimal operation of on-site utility systems. "APLUS" is an IBM-PC based software package developed for evaluation of marginal and incremental costs of on-site utilities. "APLUS" allows the user to configure steam/power systems using sets of predefined icons. Once a flowsheet has been configured, the program can be used to solve the heat and mass balance and to generate accurate marginal costs. An overview of the package and examples illustrating its applications are presented in this paper.

Ranade, S. M.; Jones, D. H.; Shrec, S. C.

1988-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Complex Hydrides for Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrides for Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories G. J. Thomas Efficient onboard hydrogen storage is a critical enabling technology for the use of hydrogen in vehicles * The low volumetric density of gaseous fuels requires a storage method which densifies the fuel. - This is particularly true for hydrogen because of its lower energy density relative to hydrocarbon fuels. * Storage methods result in additional weight and volume above that of the fuel. How do we achieve adequate stored energy in an efficient, safe and cost-effective system? G. J. Thomas However, the storage media must meet certain requirements: - reversible hydrogen uptake/release - lightweight - low cost - cyclic stability - rapid kinetic properties - equilibrium properties (P,T) consistent

162

Carbon Storage Monitoring, Verification and Accounting Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from any impact of sequestration technology (groundwater impacts, seismic events, crop losses, etc.) Geologic storage of CO2 requires pre-operation, operation, closure, and...

163

Superconducting magnetic energy storage  

DOE Green Energy (OSTI)

Fusion power production requires energy storage and transfer on short time scales to create confining magnetic fields and for heating plasmas. The theta-pinch Scyllac Fusion Test Reactor (SFTR) requires 480 MJ of energy to drive the 5-T compression field with a 0.7-ms rise time. Tokamak Experimental Power Reactors (EPR) require 1 to 2 GJ of energy with a 1 to 2-s rise time for plasma ohmic heating. The design, development, and testing of four 300-kJ energy storage coils to satisfy the SFTR needs are described. Potential rotating machinery and homopolar energy systems for both the Reference Theta-Pinch Reactor (RTPR) and tokamak ohmic-heating are presented.

Rogers, J.D.

1976-01-01T23:59:59.000Z

164

DUF6 Storage Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Safety Depleted UF6 Storage line line How DUF6 is Stored Where DUF6 is Stored DUF6 Storage Safety Cylinder Leakage Depleted UF6 Storage Safety Continued cylinder storage is...

165

Energy Storage - More Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage - More Information Energy Storage - More Information Energy Storage - More Information As energy storage technology may be applied to a number of areas that differ in power and energy requirements, DOE's Energy Storage Program performs research and development on a wide variety of storage technologies. This broad technology base includes batteries (both conventional and advanced), flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems. The Energy Storage Program works closely with industry partners, and many of its projects are highly cost-shared. The Program collaborates with utilities and State energy organizations such as the California Energy Commission and New York State Energy Research and Development Authority to field major pioneering storage installations that

166

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

167

Residential Energy Management system for optimization of on-site generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Energy Management system for optimization of on-site generation Residential Energy Management system for optimization of on-site generation with HVAC Speaker(s): Ram Narayanamurthy Date: October 29, 2009 - 12:00pm Location: 90-3122 As the individual movements towards Net Zero Energy Homes (NZEH) and the SmartGrid converge on residential buildings, three major challenges need to be addressed: Flatten the highly peaked electric load profile of low energy homes Provide easy integration of energy efficiency into existing homes Provide builders and consumers with visibility into building operation, and ease of management. A Home Energy Management System (HEMS) owned by the consumer, capable of two way communications with Utility DR/SmartGrid/AMI is required to resolve these challenges. The HEMS will need to increase energy efficiency of building operations, provide consumers feedback and

168

Full SPP Partnership Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Requirements: Partnership Requirements: ENERGY STAR Partnership for Commercial & Industrial Service and Product Providers (SPP) Eligible Organizations Companies providing energy efficiency services and products to commercial buildings and industrial manufacturing facilities/plants are eligible for the Service and Product Provider (SPP) partnership, but must meet certain requirements as specified below. Types of eligible companies include: architecture, distributor, energy consultant/energy management services, energy improvement contractor, energy information services, energy services company (ESCO), engineering, equipment manufacturer, financial services, on-site energy production services, unregulated energy retailer and marketer, or other supplier of standard energy-efficient products and/or services for commercial buildings and/or

169

Silo Storage Preconceptual Design  

Science Conference Proceedings (OSTI)

The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.

Stephanie L. Austad; Patrick W. Bragassa; Kevin M Croft; David S Ferguson; Scott C Gladson; Annette L Shafer; John H Weathersby

2012-09-01T23:59:59.000Z

170

Pneumatic energy storage  

DOE Green Energy (OSTI)

An essential component to hybrid electric and electric vehicles is energy storage. A power assist device could also be important to many vehicle applications. This discussion focuses on the use of compressed gas as a system for energy storage and power in vehicle systems. Three possible vehicular applications for which these system could be used are discussed in this paper. These applications are pneumatically driven vehicles, series hybrid electric vehicles, and power boost for electric and conventional vehicles. One option for a compressed gas system is as a long duration power output device for purely pneumatic and hybrid cars. This system must provide enough power and energy to drive under normal conditions for a specified time or distance. The energy storage system for this use has the requirement that it will be highly efficient, compact, and have low mass. Use of a compressed gas energy storage as a short duration, high power output system for conventional motor vehicles could reduce engine size or reduce transient emissions. For electric vehicles this kind of system could lengthen battery life by providing battery load leveling during accelerations. The system requirements for this application are that it be compact and have low mass. The efficiency of the system is a secondary consideration in this application.

Flowers, D.

1995-09-19T23:59:59.000Z

171

Storage of spent fuel from the nation`s nuclear reactors: Status, technology, and policy options  

SciTech Connect

Since the beginning of the commercial nuclear electric power industry, it has been recognized that spent nuclear reactor fuel must be able to be readily removed from the reactor vessel in the plant and safely stored on-site. The need for adjacent ready storage is first for safety. In the event of an emergency, or necessary maintenance that requires the removal of irradiated fuel from the reactor vessel, cooled reserve storage capacity for the full amount of fuel from the reactor core must be available. Also, the uranium fuel in the reactor eventually reaches the point where its heat generation is below the planned efficiency for steam production which drives the turbines and generators. It then must be replaced by fresh uranium fuel, with the ``spent fuel`` elements being removed to a safe and convenient storage location near the reactor vessel. The federal nuclear waste repository program, even without delays in the current schedule of disposal becoming available in 2003, will result in a large percentage of the 111 existing operable commercial reactors requiring expansion of their spent fuel storage capacity. How that need can and will be met raises issues of both technology and policy that will be reviewed in this report.

1989-10-01T23:59:59.000Z

172

Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Objectives - Develop and verify: On-board hydrogen storage systems achieving: 1.5 kWhkg (4.5 wt%), 1.2 kWhL, and 6kWh by 2005 2 kWhkg (6 wt%), 1.5 kWhL, and 4kWh by...

173

UTILITY INVESTMENT IN ON-SITE SOLAR: RISK AND RETURN ANALYSIS FOR CAPITALIZATION AND FINANCING  

E-Print Network (OSTI)

of S for On-Site Solar Heating -iv- List of Figures Fig. 1.penetration of on-site solar heating and cooling systems.investment in on-site solar heating cannot easily quantify

Kahn, E.

2011-01-01T23:59:59.000Z

174

RESIDENTIAL ON SITE SOLAR HEATING SYSTEMS: A PROJECT EVALUATION USING THE CAPITAL ASSET PRICING MODEL  

E-Print Network (OSTI)

representation of an On Site Solar Heating System. CML w c6782 Residential On"Site Solar Heating Systems: A ·p-r~jectof an On Site Solar Heating System. Representation of

Schutz, Stephen Richard

2011-01-01T23:59:59.000Z

175

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Scale Superconducting Magnetic Energy Storage Plant", IEEEfor SlIperconducting Magnetic Energy Storage Unit", inSuperconducting Magnetic Energy Storage Plant, Advances in

Hassenzahl, W.

2011-01-01T23:59:59.000Z

176

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

Hassenzahl, W.

2011-01-01T23:59:59.000Z

177

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

178

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Usage Storage Storage Energy storage isnt just for AA batteries. Thanks to investments from the Energy Department's Advanced Research...

179

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

180

FCT Hydrogen Storage: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share FCT Hydrogen Storage: Contacts on Facebook Tweet about FCT Hydrogen Storage: Contacts on Twitter Bookmark FCT Hydrogen Storage: Contacts on...

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Federal On-Site Renewable Power Purchasing Issues  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On-Site Renewable On-Site Renewable Power Purchasing Issues Tracy Logan, FEMP (202) 586-9973 tracy.logan@ee.doe.gov Chandra Shah, NREL (303) 384-7557 chandra.shah@nrel.gov Overview * OMB Memo Summary * Issue Paper Development * Termination * ESPC PPA Update CEQ/OMB Memo Summary * 8/16/11: Supporting Energy and Sustainability Goal Achievement Through Efficiency and Deployment of Clean Energy Technology * Encourages Agencies to use ESPCs and UESCs and requests Agencies report ESPCs and UESCs to FEMP * Requests review of all types of PPAs Issue Paper Development * FEMP is drafting papers on deployment issues * Purpose: to provide a central point of information * Proposed papers: interconnection, rebates & incentives, termination, others? * Please email suggested topics to Tracy & Chandra

182

Green Power Network: On-site Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

News News TVA Seeks 126 MW of Renewables in 2014 December 2013 More News More News Subscribe to E-Mail Update Subscribe to e-mail update Events EPA Webinar - The Power of Aggregated Purchasing: How to Green Your Electricity Supply & Save Money January 15, 2014 1:00-2:00 p.m. ET Previous Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports On-site Renewable Energy Third-Party Solar Financing For consumers or organizations wishing to install on-site renewable energy systems, there are a variety of options available, including electricity generating systems and thermal systems that can displace electricity or fossil fuel use. Solar photovoltaics convert sunlight directly into electricity. Solar hot water systems use the sun's energy to heat water.

183

NETL: Carbon Storage - Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Overview Program Overview Carbon Storage Program Overview The Carbon Storage Program involves three key elements for technology development: Core Research and Development (Core R&D), Infrastructure, and Global Collaborations. The image below displays the relationship among the three elements and provides a means for navigation throughout NETL's Storage Program Website. Click on Image to Navigate Storage Website Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player NETL's Carbon Storage Program Structure CORE R&D Core R&D is driven by industry's technology needs and segregates those needs into focus areas to more efficiently obtain solutions that can then be tested and deployed in the field. The Core R&D Element contains four

184

Black Hills Energy - On-Site Solar PV Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- On-Site Solar PV Rebate Program Black Hills Energy - On-Site Solar PV Rebate Program Eligibility Commercial Fed. Government General PublicConsumer Industrial Local Government...

185

A business case for on-site generation: The BD biosciences pharmingen project  

SciTech Connect

Deregulation is haltingly changing the United States electricity markets. The resulting uncertainty and/or rising energy costs can be hedged by generating electricity on-site and other benefits, such as use of otherwise wasted heat, can be captured. The Public Utility Regulatory Policy Act (PURPA) of 1978 first invited relatively small-scale generators ({ge} 1 MW) into the electricity market. The advent of efficient and reliable small scale and renewable equipment has spurred an industry that has, in recent years, made even smaller (business scale) electricity generation an economically viable option for some consumers. On-site energy capture and/or conversion, known as distributed energy resources (DER), offers consumers many benefits, such as economic savings and price predictability, improved reliability, control over power quality, and emissions reductions. Despite these benefits, DER adoption can be a daunting move to a customer accustomed to simply paying a monthly utility bill. San Diego is in many ways an attractive location for DER development: It has high electricity prices typical of California and a moderate climate i.e. energy loads are consistent throughout the year. Additionally, the price shock to San Diego Gas and Electric (SDG&E) customers during the summer of 2000 has interested many in alternatives to electricity price vulnerability. This report examines the business case for DER at the San Diego biotechnology supply company, BD Biosciences Pharmingen, which considered DER for a building with 200-300 kW base-load, much of which accommodates the refrigerators required to maintain chemicals. Because of the Mediterranean climate of the San Diego area and the high rate of air changes required due to on-site use of chemicals, modest space heating is required throughout the year. Employees work in the building during normal weekday business hours, and daily peak loads are typically about 500 kW.

Firestone, Ryan; Creighton, Charles; Bailey, Owen; Marnay, Chris; Stadler, Michael

2003-09-01T23:59:59.000Z

186

NERSC/DOE ASCR Requirements Workshop Logistics  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Logistics Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Location The workshop will be held at NERSC's...

187

NERSC/DOE ASCR Requirements Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Agenda Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research ASCR NERSC Workshop January 5-6, 2011 >> Download and View these...

188

NERSC/DOE ASCR Requirements Workshop Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research An ASCR NERSC Workshop January 5-6, 2011 Sort by: Default | Name |...

189

Optimal selection of on-site generation with combined heat andpower applications  

SciTech Connect

While demand for electricity continues to grow, expansion of the traditional electricity supply system, or macrogrid, is constrained and is unlikely to keep pace with the growing thirst western economies have for electricity. Furthermore, no compelling case has been made that perpetual improvement in the overall power quality and reliability (PQR)delivered is technically possible or economically desirable. An alternative path to providing high PQR for sensitive loads would generate close to them in microgrids, such as the Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid. Distributed generation would alleviate the pressure for endless improvement in macrogrid PQR and might allow the establishment of a sounder economically based level of universal grid service. Energy conversion from available fuels to electricity close to loads can also provide combined heat and power (CHP) opportunities that can significantly improve the economics of small-scale on-site power generation, especially in hot climates when the waste heat serves absorption cycle cooling equipment that displaces expensive on-peak electricity. An optimization model, the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed at Berkeley Lab identifies the energy bill minimizing combination of on-site generation and heat recovery equipment for sites, given their electricity and heat requirements, the tariffs they face, and a menu of available equipment. DER-CAM is used to conduct a systemic energy analysis of a southern California naval base building and demonstrates atypical current economic on-site power opportunity. Results achieve cost reductions of about 15 percent with DER, depending on the tariff.Furthermore, almost all of the energy is provided on-site, indicating that modest cost savings can be achieved when the microgrid is free to select distributed generation and heat recovery equipment in order to minimize its over all costs.

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; HamachiLaCommare, Kristina

2004-11-30T23:59:59.000Z

190

Distributed Energy Resources On-Site Optimization for  

E-Print Network (OSTI)

a , Chris Marnay a , & Afzal Siddiqui c a Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA4000, Berkeley, CA 94720, USA; b) Summit Blue Consulting, c) Department of Statistical Science to enhanced demand response. In order to examine the impact of storage technologies on demand response

191

Customer adoption of small-scale on-site power generation  

Science Conference Proceedings (OSTI)

The electricity supply system is undergoing major regulatory and technological change with significant implications for the way in which the sector will operate (including its patterns of carbon emissions) and for the policies required to ensure socially and environmentally desirable outcomes. One such change stems from the rapid emergence of viable small-scale (i.e., smaller than 500 kW) generators that are potentially competitive with grid delivered electricity, especially in combined heat and power configurations. Such distributed energy resources (DER) may be grouped together with loads in microgrids. These clusters could operate semi-autonomously from the established power system, or macrogrid, matching power quality and reliability more closely to local end-use requirements. In order to establish a capability for analyzing the effect that microgrids may have on typical commercial customers, such as office buildings, restaurants, shopping malls, and grocery stores, an economic mod el of DER adoption is being developed at Berkeley Lab. This model endeavors to indicate the optimal quantity and type of small on-site generation technologies that customers could employ given their electricity requirements. For various regulatory schemes and general economic conditions, this analysis produces a simple operating schedule for any installed generators. Early results suggest that many commercial customers can benefit economically from on-site generation, even without considering potential combined heat and power and reliability benefits, even though they are unlikely to disconnect from the established power system.

Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

2001-04-01T23:59:59.000Z

192

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

193

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

194

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnerships Regional Carbon Sequestration Partnership (RCSP) Programmatic Points of Contact Carbon Storage Program Infrastructure Coordinator Carbon Storage...

195

Underground pumped hydroelectric storage  

DOE Green Energy (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

196

Application-storage discovery  

Science Conference Proceedings (OSTI)

Discovering application dependency on data and storage is a key prerequisite for many storage optimization tasks such as data assignment to storage tiers, storage consolidation, virtualization, and handling unused data. However, in the real world these ... Keywords: enterprise storage, experimental evaluation, storage discovery

Nikolai Joukov; Birgit Pfitzmann; HariGovind V. Ramasamy; Murthy V. Devarakonda

2010-05-01T23:59:59.000Z

197

On-site worker-risk calculations using MACCS  

Science Conference Proceedings (OSTI)

We have revised the latest version of MACCS for use with the calculation of doses and health risks to on-site workers for postulated accidents at the Rocky Flats Plant (RFP) in Colorado. The modifications fall into two areas: (1) an improved estimate of shielding offered by buildings to workers that remain indoors; and, (2) an improved treatment of building-wake effects, which affects both indoor and outdoor workers. Because the postulated accident can be anywhere on plant site, user-friendly software has been developed to create those portions of the (revised) MACCS input data files that are specific to the accident site.

