National Library of Energy BETA

Sample records for require carbon control

  1. Precise carbon control of fabricated stainless steel

    DOE Patents [OSTI]

    Nilsen, R.J.

    1975-12-01

    A process is described for controlling the carbon content of fabricated stainless steel components including the steps of heat treating the component in hydrogen atmospheres of varying dewpoints and carbon potentials.

  2. CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT Citation Details In-Document Search Title: CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE ...

  3. Requirements definition for Hanford Access Control System

    SciTech Connect (OSTI)

    Curry, R.H.; Anema, R.J.; Byers, W.R.; Champion, R.E.; Forsberg, J.I.; Fritz, R.L.; Glasscock, J.A.; Keck, R.D.; McRae, L.P.; Morales, T.P.; Sams, M.A.; Schwartz, M.J.; Vickery, E.A.

    1990-03-01

    This document defines the philosophy for access control strategy at the Department of Energy (DOE) Hanford Site. It describes the required elements necessary for effective access control system applications. The document specifies performance requirements for various levels and types of access control equipment. It also discusses methods for measuring the performance of access control equipment and processes. Selected guidance related to testing and maintenance of various levels and types of access control equipment also is included. This document addresses an essential element of the overall security program at Hanford. It supports the DOE philosophy for security programs as defined in the DOE Orders. As stated in DOE Order 5632.1A (Protection Program Operations), ``physical protection of security interests encompasses three major activities: physical security systems, protective forces, and system performance tests.``

  4. Federal Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold W.

    2011-04-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  5. Technical safety requirements control level verification

    SciTech Connect (OSTI)

    STEWART, J.L.

    1999-05-21

    A Technical Safety Requirement (TSR) control level verification process was developed for the Tank Waste Remediation System (TWRS) TSRs at the Hanford Site in Richland, WA, at the direction of the US. Department of Energy, Richland Operations Office (RL). The objective of the effort was to develop a process to ensure that the TWRS TSR controls are designated and managed at the appropriate levels as Safety Limits (SLs), Limiting Control Settings (LCSs), Limiting Conditions for Operation (LCOs), Administrative Controls (ACs), or Design Features. The TSR control level verification process was developed and implemented by a team of contractor personnel with the participation of Fluor Daniel Hanford, Inc. (FDH), the Project Hanford Management Contract (PHMC) integrating contractor, and RL representatives. The team was composed of individuals with the following experience base: nuclear safety analysis; licensing; nuclear industry and DOE-complex TSR preparation/review experience; tank farm operations; FDH policy and compliance; and RL-TWRS oversight. Each TSR control level designation was completed utilizing TSR control logic diagrams and TSR criteria checklists based on DOE Orders, Standards, Contractor TSR policy, and other guidance. The control logic diagrams and criteria checklists were reviewed and modified by team members during team meetings. The TSR control level verification process was used to systematically evaluate 12 LCOs, 22 AC programs, and approximately 100 program key elements identified in the TWRS TSR document. The verification of each TSR control required a team consensus. Based on the results of the process, refinements were identified and the TWRS TSRs were modified as appropriate. A final report documenting key assumptions and the control level designation for each TSR control was prepared and is maintained on file for future reference. The results of the process were used as a reference in the RL review of the final TWRS TSRs and control suite. RL

  6. Nanotube array controlled carbon plasma deposition

    SciTech Connect (OSTI)

    Qian, Shi; Cao, Huiliang; Liu, Xuanyong; Ding, Chuanxian

    2013-06-17

    Finding approaches to control the elementary processes of plasma-solid interactions and direct the fluxes of matter at nano-scales becomes an important aspect in science. This letter reports that, by taking advantages of the spacing characteristics of discrete TiO{sub 2} nanotube arrays, the flying trajectories and the subsequent implantation and deposition manner of energetic carbon ions can be directed and controlled to fabricate hollow conical arrays. The study provides an alternative method for plasma nano-manufacturing.

  7. Density controlled carbon nanotube array electrodes

    DOE Patents [OSTI]

    Ren, Zhifeng F.; Tu, Yi

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  8. Implementation of subsidence control regulatory requirements

    SciTech Connect (OSTI)

    Barkley, D.

    1999-07-01

    Underground coal mining in Illinois has shown an increasing percentage of total coal mined relative to surface mining. In the past 20 years, the percentage of underground to surface mine production has steadily increased. Underground mining is expected to continue to dominate Illinois coal production into the 21st century. The drive for higher production and lower operating costs should increase the number of longwall and high extraction retreat mines. This will be achieved through conversion of existing room and pillar mines or initiation of new underground mining operations. The environmental regulations that govern the mitigation of surface impacts have evolved at both the state and federal level. Federal regulations passed in 1995 modifying the Surface Mining Control and Reclamation Act mandated additional restrictions and regulatory requirements beyond those adopted in 1977. State regulatory bodies that implement the regulations are now working to bring their regulations and procedures into compliance with the oversight federal counterpart. many states have raised concerns over the practical application of certain aspects of the new permitting requirements. This paper describes past and present subsidence regulations in Illinois, their impact on the coal industry and on the landowners above underground coal mining. Potential problems in implementation of the new regulatory requirements as well as additional burdens placed on coal companies to comply with the regulations are explored.

  9. Supercritical carbon dioxide cycle control analysis.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.

    2011-04-11

    This report documents work carried out during FY 2008 on further investigation of control strategies for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle energy converters. The main focus of the present work has been on investigation of the S-CO{sub 2} cycle control and behavior under conditions not covered by previous work. An important scenario which has not been previously calculated involves cycle operation for a Sodium-Cooled Fast Reactor (SFR) following a reactor scram event and the transition to the primary coolant natural circulation and decay heat removal. The Argonne National Laboratory (ANL) Plant Dynamics Code has been applied to investigate the dynamic behavior of the 96 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) S-CO{sub 2} Brayton cycle following scram. The timescale for the primary sodium flowrate to coast down and the transition to natural circulation to occur was calculated with the SAS4A/SASSYS-1 computer code and found to be about 400 seconds. It is assumed that after this time, decay heat is removed by the normal ABTR shutdown heat removal system incorporating a dedicated shutdown heat removal S-CO{sub 2} pump and cooler. The ANL Plant Dynamics Code configured for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) was utilized to model the S-CO{sub 2} Brayton cycle with a decaying liquid metal coolant flow to the Pb-to-CO{sub 2} heat exchangers and temperatures reflecting the decaying core power and heat removal by the cycle. The results obtained in this manner are approximate but indicative of the cycle transient performance. The ANL Plant Dynamics Code calculations show that the S-CO{sub 2} cycle can operate for about 400 seconds following the reactor scram driven by the thermal energy stored in the reactor structures and coolant such that heat removal from the reactor exceeds the decay heat generation. Based on the results, requirements for the shutdown heat removal system may be defined

  10. Transient PrOx carbon monoxide measurement, control, and optimization

    SciTech Connect (OSTI)

    Inbody, M. A.; Borup, R. L.; Tafoya, J.

    2002-01-01

    Fuel processing systems for low temperature polymer electrolyte membrane (PEM) fuel cell systems require control of the carbon monoxide concentration to less than 100 ppm to 10 ppm in the anode feed. Conventional hydrocarbon fuel processors use a water-gas shift (WGS) reactor to react CO with water to form H2 and reduce the CO concentration. The CO conversion is limited by equilibrium at the outlet temperature of the WGS reactor. The WGS outlet CO concentration can range from over 1% to 2000 ppm depending on the system and its operating parameters. At these concentrations, CO poisons low temperature PEM fuel cells and the concentrations needs to be reduced further.

  11. Radiological Control - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    98-2008, Change Notice 1, Radiological Control by Diane Johnson The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities...

  12. Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements

    Broader source: Energy.gov [DOE]

    This tip sheet discusses control strategies for centrifugal pumps with variable flow rate requirements in pumping systems and includes installation considerations.

  13. System requirements specification for waste information and control system

    SciTech Connect (OSTI)

    Harris, R.R.

    1994-09-01

    This document defines the requirements for the Waste Information and Control System (WICS). The document defines the functions, constraints, and objectives that pertain to WICS. This shall serve as the baseline document to ensure the needs of the Hazardous Material Control group (HMC) at 222-S Laboratory are met with regard to assurance of accuracy and quality of data taken with WICS.

  14. Carbon nanochannels elaborated by buckle delamination control on patterned substrates

    SciTech Connect (OSTI)

    Tranchant, J.; Angleraud, B.; Han, X. L.; Landesman, J. P.; Tessier, P. Y.

    2007-07-02

    Carbon nanochannels were achieved using lithographically patterned lines on a silicon substrate as a template to control the buckle delamination of highly equibiaxial compressively stressed thin films. Carbon films were synthesized by ionized physical vapor deposition through inductively coupled plasma magnetron sputtering. The obtained structures exhibit dimensions as small as 500 nm wide and 80 nm high, and may be used in nanofluidic applications. Results regarding the characterization of their growth mechanism and structural analyses by Raman microspectroscopy are presented.

  15. Weathering controls on mechanisms of carbon storage in grassland soils

    SciTech Connect (OSTI)

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-09-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation of Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought.

  16. Deep Borehole Field Test Requirements and Controlled Assumptions.

    SciTech Connect (OSTI)

    Hardin, Ernest

    2015-07-01

    This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientific characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.

  17. Environmental control technology for atmospheric carbon dioxide

    SciTech Connect (OSTI)

    Steinberg, M; Albanese, A S

    1980-01-01

    The impact of fossil fuel use in the United States on worldwide CO/sub 2/ emissions and the impact of increased coal utilization on CO/sub 2/ emission rates are assessed. The aspects of CO/sub 2/ control are discussed as well as the available CO/sub 2/ control points (CO/sub 2/ removal sites). Two control scenarios are evaluated, one based on the absorption of CO/sub 2/ contained in power plant flue gas by seawater; the other, based on absorption of CO/sub 2/ by MEA (Mono Ethanol Amine). Captured CO/sub 2/ is injected into the deep ocean in both cases. The analyses indicate that capture and disposal by seawater is energetically not feasible, whereas capture and disposal using MEA is a possibility. However, the economic penalities of CO/sub 2/ control are significant. The use of non-fossil energy sources, such as hydroelectric, nuclear or solar energy is considered as an alternative for limiting and controlling CO/sub 2/ emissions resulting from fossil energy usage.

  18. State and Regional Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold; Durrant, Marie

    2011-03-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­and-trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

  19. Energy, Carbon-emission and Financial Savings from Thermostat Control

    SciTech Connect (OSTI)

    Blasing, T J; Schroeder, Dana

    2013-08-01

    Among the easiest approaches to energy, and cost, savings for most people is the adjustment of thermostats to save energy. Here we estimate savings of energy, carbon, and money in the United States of America (USA) that would result from adjusting thermostats in residential and commercial buildings by about half a degree Celsius downward during the heating season and upward during the cooling season. To obtain as small a unit as possible, and therefore the least likely to be noticeable by most people, we selected an adjustment of one degree Fahrenheit (0.56 degree Celsius) which is the gradation used almost exclusively on thermostats in the USA and is the smallest unit of temperature that has been used historically. Heating and/or cooling of interior building space for personal comfort is sometimes referred to as space conditioning, a term we will use for convenience throughout this work without consideration of humidity. Thermostat adjustment, as we use the term here, applies to thermostats that control the indoor temperature, and not to other thermostats such as those on water heaters. We track emissions of carbon only, rather than of carbon dioxide, because carbon atoms change atomic partners as they move through the carbon cycle, from atmosphere to biosphere or ocean and, on longer time scales, through the rock cycle. To convert a mass of carbon to an equivalent mass of carbon dioxide (thereby including the mass of the 2 oxygen atoms in each molecule) simply multiply by 3.67.

  20. Enhanced selectivity of zeolites by controlled carbon deposition

    DOE Patents [OSTI]

    Nenoff, Tina M.; Thoma, Steven G.; Kartin, Mutlu

    2006-05-09

    A method for carbonizing a zeolite comprises depositing a carbon coating on the zeolite pores by flowing an inert carrier gas stream containing isoprene through a regenerated zeolite at elevated temperature. The carbonized zeolite is useful for the separation of light hydrocarbon mixtures due to size exclusion and the differential adsorption properties of the carbonized zeolite.

  1. Carbon Dioxide Sealing Capacity: Textural or Compositional Controls?

    SciTech Connect (OSTI)

    Cranganu, Constantin; Soleymani, Hamidreza; Sadiqua, Soleymani; Watson, Kieva

    2013-11-30

    This research project is aiming to assess the carbon dioxide sealing capacity of most common seal-rocks, such as shales and non-fractured limestones, by analyzing the role of textural and compositional parameters of those rocks. We hypothesize that sealing capacity is controlled by textural and/or compositional pa-rameters of caprocks. In this research, we seek to evaluate the importance of textural and compositional parameters affecting the sealing capacity of caprocks. The conceptu-al framework involves two testable end-member hypotheses concerning the sealing ca-pacity of carbon dioxide reservoir caprocks. Better understanding of the elements controlling sealing quality will advance our knowledge regarding the sealing capacity of shales and carbonates. Due to relatively low permeability, shale and non-fractured carbonate units are considered relatively imper-meable formations which can retard reservoir fluid flow by forming high capillary pres-sure. Similarly, these unites can constitute reliable seals for carbon dioxide capture and sequestration purposes. This project is a part of the comprehensive project with the final aim of studying the caprock sealing properties and the relationship between microscopic and macroscopic characteristics of seal rocks in depleted gas fields of Oklahoma Pan-handle. Through this study we examined various seal rock characteristics to infer about their respective effects on sealing capacity in special case of replacing reservoir fluid with super critical carbon dioxide (scCO{sub 2}). To assess the effect of textural and compositional properties on scCO{sub 2} maximum reten-tion column height we collected 30 representative core samples in caprock formations in three counties (Cimarron, Texas, Beaver) in Oklahoma Panhandle. Core samples were collected from various seal formations (e.g., Cherokee, Keys, Morrowan) at different depths. We studied the compositional and textural properties of the core samples using several techniques

  2. Control of carbon balance in a silicon smelting furnace

    DOE Patents [OSTI]

    Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

    1992-12-29

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  3. Evaluation of activated carbon for control of mercury from coal-fired boilers

    SciTech Connect (OSTI)

    Miller, S.; Laudal, D.; Dunham, G.

    1995-11-01

    The ability to remove mercury from power plant flue gas may become important because of the Clean Air Act amendments` requirement that the U.S. Environmental Protection Agency (EPA) assess the health risks associated with these emissions. One approach for mercury removal, which may be relatively simple to retrofit, is the injection of sorbents, such as activated carbon, upstream of existing particulate control devices. Activated carbon has been reported to capture mercury when injected into flue gas upstream of a spray dryer baghouse system applied to waste incinerators or coal-fired boilers. However, the mercury capture ability of activated carbon injected upstream of an electrostatic precipitator (ESP) or baghouse operated at temperatures between 200{degrees} and 400{degrees}F is not well known. A study sponsored by the U.S. Department of Energy and the Electric power Research Institute is being conducted at the University of North Dakota Energy & Environmental Research Center (EERC) to evaluate whether mercury control with sorbents can be a cost-effective approach for large power plants. Initial results from the study were reported last year. This paper presents some of the recent project results. Variables of interest include coal type, sorbent type, sorbent addition rate, collection media, and temperature.

  4. Field Emission from Carbon Films Deposited by Controlled-Low-Energy Beams and CVD Sources

    SciTech Connect (OSTI)

    Lowndes, D.H.; Merkulov, V.I.; Baylor, L.R.; Jellison, Jr., G.E.; Poker, D.B.; Kim, S.; Sohn, M.H.; Paik, N.W.

    1999-11-29

    The principal interests in this work are energetic-beam control of carbon-film properties and the roles of doping and surface morphology in field emission.

  5. Requirements for Control Room Computer-Based Procedures for use in Hybrid Control Rooms

    SciTech Connect (OSTI)

    Le Blanc, Katya Lee; Oxstrand, Johanna Helene; Joe, Jeffrey Clark

    2015-05-01

    Many plants in the U.S. are currently undergoing control room modernization. The main drivers for modernization are the aging and obsolescence of existing equipment, which typically results in a like-for-like replacement of analogue equipment with digital systems. However, the modernization efforts present an opportunity to employ advanced technology that would not only extend the life, but enhance the efficiency and cost competitiveness of nuclear power. Computer-based procedures (CBPs) are one example of near-term advanced technology that may provide enhanced efficiencies above and beyond like for like replacements of analog systems. Researchers in the LWRS program are investigating the benefits of advanced technologies such as CBPs, with the goal of assisting utilities in decision making during modernization projects. This report will describe the existing research on CBPs, discuss the unique issues related to using CBPs in hybrid control rooms (i.e., partially modernized analog control rooms), and define the requirements of CBPs for hybrid control rooms.

  6. Controlled epitaxial graphene growth within removable amorphous carbon corrals

    SciTech Connect (OSTI)

    Palmer, James; Hu, Yike; Hankinson, John; Guo, Zelei; Heer, Walt A. de; Kunc, Jan; Berger, Claire

    2014-07-14

    We address the question of control of the silicon carbide (SiC) steps and terraces under epitaxial graphene on SiC and demonstrate amorphous carbon (aC) corrals as an ideal method to pin SiC surface steps. aC is compatible with graphene growth, structurally stable at high temperatures, and can be removed after graphene growth. For this, aC is first evaporated and patterned on SiC, then annealed in the graphene growth furnace. There at temperatures above 1200?C, mobile SiC steps accumulate at the aC corral that provide effective step flow barriers. Aligned step free regions are thereby formed for subsequent graphene growth at temperatures above 1330?C. Atomic force microscopy imaging supports the formation of step-free terraces on SiC with the step morphology aligned to the aC corrals. Raman spectroscopy indicates the presence of good graphene sheets on the step-free terraces.

  7. National Ignition Facility subsystem design requirements supervisory control software SSDR 1.5.2

    SciTech Connect (OSTI)

    Woodruff, J.; VanArsdall, P.; Bliss, E.

    1996-08-29

    This System Design Requirement document establishes the performance, design, development, and test requirements for the Supervisory Control Software, WBS 1.5.2, which is part of the NIF Integrated Computer Control System (ICCS). This document responds directly to the requirements detailed in ICCS (WBS 1-5).

  8. Transaction-based building controls framework, Volume 2: Platform descriptive model and requirements

    SciTech Connect (OSTI)

    Akyol, Bora A.; Haack, Jereme N.; Carpenter, Brandon J.; Katipamula, Srinivas; Lutes, Robert G.; Hernandez, George

    2015-07-31

    Transaction-based Building Controls (TBC) offer a control systems platform that provides an agent execution environment that meets the growing requirements for security, resource utilization, and reliability. This report outlines the requirements for a platform to meet these needs and describes an illustrative/exemplary implementation.

  9. Activated carbon injection - a mercury control success story

    SciTech Connect (OSTI)

    2008-07-01

    Almost 100 full-scale activated carbon injection (ACI) systems have been ordered by US electric utilities. These systems have the potential to remove over 90% of the mercury in flue, at a cost below $10,000 per pound of mercury removal. Field trials of ACI systems arm outlined. 1 fig.

  10. Controls on terrestrial carbon feedbacks by productivity vs. turnover in the CMIP5 Earth System Models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Koven, C. D.; Chambers, J. Q.; Georgiou, K.; Knox, R.; Negron-Juarez, R.; Riley, W. J.; Arora, V. K.; Brovkin, V.; Friedlingstein, P.; Jones, C. D.

    2015-04-16

    To better understand sources of uncertainty in projections of terrestrial carbon cycle feedbacks, we present an approach to separate the controls on modeled carbon changes. We separate carbon changes into 4 categories using a linearized, equilibrium approach: those arising from changed inputs (productivity-driven changes), and outputs (turnover-driven changes), and apply the analysis separately to the live and dead carbon pools. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations for 5 models, we find that changes to the live pools are primarily explained by productivity-driven changes, with only one model showing large compensating changes to live carbon turnover times. Formore » dead carbon pools, the situation is more complex as all models predict a large reduction in turnover times in response to increases in productivity. This responses arises from the common representation of a broad spectrum of decomposition turnover times via a multi-pool approach, in which flux-weighted turnover times are faster than mass-weighted turnover times. This leads to a shift in the distribution of carbon among dead pools in response to changes in inputs, and therefore a transient but long-lived reduction in turnover times in response to increases in productivity. Since this behavior, a reduction in inferred turnover times resulting from an increase in inputs, is superficially similar to priming processes, but occurring without the mechanisms responsible for priming, we call the phenomenon "false priming", and show that it masks much of the intrinsic changes to dead carbon turnover times as a result of changing climate. These patterns hold across the fully-coupled, biogeochemically-coupled, and radiatively-coupled 1% yr−1 increasing CO2 experiments. We disaggregate inter-model uncertainty in the globally-integrated equilibrium carbon responses to initial turnover times, inital productivity, fractional changes in turnover, and fractional changes in

  11. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Koven, C. D.; Chambers, J. Q.; Georgiou, K.; Knox, R.; Negron-Juarez, R.; Riley, W. J.; Arora, V. K.; Brovkin, V.; Friedlingstein, P.; Jones, C. D.

    2015-09-07

    To better understand sources of uncertainty in projections of terrestrial carbon cycle feedbacks, we present an approach to separate the controls on modeled carbon changes. We separate carbon changes into four categories using a linearized, equilibrium approach: those arising from changed inputs (productivity-driven changes), and outputs (turnover-driven changes), of both the live and dead carbon pools. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations for five models, we find that changes to the live pools are primarily explained by productivity-driven changes, with only one model showing large compensating changes to live carbon turnover times. For dead carbon pools, themore » situation is more complex as all models predict a large reduction in turnover times in response to increases in productivity. This response arises from the common representation of a broad spectrum of decomposition turnover times via a multi-pool approach, in which flux-weighted turnover times are faster than mass-weighted turnover times. This leads to a shift in the distribution of carbon among dead pools in response to changes in inputs, and therefore a transient but long-lived reduction in turnover times. Since this behavior, a reduction in inferred turnover times resulting from an increase in inputs, is superficially similar to priming processes, but occurring without the mechanisms responsible for priming, we call the phenomenon "false priming", and show that it masks much of the intrinsic changes to dead carbon turnover times as a result of changing climate. These patterns hold across the fully coupled, biogeochemically coupled, and radiatively coupled 1 % yr−1 increasing CO2 experiments. We disaggregate inter-model uncertainty in the globally integrated equilibrium carbon responses to initial turnover times, initial productivity, fractional changes in turnover, and fractional changes in productivity. For both the live and dead carbon pools, inter

  12. Prediction of Regulation Reserve Requirements in California ISO Control Area based on BAAL Standard

    SciTech Connect (OSTI)

    Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.; Ma, Jian; Loutan, Clyde

    2013-07-21

    This paper presents new methodologies developed at Pacific Northwest National Laboratory (PNNL) to estimate regulation capacity requirements in the California ISO control area. Two approaches have been developed: (1) an approach based on statistical analysis of actual historical area control error (ACE) and regulation data, and (2) an approach based on balancing authority ACE limit control performance standard. The approaches predict regulation reserve requirements on a day-ahead basis including upward and downward requirements, for each operating hour of a day. California ISO data has been used to test the performance of the proposed algorithms. Results show that software tool allows saving up to 30% on the regulation procurements cost .

  13. Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

    SciTech Connect (OSTI)

    R.L. Sinsabaugh; D.R. Zak; D.L. Moorhead

    2008-02-19

    Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.

  14. National Ignition Facility, subsystem design requirements beam control {ampersand} laser diagnostics SSDR 1.7

    SciTech Connect (OSTI)

    Bliss, E.

    1996-11-01

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development, and test requirements for the Alignment subsystem (WBS 1.7.1), Beam Diagnostics (WBS 1.7.2), and the Wavefront Control subsystem (WBS 1.7. 3) of the NIF Laser System (WBS 1.3). These three subsystems are collectively referred to as the Beam Control & Laser Diagnostics Subsystem. The NIF is a multi-pass, 192-beam, high-power, neodymium-glass laser that meets requirements set forth in the NIF SDR 002 (Laser System). 3 figs., 3 tabs.

  15. Empirical identification of user information requirements in command and control system evaluation

    SciTech Connect (OSTI)

    McCallum, M.C.; Bittner, A.C. Jr. ); Badalamente, R.V. )

    1990-06-01

    This paper summarizes a study that was conducted to address user information requirements for the Force Level Control System. It was the first in a series being conducted at the US Army Tactical Command and Control System Experimentation Site (AES). User information requirements were determined via monitoring and classification of communications during a command and control exercise, as well as through subsequent exercise participant input. Separate measures of observed communication frequency, rated importance, and rated perishability were obtained for a set of information elements that comprised a comprehensive taxonomy of tactical command and control communications content. Analyses were then conducted to explore the relationships between frequency, importance, and perishability as well as develop a comprehensive index of criticality. The resulting comprehensive index of criticality is intended to be used by systems developers in selecting the information to be conveyed and processed by the Force Level Control System. 2 refs., 2 figs.

  16. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional

  17. Addressing Control of Hazardous Energy (COHE) Requirements in a Laser Safety Program

    SciTech Connect (OSTI)

    Woods, Michael; /SLAC

    2012-02-15

    OSHA regulation 29CFR1910.147 specifies control of hazardous energy requirements for 'the servicing and maintenance of machines and equipment in which the unexpected energization or start up of the machines or equipment, or release of stored energy could cause injury to employees.' Class 3B and Class 4 laser beams must be considered hazardous energy sources because of the potential for serious eye injury; careful consideration is therefore needed to safely de-energize these lasers. This paper discusses and evaluates control of hazardous energy principles in this OSHA regulation, in ANSI Z136.1 ''Safe Use of Lasers,'' and in ANSI Z244.1 ''Control of Hazardous Energy, Lockout/Tagout and Alternative Methods.'' Recommendations are made for updating and improving CoHE (control of hazardous energy) requirements in these standards for their applicability to safe laser operations.

  18. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    2001-02-01

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  19. Requirements for quality control of analytical data for the Environmental Restoration Program

    SciTech Connect (OSTI)

    Engels, J.

    1992-12-01

    The Environmental Restoration (ER) Program was established for the investigation and remediation of inactive US Department of Energy (DOE) sites and facilities that have been declared surplus in terms of their previous uses. The purpose of this document is to Specify ER requirements for quality control (QC) of analytical data. Activities throughout all phases of the investigation may affect the quality of the final data product, thus are subject to control specifications. Laboratory control is emphasized in this document, and field concerns will be addressed in a companion document Energy Systems, in its role of technical coordinator and at the request of DOE-OR, extends the application of these requirements to all participants in ER activities. Because every instance and concern may not be addressed in this document, participants are encouraged to discuss any questions with the ER Quality Assurance (QA) Office, the Analytical Environmental Support Group (AESG), or the Analytical Project Office (APO).

  20. Carbonate sequence stratigraphy and controls on carbonate platform development - Case study from Permian of west Texas-New Mexico

    SciTech Connect (OSTI)

    Sarg, J.F. )

    1988-12-01

    The structural history of the Permian basin during the Permian shows two subsidence cycles of 10-20 m.y. duration. These subsidence cycles were major factors in the long-term (10{sup 6}-10{sup 7} m.y.) development of the Permian carbonate platforms. During periods of relatively rapid subsidence, aggradation was dominant; during periods of slow subsidence, major platform progradation occurred. Superimposed on the long-term tectonic cycles is a series of third-order eustatic cycles (0.5-3 m.y.), which controlled development of 27 depositional sequences. Two highstand depositional styles are differentiated here: (1) a keep-up system, which represents a relatively rapid rate of accumulation able to keep pace with periodic rises in sea level and displays a mounded-oblique stratal geometry at the platform margin, and (2) a catch-up system, which represents a relatively slow rate of accumulation and displays a sigmoid profile at the platform margin. Individual strata units of the platform margin and slope area of the catch-up carbonate system have a much longer sea-floor residence time and display significantly greater amounts of early submarine cement. The underlying transgressive systems tract tends to have a keep-up or give-up (i.e., thin, drowned) depositional style.

  1. Real time MHD mode control using ECCD in KSTAR: Plan and requirements

    SciTech Connect (OSTI)

    Joung, M.; Woo, M. H.; Jeong, J. H.; Hahn, S. H.; Yun, S. W.; Lee, W. R.; Bae, Y. S.; Oh, Y. K.; Kwak, J. G.; Yang, H. L.; Namkung, W.; Park, H.; Cho, M. H.; Kim, M. H.; Kim, K. J.; Na, Y. S.; Hosea, J.; Ellis, R.

    2014-02-12

    For a high-performance, advanced tokamak mode in KSTAR, we have been developing a real-time control system of MHD modes such as sawtooth and Neo-classical Tearing Mode (NTM) by ECH/ECCD. The active feedback control loop will be also added to the mirror position and the real-time detection of the mode position. In this year, for the stabilization of NTM that is crucial to plasma performance we have implemented open-loop ECH antenna control system in KSTAR Plasma Control System (PCS) for ECH mirror movement during a single plasma discharge. KSTAR 170 GHz ECH launcher which was designed and fabricated by collaboration with PPPL and POSTECH has a final mirror of a poloidally and toroidally steerable mirror. The poloidal steering motion is only controlled in the real-time NTM control system and its maximum steering speed is 10 degree/sec by DC motor. However, the latency of the mirror control system and the return period of ECH antenna mirror angle are not fast because the existing launcher mirror control system is based on PLC which is connected to the KSTAR machine network through serial to LAN converter. In this paper, we present the design of real time NTM control system, ECH requirements, and the upgrade plan.

  2. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E; Song, Xia; Yuan, Fengming; Goswami, Santonu

    2014-01-01

    Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, a simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.

  3. Energy storage requirements of dc microgrids with high penetration renewables under droop control

    SciTech Connect (OSTI)

    Weaver, Wayne W.; Robinett, Rush D.; Parker, Gordon G.; Wilson, David G.

    2015-01-09

    Energy storage is a important design component in microgrids with high penetration renewable sources to maintain the system because of the highly variable and sometimes stochastic nature of the sources. Storage devices can be distributed close to the sources and/or at the microgrid bus. In addition, storage requirements can be minimized with a centralized control architecture, but this creates a single point of failure. Distributed droop control enables a completely decentralized architecture but, the energy storage optimization becomes more difficult. Our paper presents an approach to droop control that enables the local and bus storage requirements to be determined. Given a priori knowledge of the design structure of a microgrid and the basic cycles of the renewable sources, we found that the droop settings of the sources are such that they minimize both the bus voltage variations and overall energy storage capacity required in the system. This approach can be used in the design phase of a microgrid with a decentralized control structure to determine appropriate droop settings as well as the sizing of energy storage devices.

  4. Energy storage requirements of dc microgrids with high penetration renewables under droop control

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weaver, Wayne W.; Robinett, Rush D.; Parker, Gordon G.; Wilson, David G.

    2015-01-09

    Energy storage is a important design component in microgrids with high penetration renewable sources to maintain the system because of the highly variable and sometimes stochastic nature of the sources. Storage devices can be distributed close to the sources and/or at the microgrid bus. In addition, storage requirements can be minimized with a centralized control architecture, but this creates a single point of failure. Distributed droop control enables a completely decentralized architecture but, the energy storage optimization becomes more difficult. Our paper presents an approach to droop control that enables the local and bus storage requirements to be determined. Givenmore » a priori knowledge of the design structure of a microgrid and the basic cycles of the renewable sources, we found that the droop settings of the sources are such that they minimize both the bus voltage variations and overall energy storage capacity required in the system. This approach can be used in the design phase of a microgrid with a decentralized control structure to determine appropriate droop settings as well as the sizing of energy storage devices.« less

  5. High-Level software requirements specification for the TWRS controlled baseline database system

    SciTech Connect (OSTI)

    Spencer, S.G.

    1998-09-23

    This Software Requirements Specification (SRS) is an as-built document that presents the Tank Waste Remediation System (TWRS) Controlled Baseline Database (TCBD) in its current state. It was originally known as the Performance Measurement Control System (PMCS). Conversion to the new system name has not occurred within the current production system. Therefore, for simplicity, all references to TCBD are equivalent to PMCS references. This SRS will reference the PMCS designator from this point forward to capture the as-built SRS. This SRS is written at a high-level and is intended to provide the design basis for the PMCS. The PMCS was first released as the electronic data repository for cost, schedule, and technical administrative baseline information for the TAAS Program. During its initial development, the PMCS was accepted by the customer, TARS Business Management, with no formal documentation to capture the initial requirements.

  6. Hedberg Research Conference on Fundamental Controls on Flow in Carbonates: Request for Travel Support for Post-Doctoral Fellows

    SciTech Connect (OSTI)

    Pyrak-Nolte, Laura J.

    2013-04-28

    Carbonate reservoirs pose a scientific and engineering challenge to geophysical prediction and monitoring of fluid flow in the subsurface. Difficulties in interpreting hydrological, reservoir and other exploration data arise because carbonates are composed of a hierarchy of geological structures, constituents and processes that span a wide spectrum of length and time scales. What makes this problem particularly challenging is that length scales associated with physical structure and processes are often not discrete, but overlap, preventing the definition of discrete elements at one scale to become the building blocks of the next scale. This is particularly true for carbonates where complicated depositional environments, subsequent post-deposition diagenesis and geochemical interactions result in pores that vary in scale from submicron to centimeters to fractures, variation in fabric composition with fossils, minerals and cement, as well as variations in structural features (e.g., oriented inter- and intra layered - interlaced bedding and/or discontinuous rock units). In addition, this complexity is altered by natural and anthropogenic processes such as changes in stress, fluid content, reactive fluid flow, etc. Thus an accurate geophysical assessment of the flow behavior of carbonate reservoirs requires a fundamental understanding of the interplay of textural and structural features subjected to physical processes that affect and occur on various length and time scales. To address this complexity related to carbonates, a Hedberg conference on “Fundamental Controls on Flow in Carbonates” was held July 8 to 13, 2012, to bring together industry and academic scientists to stimulate innovative ideas that can accelerate research advances related to flow prediction and recovery in carbonate reservoirs. Participants included scientist and engineers from multiple disciplines (such as hydrology, structural geology, geochemistry, reservoir engineering, geophysics

  7. Control Systems Security Center Comparison Study of Industrial Control System Standards against the Control Systems Protection Framework Cyber-Security Requirements

    SciTech Connect (OSTI)

    Robert P. Evans

    2005-09-01

    Cyber security standards, guidelines, and best practices for control systems are critical requirements that have been delineated and formally recognized by industry and government entities. Cyber security standards provide a common language within the industrial control system community, both national and international, to facilitate understanding of security awareness issues but, ultimately, they are intended to strengthen cyber security for control systems. This study and the preliminary findings outlined in this report are an initial attempt by the Control Systems Security Center (CSSC) Standard Awareness Team to better understand how existing and emerging industry standards, guidelines, and best practices address cyber security for industrial control systems. The Standard Awareness Team comprised subject matter experts in control systems and cyber security technologies and standards from several Department of Energy (DOE) National Laboratories, including Argonne National Laboratory, Idaho National Laboratory, Pacific Northwest National Laboratory, and Sandia National Laboratories. This study was conducted in two parts: a standard identification effort and a comparison analysis effort. During the standard identification effort, the Standard Awareness Team conducted a comprehensive open-source survey of existing control systems security standards, regulations, and guidelines in several of the critical infrastructure (CI) sectors, including the telecommunication, water, chemical, energy (electric power, petroleum and oil, natural gas), and transportation--rail sectors and sub-sectors. During the comparison analysis effort, the team compared the requirements contained in selected, identified, industry standards with the cyber security requirements in ''Cyber Security Protection Framework'', Version 0.9 (hereafter referred to as the ''Framework''). For each of the seven sector/sub-sectors listed above, one standard was selected from the list of standards identified

  8. Controllable synthesis and characterization of novel copper-carbon core-shell structured nanoparticles

    SciTech Connect (OSTI)

    Zhai, Jing; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, No. 15 Beisanhuan Dong Lu, Beijing 100029 ; Tao, Xia; Pu, Yuan; Zeng, Xiao-Fei; Chen, Jian-Feng

    2011-06-15

    Highlights: {yields} We reported a facile, green and cheap hydrothermal method to obtain novel copper-carbon core-shell nanoparticles. {yields} The as-formed particles with controllable size and morphology are antioxidant. {yields} The particles with organic-group-loaded surfaces and protective shells are expected to be applied in fields of medicine, electronics, sensors and lubricant. -- Abstract: A facile hydrothermal method was developed for preparing copper-carbon core-shell structured particles through a reaction at 160 {sup o}C in which glucose, copper sulfate pentahydrate and cetyltrimethylammonium bromide were used as starting materials. The original copper-carbon core-shell structured particles obtained were sized of 100-250 nm. The thickness of carbonaceous shells was controlled ranging from 25 to 100 nm by adjusting the hydrothermal duration time and the concentrations of glucose in the process. Products were characterized with transmission electron microscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier transform infrared spectroscopy. Since no toxic materials were involved in the preparation, particles with stable carbonaceous framework and reactive surface also showed promising applications in medicine, electronics, sensors, lubricant, etc.

  9. DOE’s Carbon Storage Advances Featured in Special Issue of International Journal of Greenhouse Gas Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    A special issue of the International Journal of Greenhouse Gas Control (IJGGC) was released on August 17, 2016 highlighting carbon-storage research conducted under the Energy Department’s National Risk Assessment Partnership (NRAP).

  10. Diagnostics and required R and D for control of DEMO grade plasmas

    SciTech Connect (OSTI)

    Park, Hyeon K.

    2014-08-21

    Even if the diagnostics of ITER performs as expected, installation and operation of the diagnostic systems in Demo device will be much harsher than those of the present ITER device. In order to operate the Demo grade plasmas, which may have a higher beta limit, safely with very limited number of simple diagnostic system, it requires a well defined predictable plasma modelling in conjunction with the reliable control system for burn control and potential harmful instabilities. Development of such modelling in ITER is too risky and the logical choice would be utilization of the present day steady state capable devices such as KSTAR and EAST. In order to fulfill this mission, sophisticated diagnostic systems such as 2D/3D imaging systems can validate the physics in the theoretical modeling and challenge the predictable capability.

  11. New York MARKAL: An evaluation of carbon dioxide emission control strategies in New York State

    SciTech Connect (OSTI)

    Hamilton, L.D.

    1992-12-31

    A MARKAL model was developed for the State of New York. It represents the State`s energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO2 emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO2 emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  12. Evaluation of carbon dioxide emission control strategies in New York State

    SciTech Connect (OSTI)

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state's energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  13. Evaluation of carbon dioxide emission control strategies in New York State. Final report, 1990--1991

    SciTech Connect (OSTI)

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state`s energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  14. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

  15. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-05-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and construction of the west-side 6-acre anaerobic cell is nearly complete with only the liquid addition system remaining. The current project status and preliminary monitoring results are summarized in this report.

  16. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

  17. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  18. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    SciTech Connect (OSTI)

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555 (Japan)

    2014-09-29

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  19. INVESTIGATION AND DEMONSTRATION OF DRY CARBON-BASED SORBENT INJECTION FOR MERCURY CONTROL

    SciTech Connect (OSTI)

    Terry Hunt; Mark Fox; Lillian Stan; Sheila Haythornthwaite; Justin Smith; Jason Ruhl

    1998-10-01

    This quarterly report describes the activities that have taken place during the first full quarter of the Phase II project ''Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control''. Modifications were completed and sampling began at the 600 acfm pilot-scale particulate control module (PCM) located at the Comanche Station in Pueblo, CO. The PCM was configured as an electrostatic precipitator for these tests. A Perkin-Elmer flue gas mercury analyzer was installed on-site and operated. Initial test results using both manual sampling methodology and the mercury analyzer are presented herein. Preparations were made during this period for full-scale mercury testing of several PSCo units. A site visit was made to Arapahoe and Cherokee Generating Stations to determine sample locations and to develop a test plan.

  20. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 5. Science Applications, Incorporated system requirements definition

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This report sets forth the system requirements for a Solar Controlled-Environment Agriculture System (SCEAS) Project. In the report a conceptual baseline system description for an engineering test facility is given. This baseline system employs a fluid roof/roof filter in combination with a large storage tank and a ground water heat exchanger in order to provide cooling and heating as needed. Desalination is accomplished by pretreatment followed by reverse osmosis. Energy is provided by means of photovoltaics and wind machines in conjunction with storage batteries. Site and climatic data needed in the design process are given. System performance specifications and integrated system design criteria are set forth. Detailed subsystem design criteria are presented and appropriate references documented.

  1. Export Control Requirements for Tritium Processing Design and R&D

    SciTech Connect (OSTI)

    Hollis, William Kirk; Maynard, Sarah-Jane Wadsworth

    2015-10-30

    This document will address requirements of export control associated with tritium plant design and processes. Los Alamos National Laboratory has been working in the area of tritium plant system design and research and development (R&D) since the early 1970’s at the Tritium Systems Test Assembly (TSTA). This work has continued to the current date with projects associated with the ITER project and other Office of Science Fusion Energy Science (OS-FES) funded programs. ITER is currently the highest funding area for the DOE OS-FES. Although export control issues have been integrated into these projects in the past a general guidance document has not been available for reference in this area. To address concerns with currently funded tritium plant programs and assist future projects for FES, this document will identify the key reference documents and specific sections within related to tritium research. Guidance as to the application of these sections will be discussed with specific detail to publications and work with foreign nationals.

  2. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeon, Ju-Won; Zhang, Libing; Lutkenhaus, Jodie L.; Laskar, Dhrubojyoti D.; Lemmon, John P.; Choi, Daiwon; Nandasiri, Manjula I.; Hashmi, Ali; Xu, Jie; Motkuri, Radha K.; et al

    2015-02-01

    Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon (1092 m² g⁻¹) with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials.

  3. Precipitation of calcium carbonate and calcium phosphate under diffusion controlled mixing

    SciTech Connect (OSTI)

    Tsigabu Gebrehiwet; James R. Henriksen; Luanjing Guo; Don T. Fox; Hai Huang; Lee Tu; Yoshiko Fujita; Robert W. Smith; George Redden

    2014-07-01

    Multi-component mineral precipitation in porous, subsurface environments is challenging to simulate or engineer when in situ reactant mixing is controlled by diffusion. In contrast to well-mixed systems, the conditions that favor mineral precipitation in porous media are distributed along chemical gradients, which evolve spatially due to concurrent mineral precipitation and modification of solute transport in the media. The resulting physical and chemical characteristics of a mixing/precipitation zone are a consequence of coupling between transport and chemical processes, and the distinctive properties of individual chemical systems. We examined the spatial distribution of precipitates formed in “double diffusion” columns for two chemical systems, calcium carbonate and calcium phosphate. Polyacrylamide hydrogel was used as a low permeability, high porosity medium to maximize diffusive mixing and minimize pressure- and density-driven flow between reactant solutions. In the calcium phosphate system, multiple, visually dense and narrow bands of precipitates were observed that were reminiscent of previously reported Liesegang patterns. In the calcium carbonate system, wider precipitation zones characterized by more sparse distributions of precipitates and a more open channel structure were observed. In both cases, formation of precipitates inhibited, but did not necessarily eliminate, continued transport and mixing of the reactants. A reactive transport model with fully implicit coupling between diffusion, chemical speciation and precipitation kinetics, but where explicit details of nucleation processes were neglected, was able to qualitatively simulate properties of the precipitation zones. The results help to illustrate how changes in the physical properties of a precipitation zone depend on coupling between diffusion-controlled reactant mixing and chemistry-specific details of precipitation kinetics.

  4. Novel Carbon Capture Solvent Begins Pilot-Scale Testing for Emissions Control

    Broader source: Energy.gov [DOE]

    Pilot-scale testing of an advanced technology for economically capturing carbon dioxide (CO2) from flue gas has begun at the National Carbon Capture Center (NCCC) in Wilsonville, Ala.

  5. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mishra, U.; Riley, W. J.

    2015-07-02

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data setmore » with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m

  6. Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mishra, U.; Riley, W. J.

    2015-01-27

    The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing heterogeneity of terrestrial hydrological and biogeochemical processes in earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a dataset with reasonablemore » fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, 500 m, 1, 2, 5, 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 to ~ 500 m, and remained

  7. Investigation and Demonstration of Dry Carbon-Based Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Jason Ruhl; Justin Smith; Sharon Sjostrom; Sheila Haythorthwaite; Terry Hunt

    1997-08-01

    The U.S. Department of Energy (DOE) issued Public Service Company of Colorado (PSCO) a cost sharing contract to evaluate carbon-based sorbents for mercury control on a 600 acfm laboratory-scale particulate control module (PCM). The PCM can be configured as simulate an electrostatic precipitator, a pulse-jet fabric filter, or a reverse-gas fabric filter and is installed on an operating coal-fired power plant. Three different dry carbon-based sorbents were tested this quarter to determine their mercury removal capability in the different configurations. The project is currently in the seventh quarter of an eight-quarter Phase I project. Testing in all configurations is nearly complete. Original plans included the use of an on-line mercury analyzer to collect test data. However, due to very low baseline mercury concentration, on-line measurement did not provide accurate data. The project used a modified MESA method grab sample technique to determine inlet and outlet mercury concentrations. A major concern during sorbent evaluations was the natural ability of the flyash at the test site to remove mercury. This often made determination of sorbent only mercury removal difficult. The PCM was configured as a reverse-gas baghouse and brought online with "clean" flue gas on March 10* at an A/C of 2.0 ft/min. The dustcake forms the filtering media in a reverse gas baghouse. In the absence of flyash, the bags were precoated with a commercially available alumina silicate material to form an inert dustcake. Some baseline tests were completed with clean gas for comparison to clean gas pulse jet tests. The PCM was reconfigured as a TOXECON unit in April 1997 with testing completed in May 1997. TOXECON, an EPIU patented technology, is a pulse-jet baghouse operating at a high A/C ratio downstream of a primary particulate colIector with sorbent injection upstream of the baghouse for air toxics removal. Mercury removals of O to 97o/0 were obtained depending on test conditions.

  8. CONTROLLED GROWTH OF CARBON NANOTUBES ON CONDUCTIVE METAL SUBSTRATES FOR ENERGY STORAGE APPLICATIONS

    SciTech Connect (OSTI)

    Brown, P.; Engtrakul, C.

    2009-01-01

    The impressive mechanical and electronic properties of carbon nanotubes (CNTs) make them ideally suited for use in a variety of nanostructured devices, especially in the realm of energy production and storage. In particular, vertically-aligned CNT forests have been the focus of increasing investigation for use in supercapacitor electrodes and as hydrogen adsorption substrates. Vertically-aligned CNT growth was attempted on metal substrates by waterassisted chemical vapor deposition (CVD). CNT growth was catalyzed by iron-molybdenum (FeMo) nanoparticle catalysts synthesized by a colloidal method, which were then spin-coated onto Inconel foils. The substrates were loaded into a custom-built CVD apparatus, where CNT growth was initiated by heating the substrates to 750 C under the fl ow of He, H2, C2H4 and a controlled amount of water vapor. The resultant CNTs were characterized by a variety of methods including Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and the growth parameters were varied in an attempt to optimize the purity and growth yield of the CNTs. The surface area and hydrogen adsorption characteristics of the CNTs were quantifi ed by the Brunauer- Emmett-Teller (BET) and Sieverts methods, and their capacitance was measured via cyclic voltammetry. While vertically-aligned CNT growth could not be verifi ed, TEM and SEM analysis indicated that CNT growth was still obtained, resulting in multiwalled CNTs of a wide range in diameter along with some amorphous carbon impurities. These microscopy fi ndings were reinforced by Raman spectroscopy, which resulted in a G/D ratio ranging from 1.5 to 3 across different samples, suggestive of multiwalled CNTs. Changes in gas fl ow rates and water concentration during CNT growth were not found to have a discernable effect on the purity of the CNTs. The specifi c capacitance of a CNT/FeMo/Inconel electrode was found to be 3.2 F/g, and the BET surface area of a

  9. Tectonic controls on carbonate platform evolution in southern Papua New Guinea: Passive margin to foreland basin

    SciTech Connect (OSTI)

    Pigram, C.J., Davies, P.J.; Feary, D.A.; Symonds, P.A. )

    1989-03-01

    The middle Oligocene collision of the northern margin of the Australian craton with a complex subduction system resulted in emplacement of a thrust mass and formation of a foreland basin that extended from the Coral Sea to the Indian Ocean. The distribution of carbonate-platform facies in southwestern Papua New Guinea reflects the transition from an Eocene passive margin setting to the early stages of foreland basin evolution. The initial basin configuration, with terrigenous sedimentation confined to the proximal foredeep, allowed carbonate deposition in the shallow environment adjacent to the peripheral forebulge. Subsequent southward migration of the basin resulted in a rapid increase in the area and thickness of carbonate-platform deposition. When the proximal foredeep became filled by detritus shed from the emerging orogen, clastic sediments buried the platform and terminated carbonate deposition. The history of the southern Papua New Guinea carbonate platform illustrates the paradox of carbonate deposition within the foreland basin, whereby basin configuration initially encourages thick and extensive carbonate deposition but inevitably leads to terrigenous inundation and the demise of the carbonate platform.

  10. Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems

    SciTech Connect (OSTI)

    Chad Wocken; Michael Holmes; John Pavlish; Jeffrey Thompson; Katie Brandt; Brandon Pavlish; Dennis Laudal; Kevin Galbreath; Michelle Olderbak

    2008-06-30

    This project was awarded through the U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-PS26-03NT41718-01. The Energy & Environmental Research Center (EERC) led a consortium-based effort to resolve mercury (Hg) control issues facing the lignite industry. The EERC team-the Electric Power Research Institute (EPRI); the URS Corporation; the Babcock & Wilcox Company; ADA-ES; Apogee; Basin Electric Power Cooperative; Otter Tail Power Company; Great River Energy; Texas Utilities; Montana-Dakota Utilities Co.; Minnkota Power Cooperative, Inc.; BNI Coal Ltd.; Dakota Westmoreland Corporation; the North American Coal Corporation; SaskPower; and the North Dakota Industrial Commission-demonstrated technologies that substantially enhanced the effectiveness of carbon sorbents to remove Hg from western fuel combustion gases and achieve a high level ({ge} 55% Hg removal) of cost-effective control. The results of this effort are applicable to virtually all utilities burning lignite and subbituminous coals in the United States and Canada. The enhancement processes were previously proven in pilot-scale and limited full-scale tests. Additional optimization testing continues on these enhancements. These four units included three lignite-fired units: Leland Olds Station Unit 1 (LOS1) and Stanton Station Unit 10 (SS10) near Stanton and Antelope Valley Station Unit 1 (AVS1) near Beulah and a subbituminous Powder River Basin (PRB)-fired unit: Stanton Station Unit 1 (SS1). This project was one of three conducted by the consortium under the DOE mercury program to systematically test Hg control technologies available for utilities burning lignite. The overall objective of the three projects was to field-test and verify options that may be applied cost-effectively by the lignite industry to reduce Hg emissions. The EERC, URS, and other team members tested sorbent injection technologies for plants equipped with electrostatic precipitators (ESPs) and

  11. Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States

    SciTech Connect (OSTI)

    Wagle, Pradeep; Xiao, Xiangming; Scott, Russell L.; Kolb, Thomas E.; Cook, David R.; Brunsell, Nathaniel; Baldocchi, Dennis D.; Basara, Jeffrey; Matamala, Roser; Zhou, Yuting; Bajgain, Rajen

    2015-12-01

    Understanding of the underlying causes of spatial variation in exchange of carbon and water vapor fluxes between grasslands and the atmosphere is crucial for accurate estimates of regional and global carbon and water budgets, and for predicting the impact of climate change on biosphere–atmosphere feedbacks of grasslands. We used ground-based eddy flux and meteorological data, and the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) from 12 grasslands across the United States to examine the spatial variability in carbon and water vapor fluxes and to evaluate the biophysical controls on the spatial patterns of fluxes. Precipitation was strongly associated with spatial and temporal variability in carbon and water vapor fluxes and vegetation productivity. Grasslands with annual average precipitation <600 mm generally had neutral annual carbon balance or emitted small amount of carbon to the atmosphere. Despite strong coupling between gross primary production (GPP)and evapotranspiration (ET) across study sites, GPP showed larger spatial variation than ET, and EVI had a greater effect on GPP than on ET. Consequently, large spatial variation in ecosystem water use efficiency (EWUE = annual GPP/ET; varying from 0.67 ± 0.55 to 2.52 ± 0.52 g C mm⁻¹ET) was observed. Greater reduction in GPP than ET at high air temperature and vapor pressure deficit caused a reduction in EWUE in dry years, indicating a response which is opposite than what has been reported for forests. Our results show that spatial and temporal variations in ecosystem carbon uptake, ET, and water use efficiency of grasslands were strongly associated with canopy greenness and coverage, as indicated by EVI.

  12. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the

  13. System and method for controlling hydrogen elimination during carbon nanotube synthesis from hydrocarbons

    DOE Patents [OSTI]

    Reilly, Peter T. A.

    2010-03-23

    A system and method for producing carbon nanotubes by chemical vapor deposition includes a catalyst support having first and second surfaces. The catalyst support is capable of hydrogen transport from the first to the second surface. A catalyst is provided on the first surface of the catalyst support. The catalyst is selected to catalyze the chemical vapor deposition formation of carbon nanotubes. A fuel source is provided for supplying fuel to the catalyst.

  14. Novel Dual-Functional Membrane for Controlling Carbon Dioxide Emissions from Fossil Fuel Power Plants

    SciTech Connect (OSTI)

    C. Brinker; George Xomeritakis; C.-Y. Tsai; Ying-Bing Jiang

    2009-04-30

    CO{sub 2} captured from coal-fired power plants represents three-quarters of the total cost of an entire carbon sequestration process. Conventional amine absorption or cryogenic separation requires high capital investment and is very energy intensive. Our novel membrane process is energy efficient with great potential for economical CO{sub 2} capture. Three classes of microporous sol-gel derived silica-based membranes were developed for selective CO{sub 2} removal under simulated flue gas conditions (SFG), e.g. feed of 10% vol. CO{sub 22} in N{sub 2}, 1 atm total pressure, T = 50-60 C, RH>50%, SO2>10 ppm. A novel class of amine-functional microporous silica membranes was prepared using an amine-derivatized alkoxysilane precursor, exhibiting enhanced (>70) CO{sub 2}:N{sub 2} selectivity in the presence of H{sub 2}O vapor, but its CO{sub 2} permeance was lagging (<1 MPU). Pure siliceous membranes showed higher CO{sub 2} permeance (1.5-2 MPU) but subsequent densification occurred under prolonged SFG conditions. We incorporated NiO in the microporous network up to a loading of Ni:Si = 0.2 to retard densification and achieved CO2 permeance of 0.5 MPU and CO{sub 2}:N{sub 2} selectivity of 50 after 163 h exposure to SFG conditions. However, CO{sub 2} permeance should reach greater than 2.0 MPU in order to achieve the cost of electricity (COE) goal set by DOE. We introduced the atomic layer deposition (ALD), a molecular deposition technique that substantially reduces membrane thickness with intent to improve permeance and selectivity. The deposition technique also allows the incorporation of Ni or Ag cations by proper selection of metallorganic precursors. In addition, preliminary economic analysis provides a sensitivity study on the performance and cost of the proposed membranes for CO{sub 2} capture. Significant progress has been made toward the practical applications for CO{sub 2} capture. (1 MPU = 1.0 cm{sup 3}(STP){center_dot}cm-2{center_dot}min-1{center_dot}atm-1)

  15. Forest Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forest carbon cycle Forest Carbon Cycle Terrestrial carbon stocks above- and belowground (in humus and litter layers, woody debris, and mineral soil) are not only sensitive to physical environmental controls (e.g., temperature, precipitation, soil moisture) but also to land use history/management, disturbance, "quality" of carbon input (a reflection of plant carbon allocation and species controls), and the microbial community. The relative importance of these controls on soil carbon

  16. Automated work packages architecture: An initial set of human factors and instrumentation and controls requirements

    SciTech Connect (OSTI)

    Agarwal, Vivek; Oxstrand, Johanna H.; Le Blanc, Katya L.

    2014-09-01

    The work management process in current fleets of national nuclear power plants is so highly dependent on large technical staffs and quality of work instruction, i.e., paper-based, that this puts nuclear energy at somewhat of a long-term economic disadvantage and increase the possibility of human errors. Technologies like mobile portable devices and computer-based procedures can play a key role in improving the plant work management process, thereby increasing productivity and decreasing cost. Automated work packages are a fundamentally an enabling technology for improving worker productivity and human performance in nuclear power plants work activities because virtually every plant work activity is accomplished using some form of a work package. As part of this year’s research effort, automated work packages architecture is identified and an initial set of requirements identified, that are essential and necessary for implementation of automated work packages in nuclear power plants.

  17. Plasma/ion-controlled metal catalyst saturation: Enabling simultaneous growth of carbon nanotube/nanocone arrays

    SciTech Connect (OSTI)

    Levchenko, I.; Ostrikov, K.

    2008-02-11

    It is shown that the simultaneous saturation of Ni nanoparticles used as catalyst for vertically aligned carbon nanotube and nanocone arrays can be improved in low-temperature plasma- or ion-assisted processes compared with neutral gas-based routes. The results of hybrid multiscale numerical simulations of the catalyst nanoarrays (particle sizes of 2 and 10 nm) saturation with carbon show the possibility of reducing the difference in catalyst incubation times for smallest and largest catalyst particles by up to a factor of 2. This approach is generic and provides process conditions for simultaneous nucleation and growth of uniform arrays of vertically aligned nanostructures.

  18. Controlling the set of carbon-fiber embedded cement with electric current

    DOE Patents [OSTI]

    Mattus, Alfred J.

    2004-06-15

    A method for promoting cement or concrete set on demand for concrete that has been chemically retarded by adding carbon fiber to the concrete, which enables it to become electrically conductive, sodium tartrate retardant, and copper sulfate which forms a copper tartrate complex in alkaline concrete mixes. Using electricity, the concrete mix anodically converts the retarding tartrate to an insoluble polyester polymer. The carbon fibers act as a continuous anode surface with a counter electrode wire embedded in the mix. Upon energizing, the retarding effect of tartrate is defeated by formation of the polyester polymer through condensation esterification thereby allowing the normal set to proceed unimpeded.

  19. Taxation of expenditures required by the Surface Mining Control and Reclamation Act of 1977 (SMCRA)

    SciTech Connect (OSTI)

    McNally, K.J.

    1987-01-01

    There has been disagreement over whether the expenditures made by the mine operator to comply with the Surface Mining Control and Reclamation Act of 1977 are characterized as capital or deductible expenses. An examination of expenditures made by mine operators during the life of a mine illustrates the dichotomy between deductible and capital expenditures in which special rules may override general capitalization rules to allow the mine operator to deduct a capital expenditure. This makes some expenditures difficult to categorize. Citing case law, the author treats expenditures for exploration and mining permits, performance bonds, and liability insurance. A new provision, section 468, allowing the current deduction for future reclamation and closing costs removed the uncertainty created by prior case law.

  20. Drake passage and central american seaway controls on the distribution of the oceanic carbon reservoir

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fyke, Jeremy G.; D'Orgeville, Marc; Weaver, Andrew J.

    2015-05-01

    A coupled carbon/climate model is used to explore the impact of Drake Passage opening and Central American Seaway closure on the distribution of carbon in the global oceans. We find that gateway evolution likely played an important role in setting the modern day distribution of oceanic dissolved inorganic carbon (DIC), which is currently characterized by relatively low concentrations in the Atlantic ocean, and high concentrations in the Southern, Indian, and Pacific oceans. In agreement with previous studies, we find a closed Drake Passage in the presence of an open Central American Seaway results in suppressed Atlantic meridional overturning and enhancedmore » southern hemispheric deep convection. Opening of the Drake Passage triggers Antarctic Circumpolar Current flow and a weak Atlantic meridional overturning circulation (AMOC). Subsequent Central American Seaway closure reinforces the AMOC while also stagnating equatorial Pacific subsurface waters. These gateway-derived oceanographic changes are reflected in large shifts to the global distribution of DIC. An initially closed Drake Passage results in high DIC concentrations in the Atlantic and Arctic oceans, and lower DIC concentrations in the Pacific/Indian/Southern oceans. Opening Drake Passage reverses this gradient by lowering mid-depth Atlantic and Arctic DIC concentrations and raising deep Pacific/Indian/Southern Ocean DIC concentrations. Central American Seaway closure further reinforces this trend through additional Atlantic mid-depth DIC decreases, as well as Pacific mid-depth DIC concentration increases, with the net effect being a transition to a modern distribution of oceanic DIC.« less

  1. Drake passage and central american seaway controls on the distribution of the oceanic carbon reservoir

    SciTech Connect (OSTI)

    Fyke, Jeremy G.; D'Orgeville, Marc; Weaver, Andrew J.

    2015-05-01

    A coupled carbon/climate model is used to explore the impact of Drake Passage opening and Central American Seaway closure on the distribution of carbon in the global oceans. We find that gateway evolution likely played an important role in setting the modern day distribution of oceanic dissolved inorganic carbon (DIC), which is currently characterized by relatively low concentrations in the Atlantic ocean, and high concentrations in the Southern, Indian, and Pacific oceans. In agreement with previous studies, we find a closed Drake Passage in the presence of an open Central American Seaway results in suppressed Atlantic meridional overturning and enhanced southern hemispheric deep convection. Opening of the Drake Passage triggers Antarctic Circumpolar Current flow and a weak Atlantic meridional overturning circulation (AMOC). Subsequent Central American Seaway closure reinforces the AMOC while also stagnating equatorial Pacific subsurface waters. These gateway-derived oceanographic changes are reflected in large shifts to the global distribution of DIC. An initially closed Drake Passage results in high DIC concentrations in the Atlantic and Arctic oceans, and lower DIC concentrations in the Pacific/Indian/Southern oceans. Opening Drake Passage reverses this gradient by lowering mid-depth Atlantic and Arctic DIC concentrations and raising deep Pacific/Indian/Southern Ocean DIC concentrations. Central American Seaway closure further reinforces this trend through additional Atlantic mid-depth DIC decreases, as well as Pacific mid-depth DIC concentration increases, with the net effect being a transition to a modern distribution of oceanic DIC.

  2. Transient control of carbon monoxide with staged PrOx reactors

    SciTech Connect (OSTI)

    Inbody, M. A.; Borup, R. L.; Tafoya, J.

    2002-01-01

    Fuel Processor systems generate hydrogen for fuel cell systems from hydrocarbon fuels such as gasoline for automotive fuel cell systems and natural gas for stationary fuel cell systems. These fuel processor systems must remove any contaminants to levels that won't poison the fuel cell before the outlet hydrogen-rich gas stream can be used by the fuel cell to generate electricity. Carbon monoxide is a contaminant that must be removed to levels of < 100 ppm or < 10 ppm depending on the CO tolerance of the fuel cell. Typically, the last unit operation in a fuel processor is a preferential oxidation reactor or a selective oxidation reactor, which removes CO by oxidizing it to form C02. These are catalytic reactors where the catalyst and operating conditions are selected so that the oxidation rate of the carbon monoxide is higher than the oxidation rate of hydrogen, even though the hydrogen is present at much higher concentrations (> 30%) than carbon monoxide which is present at trace concentrations (< 1%).

  3. Control of Surface Functional Groups on Pertechntate Sorption on Activated Carbon

    SciTech Connect (OSTI)

    Y. Wang; H. Gao; R. Yeredla; H. Xu; M. Abrecht; G.D. Stasio

    2006-07-05

    {sup 99}Tc is highly soluble and poorly adsorbed by natural materials under oxidizing conditions, thus being of particular concern for radioactive waste disposal. Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. We have tested six commercial activated carbon materials for their capabilities for sorption of pertechnetate (TcO{sub 4}{sup -}). The tested materials can be grouped into two distinct types: Type I materials have high sorption capabilities with the distribution coefficients (K{sub d}) varying from 9.5 x 10{sup 5} to 3.2 x 10{sup 3} mL/g as the pH changes from 4.5 to 9.5, whereas type II materials have relatively low sorption capabilities with K{sub d} remaining more or less constant (1.1 x 10{sup 3} - 1.8 x 10{sup 3} mL/g) over a similar pH range. The difference in sorption behavior between the two types of materials is attributed to the distribution of surface functional groups. The predominant surface groups are identified to be carboxylic and phenolic groups. The carboxylic group can be further divided into three subgroups A, B, and C in the order of increasing acidity. The high sorption capabilities of type I materials are found to be caused by the presence of a large fraction of carboxylic subgroups A and B, while the low sorption capabilities of type II materials are due to the exclusive presence of phenolic and carboxylic subgroup C. Therefore, the performance of activated carbon for removing TcO{sub 4}{sup -} can be improved by enhancing the formation of carboxylic subgroups A and B during material processing.