Peterson, V.L.

1993-05-01T23:59:59.000Z

198

NETL: Mercury Emissions Control Technologies - On-Site Production of  

NLE Websites -- All DOE Office Websites (Extended Search)

On-Site Production of Mercury Sorbent with Low Concrete Impact On-Site Production of Mercury Sorbent with Low Concrete Impact The detrimental health effects of mercury are well documented. Furthermore, it has been reported that U.S. coal-fired plants emit approximately 48 tons of mercury a year. To remedy this, the U.S. Environmental Protection Agency (EPA) released the Clean Air Mercury Rule (CAMR) on March 15, 2005. A promising method to achieve the mandated mercury reductions is activated carbon injection (ACI). While promising, the current cost of ACI for mercury capture is expensive, and ACI adversely impacts the use of the by-product fly-ash for concrete. Published prices for activated carbon are generally 0.5-1 $/lb and capital costs estimates are 2-55 $/KW. Because of the high costs of ACI, Praxair started feasibility studies on an alternative process to reduce the cost of mercury capture. The proposed process is composed of three steps. First, a hot oxidant mixture is created by using a proprietary Praxair burner. Next, the hot oxidant is allowed to react with pulverized coal and additives. The resulting sorbent product is separated from the resulting syngas. In a commercial installation, the resulting sorbent product would be injected between the air-preheater and the particulate control device.

199

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

200

Volume 5: Waste Forms for Interim Storage, Revision 1  

Science Conference Proceedings (OSTI)

In the 1990s, the Electric Power Research Institute (EPRI) published a series of guidance reports on Interim On-Site Storage of Low Level Waste due to concern that loss of access to disposal pathways might one day lead to the need for interim on-site storage of low level waste (LLW). With the closure of the Barnwell Disposal Site to out-of-compact waste in 2008, 85% of the industry has, in fact, been faced with the loss of a disposal pathway for their Class B and C LLW, resulting in the reality of on-sit...

2011-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Understanding Energy Storage Solutions and Capabilities on Utility Distribution Systems  

Science Conference Proceedings (OSTI)

Widespread use of storage will require better grid integration tools to plan for the optimal size, use, and location of energy storage systems. Also important will be a coordinated effort between technology developers and utilities to ensure that storage systems are designed to adequately address utility needs. Utilities must understand the technical attributes and grid operational benefits of energy storage systems. Such operational benefits can also improve the definition of storage system functional r...

2011-12-22T23:59:59.000Z

202

Storage Tanks (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Tanks (Arkansas) Storage Tanks (Arkansas) Storage Tanks (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters of the State of Arkansas. They are promulgated pursuant to Arkansas Code Annotated 8-7-801 and the Petroleum Storage Trust Fund Act 8-7-901. It covers all storage tanks, above (AST) and underground (UST). Most importantly these regulations establish that all owners and operators of storage tanks must

203

Inspection of Used Fuel Dry Storage Casks  

SciTech Connect

ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

2012-09-01T23:59:59.000Z

204

NREL: Learning - Energy Storage Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Basics Energy Storage Basics The demand for electricity is seldom constant over time. Excess generating capacity available during periods of low demand can be used to energize an energy storage device. The stored energy can then be used to provide electricity during periods of high demand, helping to reduce power system loads during these times. Energy storage can improve the efficiency and reliability of the electric utility system by reducing the requirements for spinning reserves to meet peak power demands, making better use of efficient baseload generation, and allowing greater use of renewable energy technologies. A "spinning reserve" is a generator that is spinning and synchronized with the grid, ready for immediate power generation - like a car engine running with the gearbox

205

Energy Storage | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over short periods of time, although demand for electricity fluctuates throughout the day. Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can manage the amount of power required to supply customers at times when need is greatest, which is during peak load. These devices can also help make renewable energy, whose power output cannot be controlled by grid operators, smooth and dispatchable. They can also balance microgrids to achieve a good match between generation

206

Reference Designs of 50 MW / 250 MWh Energy Storage Systems  

Science Conference Proceedings (OSTI)

Electric utilities are interested energy storage solutions for renewable integration and transmission and distribution (TD) grid support that require systems of 10's of MWs in scale and energy durations of longer than 4 hours. Compressed air energy storage and pumped hydro systems are currently the lowest capital cost (/ kW-h) bulk storage options for energy durations longer than 10 hour; however, these storage facilities have geological and siting restrictions and require long permitting and deployment ...

2010-12-16T23:59:59.000Z

207

Releases of UF{sub 6} to the atmosphere after a potential fire in a cylinder storage yard  

Science Conference Proceedings (OSTI)

Uranium hexafluoride (UF{sub 6}), a toxic material, is stored in just over 6200 cylinders at the K-25 site in Oak Ridge, Tennessee. The safety analysis report (SAR) for cylinder yard storage operations at the plant required the development of accident scenarios for the potential release of UF{sub 6} to the atmosphere. In accordance with DOE standards and guidance, the general approach taken in this SAR was to examine the functions and contents of the cylinder storage yards to determine whether safety-significant hazards were present for workers in the immediate vicinity, workers on-site, the general public off-site, or the environment. and to evaluate the significance of any hazards that were found. A detailed accident analysis was performed to determine a set of limiting accidents that have potential for off-site consequences. One of the limiting accidents identified in the SAR was the rupture of a cylinder engulfed in a fire.

Lombardi, D.A.; Williams, W.R.; Anderson, J.C. [and others

1997-06-01T23:59:59.000Z

208

Storage of spent fuel from the nation's nuclear reactors: Status, technology, and policy options  

SciTech Connect

Since the beginning of the commercial nuclear electric power industry, it has been recognized that spent nuclear reactor fuel must be able to be readily removed from the reactor vessel in the plant and safely stored on-site. The need for adjacent ready storage is first for safety. In the event of an emergency, or necessary maintenance that requires the removal of irradiated fuel from the reactor vessel, cooled reserve storage capacity for the full amount of fuel from the reactor core must be available. Also, the uranium fuel in the reactor eventually reaches the point where its heat generation is below the planned efficiency for steam production which drives the turbines and generators. It then must be replaced by fresh uranium fuel, with the spent fuel'' elements being removed to a safe and convenient storage location near the reactor vessel. The federal nuclear waste repository program, even without delays in the current schedule of disposal becoming available in 2003, will result in a large percentage of the 111 existing operable commercial reactors requiring expansion of their spent fuel storage capacity. How that need can and will be met raises issues of both technology and policy that will be reviewed in this report.

1989-10-01T23:59:59.000Z

209

FCT Hydrogen Storage: The 'National Hydrogen Storage Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

The 'National Hydrogen Storage Project' to someone by E-mail Share FCT Hydrogen Storage: The 'National Hydrogen Storage Project' on Facebook Tweet about FCT Hydrogen Storage: The...

210

Preparing Class B and C Waste for Long Term Storage  

SciTech Connect

Commercial Nuclear Generating Stations outside of the Atlantic Compact will lose access to the Barnwell Disposal Facility in July of 2008. Many generators have constructed Interim On-Site Storage Buildings (IOSB) in which to store class B and C waste in the future as other permanent disposal options are developed. Until such time it is important for these generators to ensure class B and C waste generation is minimized and waste generated is packaged to facilitate long term storage. (authors)

Snyder, M.W. [Sacramento Municipal Utility District - Rancho Seco (United States)

2008-07-01T23:59:59.000Z

211

Energy Storage Integration Council (ESIC): 2013 Update  

Science Conference Proceedings (OSTI)

Recent electric energy storage deployments have encountered several challenges, including problems stemming from poor system integration, grid integration difficulties, insufficient factory testing and qualification, safety and reliability issues, and inadequate common test protocols. The utility industry needs clear requirements developed so vendors can manufacture cost-effective energy storage products to support the generation, transmission, and distribution system. To address these and related ...

2013-12-26T23:59:59.000Z

212

Frugal storage for cloud file systems  

Science Conference Proceedings (OSTI)

Enterprises are moving their IT infrastructure to cloud service providers with the goal of saving costs and simplifying management overhead. One of the critical services for any enterprise is its file system, where users require real-time access to files. ... Keywords: caching, cloud computing, storage, storage cost

Krishna P.N. Puttaswamy; Thyaga Nandagopal; Murali Kodialam

2012-04-01T23:59:59.000Z

213

Occult Trucking and Storage  

E-Print Network (OSTI)

At least we used to. We are Occult Trucking and Storage andNOTHING. FLASHBACK -- OCCULT TRUCKING AND STORAGE DEPOT --I saw him. FLASHBACK - OCCULT TRUCKING AND STORAGE DEPOT -

Eyres, Jeffrey Paul

2011-01-01T23:59:59.000Z

214

Sorption Storage Technology Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Technology Summary DOE H2 Storage Workshop, Feb 14-15, 2011, Washington, DC 1 Compressed & Cryo-Compressed Hydrogen Storage Workshop February 14 - 15, 2011, Washington, DC...

215

Seasonal thermal energy storage  

DOE Green Energy (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

216

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Adki ns, "Raccoon Mountain Pumped-Storage Plant- Ten Years2J O. D. Johnson, "Worldwide Pumped-Storage Projects", PowerUnderground Pumped Hydro Storage", Proc. 1976 Eng.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

217

FCT Hydrogen Storage: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share FCT Hydrogen Storage: Basics on Facebook Tweet about FCT Hydrogen Storage: Basics on Twitter Bookmark FCT Hydrogen Storage: Basics on Google...

218

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Hydrogen Storage Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia Breakout Session - Bulk Hydrogen Storage Main Themes/Caveats Bulk Storage = Anything not on the vehicle 10's of Tons -- End use point 50-100 Tons - Terminals/City Gates 1000's Tons - Between Production Facility and Terminal/City Gate Bulk storage requirements less restrictive and different from on-board storage Uncertainty about evolution of infrastructure requires multiple pathways to be considered Bulk storage is an economic solution to address supply/demand imbalance Breakout Session - Bulk Hydrogen Storage Targets/Objectives Hard to quantify - scenario & end-use dependent Storage Materials (solid state) and container require different targets

219

Subsea Pumped Hydro Storage.  

E-Print Network (OSTI)

??A new technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources… (more)

Erik, Almen John

2013-01-01T23:59:59.000Z

220

Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energys Vehicle Technology Program to conduct various types of energy storage...

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NERSC HPSS Storage Statistics  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Trends and Summaries Storage by Scientific Discipline Troubleshooting Optimizing IO performance on the Lustre file system IO Formats Sharing Data Transferring Data Unix...

222

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

223

Calmac Ice Storage Test report  

DOE Green Energy (OSTI)

The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. Calmac provided a storage tank equipped with coils designed for use with a secondary fluid system. The Calmac ice storage system was tested over a wide range of operating conditions. Measured system performance during charging was similar to that reported by the manufacturer. Both the measured average and minimum brine temperatures were in close agreement with Calmac's literature values, and the ability to fully charge the tank was relatively unaffected by charging rate and brine flow rate. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend most strongly on the discharge conditions required to serve the load. This report describes Calmac system performance fully under both charging and discharging conditions. Companion reports describe ISTF test procedures and ice-making efficiency test results that are common to many of the units tested. 11 refs., 31 figs., 9 tabs.

Stovall, T.K.

1991-08-01T23:59:59.000Z

224

Property:On-Site fabrication capability/equipment | Open Energy Information  

Open Energy Info (EERE)

On-Site fabrication capability/equipment On-Site fabrication capability/equipment Jump to: navigation, search Property Name On-Site fabrication capability/equipment Property Type Text Pages using the property "On-Site fabrication capability/equipment" Showing 25 pages using this property. (previous 25) (next 25) A Alden Large Flume + Full on-site carpentry, machine, and instrumentation shops Alden Small Flume + Full on-site carpentry, machine, and instrumentation shops Alden Tow Tank + Full on-site carpentry, machine, and instrumentation shops Alden Wave Basin + Full on-site carpentry, machine, and instrumentation shops C Chase Tow Tank + There is a machine shop in the Laboratory Conte Large Flume + Full carpentry shop with welding and machining capabilities Conte Small Flume + Full carpentry shop with welding and machining capabilities

225

Grid Strategy 2011: Energy Storage Monetization  

Science Conference Proceedings (OSTI)

Energy storage is the only grid asset with the ability to act both as a load and a generation source by first storing energy for a limited duration and then releasing it. It is a flexible grid asset capable of providing multiple grid benefits. However, aside from large pumped hydro storage plants, very little energy storage has been deployed on the grid. Due to the high cost of energy storage, aggregation of multiple benefits is generally required to justify the investment. Due to the limited duration of...

2011-10-14T23:59:59.000Z

226

A Successful Cool Storage Rate  

E-Print Network (OSTI)

Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's extensive commercial air conditioning load, which is highly coincident with HL&P's system peak, provided a large market for cool storage technologies. Initial market research made it very clear that a special cool storage rate was required to successfully market the technology. Development of the rate required an integrated, multidepartment effort and extensive use of DSManager, an integrated resource planning model. An experimental version of the rate was initially implemented as part of the initial phase of the cool storage program. A permanent rate, incorporating lessons learned from the experimental rate, was then developed for the long term implementation of the program. The permanent rate went through a lengthy regulatory approval process which included intervention by a local natural gas distribution company. The end result is a very successful cool storage program with 52 projects and 31 megawatts of demand reduction in the first three and one-half years of program implementation.

Ahrens, A. C.; Sobey, T. M.

1994-01-01T23:59:59.000Z

227

Science Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Requirements About ESnet Overview ESnet Staff Governance Our Network Case Studies ESnet Strategic Plan ESnet Organizational Chart ESnet History Science Requirements Network...

228

ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE  

Science Conference Proceedings (OSTI)

Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

NONE

1998-09-01T23:59:59.000Z

229

Management and Storage of Surface Waters (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Environmental Protection regulates the use and storage of surface waters in the state. A permit from either the Department or the local Water Management District is required for...

230

U.S. Storage Drawdown Analysis Report  

Reports and Publications (EIA)

This report examines contract terms that require owners of natural gas in storage to reduce their holdings of working gas to specified levels by certain dates or risk incurring penalties.

Information Center

2008-04-01T23:59:59.000Z

231

Façade: virtual storage devices with performance guarantees  

Science Conference Proceedings (OSTI)

High-end storage systems, such as those in large data centers, must service multiple independent workloads. Workloads often require predictable quality of service, despite the fact that they have to compete with other rapidly-changing workloads for access ...

Christopher R. Lumb; Arif Merchant; Guillermo A. Alvarez

2003-03-01T23:59:59.000Z

232

ECONOMICS OF ON-SITE WASTE GASIFICATION ALFRED C. W. EGGEN  

E-Print Network (OSTI)

procedure for estimating costs for industrial, on-site, waste gasification processes. However, gen eralizingECONOMICS OF ON-SITE WASTE GASIFICATION ALFRED C. W. EGGEN K. T. Lear Associates. Inc. Manchester, Charles R Velzy Associates, Inc., Elmsford, N.Y. On-site waste gasification may well be an at tractive

Columbia University

233

Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume IV. Final report, Appendix C: identification from utility visits of present and future approaches to integration of DSG into distribution networks  

DOE Green Energy (OSTI)

A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. As a result of visits to four utilities concerned with the use of DSG power sources on their distribution networks, some useful impressions of present and future approaches to the integration of DSGs into electrical distribution network have been obtained. A more extensive communications and control network will be developed by utilities for control of such sources for future use. Different approaches to future utility systems with DSG are beginning to take shape. The new DSG sources will be in decentralized locations with some measure of centralized control. The utilities have yet to establish firmly the communication and control means or their organization. For the present, the means for integrating the DSGs and their associated monitoring and control equipment into a unified system have not been decided.

Not Available

1980-10-01T23:59:59.000Z

234

Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume III. Final report, Appendix B: state of the art, trends, and potential growth of selected DSG technologies  

DOE Green Energy (OSTI)

A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. The purpose of this document is to identify the present status, trends, potential growth for selected DSGs, and implications on DSG monitoring and control. Based on current projections, it appears that DSG electrical energy will comprise only a small portion, from 4 to 10%, of the national total by the end of this century. In general, the growth potential for DSG seems favorable in the long term because of finite fossil energy resources and increasing fuel prices. Recent trends, especially in the institutional and regulatory fields, have favored greater use of DSGs for the future. This study has assimilated the considered estimates and opinions of others, for the DSG markets and the DSG's ability to serve them. So far as possible a cross section of various sources has been included in composite projections.

Not Available

1980-10-01T23:59:59.000Z

235

NERSC HPC Program Requirements Review Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Published Reports Published Reports NERSC HPC Program Requirements Review Reports These publications comprise the final reports from the HPC requirements reviews presented to the Department of Energy. Downloads NERSC-PRR-HEP-2017.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for High Energy Physics - Target 2017 BER2017FinalJune7.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for Biological and Environmental Research - Target 2017 NERSC-ASCR-WorkshopReport.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research NERSC-NP-WorkshopReport.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for Nuclear Physics Research NERSC-FES-WorkshopReport.pdf | Adobe Acrobat PDF file

236

Hydrogen Storage in Wind Turbine Towers  

DOE Green Energy (OSTI)

Low-cost hydrogen storage is recognized as a cornerstone of a renewables-hydrogen economy. Modern utility-scale wind turbine towers are typically conical steel structures that, in addition to supporting the rotor, could be used to store hydrogen. This study has three objectives: (1) Identify the paramount considerations associated with using a wind turbine tower for hydrogen storage; (2)Propose and analyze a cost-effective design for a hydrogen-storing tower; and (3) Compare the cost of storage in hydrogen towers to the cost of storage in conventional pressure vessels. The paramount considerations associated with a hydrogen tower are corrosion (in the form of hydrogen embrittlement) and structural failure (through bursting or fatigue life degradation). Although hydrogen embrittlement (HE) requires more research, it does not appear to prohibit the use of turbine towers for hydrogen storage. Furthermore, the structural modifications required to store hydrogen in a tower are not cost prohibitive.