  4. Controlling the Electrostatic Discharge Ignition Sensitivity of Composite Energetic Materials Using Carbon Nanotube Additives

    SciTech Connect (OSTI)

    Kade H. Poper; Eric S. Collins; Michelle L. Pantoya; Michael Daniels

    2014-10-01

    Powder energetic materials are highly sensitive to electrostatic discharge (ESD) ignition. This study shows that small concentrations of carbon nanotubes (CNT) added to the highly reactive mixture of aluminum and copper oxide (Al + CuO) significantly reduces ESD ignition sensitivity. CNT act as a conduit for electric energy, bypassing energy buildup and desensitizing the mixture to ESD ignition. The lowest CNT concentration needed to desensitize ignition is 3.8 vol.% corresponding to percolation corresponding to an electrical conductivity of 0.04 S/cm. Conversely, added CNT increased Al + CuO thermal ignition sensitivity to a hot wire igniter.

  5. Effect of an organic molecular coating on control over the conductance of carbon nanotube channel

    SciTech Connect (OSTI)

    Bobrinetskiy, I. I.; Emelianov, A. V.; Nevolin, V. K. Romashkin, A. V.

    2014-12-15

    It is shown that the coating of carbon nanotubes with molecules with a constant dipole moment changes the conductance of the tubes due to a variation in the structure of energy levels that participate in charge transport. The IV characteristics of the investigated structures exhibit significant dependence of the channel conductance on the gate potential. The observed memory effect of conductance level can be explained by the rearrangement of polar groups and molecules as a whole in an electric field. The higher the dipole moment per unit length and the weaker the intermolecular interaction, the faster the rearrangement process is.

  6. Application of carbon dioxide (CO{sub 2}) for controlling subsurface fire area: Indian context

    SciTech Connect (OSTI)

    Mohalik, N.K.; Singh, V.K.; Singh, R.V.K.

    2009-07-15

    In bord and pillar method of mining, the panels are sealed off after depillaring. Depending upon the site specific condition, 40 to 45 % coal are left in depillared panel as stook, loose coal left in goaf, hard coal on floor and roof of the panel. The left out coals in goaf area start oxidation, and this leads to spontaneous heating in side sealed off area. For assessment of fire in underground coal mines, thermo-compositional monitoring plays an important role. This paper presents scientific relevance and selective criteria for use of inert gas for control of subsurface fire. Finally the paper discusses spontaneous heating problem in sealed off area and application of inertisation technology by using CO, to prevent and control sealed off fire at Haripur Colliery, Kenda Area, ECL, India.

  7. Whitings as a Potential Mechanism for Controlling Atmospheric Carbon Dioxide Concentrations Final Project Report

    SciTech Connect (OSTI)

    Brady D. Lee; William A. Apel; Michelle R. Walton

    2006-03-01

    Species of cyanobacteria in the genera Synechococcus and Synechocystis are known to be the catalysts of a phenomenon called "whitings", which is the formation and precipitation of fine-grained CaCO3 particles. Whitings occur when the cyanobacteria fix atmospheric CO2 through the formation of CaCO3 on their cell surfaces which leads to precipitation to the ocean floor and subsequent entombment in mud. Whitings represent one potential mechanism for CO2 sequestration. Research was performed to determine the ability of various strains of Synechocystis and Synechococcus to calcify when grown in microcosms amended with 2.5 mM HCO3- and 3.4 mM Ca2+. Results indicated that while all strains tested have the ability to calcify, only two, Synechococcus species, strains PCC 8806 and PCC 8807, were able to calcify to the extent that CaCO3 was precipitated. Enumeration of the cyanobacterial cultures during testing indicated that cell density did not appear to have an effect on calcification. Factors that had the greatest effect on calcification were CO2 removal and subsequent generation of alkaline pH. As CO2 was removed, growth medium pH increased and soluble Ca2+ was removed from solution. The largest increases in growth medium pH occurred when CO2 levels dropped below 400 ppmv. Precipitation of CaCO3 catalyzed by the growth and physiology of cyanobacteria in the Genus Synechococcus represents a potential mechanism for sequestration of atmospheric CO2 produced during the burning of coal for power generation. Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807 were tested in microcosm experiments for their ability to calcify when exposed to a fixed calcium concentration of 3.4 mM and dissolved inorganic carbon concentrations of 0.5, 1.25 and 2.5 mM. Synechococcus sp. strain PCC 8806 removed calcium continuously over the duration of the experiment producing approximately 18.6 mg of solid-phase calcium. Calcium removal occurred over a two-day time period when

  8. LDRD final report on synthesis of shape-and size-controlled platinum and platinum alloy nanostructures on carbon with improved durability.

    SciTech Connect (OSTI)

    Shelnutt, John Allen; Garcia, Robert M.; Song, Yujiang; Moreno, Andres M.; Stanis, Ronald J.

    2008-10-01

    This project is aimed to gain added durability by supporting ripening-resistant dendritic platinum and/or platinum-based alloy nanostructures on carbon. We have developed a new synthetic approach suitable for directly supporting dendritic nanostructures on VXC-72 carbon black (CB), single-walled carbon nanotubes (SWCNTs), and multi-walled carbon nanotubes (MWCNTs). The key of the synthesis is to creating a unique supporting/confining reaction environment by incorporating carbon within lipid bilayer relying on a hydrophobic-hydrophobic interaction. In order to realize size uniformity control over the supported dendritic nanostructures, a fast photocatalytic seeding method based on tin(IV) porphyrins (SnP) developed at Sandia was applied to the synthesis by using SnP-containing liposomes under tungsten light irradiation. For concept approval, one created dendritic platinum nanostructure supported on CB was fabricated into membrane electrode assemblies (MEAs) for durability examination via potential cycling. It appears that carbon supporting is essentially beneficial to an enhanced durability according to our preliminary results.

  9. Shape controlled synthesis of Cu{sub 2}O and its catalytic application to synthesize amorphous carbon nanofibers

    SciTech Connect (OSTI)

    Du Fanglin Liu Jungang; Guo Zhiyan

    2009-01-08

    Octahedral Cu{sub 2}O particles and Cu{sub 2}O nanowires were synthesized by a simple solution-phase route using N{sub 2}H{sub 4}.H{sub 2}O as reducing agent at room temperature. Amorphous carbon nanofibers were synthesized using octahedral Cu{sub 2}O particles and an acetylene gas source at atmospheric pressure. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis. SEM and TEM images indicated that most of the obtained octahedral Cu{sub 2}O particles had an edge length of 400-700 nm. The obtained nanowires had uniform diameters of about 15 nm, and the length of the nanowires ranged from 5 to 10 {mu}m. The XRD result revealed the amorphous feature of the nanofibers. IR spectrum revealed that the nanofibers consist of -CH, -CH{sub 2,} -C=C- and -CH{sub 3} groups. The concentrations of N{sub 2}H{sub 4}.H{sub 2}O and NaOH played important roles in controlling the geometric shape of the Cu{sub 2}O.

  10. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE (Technical...

    Office of Scientific and Technical Information (OSTI)

    Subject: 54 ENVIRONMENTAL SCIENCES; CARBON DIOXIDE; ABSORPTION; SORPTIVE PROPERTIES; POTASSIUM CARBONATES; THERMODYNAMIC MODEL; VAPOR PRESSURE; AIR POLLUTION CONTROL Word Cloud ...

  11. CO2 Capture by Absorption with Potassium Carbonate (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 54 ENVIRONMENTAL SCIENCES; CARBON DIOXIDE; ABSORPTION; POTASSIUM CARBONATES; SORPTIVE PROPERTIES; AMINES; MATERIALS RECOVERY; AIR POLLUTION CONTROL; MATHEMATICAL MODELS ...

  12. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE (Technical...

    Office of Scientific and Technical Information (OSTI)

    Subject: 54 ENVIRONMENTAL SCIENCES; ABSORPTION; HEAT EXCHANGERS; PILOT PLANTS; POTASSIUM CARBONATES; THERMODYNAMICS; VAPOR PRESSURE; CARBON DIOXIDE; AIR POLLUTION CONTROL; SORPTIVE ...

  13. Improved Mobility Control for Carbon Dioxide (CO{sub 2}) Enhanced Oil Recovery Using Silica-Polymer-Initiator (SPI) Gels

    SciTech Connect (OSTI)

    Oglesby, Kenneth

    2014-01-31

    SPI gels are multi-component silicate based gels for improving (areal and vertical) conformance in oilfield enhanced recovery operations, including water-floods and carbon dioxide (CO{sub 2}) floods, as well as other applications. SPI mixtures are like-water when pumped, but form light up to very thick, paste-like gels in contact with CO{sub 2}. When formed they are 3 to 10 times stronger than any gelled polyacrylamide gel now available, however, they are not as strong as cement or epoxy, allowing them to be washed / jetted out of the wellbore without drilling. This DOE funded project allowed 8 SPI field treatments to be performed in 6 wells (5 injection wells and 1 production well) in 2 different fields with different operators, in 2 different basins (Gulf Coast and Permian) and in 2 different rock types (sandstone and dolomite). Field A was in a central Mississippi sandstone that injected CO{sub 2} as an immiscible process. Field B was in the west Texas San Andres dolomite formation with a mature water-alternating-gas miscible CO{sub 2} flood. Field A treatments are now over 1 year old while Field B treatments have only 4 months data available under variable WAG conditions. Both fields had other operational events and well work occurring before/ during / after the treatments making definitive evaluation difficult. Laboratory static beaker and dynamic sand pack tests were performed with Ottawa sand and both fields’ core material, brines and crude oils to improve SPI chemistry, optimize SPI formulations, ensure SPI mix compatibility with field rocks and fluids, optimize SPI treatment field treatment volumes and methods, and ensure that strong gels set in the reservoir. Field quality control procedures were designed and utilized. Pre-treatment well (surface) injectivities ranged from 0.39 to 7.9 MMCF/psi. The SPI treatment volumes ranged from 20.7 cubic meters (m{sup 3}, 5460 gallons/ 130 bbls) to 691 m{sup 3} (182,658 gallons/ 4349 bbls). Various size and types

  14. Promising Technology: Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Demand control ventilation (DCV) measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

  15. Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites

    DOE Patents [OSTI]

    Tan, Seng; Tan, Cher-Dip

    2004-05-11

    An enhanced method for the post processing, i.e. oxidation or stabilization, of carbon materials including, but not limited to, carbon foams, carbon fibers, dense carbon-carbon composites, carbon/ceramic and carbon/metal composites, which method requires relatively very short and more effective such processing steps. The introduction of an "oxygen spill over catalyst" into the carbon precursor by blending with the carbon starting material or exposure of the carbon precursor to such a material supplies required oxygen at the atomic level and permits oxidation/stabilization of carbon materials in a fraction of the time and with a fraction of the energy normally required to accomplish such carbon processing steps. Carbon based foams, solids, composites and fiber products made utilizing this method are also described.

  16. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, July 1, 1996--September 31, 1996

    SciTech Connect (OSTI)

    Hunt, T.; Sjostrom, S.; Smith, J.

    1996-11-06

    The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine the mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.

  17. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, October 1--December 31, 1996

    SciTech Connect (OSTI)

    Hunt, T.; Sjostrom, S.; Ruhl, J.; Smith, J.

    1997-01-01

    The U.S. Department of Energy (DOE) has issued Public Service Company of Colorado (PSCo) a cost sharing contract to evaluate carbon-based sorbents for mercury control on a 600 acfm laboratory scale particulate control module (PCM). The PCM can simulate an electrostatic precipitator, a pulse-jet fabric filter, and a reverse air fabric filter and uses actual flue gas from an operating coal-fired power plant. Up to 3 different dry carbon-based sorbents will be tested to determine the mercury removal capability in the different configurations. The project is currently in the fifth quarter of an eight quarter Phase I project. The PCM has been fabricated and mercury removal testing with the ESP configuration has been completed. Original plans included the use on an on-line meercury analyzer to collect the test data. However, due to very low baseline mercury concentration, on-line measurement did not provide accurate data. The project has continued using a modified MESA method grab sample technique to determine inlet and outlet mercury concentrations. A major concern during sorbent evaluations has been the natural ability of the flyash at the test site to remove mercury. This has made determination of sorbent only mercury removal difficult. Overall vapor-phase mercury removals of 15 to 70% have been obtained but this includes mercury removals in the range of 30% by the flyash. It is believed that a maximum of approximately 40% removal due to the sorbent only has been obtained. A number of test and sampling modifications are in progress to increase the data confidence and many questions remain. Startup of the pulse jet configuration began in early November but results of this testing are not available at this time. The project team has decided to proceed with pulse jet testing using flue gas that does not contain significant flyash quantities to further investigate the sorbent only mercury removal.

  18. Mercury control in 2009

    SciTech Connect (OSTI)

    Sjostrom, S.; Durham, M.; Bustard, J.; Martin, C.

    2009-07-15

    Although activated carbon injection (ACI) has been proven to be effective for many configurations and is a preferred option at many plants sufficient quantities of powdered activated coking (PAC) must be available to meet future needs. The authors estimate that upcoming federal and state regulations will result in tripling the annual US demand for activated carbon to nearly 1.5 billion lb from approximately 450 million lb. Rapid expansion of US production capacity is required. Many PAC manufacturers are discussing expansion of their existing production capabilities. One company, ADA Carbon Solutions, is in the process of constructing the largest activated carbon facility in North America to meet the future demand for PAC as a sorbent for mercury control. Emission control technology development and commercialization is driven by regulation and legislation. Although ACI will not achieve > 90% mercury control at every plant, the expected required MACT legislation level, it offers promise as a low-cost primary mercury control technology option for many configurations and an important trim technology for others. ACI has emerged as the clear mercury-specific control option of choice, representing over 98% of the commercial mercury control system orders to date. As state regulations are implemented and the potential for a federal rule becomes more imminent, suppliers are continuing to develop technologies to improve the cost effectiveness and limit the balance of plant impacts associated with ACI and are developing additional PAC production capabilities to ensure that the industry's needs are met. The commercialisation of ACI is a clear example of industry, through the dedication of many individuals and companies with support from the DOE and EPRI, meeting the challenge of developing cost-effectively reducing emissions from coal-fired power plants. 7 refs., 1 fig.

  19. Carbonation of steel slag for CO{sub 2} sequestration: leaching of products and reaction mechanisms

    SciTech Connect (OSTI)

    Wouter J.J. Huijgen; Rob N.J. Comans

    2006-04-15

    Carbonation of industrial alkaline residues can be used as a CO{sub 2} sequestration technology to reduce carbon dioxide emissions. In this study, steel slag samples were carbonated to a varying extent. Leaching experiments and geochemical modeling were used to identify solubility-controlling processes of major and trace elements, both with regard to carbonation mechanisms and the environmental properties of the (carbonated) steel slag. Carbonation was shown to reduce the leaching of alkaline earth metals (except Mg) by conversion of Ca-phases, such as portlandite, ettringite, and Ca-(Fe)-silicates into calcite, possibly containing traces of Ba and Sr. The leaching of vanadium increased substantially upon carbonation, probably due to the dissolution of a Ca-vanadate. The reactive surface area of Al- and Fe-(hydr)oxides increased with the carbonation degree, which tends to reduce the leaching of sorption-controlled trace elements. Sorption on Mn-(hydr)oxides was found to be required to adequately model the leaching of divalent cations, but was not influenced by carbonation. Consideration of these three distinct reactive surfaces and possible (surface) precipitation reactions resulted in adequate modeling predictions of oxyanion and trace metal leaching from (carbonated) steel slag. Hence, these surfaces exert a major influence on the environmental properties of both fresh and carbonated steel slag. 24 refs., 1 fig., 2 tabs.

  20. Controlled synthesis of concave tetrahedral palladium nanocrystals by reducing Pd(acac){sub 2} with carbon monoxide

    SciTech Connect (OSTI)

    Zhu, Hai; Chi, Quan; Zhao, Yanxi; Li, Chunya; Tang, Heqing; Li, Jinlin; Huang, Tao; Liu, Hanfan; Institute of Chemistry, Chinese Academy of Science, Beijing 100080

    2012-11-15

    Graphical abstract: By using CO as a reducing agent, uniform and well-defined concave tetrahedral Pd nanocrystals were successfully synthesized. CO flow rate was the most essential for the formation of the concave tetrahedral nanostructures. The morphologies and sizes of the final products can be well controlled by adjusting the flow rate of CO. Highlights: ? By using CO as a reducing agent, concave tetrahedral Pd nanocrystals were obtained. ? CO flow rate is critical to the formation of concave tetrahedral Pd nanocrystals. ? The selective adsorption of CO on (1 1 0) facets is essential to concave Pd tetrahedra. -- Abstract: CO reducing strategy to control the morphologies of palladium nanocrystals was investigated. By using CO as a reducing agent, uniform and well-defined concave tetrahedral Pd nanocrystals with a mean size of about 55 2 nm were readily synthesized with Pd(acac){sub 2} as a precursor and PVP as a stabilizer. The structures of the as-prepared Pd nanocrystals were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), ultravioletvisible (UVvis) absorption spectroscopy and electrochemical measurements. The results demonstrated that CO was the most essential for the formation of the concave tetrahedral Pd nanostructures. The morphologies and sizes of the final products can be well controlled by adjusting the flow rate of CO. The most appropriate CO flow rate, temperature and time for the formation of the ideal concave tetrahedral Pd nanocrystals was 0.033 mL s{sup ?1}, 100 C and 3 h, respectively.

  1. Carbon Stars | Open Energy Information

    Open Energy Info (EERE)

    Stars Jump to: navigation, search Name: Carbon Stars Place: Netherlands Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References:...

  2. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Establishing a foundational understanding of the microbial and ecosystem factors that ... understanding of the microbial and ecosystem factors that control carbon partitioning ...

  3. Reporting Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reporting Requirements Reporting Requirements Contacts Director Albert Migliori Deputy Franz Freibert 505 667-6879 Email Professional Staff Assistant Susan Ramsay 505 665 0858...

  4. Tectonic and eustatic controls on the carbonate stratigraphy of the Leonardian-Guadalupin (Permian) section, northwestern Delaware basin, New Mexico and Texas

    SciTech Connect (OSTI)

    Glaser, K.S.; Vail, P.R. ); Jordan, J.E. )

    1990-05-01

    The effects of tectonics and eustasy on carbonate sedimentation have been determined using seismic, well logs, and outcrop data for the middle Permian of the Delaware basin. Sequence and chronostratigraphic analyses indicate the section contains a broad, tectonically controlled aggradational/progradational cycle overprinted by eustatic sea level cycles. Early Leonardian deposition of the Abo Formation and the third Bone Spring sand occurred during a period of rapid subsidence, producing the aggradational geometry observed on seismic and well logs. This followed a time of uplift to the northwest of the study area, which caused enhanced shelf erosion during the late Wolfcampian. The aggradational style of deposition continued through the middle Leonardian. Late Leonardian time is characterized by progradational geometry, due to a slower subsidence rate. This resulted in a 15-km progradation of the Bone Spring shelf margin in the northwestern part of the Delaware basin. A second period of uplift to the northwest followed, leading to the deposition of the sands of the Brushy Canyon Formation (Guadalupian). This aggradational/progradational cycle is followed by a similar cycle which ends after the deposition of the Capitan Formation. Within the carbonate-dominated Leonardian aggradational/progradational cycle, nine sea level cycles are recognized. The lowstand systems tracts within this package are of two types. The lowstands within the aggradational part of the section consist primarily of slope fans, while those associated with progradation contain large lowstand prograding wedges. Steep margins are associated with aggradation, while progradation is characterized by a ramplike geometry. Highstands are widespread on the shelf and prograde into the basin throughout this interval.

  5. Controlling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations K. A. Mirus and J. C. Sprott Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 ͑Received 29 June 1998͒ The effect of applying a periodic perturbation to an accessible parameter of various chaotic systems is examined. Numerical results indicate that perturbation frequencies near the natural frequencies of the unstable periodic orbits of the chaotic systems can result in limit

  6. Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.

    2011-11-07

    Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior on the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5

  7. Carbon Smackdown: Carbon Capture

    SciTech Connect (OSTI)

    Jeffrey Long

    2010-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  8. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  9. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    Hunt, T.; Sjostrom, S.; Smith, J.; Chang, R.

    1996-07-27

    The overall objective this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. During Phase 1, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed and will be integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will then be injected into the flue gas stream upstream of the test device to determine the mercury removal efficiency for each sorbent. During the Phase 11 effort, component integration for the most promising dry sorbent technology (technically and economically feasible) shall be tested at the 5000 acfm pilot-scale. An extensive work plan has been developed for the project. Three sorbents will be selected for evaluation at the facility through investigation, presentation, and discussion among team members: PSCO, EPRI, ADA, and DOE. The selected sorbents will be tested in the five primary bench-scale configurations: pulse `et baghouse, TOXECON, reverse-gas baghouse, electrostatic precipitator, and an ESP or fabric filter `with no Comanche ash in the flue gas stream. In the EPRI TOXECON system, mercury sorbents will be injected downstream of a primary particulate control device, and collected in a pulse-jet baghouse operated at air-to-cloth ratios of 12 to 16 ft/min, thus separating the mercury and sorbent from the captured flyash. In the no-ash configuration, an external flyash sample will be injected into a clean gas stream to investigate possible variations in sorbent effectiveness in the presence of different ashes. The use of an existing test facility, a versatile design for the test fixture, and installation of a continuous mercury analyzer will allow for the completion of this ambitious test plan. The primary activity during the quarter was to complete fabrication and installation of the facility.

  10. Animation Requirements

    Broader source: Energy.gov [DOE]

    Animations include dynamic elements such as interactive images and games. For developing animations, follow these design and coding requirements.

  11. Improving carbon fixation pathways

    SciTech Connect (OSTI)

    Ducat, DC; Silver, PA

    2012-08-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing and enhancing photosynthetic reactions in a species independent manner. Furthermore, the elucidation of alternative carbon-fixation routes distinct from the Calvin cycle raises possibilities that novel pathways and organisms can be utilized to fix atmospheric carbon dioxide into useful materials.

  12. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models. Current status and future directions

    SciTech Connect (OSTI)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N.; Schwalm, Christopher R.; Michalak, A. M.; Cook, Robert B.; Ciais, Philippe; Hayes, Daniel J.; Huang, Maoyi; Ito, Akihiko; Jain, Atul K.; Lei, Huimin; Mao, Jiafu; Pan, Shufen; Post, W. M.; Peng, Shushi; Poulter, Benjamin; Ren, Wei; Ricciuto, Daniel M.; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Wang, Weile; Wei, Yaxing; Yang, Qichun; Zhang, Bowen; Zeng, Ning

    2015-06-05

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and loss from soil accounts for a large pro portion of land-atmosphere C exchange. Due to large pool size and variable residence time from years to millennia, even small changes in soil organic C(SOC) have substantial effects on the terrestrial C budget, thereby affecting atmospheric carbon dioxide (CO2)concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain and identifying major driving forces controlling soil C storage and fluxes remains a key research challenge his study has compiled century-long (1901-2010)estimates of SOC storage and heterotrophic respiration (Rh) from ten terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) and two observation based datasets. The ten-TBM ensemble shows that global SOC estimate range from 4 to 2111 Pg C (1 Pg = 1015g) with a median value of 1158 Pg C33 in 2010. Modeling approach estimates a broad range of Rh from 35 to 69 Pg C yr-1 with a median value of 51Pg C yr-1 during 200–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude band while Rh differences are the largest in the tropics. All the models agreed that climate and land use changes have decreased SOC stocks while elevated CO2 and atmospheric nitrogen deposition have increased SOC stocks though the response varied significantly among models. Model representations of temperature and moisture sensitivity,nutrient limitation and land use partially explain the divergent estimates of global SOC stocks and soil fluxes in this study. In addition, major sources of uncertainty from model estimation include exclusion of SOC storage in

  13. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions

    SciTech Connect (OSTI)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N.; Schwalm, Christopher R.; Michalak, Anna M.; Cook, Robert; Ciais, Philippe; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul K.; Lei, Huimin; Mao, Jiafu; Pan, Shufen; Post, Wilfred M.; Peng, Shushi; Poulter, Benjamin; Ren, Wei; Ricciuto, Daniel; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Wang, Weile; Wei, Yaxing; Yang, Qichun; Zhang, Bowen; Zeng, Ning

    2015-06-05

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO₂) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-long (1901–2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10¹⁵ g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr⁻¹ with a median value of 51 Pg C yr⁻¹ during 2001–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901–2010 ranges from –70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO₂ and nitrogen deposition over intact ecosystems increased SOC stocks—even though the responses varied significantly

  14. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N.; Schwalm, Christopher R.; Michalak, Anna M.; Cook, Robert; Ciais, Philippe; Hayes, Daniel; et al

    2015-06-05

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO₂) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-longmore » (1901–2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10¹⁵ g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr⁻¹ with a median value of 51 Pg C yr⁻¹ during 2001–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901–2010 ranges from –70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO₂ and nitrogen deposition over intact ecosystems increased SOC stocks—even though the responses varied

  15. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE (Technical...

    Office of Scientific and Technical Information (OSTI)

    Subject: 54 ENVIRONMENTAL SCIENCES; CARBON DIOXIDE; ABSORPTION; ACID NEUTRALIZING CAPACITY; DESORPTION; POTASSIUM CARBONATES; AMINES; AIR POLLUTION CONTROL; FLUE GAS Word Cloud ...

  16. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE (Technical...

    Office of Scientific and Technical Information (OSTI)

    Subject: 54 ENVIRONMENTAL SCIENCES; ABSORPTION; PERFORMANCE; POTASSIUM CARBONATES; CHEMICAL REACTION KINETICS; CARBON DIOXIDE; AIR POLLUTION CONTROL; AMINES Word Cloud More Like ...

  17. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon capture involves the separation of carbon dioxide (CO2) from coal-based power plant ... are not ready for implementation on coal-based power plants because they have not ...

  18. Eligibility Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eligibility Requirements Eligibility Requirements A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact Benefits Office (505) 667-1806 Email Eligibility and required supporting documentation The Laboratory offers an extensive benefits package to full and part time employees. Casual employees (excluding High School Coop, Lab Associates and Craft Employees) are eligible to enroll in the HDHP medical plan. Refer

  19. Reporting Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reporting Requirements Reporting Requirements Contacts Director Albert Migliori Deputy Franz Freibert 505 667-6879 Email Professional Staff Assistant Susan Ramsay 505 665 0858 Email The Fellow will be required to participate in the Actinide Science lecture series by both attending lectures and presenting a scientific lecture on actinide science in this series. Submission of a viewgraph and brief write-up of the project. Provide metrics information as requested. Submission of an overview article

  20. Competition Requirements

    Office of Environmental Management (EM)

    - Chapter 6.1 (January 2011) 1 Competition Requirements [Reference: FAR 6 and DEAR 906] Overview This section discusses competition requirements and provides a model Justification for Other than Full and Open Competition (JOFOC). Background The Competition in Contracting Act (CICA) of 1984 requires that all acquisitions be made using full and open competition. Seven exceptions to using full and open competition are specifically identified in Federal Acquisition Regulation (FAR) Subpart 6.3.

  1. Competition Requirements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ---------------------------------------- Chapter 6.1 (July 2011) 1 Competition Requirements [Reference: FAR 6 and DEAR 906] Overview This section discusses competition requirements and provides a model Justification for Other than Full and Open Competition (JOFOC). Background The Competition in Contracting Act (CICA) of 1984 requires that all acquisitions be made using full and open competition. Seven exceptions to using full and open competition are specifically identified in Federal

  2. Video Requirements

    Broader source: Energy.gov [DOE]

    All EERE videos, including webinar recordings, must meet Section 508's requirements for accessibility. All videos should be hosted on the DOE YouTube channel.

  3. Deployment Requirements

    Broader source: Energy.gov (indexed) [DOE]

    Troy, Michigan June 13, 2014 THIS PRESENTATION DOES NOT CONTAIN ANY PROPRIETARY, CONFIDENTIAL OR OTHERWISE RESTRICTED INFORMATION 2 Outline of talk * SAE 2719 Requirements and ...

  4. Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Fact Sheet Research Team Members Key Contacts Carbon Storage Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO2. NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are: By 2015, develop technologies

  5. Ultra low friction carbon/carbon composites for extreme temperature applications

    DOE Patents [OSTI]

    Erdemir, Ali; Busch, Donald E.; Fenske, George R.; Lee, Sam; Shepherd, Gary; Pruett, Gary J.

    2001-01-01

    A carbon/carbon composite in which a carbon matrix containing a controlled amount of boron or a boron compound is reinforced with carbon fiber exhibits a low coefficient of friction, i.e., on the order of 0.04 to 0.1 at temperatures up to 600.degree. C., which is one of the lowest frictional coefficients for any type of carbonaceous material, including graphite, glassy carbon, diamond, diamond-like carbon and other forms of carbon material. The high degree of slipperiness of the carbon composite renders it particularly adapted for limiting friction and wear at elevated temperatures such as in seals, bearings, shafts, and flexible joints

  6. Carbon dioxide power plant for total emission control and enhanced oil recovery. [Removal, storage, and use of CO/sub 2/

    SciTech Connect (OSTI)

    Horn, F L; Steinberg, M

    1981-08-01

    The design of a compact environmentally acceptable carbon dioxide diluted coal-oxygen fired power plant is described. The plant releases no combustion products to the atmosphere. The oxygen for combustion is separated in an air liquefaction plant and the effluent nitrogen is available for use in oil well production. Recycle carbon dioxide mixed with oxygen replaces the nitrogen for the combustion of coal in the burners. The carbon dioxide produced is used in enhanced oil recovery operations and injected into spent wells and excavated salt cavities for long-term storage. The recovery of CO/sub 2/ from a coal-burning power plant by this method appears to have the lowest energy expenditure and the lowest byproduct cost compared to alternative removal and recovery processes.

  7. Argonne Terrestrial Carbon Cycle Data from Batavia Prairie and Agricultural Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Matamala, Roser [ANL; Jastrow, Julie D.; Lesht, Barry [ANL; Cook, David [ANL; Pekour, Mikhail [ANL; Gonzalez-Meler, Miquel A. [University of Illinois at Chicago

    Carbon dioxide fluxes and stocks in terrestrial ecosystems are key measurements needed to constrain quantification of regional carbon sinks and sources and the mechanisms controlling them. This information is required to produce a sound carbon budget for North America. This project examines CO2 and energy fluxes from agricultural land and from restored tallgrass prairie to compare their carbon sequestration potentials. The study integrates eddy covariance measurements with biometric measurements of plant and soil carbon stocks for two systems in northeastern Illinois: 1) long-term cultivated land in corn-soybean rotation with conventional tillage, and 2) a 15 year-old restored prairie that represents a long-term application of CRP conversion of cultivated land to native vegetation. The study contributes to the North American Carbon Program (NACP) by providing information on the magnitude and distribution of carbon stocks and the processes that control carbon dynamics in cultivated and CRP-restored land in the Midwest. The prairie site has been functioning since October 2004 and the agricultural site since July 2005. (From http://www.atmos.anl.gov/ FERMI/index.html)

  8. Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration

    SciTech Connect (OSTI)

    Wu, C.H.; Bernard, S.; Andersen, G.L.; Chen, W.

    2009-03-01

    Interactions between plants and microbes are an integral part of our terrestrial ecosystem. Microbe-plant interactions are being applied in many areas. In this review, we present recent reports of applications in the areas of plant-growth promotion, biocontrol, bioactive compound and biomaterial production, remediation and carbon sequestration. Challenges, limitations and future outlook for each field are discussed.

  9. Carbon and Energy Reporter | Open Energy Information

    Open Energy Info (EERE)

    and Energy Reporter Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon and Energy Reporter AgencyCompany Organization: Johnson Controls Sector: Energy User...

  10. Competition Requirements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ---- ----------------------------------------------- Chapter 5.2 (April 2008) Synopsizing Proposed Non-Competitive Contract Actions Citing the Authority of FAR 6.302-1 [Reference: FAR 5 and DEAR 905] Overview This section discusses publicizing sole source actions as part of the approval of a Justification for Other than Full and Open Competition (JOFOC) using the authority of FAR 6.302-1. Background The Competition in Contracting Act (CICA) of 1984 requires that all acquisitions be made using

  11. Environmental Requirements Management

    SciTech Connect (OSTI)

    Cusack, Laura J.; Bramson, Jeffrey E.; Archuleta, Jose A.; Frey, Jeffrey A.

    2015-01-08

    CH2M HILL Plateau Remediation Company (CH2M HILL) is the U.S. Department of Energy (DOE) prime contractor responsible for the environmental cleanup of the Hanford Site Central Plateau. As part of this responsibility, the CH2M HILL is faced with the task of complying with thousands of environmental requirements which originate from over 200 federal, state, and local laws and regulations, DOE Orders, waste management and effluent discharge permits, Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response and Resource Conservation and Recovery Act (RCRA) corrective action documents, and official regulatory agency correspondence. The challenge is to manage this vast number of requirements to ensure they are appropriately and effectively integrated into CH2M HILL operations. Ensuring compliance with a large number of environmental requirements relies on an organization’s ability to identify, evaluate, communicate, and verify those requirements. To ensure that compliance is maintained, all changes need to be tracked. The CH2M HILL identified that the existing system used to manage environmental requirements was difficult to maintain and that improvements should be made to increase functionality. CH2M HILL established an environmental requirements management procedure and tools to assure that all environmental requirements are effectively and efficiently managed. Having a complete and accurate set of environmental requirements applicable to CH2M HILL operations will promote a more efficient approach to: • Communicating requirements • Planning work • Maintaining work controls • Maintaining compliance

  12. SURFACE MORPHOLOGY OF CARBON FIBER POLYMER COMPOSITES AFTER LASER STRUCTURING

    SciTech Connect (OSTI)

    Sabau, Adrian S; Chen, Jian; Jones, Jonaaron F.; Alexandra, Hackett; Jellison Jr, Gerald Earle; Daniel, Claus; Warren, Charles David; Rehkopf, Jackie D.

    2015-01-01

    The increasing use of Carbon Fiber Polymer Composite (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin in the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg - T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90o plaques. The effect of laser fluence, scanning speed, and wavelength was investigated to remove resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on the surface morphology.

  13. HOLLOW CARBON ARC DISCHARGE

    DOE Patents [OSTI]

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  14. Requirements Definition Stage

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-21

    This chapter addresses development of a Software Configuration Management Plan to track and control work products, analysis of the system owner/users' business processes and needs, translation of those processes and needs into formal requirements, and planning the testing activities to validate the performance of the software product.

  15. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  16. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  17. Carbon Sequestration

    SciTech Connect (OSTI)

    2013-05-06

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  18. Diesel Emission Control Review

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and technology approaches for diesel emission control for heavy and light duty applications

  19. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture Fact Sheet Key Contacts Carbon Capture Research & Development Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in atmospheric CO2 concentrations, but capturing substantial amounts of CO2 using current technology would result in a prohibitive rise in the cost of producing energy. The National Energy Technology Laboratory Office of Research and Development (NETL-ORD), in collaboration with researchers

  20. Carbide-derived carbons - From porous networks to nanotubes and graphene

    SciTech Connect (OSTI)

    Presser, V.; Heon, M.; Gogotsi, Y.

    2011-02-09

    Carbide-derived carbons (CDCs) are a large family of carbon materials derived from carbide precursors that are transformed into pure carbon via physical (e.g., thermal decomposition) or chemical (e.g., halogenation) processes. Structurally, CDC ranges from amorphous carbon to graphite, carbon nanotubes or graphene. For halogenated carbides, a high level of control over the resulting amorphous porous carbon structure is possible by changing the synthesis conditions and carbide precursor. The large number of resulting carbon structures and their tunability enables a wide range of applications, from tribological coatings for ceramics, or selective sorbents, to gas and electrical energy storage. In particular, the application of CDC in supercapacitors has recently attracted much attention. This review paper summarizes key aspects of CDC synthesis, properties, and applications. It is shown that the CDC structure and properties are sensitive to changes of the synthesis parameters. Understanding of processingstructureproperties relationships facilitates tuning of the carbon material to the requirements of a certain application.

  1. Activated, coal-based carbon foam

    DOE Patents [OSTI]

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  2. Natural materials for carbon capture.

    SciTech Connect (OSTI)

    Myshakin, Evgeniy M.; Romanov, Vyacheslav N.; Cygan, Randall Timothy

    2010-11-01

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  3. Carbon supercapacitors

    SciTech Connect (OSTI)

    Delnick, F.M.

    1993-11-01

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  4. Carbon particles

    DOE Patents [OSTI]

    Hunt, Arlon J.

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  5. Carbon microtubes

    DOE Patents [OSTI]

    Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2011-06-14

    A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

  6. Carbon | Open Energy Information

    Open Energy Info (EERE)

    Carbon Jump to: navigation, search TODO: Add description Related Links List of Companies in Carbon Sector Retrieved from "http:en.openei.orgwindex.php?titleCarbon&oldid271960...

  7. Lithographically defined microporous carbon structures

    DOE Patents [OSTI]

    Burckel, David Bruce; Washburn, Cody M.; Polsky, Ronen; Brozik, Susan M.; Wheeler, David R.

    2013-01-08

    A lithographic method is used to fabricate porous carbon structures that can provide electrochemical electrodes having high surface area with uniform and controllable dimensions, providing enormous flexibility to tailor the electrodes toward specific applications. Metal nanoparticles deposited on the surface of the porous carbon electrodes exhibit ultra small dimensions with uniform size distribution. The resulting electrodes are rugged, electrically conductive and show excellent electrochemical behavior.

  8. Carbon-Fuelled Future

    SciTech Connect (OSTI)

    Appel, Aaron M.

    2014-09-12

    Whether due to changes in policy or consumption of available fossil fuels, alternative sources of energy will be required, especially given the rising global energy demand. However, one of the main factors limiting the widespread utilization of renewable energy, such as wind, solar, wave or geothermal, is our ability to store energy. Storage of energy from carbon-neutral sources, such as electricity from solar or wind, can be accomplished through many routes. One approach is to store energy in the form of chemical bonds, as fuels. The conversion of low-energy compounds, such as water and carbon dioxide, to higher energy molecules, such as hydrogen or carbon-based fuels, enables the storage of carbon-neutral energy on a very large scale. The author¹s work in this area is supported by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  9. Carbon nanotube coatings as chemical absorbers

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  10. Physics Division Work Planning Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements The following is Physics Division requirements related to work planning, control and authorization for work projects and test set ups in division work areas across the laboratory. For the testing and commissioning of experimental equipment the consequences/cost of said equipment should receive careful consideration when doing the risk analysis. * Any small setup or task with total duration of less than two weeks requires an informal task hazard analysis. Informal means we can do

  11. Mobility of organic carbon from incineration residues

    SciTech Connect (OSTI)

    Ecke, Holger Svensson, Malin

    2008-07-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2{sup 6-1} experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO{sub 2} until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon.

  12. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect (OSTI)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits

  13. Lithium/fluorinated carbon battery with no voltage delay

    SciTech Connect (OSTI)

    Tung, H.S.; Friedland, D.J.; Sukornick, B.; Mc Curry, L.E.; Eibeck, R.E.; Lockyer, G.D.

    1987-07-21

    A method is described for producing an improved fluorinated carbon, for use as a cathode active material in a lithium fluorinated carbon battery, which inhibits initial voltage delay upon discharge, which comprises: (a) introducing a comminuted carbon into a static bed reactor; (b) foring a bed of the carbon to a depth of at least 0.5 cm; and (c) subjecting the carbon bed to a fluorination reaction under controlled reaction time with fluorine to produce an inhomogeneous fluorinated carbon product and until the carbon attains a weight gain of at least 10 percent.

  14. Carbon investment funds

    SciTech Connect (OSTI)

    2007-01-15

    The report is a study of the development of funds to invest in the purchase of carbon credits. It takes a look at the growing market for carbon credits, the rise of carbon investment funds, and the current state of carbon investing. Topics covered in the report include: Overview of climate change, greenhouse gases, and the Kyoto Protocols. Analysis of the alternatives for reducing carbon emissions including nitrous oxide reduction, coal mine methane capture and carbon capture and storage; Discussion of the different types of carbon credits; Discussion of the basics of carbon trading; Evaluation of the current status of carbon investing; and Profiles of 37 major carbon investment funds worldwide.

  15. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    SciTech Connect (OSTI)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

  16. Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System

    SciTech Connect (OSTI)

    West, Tristram O.; Brown, Molly E.; Duran, Riley M.; Ogle, Stephen; Moss, Richard H.

    2013-08-08

    Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify intended capabilities of a carbon monitoring system and what system components are needed to develop the capabilities. This paper is intended to promote discussion on what capabilities are needed in a carbon monitoring system based on requirements for different areas of carbon-related research and, ultimately, for carbon management. While many methods exist to quantify different components of the carbon cycle, research is needed on how these methods can be coupled or integrated to obtain carbon stock and flux estimates regularly and at a resolution that enables attribution of carbon dynamics to respective sources. As society faces sustainability and climate change conerns, carbon management activities implemented to reduce carbon emissions or increase carbon stocks will become increasingly important. Carbon management requires moderate to high resolution monitoring. Therefore, if monitoring is intended to help inform management decisions, management priorities should be considered prior to development of a monitoring system.

  17. Global warming and the future of coal carbon capture and storage

    SciTech Connect (OSTI)

    Ken Berlin; Robert M. Sussman

    2007-05-15

    The paper considers how best to change the economic calculus of power plant developers so they internalize CCS costs when selecting new generation technologies. Five policy tools are analyzed: establishing a greenhouse gas cap-and-trade program; imposing carbon taxes; defining CCS systems as a so-called Best Available Control Technology for new power plants under the USA Clean Air Act's New Source Review program; developing a 'low carbon portfolio' standard that requires utilities to provide an increasing proportion of power from low-carbon generation sources over time; and requiring all new coal power plants to meet an 'emission performance' standard that limits CO{sub 2} emissions to levels achievable with CCS systems. Each of these tools has advantages and drawbacks but an emission performance standard for new power plants is likely to be most effective in spurring broad-scale adoption of CCS systems. Chapter headings are: global warming and the future of coal; new coal-fired power plants threaten all other efforts to combat global warming; a potential path to zero emissions through carbon capture and storage; CO{sub 2} capture at coal plants: the promise of IGCC and other technologies; barriers to commercialization of IGCC technology; crossing the chasm: a new policy framework to push ccs implementation forward; encouraging CCS systems with carbon caps and trading programs; using the existing Clean Air Act to require CCS systems for new coal plants; retail low carbon portfolio standard; carbon tax; emission performance standards for new coal power plants; and conclusions. 16 figs.

  18. An unusual carbon-carbon bond cleavage reaction during phosphinothrici...

    Office of Scientific and Technical Information (OSTI)

    An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis Citation Details In-Document Search Title: An unusual carbon-carbon bond cleavage reaction ...

  19. Salt Lake City- High Performance Buildings Requirement

    Broader source: Energy.gov [DOE]

    Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

  20. In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors

    SciTech Connect (OSTI)

    Jeon, Ju Won; Sharma, Ronish; Meduri, Praveen; Arey, Bruce W.; Schaef, Herbert T.; Lutkenhaus, Jodie; Lemmon, John P.; Thallapally, Praveen K.; Nandasiri, Manjula I.; McGrail, B. Peter; Nune, Satish K.

    2014-05-28

    Electrochemical performance of the existing state-of-the art capacitors is not very high, key scientific barrier is that its charge storage mechanism wholly depends on adsorption of electrolyte on electrode. We present a novel method for the synthesis of nitrogen -doped porous carbons and address the drawback by precisely controlling composition and surface area. Nitrogen-doped porous carbon was synthesized using a self-sacrificial template technique without any additional nitrogen and carbon sources. They exhibited exceptionally high capacitance (239 Fg-1) due to additional pseudocapacitance originating from doped nitrogen. Cycling tests showed no obvious capacitance decay even after 10,000 cycles, which meets the requirement of commercial supercapacitors. Our method is simple and highly efficient for the production of large quantities of nitrogen-doped porous carbons.

  1. Characterization of electrospun lignin based carbon fibers

    SciTech Connect (OSTI)

    Poursorkhabi, Vida; Mohanty, Amar; Misra, Manjusri

    2015-05-22

    The production of lignin fibers has been studied in order to replace the need for petroleum based precursors for carbon fiber production. In addition to its positive environmental effects, it also benefits the economics of the industries which cannot take advantage of carbon fiber properties because of their high price. A large amount of lignin is annually produced as the byproduct of paper and growing cellulosic ethanol industry. Therefore, finding high value applications for this low cost, highly available material is getting more attention. Lignin is a biopolymer making about 15 30 % of the plant cell walls and has a high carbon yield upon carbonization. However, its processing is challenging due to its low molecular weight and also variations based on its origin and the method of separation from cellulose. In this study, alkali solutions of organosolv lignin with less than 1 wt/v% of poly (ethylene oxide) and two types of lignin (hardwood and softwood) were electrospun followed by carbonization. Different heating programs for carbonization were tested. The carbonized fibers had a smooth surface with an average diameter of less than 5?m and the diameter could be controlled by the carbonization process and lignin type. Scanning electron microscopy (SEM) was used to study morphology of the fibers before and after carbonization. Thermal conductivity of a sample with amorphous carbon was 2.31?W/m.K. The electrospun lignin carbon fibers potentially have a large range of application such as in energy storage devices and water or gas purification systems.

  2. Carbon Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Name: Carbon Capital Place: United Kingdom Sector: Carbon Product: Manages a carbon fund specialised in forestry projects References: Carbon...

  3. BES Requirements Review 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BES Requirements Review 2014 Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Documents and Background Materials FAQ for Case Study Authors BER Requirements Review 2015 ASCR Requirements Review 2015 Previous Reviews HEP/NP Requirements Review 2013 FES Requirements Review 2014 BES Requirements Review 2014 BES Attendees 2014 Requirements Review Reports Case Studies Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1

  4. FES Requirements Review 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FES Requirements Review 2014 Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Documents and Background Materials FAQ for Case Study Authors BER Requirements Review 2015 ASCR Requirements Review 2015 Previous Reviews HEP/NP Requirements Review 2013 FES Requirements Review 2014 FES Attendees 2014 BES Requirements Review 2014 Requirements Review Reports Case Studies Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1

  5. LEGACY MANAGEMENT REQUIRES INFORMATION

    SciTech Connect (OSTI)

    CONNELL, C.W.; HILDEBRAND, R.D.

    2006-12-14

    ''Legacy Management Requires Information'' describes the goal(s) of the US Department of Energy's Office of Legacy Management (LM) relative to maintaining critical records and the way those goals are being addressed at Hanford. The paper discusses the current practices for document control, as well as the use of modern databases for both storing and accessing the data to support cleanup decisions. In addition to the information goals of LM, the Hanford Federal Facility Agreement and Consent Order, known as the ''Tri-Party Agreement'' (TPA) is one of the main drivers in documentation and data management. The TPA, which specifies discrete milestones for cleaning up the Hanford Site, is a legally binding agreement among the US Department of Energy (DOE), the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The TPA requires that DOE provide the lead regulatory agency with the results of analytical laboratory and non-laboratory tests/readings to help guide them in making decisions. The Agreement also calls for each signatory to preserve--for at least ten years after the Agreement has ended--all of the records in its or its contractors, possession related to sampling, analysis, investigations, and monitoring conducted. The tools used at Hanford to meet TPA requirements are also the tools that can satisfy the needs of LM.

  6. Desalination with carbon aerogel electrodes

    SciTech Connect (OSTI)

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.

    1996-10-21

    An electrically regenerated electrosorption process known as carbon aerogel CDI was developed for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area and very low resistivity. After polarization, anions and cations are removed from electrolyte by the electric field and electrosorbed onto the carbon aerogel. The solution is thus separated into two streams, brine and water. Based on this, carbon aerogel CDI appears to be an energy-efficient alternative to evaporation, electrodialysis, and reverse osmosis. The energy required by this process is about QV/2, plus losses. Estimated energy requirement for sea water desalination is 18-27 Wh gal{sup -1}, depending on cell voltage and flow rate. The requirement for brackish water desalination is less, 1.2-2.5 Wh gal{sup -1} at 1600 ppM. This is assuming that stored electrical energy is reclaimed during regeneration.

  7. Requirements for Wind Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2015 Oklahoma amended the Oklahoma Wind Energy Development Act. The amendments added new financial security requirements, setback requirements, and notification requirements for wind energy...

  8. BER Requirements Review 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reviews Network Requirements Reviews Documents and Background Materials FAQ for Case Study Authors BER Requirements Review 2015 BER Attendees 2015 ASCR Requirements...

  9. Network Requirements Reviews

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reviews Network Requirements Reviews Documents and Background Materials FAQ for Case Study Authors BER Requirements Review 2015 ASCR Requirements Review 2015 Previous...

  10. POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION...

    Office of Scientific and Technical Information (OSTI)

    CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS Citation Details In-Document Search Title: POWDERED ACTIVATED...

  11. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE (Technical...

    Office of Scientific and Technical Information (OSTI)

    CONSUMPTION; MASS TRANSFER; PILOT PLANTS; POTASSIUM CARBONATES; VANADIUM; AMINES; AIR POLLUTION CONTROL Word Cloud More Like This Full Text preview image File size NAView Full ...

  12. Uncovering Role of Symbiotic Fungi in Soil Carbon Storage | U...

    Office of Science (SC) Website

    Uncovering Role of Symbiotic Fungi in Soil Carbon Storage ... U.S. Department of Energy SC-23Germantown Building ... controlled positive feedback to the climate system. ...

  13. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B.

    1993-01-01

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  14. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Smit, Berend

    2011-06-08

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  15. Feed tank transfer requirements

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

  16. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  17. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  18. Science Requirements Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Requirements Reviews Network Requirements Reviews Requirements Review Reports Case Studies News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet Live Home » Science Engagement » Science Requirements Reviews Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Requirements Review Reports Case Studies Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1

  19. BER Requirements Review 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BER Attendees 2015 ASCR Requirements Review 2015 Previous Reviews Requirements Review Reports Case Studies News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet Live Home » Science Engagement » Science Requirements Reviews » Network Requirements Reviews » BER Requirements Review 2015 Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Documents and Background Materials

  20. ASCR Requirements Review 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASCR Requirements Review 2015 ASCR Attendees 2015 Previous Reviews Requirements Review Reports Case Studies News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet Live Home » Science Engagement » Science Requirements Reviews » Network Requirements Reviews » ASCR Requirements Review 2015 Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Documents and Background Materials

  1. Determination of a cost-effective air pollution control technology for the control of VOC and HAP emissions from a steroids processing plant

    SciTech Connect (OSTI)

    Hamel, T.M.

    1997-12-31

    A steroids processing plant located in northeastern Puerto Rico emits a combined average of 342 lb/hr of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from various process operations. The approach that this facility used to implement maximum achievable control technology (MACT) may assist others who must contend with MACT for pharmaceutical or related manufacturing facilities. Federal air regulations define MACT standards for stationary sources emitting any of 189 HAPs. The MACT standards detailed in the NESHAPs are characterized by industry and type of emission control system or technology. It is anticipated that the standard will require HAP reductions of approximately 95%. The steroid plant`s emissions include the following pollutant loadings: VOC/HAP Emission Rate (lb/hr): Methanol 92.0; Acetone 35.0; Methylene chloride 126.0; Chloroform 25.0; Ethyl acetate 56.0; Tetrahydrofuran 5.00; and 1,4-Dioxane 3.00. The facility`s existing carbon adsorption control system was nearing the end of its useful life, and the operators sought to install an air pollution control system capable of meeting MACT requirements for the pharmaceutical industry. Several stand-alone and hybrid control technologies were considered for replacement of the carbon adsorption system at the facility. This paper examines the following technologies: carbon adsorption, membrane separation, thermal oxidation, membrane separation-carbon adsorption, and condensation-carbon adsorption. Each control technology is described; the advantages and disadvantages of utilizing each technology for the steroid processing plant are examined; and capital and operating costs associated with the implementation of each technology are presented. The rationale for the technology ultimately chosen to control VOC and HAP emissions is presented.

  2. Carbon Nanotube Based Sensors

    SciTech Connect (OSTI)

    Jiang, Mian; Lin, Yuehe

    2006-11-01

    This review article provides a comprehensive review on sensors and biosensors based on functionalized carbon nanotubes.

  3. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, Richard J.

    1998-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  4. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, Richard J.

    1999-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  5. Carbon nanotube composite materials

    DOE Patents [OSTI]

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  6. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, R.J.

    1998-02-10

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

  7. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  8. Carbon nanotubes on a substrate

    DOE Patents [OSTI]

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  9. Patterned functional carbon fibers from polyethylene

    SciTech Connect (OSTI)

    Hunt, Marcus A; Saito, Tomonori; Brown, Rebecca H; Kumbhar, Amar S; Naskar, Amit K

    2012-01-01

    Patterned, continuous carbon fibers with controlled surface geometry were produced from a novel melt-processible carbon precursor. This portends the use of a unique technique to produce such technologically innovative fibers in large volume for important applications. The novelties of this technique include ease of designing and fabricating fibers with customized surface contour, the ability to manipulate filament diameter from submicron scale to a couple of orders of magnitude larger scale, and the amenable porosity gradient across the carbon wall by diffusion controlled functionalization of precursor. The geometry of fiber cross-section was tailored by using bicomponent melt-spinning with shaped dies and controlling the melt-processing of the precursor polymer. Circular, trilobal, gear-shaped hollow fibers, and solid star-shaped carbon fibers of 0.5 - 20 um diameters, either in self-assembled bundle form, or non-bonded loose filament form, were produced by carbonizing functionalized-polyethylene fibers. Prior to carbonization, melt-spun fibers were converted to a char-forming mass by optimizing the sulfonation on polyethylene macromolecules. The fibers exhibited distinctly ordered carbon morphologies at the outside skin compared to the inner surface or fiber core. Such order in carbon microstructure can be further tuned by altering processing parameters. Partially sulfonated polyethylene-derived hollow carbon fibers exhibit 2-10 fold surface area (50-500 m2/g) compared to the solid fibers (10-25 m2/g) with pore sizes closer to the inside diameter of the filaments larger than the sizes on the outer layer. These specially functionalized carbon fibers hold promise for extraordinary performance improvements when used, for example, as composite reinforcements, catalyst support media, membranes for gas separation, CO2 sorbents, and active electrodes and current collectors for energy storage applications.

  10. Varied morphology carbon nanotubes and method for their manufacture

    DOE Patents [OSTI]

    Li, Wenzhi; Wen, Jian Guo; Ren, Zhi Feng

    2007-01-02

    The present invention describes the preparation of carbon nanotubes of varied morphology, catalyst materials for their synthesis. The present invention also describes reactor apparatus and methods of optimizing and controlling process parameters for the manufacture carbon nanotubes with pre-determined morphologies in relatively high purity and in high yields. In particular, the present invention provides methods for the preparation of non-aligned carbon nanotubes with controllable morphologies, catalyst materials and methods for their manufacture.

  11. Feed tank transfer requirements

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  12. Autonomous observations of the ocean biological carbon pump

    SciTech Connect (OSTI)

    Bishop, James K.B.

    2009-03-01

    Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate space and time scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost fully-autonomous ocean profiling Carbon Explorers that demonstrated that year-round real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a sensor for particulate inorganic carbon (PIC) suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore based laboratory analysis, is now possible to full ocean depth in real time using a 0.2W sensor operating at 24 Hz. NOPP developments further spawned US DOE support to develop the Carbon Flux Explorer, a free-vehicle capable of following hourly variations of particulate inorganic and organic carbon sedimentation from near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real time - low cost carbon observations which are of fundamental value to carbon prediction and when further developed, will lead to a fully enhanced global carbon observatory capable of real time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.

  13. Regulators, Requirements, Statutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Act (CAA) Requirements for air quality and air emissions from facility operations Clean Water Act (CWA) Requirements for water quality and water discharges from facility...

  14. Requirements Review Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Editors, "High Energy Physics and Nuclear Physics Network Requirements - Final Report", ESnet Network Requirements Workshop, August 2013, LBNL 6642E Download File: HEP-NP-Net-Req...

  15. NATIVE PLANTS FOR OPTIMIZING CARBON SEQUESTRATION IN RECLAIMED LANDS

    SciTech Connect (OSTI)

    P. UNKEFER; M. EBINGER; ET AL

    2001-02-01

    Carbon emissions and atmospheric concentrations are expected to continue to increase through the next century unless major changes are made in the way carbon is managed. Managing carbon has emerged as a pressing national energy and environmental need that will drive national policies and treaties through the coming decades. Addressing carbon management is now a major priority for DOE and the nation. One way to manage carbon is to use energy more efficiently to reduce our need for major energy and carbon source-fossil fuel combustion. Another way is to increase our use of low-carbon and carbon free fuels and technologies. A third way, and the focus of this proposal, is carbon sequestration, in which carbon is captured and stored thereby mitigating carbon emissions. Sequestration of carbon in the terrestrial biosphere has emerged as the principle means by which the US will meet its near-term international and economic requirements for reducing net carbon emissions (DOE Carbon Sequestration: State of the Science. 1999; IGBP 1998). Terrestrial carbon sequestration provides three major advantages. First, terrestrial carbon pools and fluxes are of sufficient magnitude to effectively mitigate national and even global carbon emissions. The terrestrial biosphere stores {approximately}2060 GigaTons of carbon and transfers approximately 120 GigaTons of carbon per year between the atmosphere and the earth's surface, whereas the current global annual emissions are about 6 GigaTons. Second, we can rapidly and readily modify existing management practices to increase carbon sequestration in our extensive forest, range, and croplands. Third, increasing soil carbon is without negative environment consequences and indeed positively impacts land productivity. The terrestrial carbon cycle is dependent on several interrelationships between plants and soils. Because the soil carbon pool ({approximately}1500 Giga Tons) is approximately three times that in terrestrial vegetation

  16. Enhanced Driver Requirements for WIPP Shipments - Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and pass these training requirements: Radiation worker Dosimetry Public affairsmedia Command and control First responder TRANSCOM Radio communications ...

  17. Carbon fuel cells with carbon corrosion suppression

    DOE Patents [OSTI]

    Cooper, John F.

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  18. Disordered amorphous calcium carbonate from direct precipitation

    SciTech Connect (OSTI)

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value in iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.

  19. Disordered amorphous calcium carbonate from direct precipitation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value inmore » iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.« less

  20. Enhanced lithium ion storage in nanoimprinted carbon

    SciTech Connect (OSTI)

    Wang, Peiqi; Chen, Qian Nataly; Li, Jiangyu; Xie, Shuhong; Liu, Xiaoyan

    2015-07-27

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  1. Equipment Operational Requirements

    SciTech Connect (OSTI)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  2. Positional control of catalyst nanoparticles for the synthesis...

    Office of Scientific and Technical Information (OSTI)

    Positional control of catalyst nanoparticles for the synthesis of high density carbon nanofiber arrays Citation Details In-Document Search Title: Positional control of catalyst ...

  3. The use of carbon aerogel electrodes for deionizing water and treating aqueous process wastes

    SciTech Connect (OSTI)

    Farmer, J.C.; Mack, G.V.; Fix, D.V.

    1996-07-01

    A wide variety of ionic contaminants can be removed from aqueous solutions by electrosorption on carbon aerogel electrodes. Carbon aerogel is an ideal electrode material because of its low electrical resistivity (< 40 m{Omega}-cm), high specific surface area (400 to 1100 m{sup 2}/g), and controllable pore size distribution (< 50 nm). This approach may avoid the generation of a substantial amount of secondary waste associated with ion exchange processing. Ion exchange resins require concentrated solutions of acid, base, or salt for regeneration, whereas carbon aerogel electrodes require only electrical discharge or reverse polarization. Aqueous solutions of NaCl, NaNO{sub 3}, NH{sub 4}ClO{sub 4}, Na{sub 2}CO{sub 3}, Na{sub 2}SO{sub 4} and Na{sub 3}PO{sub 4} have been separated into concentrate and high-purity product streams. The deionization of a 100 {mu}S/cm NaCl solution with two parallel stacks of carbon aerogel electrodes in a potential-swing mode is discussed in detail. The selective removal of Cu, Zn, Cd, Pb, Cr, Mn, Co and U from a variety of process solutions and natural waters has also been demonstrated. Feasibility tests indicate that the remediation of Cr(VI)-contaminated ground water may be possible.

  4. Metallic carbon materials

    DOE Patents [OSTI]

    Cohen, Marvin Lou; Crespi, Vincent Henry; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  5. Johnson Noise Thermometry System Requirements

    SciTech Connect (OSTI)

    Britton Jr, Charles L; Roberts, Michael; Ezell, N Dianne Bull; Qualls, A L; Holcomb, David Eugene

    2013-01-01

    This document is intended to capture the requirements for the architecture of the developmental electronics for the ORNL-lead drift-free Johnson Noise Thermometry (JNT) project conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced Small Modular Reactor (SMR) Research and Development (R&D) program. The requirements include not only the performance of the system but also the allowable measurement environment of the probe and the allowable physical environment of the associated electronics. A more extensive project background including the project rationale is available in the initial project report [1].

  6. Carbon Jungle | Open Energy Information

    Open Energy Info (EERE)

    Jungle Jump to: navigation, search Name: Carbon Jungle Place: El Segundo, California Zip: 90246 Sector: Carbon Product: Carbon Jungle's mission is to decrease CO2 in the atmosphere...

  7. Carbon Connections | Open Energy Information

    Open Energy Info (EERE)

    Connections Jump to: navigation, search Name: Carbon Connections Place: Norfolk, England, United Kingdom Zip: NR4 7TJ Sector: Carbon Product: Carbon Connections links partner...

  8. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile...

  9. Asset Carbon | Open Energy Information

    Open Energy Info (EERE)

    Carbon Jump to: navigation, search Name: Asset Carbon Place: United Kingdom Product: UK-based startup looking to invest in CDMJI projects. References: Asset Carbon1 This article...

  10. Jumpstarting the carbon capture industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jumpstarting the carbon capture industry: Science on the Hill Jumpstarting the carbon capture industry: Science on the Hill Carbon capture, utilization, and storage can provide a...

  11. Novel method for carbon nanofilament growth on carbon fibers

    SciTech Connect (OSTI)

    Phillips, Johathan; Luhrs, Claudia; Terani, Mehran; Al - Haik, Marwan; Garcia, Daniel; Taha, Mahmoud R

    2009-01-01

    smooth walls and low impurity content were grown. Carbon nanofibers were also grown on a carbon fiber cloth using plasma enhanced chemical vapor deposition (CVD) from a mixture of acetylene and ammonia. In this case, a cobalt colloid was used to achieve a good coverage of nanofibers on carbon fibers in the cloth. Caveats to CNT growth include damage in the carbon fiber surface due to high-temperatures (>800 C). More recently, Qu et al. reported a new method for uniform deposition of CNT on carbon fibers. However, this method requires processing at 1100 C in the presence of oxygen and such high temperature is anticipated to deepen the damage in the carbon fibers. In the present work, multi-scale filaments (herein, linear carbon structures with multi-micron diameter are called 'fibers', all structures with sub-micron diameter are called 'filaments') were created with a low temperature (ca. 550 C) alternative to CVD growth of CNTs. Specifically, nano-scale filaments were rapidly generated (> 10 microns/hour) on commercial micron scale fibers via catalytic (Pd particles) growth from a fuel rich combustion environment at atmospheric pressure. This atmospheric pressure process, derived from the process called Graphitic Growth by Design (GSD), is rapid, the maximum temperature low enough (below 700 C) to avoid structural damage and the process inexpensive and readily scalable. In some cases, a significant and unexpected aspect of the process was the generation of 'three scale' materials. That is, materials with these three size characteristics were produced: (1) micrometer scale commercial PAN fibers, (2) a layer of 'long' sub-micrometer diameter scale carbon filaments, and (3) a dense layer of 'short' nanometer diameter filaments.

  12. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B.