Kottenstette, R.; Cotrell, J.

2003-09-01T23:59:59.000Z

237

EA-0820: Construction of Mixed Waste Storage RCRA Facilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

waste storage facilities (Buildings 7668 and 7669) in accordance with Resource Conservation and Recovery Act requirements. Site preparation and construction activities would...

238

Optimization of Hydroelectric Pumped Storage: An Extension of Optimal Switching  

E-Print Network (OSTI)

commodities such as oil or natural gas. The storage of electricity requires storing the means to produce of this model in which additions and changes must be made to move from natural gas to pumped storage electricity), and change of parameters to change from a model for natural gas to that of pumped storage. The variables

Moore, Kristen

239

Copyright 2013 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration with Large-Scale Energy Storage and  

E-Print Network (OSTI)

improving system reliability and optimizing the use of on-site generation to reduce energy costs) with new large- scale energy storage (2-MW, 4-MWh battery), static disconnect switch (12 kV, 300 Amps

240

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis  

DOE Green Energy (OSTI)

This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

Akhil, A.A.; Butler, P.; Bickel, T.C.

1993-11-01T23:59:59.000Z

242

Research on Site Selection for Urban Compressed Natural Gas Station  

Science Conference Proceedings (OSTI)

By using basic principle of Quality Function Deployment (QFD) methodology, this article tries to make the site selection for urban CNG station as a design of new product, firstly Considers the requirements of different participants systematically, secondly ... Keywords: CNG station, location planning, Quality Function Deployment (QFD), House of Quality (HOQ)

Liang Tao; Li Qingsong; Zhang Xuejin

2010-05-01T23:59:59.000Z

243

Federal Energy Management Program: Sample Documents for On-Site Renewable  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Documents Sample Documents for On-Site Renewable Power Purchase Agreements to someone by E-mail Share Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on Facebook Tweet about Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on Twitter Bookmark Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on Google Bookmark Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on Delicious Rank Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on Digg Find More places to share Federal Energy Management Program: Sample Documents for On-Site Renewable Power Purchase Agreements on AddThis.com...

244

Energy Programs | Advanced Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Storage Systems Advanced Storage Systems Tapping Into Fuel Cells and Batteries Page 1 of 2 Imagine being able to drive a forty-mile round-trip commute every day without ever going near a gas pump. As the United States moves towards an energy economy with reduced dependence on foreign oil and fewer carbon emissions, development of alternative fuel sources and transmission of the energy they provide is only part of the equation. An increase in energy generated from intermittent renewable sources and the growing need for mobile energy will require new, efficient means of storing it, and technological advancements will be necessary to support the nation's future energy storage needs. A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric

245

Power storage options for hybrid electric vehicles—A survey  

Science Conference Proceedings (OSTI)

Hybrid electric vehicles (HEVs) are the future transportation structure as they provide better fuel economy. Energy storage devices are therefore required for the HEVs. The problem for deciding the optimum combination of power storage is still unresolved. The power storage options in this regard must have a feasible weight/energy ratio for better performance. This survey is about the comparison of different power storage options for HEV including the batteries

Hadeed Ahmed Sher; Khaled E. Addoweesh

2012-01-01T23:59:59.000Z

246

Transportation Storage Interface | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface More Documents & Publications Status...

247

Record of decision for the Storage and Disposition of Weapons- Usable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14 14 Federal Register / Vol. 62, No. 13 / Tuesday, January 21, 1997 / Notices Responses: 18,620 Burden Hours: 64,310. Abstract: The LESCP is being conducted in response to the legislative requirement in P.L. 103-382, Section 1501 to assess the implementation of Title I and related education reforms. The information will be used to examine changes-over a 3-year period-that are occurring in schools and classrooms. Teachers and teacher aides will complete a mail survey, and district Title I administrators, principals, school-based staff, and parents will be interviewed during on- site field work. [FR Doc. 97-1307 Filed 1-17-97; 8:45 am] BILLING CODE 4000-01-P DEPARTMENT OF ENERGY Record of decision for the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic

248

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

249

Storage - Challenges and Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

3242013 Fuzeile 3 Current Status of Technology *Linde has operating fuelling stations with liquid, gaseous and on-site supply options around the world * Each option...

250

Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies  

DOE Green Energy (OSTI)

The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

NONE

1995-08-01T23:59:59.000Z

251

Closure of a unique mixed waste storage canal at the Dept. of Energy`s Oak Ridge National Laboratory (ORNL)  

Science Conference Proceedings (OSTI)

At the Department of Energy`s (DOE`s) Oak Ridge National Laboratory (ORNL) a unique closure was accomplished for a storage canal that contained both hazardous chemical contaminants controlled by the Resource Conservation and Recovery Act (RCRA), and radioactive contaminants controlled by the Atomic Energy Act (AEA). During 1991 and 1992, after approvals were received from the DOE and the Tennessee Department of Environment and Conservation (TDEC), subcontractors to DOE`s Construction Manager were mobilized and remote controlled equipment was operated on site to remove the RCRA and radioactive contamination (referred to hereafter as mixed wastes) from the 3001 Storage Canal at ORNL. After numerous {open_quotes}surprises{close_quotes} during the removal activities, each requiring problem resolution and approvals from DOE and TDEC, the canal closure was completed in September 1992 and final closure certification was submitted to TDEC in October 1992. The following discussion describes the learning experiences that ORNL and DOE acquired from a RCRA closure project for a mixed waste storage canal containing high radiation levels. The project was successful, especially since worker exposures were minimized, but was lengthy, requiring 30 months from notification of a leak in the canal until final demobilization of the subcontractor, and expensive to complete (total overall cost of $3 million).

Greer, J.K. Jr.; Etheridge, J.T.; Thompson, W.T.

1994-09-01T23:59:59.000Z

252

A C. elegans-based foam for rapid on-site detection of residual live virus.  

Science Conference Proceedings (OSTI)

In the response to and recovery from a critical homeland security event involving deliberate or accidental release of biological agents, initial decontamination efforts are necessarily followed by tests for the presence of residual live virus or bacteria. Such 'clearance sampling' should be rapid and accurate, to inform decision makers as they take appropriate action to ensure the safety of the public and of operational personnel. However, the current protocol for clearance sampling is extremely time-intensive and costly, and requires significant amounts of laboratory space and capacity. Detection of residual live virus is particularly problematic and time-consuming, as it requires evaluation of replication potential within a eukaryotic host such as chicken embryos. The intention of this project was to develop a new method for clearance sampling, by leveraging Sandia's expertise in the biological and material sciences in order to create a C. elegans-based foam that could be applied directly to the entire contaminated area for quick and accurate detection of any and all residual live virus by means of a fluorescent signal. Such a novel technology for rapid, on-site detection of live virus would greatly interest the DHS, DoD, and EPA, and hold broad commercial potential, especially with regard to the transportation industry.

Negrete, Oscar A.; Branda, Catherine; Hardesty, Jasper O. E. (Sandia National Laboratories, Albuquerque, NM); Tucker, Mark David (Sandia National Laboratories, Albuquerque, NM); Kaiser, Julia N. (Global Product Management, Hilden, Germany); Kozina, Carol L.; Chirica, Gabriela S.

2012-02-01T23:59:59.000Z

253

Competition Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 6.1 (July 2011) Chapter 6.1 (July 2011) 1 Competition Requirements [Reference: FAR 6 and DEAR 906] Overview This section discusses competition requirements and provides a model Justification for Other than Full and Open Competition (JOFOC). Background The Competition in Contracting Act (CICA) of 1984 requires that all acquisitions be made using full and open competition. Seven exceptions to using full and open competition are specifically identified in Federal Acquisition Regulation (FAR) Subpart 6.3. Documentation justifying the use of any of these exceptions is required. The exception, with supporting documentation, must be certified and approved at certain levels that vary according to the dollar value of the

254

Competition Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

----------------------------------------------- ---------------------------------------- Chapter 6.1 (February 2011) 1 Competition Requirements [Reference: FAR 6 and DEAR 906] Overview This section discusses competition requirements and provides a model Justification for Other than Full and Open Competition (JOFOC). Background The Competition in Contracting Act (CICA) of 1984 requires that all acquisitions be made using full and open competition. Seven exceptions to using full and open competition are specifically identified in Federal Acquisition Regulation (FAR) Subpart 6.3. Documentation justifying the use of any of these exceptions is required. The exception, with supporting documentation, must

255

Bioremediation demonstration on Kwajalein Island: Site characterization and on-site biotreatability studies  

SciTech Connect

An environmental study was conducted during February 1991 on Kwajalein Island, a US Army Kwajalein Atoll (USAKA) Base in the Republic of the Marshall Islands (RMI). This study was undertaken for the US Department of Energy (DOE) Hazardous Waste Remedial Actions Program (HAZWRAP) acting in behalf of USAKA. The purpose of the study was to determine if selected locations for new construction on Kwajalein Island were contaminated by petroleum hydrocarbons as suspected and, if so, whether bioremediation appeared to be a feasible technology for environmental restoration. Two different sites were evaluated: (1) the site planned freshwater production facility and (2) a site adjacent to an aboveground diesel fuel storage tank. Within the proposed construction zone for the freshwater production facility (a.k.a desalination plant), total petroleum hydrocarbons (TPH) where either absent or at low levels. Characterization data for another potential construction site adjacent to an aboveground diesel fuel storage tank southeast of the old diesel power plant revealed high concentrations of diesel fuel in the soil and groundwater beneath the site. Results of this investigation indicate that there are petroleum-contaminated soils on Kwajalein Island and bioremediation appears to be a viable environmental restoration technique. Further experimentation and field demonstration are required to determine the design and operating conditions that provide for optimum biodegradation and restoration of the petroleum-contaminated soils. 17 refs., 7 figs., 26 figs.

Siegrist, R.L.; Korte, N.E.; Pickering, D.A. (Oak Ridge National Lab., TN (United States)); Phelps, T.J. (Tennessee Univ., Knoxville, TN (United States))

1991-09-01T23:59:59.000Z

256

Upcoming Natural Gas Storage Facilities.  

U.S. Energy Information Administration (EIA)

Kentucky Energy Hub Project Orbit Gas Storage Inc KY Leader One Gas Storage Project Peregrine Midstream Partners WY Tricor Ten Section Storage Project

257

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage to someone by E-mail Share Vehicle Technologies Office: Energy Storage on Facebook Tweet about Vehicle Technologies Office: Energy Storage on Twitter Bookmark...

258

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE hydrogen storage activity focuses primarily on the applied research and development (R&D) of low-pressure, materials-based technologies to allow for a driving range of more than 300 miles (500 km) while meeting packaging, cost, safety, and performance requirements to be competitive with current vehicles. While automakers have recently demonstrated progress with some prototype vehicles traveling more than 300 miles on a single fill, this driving range must be achievable across different vehicle models and without compromising space, performance, or cost. In addition, hydrogen storage will be needed for both other niche vehicular applications and off-board uses such as for stationary power generation and for hydrogen delivery and refueling infrastructure.

259

Storage and Handling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage and Handling Storage and Handling Storage and Handling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management Business Center RETIREMENT OF RECORDS: 1. The Program Office is responsible for originating the Records Transmittal and Receipt Form SF-135 (PDF, 107KB), and sending it to IM-23 at doerha@hq.doe.gov for approval. 2. IM-23 reviews the SF-135 for completeness/correctness (Coordinates with the originating office by email if more information is required.). 3. IM-23 sends the SF-135 for approval to WNRC. PREPARING RECORDS FOR THE TRANSFER TO THE WNRC: 1. Use your organization's Records Information Disposition Schedule (RIDS) as a guide toward assessing records for storage. Refer to DOE O

260

Definition: Electricity Storage Technologies | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Electricity Storage Technologies Technologies that can store electricity to be used at a later time. These devices require a mechanism to convert alternating current (AC) electricity into another form for storage, and then back to AC electricity. Common forms of electricity storage include batteries, flywheels, and pumped hydro. Electricity storage can provide backup power, peaking power, and ancillary services, and can store excess electricity produced by renewable energy resources when available.[1] Related Terms electricity generation References ↑ https://www.smartgrid.gov/category/technology/electricity_storage_technologies [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssmart grid,smart grid,

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Feasibility of using biological degradation for the on-site treatment of mixed wastes  

E-Print Network (OSTI)

2002. EPA’s Radiation Protection Program: Mixed Waste.http://www.epa.gov/radiation/mixed-waste/.ON-SITE TREATMENT OF MIXED WASTES William T. Stringfellow (

Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

2004-01-01T23:59:59.000Z

262

Optimal selection of on-site generation with combined heat and power applications  

E-Print Network (OSTI)

the burning of natural gas for on-site power generation andnatural gas absorption chiller GenL i , m , t , h , u Generated power by distributed generation

Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

2004-01-01T23:59:59.000Z

263

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes the details of purchasing green power. Discussion covers topics like renewable electricity, renewable energy certificates, and on-site renewable generation.

264

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF)...

265

Technical requirements specification for tank waste retrieval  

Science Conference Proceedings (OSTI)

This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

Lamberd, D.L.

1996-09-26T23:59:59.000Z

266

Energy Storage for Use in Load Frequency Control  

E-Print Network (OSTI)

Certain energy storage technologies are well-suited to the high-frequency, high-cycling operation which is required in provision of load frequency control (LFC). To limit the total stored energy capacity required while ...

Leitermann, Olivia

267

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

268

NREL: Energy Storage - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage News Below are news stories related to NREL's energy storage research. August 28, 2013 NREL Battery Calorimeters Win R&D 100 Award The award-wining Isothermal...

269

NETL: Carbon Storage Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Carbon Storage Newsletter PDF-571KB has been posted. 08.27.2013 Publications August 2013 Carbon Storage Newsletter PDF-1.1MB has been posted. 08.15.2013 News Ancient...

270

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

pumped hydro, compressed air, and battery energy storage areto other energy storage sys tem s suc h as pumped hydro andenergy would be $50/MJ whereas the cost of the pumped hydro

Hassenzahl, W.

2011-01-01T23:59:59.000Z

271

Permanent Closure of the TAN-664 Underground Storage Tank  

SciTech Connect

This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

Bradley K. Griffith

2011-12-01T23:59:59.000Z

272

NERSC/DOE ASCR Requirements Workshop Reference Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Materials Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Official DOE Invitation Workshop Invitation Letter...

273

NERSC/DOE ASCR Requirements Workshop Organizing Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Committee Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research An ASCR NERSC Workshop January 5-6, 2011 Dr. Karen Pao ASCR Yukiko...

274

Energy Storage & Delivery  

Science Conference Proceedings (OSTI)

Energy Storage & Delivery. Summary: Schematic of Membrane Molecular Structure The goal of the project is to develop ...

2013-07-23T23:59:59.000Z

275

Conventional Storage Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Conventional storage water heaters remain the most popular type of water heating system for homes and buildings.

276

Energy Storage Program Planning Document | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Program Planning Document Energy Storage Program Planning Document Energy Storage Program Planning Document Energy storage systems have the potential to extend and optimize the operating capabilities of the grid, since power can be stored and used at a later time. This allows for flexibility in generation and distribution, improving the economic efficiency and utilization of the entire system while making the grid more reliable and robust. Additionally, alternatives to traditional power generation, including variable wind and solar energy technologies, may require back-up power storage. Thus, modernizing the power grid may require a substantial volume of electrical energy storage (EES). Energy Storage Program Planning Document More Documents & Publications CX-010738: Categorical Exclusion Determination

277

Energy Storage Program Planning Document | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Program Planning Document Energy Storage Program Planning Document Energy Storage Program Planning Document Energy storage systems have the potential to extend and optimize the operating capabilities of the grid, since power can be stored and used at a later time. This allows for flexibility in generation and distribution, improving the economic efficiency and utilization of the entire system while making the grid more reliable and robust. Additionally, alternatives to traditional power generation, including variable wind and solar energy technologies, may require back-up power storage. Thus, modernizing the power grid may require a substantial volume of electrical energy storage (EES). Energy Storage Program Planning Document More Documents & Publications CX-008689: Categorical Exclusion Determination

278

Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report  

Science Conference Proceedings (OSTI)

Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage caverns, and gas market area storage needs of these regions.

none

1998-09-30T23:59:59.000Z

279

Commissioning & Optimization of On-Site Renewable Energy Systems  

E-Print Network (OSTI)

Today, many electrical contractors and photovoltaic (PV) integrators engineer and install custom systems on a variety of existing and new construction. These systems are designed specifically to the building configurations and to required utility interconnection. Each system therefore becomes a unique challenge to design, install and commission. This paper will present a detailed review of pre-commissioning activities, followed by the formal commissioning and startup of PV systems. A step by step list of activities, including a review of compliance to the National Electrical Code®, will be presented with examples from actual completed installations. Proper understanding and installation of these systems will ensure the safety of all personnel during the commissioning and subsequent operation by the end user. One of the often overlooked benefits of the commissioning is to include the client in the overall review of the system and provide an explanation of the rational for the design, installation and operation of the system. This is not a substitute for the final hand over of the system, but rather a way for the client to become knowledgeable with the completed project. Finally, the commissioning procedure provides a view into the operation and maintenance (O&M) of the completed project. The commissioning process therefore presents a safe and thorough procedure for the final testing and evaluation of the system prior to hand over to the client.