    1991-01-01

    A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

  13. Method for making carbon super capacitor electrode materials

    DOE Patents [OSTI]

    Firsich, David W.; Ingersoll, David; Delnick, Frank M.

    1998-01-01

    A method for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200.degree.-250.degree. C., followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300.degree. C., follows carbonization.

  14. Method for making carbon super capacitor electrode materials

    DOE Patents [OSTI]

    Firsich, D.W.; Ingersoll, D.; Delnick, F.M.

    1998-07-07

    A method is described for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200--250 C, followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300 C, follows carbonization. 1 fig.

  15. Carbon nanotube nanoelectrode arrays

    DOE Patents [OSTI]

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  16. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  17. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Atmospheric Carbon, Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  18. Metal filled porous carbon

    DOE Patents [OSTI]

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  19. Carbon Sequestration.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concepts Current Sequestration Methods Novel Concepts * Glacial Storage * Biogenic Methane * Mineralization * Waste Streams Recycling * Calcium Carbonate Hydrates Glacial...

  20. Carbon Bearing Trace Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon bearing trace gases Carbon Bearing Trace Gases A critical scientific and policy oriented question is what are the present day sources and sinks of carbon dioxide (CO2) in the natural environment and how will these sinks evolve under rising CO2 concentrations and expected climate change and ecosystem response. Sources and sinks of carbon dioxide impart their signature on the distribution, concentration, and isotopic composition of CO2. Spatial and temporal trends (variability) provide

  1. Carbon Capture Simulation Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture R&D Carbon Capture R&D DOE's Carbon Capture Program, administered by the Office of Fossil Energy and the National Energy Technology Laboratory, is conducting research and development activities on Second Generation and Transformational carbon capture technologies that have the potential to provide step-change reductions in both cost and energy penalty as compared to currently available First Generation technologies. The Carbon Capture Program consists of two core research

  2. Wetland (peat) Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wetland peat carbon cycle Wetland (peat) Carbon Cycle Methane (CH4) is an important greenhouse gas, twenty times more potent than CO2, but atmospheric concentrations of CH4 under future climate change are uncertain. This is in part because many climate-sensitive ecosystems release both CH4 and carbon dioxide (CO2) and it is unknown how these systems will partition future releases of carbon to the atmosphere. Ecosystem observations of CH4 emissions lack mechanistic links to the processes that

  3. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  4. Intro to Carbon Sequestration

    ScienceCinema (OSTI)

    None

    2010-01-08

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  5. Intro to Carbon Sequestration

    SciTech Connect (OSTI)

    2008-03-06

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  6. Requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements Requirements Statutes 42 U.S.C. 4321: National Environmental Policy Act of 1969 42 U.S.C. 4371: Environmental Quality Improvement Act of 1970 42 U.S.C. 7401: Clean Air ...

  7. Requirements Management Database

    Energy Science and Technology Software Center (OSTI)

    2009-08-13

    This application is a simplified and customized version of the RBA and CTS databases to capture federal, site, and facility requirements, link to actions that must be performed to maintain compliance with their contractual and other requirements.

  8. Management Control Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-04-18

    To establish requirements and responsibilities for the Department of Energy Management Control Program. Cancels DOE O 413.1. Canceled by DOE O 413.1B.

  9. ARM - Reporting Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StatisticsReporting Requirements 2016 Quarterly Reports First Quarter (PDF) Second Quarter (PDF) Third Quarter (PDF) Fourth Quarter (PDF) Past Quarterly Reports Historical Statistics Field Campaigns Operational Visitors and Accounts Data Archive and Usage (October 1995 - Present) Reporting Requirements As a matter of government policy, all U.S. Department of Energy user facilities, including the ARM Climate Research Facility, have a number of reporting requirements. The Facility is required to

  10. PIT Coating Requirements Analysis

    SciTech Connect (OSTI)

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  11. Method for carbon dioxide sequestration

    DOE Patents [OSTI]

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  12. Recent Advances on Carbon Nanospheres. Synthetic Routes and Applications

    SciTech Connect (OSTI)

    Zhang, Pengfei; Qiao, Zhenan; Dai, Sheng

    2015-04-02

    Carbon-based materials are the most popular material types in both fundamental research and industrial applications, partly because of their well-controlled nano-morphologies. In the past two decades, we have witnessed a number of breakthroughs in carbon research: fullerenes, carbon nanotubes, and more recently graphene. Nowadays, carbon nanospheres are attracting more and more attention worldwide due to their excellent performance in various fields: drug delivery, heterogeneous catalysis, encapsulation of support and electrode materials. Actually, spherical carbon is an old material, whereas controlling carbon spheres in the nanometer range is a recent story. In the past 5 years, it has become possible to precisely control the particle size, surface area, pore size, chemical composition, and dispersity of carbon nanospheres. Toward this end, a number of synthetic strategies are emerging, such as hydrothermal carbonization of biomass-based resources, extended Stöber synthesis, and organic–organic self-assembly via different binding methods. In this feature article, we summarize recent routes for carbon nanospheres and briefly touch on their applications to shed light on the potential of this field. Throughout this article, a special emphasis is placed on the possible modulation of spherical structures at the nanoscale, and we wish to inspire many more designs and applications of carbon nanostructures in the near future.

  13. Recent Advances on Carbon Nanospheres. Synthetic Routes and Applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Pengfei; Qiao, Zhenan; Dai, Sheng

    2015-04-02

    Carbon-based materials are the most popular material types in both fundamental research and industrial applications, partly because of their well-controlled nano-morphologies. In the past two decades, we have witnessed a number of breakthroughs in carbon research: fullerenes, carbon nanotubes, and more recently graphene. Nowadays, carbon nanospheres are attracting more and more attention worldwide due to their excellent performance in various fields: drug delivery, heterogeneous catalysis, encapsulation of support and electrode materials. Actually, spherical carbon is an old material, whereas controlling carbon spheres in the nanometer range is a recent story. In the past 5 years, it has become possible tomore » precisely control the particle size, surface area, pore size, chemical composition, and dispersity of carbon nanospheres. Toward this end, a number of synthetic strategies are emerging, such as hydrothermal carbonization of biomass-based resources, extended Stöber synthesis, and organic–organic self-assembly via different binding methods. In this feature article, we summarize recent routes for carbon nanospheres and briefly touch on their applications to shed light on the potential of this field. Throughout this article, a special emphasis is placed on the possible modulation of spherical structures at the nanoscale, and we wish to inspire many more designs and applications of carbon nanostructures in the near future.« less

  14. Superconducting Super Collider Magnet System requirements. Revision A

    SciTech Connect (OSTI)

    1986-10-23

    This report discusses the Superconducting Super Collider magnet system requirements when the following categories: Functions; operational performance requirements; system configuration and essential features; structural requirements; availability/reliability; instrumentation and control requirements; design life; environment; maintenance requirements; interface systems; quality assurance; safety; and applicable codes and standards.

  15. Requirement-Reviews.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2 013 Requirements Reviews * 1½-day reviews with each Program Office * Computing and storage requirements for next 5 years * Participants - DOE ADs & Program Managers - Leading scientists using NERSC & key potential users - NERSC staff 2 High Energy Physics Fusion R esearch Reports From 6 Requirements Reviews Have Been Published 3 h%p://www.nersc.gov/science/requirements---reviews/ final---reports/ * Compu<ng a nd s torage requirements f or 2013/2014 * Execu<ve S ummary o f

  16. RMACS software requirements specification

    SciTech Connect (OSTI)

    Gneiting, B.C.

    1996-10-01

    This document defines the essential user (or functional) requirements of the Requirements Management and Assured Compliance System (RMACS), which is used by the Tank Waste Remediation System program (TWRS). RMACS provides a computer-based environment that TWRS management and systems engineers can use to identify, define, and document requirements. The intent of the system is to manage information supporting definition of the TWRS technical baseline using a structured systems engineering process. RMACS has the capability to effectively manage a complete set of complex requirements and relationships in a manner that satisfactorily assures compliance to the program requirements over the TWRS life-cycle.

  17. Simulations of carbon fiber composite delamination tests

    SciTech Connect (OSTI)

    Kay, G

    2007-10-25

    Simulations of mode I interlaminar fracture toughness tests of a carbon-reinforced composite material (BMS 8-212) were conducted with LSDYNA. The fracture toughness tests were performed by U.C. Berkeley. The simulations were performed to investigate the validity and practicality of employing decohesive elements to represent interlaminar bond failures that are prevalent in carbon-fiber composite structure penetration events. The simulations employed a decohesive element formulation that was verified on a simple two element model before being employed to perform the full model simulations. Care was required during the simulations to ensure that the explicit time integration of LSDYNA duplicate the near steady-state testing conditions. In general, this study validated the use of employing decohesive elements to represent the interlaminar bond failures seen in carbon-fiber composite structures, but the practicality of employing the elements to represent the bond failures seen in carbon-fiber composite structures during penetration events was not established.

  18. ASCR Science Network Requirements

    SciTech Connect (OSTI)

    Dart, Eli; Tierney, Brian

    2009-08-24

    performance networks is a consistent, widely deployed, well-maintained toolset that is optimized for wide area, high-speed data transfer (e.g. GridFTP) that allows scientists to easily utilize the services and capabilities that the network provides. Network test and measurement is an important part of ensuring that these tools and network services are functioning correctly. One example of a tool in this area is the recently developed perfSONAR, which has already shown its usefulness in fault diagnosis during the recent deployment of high-performance data movers at NERSC and ORNL. On the other hand, it is clear that there is significant work to be done in the area of authentication and access control - there are currently compatibility problems and differing requirements between the authentication systems in use at different facilities, and the policies and mechanisms in use at different facilities are sometimes in conflict. Finally, long-term software maintenance was of concern for many attendees. Scientists rely heavily on a large deployed base of software that does not have secure programmatic funding. Software packages for which this is true include data transfer tools such as GridFTP as well as identity management and other software infrastructure that forms a critical part of the Open Science Grid and the Earth System Grid.

  19. Other Requirements - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Requirements by Website Administrator More filters Less filters Other Policy Type Secretarial Memo Program Office Memo Invoked Technical Standards 100 Office of Primary Interest (OPI) Office of Primary Interest (OPI) All AD - Office of Administrative Services AU - Office of Environment, Health, Safety and Security CF - Office of the Chief Financial Officer CI - Office of Congressional and Intergovernmental Affairs CN - Office of Counterintelligence CP - Office of the Press Secretary CR -

  20. Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume IV. Final report, Appendix C: identification from utility visits of present and future approaches to integration of DSG into distribution networks

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. As a result of visits to four utilities concerned with the use of DSG power sources on their distribution networks, some useful impressions of present and future approaches to the integration of DSGs into electrical distribution network have been obtained. A more extensive communications and control network will be developed by utilities for control of such sources for future use. Different approaches to future utility systems with DSG are beginning to take shape. The new DSG sources will be in decentralized locations with some measure of centralized control. The utilities have yet to establish firmly the communication and control means or their organization. For the present, the means for integrating the DSGs and their associated monitoring and control equipment into a unified system have not been decided.

  1. A NOVEL APPROACH TO MINERAL CARBONATION: ENHANCING CARBONATION WHILE AVOIDING MINERAL PRETREATMENT PROCESS COST

    SciTech Connect (OSTI)

    Michael J. McKelvy; Andrew V.G. Chizmeshya; Kyle Squires; Ray W. Carpenter; Hamadallah Bearat

    2005-10-01

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. Herein, we report our first year progress in exploring a novel approach that offers the potential to substantially enhance carbonation reactivity while bypassing pretreatment activation. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (1) modeling/controlling the slurry fluid-flow conditions, (2) varying the

  2. Device for staged carbon monoxide oxidation

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E.; Nguyen, Trung V.; Guante, Jr., Joseph

    1993-01-01

    A method and apparatus for selectively oxidizing carbon monoxide in a hydrogen rich feed stream. The method comprises mixing a feed stream consisting essentially of hydrogen, carbon dioxide, water and carbon monoxide with a first predetermined quantity of oxygen (air). The temperature of the mixed feed/oxygen stream is adjusted in a first the heat exchanger assembly (20) to a first temperature. The mixed feed/oxygen stream is sent to reaction chambers (30,32) having an oxidation catalyst contained therein. The carbon monoxide of the feed stream preferentially absorbs on the catalyst at the first temperature to react with the oxygen in the chambers (30,32) with minimal simultaneous reaction of the hydrogen to form an intermediate hydrogen rich process stream having a lower carbon monoxide content than the feed stream. The elevated outlet temperature of the process stream is carefully controlled in a second heat exchanger assembly (42) to a second temperature above the first temperature. The process stream is then mixed with a second predetermined quantity of oxygen (air). The carbon monoxide of the process stream preferentially reacts with the second quantity of oxygen in a second stage reaction chamber (56) with minimal simultaneous reaction of the hydrogen in the process stream. The reaction produces a hydrogen rich product stream having a lower carbon monoxide content than the process stream. The product stream is then cooled in a third heat exchanger assembly (72) to a third predetermined temperature. Three or more stages may be desirable, each with metered oxygen injection.

  3. BES Science Network Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Requirements Report of the Basic Energy Sciences Network Requirements Workshop Conducted June 4-5, 2007 BES Science Network Requirements Workshop Basic Energy Sciences Program Office, DOE Office of Science Energy Sciences Network Washington, DC - June 4 and 5, 2007 ESnet is funded by the US Dept. of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) program. Dan Hitchcock is the ESnet Program Manager. ESnet is operated by Lawrence Berkeley National Laboratory, which

  4. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  5. ASCR Requirements Review 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASCR Program Office. These requirements will serve as input to the ESnet architecture and planning processes, and will help ensure that ESnet continues to provide world-class...

  6. BES Requirements Review 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BES Program Office. These requirements will serve as input to the ESnet architecture and planning processes, and will help ensure that ESnet continues to provide world-class...

  7. Unreviewed Safety Question Requirements

    Office of Environmental Management (EM)

    DOE G 424.1-1, Implementation Guide for Use in Addressing Unreviewed Safety Question Requirements Performance Objective 1: Contractor Program Documentation 1. The USQ ...

  8. Transuranic Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  9. Required Annual Notices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Required Annual Notices The Women's Health and Cancer Rights Act of 1998 (WHCRA) The medical programs sponsored by LANS will not restrict benefits if you or your dependent...

  10. Residential Solar Permit Requirements

    Broader source: Energy.gov [DOE]

    Washington's State Building Code sets requirements for the installation, inspection, maintenance and repair of solar photovoltaic (PV) energy systems. Local jurisdictions have the authority to...

  11. Required Annual Notices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Portability and Accountability Act of 1996 (HIPAA) imposes numerous requirements on employer health plans concerning the use and disclosure of individual health information. ...

  12. ESnet Requirements Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements Workshops Summary for Sites Eli Dart, Network Engineer ESnet Network Engineering Group ESnet Site Coordinating Committee Meeting Clemson, SC February 2, 2011 Lawrence ...

  13. Operation experience of p-Carbon polarimeter in RHIC

    SciTech Connect (OSTI)

    Huang, H.; Alekseev, I. G.; Aschenauer, E. C.; Atoian, G.; Bazilevsky, A.; Eyser, O.; Kalinkin, D.; Kewisch, J.; Makdisi, Y.; Nemesure, S.; Poblaguev, A.; Schmidke, W. B.; Svirida, D.; Steski, D.; Webb, G.; Zelenski, A.; Tip, K.

    2015-05-03

    The spin physics program in Relativistic Heavy Ion Collider (RHIC) requires fast polarimeter to monitor the polarization evolution on the ramp and during stores. Over past decade, the polarimeter has evolved greatly to improve its performance. These include dual chamber design, monitoring camera, Si detector selection (and orientation), target quality control, and target frame modification. The preamp boards have been modified to deal with the high rate problem, too. The ultra thin carbon target lifetime is a concern. Simulations have been carried out on the target interaction with beam. Modification has also been done on the frame design. Extra caution has been put on RF shielding to deal with the pickup noises from the nearby stochastic cooling kickers. This paper summarizes the recent operation performance of this delicate device.

  14. An atomistic vision of the Mass Action Law: Prediction of carbon/oxygen defects in silicon

    SciTech Connect (OSTI)

    Brenet, G.; Timerkaeva, D.; Caliste, D.; Pochet, P.; Sgourou, E. N.; Londos, C. A.

    2015-09-28

    We introduce an atomistic description of the kinetic Mass Action Law to predict concentrations of defects and complexes. We demonstrate in this paper that this approach accurately predicts carbon/oxygen related defect concentrations in silicon upon annealing. The model requires binding and migration energies of the impurities and complexes, here obtained from density functional theory (DFT) calculations. Vacancy-oxygen complex kinetics are studied as a model system during both isochronal and isothermal annealing. Results are in good agreement with experimental data, confirming the success of the methodology. More importantly, it gives access to the sequence of chain reactions by which oxygen and carbon related complexes are created in silicon. Beside the case of silicon, the understanding of such intricate reactions is a key to develop point defect engineering strategies to control defects and thus semiconductors properties.

  15. Fuel Reformation: Catalyst Requirements in Microchannel Architectures

    SciTech Connect (OSTI)

    King, David L.; Brooks, Kriston P.; Fischer, Christopher M.; Pederson, Larry R.; Rawlings, Gregg C.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.

    2005-09-06

    Microchannel reactors have unique capabilities for onboard hydrocarbon fuel processing, due to their ability to provide process intensification through high heat and mass transfer, leading to smaller and more efficient reactors. The catalyst requirements in microchannel devices are demanding, requiring high activity, very low deactivation rates, and strong adherence to engineered substrate. Each unit operation benefits from microchannel architecture: the steam reforming reactor removes heat transfer limitations, allowing the catalyst to operate at elevated temperatures at the kinetic limit; the water gas shift reactor uses unique temperature control to reduce catalyst volume requirements; the PROX reactor provides high CO conversion and minimizes H2 oxidation through effective control of reactor temperature.

  16. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2013-08-20

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  17. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2012-02-14

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  18. General Responsibilities and Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The material presented in this guide provides suggestions and acceptable ways of implementing DOE M 435.1-1 and should not be viewed as additional or mandatory requirements. The objective of the guide is to ensure that responsible individuals understand what is necessary and acceptable for implementing the requirements of DOE M 435.1-1.

  19. Writing testable software requirements

    SciTech Connect (OSTI)

    Knirk, D.

    1997-11-01

    This tutorial identifies common problems in analyzing requirements in the problem and constructing a written specification of what the software is to do. It deals with two main problem areas: identifying and describing problem requirements, and analyzing and describing behavior specifications.

  20. Integrated Management Requirements mapping

    SciTech Connect (OSTI)

    Holmes, J.T.; Andrews, N.S.

    1992-06-01

    This document contains five appendices documenting how Sandia implemented the DOE Conduct of Operations (5480.19) and DOE Quality Assurance (5700.6C) orders. It provides a mapping of the Sandia integrated requirements to the specific requirements of each Order and a mapping to Sandia's approved program for implementing the Conduct of Operations Order.

  1. Integrated Management Requirements mapping

    SciTech Connect (OSTI)

    Holmes, J.T.; Andrews, N.S.

    1992-06-01

    This document contains five appendices documenting how Sandia implemented the DOE Conduct of Operations (5480.19) and DOE Quality Assurance (5700.6C) orders. It provides a mapping of the Sandia integrated requirements to the specific requirements of each Order and a mapping to Sandia`s approved program for implementing the Conduct of Operations Order.

  2. Carbon Dioxide Utilization Summit

    Broader source: Energy.gov [DOE]

    The 6th Carbon Dioxide Utilization Summit will be held in Newark, New Jersey, from Feb. 24–26, 2016. The conference will look at the benefits and challenges of carbon dioxide utilization. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Devinn Lambert will be in attendance. Dr. Goss Eng will be chairing a round table on Fuels and Chemicals during the Carbon Dioxide Utilization: From R&D to Commercialization discussion session.

  3. Carbon aerogels: An update on structure, properties, and applications

    SciTech Connect (OSTI)

    Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Kong, F.M.

    1993-07-01

    Aerogels are unique porous materials whose composition, structure, and properties can be controlled at the nanometer scale. This paper examines the synthesis of organic aerogels and their carbonized derivatives. Carbon aerogels have low electrical resistivity, high surface area, and a tunable pore size. These materials are finding applications as electrodes in double layer capacitors.

  4. Activated Carbon Injection

    ScienceCinema (OSTI)

    None

    2014-07-22

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  5. Activated Carbon Injection

    SciTech Connect (OSTI)

    2014-07-16

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  6. Reinforced Carbon Nanotubes.

    DOE Patents [OSTI]

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  7. Carbon Capture, Utilization & Storage

    Broader source: Energy.gov [DOE]

    Learn about the Energy Department's work to advance capture and safe, sustainable storage of carbon dioxide emissions in underground geologic formations.

  8. Activated carbon material

    DOE Patents [OSTI]

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  9. Toward a zero-carbon energy policy in Europe: defining a viable solution

    SciTech Connect (OSTI)

    Jones, Christopher; Glachant, Jean-Michel

    2010-04-15

    The present pace of carbon emission is not sustainable. Human societies need to react and to change. A rational responsive policy to deliver the required carbon emission reduction can be delineated if the key objective parameters are identified and addressed. This article attempts to lay the groundwork for a viable carbon energy policy for Europe. (author)

  10. Development of a coupled thermo-hydro-mechanical model in discontinuous media for carbon sequestration

    SciTech Connect (OSTI)

    Fang, Yilin; Nguyen, Ba Nghiep; Carroll, Kenneth C.; Xu, Zhijie; Yabusaki, Steven B.; Scheibe, Timothy D.; Bonneville, Alain

    2013-09-12

    Geomechanical alteration of porous media is generally ignored for most shallow subsurface applications, whereas CO2 injection, migration, and trapping in deep saline aquifers will be controlled by coupled multifluid flow, energy transfer, and geomechanical processes. The accurate assessment of the risks associated with potential leakage of injected CO2 and the design of effective injection systems requires that we represent these coupled processes within numerical simulators. The objectives of this study were to develop a coupled thermal-hydro-mechanical model into a single software, and to examine the coupling of thermal, hydrological, and geomechanical processes for simulation of CO2 injection into the subsurface for carbon sequestration. A numerical model is developed to couple nonisothermal multiphase hydrological and geomechanical processes for prediction of multiple interconnected processes for carbon sequestration in deep saline aquifers. The geomechanics model was based on Rigid Body-Spring Model (RBSM), one of the discrete methods to model discontinuous rock system. Poissons effect that was often ignored by RBSM was considered in the model. The simulation of large-scale and long-term coupled processes in carbon capture and storage projects requires large memory and computational performance. Global Array Toolkit was used to build the model to permit the high performance simulations of the coupled processes. The model was used to simulate a case study with several scenarios to demonstrate the impacts of considering coupled processes and Poissons effect for the prediction of CO2 sequestration.

  11. In-line manufacture of carbon nanotubes

    SciTech Connect (OSTI)

    Brambilla, Nicol Michele; Signorelli, Riccardo; Martini, Fabrizio; Corripio Luna, Oscar Enrique

    2015-04-28

    Mass production of carbon nanotubes (CNT) are facilitated by methods and apparatus disclosed herein. Advantageously, the methods and apparatus make use of a single production unit, and therefore provide for uninterrupted progress in a fabrication process. Embodiments of control systems for a variety of CNT production apparatus are included.

  12. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect (OSTI)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  13. Boston Carbon Corp | Open Energy Information

    Open Energy Info (EERE)

    Carbon Corp Jump to: navigation, search Name: Boston Carbon Corp Place: Carlisle, Massachusetts Zip: 1741 Sector: Carbon Product: Boston Carbon Corporation helps develop clean...

  14. Edgewood Carbon Holdings LLC | Open Energy Information

    Open Energy Info (EERE)

    Edgewood Carbon Holdings LLC Jump to: navigation, search Name: Edgewood Carbon Holdings LLC Place: Cornwall, Vermont Zip: 57530 Sector: Carbon Product: Edgewood Carbon Holdings LLC...

  15. Eon Masdar Integrated Carbon | Open Energy Information

    Open Energy Info (EERE)

    Eon Masdar Integrated Carbon Jump to: navigation, search Name: Eon Masdar Integrated Carbon Place: Germany Sector: Carbon Product: Germany-based carbon emission projects developer....

  16. Renaissance Carbon Investment Ltd | Open Energy Information

    Open Energy Info (EERE)

    Carbon Investment Ltd Jump to: navigation, search Name: Renaissance Carbon Investment Ltd. Place: Shanghai, China Zip: 200052 Sector: Carbon Product: Renaissance Carbon Investment...

  17. Carbon-Based and Carbon-Supported Heterogeneous Catalysts for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon-Based and Carbon-Supported Heterogeneous Catalysts for the Conversion of Biomass Carbon-based heterogeneous catalysts play a central role in the conversion of biomass to...

  18. CRADA Final Report for CRADA Number NFE-10-02991 "Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies"

    SciTech Connect (OSTI)

    Norris, Rober; Paulauskas, Felix; Naskar, Amit; Kaufman, Michael; Yarborough, Ken; Derstine, Chris

    2013-10-01

    The overall objective of the collaborative research performed by the Oak Ridge National Laboratory (ORNL) and the Dow Chemical Company under this Cooperative Research And Development Agreement (CRADA NFE-10-02991) was to develop and establish pathways to commercialize new carbon fiber precursor and conversion technology. This technology is to produce alternative polymer fiber precursor formulations as well as scaled energy-efficient advanced conversion technology to enable continuous mode conversion to obtain carbonized fibers that are technically and economically viable in industrial markets such as transportation, wind energy, infrastructure and oil drilling applications. There have been efforts in the past to produce a low cost carbon fiber. These attempts have to be interpreted against the backdrop of the market needs at the time, which were strictly military aircraft and high-end aerospace components. In fact, manufacturing costs have been reduced from those days to current practice, where both process optimization and volume production have enabled carbon fiber to become available at prices below $20/lb. However, the requirements of the lucrative aerospace market limits further price reductions from current practice. This approach is different because specific industrial applications are targeted, most specifically wind turbine blade and light vehicle transportation, where aircraft grade carbon fiber is not required. As a result, researchers are free to adjust both manufacturing process and precursor chemistry to meet the relaxed physical specifications at a lower cost. This report documents the approach and findings of this cooperative research in alternative precursors and advanced conversion for production of cost-effective carbon fiber for energy missions. Due to export control, proprietary restrictions, and CRADA protected data considerations, specific design details and processing parameters are not included in this report.

  19. Experiment Safety Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Safety Requirements Print Safety at the ALS The mission of the ALS is to "Support users in doing outstanding science in a safe environment." How Do I...? Complete an...

  20. Green Building Requirement

    Office of Energy Efficiency and Renewable Energy (EERE)

    The new standards are phased in over the course of several years with publicly-owned buildings being the first required to comply. All new construction and substantial improvements of non...

  1. Requirements for security signalling

    SciTech Connect (OSTI)

    Pierson, L.G.; Tarman, T.D.

    1995-02-05

    There has been some interest lately in the need for ``authenticated signalling``, and the development of signalling specifications by the ATM Forum that support this need. The purpose of this contribution is to show that if authenticated signalling is required, then supporting signalling facilities for directory services (i.e. key management) are also required. Furthermore, this contribution identifies other security related mechanisms that may also benefit from ATM-level signalling accommodations. For each of these mechanisms outlined here, an overview of the signalling issues and a rough cut at the required fields for supporting Information Elements are provided. Finally, since each of these security mechanisms are specified by a number of different standards, issues pertaining to the selection of a particular security mechanism at connection setup time (i.e. specification of a required ``Security Quality of Service``) are also discussed.

  2. Selected Guidance & Requirements

    Broader source: Energy.gov [DOE]

    This page contains the most requested NEPA guidance and requirement documents and those most often recommended by the Office of NEPA Policy and Compliance. Documents are listed by agency, in...

  3. Promulgating Nuclear Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-05-15

    Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

  4. Quality Work Plan Requirements

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Weatherization Assistance Program (WAP) has introduced a comprehensive Quality Work Plan (QWP) that will establish a benchmark for quality home energy upgrades. This plan defines what is required when federal dollars are used to purchase weatherization services and leverages the resources developed through the Guidelines for Home Energy Professionals project. Below you will find links to QWP guidance, as well as links to the individual requirements.

  5. Regulators, Requirements, Statutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regulators, Requirements, Statutes Regulators, Requirements, Statutes The Laboratory must comply with environmental laws and regulations that apply to Laboratory operations. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Environmental laws and regulations LANL complies with more than 30 state and federal regulations and policies designed to protect human health and the environment. Regulators Regulators Environmental

  6. Strength recovery of cement composites in steam and carbonate environments

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tom Butcher

    2016-04-28

    The data include compressive strength and Young's Modulus recoveries in steam and carbonate environments at 270degC for four chemically different cement composites after imposed controlled damaged.

  7. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock

  8. A universal model for nanoporous carbon supercapacitors

    SciTech Connect (OSTI)

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent

    2009-01-01

    Supercapacitors based on nanoporous carbon materials, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. Nanoporous carbon supercapacitors are generally viewed as a parallel-plate capacitor since supercapacitors store energy by charge separation in an electric double layer formed at the electrode/electrolyte interface. The EDLC model has been used to characterize the energy storage of supercapacitors for decades. We comment in this chapter on the shortcomings of the EDLC model when applied to nanoporous carbon supercapacitors. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we have proposed a heuristic model that takes pore curvature into account as a replacement for the EDLC model. When the pore size is in the mesopore regime (2 50 nm), electrolyte counterions enter mesoporous carbons and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (< 2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (> 50 nm), where pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced to the EDLC model. With the backing of experimental data and quantum density functional theory calculations, we have shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials and electrolytes. The strengths and limitations of this new model are discussed. The new model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration, dielectric constant, and solute ion size, and may lend support to the systematic optimization of the properties of carbon supercapacitors through experiments.

  9. Fly ash carbon passivation

    DOE Patents [OSTI]

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  10. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, Stephen E.; Moses, William W.

    1991-01-01

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  11. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...

    Open Energy Info (EERE)

    Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

  12. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Ferromagnetic Carbon First Proof of Ferromagnetic Carbon Print Wednesday, 25 July 2007 00:00 Although it has long been suspected that carbon belongs on the short list of...

  13. carbon | OpenEI Community

    Open Energy Info (EERE)

    carbon Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 9 January, 2014 - 13:12 Suburbs offset Low Carbon Footprint of major U.S. Cities carbon cities CO2...

  14. Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials

    SciTech Connect (OSTI)

    Ogale, Amod A

    2012-04-27

    Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000?°C [2]. One of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500?°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300?°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites

  15. DWPF COAL-CARBON WASTE ACCEPTANCE CRITERIA LIMIT EVALUATION BASED ON EXPERIMENTAL WORK (TANK 48 IMPACT STUDY)

    SciTech Connect (OSTI)

    Lambert, D.; Choi, A.

    2010-10-15

    both positive (+) and negative (-) impact as summarized below: (-) Coal-carbon is a melter reductant. If excess coal-carbon is present, the resulting melter feed may be too reducing, potentially shortening the melter life. During this study, the Reduction/Oxidation Potential (REDOX) of the melter could be controlled by varying the ratio of nitric and formic acid. (-) The addition of coal-carbon increases the amount of nitric acid added and decreases the amount of formic acid added to control melter REDOX. This means that the CPC with the FBSR product is much more oxidizing than current CPC processing. In this study, adequate formic acid was present in all experiments to reduce mercury and manganese, two of the main goals of CPC processing. (-) Coal-carbon will be oxidized to carbon dioxide or carbon monoxide in the melter. The addition of coal-carbon to the FBSR product will lead to approximately 55% higher offgas production from formate, nitrate and carbon due to the decomposition of the carbon at the maximum levels in this testing. Higher offgas production could lead to higher cold cap coverage or melter foaming which could decrease melt rate. No testing was performed to evaluate the impact of the higher melter offgas flow. (+) The hydrogen production is greatly reduced in testing with coal as less formic acid is added in CPC processing. In the high acid run without coal, the peak hydrogen generation was 15 times higher than in the high acid run with added coal-carbon. (+) Coal-carbon is a less problematic reducing agent than formic acid, since the content of both carbon and hydrogen are important in evaluating the flammability of the melter offgas. Processing with coal-carbon decreases the amount of formic acid added in the CPC, leading to a lower flammability risk in processing with coal-carbon compared to the current DWPF flowsheet. (+) The seven SB10 formulations which were tested during the bench-scale CPC demonstration were all determined to be within the off

  16. HYDRAULIC SERVO CONTROL MECHANISM

    DOE Patents [OSTI]

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  17. ARM - Measurement - Black carbon concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of carbon in its very absorbing, elemental, non-organic, non-oxide form (e.g. graphite). Categories Aerosols, Atmospheric Carbon Instruments The above measurement is...

  18. Carbon Capture Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Lawrence Berkeley National Laboratory Research Institute of Innovative Energy Carbon Capture Research and Development Carbon capture and storage from fossil-based power...

  19. Carbon International | Open Energy Information

    Open Energy Info (EERE)

    International Jump to: navigation, search Name: Carbon International Place: London, United Kingdom Zip: NW1 8LH Sector: Carbon Product: London-based energy and communications...

  20. Carbone Lorraine | Open Energy Information

    Open Energy Info (EERE)

    Carbone Lorraine Jump to: navigation, search Name: Carbone Lorraine Place: France Product: Paris-based company developing industrial applications and systems for the optimal...

  1. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    finally put to rest doubts about the existence of magnetic carbon. Carbon's Magnetic Personality Attracts Attention Most materials exhibit weak forms of magnetism-diamagnetism,...

  2. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sensors, and data processing. Fortunately, additional research has proven that etching carbon with sulfuric acid can also make the carbon magnetic, opening the door for...

  3. Fossil Energy Research Benefits Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    has become a world leader in carbon capture and storage (CCS) science and technology. ... and storing in geologic formations carbon dioxide (CO 2 ) from industrial or power plants. ...

  4. NP Science Network Requirements

    SciTech Connect (OSTI)

    Dart, Eli; Rotman, Lauren; Tierney, Brian

    2011-08-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. To support SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2011, ESnet and the Office of Nuclear Physics (NP), of the DOE SC, organized a workshop to characterize the networking requirements of the programs funded by NP. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  5. Requirements | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements Requirements Students must earn a total of 11 points from the following options: Please note: To receive points toward the certificate, student are required to submit...

  6. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2004-06-04

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration potential of forests growing on 14 mined sites in a seven-state region in the Midwestern and Eastern Coalfields. Carbon contents of these forests were compared to adjacent forests on non-mined land. The study was installed as a 3 x 3 factorial in a random complete block design with three replications at each location. The treatments include three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Soil samples were collected from each plot to characterize the sites prior to treatment. Analysis of soil samples was completed and these data are being used to prepare fertilizer prescriptions. Fertilizer prescripts will be developed for each site. Fertilizer will be applied during the second quarter 2004. Data are included as appendices in this report. As part of our economic analysis of mined land reforestation, we focused on the implications of a shift in reforestation burden from the landowner to the mine operator. Results suggest that the reforestation of mined lands as part of the mining operation creates a viable and profitable forest enterprise for landowners with greater potential for carbon sequestration.

  7. Desalination with carbon aerogel electrodes. Revision 1

    SciTech Connect (OSTI)

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.; Thomson, S.L.; May, S.C.

    1996-12-04

    Electrically regenerated electrosorption process (carbon aerogel CDI) was developed by LLNL for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by numerous pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area (2-5.4x10{sup 6}ft{sup 2}lb{sup -1} or 400-1100 m{sup 2}g{sup -1}) and very low electrical resistivity ({le}40 m{Omega}). Ions are removed from the electrolyte by the electric field and electrosorbed onto the carbon aerogel. It is concluded that carbon aerogel CDI may be an energy-efficient alternative to electrodialysis and reverse osmosis for desalination of brackish water ({le}5000 ppM). The intrinsic energy required by this process is about QV/2, where Q is the stored electrical charge and V is the voltage between the electrodes, plus losses. Estimated requirement for desalination of a 2000 ppM feed is -0.53-2.5 Wh/gal{sup -1} (0.5-2.4 kJ L{sup -1}), depending on voltage, flow rate, cell dimensions, aerogel density, recovery ratio, etc. This assumes that 50-70% of the stored electrical energy is reclaimed during regeneration (electrical discharge). Though the energy requirement for desalination of sea water is also low, this application will be much more difficult. Additional work will be required for desalination of streams that contain more than 5000 ppM total dissolved solids (2000 ppM will require electrochemical cells with extremely tight, demanding tolerances). At this present time, the process is best suited for streams with dilute impurities, as recently demonstrated during a field test at LLNL Treatment Facility C.

  8. Method for fabricating light weight carbon-bonded carbon fiber composites

    DOE Patents [OSTI]

    Wrenn, Jr., George E.; Abbatiello, Leonard A.; Lewis, Jr., John

    1989-01-01

    Ultralight carbon-bonded carbon fiber composites of densities in the range of about 0.04 to 0.10 grams per cubic centimeter are fabricated by forming an aqueous slurry of carbonaceous fibers which include carbonized fibers and 0-50 weight percent fugitive fibers and a particulate thermosetting resin precursor. The slurry is brought into contact with a perforated mandrel and the water is drained from the slurry through the perforations at a controlled flow rate of about 0.03 to 0.30 liters per minutes per square inch of mandrel surface. The deposited billet of fibers and resin precursor is heated to cure the resin precursor to bind the fibers together, removed from the mandrel, and then the resin and fugitive fibers, if any, are carbonized.

  9. Method for fabricating light weight carbon-bonded carbon fiber composites

    DOE Patents [OSTI]

    Wrenn, G.E. Jr.; Abbatiello, L.A.; Lewis, J. Jr.

    1987-06-17

    The invention is directed to the fabrication of ultralight carbon- bonded carbon fiber composites of densities in the range of about 0. 04 to 0.10 grams per cubic centimeter. The composites are fabricated by forming an aqueous slurry of carbonaceous fibers which include carbonized fibers and 0-50 weight percent fugitive fibers and a particulate thermosetting resin precursor. The slurry is brought into contact with a perforated mandrel and the water is drained from the slurry through the perforations at a controlled flow rate of about 0. 03 to 0.30 liters per minutes per square inch of a mandrel surface. The deposited billet of fibers and resin precursor is heated to cure the resin precursor to bind the fibers together, removed from the mandrel, and then the resin and fugitive fibers, if any, are carbonized.

  10. A Novel Approach To Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    SciTech Connect (OSTI)

    Michael J. McKelvy; Andrew V. G. Chizmeshya; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2006-06-21

    -stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (i) modeling/controlling the slurry fluid-flow conditions, (ii) varying the aqueous ion species/size and concentration (e.g., Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cl{sup -}, HCO{sub 3}{sup -}), and (iii) incorporating select sonication offer to enhance exfoliation and carbonation. We have succeeded in nearly doubling the extent of carbonation observed compared with the optimum procedure previously developed by the Albany Research Center. Aqueous carbonation reactivity was found to be a strong function of the ionic species present and their aqueous activities, as well as the slurry fluid flow conditions incorporated. High concentration sodium, potassium, and sodium/potassium bicarbonate aqueous solutions have been found to be the most effective solutions for enhancing aqueous olivine carbonation to date. Slurry-flow modeling using Fluent indicates that the slurry-flow dynamics are a strong function of particle size and mass, suggesting that controlling these parameters may offer substantial potential to enhance carbonation. Synergistic control of the slurry-flow and aqueous chemistry parameters offers further potential to improve carbonation reactivity, which is being investigated during the no-cost extension period. During the first project year we developed a new sonication exfoliation system with a novel sealing system to carry out the sonication studies. We also initiated(Abstract truncated).

  11. Terrestrial Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cycle Terrestrial Carbon Cycle "Only about half of the CO2 released into the atmosphere by human activities currently resides in the atmosphere, the rest absorbed on land and in the oceans. The period over which the carbon will be sequestered is unclear, and the efficiency of future sinks is unknown." US Carbon Cycle Research Plan "We" desire to be able to predict the future spatial and temporal distribution of sources and sinks of atmospheric CO2 and their interaction

  12. IMPACCT: Carbon Capture Technology

    SciTech Connect (OSTI)

    2012-01-01

    IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

  13. Control Strategies for Centrifugal Pumps with Variable Flow Rate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements Control Strategies for Centrifugal Pumps with Variable Flow Rate Requirements This tip sheet discusses...

  14. Contractor Legal Management Requirements

    Broader source: Energy.gov [DOE]

    The purpose of this flash is to inform you of the issuance of two new Acquisition Guide Chapters, Chapters 70-31 C and 31.3, both titled "Contractor Legal Management Requirements." (Chapter 31.3 simply refers you to Chapter 70-31 C.)

  15. Requirements for Xenon International

    SciTech Connect (OSTI)

    Hayes, James C.; Ely, James H.; Haas, Derek A.; Harper, Warren W.; Heimbigner, Tom R.; Hubbard, Charles W.; Humble, Paul H.; Madison, Jill C.; Morris, Scott J.; Panisko, Mark E.; Ripplinger, Mike D.; Stewart, Timothy L.

    2015-12-30

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  16. Managing routine bioassay requirements

    SciTech Connect (OSTI)

    Baumann, B.L., Westinghouse Hanford, Richland, WA

    1997-10-08

    The Hanford Site is a very diverse Department of Energy (DOE) Nuclear Site in Eastern Washington State that includes: retired reactor facilities, spent fuel storage facilities, chemical separations facilities, laboratories, and plutonium separations facilities. As a result worker routine bioassays requirements may include routine whole body counting for mixed fission products, chest counting for uranium or plutonium, and/or urinalyses for plutonium, ura@u@ strontium-90, and tritium depending on work assignments. In such a situation it is easy to perform unnecessary bioassays and incur unnecessary cost. Program Implementation Fluor Daniel Hanford has been working with the Pacific Northwest National. Laboratories to reduce the number of routine bioassays in the internal dosimetry program while ensuring the program is compliant with regulatory requirements. This has been accomplished by: 1. Clearly identifying what work requires routine bioassay 2. Clearly identifying what routine bioassay is required 3. Having a system in place to make sure personnel who need routine bioassay get it and 4. Taking measures to ensure that workers who doiVt need routine bioassay don`t get it.

  17. Data Crosscutting Requirements Review

    SciTech Connect (OSTI)

    Kleese van Dam, Kerstin; Shoshani, Arie; Plata, Charity

    2013-04-01

    In April 2013, a diverse group of researchers from the U.S. Department of Energy (DOE) scientific community assembled to assess data requirements associated with DOE-sponsored scientific facilities and large-scale experiments. Participants in the review included facilities staff, program managers, and scientific experts from the offices of Basic Energy Sciences, Biological and Environmental Research, High Energy Physics, and Advanced Scientific Computing Research. As part of the meeting, review participants discussed key issues associated with three distinct aspects of the data challenge: 1) processing, 2) management, and 3) analysis. These discussions identified commonalities and differences among the needs of varied scientific communities. They also helped to articulate gaps between current approaches and future needs, as well as the research advances that will be required to close these gaps. Moreover, the review provided a rare opportunity for experts from across the Office of Science to learn about their collective expertise, challenges, and opportunities. The "Data Crosscutting Requirements Review" generated specific findings and recommendations for addressing large-scale data crosscutting requirements.

  18. Requirements for Xenon International

    SciTech Connect (OSTI)

    Hayes, James C.; Ely, James H.

    2013-09-26

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  19. OUO Review Requirement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OUO Review Requirement OUO Review Requirement Who can decide whether a document contains OUO information? In certain cases, the Office of Classification or your program office has already made the OUO decision for you. These decisions are found in classification guides, Unclassified Controlled Nuclear Information (UCNI) guidelines, or in program-issued OUO guidance. If a topic in such guidance indicates that information in your document is OUO, then the document contains OUO information. Some

  20. Training and Required Reading Management Tool

    Energy Science and Technology Software Center (OSTI)

    2009-08-13

    This tool manages training and required reading for groups, facilities, etc – abilities beyond the site training systems. TRRMTool imports training data from controlled site data sources/systems and provides greater management and reporting. Clients have been able to greatly reduce the time and effort required to manage training, have greater accuracy, foster individual accountability, and be proactive in verifying training of support personnel, to maintain compliance.

  1. ENHANCEMENT OF TERRESTRIAL CARBON SINKS THROUGH RECLAMATION OF ABANDONED MINE LANDS IN THE APPALACHIAN REGION

    SciTech Connect (OSTI)

    Gary D. Kronrad

    2002-12-01

    The U.S.D.I. Office of Surface Mining (OSM) estimates that there are approximately 1 million acres of abandoned mine land (AML) in the Appalachian region. AML lands are classified as areas that were inadequately reclaimed or were left unreclaimed prior to the passage of the 1977 Surface Mining Control and Reclamation Act, and where no federal or state laws require any further reclamation responsibility to any company or individual. Reclamation and afforestation of these sites have the potential to provide landowners with cyclical timber revenues, generate environmental benefits to surrounding communities, and sequester carbon in the terrestrial ecosystem. Through a memorandum of understanding, the OSM and the U.S. Department of Energy (DOE) have decided to investigate reclaiming and afforesting these lands for the purpose of mitigating the negative effects of anthropogenic carbon dioxide in the atmosphere. This study determined the carbon sequestration potential of northern red oak (Quercus rubra L.), one of the major reclamation as well as commercial species, planted on West Virginia AML sites. Analyses were conducted to (1) calculate the total number of tons that can be stored, (2) determine the cost per ton to store carbon, and (3) calculate the profitability of managing these forests for timber production alone and for timber production and carbon storage together. The Forest Management Optimizer (FORMOP) was used to simulate growth data on diameter, height, and volume for northern red oak. Variables used in this study included site indices ranging from 40 to 80 (base age 50), thinning frequencies of 0, 1, and 2, thinning percentages of 20, 25, 30, 35, and 40, and a maximum rotation length of 100 years. Real alternative rates of return (ARR) ranging from 0.5% to 12.5% were chosen for the economic analyses. A total of 769,248 thinning and harvesting combinations, net present worths, and soil expectation values were calculated in this study. Results indicate that

  2. Controller (Cost Compliance and Financial Reporting) | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GAAP, Cost Accounting Standards and internal controls required. Excellent analytical and problem solving skills Knowledge of DOE reporting requirements and prior Laboratory or...

  3. ATK - Supersonic Carbon Capture

    ScienceCinema (OSTI)

    Castrogiovanni, Anthony (ACEnT Laboratories, President and CEO); Calayag, Bon (ATK, Program Manager)

    2014-04-11

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  4. Regional Carbon Sequestration Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  5. ATK - Supersonic Carbon Capture

    SciTech Connect (OSTI)

    Castrogiovanni, Anthony; Calayag, Bon

    2014-03-05

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  6. Activated carbon aerogels

    SciTech Connect (OSTI)

    Hanzawa, Y.; Kaneko, K. [Chiba Univ. (Japan)] [Chiba Univ. (Japan); Pekala, R.W. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Dresselhaus, M.S. [Massachusetts Inst. of Technology, Cambridge, MA (United States)] [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1996-12-25

    Activated carbon aerogels were obtained from the CO{sub 2} activation of the carbon aerogels. The adsorption isotherms of nitrogen on activated carbon aerogels at 77 K were measured and analyzed by the high-resolution {alpha}{sub s} plot to evaluate their porosities. The {alpha}{sub s} plot showed an upward deviation from linearity below {alpha}{sub s} = 0.5, suggesting that the presence of micropores becomes more predominant with the extent of the activation. Activation increased noticeably the pore volume and the surface area (the maximum value: 2600 m{sup 2}.g{sup -1}) without change of the basic network structure of primary particles. Activated carbon aerogels had a bimodal pore size distribution of uniform micropores and mesopores. 16 refs., 2 figs., 1 tab.

  7. Treatment of Difficult Waters: Arsenic Removal Silica Control...

    Office of Scientific and Technical Information (OSTI)

    of Difficult Waters: Arsenic Removal Silica Control Carbon Capture and Enhanced Oil Recovery. Brady, Patrick Vane Abstract not provided. Sandia National Laboratories...

  8. Treatment of Difficult Waters: Arsenic Removal Silica Control...

    Office of Scientific and Technical Information (OSTI)

    of Difficult Waters: Arsenic Removal Silica Control Carbon Capture and Enhanced Oil Recovery. Citation Details In-Document Search Title: Treatment of Difficult Waters:...

  9. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, S.E.; Moses, W.W.

    1991-05-14

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  10. Carbon dioxide removal process

    DOE Patents [OSTI]

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  11. Carbon Fiber Technology Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Dave Warren, PI Cliff Eberle, Presenter Technology Development Manager Polymer Matrix Composites Oak Ridge National Laboratory May 16, 2012 Project ID # LM003 Status as of March 30, 2012 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Managed by UT-Battelle for the U.S. Department of Energy Carbon Fiber Technology Facility (CFTF) ARRA CAPITAL Project Overview * Funds received FY10Q2 * Scheduled finish FY13Q4

  12. Carbon sequestration, optimum forest rotation and their environmental impact

    SciTech Connect (OSTI)

    Kula, Erhun, E-mail: erhun.kula@bahcesehir.edu.tr [Department of Economics, Bahcesehir University, Besiktas, Istanbul (Turkey); Gunalay, Yavuz, E-mail: yavuz.gunalay@bahcesehir.edu.tr [Department of Business Studies, Bahcesehir University, Besiktas, Istanbul (Turkey)

    2012-11-15

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost-benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. The results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO{sub 2}. Consequently this finding must be considered in any carbon accounting calculations. - Highlights: Black-Right-Pointing-Pointer Carbon sequestration in forestry is an environmental benefit. Black-Right-Pointing-Pointer It moderates the problem of global warming. Black-Right-Pointing-Pointer It prolongs the gestation period in harvesting. Black-Right-Pointing-Pointer This paper uses British data in less favoured districts for growing Sitka spruce species.

  13. Effects of welding fumes on nuclear air cleaning system carbon adsorber banks

    SciTech Connect (OSTI)

    Roberson, P.W.

    1997-08-01

    Standard Technical Specifications for nuclear air cleaning systems include requirements for surveillance tests following fire, painting, or chemical release in areas communicating with the affected system. To conservatively implement this requirement, many plants categorize welding as a chemical release process, and institute controls to ensure that welding fumes do not interact with carbon adsorbers in a filter system. After reviewing research data that indicated welding had a minimal impact on adsorber iodine removal efficiency, further testing was performed with the goal of establishing a welding threshold. It was anticipated that some quantity of weld electrodes could be determined that had a corresponding detrimental impact on iodine removal efficiency for the exposed adsorber. This value could be used to determine a conservative sampling schedule that would allow the station to perform laboratory testing to ensure system degradation did not occur without a full battery of surveillance tests. A series of tests was designed to demonstrate carbon efficiency versus cumulative welding fume exposure. Three series of tests were performed, one for each of three different types of commonly used weld electrodes. Carbon sampling was performed at baseline conditions, and every five pounds of electrode thereafter. Two different laboratory tests were performed for each sample; one in accordance with ASTM 3803/1989 at 95% relative humidity and 30 degrees C, and another using the less rigorous conditions of 70% relative humidity and 80 degrees C. Review of the test data for all three types of electrodes failed to show a significant correlation between carbon efficiency degradation and welding fume exposure. Accordingly, welding is no longer categorized as a `chemical release process` at McGuire Nuclear Station, and limits on welding fume interaction with ventilation systems have been eliminated. 4 refs., 3 figs., 1 tab.

  14. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-01-04

    management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. A series of meetings held in November and December, 2003, have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These include the impact of existing local, state, and federal permitting issues for terrestrial based carbon sequestration projects, consistency of final protocols and planning standards with national requirements, and alignments of carbon sequestration projects with existing federal and state cost-share programs. Finally, the education and outreach efforts during this performance period have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The primary goal of this plan is to increase awareness, understanding, and public acceptance of sequestration efforts and build support for a constituent based network which includes the initial Big Sky Partnership and other local and regional businesses and entities.

  15. Optical manufacturing requirements for an AVLIS plant

    SciTech Connect (OSTI)

    Primdahl, K.; Chow, R.; Taylor, J.R.

    1997-07-14

    A uranium enrichment plant utilizing Atomic Vapor Laser Isotope Separation (AVLIS) technology is currently being planned. Deployment of the Plant will require tens of thousands of commercial and custom optical components and subsystems. The Plant optical system will be expected to perform at a high level of optical efficiency and reliability in a high-average-power-laser production environment. During construction, demand for this large number of optics must be coordinated with the manufacturing capacity of the optical industry. The general requirements and approach to ensure supply of optical components is described. Dynamic planning and a closely coupled relationship with the optics industry will be required to control cost, schedule, and quality.

  16. Biosensors Based on Carbon Nanotubes

    SciTech Connect (OSTI)

    Lin, Yuehe; Yantasee, Wassana; Lu, Fang; Wang, Joseph; Musameh, Mustafa; Tu, Yi; Ren, Zhifeng

    2009-03-24

    This chapter summarizes the recent development of carbon nanotube based electrochemical biosensors work at PNNL.

  17. Biosensors Based on Carbon Nanotubes

    SciTech Connect (OSTI)

    Lin, Yuehe; Yantasee, Wassana; Lu, Fang; Wang, Joseph; Musameh, Mustafa; Tu, Yi; Ren, Zhifeng; J. A. Schwarz, C. Contescu, K. Putyera

    2004-04-01

    This invited review article summarizes recent work on biosensor development based on carbon nanotubes

  18. Method for synthesizing carbon nanotubes

    DOE Patents [OSTI]

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  19. Environment control system

    DOE Patents [OSTI]

    Sammarone, Dino G.

    1978-01-01

    A system for controlling the environment of an enclosed area in nuclear reactor installations. The system permits the changing of the environment from nitrogen to air, or from air to nitrogen, without the release of any radioactivity or process gas to the outside atmosphere. In changing from a nitrogen to an air environment, oxygen is inserted into the enclosed area at the same rate which the nitrogen-oxygen gas mixture is removed from the enclosed area. The nitrogen-oxygen gas mixture removed from the enclosed area is mixed with hydrogen, the hydrogen recombining with the oxygen present in the gas to form water. The water is then removed from the system and, if it contains any radioactive products, can be utilized to form concrete, which can then be transferred to a licensed burial site. The process gas is purified further by stripping it of carbon dioxide and then distilling it to remove any xenon, krypton, and other fission or non-condensable gases. The pure nitrogen is stored as either a cryogenic liquid or a gas. In changing from an air to nitrogen environment, the gas is removed from the enclosed area, mixed with hydrogen to remove the oxygen present, dried, passed through adsorption beds to remove any fission gases, and reinserted into the enclosed area. Additionally, the nitrogen stored during the nitrogen to air change, is inserted into the enclosed area, the nitrogen from both sources being inserted into the enclosed area at the same rate as the removal of the gas from the containment area. As designed, the amount of nitrogen stored during the nitrogen to air change substantially equals that required to replace oxygen removed during an air to nitrogen change.

  20. Experiment Safety Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Safety Requirements Print Safety at the ALS The mission of the ALS is to "Support users in doing outstanding science in a safe environment." How Do I...? Complete an Experiment Safety Sheet? (Do this upon receiving beam time.) Complete Safety Training? Bring and Use Electrical Equipment at the ALS? Determine what Personal Protective Equipment (PPE) to Wear? Get Authorization to Work with Lasers at the ALS? Ship Radioactive Materials to LBNL for Use at the ALS? Ship Samples

  1. Experiment Safety Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Safety Requirements Print Safety at the ALS The mission of the ALS is to "Support users in doing outstanding science in a safe environment." How Do I...? Complete an Experiment Safety Sheet? (Do this upon receiving beam time.) Complete Safety Training? Bring and Use Electrical Equipment at the ALS? Determine what Personal Protective Equipment (PPE) to Wear? Get Authorization to Work with Lasers at the ALS? Ship Radioactive Materials to LBNL for Use at the ALS? Ship Samples

  2. LASSO* - Science Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LASSO* - Science Requirements *LES ARM Symbiotic Simulation and Observation (LASSO) workflow Andy Vogelmann 1 , William I Gustafson Jr 2 Zhijin Li 3,4 , Xiaoping Cheng 3 , Satoshi Endo 1 , Tami Toto 1 , and Heng Xiao 2 1 Brookhaven National Laboratory 2 Pacific Northwest National Laboratory 3 University of California Los Angeles 4 NASA Jet Propulsion Laboratory And TONS of people from the rest of ARM! LASSO Webpage: http://www.arm.gov/science/themes/lasso LASSO e-mail list sign up:

  3. Experiment Safety Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Safety Requirements Print Safety at the ALS The mission of the ALS is to "Support users in doing outstanding science in a safe environment." How Do I...? Complete an Experiment Safety Sheet? (Do this upon receiving beam time.) Complete Safety Training? Bring and Use Electrical Equipment at the ALS? Determine what Personal Protective Equipment (PPE) to Wear? Get Authorization to Work with Lasers at the ALS? Ship Radioactive Materials to LBNL for Use at the ALS? Ship Samples

  4. Experiment Safety Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Safety Requirements Print Safety at the ALS The mission of the ALS is to "Support users in doing outstanding science in a safe environment." How Do I...? Complete an Experiment Safety Sheet? (Do this upon receiving beam time.) Complete Safety Training? Bring and Use Electrical Equipment at the ALS? Determine what Personal Protective Equipment (PPE) to Wear? Get Authorization to Work with Lasers at the ALS? Ship Radioactive Materials to LBNL for Use at the ALS? Ship Samples

  5. Experiment Safety Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Safety Requirements Print Safety at the ALS The mission of the ALS is to "Support users in doing outstanding science in a safe environment." How Do I...? Complete an Experiment Safety Sheet? (Do this upon receiving beam time.) Complete Safety Training? Bring and Use Electrical Equipment at the ALS? Determine what Personal Protective Equipment (PPE) to Wear? Get Authorization to Work with Lasers at the ALS? Ship Radioactive Materials to LBNL for Use at the ALS? Ship Samples

  6. Experiment Safety Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Safety Experiment Safety Requirements Print Safety at the ALS The mission of the ALS is to "Support users in doing outstanding science in a safe environment." How Do I...? Complete an Experiment Safety Sheet? (Do this upon receiving beam time.) Complete Safety Training? Bring and Use Electrical Equipment at the ALS? Determine what Personal Protective Equipment (PPE) to Wear? Get Authorization to Work with Lasers at the ALS? Ship Radioactive Materials to LBNL for Use at the

  7. Experiment Safety Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Safety Requirements Print Safety at the ALS The mission of the ALS is to "Support users in doing outstanding science in a safe environment." How Do I...? Complete an Experiment Safety Sheet? (Do this upon receiving beam time.) Complete Safety Training? Bring and Use Electrical Equipment at the ALS? Determine what Personal Protective Equipment (PPE) to Wear? Get Authorization to Work with Lasers at the ALS? Ship Radioactive Materials to LBNL for Use at the ALS? Ship Samples

  8. BER Science Network Requirements

    SciTech Connect (OSTI)

    Alapaty, Kiran; Allen, Ben; Bell, Greg; Benton, David; Brettin, Tom; Canon, Shane; Dart, Eli; Cotter, Steve; Crivelli, Silvia; Carlson, Rich; Dattoria, Vince; Desai, Narayan; Egan, Richard; Tierney, Brian; Goodwin, Ken; Gregurick, Susan; Hicks, Susan; Johnston, Bill; de Jong, Bert; Kleese van Dam, Kerstin; Livny, Miron; Markowitz, Victor; McGraw, Jim; McCord, Raymond; Oehmen, Chris; Regimbal, Kevin; Shipman, Galen; Strand, Gary; Flick, Jeff; Turnbull, Susan; Williams, Dean; Zurawski, Jason

    2010-11-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2010 ESnet and the Office of Biological and Environmental Research, of the DOE Office of Science, organized a workshop to characterize the networking requirements of the science programs funded by BER. The requirements identified at the workshop are summarized and described in more detail in the case studies and the Findings section. A number of common themes emerged from the case studies and workshop discussions. One is that BER science, like many other disciplines, is becoming more and more distributed and collaborative in nature. Another common theme is that data set sizes are exploding. Climate Science in particular is on the verge of needing to manage exabytes of data, and Genomics is on the verge of a huge paradigm shift in the number of sites with sequencers and the amount of sequencer data being generated.

  9. CONTROL ROD DRIVE

    DOE Patents [OSTI]

    Chapellier, R.A.; Rogers, I.

    1961-06-27

    Accurate and controlled drive for the control rod is from an electric motor. A hydraulic arrangement is provided to balance a piston against which a control rod is urged by the application of fluid pressure. The electric motor drive of the control rod for normal operation is made through the aforementioned piston. In the event scramming is required, the fluid pressure urging the control rod against the piston is relieved and an opposite fluid pressure is applied. The lack of mechanical connection between the electric motor and control rod facilitates the scramming operation.

  10. The effect of low-NO{sub x} combustion on residual carbon in fly ash and its adsorption capacity for air entrainment admixtures in concrete

    SciTech Connect (OSTI)

    Pedersen, K.H.; Jensen, A.D.; Dam-Johansen, K.

    2010-02-15

    Fly ash from pulverized coal combustion contains residual carbon that can adsorb the air-entraining admixtures (AEAs) added to control the air entrainment in concrete. This is a problem that has increased by the implementation of low-NO{sub x} combustion technologies. In this work, pulverized fuel has been combusted in an entrained flow reactor to test the impact of changes in operating conditions and fuel type on the AEA adsorption of ash and NO{sub x} formation. Increased oxidizing conditions, obtained by improved fuel-air mixing or higher excess air, decreased the AEA requirements of the produced ash by up to a factor of 25. This was due to a lower carbon content in the ash and a lower specific AEA adsorptivity of the carbon. The latter was suggested to be caused by changes in the adsorption properties of the unburned char and a decreased formation of soot, which was found to have a large AEA adsorption capacity based on measurements on a carbon black. The NO{sub x} formation increased by up to three times with more oxidizing conditions and thus, there was a trade-off between the AEA requirements of the ash and NO{sub x} formation. The type of fuel had high impact on the AEA adsorption behavior of the ash. Ashes produced from a Columbian and a Polish coal showed similar AEA requirements, but the specific AEA adsorptivity of the carbon in the Columbian coal ash was up to six times higher. The AEA requirements of a South African coal ash was unaffected by the applied operating conditions and showed up to 12 times higher AEA adsorption compared to the two other coal ashes. This may be caused by larger particles formed by agglomeration of the primary coal particles in the feeding phase or during the combustion process, which gave rise to increased formation of soot. (author)

  11. AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES

    SciTech Connect (OSTI)

    Anand B. Rao; Edward S. Rubin; Michael B. Berkenpas

    2004-03-01

    CO{sub 2} capture and storage (CCS) is gaining widespread interest as a potential method to control greenhouse gas emissions from fossil fuel sources, especially electric power plants. Commercial applications of CO{sub 2} separation and capture technologies are found in a number of industrial process operations worldwide. Many of these capture technologies also are applicable to fossil fuel power plants, although applications to large-scale power generation remain to be demonstrated. This report describes the development of a generalized modeling framework to assess alternative CO{sub 2} capture and storage options in the context of multi-pollutant control requirements for fossil fuel power plants. The focus of the report is on post-combustion CO{sub 2} capture using amine-based absorption systems at pulverized coal-fired plants, which are the most prevalent technology used for power generation today. The modeling framework builds on the previously developed Integrated Environmental Control Model (IECM). The expanded version with carbon sequestration is designated as IECM-cs. The expanded modeling capability also includes natural gas combined cycle (NGCC) power plants and integrated coal gasification combined cycle (IGCC) systems as well as pulverized coal (PC) plants. This report presents details of the performance and cost models developed for an amine-based CO{sub 2} capture system, representing the baseline of current commercial technology. The key uncertainties and variability in process design, performance and cost parameters which influence the overall cost of carbon mitigation also are characterized. The new performance and cost models for CO{sub 2} capture systems have been integrated into the IECM-cs, along with models to estimate CO{sub 2} transport and storage costs. The CO{sub 2} control system also interacts with other emission control technologies such as flue gas desulfurization (FGD) systems for SO{sub 2} control. The integrated model is applied to

  12. Reverse weathering, the carbonate-feldspar system, and porosity evolution during burial of sandstones

    SciTech Connect (OSTI)

    Milliken, K.L.; Land, L.S. )

    1991-03-01

    Acid generated by reverse weathering in mudrocks drives linked reactions involving carbonates and feldspars that in turn have a profound impact on the evolution of porosity during burial diagenesis of sandstones. In the Oligocene Frio Formation along the Texas Gulf Coast, petrographic evidence at various scales in both sandstones and shales, and modern pore fluid compositions are all consistent with this idea. Acid released during illitization of smectite dissolves marine skeletal and detrital carbonate in shales. Shales export excess H+, dissolved CA++, and CO{sub 2} to the sandstones. Resultant interaction of sandstones with these shale-derived fluids is primarily controlled by the feldspar content of the sandstones. If the sandstones contain reactive feldspar content of the sandstones. If the sandstones contain reactive feldspar, acid from the shales is effectively buffered, thus allowing precipitation of calcite as cements and grain replacements in the sandstones and maintenance of fluids with low pCO{sub 2}. Once the supply of reactive detrital feldspar is exhausted through dissolution and albitization, shale-derived H+ remobilizes carbonate in sandstones, generating secondary porosity and fluids with high pCO{sub 2}. Acid generated through thermal maturation of organic matter plays only a trivial role in this system of reactions because the quantity of acid required for dissolution of carbonate and feldspar far exceeds the amount of kerogen in the system. The balance between the local acid generation capacity of shales, the local buffering capacity of feldspars in sandstones, and the availability of externally derived acids and ions is the primary control on the sequence of reactions occurring during burial metamorphism of sandstones.