Gardner, J.C.

2011-01-01T23:59:59.000Z

280

Implementation and evaluation of active storage in modern parallel file systems  

Science Conference Proceedings (OSTI)

Active Storage is a technology aimed at reducing the bandwidth requirements of current supercomputing systems, and leveraging the processing power of the storage nodes used by some modern file systems. To achieve both objectives, Active Storage moves ... Keywords: Active Storage, Lustre, NetCDF, PVFS2, Striped file

Juan Piernas-Canovas; Jarek Nieplocha

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Interim Storage of Greater Than Class C Low Level Waste  

Science Conference Proceedings (OSTI)

This report serves as a guideline for the safe, interim, on-site storage of low level radioactive waste (LLW) that exceeds the activity limitations for near-surface disposal set forth in 10 CFR 61.55. This waste, referred to as greater than Class C (GTCC) waste, exceeds the Class C limits in the referenced regulation. At the present time, there is no licensed disposal facility for GTCC waste in the United States. This situation forces commercial nuclear reactors to store it on site until a disposal facil...

2001-11-12T23:59:59.000Z

282

Integration of photovoltaic units into electric utility grids: experiment information requirements and selected issues  

SciTech Connect

A number of investigations have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggest the deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. An important part of the DOE programs to develop new source technologies, in particular photovoltaic systems, is the experimental testing of complete or nearby complete power units. These experiments provide an opportunity to examine operational and integration issues which must be understood before widespread commercial deployment of these technologies can be achieved. Experiments may also be required to explicitly examine integration, operational, and control aspects of single and multiple new source technology power units within a utility system. An identification of utility information requirements, a review of planned experiments, and a preliminary determination of additional experimental needs and opportunities are presented. Other issues discussed include: (1) the impacts of on-site photovoltaic units on load duration curves and optimal generation mixes are considered; (2) the impacts of on-site photovoltaic units on utility production costs, with and without dedicated storage and with and without sellback, are analyzed; and (3) current utility rate structure experiments, rationales, policies, practices, and plans are reviewed.

1980-09-01T23:59:59.000Z

283

Federal Energy Management Program: Covered Product Category: Gas Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Storage Water Heaters to someone by E-mail Gas Storage Water Heaters to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Google Bookmark Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Delicious Rank Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

284

Storage opportunities in Arizona bedded evaporites  

DOE Green Energy (OSTI)

Arizona is endowed with incredibly diverse natural beauty, and has also been blessed with at least seven discrete deposits of bedded salt. These deposits are dispersed around the state and cover some 2, 500 square miles; they currently contain 14 LPG storage caverns, with preliminary plans for more in the future. The areal extent and thickness of the deposits creates the opportunity for greatly expanded storage of LPG, natural gas, and compressed air energy storage (CAES). The location of salt deposits near Tucson and Phoenix may make CAES an attractive prospect in the future. The diversity of both locations and evaporate characteristics allows for much tailoring of individual operations to meet specific requirements.

Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Rauzi, S.L. [Arizona Geological Survey, Tucson, AZ (United States)

1996-10-01T23:59:59.000Z

285

Carbon Storage Monitoring, Verification and Accounting Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monitoring, Verification and Accounting Research Monitoring, Verification and Accounting Research Carbon Storage Monitoring, Verification and Accounting Research Reliable and cost-effective monitoring, verification and accounting (MVA) techniques are an important part of making geologic sequestration a safe, effective, and acceptable method for greenhouse gas control. MVA of geologic storage sites is expected to serve several purposes, including addressing safety and environmental concerns; inventory verification; project and national accounting of greenhouse gas emissions reductions at geologic storage sites; and evaluating potential regional, national, and international greenhouse gas reduction goals. The goal of our program area is to develop and demonstrate a broad portfolio of technologies, applications, and accounting requirements that

286

Common Language for Distributed Storage Integration  

Science Conference Proceedings (OSTI)

This technical update regards utility communication with community/pad-mounted scale battery storage systems. Six utilities implementing distributed energy storage systems have cooperated with EPRI to evaluate their functional requirements against a new Distributed Network Protocol 3 (DNP3) communication standard for distributed energy resources (DER). These utility projects are at various stages of development: some are at the conceptual stage while others are fully defined and have complete functional ...

2011-07-31T23:59:59.000Z

287

Competition Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 6.1 (April 2010) Chapter 6.1 (April 2010) 1 Competition Requirements [Reference: FAR 6 and DEAR 906] Overview This section discusses competition requirements and provides a model Justification for Other than Full and Open Competition (JOFOC). Background The Competition in Contracting Act (CICA) of 1984 requires that all acquisitions be made using full and open competition. Seven exceptions to using full and open competition are specifically identified in Federal Acquisition Regulation (FAR) Subpart 6.3. Documentation justifying the use of any of these exceptions is required. The exception, with supporting documentation, must be certified and approved at certain levels that vary according to the dollar value of the acquisition. The information that must be included in each justification is identified in FAR

288

Required Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Required Documents Required Documents Required Documents All foreign nationals, including students and postdocs, must select the foreign nationals employment category to complete the new-hire process. Contact (505) 665-7158 Email Complete following forms before New-Hire Orientation Be sure to bring the forms with you for the orientation event, but do not sign and date: Form I-9, Employment Eligibility Verification (pdf) - original, unexpired documents for verification of employment eligibility. Please refer to the I-9 verification form titled, "Lists of Acceptable Documents", which was included with your offer letter. (Laminated documents or hospital/temporary birth certificates are not accepted.) Note: Failure to provide required documents will result in delay and/or

289

Competition Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 6.1 (April 2009) Chapter 6.1 (April 2009) Competition Requirements [Reference: FAR 6 and DEAR 906] Overview This section discusses competition requirements and provides a model Justification for Other than Full and Open Competition (JOFOC). Background The Competition in Contracting Act (CICA) of 1984 requires that all acquisitions be made using full and open competition. Seven exceptions to using full and open competition are specifically identified in FAR Part 6. Documentation justifying the use of any of these exceptions is required. The exception, with supporting documentation, must be certified and approved at certain levels that vary according to the dollar value of the acquisition. The information that must be included in each justification is

290

School requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

a smooth surface and no "lip". Some presentations require AV equipment such as LCD or overhead projectors. A wireless microphone and sound system may be helpful to ensure that...

291

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

292

Advanced On-Site Wastewater Treatment and Management Market Study: Volume 2: State Reports  

Science Conference Proceedings (OSTI)

This report is comprised of summaries of the status of on-site and small community wastewater systems in each state in the United States. The summaries provide an excellent general reference for further research into the status of each state's on-site wastewater systems.

2000-09-27T23:59:59.000Z

293

Economic and technical feasibility study of compressed air storage  

DOE Green Energy (OSTI)

The results of a study of the economic and technical feasibility of compressed air energy storage (CAES) are presented. The study, which concentrated primarily on the application of underground air storage with combustion turbines, consisted of two phases. In the first phase a general assessment of the technical alternatives, economic characteristics and the institutional constraints associated with underground storage of compressed air for utility peaking application was carried out. The goal of this assessment was to identify potential barrier problems and to define the incentive for the implementation of compressed air storage. In the second phase, the general conclusions of the assessment were tested by carrying out the conceptual design of a CAES plant at two specific sites, and a program of further work indicated by the assessment study was formulated. The conceptual design of a CAES plant employing storage in an aquifer and that of a plant employing storage in a conventionally excavated cavern employing a water leg to maintain constant pressure are shown. Recommendations for further work, as well as directions of future turbo-machinery development, are made. It is concluded that compressed air storage is technically feasible for off-peak energy storage, and, depending on site conditions, CAES plants may be favored over simple cycle turbine plants to meet peak demands. (LCL)

Not Available

1976-03-01T23:59:59.000Z

294

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

295

Chemical Storage-Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

296

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 18, 2011 January 18, 2011 DOE Manual Studies Terrestrial Carbon Sequestration There is considerable opportunity and growing technical sophistication to make terrestrial carbon sequestration both practical and effective, according to the latest carbon capture and storage "best practices" manual issued by the U.S. Department of Energy. January 11, 2011 New Roadmap Updates Status of DOE Carbon Capture and Storage RD&D Efforts An overview of research, development, and demonstration efforts to supply cost-effective, advanced carbon capture and storage technologies for coal-based power systems is the focus of a new roadmap published by the U.S. Department of Energy. January 5, 2011 DOE Best Practices Manual Focuses on Site Selection for CO2 Storage Washington, DC - The most promising methods for assessing potential carbon

297

ALUMINUM HYDRIDE: A REVERSIBLE STORAGE MATERIAL FOR HYDROGEN STORAGE  

DOE Green Energy (OSTI)

One of the challenges of implementing the hydrogen economy is finding a suitable solid H{sub 2} storage material. Aluminium (alane, AlH{sub 3}) hydride has been examined as a potential hydrogen storage material because of its high weight capacity, low discharge temperature, and volumetric density. Recycling the dehydride material has however precluded AlH{sub 3} from being implemented due to the large pressures required (>10{sup 5} bar H{sub 2} at 25 C) and the thermodynamic expense of chemical synthesis. A reversible cycle to form alane electrochemically using NaAlH{sub 4} in THF been successfully demonstrated. Alane is isolated as the triethylamine (TEA) adduct and converted to unsolvated alane by heating under vacuum. To complete the cycle, the starting alanate can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride (NaH) This novel reversible cycle opens the door for alane to fuel the hydrogen economy.

Zidan, R; Christopher Fewox, C; Brenda Garcia-Diaz, B; Joshua Gray, J

2009-01-09T23:59:59.000Z

298

Competition Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

--------------------------- Chapter 6.5 (January 2011) 1 Competition Advocate Responsibilities [Reference: FAR 6.5, FAR 7 and DEAR 906.501] Overview This section discusses the competition advocate requirements and provides a Federal Procurement Data System-New Generation (FPDS-NG) coding assistance sheet and screen shots for the FPDS-NG Competition Report. Background FAR Part 6.5, -Competition Advocates,‖ implements section 20 of the Office of Federal Procurement Policy Act, which requires the head of each executive agency to designate an Agency Competition Advocate and Procuring Activity Advocates (hereafter referred to as Activity Competition Advocates). In accordance with DEAR 906.501, the Secretary of

299

INTEGRATED HYDROGEN STORAGE SYSTEM MODEL  

DOE Green Energy (OSTI)

Hydrogen storage is recognized as a key technical hurdle that must be overcome for the realization of hydrogen powered vehicles. Metal hydrides and their doped variants have shown great promise as a storage material and significant advances have been made with this technology. In any practical storage system the rate of H2 uptake will be governed by all processes that affect the rate of mass transport through the bed and into the particles. These coupled processes include heat and mass transfer as well as chemical kinetics and equilibrium. However, with few exceptions, studies of metal hydrides have focused primarily on fundamental properties associated with hydrogen storage capacity and kinetics. A full understanding of the complex interplay of physical processes that occur during the charging and discharging of a practical storage system requires models that integrate the salient phenomena. For example, in the case of sodium alanate, the size of NaAlH4 crystals is on the order of 300nm and the size of polycrystalline particles may be approximately 10 times larger ({approx}3,000nm). For the bed volume to be as small as possible, it is necessary to densely pack the hydride particles. Even so, in packed beds composed of NaAlH{sub 4} particles alone, it has been observed that the void fraction is still approximately 50-60%. Because of the large void fraction and particle to particle thermal contact resistance, the thermal conductivity of the hydride is very low, on the order of 0.2 W/m-{sup o}C, Gross, Majzoub, Thomas and Sandrock [2002]. The chemical reaction for hydrogen loading is exothermic. Based on the data in Gross [2003], on the order of 10{sup 8}J of heat of is released for the uptake of 5 kg of H{sub 2}2 and complete conversion of NaH to NaAlH{sub 4}. Since the hydride reaction transitions from hydrogen loading to discharge at elevated temperatures, it is essential to control the temperature of the bed. However, the low thermal conductivity of the hydride makes it difficult to remove the heat of reaction, especially in the relatively short target refueling times, see Attachment 3. This document describes a detailed numerical model for general metal hydride beds that couples reaction kinetics with heat and mass transfer, for both hydriding and dehydriding of the bed. The detailed model is part of a comprehensive methodology for the design, evaluation and modification of hydrogen storage systems. In Hardy [2007], scoping models for reaction kinetics, bed geometry and heat removal parameters are discussed. The scoping models are used to perform a quick assessment of storage systems and identify those which have the potential to meet DOE performance targets. The operational characteristics of successful candidate systems are then evaluated with the more detailed models discussed in this document. The detailed analysis for hydrogen storage systems is modeled in either 2 or 3-dimensions, via the general purpose finite element solver COMSOL Multiphysics{reg_sign}. The two-dimensional model serves to provide rapid evaluation of bed configurations and physical processes, while the three-dimensional model, which requires a much longer run time, is used to investigate detailed effects that do not readily lend themselves to two-dimensional representations. The model is general and can be adapted to any geometry or storage media. In this document, the model is applied to a modified cylindrical shell and tube geometry with radial fins perpendicular to the axis, see Figures 4.1-1 and 4.1-2. Sodium alanate, NaAlH{sub 4}, is used as the hydrogen storage medium. The model can be run on any DOS, LINUX or Unix based system.

Hardy, B

2007-11-16T23:59:59.000Z

300

Advanced Heat Transfer and Thermal Storage Fluids  

DOE Green Energy (OSTI)

The design of the next generation solar parabolic trough systems for power production will require the development of new thermal energy storage options with improved economics or operational characteristics. Current heat-transfer fluids such as VP-1?, which consists of a eutectic mixture of biphenyl and diphenyl oxide, allow a maximum operating temperature of ca. 300 C, a limit above which the vapor pressure would become too high and would require pressure-rated tanks. The use of VP-1? also suffers from a freezing point around 13 C that requires heating during cold periods. One of the goals for future trough systems is the use of heat-transfer fluids that can act as thermal storage media and that allow operating temperatures around 425 C combined with lower limits around 0 C. This paper presents an outline of our latest approach toward the development of such thermal storage fluids.

Moens, L.; Blake, D.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Role of Energy Storage in Commercial Building  

DOE Green Energy (OSTI)

Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of active DOE/BTP R&D activities in this space.

Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

2010-09-30T23:59:59.000Z

302

Fuel cell systems for first lunar outpost -- Reactant storage options  

DOE Green Energy (OSTI)

A Lunar Surface Power Working Group was formed to review candidate systems for providing power to the First Lunar Outpost habitat. The working group met for five days in the fall of 1992 and concluded that the most attractive candidate included a photovoltaic unit, a fuel cell, a regenerator to recycle the reactants, and storage of oxygen and hydrogen gases. Most of the volume (97%) and weight (64%) are taken up by the reactants and their storage tanks. The large volume is difficult to accommodate, and therefore, the working group explored ways of reducing the volume. An alternative approach to providing separate high pressure storage tanks is to use two of the descent stage propellant storage tanks, which would have to be wrapped with graphite fibers to increase their pressure capability. This saves 90% of the volume required for storage of fuel cell reactants. Another approach is to use the descent storage propellant tanks for storage of the fuel cell reactants as cryogenic liquids, but this requires a gas liquefaction system, increases the solar array by 40%, and increases the heat rejection rate by 170% compared with storage of reactants as high pressure gases. For a high power system (>20 kW) the larger energy storage requirement would probably favor the cryogenic storage option.

Nelson, P.A. [Argonne National Lab., IL (United States). Chemical Technology Div.

1995-06-01T23:59:59.000Z

303

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability:A Study of Commercial Buildings in California and New York States  

Science Conference Proceedings (OSTI)

In past work, Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model (DER-CAM). Given end-use energy details for a facility, a description of its economic environment and a menu of available equipment, DER-CAM finds the optimal investment portfolio and its operating schedule which together minimize the cost of meeting site service, e.g., cooling, heating, requirements. Past studies have considered combined heat and power (CHP) technologies. Methods and software have been developed to solve this problem, finding optimal solutions which take simultaneity into account. This project aims to extend on those prior capabilities in two key dimensions. In this research storage technologies have been added as well as power quality and reliability (PQR) features that provide the ability to value the additional indirect reliability benefit derived from Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid capability. This project is intended to determine how attractive on-site generation becomes to a medium-sized commercial site if economical storage (both electrical and thermal), CHP opportunities, and PQR benefits are provided in addition to avoiding electricity purchases. On-site electrical storage, generators, and the ability to seamlessly connect and disconnect from utility service would provide the facility with ride-through capability for minor grid disturbances. Three building types in both California and New York are assumed to have a share of their sensitive electrical load separable. Providing enhanced service to this load fraction has an unknown value to the facility, which is estimated analytically. In summary, this project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York; (2) to extend the analysis capability of DER-CAM to include both heat and electricity storage; and (3) to make an initial effort towards adding consideration of PQR into the capabilities of DER-CAM.

Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

2008-12-01T23:59:59.000Z

304

Energy storage for tokamak reactor cycles  

DOE Green Energy (OSTI)

The inherent characteristic of a tokamak reactor requiring periodic plasma quench and reignition introduces the problem of energy storage to permit continuous electrical output to the power grid. The cycle under consideration in this paper is a 1000 second burn followed by a 100 second reignition phase. The physical size of a typical toroidal plasma reaction chamber for a tokamak reactor has been described earlier. The thermal energy storage requirements described in this reference will serve as a basis for much of the ensuing discussion.

Buchanan, C.H.

1979-01-01T23:59:59.000Z

305

Competition Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Chapter 5.2 (April 2008) - Chapter 5.2 (April 2008) Synopsizing Proposed Non-Competitive Contract Actions Citing the Authority of FAR 6.302-1 [Reference: FAR 5 and DEAR 905] Overview This section discusses publicizing sole source actions as part of the approval of a Justification for Other than Full and Open Competition (JOFOC) using the authority of FAR 6.302-1. Background The Competition in Contracting Act (CICA) of 1984 requires that all acquisitions be made using full and open competition. Seven exceptions to using full and open competition are specifically identified in FAR Part 6. One exception permits contracting without full and open competition when the required supplies or services are available from only one responsible source (FAR 6.302-1). This exception is

306

Heat storage duration  

DOE Green Energy (OSTI)

Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

307

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

308

Options for thermal energy storage in solar-cooling systems. Final report  

DOE Green Energy (OSTI)

The current effort concentrates on design requirements of thermal storage subsystems for active solar cooling systems. The use of thermal storage with respect to absorption, Rankine, and desiccant cooling technologies is examined.

Curran, H.M.; DeVries, J.

1981-05-01T23:59:59.000Z

309

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

310

Other Innovative Storage Systems  

Science Conference Proceedings (OSTI)

High Efficiency Electrical Energy Storage Using Reversible Solid Oxide Cells: Scott Barnett1; Gareth Hughes1; Kyle Yakal-Kremski1; Zhan Gao1; 1 Northwestern ...

311

NREL: Energy Storage - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

to reply. Your name: Your email address: Your message: Send Message Printable Version Energy Storage Home About the Project Technology Basics Research & Development Awards &...

312

NREL: Energy Storage - Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources The National Renewable Energy Laboratory's (NREL) Energy Storage team and partners work within a variety of programs that have created test manuals to establish standard...

313

Advanced Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Energy Storage Publications Reports: Advanced Technology Development Program For Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report Advanced Technology...

314

Storage Sub-committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gaps - Existing R&D and pilot programs - CAES - Controllable pumping - Off shore (energy island, etc) - Gravity systems - Thermal storage Confidential 3 Report to DOE ...

315

Carbon Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel power plants as viable, clean sources of electric power. The program is focused on developing technologies that can achieve 99 percent of carbon dioxide (CO 2 ) storage...

316

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

317

H 2 Storage Projects  

Science Conference Proceedings (OSTI)

... 10. Titanium-decorated carbon nanotubes: a potential high-capacity hydrogen storage madium. ... 3. Exohydrogenated single-wall carbon nanotubes. ...

318

Natural Gas Storage Valuation .  

E-Print Network (OSTI)

??In this thesis, one methodology for natural gas storage valuation is developed and two methodologies are improved. Then all of the three methodologies are applied… (more)

Li, Yun

2007-01-01T23:59:59.000Z

319

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Does CCS really make a difference for the environment? Carbon capture and storage (CCS) is one of several options, including the use of renewables, nuclear energy, alternative...

320

Cryogenic Hydrogen Storage Systems Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

Tuesday, February 15, 2011 - Cryogenic Hydrogen Storage Systems Tuesday, February 15, 2011 - Cryogenic Hydrogen Storage Systems Purpose: Identify R&D needs and technical pathways associated with the continued development and validation of cryo-compressed and cryo-sorption hydrogen storage technologies, highlighting those aspects common to both technologies as well as identifying their unique requirements and issues that should be addressed. 8:30 Welcome/Introductions/Workshop objectives/Recap of previous day Ned Stetson, DOE 9:00 OEM Perspective on Cryogenic H 2 Storage (20 min presentation/20 min discussion) Tobias Brunner, BMW 9:40 Performance Comparison and Cost Review (20 min presentation/20 min discussion) Rajesh Ahluwalia, ANL 10:20 Break (10 minutes) 10:30 Expert Panel Discussion (Members will each have 15 minutes for presentations)

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Structural Integrity Program for INTEC Calcined Solids Storage Facilities  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Jeffrey Bryant

2008-08-30T23:59:59.000Z

322

Structural Integrity Program for INTEC Calcined Solids Storage Facilities  

Science Conference Proceedings (OSTI)

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, “Radioactive Waste Management Manual.” Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Bryant, Jeffrey Whealdon; Nenni, Joseph A; Timothy S. Yoder

2003-05-01T23:59:59.000Z

323

Compressed Air Energy Storage State-of-Science  

Science Conference Proceedings (OSTI)

Reliable and cost-effective bulk energy storage (BES) will become an important part of the electricity grid. In the form of compressed air energy storage (CAES), BES is a cost-effective option for applications requiring hundreds of megawatt-hours of energy storage. Experience in Alabama and Germany has shown that an optimized CAES plant design can further improve plant capital costs, economics, and performance. Advanced CAES technologies can defer expensive upgrades and capital purchases for transmission...

2009-10-27T23:59:59.000Z

324

NETL: Carbon Storage - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

325

Waste Containers for Extended Storage of Class A, B and C Wastes, Rev. 1  

Science Conference Proceedings (OSTI)

In response to the potential loss of low-level waste (LLW) disposal capacity for Class B and C Wastes in 2008, EPRI is updating its guidance documents on the interim storage of LLW wastes. This volume provides a comprehensive review of LLW containers and container technologies to help utilities evaluate their options and make selections for extended on-site storage. This revision updates the listings of commercially available containers, adds international containers, and provides minor technical changes...

2003-08-26T23:59:59.000Z

326

Present and Future Computing Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

for Computational Cosmology for Computational Cosmology DES LSST Presenter: Salman Habib Argonne National Laboratory Jim Ahrens (LANL) Scott Dodelson (FNAL) Katrin Heitmann (ANL) Peter Nugent (LBNL) Anze Slosar (BNL) Risa Wechsler (SLAC) 1 Cosmic Frontier Computing Collaboration Computational Cosmology SciDAC-3 Project Ann Almgren (LBNL) Nick Gnedin (FNAL) Dave Higdon (LANL) Rob Ross (ANL) Martin White (UC Berkeley/ LBNL) Large Scale Production Computing and Storage Requirements for High Energy Physics Research A DOE Technical Program Review November 27-28, 2012

327

Cool Storage Technology Guide  

Science Conference Proceedings (OSTI)

It is a fact that avoiding load growth is cheaper than constructing new power plants. Cool storage technologies offer one method for strategically stemming the impact of future peak demand growth. This guide provides a comprehensive resource for understanding and evaluating cool storage technologies.

2000-08-14T23:59:59.000Z

328

Energy storage capacitors  

DOE Green Energy (OSTI)

The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

Sarjeant, W.J.

1984-01-01T23:59:59.000Z

329

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

330

Hydrogen-based electrochemical energy storage - Energy ...  

An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage ...

331

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

332

Underground Natural Gas Storage by Storage Type  

U.S. Energy Information Administration (EIA) Indexed Site

Feb-13 Mar-13 Apr-13 May-13 Jun-13 Jul-13 View History All Operators Natural Gas in Storage 6,482,603 6,102,063 6,235,751 6,653,184 7,027,708 7,302,556 1973-2013 Base Gas 4,379,494...

333

Bases for extrapolating materials durability in fuel storage pools  

SciTech Connect

A major body of evidence indicates that zirconium alloys have the most consistent and reliable durability in wet storage, justifying projections of safe wet storage greater than 50 y. Aluminum alloys have the widest range of durabilities in wet storage; systematic control and monitoring of water chemistry have resulted in low corrosion rates for more than two decades on some fuels and components. However, cladding failures have occurred in a few months when important parameters were not controlled. Stainless steel is extremely durable when stress, metallurgical and water chemistry factors are controlled. LWR SS cladding has survived for 25 y in wet storage. However, sensitized, stressed SS fuels and components have seriously degraded in fuel storage pools (FSPs) at {approximately} 30 C. Satisfactory durability of fuel assembly and FSP component materials in extended wet storage requires investments in water quality management and surveillance, including chemical and biological factors. The key aspect of the study is to provide storage facility operators and other decision makers a basis to judge the durability of a given fuel type in wet storage as a prelude to basing other fuel management plans (e.g. dry storage) if wet storage will not be satisfactory through the expected period of interim storage.

Johnson, A.B. Jr.

1994-12-01T23:59:59.000Z

334

Reference Designs of 50 MW / 250 MWh Energy Storage Systems  

Science Conference Proceedings (OSTI)

Energy storage solutions for Renewable Integration and Transmission and Distribution (T&D) Grid Support often require systems of 10's of MWs in scale, and energy durations of longer than 4 hours. The goals of this study were to develop cost, performance and conceptual design information for several current and emerging alternative bulk storage systems in the scale of 50 MW / 250 MWh.

2011-12-28T23:59:59.000Z

335

Reagent Storage and Handling for SCR and SNCR Systems  

Science Conference Proceedings (OSTI)

As utilities move to post-combustion nitrogen oxides (NOx) control technologies, the need to understand reagent storage and handling requirements for these systems increases. This report reviews various approaches to the storage and handling of anhydrous ammonia, aqueous ammonia, and urea. Systems that convert urea to ammonia also are included.

2002-05-30T23:59:59.000Z

336

Optimal Control of Harvesting Ice Thermal Storage Systems  

E-Print Network (OSTI)

Thermal storage is becoming a standard consideration in HVAC and process cooling systems. As the technology is refined, more attention is being given to minimize the energy consumption and power demand requirements. This paper addresses a method for optimal control of a harvesting ice storage system. A simplified procedure is used to develop 24 hour load data. Example installations will be shown.

Knebel, D. E.

1988-01-01T23:59:59.000Z

337

Large Scale Computing and Storage Requirements for Nuclear Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Science, Office of Advanced Scientific Computing Research (ASCR), Office of Nuclear Physics (NP), and the National Energy Research Scientific Computing Center (NERSC)...

338

Hydrogen Storage Materials Requirements to Meet the 2017 On Board...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Fan (Puller) Nylon 1 5.9 INS-11 Temperature sensor 0.1 0.02 V-5 Control Valve Brass 1.7 0.75 Hydrogen Discharge FT-1 Coalescing Filter SS 1.2 0.34 RD-2 Gas Radiator 304...

339

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Type Ia supernovae, gamma-ray bursts, X-ray bursts and corerelativistic jet, making a gamma-ray burst, the luminositythose that lead to gamma-ray bursts. The current frontier is

Gerber, Richard A.

2011-01-01T23:59:59.000Z

340

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

in-depth tracking and analysis of job failures, and supportautomatic analysis after batch compute jobs complete.automatic analysis after batch compute jobs complete.

Gerber, Richard A.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

Iowa State University) NERSC Repository: m94 10.2.2.1  Joseph Carlson (LANL) NERSC Repository: m308 10.2.3.1  Scientific  Objectives   This NERSC repository supports NP-

Gerber, Richard A.

2012-01-01T23:59:59.000Z

342

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Director Editors Richard Gerber Harvey Wasserman NERSC UserServices Group NERSC User Services Group Large ScaleNERSC

Gerber, Richard A.

2011-01-01T23:59:59.000Z

343

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

day experimental fusion devices and in nuclear reactors thatnuclear energy both for next-generation fission reactors and for fusion reactors

Gerber, Richard A.

2012-01-01T23:59:59.000Z

344

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

of Science, Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research, FacilitiesNP) Office of Advanced Scientific Computing Research (ASCR)

Gerber, Richard A.

2012-01-01T23:59:59.000Z

345

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

of Science, Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research, FacilitiesOffice of Advanced Scientific Computing Research (ASCR), and

Gerber, Richard A.

2011-01-01T23:59:59.000Z

346

Large Scale Computing and Storage Requirements for Biological...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sponsored by: U.S. Department of Energy Office of Science Office of Advanced Scientific Computing Research (ASCR) Office of Biological and Environmental Research (BER) National...

347

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

personnel from Brookhaven National Lab (BNL), ThomasIon Collider at Brookhaven National Lab. Participation in

Gerber, Richard A.

2012-01-01T23:59:59.000Z

348

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

at NERSC, Intrepid at ALCF, and Linux clusters. Most of themoved to Intrepid at the ALCF. The completion of this taskEnergy Physics Appendix  C. ALCF AMR ASCR BAO BELLA CCSE

Gerber, Richard A.

2011-01-01T23:59:59.000Z

349

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

Acronyms   Argonne Leadership Computing Facility adaptivethe Leadership Computing Facilities at Oak Ridge and Argonne

Gerber, Richard A.

2011-01-01T23:59:59.000Z

350

Large Scale Computing and Storage Requirements for High Energy Physics  

E-Print Network (OSTI)

the application of high performance computing (HPC) to theacceleration and high performance computing. He was thelibraries, and high performance computing. Lee is an active

Gerber, Richard A.

2011-01-01T23:59:59.000Z

351

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

proceedings of High Performance Computing – 2011 (HPC-2011)In recent years, high performance computing has becomeNERSC is the primary high-performance computing facility for

Gerber, Richard A.

2012-01-01T23:59:59.000Z

352

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

fusion, vortices in the crusts of neutron stars, and even dynamics in nonnuclear systems such as cold

Gerber, Richard A.

2012-01-01T23:59:59.000Z

353

Advanced Hydrogen Storage: A System's Perspective and Some Thoughts on Fundamentals  

NLE Websites -- All DOE Office Websites (Extended Search)

90246.00 90246.00 Advanced Hydrogen Storage: A System's Perspective and Some Thoughts on Fundamentals Presentation for DOE Workshop on Hydrogen Storage August 14-15, 2002 1/16 WPT MR 90246.00 In the development of attractive hydrogen storage options, fundamental materials properties and their impact on system design are both critical. * Compact, light, and efficient hydrogen storage technology is a key enabling technology for fuel cell vehicles and the use of renewable energy in vehicles * Due to system-level limitations current hydrogen storage systems meet some of the requirements but none meet all of the requirements - Current storage materials do not offer clear advantages over compressed or liquid hydrogen storage - Improving storage capacity will require improvement in material performance such

354

Ultrafine hydrogen storage powders  

DOE Patents (OSTI)

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

355

SERI Solar Energy Storage Program  

DOE Green Energy (OSTI)

The SERI Solar Energy Storage Program provides research on advanced technologies, system analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications.

Copeland, R. J.; Wright, J. D.; Wyman, C. E.

1980-02-01T23:59:59.000Z

356

NREL: Energy Storage - Industry Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Participants NREL's energy storage project is funded by the DOE's Vehicle Technologies Office. We work closely with automobile manufacturers, energy storage developers,...

357

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

Joel L. Morrison; Sharon L. Elder

2006-05-10T23:59:59.000Z

358

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

359

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

Joel Morrison

2005-09-14T23:59:59.000Z

360

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Treatment, packaging, and storage of bundle scrap hardware  

SciTech Connect

A study was performed to identify and evaluate the various technical options for treatment, packaging and storing the bundle scrap hardware that results from rod consolidation. The three general scenarios addressed were keeping the treated scrap in the pool, moving it to on-site dry storage, or immediate disposal. The study concluded that practical alternatives existed for all three cases. Use of novel scrap packaging techniques achieved an overall net consolidation ratio of two. The most economical concept was found to be using advanced technology in the pool storage scenario with dry storage schemes a close second. The project also provides information on scrap characterization and provides tools to assist in classifying the scrap hardware.

Fuierer, A. (Rochester Gas and Electric Corp., NY (United States)); Dabolt, R. (Chem-Nuclear Systems, Inc., Columbia, SC (United States))

1991-09-01T23:59:59.000Z

362

Assessment of On-Site Power Opportunities in the Industrial Sector  

Science Conference Proceedings (OSTI)

The purpose of this report is to identify the potential for on-site power generation in the U.S. industrial sector with emphasis on nine industrial groups called the ''Industries of the Future'' (IOFs) by the U.S. Department of Energy (DOE). Through its Office of Industrial Technologies (OIT), the DOE has teamed with the IOFs to develop collaborative strategies for improving productivity, global competitiveness, energy usage and environmental performance. Total purchases for electricity and steam for the IOFs are in excess of $27 billion annually. Energy-related costs are very significant for these industries. The nine industrial groups are (1) Agriculture (SIC 1); (2) Forest products; (3) Lumber and wood products (SIC 24); (4) Paper and allied products (SIC 26); (5) Mining (SIC 11, 12, 14); (6) Glass (SIC 32); (7) Petroleum (SIC 29); (8) Chemicals (SIC 28); and (9) Metals (SIC 33): Steel, Aluminum, and Metal casting. Although not currently part of the IOF program, the food industry is included in this report because of its close relationship to the agricultural industry and its success with on-site power generation. On-site generation provides an alternative means to reduce energy costs, comply with environmental regulations, and ensure a reliable power supply. On-site generation can ease congestion in the local utility's electric grid. Electric market restructuring is exacerbating the price premium for peak electricity use and for reliability, creating considerable market interest in on-site generation.

Bryson, T.

2001-10-08T23:59:59.000Z

363

Hydrogen and Fuel Cell Technologies Program: Storage Fact Sheet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FUEL CELL TECHNOLOGIES PROGRAM FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen Storage Developing safe, reliable, compact, and cost-effective hydrogen storage tech- nologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be competitive with conventional vehicles, hydrogen-powered cars must be able to travel more than 300 mi between fills. This is a challenging goal because hydrogen has physical characteristics that make it difficult to store in large quantities without taking up a significant amount of space. Where and How Will Hydrogen be Stored? Hydrogen storage will be required

364

Cooling thermal storage  

Science Conference Proceedings (OSTI)

This article gives some overall guidelines for successful operation of cooling thermal storage installations. Electric utilities use rates and other incentives to encourage thermal storage, which not only reduces their system peaks but also transfers a portion of their load from expensive daytime inefficient peaking plants to less expensive nighttime base load high efficiency coal and nuclear plants. There are hundreds of thermal storage installations around the country. Some of these are very successful; others have failed to achieve all of their predicted benefits because application considerations were not properly addressed.

Gatley, D.P.

1987-04-01T23:59:59.000Z

365

Stormwater Pollution Prevention Plan (SWPPP) for Coal Storage Area Stabilization Project  

Science Conference Proceedings (OSTI)

The scope of this project is to stabilize the abandoned coal storage area and redirect the storm water runoff from sanitary sewer system to the storm drain system. Currently, the existing storm water runoff is directed to a perimeter concrete drainage swale and collected in a containment basin. The collected water is then pumped to a treatment facility and after treatment, is discharged to the Y-12 sanitary sewer system. The existing drainage swale and collection basin along with silt fencing will be used during aggregate placement and grading to provide erosion and sediment control. Inlet protection will also be installed around existing structures during the storm water diversion construction. This project scope will include the installation of a non-woven geotextile fabric and compacted mineral aggregate base (paving optional) to stabilize the site. The geotextile specifications are provided on the vendor cut sheets in Appendix B. The installation of a storm water collection/retention area will also be installed on the southern side of the site in accordance with EPA Technical Guidance on Implementing the Stormwater Runoff Requirements for federal Projects under Section 438 of the Energy Independence and Security Act. The total area to be disturbed is approximately 2.5 acres. The order of activities for this Stormwater Pollution Prevention Plan (SWPPP) will be: (1) post notice of coverage (NOC) in a prominent display near entrance of the site; (2) install rain gauge on site or contact Y-12 Plant Shift Superintendent daily for Met tower rain gauge readings; (3) install stabilized construction exit on site; (4) install silt fencing along perimeter as indicated on the attached site plan; (5) regrade site; (6) install geotextile fabric and compacted mineral aggregate base; (7) install catch basin inlet protection where required; (8) excavate and lower existing catch basin tops, re-grade and asphalt to drain; and (9) when all disturbed areas are re-stabilized, remove silt fencing and any other temporary erosion control.

Project and Design Engineering

2011-03-01T23:59:59.000Z

366

MRS Preliminary Site Requirements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MRS Preliminary Site Requirements MRS Preliminary Site Requirements MRS Preliminary Site Requirements In the November 1989 Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program (DOE/RW-0247), the Secretary of Energy announced an initiative for developing a monitored retrievable storage (MRS) facility that is to start spent-fuel acceptance in 1998. This facility, which will be licensed by the U.S. Nuclear Regulatory Commission (NRC), will receive spent fuel from commercial nuclear power plants and provide a limited amount of storage for this spent fuel. When a geologic repository starts operations, the MRS facility will also stage spent-fuel shipments to the repository. By law, storage at the MRS facility is to be temporary, with permanent disposal provided in a geologic repository to be

367

MRS Preliminary Site Requirements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MRS Preliminary Site Requirements MRS Preliminary Site Requirements MRS Preliminary Site Requirements In the November 1989 Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program (DOE/RW-0247), the Secretary of Energy announced an initiative for developing a monitored retrievable storage (MRS) facility that is to start spent-fuel acceptance in 1998. This facility, which will be licensed by the U.S. Nuclear Regulatory Commission (NRC), will receive spent fuel from commercial nuclear power plants and provide a limited amount of storage for this spent fuel. When a geologic repository starts operations, the MRS facility will also stage spent-fuel shipments to the repository. By law, storage at the MRS facility is to be temporary, with permanent disposal provided in a geologic repository to be

368

Covered Product Category: Gas Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Storage Water Heaters Gas Storage Water Heaters Covered Product Category: Gas Storage Water Heaters October 7, 2013 - 10:43am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

369

Carbon Aerogels for Hydrogen Storage  

DOE Green Energy (OSTI)

This effort is focused on the design of new nanostructured carbon-based materials that meet the DOE 2010 targets for on-board vehicle hydrogen storage. Carbon aerogels (CAs) are a unique class of porous materials that possess a number of desirable structural features for the storage of hydrogen, including high surface areas (over 3000 m{sup 2}/g), continuous and tunable porosities, and variable densities. In addition, the flexibility associated with CA synthesis allows for the incorporation of modifiers or catalysts into the carbon matrix in order to alter hydrogen sorption enthalpies in these materials. Since the properties of the doped CAs can be systematically modified (i.e. amount/type of dopant, surface area, porosity), novel materials can be fabricated that exhibit enhanced hydrogen storage properties. We are using this approach to design new H{sub 2} sorbent materials that can storage appreciable amounts of hydrogen at room temperature through a process known as hydrogen spillover. The spillover process involves the dissociative chemisorption of molecular hydrogen on a supported metal catalyst surface (e.g. platinum or nickel), followed by the diffusion of atomic hydrogen onto the surface of the support material. Due to the enhanced interaction between atomic hydrogen and the carbon support, hydrogen can be stored in the support material at more reasonable operating temperatures. While the spillover process has been shown to increase the reversible hydrogen storage capacities at room temperature in metal-loaded carbon nanostructures, a number of issues still exist with this approach, including slow kinetics of H{sub 2} uptake and capacities ({approx} 1.2 wt% on carbon) below the DOE targets. The ability to tailor different structural aspects of the spillover system (i.e. the size/shape of the catalyst particle, the catalyst-support interface and the support morphology) should provide valuable mechanistic information regarding the critical aspects of the spillover process (i.e. kinetics of hydrogen dissociation, diffusion and recombination) and allow for optimization of these materials to meet the DOE targets for hydrogen storage. In a parallel effort, we are also designing CA materials as nanoporous scaffolds for metal hydride systems. Recent work by others has demonstrated that nanostructured metal hydrides show enhanced kinetics for reversible hydrogen storage relative to the bulk materials. This effect is diminished, however, after several hydriding/dehydriding cycles, as the material structure coarsens. Incorporation of the metal hydride into a porous scaffolding material can potentially limit coarsening and, therefore, preserve the enhanced kinetics and improved cycling behavior of the nanostructured metal hydride. Success implementation of this approach, however, requires the design of nanoporous solids with large accessible pore volumes (> 4 cm{sup 3}/g) to minimize the gravimetric and volumetric capacity penalties associated with the use of the scaffold. In addition, these scaffold materials should be capable of managing thermal changes associated with the cycling of the incorporated metal hydride. CAs are promising candidates for the design of such porous scaffolds due to the large pore volumes and tunable porosity of aerogel framework. This research is a joint effort with HRL Laboratories, a member of the DOE Metal Hydride Center of Excellence. LLNL's efforts have focused on the design of new CA materials that can meet the scaffolding requirements, while metal hydride incorporation into the scaffold and evaluation of the kinetics and cycling performance of these composites is performed at HRL.

Baumann, T F; Worsley, M; Satcher, J H

2008-08-11T23:59:59.000Z

370

GRR/Section 10 - On-Site Evaluation Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 10 - On-Site Evaluation Process GRR/Section 10 - On-Site Evaluation Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 10 - On-Site Evaluation Process 10SiteEvaluation.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management U S Army Corps of Engineers United States Environmental Protection Agency Fish and Wildlife Service United States Department of Defense Regulations & Policies Endangered Species Act Clean Water Act Clean Air Act Triggers None specified Click "Edit With Form" above to add content 10SiteEvaluation.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

371

Federal Energy Management Program: Sample Documents for On-Site Renewable  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample Documents for On-Site Renewable Power Purchase Agreements Sample Documents for On-Site Renewable Power Purchase Agreements The Federal Energy Management Program (FEMP) works with Federal agencies and partners to assemble sample documents from past on-site renewable power purchase agreement (PPA) projects to help streamline the PPA process. Requests for Proposal and Contracts Sample documents are available for the following requests for proposal: Photovoltaics at the Department of Energy's (DOE) Princeton Plasma Physics Laboratory: PPA request for proposal issued by DLA Energy on behalf of Princeton Plasma Physics Laboratory. National Renewable Energy Laboratory (NREL) Photovoltaics Opportunity Announcement: Opportunity announcement issued for the NREL Mesa Top photovoltaics (PV) power purchase agreement.

372

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OH OH EM Project: On-Site Disposal Facility ETR Report Date: February 2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is proposed for long-term containment of contaminated materials from the planned Decontamination and Decommissioning (D&D) activities at the Portsmouth Gaseous Diffusion Plant. Acceptable performance of the proposed OSWDF will depend on interactions between engineered landfill features and operations methods that recognize the unique characteristics of the waste stream and site-

373

Department of Energy Announces Two Year Pay Freeze on Site and Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two Year Pay Freeze on Site and Two Year Pay Freeze on Site and Facility Management Contractor Employees Department of Energy Announces Two Year Pay Freeze on Site and Facility Management Contractor Employees December 17, 2010 - 12:00am Addthis Washington DC - Following President Obama's recent proposal for a two-year pay freeze for all civilian federal workers, U.S. Energy Secretary Steven Chu today announced a decision to stop salary and bonus pool increases for site and facility management contractor employees, who manage day-to-day operations at certain Department of Energy sites and facilities, including national laboratories. "As our nation continues to recover from these challenging economic times, households and small businesses across the country are making sacrifices,"

374

RESIDENTIAL ON SITE SOLAR HEATING SYSTEMS: A PROJECT EVALUATION USING THE CAPITAL ASSET PRICING MODEL  

E-Print Network (OSTI)

natural gas system requires the construction of pipeline networks; electrical heating systems require power generation

Schutz, Stephen Richard

2011-01-01T23:59:59.000Z

375

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Where is CO2 storage happening today? Where is CO2 storage happening today? Sleipner Project (Norway) Sleipner Project (Norway) Carbon dioxide (CO2) storage is currently happening across the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway, the Weyburn-Midale CO2 Project in Canada, and the In Salah project in Algeria, have been injecting CO2 for many years. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, too. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. Additionally, a multitude of pilot efforts are underway in different parts of the world to determine suitable locations and technologies for future

376

storage technology barriers. The...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summit Power to build a 400-megawatt (MW) coal-fired power plant with carbon capture and storage (CCS) in Britain. The companies will submit the Caledonia Clean Energy Project to...

377

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh100 kW Flywheel Energy Storage Module * 100KWh - 18 cost KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft Hub (which limits surface speed)...

378

DUF6 Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

of depleted UF6 is stored in steel cylinders at three sites in the U.S. Depleted UF6 Inventory and Storage Locations U.S. DOE's inventory of depleted UF6 consists of approximately...

379

Storage Ring Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source Parameters Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV...

380

Fact Sheet: Community Energy Storage for Grid Support (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Detroit Edison Detroit Edison American Recovery and Reinvestment Act (ARRA) Community Energy Storage for Grid Support Demonstrating advanced implementation of community energy storage technologies for grid support Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory, and two of the CES units will utilize secondary- use electric vehicle batteries. The CES system will use a number of battery energy storage units utilizing lithium batteries with the required electronics and energy conditioning devices to locate backup power near to the customer. The energy storage system consists of 20 separate 25 kW (50 kWh) CES units and a 500 kW lithium battery storage device integrated with a photovoltaic solar module. At just under 1 MW the CES units, coupled

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ADAPTING A CERTIFIED SHIPPING PACKAGE FOR STORAGE APPLICATIONS  

Science Conference Proceedings (OSTI)

For years shipping packages have been used to store radioactive materials at many DOE sites. Recently, the K-Area Material Storage facility at the Savannah River Site became interested in and approved the Model 9977 Shipping Package for use as a storage package. In order to allow the 9977 to be stored in the facility, there were a number of evaluations and modifications that were required. There were additional suggested modifications to improve the performance of the package as a storage container that were discussed but not incorporated in the design that is currently in use. This paper will discuss the design being utilized for shipping and storage, suggested modifications that have improved the storage configuration but were not used, as well as modifications that have merit for future adaptations for both the 9977 and for other shipping packages to be used as storage packages.

Loftin, B.; Abramczyk, G.

2012-06-05T23:59:59.000Z

382

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

The Ice Bear30 Hybrid Air Conditionerthermal energy storage system150uses smart integrated controls, ice storage, and a dedicated compressor for cooling. The system is designed to provide cooling to interior spaces by circulating refrigerant within an additional evaporator coil added to a standard unitary air conditioner. The Ice Bear 30 is a relatively small size (5 ton), intended for use in residential and light commercial applications. This report describes EPRI tests of the Ice Bear 30, which is manu...

2009-12-14T23:59:59.000Z

383

Analog storage integrated circuit  

DOE Patents (OSTI)

A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.

Walker, J. T. (Palo Alto, CA); Larsen, R. S. (Menlo Park, CA); Shapiro, S. L. (Palo Alto, CA)

1989-01-01T23:59:59.000Z

384

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

This Technology Brief provides an update on the current state of cool thermal energy storage systems (TES) for end-use applications. Because of its ability to shape energy use, TES is strategic technology that allows end-users to reduce their energy costs while simultaneously providing benefits for electric utilities through persistent peak demand reduction and peak shifting. In addition to discussing the concepts of thermal energy storage, the Brief discusses the current state of TES technologies and dr...

2008-12-16T23:59:59.000Z

385

Analog storage integrated circuit  

DOE Patents (OSTI)

A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

1989-03-07T23:59:59.000Z

386

Energy Storage Fuel Cell Vehicle Analysis: Preprint  

DOE Green Energy (OSTI)

In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

Markel, T.; Pesaran, A.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

2005-04-01T23:59:59.000Z

387

Energy Storage Fuel Cell Vehicle Analysis  

DOE Green Energy (OSTI)

In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy?s Energy Storage Program.

Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

2005-08-01T23:59:59.000Z

388

Flywheel energy storage advances using HTS bearings.  

DOE Green Energy (OSTI)

High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

Mulcahy, T. M.

1998-09-11T23:59:59.000Z

389

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

different options for CO2 storage? different options for CO2 storage? Oil and gas reservoirs, many containing carbon dioxide (CO2), as well as natural deposits of almost pure CO2, can be found in many places in the United States and around the world. These are examples of long-term storage of CO2 by nature, where "long term" means millions of years. Their existence demonstrates that naturally occurring geologic formations and structures of various kinds are capable of securely storing CO2 deep in the subsurface for very long periods of time. Because of the economic importance of oil and gas, scientists and engineers have studied these natural deposits for many decades in order to understand the physical and chemical processes which led to their formation. There are also many decades of engineering experience in subsurface operations similar to those needed for CO2 storage. The most directly applicable experience comes from the oil industry, which, for 40 years, has injected CO2 in depleted oil reservoirs for the recovery of additional product through enhanced oil recovery (EOR). Additional experience comes from natural gas storage operations, which have utilized depleted gas reservoirs, as well as reservoirs containing only water. Scientists and engineers are now combining the knowledge obtained from study of natural deposits with experience from analogous operations as a basis for studying the potential for large-scale storage of CO2 in the deep subsurface.

390

Dry Cask Storage Study Feb 1989 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dry Cask Storage Study Feb 1989 Dry Cask Storage Study Feb 1989 Dry Cask Storage Study Feb 1989 This report on the use of dry-cask-storage technologies at the sites of civilian nuclear power reactors has been prepared by the U.S. Department of Energy (DOE} in response to the requirements of the Nuclear Waste Policy Amendments Act of 1987 (P.L. 100-203). In particular, Section 5064 of the Amendments Act directs the Secretary of Energy to conduct a study and evaluation of using these technologies for the temporary storage of spent nuclear fuel until such time as a permanent geologic repository has been constructed and licensed by the Nuclear Regulatory Commission (NRC). In conducting this study, the DOE is required to consider such factors as costs, effects on human health and the environment, effects on the costs

391

Inertial and inductive energy storage for fusion systems  

DOE Green Energy (OSTI)

Energy storage is necessary for all proposed fusion reactor systems. The plasma physics for confinement and primarily the energy transfer time determine the nature of the storage system. Discharge times vary from 0.7 ms for theta-pinch reactors to one to two seconds for tokamak reactors. Three classes of devices are available for energy storage--inductors, capacitors, and rotating machines. The transfer of the energy from the store imposes unusual switching requirements. The broad requirements for reactor energy stores and more specifically those for tokamak experimental power reactors (EPR) and for the Scyllac fusion test reactor (SFTR) will be presented. Assessments and comparisons of alternative energy storage and transfer systems for these devices are to be discussed. The state of the pulsed superconducting inductive energy storage coils and homopolar development programs will be emphasized. Plans for tokamak ohmic-heating systems will be discussed briefly.