  13. Global Carbon Budget from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Global Carbon Project (GCP) was established in 2001 in recognition of the scientific challenge and critical importance of the carbon cycle for Earth's sustainability. The growing realization that anthropogenic climate change is a reality has focused the attention of the scientific community, policymakers and the general public on the rising concentration of greenhouse gases, especially carbon dioxide (CO2) in the atmosphere, and on the carbon cycle in general. Initial attempts, through the United Nations Framework Convention on Climate Change and its Kyoto Protocol, are underway to slow the rate of increase of greenhouse gases in the atmosphere. These societal actions require a scientific understanding of the carbon cycle, and are placing increasing demands on the international science community to establish a common, mutually agreed knowledge base to support policy debate and action. The Global Carbon Project is responding to this challenge through a shared partnership between the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme on Global Environmental Change (IHDP), the World Climate Research Programme (WCRP) and Diversitas. This partnership constitutes the Earth Systems Science Partnership (ESSP). This CDIAC collection includes datasets, images, videos, presentations, and archived data from previous years.

  14. 2016 Carbon Storage Project Portfolio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Carbon Storage Project Portfolio Carbon Storage Project Portfolio Cover The 2016 Carbon Storage Project Portfolio provides a comprehensive overview of the NETL Carbon Storage Program's current and recently completed work. The portfolio includes division personnel contact information, technology area introductions, project communication products for projects active on or after 10/1/2016, papers and technical reports, best practices manuals, and access to all archived projects. Carbon Storage

  15. Closeout of Advanced Boron and Metal Loaded High Porosity Carbons.

    SciTech Connect (OSTI)

    Peter C. Eklund; T. C. Mike Chung; Henry C. Foley; Vincent H. Crespi

    2011-05-01

    The Penn State effort explored the development of new high-surface-area materials for hydrogen storage, materials that could offer enhancement in the hydrogen binding energy through a direct chemical modification of the framework in high specific-surface-area platforms. The team chemically substituted boron into the hexagonal sp2 carbon framework, dispersed metal atoms bound to the boro-carbon structure, and generated the theory of novel nanoscale geometries that can enhance storage through chemical frustration, sheet curvature, electron deficiency, large local fields and mixed hybridization states. New boro-carbon materials were synthesized by high temperature plasma, pyrolysis of boron-carbon precursor molecules, and post-synthesis modification of carbons. Hydrogen uptake has been assessed, and several promising leads have been identified, with the requirement to simultaneously optimize total surface area while maintaining the enhanced hydrogen binding energies already demonstrated.

  16. WESTCARB Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The West Coast Regional Carbon Sequestration Partnership (known as WESTCARB) was established in Fall 2003. It is one of seven research partnerships co-funded by DOE to characterize regional carbon sequestration opportunities and conduct pilot-scale validation tests. The California Energy Commission manages WESTCARB and is a major co-funder. WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas, NATCARB

  17. Measurement of carbon capture efficiency and stored carbon leakage

    DOE Patents [OSTI]

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  18. Required Annual Notices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Token Requesting A Token RSA_SecurID_SID800.jpg Step One - Registering with the DOE's Management Information System (MIS) Before you request a DOE Digital Identity, you must register in DOE's Management Information System (MIS). Please note that DOE Federal employees are already registered and do not need to complete this step. They may skip to step two. During the registration process, you will be required to select a DOE sponsor. Your sponsor is the DOE employee who certifies that you have a

  19. BES Science Network Requirements

    SciTech Connect (OSTI)

    Biocca, Alan; Carlson, Rich; Chen, Jackie; Cotter, Steve; Tierney, Brian; Dattoria, Vince; Davenport, Jim; Gaenko, Alexander; Kent, Paul; Lamm, Monica; Miller, Stephen; Mundy, Chris; Ndousse, Thomas; Pederson, Mark; Perazzo, Amedeo; Popescu, Razvan; Rouson, Damian; Sekine, Yukiko; Sumpter, Bobby; Dart, Eli; Wang, Cai-Zhuang -Z; Whitelam, Steve; Zurawski, Jason

    2011-02-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivityfor the US Department of Energy Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of the Office ofScience programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years.

  20. Mega-Pore Nano-Structured Carbon - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Mega-Pore Nano-Structured Carbon Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryCurrent supercapacitor technologies cannot meet the growing demands for high-power energy storage. Meeting this challenge requires the development of new electrode materials.DescriptionScientists at ORNL have developed robust carbon monolithic having hierarchical

  1. Classified Matter Protection and Control

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-26

    Provides detailed requirements to supplement DOE O 471.2, which establishes policy for the protection and control of classified and unclassified information. Does not cancel other directives.

  2. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Big Sky Carbon Atlas is an online geoportal designed for you to discover, interpret, and access geospatial data and maps relevant to decision support and education on carbon sequestration in the Big Sky Region. In serving as the public face of the Partnership's spatial Data Libraries, the Atlas provides a gateway to geographic information characterizing CO2 sources, potential geologic sinks, terrestrial carbon fluxes, civil and energy infrastructure, energy use, and related themes. In addition to directly serving the BSCSP and its stakeholders, the Atlas feeds regional data to the NatCarb Portal, contributing to a national perspective on carbon sequestration. Established components of the Atlas include a gallery of thematic maps and an interactive map that allows you to: • Navigate and explore regional characterization data through a user-friendly interface • Print your map views or publish them as PDFs • Identify technical references relevant to specific areas of interest • Calculate straight-line or pipeline-constrained distances from point sources of CO2 to potential geologic sink features • Download regional data layers (feature under development) (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  3. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  4. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  5. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F.; Cherepy, Nerine

    2011-08-16

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  6. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOE Patents [OSTI]

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  7. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F.; Cherepy, Nerine

    2012-01-24

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  8. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  9. A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

    SciTech Connect (OSTI)

    Andrew V. G. Chizmeshya; Michael J. McKelvy; Kyle Squires; Ray W. Carpenter; Hamdallah Bearat

    2007-06-21

    Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As carbonation proceeds, these passivating layers thicken, fracture and eventually exfoliate, exposing fresh olivine surfaces during rapidly-stirred/circulating carbonation. We are exploring the mechanisms that govern carbonation reactivity and the impact that (1) modeling/controlling the slurry fluid-flow conditions, (2) varying the aqueous ion species/size and concentration (e.g., Li+, Na+, K+, Rb+, Cl-, HCO{sub 3}{sup -}), and (3) incorporating select sonication offer to enhance exfoliation and carbonation. Thus

  10. Carbon-particle generator

    DOE Patents [OSTI]

    Hunt, A.J.

    1982-09-29

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  11. Carbon Storage Newsletter | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Monitoring, Verification and Accounting Research Carbon Storage Monitoring, Verification and Accounting Research Reliable and cost-effective monitoring, verification and accounting (MVA) techniques are an important part of making geologic sequestration a safe, effective, and acceptable method for greenhouse gas control. MVA of geologic storage sites is expected to serve several purposes, including addressing safety and environmental concerns; inventory verification;

  12. Carbon Storage Monitoring, Verification and Accounting Research |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Monitoring, Verification and Accounting Research Carbon Storage Monitoring, Verification and Accounting Research Reliable and cost-effective monitoring, verification and accounting (MVA) techniques are an important part of making geologic sequestration a safe, effective, and acceptable method for greenhouse gas control. MVA of geologic storage sites is expected to serve several purposes, including addressing safety and environmental concerns; inventory verification;

  13. An ultrafast carbon nanotube terahertz polarisation modulator

    SciTech Connect (OSTI)

    Docherty, Callum J.; Stranks, Samuel D.; Habisreutinger, Severin N.; Joyce, Hannah J.; Herz, Laura M.; Nicholas, Robin J.; Johnston, Michael B.

    2014-05-28

    We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies.

  14. POST-OPERATIONAL TREATMENT OF RESIDUAL NA COOLLANT IN EBR-2 USING CARBONATION

    SciTech Connect (OSTI)

    Sherman, S.; Knight, C.

    2011-03-08

    At the end of 2002, the Experimental Breeder Reactor Two (EBR-II) facility became a U.S. Resource Conservation and Recovery Act (RCRA) permitted site, and the RCRA permit1 compelled further treatment of the residual sodium in order to convert it into a less reactive chemical form and remove the by-products from the facility, so that a state of RCRA 'closure' for the facility may be achieved (42 U.S.C. 6901-6992k, 2002). In response to this regulatory driver, and in recognition of project budgetary and safety constraints, it was decided to treat the residual sodium in the EBR-II primary and secondary sodium systems using a process known as 'carbonation.' In early EBR-II post-operation documentation, this process is also called 'passivation.' In the carbonation process (Sherman and Henslee, 2005), the system containing residual sodium is flushed with humidified carbon dioxide (CO{sub 2}). The water vapor in the flush gas reacts with residual sodium to form sodium hydroxide (NaOH), and the CO{sub 2} in the flush gas reacts with the newly formed NaOH to make sodium bicarbonate (NaHCO{sub 3}). Hydrogen gas (H{sub 2}) is produced as a by-product. The chemical reactions occur at the exposed surface of the residual sodium. The NaHCO{sub 3} layer that forms is porous, and humidified carbon dioxide can penetrate the NaHCO{sub 3} layer to continue reacting residual sodium underneath. The rate of reaction is controlled by the thickness of the NaHCO{sub 3} surface layer, the moisture input rate, and the residual sodium exposed surface area. At the end of carbonation, approximately 780 liters of residual sodium in the EBR-II primary tank ({approx}70% of original inventory), and just under 190 liters of residual sodium in the EBR-II secondary sodium system ({approx}50% of original inventory), were converted into NaHCO{sub 3}. No bare surfaces of residual sodium remained after treatment, and all remaining residual sodium deposits are covered by a layer of NaHCO{sub 3}. From a

  15. Plating Tank Control Software

    Energy Science and Technology Software Center (OSTI)

    1998-03-01

    The Plating Tank Control Software is a graphical user interface that controls and records plating process conditions for plating in high aspect ratio channels that require use of low current and long times. The software is written for a Pentium II PC with an 8 channel data acquisition card, and the necessary shunt resistors for measuring currents in the millampere range.

  16. Control solids in cooling water to cut makeup requirements

    SciTech Connect (OSTI)

    Osantowski, R.; Kane, J.

    1984-07-01

    A pilot program demonstrates effectiveness of reverse osmosis and electrodialysis in increasing the cycles of concentration of recirculating-water systems. The team performed its study with the help of the Department of Interior's mobile demineralization treatment system, which houses both a reverse-osmosis and an electrodialysis desalting system. Their results indicate that both systems can produce product water of higher quality than makeup water drawn from the Colorado River. Capital cost of a full-scale treatment system with 75% product-water recovery is estimated at $3.6 million. Annual operating cost would be about $822,000.

  17. Evaluation of Radon Emissions and Potential Control Requirements.

    Office of Legacy Management (LM)

  18. 1 ISO 14001 requires that operational control be maintained...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bins with improved collection bins to include color coding for recycling categories and trash receptacles. Improve Life Cycle Management of Electronics 12. Complete phase I...

  19. An analytical bond-order potential for carbon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xiaowang; Ward, Donald K.; Foster, Michael E.

    2015-05-27

    Carbon is the most widely studied material today because it exhibits special properties not seen in any other materials when in nano dimensions such as nanotube and graphene. Reduction of material defects created during synthesis has become critical to realize the full potential of carbon structures. Molecular dynamics (MD) simulations, in principle, allow defect formation mechanisms to be studied with high fidelity, and can, therefore, help guide experiments for defect reduction. Such MD simulations must satisfy a set of stringent requirements. First, they must employ an interatomic potential formalism that is transferable to a variety of carbon structures. Second, themore » potential needs to be appropriately parameterized to capture the property trends of important carbon structures, in particular, diamond, graphite, graphene, and nanotubes. The potential must predict the crystalline growth of the correct phases during direct MD simulations of synthesis to achieve a predictive simulation of defect formation. An unlimited number of structures not included in the potential parameterization are encountered, thus the literature carbon potentials are often not sufficient for growth simulations. We have developed an analytical bond order potential for carbon, and have made it available through the public MD simulation package LAMMPS. We also demonstrate that our potential reasonably captures the property trends of important carbon phases. As a result, stringent MD simulations convincingly show that our potential accounts not only for the crystalline growth of graphene, graphite, and carbon nanotubes but also for the transformation of graphite to diamond at high pressure.« less

  20. An analytical bond-order potential for carbon

    SciTech Connect (OSTI)

    Zhou, Xiaowang; Ward, Donald K.; Foster, Michael E.

    2015-05-27

    Carbon is the most widely studied material today because it exhibits special properties not seen in any other materials when in nano dimensions such as nanotube and graphene. Reduction of material defects created during synthesis has become critical to realize the full potential of carbon structures. Molecular dynamics (MD) simulations, in principle, allow defect formation mechanisms to be studied with high fidelity, and can, therefore, help guide experiments for defect reduction. Such MD simulations must satisfy a set of stringent requirements. First, they must employ an interatomic potential formalism that is transferable to a variety of carbon structures. Second, the potential needs to be appropriately parameterized to capture the property trends of important carbon structures, in particular, diamond, graphite, graphene, and nanotubes. The potential must predict the crystalline growth of the correct phases during direct MD simulations of synthesis to achieve a predictive simulation of defect formation. An unlimited number of structures not included in the potential parameterization are encountered, thus the literature carbon potentials are often not sufficient for growth simulations. We have developed an analytical bond order potential for carbon, and have made it available through the public MD simulation package LAMMPS. We also demonstrate that our potential reasonably captures the property trends of important carbon phases. As a result, stringent MD simulations convincingly show that our potential accounts not only for the crystalline growth of graphene, graphite, and carbon nanotubes but also for the transformation of graphite to diamond at high pressure.

  1. communications requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities to Inform Federal Smart Grid Policy Re: NBP RFI: Communications Requirements NBP RFI: Communications Requirements- Comments of Lake Region Electric Cooperative- Minnesota

  2. Carbon Capture and Storage

    SciTech Connect (OSTI)

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several

  3. Formation of rare earth carbonates using supercritical carbon dioxide

    DOE Patents [OSTI]

    Fernando, Quintus; Yanagihara, Naohisa; Dyke, James T.; Vemulapalli, Krishna

    1991-09-03

    The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

  4. CarbonMicro | Open Energy Information

    Open Energy Info (EERE)

    Place: Irvine, California Zip: CA 92618 Sector: Carbon Product: Carbon Micro Battery Corporation has a unique technology of creating micro and nanoscale carbon...

  5. Carbon Micro Battery LLC | Open Energy Information

    Open Energy Info (EERE)

    Micro Battery LLC Jump to: navigation, search Name: Carbon Micro Battery, LLC Place: California Sector: Carbon Product: Carbon Micro Battery, LLC, technology developer of micro and...

  6. Carbon Solutions Group | Open Energy Information

    Open Energy Info (EERE)

    Solutions Group Jump to: navigation, search Name: Carbon Solutions Group Place: Chicago, Illinois Zip: 60601 Sector: Carbon Product: Carbon Solutions Group collaborates with...

  7. Thermal Management Using Carbon Nanotubes - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Management Using Carbon Nanotubes Oak Ridge National Laboratory Contact ORNL About This Technology Vertically Aligned Carbon Nanotubes Vertically Aligned Carbon Nanotubes...

  8. Participatory Carbon Monitoring: Operational Guidance for National...

    Open Energy Info (EERE)

    Participatory Carbon Monitoring: Operational Guidance for National REDD+ Carbon Accounting Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Participatory Carbon...

  9. Arreon Carbon Ltd | Open Energy Information

    Open Energy Info (EERE)

    Arreon Carbon Ltd Jump to: navigation, search Name: Arreon Carbon Ltd Place: Beijing, Beijing Municipality, China Zip: 100022 Sector: Carbon Product: Beijing-based firm that...

  10. GS Carbon Corporation | Open Energy Information

    Open Energy Info (EERE)

    Carbon Corporation Jump to: navigation, search Name: GS Carbon Corporation Place: New York, New York Zip: 10119 Sector: Carbon Product: The company offsets emissions output with...

  11. Carbon Market Brasil Consulting | Open Energy Information

    Open Energy Info (EERE)

    Market Brasil Consulting Jump to: navigation, search Name: Carbon Market Brasil Consulting Place: Sao Paulo, Brazil Zip: 04120-070 Sector: Carbon Product: Brazil-based carbon...

  12. Universal Carbon Credits Limited | Open Energy Information

    Open Energy Info (EERE)

    Universal Carbon Credits Limited Jump to: navigation, search Name: Universal Carbon Credits Limited Place: London, England, United Kingdom Zip: EC3A6DF Sector: Carbon Product:...

  13. Carbon Trust Enterprises Limited | Open Energy Information

    Open Energy Info (EERE)

    Enterprises Limited Jump to: navigation, search Name: Carbon Trust Enterprises Limited Place: London, United Kingdom Zip: WC2A 2AZ Sector: Carbon Product: Carbon Trust Enterprises...

  14. Equinox Carbon Equities LLC | Open Energy Information

    Open Energy Info (EERE)

    Equinox Carbon Equities LLC Jump to: navigation, search Name: Equinox Carbon Equities, LLC Place: Newport Beach, California Zip: 92660 Sector: Carbon Product: Investment firm...

  15. The Social Carbon Company | Open Energy Information

    Open Energy Info (EERE)

    Social Carbon Company Jump to: navigation, search Name: The Social Carbon Company Place: Brasilia, Distrito Federal (Brasilia), Brazil Zip: CEP 70610-440 Sector: Carbon, Services...

  16. Carbon Credit Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Name: Carbon Credit Capital Place: New York, New York Zip: 10012 Sector: Carbon, Services Product: Project Advisory Services and Carbon...

  17. The Global Carbon Bank | Open Energy Information

    Open Energy Info (EERE)

    Global Carbon Bank Jump to: navigation, search Name: The Global Carbon Bank Place: Houston, Texas Zip: 77025 Sector: Carbon, Services Product: Houston-based provider of advisory...

  18. Method for production of carbon nanofiber mat or carbon paper

    SciTech Connect (OSTI)

    Naskar, Amit K.

    2015-08-04

    Method for the preparation of a non-woven mat or paper made of carbon fibers, the method comprising carbonizing a non-woven mat or paper preform (precursor) comprised of a plurality of bonded sulfonated polyolefin fibers to produce said non-woven mat or paper made of carbon fibers. The preforms and resulting non-woven mat or paper made of carbon fiber, as well as articles and devices containing them, and methods for their use, are also described.

  19. Production of single-walled carbon nanotube grids

    DOE Patents [OSTI]

    Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean

    2013-12-03

    A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

  20. Activated carbon fiber composite material and method of making

    DOE Patents [OSTI]

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2001-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  1. Activated carbon fiber composite material and method of making

    DOE Patents [OSTI]

    Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit

    2000-01-01

    An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

  2. Growth of graphene films from non-gaseous carbon sources

    DOE Patents [OSTI]

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  3. Synthesis of optimal adsorptive carbon capture processes.

    SciTech Connect (OSTI)

    chang, Y.; Cozad, A.; Kim, H.; Lee, A.; Vouzis, P.; Konda, M.; Simon, A.; Sahinidis, N.; Miller, D.

    2011-01-01

    Solid sorbent carbon capture systems have the potential to require significantly lower regeneration energy compared to aqueous monoethanol amine (MEA) systems. To date, the majority of work on solid sorbents has focused on developing the sorbent materials themselves. In order to advance these technologies, it is necessary to design systems that can exploit the full potential and unique characteristics of these materials. The Department of Energy (DOE) recently initiated the Carbon Capture Simulation Initiative (CCSI) to develop computational tools to accelerate the commercialization of carbon capture technology. Solid sorbents is the first Industry Challenge Problem considered under this initiative. An early goal of the initiative is to demonstrate a superstructure-based framework to synthesize an optimal solid sorbent carbon capture process. For a given solid sorbent, there are a number of potential reactors and reactor configurations consisting of various fluidized bed reactors, moving bed reactors, and fixed bed reactors. Detailed process models for these reactors have been modeled using Aspen Custom Modeler; however, such models are computationally intractable for large optimization-based process synthesis. Thus, in order to facilitate the use of these models for process synthesis, we have developed an approach for generating simple algebraic surrogate models that can be used in an optimization formulation. This presentation will describe the superstructure formulation which uses these surrogate models to choose among various process alternatives and will describe the resulting optimal process configuration.

  4. Carbon smackdown: wind warriors

    ScienceCinema (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  5. Carbon cloth supported electrode

    DOE Patents [OSTI]

    Lu, Wen-Tong P. (Upper St. Clair, PA); Ammon, Robert L. (Baldwin both of, PA)

    1982-01-01

    A flow-by anode is disclosed made by preparing a liquid suspension of about to about 18% by weight solids, the solids comprising about 3.5 to about 8% of a powdered catalyst of platinum, palladium, palladium oxide, or mixtures thereof; about 60 to about 76% carbon powder (support) having a particle size less than about 20 m.mu.m and about 20 to about 33% of an inert binder having a particle size of less than about 500 m.mu.m. A sufficient amount of the suspension is poured over a carbon cloth to form a layer of solids about 0.01 to about 0.05 cm thick on the carbon cloth when the electrode is completed. A vacuum was applied to the opposite side of the carbon cloth to remove the liquid and the catalyst layer/cloth assembly is dried and compressed at about 10 to about 50 MPa's. The binder is then sintered in an inert atmosphere to complete the electrode. The electrode is used for the oxidation of sulfur dioxide in a sulfur based hybrid cycle for the decomposition of water.

  6. Carbon Footprint Calculator

    Broader source: Energy.gov [DOE]

    This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.

  7. GENOME-ENABLED DISCOVERY OF CARBON SEQUESTRATION GENES IN POPLAR

    SciTech Connect (OSTI)

    DAVIS J M

    2007-10-11

    Plants utilize carbon by partitioning the reduced carbon obtained through photosynthesis into different compartments and into different chemistries within a cell and subsequently allocating such carbon to sink tissues throughout the plant. Since the phytohormones auxin and cytokinin are known to influence sink strength in tissues such as roots (Skoog & Miller 1957, Nordstrom et al. 2004), we hypothesized that altering the expression of genes that regulate auxin-mediated (e.g., AUX/IAA or ARF transcription factors) or cytokinin-mediated (e.g., RR transcription factors) control of root growth and development would impact carbon allocation and partitioning belowground (Fig. 1 - Renewal Proposal). Specifically, the ARF, AUX/IAA and RR transcription factor gene families mediate the effects of the growth regulators auxin and cytokinin on cell expansion, cell division and differentiation into root primordia. Invertases (IVR), whose transcript abundance is enhanced by both auxin and cytokinin, are critical components of carbon movement and therefore of carbon allocation. Thus, we initiated comparative genomic studies to identify the AUX/IAA, ARF, RR and IVR gene families in the Populus genome that could impact carbon allocation and partitioning. Bioinformatics searches using Arabidopsis gene sequences as queries identified regions with high degrees of sequence similarities in the Populus genome. These Populus sequences formed the basis of our transgenic experiments. Transgenic modification of gene expression involving members of these gene families was hypothesized to have profound effects on carbon allocation and partitioning.

  8. Neutralizing Carbonic Acid in Deep Carbonate Strata below the North Atlantic

    SciTech Connect (OSTI)

    Daniel P. Schrag

    2005-12-01

    Our research is aimed at investigating several technical issues associated with carbon dioxide sequestration in calcium carbonate sediments below the sea floor through laboratory experiments and chemical transport modeling. Our goal is to evaluate the basic feasibility of this approach, including an assessment of optimal depths, sediment types, and other issues related to site selection. Through laboratory and modeling efforts, we are studying the flow of liquid carbon dioxide and carbon dioxide-water mixtures through calcium carbonate sediments to better understand the geomechanical and structural stability of the sediments during and after injection. Our modeling efforts in the first year show that the idea is feasible, but requires more sophisticated analysis of fluid flow at high pressure in deep sea sediments. In addition, we are investigating the kinetics of calcium carbonate dissolution in the presence of CO{sub 2}-water fluids, which is a critical feature of the system as it allows for increased permeability during injection. Our experimental results from the first year of work have shown that the kinetics are likely to be fast enough to create dissolution which will affect permeability. However, additional experiments are needed at high pressures, which will be a focus for years 2 and 3. We are also investigating the possibility of carbon dioxide hydrate formation in the pore fluid, which might complicate the injection procedure by reducing sediment permeability but might also provide an upper seal in the sediment-pore fluid system, preventing release of CO{sub 2} into the deep ocean, particularly if depth and temperature at the injection point rule out immediate hydrate formation. Finally, we are in the beginning stages of an economic analysis to estimate costs of drilling and gas injection, site monitoring as well as the availability of potential disposal sites with particular emphasis on those sites that are within the 200-mile economic zone of the

  9. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure...

  10. Carbon Trust | Open Energy Information

    Open Energy Info (EERE)

    Trust Jump to: navigation, search Name: Carbon Trust Place: London, Greater London, United Kingdom Zip: EC4A 3BF Sector: Carbon Product: London-based independent company funded by...

  11. Sustainable Carbon | Open Energy Information

    Open Energy Info (EERE)

    Carbon Jump to: navigation, search Name: Sustainable Carbon Place: Sao Paulo, Sao Paulo, Brazil Zip: 04 038 032 Product: Sao Paulo-based joint-venture with CantorCO2e Brazil. The...

  12. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to...

  13. Carbon Clear | Open Energy Information

    Open Energy Info (EERE)

    Clear Jump to: navigation, search Name: Carbon Clear Place: United Kingdom Product: UK-based voluntary offset provider. References: Carbon Clear1 This article is a stub. You can...

  14. Overview of Carbon Storage Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Roughly one third of the United States’ carbon emissions come from power plants and other large point sources, such as industrial facilities. The Carbon Storage Program is focused on ensuring the...

  15. BGE Communications Requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BGE Communications Requirements BGE Communications Requirements Chart of BGE Communications Requirements PDF icon BGE Communications Requirements More Documents & Publications ...

  16. Assessment Of Carbon Leakage In Multiple Carbon-Sink Projects: ACase Study In Jambi Province, Indonesia

    SciTech Connect (OSTI)

    Boer, Rizaldi; Wasrin, Upik R.; Hendri, Perdinan; Dasanto,Bambang D.; Makundi, Willy; Hero, Julius; Ridwan, M.; Masripatin, Nur

    2007-06-01

    Rehabilitation of degraded forest land throughimplementation of carbon sink projects can increase terrestrial carbonstock. However, carbon emissions outside the project boundary, which iscommonly referred to as leakage, may reduce or negate the sequestrationbenefits. This study assessed leakage from carbon sink projects thatcould potentially be implemented in the study area comprised of elevensub-districts in the Batanghari District, Jambi Province, Sumatra,Indonesia. The study estimates the probability of a given land use/coverbeing converted into other uses/cover, by applying a logit model. Thepredictor variables were: proximity to the center of the land use area,distance to transportation channel (road or river), area of agriculturalland, unemployment (number of job seekers), job opportunities, populationdensity and income. Leakage was estimated by analyzing with and withoutcarbon sink projects scenarios. Most of the predictors were estimated asbeing significant in their contribution to land use cover change. Theresults of the analysis show that leakage in the study area can be largeenough to more than offset the project's carbon sequestration benefitsduring the period 2002-2012. However, leakage results are very sensitiveto changes of carbon density of the land uses in the study area. Byreducing C-density of lowland and hill forest by about 10 percent for thebaseline scenario, the leakage becomes positive. Further data collectionand refinement is therefore required. Nevertheless, this study hasdemonstrated that regional analysis is a useful approach to assessleakage.

  17. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2002-02-01

    The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power

  18. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon.

  19. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon.

  20. Boron nitride converted carbon fiber

    DOE Patents [OSTI]

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  1. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon.

  2. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Ferromagnetic Carbon First Proof of Ferromagnetic Carbon Print Wednesday, 25 July 2007 00:00 Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS

  3. Carbon nanotube array based sensor

    DOE Patents [OSTI]

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  4. Heliostat control

    DOE Patents [OSTI]

    Kaehler, James A.

    1984-01-01

    An improvement in a system and method of controlling heliostat in which the heliostat is operable in azimuth and elevation by respective stepper motors and including the respective steps or means for calculating the position for the heliostat to be at a commanded position, determining the number of steps in azimuth and elevation for each respective motor to get to the commanded position and energizing both the azimuth and elevation stepper motors to run in parallel until predetermined number of steps away from the closest commanded position in azimuth and elevation so that the closest position has been achieved, and thereafter energizing only the remaining motor to bring it to its commanded position. In this way, the heliostat can be started from a stowed position in the morning and operated by a computer means to its commanded position and kept correctly oriented throughout the day using only the time of the day without requiring the usual sensors and feedback apparatus. A computer, or microprocessor, can then control a plurality of many heliostats easily and efficiently throughout the day.

  5. Carbonate fuel cell system with integrated carbon dioxide/thermal management

    SciTech Connect (OSTI)

    Paetsch, L.; Ding, J.; Hunt, J.

    1995-12-31

    Upon successful completion of Phase 1, the Phase 2 activities were initiated in July 1994 to define the stack design and system requirements for a commercial-scale burnerless carbonate fuel cell stack with an integrated carbon dioxide management system. The major goals of this program are to define the stack design and the system requirements of the integrated design. The approach taken was to maximize the similarities of this stack with ERC`s proven baseline stack design and power plant system. Recent accomplishments include a detailed stack design which retains all the essential elements of the baseline stack as well as the power plant system designs. All the auxiliary hardware and external flow patterns remain unchanged, only the internal flow configurations are modified.

  6. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    DOE Patents [OSTI]

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  7. Dispersion toughened silicon carbon ceramics

    DOE Patents [OSTI]

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  8. 2e Carbon Access | Open Energy Information

    Open Energy Info (EERE)

    e Carbon Access Jump to: navigation, search Name: 2e Carbon Access Place: New York, New York Zip: 10280 Sector: Carbon Product: 2E Carbon Access is an enterprise focused solely on...

  9. Less Carbon Ltd | Open Energy Information

    Open Energy Info (EERE)

    Less Carbon Ltd Jump to: navigation, search Name: Less Carbon Ltd Place: London, Greater London, United Kingdom Zip: EC3M 4BT Sector: Carbon Product: Less Carbon advises energy...

  10. SGL Carbon AG | Open Energy Information

    Open Energy Info (EERE)

    Carbon AG Jump to: navigation, search Name: SGL Carbon AG Place: Wiesbaden, Hessen, Germany Zip: 65203 Sector: Carbon Product: A Germany-based manufacturer of carbon-based products...

  11. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2013-08-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA. This topical report covers Subphase 2a which is the design phase of pilot demonstration subsystems. Materials of construction have been selected and proven in both lab scale and prototype testing to be acceptable for the reagent conditions of interest. The target application for the reactive carbonate material has been selected based upon small-scale feasibility studies and the design of a continuous fiber board production line has been completed. The electrochemical cell architecture and components have been selected based upon both lab scale and prototype testing. The appropriate quality control and diagnostic techniques have been developed and tested along with the required instrumentation and controls. Finally the demonstrate site infrastructure, NEPA categorical exclusion, and permitting is all ready for the construction and installation of the new units and upgrades.