Rogers, J.D.

1976-01-01T23:59:59.000Z

392

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

393

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

394

Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.  

DOE Green Energy (OSTI)

This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

2011-04-01T23:59:59.000Z

395

Optimal Demand Response with Energy Storage Management  

E-Print Network (OSTI)

In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

Huang, Longbo; Ramchandran, Kannan

2012-01-01T23:59:59.000Z

396

Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)  

SciTech Connect

This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units, and the < 90 day accumulation areas.

LEBARON, G.J.

1999-12-03T23:59:59.000Z

397

Electricity storage can smooth out moment-to-moment variations in ...  

U.S. Energy Information Administration (EIA)

Fast-response capability is a distinct advantage of power quality ... Order 890 required RTOs to allow energy storage and demand response to bid into ancillary ...

398

Impact of injecting inert cushion gas into a gas storage reservoir.  

E-Print Network (OSTI)

??Underground natural gas storage is a process which ensures constant supply of natural gas by storing the excess gas produced and quickly supply when required.… (more)

Lekkala, Sudheer R.

2009-01-01T23:59:59.000Z

399

Measurements for Hydrogen Storage Materials  

Science Conference Proceedings (OSTI)

Measurements for Hydrogen Storage Materials. Summary: ... Hydrogen is promoted as petroleum replacement in the Hydrogen Economy. ...

2013-07-02T23:59:59.000Z

400

Dry Cask Storage Characterization Project  

Science Conference Proceedings (OSTI)

Nuclear utilities have developed independent spent fuel storage installations (ISFSIs) as a means of expanding their spent-fuel storage capacity on an interim basis until a geologic repository is available to accept the fuel for permanent storage. This report provides a technical basis for demonstrating the feasibility of extended spent-fuel storage in ISFSIs.

2002-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

GAS STORAGE TECHNOLOGY CONSORTIUM  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

402

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

403

FCT Hydrogen Storage: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

404

Cost Effectiveness of On-Site Chlorine Generation for Chlorine Truck Attack Prevention  

Science Conference Proceedings (OSTI)

A chlorine tank truck attack could cause thousands of fatalities. As a means of preventing chlorine truck attacks, I consider the on-site generation of chlorine or hypochlorite at all U.S. facilities currently receiving chlorine by truck. I develop and ... Keywords: applications, cost-effectiveness, public policy, risk analysis, terrorism, uncertainty

Anthony M. Barrett

2010-12-01T23:59:59.000Z

405

Guidance for characterizing explosives contaminated soils: Sampling and selecting on-site analytical methods  

SciTech Connect

A large number of defense-related sites are contaminated with elevated levels of secondary explosives. Levels of contamination range from barely detectable to levels above 10% that need special handling due to the detonation potential. Characterization of explosives-contaminated sites is particularly difficult due to the very heterogeneous distribution of contamination in the environment and within samples. To improve site characterization, several options exist including collecting more samples, providing on-site analytical data to help direct the investigation, compositing samples, improving homogenization of samples, and extracting larger samples. On-site analytical methods are essential to more economical and improved characterization. On-site methods might suffer in terms of precision and accuracy, but this is more than offset by the increased number of samples that can be run. While verification using a standard analytical procedure should be part of any quality assurance program, reducing the number of samples analyzed by the more expensive methods can result in significantly reduced costs. Often 70 to 90% of the soil samples analyzed during an explosives site investigation do not contain detectable levels of contamination. Two basic types of on-site analytical methods are in wide use for explosives in soil, calorimetric and immunoassay. Calorimetric methods generally detect broad classes of compounds such as nitroaromatics or nitramines, while immunoassay methods are more compound specific. Since TNT or RDX is usually present in explosive-contaminated soils, the use of procedures designed to detect only these or similar compounds can be very effective.

Crockett, A.B. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Craig, H.D. [Environmental Protection Agency, Portland, OR (United States). Oregon Operations Office; Jenkins, T.F. [Army Cold Regions Research and Engineering Lab., Hanover, NH (United States); Sisk, W.E. [Army Environmental Center, Aberdeen Proving Grounds, MD (United States)

1996-09-01T23:59:59.000Z

406

Dynamic provisioning in next-generation data centers with on-site power production  

Science Conference Proceedings (OSTI)

The critical need for clean and economical sources of energy is transforming data centers that are primarily energy consumers to also energy producers. We focus on minimizing the operating costs of next-generation data centers that can jointly optimize ... Keywords: data centers, dynamic provisioning, on-site power production, online algorithm

Jinlong Tu, Lian Lu, Minghua Chen, Ramesh K. Sitaraman

2013-01-01T23:59:59.000Z

407

SCR Catalyst Disposal, Recycle, and On-site Washing Options and Experience  

Science Conference Proceedings (OSTI)

As Selective Catalytic Reduction (SCR) technology becomes more widespread and the catalyst fleet ages, cost-effective and environmentally friendly approaches are need to handle the increasing volumes of spent catalyst or extend its life through simple on-site processing. This report addresses various issues related to catalyst rejuvenation, cleaning, recycling, and disposal.

2008-12-03T23:59:59.000Z

408

DISTANT EDUCATION OF MEDICAL DOCTORS FOR DEALING WITH ON-SITE EMERGENCY SITUATIONS.  

E-Print Network (OSTI)

1 DISTANT EDUCATION OF MEDICAL DOCTORS FOR DEALING WITH ON-SITE EMERGENCY SITUATIONS. V. Andersen that might be unusual compared to the daily routine. In major emergencies, the medical team is moved to the site of the emergency instead of waiting for the casualties at the casualty ward. Ensuring fast

409

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

410

Decision analysis for INEL hazardous waste storage  

Science Conference Proceedings (OSTI)

In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

Page, L.A.; Roach, J.A.

1994-01-01T23:59:59.000Z

411

Corrosion in ICPP fuel storage basins  

SciTech Connect

The Idaho Chemical Processing Plant currently stores irradiated nuclear fuel in fuel storage basins. Historically, fuel has been stored for over 30 years. During the 1970`s, an algae problem occurred which required higher levels of chemical treatment of the basin water to maintain visibility for fuel storage operations. This treatment led to higher levels of chlorides than seen previously which cause increased corrosion of aluminum and carbon steel, but has had little effect on the stainless steel in the basin. Corrosion measurements of select aluminum fuel storage cans, aluminum fuel storage buckets, and operational support equipment have been completed. Aluminum has exhibited good general corrosion rates, but has shown accelerated preferential attack in the form of pitting. Hot dipped zinc coated carbon steel, which has been in the basin for approximately 40 years, has shown a general corrosion rate of 4 mpy, and there is evidence of large shallow pits on the surface. A welded Type 304 stainless steel corrosion coupon has shown no attack after 13 years exposure. Galvanic couples between carbon steel welded to Type 304 stainless steel occur in fuel storage yokes exposed to the basin water. These welded couples have shown galvanic attack as well as hot weld cracking and intergranular cracking. The intergranular stress corrosion cracking is attributed to crevices formed during fabrication which allowed chlorides to concentrate.

Dirk, W.J.

1993-09-01T23:59:59.000Z

412

Underground Natural Gas Storage by Storage Type  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

413

Underground Natural Gas Storage by Storage Type  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

414

ASCR Science Network Requirements  

E-Print Network (OSTI)

ASCR Program Office) Brent Draney, NERSC (Networking andSecurity) Richard Gerber, NERSC (User Services) Mike Helm,DOEGrids/PKI) Jason Hick, NERSC (Storage) Susan Hicks,

Dart, Eli

2010-01-01T23:59:59.000Z

415

BES Science Network Requirements  

E-Print Network (OSTI)

Linac Coherent Light Source (LCLS), located at SLAC, beganfor exploiting the unique LCLS scientific capabilities areshort-term storage using the LCLS offline system. Access to

Dart, Eli

2011-01-01T23:59:59.000Z

416

220-MW compressed air storage  

Science Conference Proceedings (OSTI)

SOYLAND Power Cooperative, Inc., a Decatur, Illinois based co-op, could get reasonably priced baseload power from neighboring utilities, had a plant of its own planned for the near future as well as a share in another, but peaking power, generated by oil and gas, to meet surges in demand, was very costly. The co-op's solution, first in the U.S., is a 220-megawatt compressed air energy storage system (CAES), which the electric utility industry is watching with great interest. CAES splits the two basic stages of a conventional gas turbine, making the most of baseload power while using the least peaking or intermediate fuel. During off-peak periods, inexpensive baseload electricity from coal or nuclear power plants runs a combination motor-generator in motor mode which, in turn, operates a compressor. The compressed air is cooled and pumped into an underground storage reservoir hundreds of thousands of cubic yards in volume and about two thousand feet (about 610 m) below the surface. There the air remains, at pressures up to about 60 atm (6.1 MPa), until peaking or intermediate power is required. Then, the air is released into a combustor at a controlled rate, heated by oil or gas, and expanded through a turbine. The turbine drives the motor-generator in a generator mode, thereby supplying peaking or intermediate power to the grid.

Lihach, N.

1983-01-01T23:59:59.000Z

417

Storage Ring Operation Modes  

NLE Websites -- All DOE Office Websites (Extended Search)

Longitudinal bunch profile and Up: APS Storage Ring Parameters Longitudinal bunch profile and Up: APS Storage Ring Parameters Previous: Source Parameter Table Storage Ring Operation Modes Standard Operating Mode, top-up Fill pattern: 102 mA in 24 singlets (single bunches) with a nominal current of 4.25 mA and a spacing of 153 nanoseconds between singlets. Lattice configuration: Low emittance lattice with effective emittance of 3.1 nm-rad and coupling of 1%. Bunch length (rms): 33.5 ps. Refill schedule: Continuous top-up with single injection pulses occurring at a minimum of two minute intervals, or a multiple of two minute intervals. Special Operating Mode - 324 bunches, non top-up Fill pattern: 102 mA in 324 uniformly spaced singlets with a nominal single bunch current of 0.31 mA and a spacing of 11.37 nanoseconds between singlets.

418

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh/100 kW kWh/100 kW Flywheel Energy Storage Module * 100KWh - 1/8 cost / KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft / Hub (which limits surface speed) * Flexible Motor Magnets on Rim ID * Develop Touch-down System for Earthquake Flying Rim Eliminate Shaft and Hub Levitate on Passive Magnetic Bearings Increase Rim Tip Speed Larger Diameter Thinner Rim Stores More Energy 4 X increase in Stored Energy with only 60% Increase in Weight Development of a 100 kWh/100 kW Flywheel Energy Storage Module High Speed, Low Cost, Composite Ring with Bore-Mounted Magnetics Current State of the Art Flywheel Limitations of Existing Flywheel * 15 Minutes of storage * Limited to Frequency Regulation Application * Rim Speed (Stored Energy) Limited by Hub Strain and Shaft Dynamics

419

Inertial energy storage device  

DOE Patents (OSTI)

The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

Knight, Jr., Charles E. (Knoxville, TN); Kelly, James J. (Oak Ridge, TN); Pollard, Roy E. (Powell, TN)

1978-01-01T23:59:59.000Z

420

Comparison of cask and drywell storage concepts for a monitored retrievable storage/interim storage system  

SciTech Connect

The Department of Energy, through its Richland Operations Office is evaluating the feasibility, timing, and cost of providing a federal capability for storing the spent fuel, high-level wastes, and transuranic wastes that DOE may be obligated by law to manage until permanent waste disposal facilities are available. Three concepts utilizing a monitored retrievable storage/interim storage (MRS/IS) facility have been developed and analyzed. The first concept, co-location with a reprocessing plant, has been developed by staff of Allied General Nuclear Services. the second concept, a stand-alone facility, has been developed by staff of the General Atomic Company. The third concept, co-location with a deep geologic repository, has been developed by the Pacific Northwest Laboratory with the assistance of the Westinghouse Hanford Company and Kaiser Engineers. The objectives of this study are: to develop preconceptual designs for MRS/IS facilities: to examine various issues such as transportation of wastes, licensing of the facilities, and environmental concerns associated with operation of such facilities; and to estimate the life-cycle costs of the facilities when operated in response to a set of scenarios that define the quantities and types of waste requiring storage in specific time periods, generally spanning the years 1989 to 2037. Three scenarios are examined to develop estimates of life-cycle costs for the MRS/IS facilities. In the first scenario, the reprocessing plant is placed in service in 1989 and HLW canisters are stored until a repository is opened in the year 1998. Additional reprocessing plants and repositories are placed in service at intervals as needed to meet the demand. In the second scenario, the reprocessing plants are delayed in starting operations by 10 years, but the repositories open on schedule. In the third scenario, the repositories are delayed 10 years, but the reprocessing plants open on schedule.

Rasmussen, D.E.

1982-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY  

Science Conference Proceedings (OSTI)

The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.

RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

2009-04-29T23:59:59.000Z

422

Thermal energy storage material  

DOE Patents (OSTI)

A thermal energy storage material which is stable at atmospheric temperature and pressure and has a melting point higher than 32.degree.F. is prepared by dissolving a specific class of clathrate forming compounds, such as tetra n-propyl or tetra n-butyl ammonium fluoride, in water to form a substantially solid clathrate. The resultant thermal energy storage material is capable of absorbing heat from or releasing heat to a given region as it transforms between solid and liquid states in response to temperature changes in the region above and below its melting point.

Leifer, Leslie (Hancock, MI)

1976-01-01T23:59:59.000Z

423

NV energy electricity storage valuation : a study for the DOE Energy Storage Systems program.  

SciTech Connect

This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority (%22BA%22) as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 (%22Pay-for-performance%22). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader [Pacific Northwest National Laboratory, Richland, WA; Jin, Chunlian [Pacific Northwest National Laboratory, Richland, WA

2013-06-01T23:59:59.000Z

424

Storage Business Model White Paper  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Business Model White Paper Storage Business Model White Paper Summary June 11 2013 Storage Business Model White Paper - Purpose  Identify existing business models for investors/operators, utilities, end users  Discuss alignment of storage "value proposition" with existing market designs and regulatory paradigms  Difficulties in realizing wholesale market product revenue streams for distributed storage - the "bundled applications" problem  Discuss risks/barriers to storage adoption and where existing risk mitigation measures fall down  Recommendations for policy/research steps - Alternative business models - Accelerated research into life span and failure modes

425

Spent-fuel-storage alternatives  

Science Conference Proceedings (OSTI)

The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

Not Available

1980-01-01T23:59:59.000Z

426

Underground storage tank management plan  

Science Conference Proceedings (OSTI)

The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

NONE

1994-09-01T23:59:59.000Z

427

Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant  

SciTech Connect

The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

Guenther, R.J.; Johnson, A.B. Jr.; Lund, A.L.; Gilbert, E.R. [and others

1994-11-01T23:59:59.000Z

428

Technical Conference on the Criteria for Designation of NIETCs: On-Site Final Attendee List  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ON-SITE FINAL ATTENDEE LIST ON-SITE FINAL ATTENDEE LIST Poonum Agrawal U.S. Department of Energy Email: poonum.agrawal@hq.doe.gov Parveen Baig Iowa Utilities Board Email: parveen.baig@iub.state.ia.us Derek Bandera Reliant Energy, Inc. Email: dbandera@reliant.com Diane Barney New York Dept. of Public Service Email: diane_barney@dps.state.ny.us Joel Bearden Cargill Power Markets, LLC Email: joel_bearden@cargill.com Michael Bednarz US Department of Energy - Midwest Regional Office Email: michael.bednarz@ee.doe.gov Mark Bennett Electric Power Supply Association Email: mbennett@epsa.org Bradley Bentley Sempra Energy Utility Email: bbentley@semprautilities.com Heather Bergman The Keystone Center Email: hbergman@keystone.org Ricky Bittle Arkansas Electric Cooperative

429

NGLW RCRA Storage Study  

Science Conference Proceedings (OSTI)

The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

2000-06-01T23:59:59.000Z

430

Electrical Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrochemical Flow Storage System Typical Cell Power Density (Wcm 2 ) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 UTRC Conventional Conventional flow battery cell UTRC flow battery...

431

Flash Storage Today  

Science Conference Proceedings (OSTI)

Can flash memory become the foundation for a new tier in the storage hierarchy? The past few years have been an exciting time for flash memory. The cost has fallen dramatically as fabrication has become more efficient and the market has grown; the density ...

Adam Leventhal

2008-07-01T23:59:59.000Z

432

Alkaline storage battery  

Science Conference Proceedings (OSTI)

An alkaline storage battery having located in a battery container a battery element comprising a positive electrode, a negative electrode, a separator and a gas ionizing auxiliary electrode, in which the gas ionizing electrode is contained in a bag of microporous film, is described.

Suzuki, S.

1984-02-28T23:59:59.000Z

433

Flywheel Energy Storage  

Science Conference Proceedings (OSTI)

Flywheels are under consideration as an alternative for electrochemical batteries in a variety of applications This summary report provides a discussion of the mechanics of flywheels and magnetic bearings, the general characteristics of inertial energy storage systems, design considerations for flywheel systems, materials for advanced flywheels, and cost considerations.

1997-09-03T23:59:59.000Z

434

Cryptographic cloud storage  

Science Conference Proceedings (OSTI)

We consider the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer. We describe, at a high level, several architectures that combine recent and ...

Seny Kamara; Kristin Lauter

2010-01-01T23:59:59.000Z

435

NV Energy Electricity Storage Valuation  

SciTech Connect

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

436

Gas Hydrate Storage of Natural Gas  

Science Conference Proceedings (OSTI)

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

437

Carbon-based Materials for Energy Storage  

E-Print Network (OSTI)

Flexible, lightweight energy-storage devices are of greatstrategy to fabricate flexible energy-storage devices.Flexible, lightweight energy-storage devices (batteries and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

438

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

439

Storage/Handling | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

StorageHandling StorageHandling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management...

440

Nanostructured Materials for Energy Generation and Storage  

E-Print Network (OSTI)

for Electrochemical Energy Storage Nanostructured Electrodesof Electrode Design for Energy Storage and Generation .batteries and their energy storage efficiency. vii Contents

Khan, Javed Miller

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Storage Demonstration Project Locations | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects...

442

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withGeneration and Energy Storage," presented at Frontiers ofStudy of Underground Energy Storage Using High-Pressure,

Authors, Various

2011-01-01T23:59:59.000Z

443

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

444

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

B. Quale. Seasonal storage of thermal energy in water in theand J. Schwarz, Survey of Thermal Energy Storage in AquifersSecond Annual Thermal Energy Storage Contractors'

Authors, Various

2011-01-01T23:59:59.000Z

445

Nuclear Fuels Storage & Transportation Planning Project | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown...

446

Fuel Cell Technologies Office: Hydrogen Storage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Consumer Information Hydrogen Storage Search Search Help Hydrogen Storage EERE Fuel Cell Technologies Office Hydrogen Storage Printable Version Share this resource Send...

447

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

of electricity and natural gas DER No Heat Storage: therecovery and storage) utility electricity and natural gasbut no heat storage, a 200 kW natural gas reciprocating

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

448

Natural Gas Underground Storage Capacity (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of...

449

The Implications of Carbon Taxation on Microgrid Adoption of Small-Scale On-Site Power Generation Using  

E-Print Network (OSTI)

LBNL-49309 The Implications of Carbon Taxation on Microgrid Adoption of Small-Scale On-Site Power .................................................................................................................1 1.1 Microgrid Concept

450

Prince George's County Underground Storage Act (Maryland) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prince George's County Underground Storage Act (Maryland) Prince George&#039;s County Underground Storage Act (Maryland) Prince George's County Underground Storage Act (Maryland) < Back Eligibility Commercial Retail Supplier Tribal Government Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment A gas storage company may invoke eminent domain to acquire property in Prince George's County for underground gas storage purposes. The area acquired must lie not less than 800 feet below the surface of a maximum of 12,000 acres of land, and may be owned by a public body. A permit from the Department of the Environment, along with an order from the Public Service Commission, is required prior to the use of eminent domain. The Act contains further information on eminent domain, landowner, and property

451

A Brief Survey Of Tertiary Storage Systems And Research  

E-Print Network (OSTI)

This report summarizes current state of the art in tertiary storage systems. We also summarize the current technologies and research efforts to integrate tertiary storage in operating systems, databases and advanced applications. Appeared in ACM Symposium on Applied Computing, ACM SAC, San Jose Feb.-Mar. 1997 1 Introduction With the recent improvements in network and processor speeds, several data intensive applications have become much more feasible than ever before. These applications are characterized by very large computational and storage requirements. In the present commercial setting and most likely in the near future, the only practical solution for storing such enormous amounts of data is Work partially supported by a research grant from NSF/ARPA/NASA IRI9411330, and from NSF CDA9421978 and by a research gift from NEC Japan. tertiary storage. Although tertiary storage, in particular magnetic tapes, has been used solely for archiving or backup purposes, the exploding stora...

S. Prabhakar; D. Agrawal; A. El Abbadi; A. Singh; A. El; Abbadi A. Singh

1997-01-01T23:59:59.000Z

452

Advanced thermal-energy-storage concept definition study for solar Brayton power plants  

DOE Green Energy (OSTI)

The design and operating criteria to be used in the Advanced Thermal Energy Storage Study are described. The storage system operating requirements and design standards are outlined and the corresponding power plant interface requirements are given. Each of the three alternative high temperature thermal energy storage systems (phase change, thermochemical, and sensible heat) is described. The approach and criteria to be used in developing energy cost numbers are described, and the systems requirements data and the requirements perturbations to be used in the trade studies are summarized. All of the requirements data to be used are compiled. (LEW)

Not Available

1976-08-01T23:59:59.000Z

453

Storage Ring | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

The Electron Storage Ring The 7-GeV electrons are injected into the 1104-m-circumference storage ring, a circle of more than 1,000 electromagnets and associated equipment, located...

454

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, nonbinding, and nonlegal

455

Thermal energy storage application areas  

DOE Green Energy (OSTI)

The use of thermal energy storage in the areas of building heating and cooling, recovery of industrial process and waste heat, solar power generation, and off-peak energy storage and load management in electric utilities is reviewed. (TFD)

Not Available

1979-03-01T23:59:59.000Z

456

Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013  

SciTech Connect

This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

Kerry L. Nisson

2012-10-01T23:59:59.000Z

457

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term -...

458

Application of Energy Storage To Solar Electric Propulsion Orbital Transfer  

E-Print Network (OSTI)

Solar electric propulsion uses solar panels to generate power for electric thrusters. Using stored energy makes it possible to thrust through eclipses, but requires that some of the solar power collected during the sunlit portion of the trajectory be used to recharge the storage system. Previous researchers have reported that the required energy storage mass can be prohibitive. However, the use of high-speed flywheels for energy storage can provide advantages. In this paper, we compare the effectiveness of orbit transfers using and without using energy storage. The orbit transfers are developed as sequences of time-optimal circle-to-circle planar transfers from low-Earth orbit to geostationary orbit. We develop techniques for solving the appropriate boundary value problems, and illustrate tradeoffs between solar array and flywheel-battery masses for transfers

Mark W. Marasch; Christopher D. Hall

1999-01-01T23:59:59.000Z

459

Hydrogen Storage in Wind Turbine Towers: Design Considerations; Preprint  

DOE Green Energy (OSTI)

The paramount considerations associated with a hydrogen tower are corrosion (in the form of hydrogen embrittlement) and structural failure (through bursting or fatigue life degradation). Although hydrogen embrittlement (HE) requires more research and experimentation, it does not appear to prohibit the use of turbine towers for hydrogen storage. Furthermore, the structural modifications required to store hydrogen in a tower are technically feasible. We discovered that hydrogen towers have a''crossover pressure'' at which their critical mode of failure crosses over from fatigue to bursting. The crossover pressure for many turbine towers is between 10 and 15 atm. The cost of hydrogen storage per unit of storage capacity is lowest near the crossover pressure. Above the crossover pressure, however, storage costs rise quickly.

Kottenstette, R.; Cotrell, J.

2003-09-01T23:59:59.000Z

460

Normal matter storage of antiprotons  

SciTech Connect

Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

Campbell, L.J.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "require on-site storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

COSBench: cloud object storage benchmark  

Science Conference Proceedings (OSTI)

With object storage systems being increasingly recognized as a preferred way to expose one's storage infrastructure to the web, the past few years have witnessed an explosion in the acceptance of these systems. Unfortunately, the proliferation of available ... Keywords: benchmark tool, object storage

Qing Zheng; Haopeng Chen; Yaguang Wang; Jian Zhang; Jiangang Duan

2013-04-01T23:59:59.000Z

462

Hybrid electrical energy storage systems  

Science Conference Proceedings (OSTI)

Electrical energy is a high quality form of energy that can be easily converted to other forms of energy with high efficiency and, even more importantly, it can be used to control lower grades of energy quality with ease. However, building a cost-effective ... Keywords: charge, electrical storage, energy, energy storage, hybrid storage, management

Massoud Pedram; Naehyuck Chang; Younghyun Kim; Yanzhi Wang

2010-08-01T23:59:59.000Z

463

Energy Storage & Power Electronics 2008 Peer Review - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

& Power Electronics 2008 Peer Review - Energy & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that covered a broad range of new and ongoing, state-of-the-art, energy storage and power electronics technologies, including updates on the collaborations among DOE/ESPE, CEC in California, and NYSERDA in New York. Energy Storage Systems (ESS) presentations are available below. ESPE 2008 Peer Review - EAC Energy Storage Subcommittee - Brad Roberts, S&C

464

Re-evaluation of monitored retrievable storage concepts  

SciTech Connect

In 1983, as a prelude to the monitored retrievable storage (MRS) facility conceptual design, the Pacific Northwest Laboratory (PNL) conducted an evaluation for the US Department of Energy (DOE) that examined alternative concepts for storing spent LWR fuel and high- level wastes from fuel reprocessing. The evaluation was made considering nine concepts for dry away-from-reactor storage. The nine concepts evaluated were: concrete storage cask, tunnel drywell, concrete cask-in-trench, open-cycle vault, metal casks (transportable and stationary), closed-cycle vault, field drywell, and tunnel-rack vault. The purpose and scope of the re-evaluation did not require a repetition of the expert-based examinations used earlier. Instead, it was based on more detailed technical review by a small group, focusing on changes that had occurred since the initial evaluation was made. Two additional storage concepts--the water pool and the horizontal modular storage vault (NUHOMS system)--were ranked along with the original nine. The original nine concepts and the added two conceptual designs were modified as appropriate for a scenario with storage capacity for 15,000 MTU of spent fuel. Costs, area requirements, and technical and historical data pertaining to MRS storage were updated for each concept.

Fletcher, J.F.; Smith, R.I.

1989-04-01T23:59:59.000Z

465

Underground Storage Tank Act (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act (West Virginia) Act (West Virginia) Underground Storage Tank Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored therein, which may occur as

466

Renewable generation and storage project industry and laboratory recommendations  

DOE Green Energy (OSTI)

The US Department of Energy Office of Utility Technologies is planning a series of related projects that will seek to improve the integration of renewable energy generation with energy storage in modular systems. The Energy Storage Systems Program and the Photovoltaics Program at Sandia National Laboratories conducted meetings to solicit industry guidance and to create a set of recommendations for the proposed projects. Five possible projects were identified and a three pronged approach was recommended. The recommended approach includes preparing a storage technology handbook, analyzing data from currently fielded systems, and defining future user needs and application requirements.

Clark, N.H.; Butler, P.C.; Cameron, C.P.

1998-03-01T23:59:59.000Z

467

Structural Integrity Program for INTEC Calcined Solids Storage Facilities  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Jeffrey Bryant

2008-08-30T23:59:59.000Z

468

Computer modeling of ORNL storage tank sludge mobilization and mixing  

SciTech Connect

This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks.

Terrones, G.; Eyler, L.L.

1993-09-01T23:59:59.000Z

469

105-H Reactor Interim Safe Storage Project Final Report  

SciTech Connect

The following information documents the decontamination and decommissioning of the 105-H Reactor facility, and placement of the reactor core into interim safe storage. The D&D of the facility included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, decontamination, demolition of the structure, and restoration of the site. The ISS work also included construction of the safe storage enclosure, which required the installation of a new roofing system, power and lighting, a remote monitoring system, and ventilation components.

E.G. Ison

2008-11-08T23:59:59.000Z

470

Energy Storage Technical and Economic Analysis Program. Annual report  

DOE Green Energy (OSTI)

The DOE Energy Storage program over the last several years has evaluated a large number of energy storage technologies, developed promising technologies, and successfully transferred new technologies to the private sector. In FY 1985 specific tasks involved in this area included: Battery Systems Requirements Analysis, Statistical Analysis of Battery Failures, and Research Needs for Corrosion Control and Prevention in Energy Conservation Systems. Battery cost analysis, R and D planning, and technology transfer/market analysis are also reported.

Not Available

1985-11-01T23:59:59.000Z

471

Spent nuclear fuel Canister Storage Building CDR Review Committee report  

SciTech Connect

The Canister Storage Building (CSB) is a subproject under the Spent Nuclear Fuels Major System Acquisition. This subproject is necessary to design and construct a facility capable of providing dry storage of repackaged spent fuels received from K Basins. The CSB project completed a Conceptual Design Report (CDR) implementing current project requirements. A Design Review Committee was established to review the CDR. This document is the final report summarizing that review

Dana, W.P.

1995-12-01T23:59:59.000Z

472

NATURAL GAS STORAGE ENGINEERING Kashy Aminian  

E-Print Network (OSTI)

NATURAL GAS STORAGE ENGINEERING Kashy Aminian Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Keywords: Gas Storage, Natural Gas, Storage, Deliverability, Inventory Chapters Glossary Bibliography Biographical Sketch Summary Underground storage of natural gas

Mohaghegh, Shahab

473

Interim Storage of Used or Spent Nuclear Fuel Position Statement  

E-Print Network (OSTI)

The American Nuclear Society (ANS) supports the safe, controlled, licensed, and regulated interim storage of used nuclear fuel (UNF) (irradiated, spent fuel from a nuclear power reactor) until disposition can be determined and completed. ANS supports the U.S. Nuclear Regulatory Commission’s (NRC’s) determination that “spent fuel generated in any reactor can be stored safely and without significant environmental impacts for at least 30 years beyond the licensed life for operation. ” 1 Current operational and decommissioned nuclear power plants in the United States were licensed with the expectation that the UNF would be stored at the nuclear power plant site until shipment to an interim storage facility, reprocessing plant, or permanent storage. Because of delays in Federal programs and policy issues, utilities have been forced to store UNF. Current means of interim storage of UNF at nuclear power plant sites include storage of discharged fuel in a water-filled pool or in a sealed dry cask, both under safe, controlled, and monitored conditions. This UNF interim storage is designed, managed, and controlled to minimize or preclude potential radiological hazards or material releases. At nuclear power plant sites in the United States and internationally, this interim storage is regulated under site license requirements and technical specifications imposed by the national or state regulator. In the United States, NRC is the licensing and regulatory authority. ANS believes that UNF interim storage

unknown authors

2008-01-01T23:59:59.000Z

474

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

475

gas cylinder storage guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gas Cylinder Storage Guidelines Compressed Gas Cylinder Storage Guidelines All cylinders must be stored vertical, top up across the upper half the cylinder but below the shoulder. Small cylinder stands or other methods may be appropriate to ensure that the cylinders are secured from movement. Boxes, cartons, and other items used to support small cylinders must not allow water to accumulate and possible cause corrosion. Avoid corrosive chemicals including salt and fumes - keep away from direct sunlight and keep objects away that could fall on them. Use Gas pressure regulators that have been inspected in the last 5 years. Cylinders that contain fuel gases whether full or empty must be stored away from oxidizer cylinders at a minimum of 20 feet. In the event they are stored together, they must be separated by a wall 5 feet high with

476

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Options in the Illinois Basin - Phase III DE-FC26-05NT42588 Robert J. Finley and the MGSC Project Team Illinois State Geological Survey (University of Illinois) and Schlumberger Carbon Services U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 * The Midwest Geological Sequestration Consortium is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal

477

NSLS VUV Storage Ring  

NLE Websites -- All DOE Office Websites (Extended Search)

VUV Storage Ring VUV Storage Ring VUV Normal Operations Operating Parameters (pdf) Insertion Devices Flux & Brightness Orbit Stability Lattice Information (pdf) Lattice : MAD Dataset Mechanical Drawing (pdf) VUV Operating Schedule Introduction & History The VUV Ring at the National Synchrotron Light Source was one of the first of the 2nd generation light sources to operate in the world. Initially designed in 1976 the final lattice design was completed in 1978 shortly after funding was approved. Construction started at the beginning of FY 1979 and installation of the magnets was well underway by the end of FY 1980. The first stored beam was achieved in December of 1981 at 600 MeV and the first photons were delivered to beamlines in May 1982, with routine beam line operations underway by the start of FY 1983. The number of beam

478

Solar panel with storage  

SciTech Connect

A self contained, fully automatic, vertical wall panel, solar energy system characterized by having no moving parts in the panel. The panel is substantially a shallow rectangular box having a closed perimeter, an outer insulating chamber which is substantially a double glazed window, and an inner energy storage chamber which is provided with containers of phase change materials. The energy storage chamber is provided with air entrance and exit passages which communicate with the space to be heated. Thermostatically controlled blowers serve to move air from the space to be heated across the containers of phase change material and back to the space to be heated. Thermostatically controlled blowers also serve to move insulating material into and out of the insulating chamber at appropriate times.

Zilisch, K.P.

1984-05-08T23:59:59.000Z

479

Superconducting magnetic energy storage  

SciTech Connect

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

480

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) More Documents & Publications Webinar Presentation: Energy Storage Solutions for Microgrids (November...