  12. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    SciTech Connect (OSTI)

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO?- absorbing liquid solvent contained within solid, CO?-permeable, polymer shells. MECS enhance the rate of CO? absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO? pressures in stripping conditions, relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.

  13. Thermodynamic assessment of microencapsulated sodium carbonate slurry for carbon capture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stolaroff, Joshuah K.; Bourcier, William L.

    2014-01-01

    Micro-encapsulated Carbon Sorbents (MECS) are a new class of carbon capture materials consisting of a CO₂- absorbing liquid solvent contained within solid, CO₂-permeable, polymer shells. MECS enhance the rate of CO₂ absorption for solvents with slow kinetics and prevent solid precipitates from scaling and fouling equipment, two factors that have previously limited the use of sodium carbonate solution for carbon capture. Here, we examine the thermodynamics of sodium carbonate slurries for carbon capture. We model the vapour-liquid-solid equilibria of sodium carbonate and find several features that can contribute to an energy-efficient capture process: very high CO₂ pressures in stripping conditions,more » relatively low water vapour pressures in stripping conditions, and good swing capacity. The potential energy savings compared with an MEA system are discussed.« less

  14. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions

    SciTech Connect (OSTI)

    Lueking, Angela; Badding, John; Crespi, Vinent

    2015-12-01

    Hydrogen trapped in a carbon cage, captured through repulsive interactions, is a novel concept in hydrogen storage. Trapping hydrogen via repulsive interactions borrows an idea from macroscale hydrogen storage (i.e. compressed gas storage tanks) and reapplies these concepts on the nanoscale in specially designed molecular containers. Under extreme conditions of pressure, hydrogen solubility in carbon materials is expected to increase and carbon is expected to restructure to minimize volume via a mixed sp2/sp3 hydrogenated state. Thermodynamics dictate that pre-formed C-H structures will rearrange with increased pressure, yet the final carbon-hydrogen interactions may be dependent upon the mechanism by which hydrogen is introduced. Gas “trapping” is meant to denote gas present in a solid in a high density, adsorbed-like state, when the external pressure is much less than that necessary to provide a comparable fluid density. Trapping thus denotes a kinetically metastable state rather than thermodynamic equilibrium. This project probed mechanochemical means to polymerize select hydrocarbons in the presence of gases, in an attempt to form localized carbon cages that trap gases via repulsive interactions. Aromatic, polyaromatic, and hydroaromatic molecules expected to undergo cyclo-addition reactions were polymerized at high (~GPa) pressures to form extended hydrogenated amorphous carbon networks. Notably, aromatics with a pre-existing internal free volume (such as Triptycene) appeared to retain an internal porosity upon application of pressure. However, a high photoluminescence background after polymerization precluded in situ identification of trapped gases. No spectroscopic evidence was found after depressurization that would be indicative of pockets of trapped gases in a localized high-pressure environment. Control studies suggested this measurement may be insensitive to gases at low pressure. Similarly, no spectral fingerprint was found for gas-imbued spherical

  15. Dream controller

    SciTech Connect (OSTI)

    Cheng, George Shu-Xing; Mulkey, Steven L; Wang, Qiang; Chow, Andrew J

    2013-11-26

    A method and apparatus for intelligently controlling continuous process variables. A Dream Controller comprises an Intelligent Engine mechanism and a number of Model-Free Adaptive (MFA) controllers, each of which is suitable to control a process with specific behaviors. The Intelligent Engine can automatically select the appropriate MFA controller and its parameters so that the Dream Controller can be easily used by people with limited control experience and those who do not have the time to commission, tune, and maintain automatic controllers.

  16. Establishing MICHCARB, a geological carbon sequestration research...

    Office of Scientific and Technical Information (OSTI)

    Western Michigan University 58 GEOSCIENCES Geological carbon sequestration Enhanced oil recovery Characterization of oil, gas and saline reservoirs Geological carbon...

  17. Understanding Manufacturing Energy and Carbon Footprints, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Understanding Manufacturing Energy and Carbon Footprints, October 2012 Understanding Manufacturing Energy and Carbon Footprints, October 2012 understandingenergyfootprints2012.p...

  18. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Electrobiocommodities from Carbon Dioxide: ...

  19. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the

  20. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  1. ARM - Field Campaign - Aircraft Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAircraft Carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aircraft Carbon 2006.07.01 - 2008.09.30 Lead Scientist : Margaret Torn For data sets, see below. Abstract Airborne trace-gas measurements at ARM-SGP provided valuable data for addressing carbon-cycle questions highlighted by the US Climate Change Research Program and the North American Carbon Program. A set of carbon-cycle

  2. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  3. Carbon Nanotube Field Emission Devices - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential applications include mobile computing and communication devices, LCDs, electrostatic scrubbers for industrial air pollution control, and any applications requiring high ...

  4. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity

    SciTech Connect (OSTI)

    Li, Jianwei; Wang, Gangsheng; Allison, Steven D.; Mayes, Melanie; Luo, Yiqi

    2014-01-01

    Global ecosystem models may require microbial components to accurately predict feedbacks between climate warming and soil decomposition, but it is unclear what parameters and levels of complexity are ideal for scaling up to the globe. Here we conducted a model comparison using a conventional model with first-order decay and three microbial models of increasing complexity that simulate short- to long-term soil carbon dynamics. We focused on soil carbon responses to microbial carbon use efficiency (CUE) and temperature. Three scenarios were implemented in all models: constant CUE (held at 0.31), varied CUE ( 0.016 C 1), and 50 % acclimated CUE ( 0.008 C 1). Whereas the conventional model always showed soil carbon losses with increasing temperature, the microbial models each predicted a temperature threshold above which warming led to soil carbon gain. The location of this threshold depended on CUE scenario, with higher temperature thresholds under the acclimated and constant scenarios. This result suggests that the temperature sensitivity of CUE and the structure of the soil carbon model together regulate the long-term soil carbon response to warming. Equilibrium soil carbon stocks predicted by the microbial models were much less sensitive to changing inputs compared to the conventional model. Although many soil carbon dynamics were similar across microbial models, the most complex model showed less pronounced oscillations. Thus, adding model complexity (i.e. including enzyme pools) could improve the mechanistic representation of soil carbon dynamics during the transient phase in certain ecosystems. This study suggests that model structure and CUE parameterization should be carefully evaluated when scaling up microbial models to ecosystems and the globe.

  5. Carbonate fuel cell matrix

    DOE Patents [OSTI]

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  6. Carbonate fuel cell matrix

    DOE Patents [OSTI]

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  7. Cyber Security Requirements for Risk Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-19

    The Notice ensures that system owners consistently assess the threats to and vulnerabilities of systems in order to implement adequate security controls. The Notice will also ensure compliance with the requirements of DOE O 205.1, Department of Energy Cyber Security Management Program, dated 3-21-03, and protect DOE information and information systems from unauthorized access, use, disclosure, modification, or destruction. DOE N 205.15, dated 3/18/05, extends this directive until 3/18/06.

  8. Southeast Regional Carbon Sequestration Partnership (SECARB)

    SciTech Connect (OSTI)

    Kenneth J. Nemeth

    2005-09-30

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is a diverse partnership covering eleven states involving the Southern States Energy Board (SSEB) an interstate compact; regulatory agencies and/or geological surveys from member states; the Electric Power Research Institute (EPRI); academic institutions; a Native American enterprise; and multiple entities from the private sector. Figure 1 shows the team structure for the partnership. In addition to the Technical Team, the Technology Coalition, an alliance of auxiliary participants, in the project lends yet more strength and support to the project. The Technology Coalition, with its diverse representation of various sectors, is integral to the technical information transfer, outreach, and public perception activities of the partnership. The Technology Coalition members, shown in Figure 2, also provide a breadth of knowledge and capabilities in the multiplicity of technologies needed to assure a successful outcome to the project and serve as an extremely important asset to the partnership. The eleven states comprising the multi-state region are: Alabama; Arkansas; Florida; Georgia; Louisiana; Mississippi; North Carolina; South Carolina; Tennessee; Texas; and Virginia. The states making up the SECARB area are illustrated in Figure 3. The primary objectives of the SECARB project include: (1) Supporting the U.S. Department of Energy (DOE) Carbon Sequestration Program by promoting the development of a framework and infrastructure necessary for the validation and deployment of carbon sequestration technologies. This requires the development of relevant data to reduce the uncertainties and risks that are barriers to sequestration, especially for geologic storage in the SECARB region. Information and knowledge are the keys to establishing a regional carbon dioxide (CO{sub 2}) storage industry with public acceptance. (2) Supporting the President's Global Climate Change Initiative with the goal of reducing

  9. A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbons, and Electrolyte

    SciTech Connect (OSTI)

    Sumpter, Bobby G; Huang, Jingsong; Meunier, Vincent

    2008-01-01

    Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy storage device with the potential to substitute batteries in applications requiring high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbons and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (< 2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (> 50 nm) where pores are large enough so that the pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, showing the significant effects of pore curvature on the supercapacitor properties of nanoporous carbons. It is shown that the EDCC/EWCC model is universal to carbon supercapacitors with diverse carbon materials including activated carbons, template carbons, and novel carbide-derived carbons, and with diverse electrolytes including organic electrolytes such as tetraethylammonium tetrafluoroborate (TEABF4), tetraethylammonium methyl-sulfonate (TEAMS) in acetonitrile, aqueous H2SO4 and KOH electrolytes, and even ionic liquid electrolyte such as 1-ethyl-3-methylimmidazolium bis(trifluromethane-sulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size, and may lend a support for the systematic optimization of the

  10. Transportation Infrastructure Requirement Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find infrastructure requirement resources below. DOE Resource Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development. Other Resource National Governors ...

  11. Considering Project Requirements and Recommendations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Considering the requirements and recommendations of the project is the fourth step in planning for a federal site solar installation.

  12. Regulatory Requirements | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regulatory Requirements Executive Order 13423, Strengthening Federal Environment, Energy, and Transportation Management (January 26, 2007) and Executive Order 13514, Federal...

  13. Capacitive, deionization with carbon aerogel electrodes: Carbonate, sulfate, and phosphate

    SciTech Connect (OSTI)

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-07-24

    A process for the capacitive deionization (CDI) of water with a stack of carbon aerogel electrodes has been developed by Lawrence Livermore National Laboratory. Unlike ion exchange, one of the more conventional deionization processes, no chemicals are required for regeneration of the system. Electricity is used instead. Water with various anions and cations is pumped through the electrochemical cell. After polarization, ions are electrostatically removed from the water and held in the electric double layers formed at the surfaces of electrodes. The water leaving the cell is purified, as desired. The effects of cell voltage on the electrosorption capacities for Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4}, and Na{sub 2}CO{sub 3} have been investigated and are reported here. Results for NaCl and NaNO{sub 3} have been reported previously. Possible applications for CDI are as a replacement for ion exchange processes which remove heavy metals and radioisotopes from process and waste water in various industries, as well as to remove inorganic ions from feedwater for fossil and nuclear power plants.

  14. Tank Farms Technical Safety Requirements [VOL 1 and 2

    SciTech Connect (OSTI)

    CASH, R.J.

    2000-12-28

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR).

  15. ETA-HIAC05 - Training and Certification Requirements for Personnel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Reserved 7.2 ETA-HIAC02 - "Procedure for the Control of Test Conduct." 7.3 DOE Order 5700.6C - "Quality Assurance Program Basic Requirements." 7.4 HICEV America Vehicle ...

  16. ETA-NAC005 - Training and Certification Requirements for Personnel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 7.2 ETA-NAC002 - "Procedure for the Control of Test Conduct." 7.3 DOE Order 5700.6C - "Quality Assurance Program Basic Requirements." 7.4 NEV America Vehicle Technical ...

  17. ETA-UAC05 - Training and Certification Requirements for Personnel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 7.2 ETA-UAC02 - "Procedure for the Control of Test Conduct." 7.3 DOE Order 5700.6C - "Quality Assurance Program Basic Requirements." 7.4 UEV America Technical ...

  18. Carbon Ion Pump for Carbon Dioxide Removal - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Carbon Ion Pump for Carbon Dioxide Removal Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary The limitation to reducing greenhouse gases in the atmosphere is the expense of stripping carbon dioxide from other combustion gases. Without a cost-effective means of accomplishing this, hydrocarbon resources cannot be used freely. A few power plants currently remove

  19. Carbon Sequestration on Surface Mine Lands

    SciTech Connect (OSTI)

    Donald Graves; Christopher Barton; Richard Sweigard; Richard Warner; Carmen Agouridis

    2006-03-31

    Since the implementation of the federal Surface Mining Control and Reclamation Act of 1977 (SMCRA) in May of 1978, many opportunities have been lost for the reforestation of surface mines in the eastern United States. Research has shown that excessive compaction of spoil material in the backfilling and grading process is the biggest impediment to the establishment of productive forests as a post-mining land use (Ashby, 1998, Burger et al., 1994, Graves et al., 2000). Stability of mine sites was a prominent concern among regulators and mine operators in the years immediately following the implementation of SMCRA. These concerns resulted in the highly compacted, flatly graded, and consequently unproductive spoils of the early post-SMCRA era. However, there is nothing in the regulations that requires mine sites to be overly compacted as long as stability is achieved. It has been cultural barriers and not regulatory barriers that have contributed to the failure of reforestation efforts under the federal law over the past 27 years. Efforts to change the perception that the federal law and regulations impede effective reforestation techniques and interfere with bond release must be implemented. Demonstration of techniques that lead to the successful reforestation of surface mines is one such method that can be used to change perceptions and protect the forest ecosystems that were indigenous to these areas prior to mining. The University of Kentucky initiated a large-scale reforestation effort to address regulatory and cultural impediments to forest reclamation in 2003. During the three years of this project 383,000 trees were planted on over 556 acres in different physiographic areas of Kentucky (Table 1, Figure 1). Species used for the project were similar to those that existed on the sites before mining was initiated (Table 2). A monitoring program was undertaken to evaluate growth and survival of the planted species as a function of spoil characteristics and

  20. Mock Nuclear Processing Facility-Safeguards Training Requirements

    SciTech Connect (OSTI)

    Gibbs, Philip; Hasty, Tim; Johns, Rissell; Baum, Gregory

    2014-08-31

    This document outlines specific training requirements in the topical areas of Material Control and Accounting (MC&A) and Physical Protection(PP) which are to be used as technical input for designing a mock Integrated Security Facility (ISF) at Sandia National Laboratories (SNL). The overall project objective for these requirements is to enhance the ability to deliver training on Material Protection Control and Accounting (MC&A) concepts regarding hazardous material such as irradiated materials with respect to bulk processing facilities.

  1. Cutting Carbon Emissions under 111(d): The case for expanding solar energy in America

    Broader source: Energy.gov [DOE]

    Solar energy is a solution technology that can provide a cost-effective, economically beneficial, and integral part of a state's effort to regulate carbon emissions from the electric sector. Solar energy's rapidly falling prices and rapidly growing generating capacity, as well as the volatility of fossil fuel prices, give solar energy the potential to transform compliance with both new carbon emission requirements and other existing requirements under the Clean Air Act.

  2. Method for joining carbon-carbon composites to metals

    DOE Patents [OSTI]

    Lauf, Robert J.; McMillan, April D.; Moorhead, Arthur J.

    1997-01-01

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to "wick" into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy.

  3. Method for joining carbon-carbon composites to metals

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Moorhead, A.J.

    1997-07-15

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to ``wick`` into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy. 1 fig.

  4. Geologic Carbon Sequestration and Biosequestration (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    DePaolo, Don [Director, LBNL Earth Sciences Division

    2011-06-08

    Don DePaolo, Director of LBNL's Earth Sciences Division, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  5. Novel Application of Carbonate Fuel Cell for Capturing Carbon...

    Office of Scientific and Technical Information (OSTI)

    the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. ... testingmore of an ECM-based CO2 separation and purification system. less ...

  6. Conversion of CO2 into Commercial Materials Using Carbon Feedstocks

    SciTech Connect (OSTI)

    Shen, Jian-Ping; Peters, Jonathan; Lail, Marty; Mobley, Paul; Turk, Brian

    2014-05-31

    In this project, our research focused on developing reaction chemistry that would support using carbon as a reductant for CO2 utilization that would permit CO2 consumption on a scale that would match or exceed anthropomorphic CO2 generation for energy production from fossil fuels. Armed with the knowledge that reactions attempting to produce compounds with an energy content greater than CO2 would be thermodynamically challenged and/or require significant amounts of energy, we developed a potential process that utilized a solid carbon source and recycled the carbon to effectively provide infinite time for the carbon to react. During testing of different carbon sources, we found a wide range of reaction rates. Biomass-derived samples had the most reactivity and coals and petcoke had the lowest. Because we had anticipated this challenge, we recognized that a catalyst would be necessary to improve reaction rates and conversion. From the data analysis of carbon samples, we recognized that alkali metals improved the reaction rate. Through parametric testing of catalyst formulations we were able to increase the reaction rate with petcoke by a factor of >70. Our efforts to identify the reaction mechanism to assist in improving the catalyst formulation demonstrated that the catalyst was catalyzing the extraction of oxygen from CO2 and using this extracted oxygen to oxidize carbon. This was a significant discovery in that if we could modify the catalyst formulation to permit controlled the oxidation, we would have a very power selective oxidation process. With selective oxidation, CO2 utilization could be effective used as one of the process steps in making many of the large volume commodity chemicals that support our modern lifestyles. The key challenges for incorporating these functionalities into the catalyst formulation were to make the oxidation selective and lower the temperature required for catalytic

  7. Civilian Radioactive Waste Management System Requirements Document

    SciTech Connect (OSTI)

    C.A. Kouts

    2006-05-10

    The CRD addresses the requirements of Department of Energy (DOE) Order 413.3-Change 1, ''Program and Project Management for the Acquisition of Capital Assets'', by providing the Secretarial Acquisition Executive (Level 0) scope baseline and the Program-level (Level 1) technical baseline. The Secretarial Acquisition Executive approves the Office of Civilian Radioactive Waste Management's (OCRWM) critical decisions and changes against the Level 0 baseline; and in turn, the OCRWM Director approves all changes against the Level 1 baseline. This baseline establishes the top-level technical scope of the CRMWS and its three system elements, as described in section 1.3.2. The organizations responsible for design, development, and operation of system elements described in this document must therefore prepare subordinate project-level documents that are consistent with the CRD. Changes to requirements will be managed in accordance with established change and configuration control procedures. The CRD establishes requirements for the design, development, and operation of the CRWMS. It specifically addresses the top-level governing laws and regulations (e.g., ''Nuclear Waste Policy Act'' (NWPA), 10 Code of Federal Regulations (CFR) Part 63, 10 CFR Part 71, etc.) along with specific policy, performance requirements, interface requirements, and system architecture. The CRD shall be used as a vehicle to incorporate specific changes in technical scope or performance requirements that may have significant program implications. Such may include changes to the program mission, changes to operational capability, and high visibility stakeholder issues. The CRD uses a systems approach to: (1) identify key functions that the CRWMS must perform, (2) allocate top-level requirements derived from statutory, regulatory, and programmatic sources, and (3) define the basic elements of the system architecture and operational concept. Project-level documents address CRD requirements by further

  8. DEVICE CONTROLLER, CAMERA CONTROL

    Energy Science and Technology Software Center (OSTI)

    1998-07-20

    This is a C++ application that is the server for the cameral control system. Devserv drives serial devices, such as cameras and videoswitchers used in a videoconference, upon request from a client such as the camxfgbfbx ccint program. cc Deverv listens on UPD ports for clients to make network contractions. After a client connects and sends a request to control a device (such as to pan,tilt, or zooma camera or do picture-in-picture with a videoswitcher),more » devserv formats the request into an RS232 message appropriate for the device and sends this message over the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port and then formats and sends via multicast a status message. In addition, devserv periodically multicasts status or description messages so that all clients connected to the multicast channel know what devices are supported and their ranges of motion and the current position. The software design employs a class hierarchy such that an abstract base class for devices can be subclassed into classes for various device categories(e.g. sonyevid30, cononvco4, panasonicwjmx50, etc.). which are further subclassed into classes for various device categories. The devices currently supported are the Sony evi-D30, Canon, VCC1, Canon VCC3, and Canon VCC4 cameras and the Panasonic WJ-MX50 videoswitcher. However, developers can extend the class hierarchy to support other devices.« less

  9. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, Rafael A. (Chicago, IL); Hrdina, Kenneth E. (Glenview, IL); Remick, Robert J. (Bolingbrook, IL)

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  10. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  11. Global Carbon Budget 2015

    SciTech Connect (OSTI)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Friedlingstein, P.; Peters, G. P.; Andres, R. J.; Boden, T. A.; Houghton, R. A.; House, J. I.; Keeling, R. F.; Tans, P.; Arneth, A.; Bakker, D. C. E.; Barbero, L.; Bopp, L.; Chang, J.; Chevallier, F.; Chini, L. P.; Ciais, P.; Fader, M.; Gkritzalis, T.; Harris, I.; Hauck, J.; Ilyina, T.; Jain, A. K.; Kato, E.; Kitidis, V.; Klein Goldewijk, K.; Landschützer, P.; Lauvset, S. K.; Lefèvre, N.; Lenton, A.; Lima, I. D.; Metzl, N.; Millero, F.; Munro, D. R.; Murata, A.; Nabel, J. E. M. S.; Nakaoka, S.; Nojiri, Y.; O'Brien, K.; Olsen, A.; Ono, T.; Pérez, F. F.; Pfeil, B.; Pierrot, D.; Poulter, B.; Rehder, G.; Rödenbeck, C.; Saito, S.; Schuster, U.; Schwinger, J.; Séférian, R.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Laan-Luijkx, I. T.; van der Werf, G. R.; van Heuven, S.; Vandemark, D.; Viovy, N.; Wiltshire, A.; Zaehle, S.; Zeng, N.

    2015-12-07

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We also discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. Moreover, the mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three

  12. Global Carbon Budget 2015

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Friedlingstein, P.; Peters, G. P.; Andres, R. J.; Boden, T. A.; et al

    2015-12-07

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We also discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology andmore » data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. Moreover, the mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each

  13. Global carbon budget 2014

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; et al

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissionsmore » from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ;, reflecting the current capacity to characterise the annual estimates

  14. Global carbon budget 2014

    SciTech Connect (OSTI)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chini, L. P.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A. K.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peng, S.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2015-05-08

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from

  15. Thermal conductivity of tubrostratic carbon nanofiber networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bauer, Matthew L.; Saltonstall, Chris B.; Leseman, Zayd C.; Beechem, Thomas E.; Hopkins, Patrick E.; Norris, Pamela M.

    2016-01-01

    Composite material systems composed of a matrix of nano materials can achieve combinations of mechanical and thermophysical properties outside the range of traditional systems. While many reports have studied the intrinsic thermal properties of individual carbon fibers, to be useful in applications in which thermal stability is critical, an understanding of heat transport in composite materials is required. In this work, air/ carbon nano fiber networks are studied to elucidate the system parameters influencing thermal transport. Sample thermal properties are measured with varying initial carbon fiber fill fraction, environment pressure, loading pressure, and heat treatment temperature through a bidirectional modificationmore » of the 3ω technique. The nanostructures of the individual fibers are characterized with small angle x-ray scattering and Raman spectroscopy providing insight to individual fiber thermal conductivity. Measured thermal conductivity varied from 0.010 W/(m K) to 0.070 W/(m K). An understanding of the intrinsic properties of the individual fibers and the interactions of the two phase composite is used to reconcile low measured thermal conductivities with predictive modeling. This methodology can be more generally applied to a wide range of fiber composite materials and their applications.« less

  16. Thermal conductivity of tubrostratic carbon nanofiber networks

    SciTech Connect (OSTI)

    Bauer, Matthew L.; Saltonstall, Chris B.; Leseman, Zayd C.; Beechem, Thomas E.; Hopkins, Patrick E.; Norris, Pamela M.

    2016-01-01

    Composite material systems composed of a matrix of nano materials can achieve combinations of mechanical and thermophysical properties outside the range of traditional systems. While many reports have studied the intrinsic thermal properties of individual carbon fibers, to be useful in applications in which thermal stability is critical, an understanding of heat transport in composite materials is required. In this work, air/ carbon nano fiber networks are studied to elucidate the system parameters influencing thermal transport. Sample thermal properties are measured with varying initial carbon fiber fill fraction, environment pressure, loading pressure, and heat treatment temperature through a bidirectional modification of the 3ω technique. The nanostructures of the individual fibers are characterized with small angle x-ray scattering and Raman spectroscopy providing insight to individual fiber thermal conductivity. Measured thermal conductivity varied from 0.010 W/(m K) to 0.070 W/(m K). An understanding of the intrinsic properties of the individual fibers and the interactions of the two phase composite is used to reconcile low measured thermal conductivities with predictive modeling. This methodology can be more generally applied to a wide range of fiber composite materials and their applications.

  17. Stormwater Controls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stormwater Controls Stormwater Controls Originally built to provide drinking water, the Los Alamos Canyon Reservoir now serves to keep flow at safe levels and slow down flood ...

  18. LIGA Scanner Control Software

    Energy Science and Technology Software Center (OSTI)

    1999-02-01

    The LIGA Scanner Software is a graphical user interface package that facilitates controlling the scanning operation of x-rays from a synchrotron and sample manipulation for making LIGA parts. The process requires scanning of the LIGA mask and the PMMA resist through a stationary x-ray beam to provide an evenly distributed x-ray exposure over the wafer. This software package has been written specifically to interface with Aerotech motor controllers.

  19. Method for reproducibly preparing a low-melting high-carbon yield precursor

    DOE Patents [OSTI]

    Smith, Wesley E.; Napier, Jr., Bradley

    1978-01-01

    The present invention is directed to a method for preparing a reproducible synthetic carbon precursor by the autoclave polymerization of indene (C.sub.9 H.sub.8) at a temperature in the range of 470.degree.-485.degree. C, and at a pressure in the range of about 1000 to about 4300 psi. Volatiles in the resulting liquid indene polymer are removed by vacuum outgassing to form a solid carbon precursor characterized by having a relatively low melting temperature, high-carbon yield, and high reproducibility which provide for the fabrication of carbon and graphite composites having strict requirements for reproducible properties.

  20. Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

    2009-06-29

    The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the labs total carbon footprint.

  1. Managing System of Systems Requirements with a Requirements Screening Group

    SciTech Connect (OSTI)

    Ronald R. Barden

    2012-07-01

    Figuring out an effective and efficient way to manage not only your Requirements Baseline, but also the development of all your individual requirements during a Programs/Projects Conceptual and Development Life Cycle Stages can be both daunting and difficult. This is especially so when you are dealing with a complex and large System of Systems (SoS) Program with potentially thousands and thousands of Top Level Requirements as well as an equal number of lower level System, Subsystem and Configuration Item requirements that need to be managed. This task is made even more overwhelming when you have to add in integration with multiple requirements development teams (e.g., Integrated Product Development Teams (IPTs)) and/or numerous System/Subsystem Design Teams. One solution for tackling this difficult activity on a recent large System of Systems Program was to develop and make use of a Requirements Screening Group (RSG). This group is essentially a Team made up of co-chairs from the various Stakeholders with an interest in the Program of record that are enabled and accountable for Requirements Development on the Program/Project. The RSG co-chairs, often with the help of individual support team, work together as a Program Board to monitor, make decisions on, and provide guidance on all Requirements Development activities during the Conceptual and Development Life Cycle Stages of a Program/Project. In addition, the RSG can establish and maintain the Requirements Baseline, monitor and enforce requirements traceability across the entire Program, and work with other elements of the Program/Project to ensure integration and coordination.

  2. Implementation Guide for Use in Developing Technical Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-03-18

    This Guide provides a complete description of what Technical Safety Requirements should contain and how they should be developed and maintained. This revision of the guide provides new guidance on Technical Safety Requirements for Specific Administrative Controls, incorporates and addresses lessons learned, and makes clarifications and organization changes to improve usability. Supersedes DOE G 423.1-1A.

  3. ARM - Measurement - Organic Carbon Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsOrganic Carbon Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Organic Carbon Concentration The concentration of carbon bound in organic compounds. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  4. ARM - Sources of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Sources of Atmospheric Carbon Atmospheric carbon represented a steady state system, where influx equaled outflow, before the Industrial Revolution. Currently, it is no longer a steady state system because the

  5. Carbon Joins the Magnetic Club

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Release 29 May 2007 Carbon Joins the Magnetic Club summary written by Brad Plummer, SLAC Communication Office The exclusive club of magnetic elements officially has a new member-carbon. Using a proton beam and advanced x-ray techniques, SLAC researchers in collaboration with colleagues from LBNL and the University of Leipzig in Germany have finally put to rest doubts about carbon's ability to be made magnetic. "In the past, some groups thought they had discovered magnetic

  6. Removal of carbonyl sulfide using activated carbon adsorption

    SciTech Connect (OSTI)

    Sattler, M.L.; Rosenberk, R.S. [University of Texas, Arlington, TX (United States). Dept. for Civil & Environmental Engineering

    2006-02-15

    Wastewater treatment plant odors are caused by compounds such as hydrogen sulfide (H{sub 2}S), methyl mercaptans, and carbonyl sulfide (COS). One of the most efficient odor control processes is activated carbon adsorption; however, very few studies have been conducted on COS adsorption. COS is not only an odor causing compound but is also listed in the Clean Air Act as a hazardous air pollutant. Objectives of this study were to determine the following: (1) the adsorption capacity of 3 different carbons for COS removal; (2) the impact of relative humidity (RH) on COS adsorption; (3) the extent of competitive adsorption of COS in the presence of H{sub 2}S; and (4) whether ammonia injection would increase COS adsorption capacity. Vapor phase react (VPR; reactivated), BPL (bituminous coal-based), and Centaur (physically modified to enhance H{sub 2}S adsorption) carbons manufactured by Calgon Carbon Corp. were tested in three laboratory-scale columns. It was found that the adsorption capacity of Centaur carbon for COS was higher than the other two carbons, regardless of RH. As humidity increased, the percentage of decrease in adsorption capacity of Centaur carbon, however, was greater than the other two carbons. The carbon adsorption capacity for COS decreased in proportion to the percentage of H{sub 2}S in the gas stream. More adsorption sites appear to be available to H{sub 2}S, a smaller molecule. Ammonia, which has been found to increase H{sub 2}S adsorption capacity, did not increase the capacity for COS.

  7. How carbon-based sorbents will impact fly ash utilization and disposal

    SciTech Connect (OSTI)

    Pflughoeft-Hassett, D.F.; Hassett, D.J.; Buckley, T.D.; Heebink, L.V.; Pavlish, J.H.

    2008-07-01

    The injection of activated carbon flue gas to control mercury emissions will result in a fly ash and activated carbon mixture. The potential impact of this on coal combustion product disposal and utilization is discussed. The full paper (and references) are available at www.acaa-usa.org. 1 tab., 2 photos.

  8. Method of producing a carbon coated ceramic membrane and associated product

    DOE Patents [OSTI]

    Liu, P.K.T.; Gallaher, G.R.; Wu, J.C.S.

    1993-11-16

    A method is described for producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane. 12 figures.

  9. Method of producing a carbon coated ceramic membrane and associated product

    DOE Patents [OSTI]

    Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.

    1993-01-01

    A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.

  10. Carbon Sequestration Atlas IV Video

    ScienceCinema (OSTI)

    Rodosta, Traci

    2014-06-27

    The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

  11. Carbon-assisted flyer plates

    DOE Patents [OSTI]

    Stahl, David B.; Paisley, Dennis L.

    1994-01-01

    A laser driven flyer plate utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited.

  12. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  13. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  14. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  15. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  16. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  17. Carbon Sequestration Atlas IV Video

    SciTech Connect (OSTI)

    Rodosta, Traci

    2013-04-19

    The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

  18. The National Carbon Capture Center

    Office of Scientific and Technical Information (OSTI)

    ... Laboratory OD Outer Diameter OSU Ohio State University PC Pulverized Coal PC4 Post-Combustion Carbon Capture Center PCC Post-Combustion CO 2 Capture PCD Particulate ...

  19. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  20. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided