National Library of Energy BETA

Sample records for repressuring production dry

  1. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  2. Maryland Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Used for Repressuring Maryland Natural Gas Gross Withdrawals and Production Natural Gas Used for Repressuring

  3. Virginia Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Used for Repressuring Virginia Natural Gas Gross Withdrawals and Production Natural Gas Used for Repressuring

  4. Kentucky Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Used for Repressuring Kentucky Natural Gas Gross Withdrawals and Production Natural Gas Used for Repressuring

  5. Arizona Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Repressuring (Million Cubic Feet) Arizona Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 103 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Used for Repressuring Arizona Natural Gas Gross Withdrawals

  6. Mississippi Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    2-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1996-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production NA NA NA NA NA NA 1989-2015 Dry Production 2006

  7. Missouri Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    7-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production NA NA NA NA NA NA 1991-2015 Dry Production 2007

  8. West Virginia Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Repressuring (Million Cubic Feet) West Virginia Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's...

  9. Tennessee Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Repressuring (Million Cubic Feet) Tennessee Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 146 436 897 538 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  10. Ohio Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Repressuring (Million Cubic Feet) Ohio Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 1,808 850 889 0 1,141 1,234 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  11. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Repressuring (Million Cubic Feet) Oklahoma Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 81,755 86,285 87,196 1970's 86,432 85,027 82,265 82,396 83,488 83,486 85,479 89,365 91,342 96,366 1980's 101,198 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  12. Pennsylvania Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Repressuring (Million Cubic Feet) Pennsylvania Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 375 320 312 1970's 273 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  13. Nebraska Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Nebraska Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,629 1,200 427 1970's 318 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  14. Ohio Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Ohio Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 1,808 850 889 0 1,141 1,234 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  15. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Oklahoma Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 81,755 86,285 87,196 1970's 86,432 85,027 82,265 82,396 83,488 83,486 85,479 89,365 91,342 96,366 1980's 101,198 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  16. Pennsylvania Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Pennsylvania Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 375 320 312 1970's 273 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  17. Tennessee Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Tennessee Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 146 436 897 538 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  18. Louisiana--State Offshore Natural Gas Dry Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  19. Texas--State Offshore Natural Gas Dry Production (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Production (Million Cubic Feet) Texas--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  20. Texas--Onshore Natural Gas Dry Production (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Onshore Natural Gas Dry Production (Million Cubic Feet) Texas--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  1. Alabama--State Offshore Natural Gas Dry Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Dry Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  2. Steam drying of products containing solvent mixtures

    SciTech Connect (OSTI)

    Pothmann, E.; Schluender, E.U. [Univ. Karlsruhe (Germany). Inst. fuer Thermische Verfahrenstechnik

    1995-12-31

    Drying experiments with single, porous spheres wetted with mixtures of 2-propanol and water were performed using superheated steam, air, or steam-air mixtures as drying agent. Both the drying rate and the moisture composition were determined experimentally for different temperatures and compositions of the drying agent and for different initial compositions of the moisture. It is shown that evaporation of 2-propanol is enhanced by using superheated steam as drying agent instead of air due to steam condensing on the sample. While the overall drying rate increases with rising steam temperature, the evaporation rate of 2-propanol is hardly affected. When drying samples containing mixtures of 2-propanol and water, internal boiling can occur depending on the vapor-liquid equilibrium. Vapor generated inside the sample may cause mechanical dewatering of the sample which greatly increases the drying rate.

  3. ,"New Mexico Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  4. ,"New Mexico Dry Natural Gas Production (Million Cubic Feet)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  5. ,"Texas Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  6. ,"Texas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  7. ,"Texas State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Dry Natural Gas Expected Future Production (Billion Cubic...

  8. ,"California State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic...

  9. ,"Louisiana State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Dry Natural Gas Expected Future Production (Billion Cubic...

  10. Texas Dry Natural Gas Reserves Estimated Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Estimated Production (Billion Cubic Feet) Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  11. New York Dry Natural Gas Reserves Estimated Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Estimated Production (Billion Cubic Feet) New York Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  12. Nebraska Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0

  13. Arizona Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0

  14. Illinois Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0

  15. Tennessee Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0

  16. Ohio Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0

  17. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0

  18. Pennsylvania Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0

  19. Other States Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Other States Natural Gas Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 867 758 881 1992 718 641 691 666 662 642 653 653 645 697 694 725 1993 680 609 662 635 644 618 635 636 626 670 673 706 1994 656 588 637 610 620 596 612 613 603 644 645 676 1995 683 612 665 636 646 620 637 638 627 671 674 706 1996 196 185 205 187 218 212 192 191 193 201 218 156 1997 208 194 204 211 200 187 148 162 151 158 148 169 1998 126 117 123

  20. Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Onshore Natural Gas Dry Production (Million Cubic Feet) Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,849,980 1,884,566 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Dry Production Louisiana Onshore Natural Gas Gross Withdrawals and

  1. Nevada Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Dry Natural Gas Production (Million Cubic Feet) Nevada Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 53 30 21 16 13 11 9 9 8 2000's 7 7 6 6 5 5 5 5 4 4 2010's 4 3 4 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Dry Production Nevada Natural Gas Gross

  2. Nevada Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Nevada Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 53 30 21 16 13 11 9 9 8 2000's 7 7 6 6 5 5 5 5 4 4 2010's 4 3 4 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Dry Production Nevada Natural Gas Gross

  3. Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 125,180 106,903 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Dry Production Alabama Onshore

  4. Alaska--Onshore Natural Gas Dry Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alaska--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 294,212 286,627 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Dry Production Alaska Onshore

  5. Calif--Onshore Natural Gas Dry Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Natural Gas Dry Production (Million Cubic Feet) Calif--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 201,754 205,320 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Dry Production California Onshore Natural Gas Gross Withdrawals and

  6. West Virginia Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) West Virginia Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 630 770 612 1970's 529 287 185 140 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  7. Miscellaneous States Dry Natural Gas Expected Future Production (Billion

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Miscellaneous States Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 102 109 153 1980's 176 191 69 78 75 76 133 65 83 83 1990's 70 75 92 94 65 69 67 43 38 66 2000's 42 82 99 134 110 131 138 239 270 349 2010's 350 379 222 179 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Louisiana State Offshore Dry Natural Gas Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,202 1,312 1,431 1,172 1,219 1990's 969 1,024 776 917 960 838 734 725 551 628 2000's 696 745 491 506 382 418 424 378 898 701 2010's 371 502 502 402 327 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. California State Offshore Dry Natural Gas Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 114 213 231 1980's 164 254 252 241 231 1990's 192 59 63 64 61 59 49 56 44 76 2000's 91 85 92 83 86 90 90 82 57 57 2010's 66 82 66 75 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  10. Texas State Offshore Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,111 1,065 732 627 561 605 1990's 458 475 348 335 230 313 292 289 348 418 2000's 398 467 437 456 321 265 305 261 219 164 2010's 131 118 94 59 42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. Missouri Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA 9 9 1967-2014 From Gas Wells NA NA NA NA 8 8 1967-2014 From Oil Wells NA NA NA NA 1 * 2007-2014 From Shale Gas Wells NA NA NA NA 0 0 2007-2014 From Coalbed Wells NA NA NA NA 0 0 2007-2014 Repressuring NA NA NA NA 0 0 2007-2014 Vented and Flared NA NA NA NA 0 0 2007-2014 Nonhydrocarbon Gases Removed NA NA NA NA 0 0 2007-2014 Marketed Production NA NA NA NA 9 9 1967-2014 Dry Production NA NA NA NA 9 9

  12. Nevada Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4 3 4 3 3 1991-2014 From Gas Wells 0 0 0 0 0 3 2006-2014 From Oil Wells 4 4 3 4 3 * 1991-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1991-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 4 4 3 4 3 3 1991-2014 Dry Production 4 4 3 4 3 3 1991

  13. Maryland Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    43 43 34 44 32 20 1967-2014 From Gas Wells 43 43 34 44 32 20 1967-2014 From Oil Wells 0 0 0 0 0 0 2006-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 2006-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 43 43 34 44 32 20 1967-2014 Dry Production 43 43 34 44 32 20

  14. Louisiana - South Onshore Dry Natural Gas Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - South Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18,580 17,755 13,994 1980's 13,026 12,645 11,801 11,142 10,331 9,808 9,103 8,693 8,654 8,645 1990's 8,171 7,504 6,693 5,932 6,251 5,648 5,704 5,855 5,698 5,535 2000's 5,245 5,185 4,224 3,745 3,436 3,334 3,335 3,323 2,799 2,844 2010's

  15. California Federal Offshore Dry Natural Gas Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 250 246 322 1980's 414 1,325 1,452 1,552 1,496 1990's 1,454 1,162 1,118 1,099 1,170 1,265 1,244 544 480 536 2000's 576 540 515 511 459 824 811 805 704 739 2010's 724 710 651 261 240 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Natural Gas Dry Production (Annual Supply & Disposition)

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Dry Production Supplemental Gaseous Fuels Interstate Receipts Receipts Across U.S. Borders Withdrawals from Underground Storage Consumption Interstate Deliveries Deliveries Across U.S. Borders Injections into Storage Balancing Item Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 21,315,507 22,901,879 24,033,266

  17. Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 887 926 825 1980's 1,287 1,321 847 896 802 857 803 780 819 867 1990's 899 831 859 673 717 782 796 762 782 841 2000's 885 898 906 1,059 995 986 1,057 1,052 1,000 976 2010's 944 778 602 575 667 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  18. Florida Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Florida Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 151 119 77 1980's 84 69 64 49 65 55 49 49 51 46 1990's 45 38 47 50 98 92 96 96 88 84 2000's 82 84 91 79 78 77 45 108 1 7 2010's 56 6 16 15 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  19. Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 42 46 1980's 64 85 1990's 104 146 256 281 391 360 373 376 394 376 2000's 359 345 365 350 327 300 287 274 257 254 2010's 223 218 214 175 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  20. Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 206 216 228 1980's 213 235 261 273 324 312 324 349 400 401 1990's 339 353 414 393 423 396 446 475 513 459 2000's 506 461 460 478 478 469 408 388 354 358 2010's 317 327 299 285 304 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  1. Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 109 120 100 1980's 117 121 158 206 188 175 123 129 159 166 1990's 164 173 204 188 186 182 200 189 170 163 2000's 154 160 157 166 170 174 188 269 456 698 2010's 951 1,079 1,151 1,140 1,142 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Michigan Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Michigan Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 135 149 134 1980's 160 139 133 125 138 132 128 130 126 129 1990's 120 155 145 141 150 163 208 221 240 234 2000's 333 239 242 220 207 211 197 184 157 153 2010's 154 139 138 133 124 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  3. Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88 121 154 1980's 170 196 198 159 181 151 165 178 181 155 1990's 141 143 109 111 82 91 88 93 79 79 2000's 78 94 98 94 93 86 83 100 110 100 2010's 87 75 64 61 54 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  4. Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 49 44 47 1980's 61 86 45 49 46 49 42 42 60 43 1990's 48 48 52 50 49 51 52 55 51 41 2000's 67 73 77 86 95 100 117 112 114 113 2010's 93 75 65 62 58 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  5. North Dakota Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 25 28 30 1980's 37 44 51 58 58 59 55 57 73 55 1990's 58 49 43 52 47 43 45 46 46 39 2000's 42 41 53 50 51 53 52 53 65 82 2010's 94 133 230 302 406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  6. Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 60 65 105 1980's 137 85 99 179 169 140 149 117 132 130 1990's 127 132 117 121 119 115 121 105 94 94 2000's 79 84 87 82 82 76 78 71 79 79 2010's 73 76 85 166 477 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  7. Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 52 69 117 1980's 68 94 102 121 134 123 116 128 162 136 1990's 160 140 139 138 141 113 132 129 131 130 2000's 117 114 133 165 155 181 176 183 211 273 2010's 591 1,248 2,241 3,283 4,197 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  8. Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 58 54 1980's 61 79 87 68 76 73 60 60 40 64 1990's 71 81 111 165 184 165 180 177 216 220 2000's 226 288 286 278 282 308 349 365 417 447 2010's 432 449 478 456 433 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  9. Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 4 8 15 15 19 18 18 1990's 7 12 25 36 51 52 55 68 61 66 2000's 71 78 75 82 72 70 102 109 126 178 2010's 172 156 153 142 145 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  10. West Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 124 126 116 1980's 151 137 136 126 165 164 153 168 172 160 1990's 169 176 170 169 172 166 177 167 170 173 2000's 176 158 194 189 170 230 187 192 250 278 2010's 293 395 588 728 985 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. North Dakota Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Expected Future Production (Billion Cubic Feet) North Dakota Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 361 374 439 1980's 537 581 629 600 566 569 541 508 541 561 1990's 586 472 496 525 507 463 462 479 447 416 2000's 433 443 471 448 417 453 479 511 541 1,079 2010's 1,667 2,381 3,569 5,420 6,034 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. California Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 301 313 347 1980's 294 372 345 335 306 1990's 293 308 285 252 244 216 217 212 246 266 2000's 282 336 291 265 247 268 255 253 237 239 2010's 243 311 200 188 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  13. Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 767 855 738 1980's 636 593 440 370 447 503 461 437 546 549 1990's 523 580 590 657 671 673 702 629 548 486 2000's 491 438 471 426 376 380 350 361 357 334 2010's 305 285 281 283 272 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  14. Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 52 49 1980's 60 52 44 38 54 53 56 58 60 65 1990's 62 78 61 66 64 67 58 79 63 59 2000's 67 73 79 78 83 85 66 80 93 108 2010's 96 101 83 81 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  15. Alabama State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells 109,214 101,487 84,270 87,398 75,660 70,827 1987-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 0 0 2012-2014 Repressuring 0 NA NA NA 2011-2014 Vented and Flared 523 531 478 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 7,419 6,218 5,142 NA NA NA 1992-2014 Marketed Production 101,272 94,738 78,649 87,398 75,660 70,827 1992-2014 Dry Production 83,420 67,106 2012

  16. Land application uses for dry FGD by-products

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W. ); Haefner, R. . Water Resources Div.)

    1993-04-01

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. Presently FGD by-product materials are treated as solid wastes and must be landfilled. However, landfill sites are becoming more scarce and tipping fees are constantly increasing. It is, therefore, highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. In summary Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD byproduct materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  17. Louisiana - North Dry Natural Gas Expected Future Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - North Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,135 3,203 2,798 1980's 3,076 3,270 2,912 2,939 2,494 2,587 2,515 2,306 2,398 2,652 1990's 2,588 2,384 2,311 2,325 2,537 2,788 3,105 3,093 2,898 3,079 2000's 3,298 3,881 4,245 5,074 5,770 6,695 6,715 6,344 7,876 17,143 2010's 26,030 27,337 18,418 17,044

  18. Mississippi Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Mississippi Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,437 1,635 1,504 1980's 1,769 2,035 1,796 1,596 1,491 1,360 1,300 1,220 1,143 1,104 1990's 1,126 1,057 869 797 650 663 631 582 658 677 2000's 618 661 744 746 691 755 813 954 1,030 917 2010's 853 860 607 595 558 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 451 545 468 1980's 508 530 551 554 613 766 841 909 923 992 1990's 1,016 1,155 1,084 1,003 969 1,044 983 1,364 1,222 1,435 2000's 1,760 1,860 1,907 1,889 1,880 2,151 2,227 2,469 2,714 2,782 2010's 2,613 2,006 1,408 1,663 1,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,117 12,930 12,430 12,224 12,516 1990's 11,728 10,912 9,780 9,174 9,748 9,274 9,543 9,673 9,147 9,242 2000's 9,239 9,811 8,960 9,325 9,588 10,447 10,474 10,045 11,573 20,688 2010's 29,277 30,358 21,949 20,164 22,975 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  1. Michigan Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Michigan Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,386 1,422 1,204 1980's 1,406 1,118 1,084 1,219 1,112 985 1,139 1,451 1,323 1,342 1990's 1,243 1,334 1,223 1,160 1,323 1,294 2,061 2,195 2,328 2,255 2000's 2,729 2,976 3,254 3,428 3,091 2,910 3,065 3,630 3,174 2,763 2010's 2,919 2,505 1,750 1,807 1,845 - = No Data Reported; -- = Not

  2. Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 530 514 652 1980's 636 648 1990's 4,125 5,414 5,802 5,140 4,830 4,868 5,033 4,968 4,604 4,287 2000's 4,149 3,915 3,884 4,301 4,120 3,965 3,911 3,994 3,290 2,871 2010's 2,629 2,475 2,228 1,597 2,036 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  3. California Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) California Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,487 4,701 4,700 1980's 5,000 3,928 3,740 3,519 3,374 1990's 3,185 3,004 2,778 2,682 2,402 2,243 2,082 2,273 2,244 2,387 2000's 2,849 2,681 2,591 2,450 2,634 3,228 2,794 2,740 2,406 2,773 2010's 2,647 2,934 1,999 1,887 2,107 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,127 1,099 1,149 1980's 1,064 1,086 942 799 856 843 628 728 731 760 1990's 887 1,013 1,143 1,337 1,362 1,397 1,423 1,547 1,449 1,539 2000's 1,508 1,536 1,524 1,415 1,527 1,493 1,426 1,349 1,349 1,350 2010's 1,220 1,170 1,169 1,155 1,174 - = No Data Reported; -- = Not Applicable; NA =

  5. Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,591 43,264 40,574 38,711 38,167 38,381 1990's 38,192 36,174 35,093 34,718 35,974 36,542 38,270 37,761 37,584 40,157 2000's 42,082 43,527 44,297 45,730 49,955 56,507 61,836 72,091 77,546 80,424 2010's 88,997 98,165 86,924 90,349 97,154 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Ohio Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Ohio Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 495 684 1,479 1980's 1,699 965 1,141 2,030 1,541 1,331 1,420 1,069 1,229 1,275 1990's 1,214 1,181 1,161 1,104 1,094 1,054 1,113 985 890 1,179 2000's 1,185 970 1,117 1,126 974 898 975 1,027 985 896 2010's 832 758 1,233 3,161 6,723 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  7. Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13,889 14,417 13,816 1980's 13,138 14,699 16,207 16,211 16,126 16,040 16,685 16,711 16,495 15,916 1990's 16,151 14,725 13,926 13,289 13,487 13,438 13,074 13,439 13,645 12,543 2000's 13,699 13,558 14,886 15,401 16,238 17,123 17,464 19,031 20,845 22,769 2010's 26,345 27,830 26,599 26,873 31,778 -

  8. Pennsylvania Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Expected Future Production (Billion Cubic Feet) Pennsylvania Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 769 899 1,515 1980's 951 1,264 1,429 1,882 1,575 1,617 1,560 1,647 2,072 1,642 1990's 1,720 1,629 1,528 1,717 1,800 1,482 1,696 1,852 1,840 1,772 2000's 1,741 1,775 2,216 2,487 2,361 2,782 3,050 3,361 3,577 6,985 2010's 13,960 26,529 36,348 49,674 59,873 - = No Data Reported; -- =

  9. Wyoming Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Wyoming Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,305 7,211 7,526 1980's 9,100 9,307 9,758 10,227 10,482 10,617 9,756 10,023 10,308 10,744 1990's 9,944 9,941 10,826 10,933 10,879 12,166 12,320 13,562 13,650 14,226 2000's 16,158 18,398 20,527 21,744 22,632 23,774 23,549 29,710 31,143 35,283 2010's 35,074 35,290 30,094 33,618 27,553 - = No Data

  10. Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 174 167 156 1980's 163 165 196 156 171 166 188 159 188 220 1990's 229 282 320 387 447 514 540 562 676 719 2000's 759 882 964 1,142 1,050 1,104 1,174 1,326 1,441 1,524 2010's 1,590 1,694 1,681 1,527 1,561 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 36 39 36 1980's 32 27 20 18 11 8 8 7 5 7 1990's 7 4 7 6 7 6 5 6 5 5 2000's 6 5 4 3 3 2 2 4 3 0 2010's 15 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  12. Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 877 925 948 1980's 1,201 1,912 2,161 2,333 2,080 1,999 1,895 1,947 1,298 1,507 1990's 1,510 1,702 1,830 2,040 1,789 1,580 1,633 1,839 2,388 3,213 2000's 4,235 4,579 4,135 3,516 3,866 4,295 5,146 6,391 6,643 7,257 2010's 6,981 7,857 7,548 6,829 6,685 - = No Data Reported; -- = Not Applicable; NA =

  13. Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 122 175 216 235 253 248 230 217 1990's 138 225 904 1,322 1,833 1,836 1,930 2,446 1,973 2,017 2000's 1,704 1,752 1,673 1,717 1,742 2,018 2,302 2,529 2,378 3,091 2010's 3,215 2,832 2,579 2,373 2,800 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 315 329 355 1980's 416 423 391 414 484 433 402 456 510 591 1990's 583 639 714 713 780 806 782 891 838 1,213 2000's 1,070 1,286 1,388 1,456 1,524 1,642 1,695 1,825 2,026 2,233 2010's 2,218 2,088 2,001 1,992 1,718 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. The U.S. Dry-Mill Ethanol Industry: Biobased Products and Bioenergy Initiative Success Stories

    SciTech Connect (OSTI)

    2009-10-28

    This fact sheet provides an overview of the history of ethanol production in the United States and describes innovations in dry-mill ethanol production.

  16. Nevada Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  17. Nevada Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  18. Kansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Kansas Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11,457 10,992 10,243 1980's 9,508 9,860 9,724 9,553 9,387 9,337 10,509 10,494 10,104 10,091 1990's 9,614 9,358 9,681 9,348 9,156 8,571 7,694 6,989 6,402 5,753 2000's 5,299 5,101 4,983 4,819 4,652 4,314 3,931 3,982 3,557 3,279 2010's 3,673 3,486 3,308 3,592 4,359 - = No Data Reported; -- = Not

  19. Alaska Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Alaska Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 32,243 32,045 32,259 1980's 33,382 33,037 34,990 34,283 34,476 33,847 32,664 33,225 9,078 8,939 1990's 9,300 9,553 9,638 9,907 9,733 9,497 9,294 10,562 9,927 9,734 2000's 9,237 8,800 8,468 8,285 8,407 8,171 10,245 11,917 7,699 9,101 2010's 8,838 9,424 9,579 7,316 6,745 - = No Data Reported; -- =

  20. Arkansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Arkansas Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,660 1,681 1,703 1980's 1,774 1,801 1,958 2,069 2,227 2,019 1,992 1,997 1,986 1,772 1990's 1,731 1,669 1,750 1,552 1,607 1,563 1,470 1,475 1,328 1,542 2000's 1,581 1,616 1,650 1,663 1,835 1,964 2,269 3,305 5,626 10,869 2010's 14,178 16,370 11,035 13,518 12,789 - = No Data Reported; -- = Not

  1. Colorado Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Colorado Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,512 2,765 2,608 1980's 2,922 2,961 3,314 3,148 2,943 2,881 3,027 2,942 3,535 4,274 1990's 4,555 5,767 6,198 6,722 6,753 7,256 7,710 6,828 7,881 8,987 2000's 10,428 12,527 13,888 15,436 14,743 16,596 17,149 21,851 23,302 23,058 2010's 24,119 24,821 20,666 22,381 20,851 - = No Data Reported; --

  2. Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,691 1,667 1,592 1980's 1,526 1,700 1,636 1,544 1,778 1,686 1,658 1,813 1,896 1,983 1990's 2,058 1,983 1,895 1,770 1,721 1,562 1,580 1,555 1,544 1,308 2000's 1,473 1,481 1,518 1,554 1,563 1,587 1,601 1,659 1,775 1,790 2010's 1,703 1,697 1,763 1,890 2,123 - = No Data Reported; -- = Not Applicable;

  3. West Virginia Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Expected Future Production (Billion Cubic Feet) West Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,567 1,634 1,558 1980's 2,422 1,834 2,148 2,194 2,136 2,058 2,148 2,242 2,306 2,201 1990's 2,207 2,528 2,356 2,439 2,565 2,499 2,703 2,846 2,868 2,936 2000's 2,900 2,678 3,360 3,306 3,397 4,459 4,509 4,729 5,136 5,946 2010's 7,000 10,345 14,611 22,765 29,432 - = No Data

  4. West Virginia Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0

  5. Data on production and use of DRI: World and U. S. [Direct Reduced Iron

    SciTech Connect (OSTI)

    Jensen, H.B.

    1993-01-01

    This paper will present data on the production and use direct-reduced iron (DRI) worldwide, focusing primarily on its use in the United States. The author is indebted to the Midrex Corporation for the data on world production of DRI. The U.S. data is his own and he will explain later how it was collected. He uses the term DRI to include all forms of direct-reduced iron, whether briquettes, pellets or lump.

  6. ,"Indiana Natural Gas Repressuring (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Repressuring (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. California--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Dry Production (Million Cubic Feet) California--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,051 5,952 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Dry Production California State Offshore Natural Gas Gross Withdrawals and Production

  8. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOE Patents [OSTI]

    Nguyen, Quang A. (Chesterfield, MO); Keller, Fred A. (Lakewood, CO); Tucker, Melvin P. (Lakewood, CO)

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  9. Alaska--State Offshore Natural Gas Dry Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    State Offshore Natural Gas Dry Production (Million Cubic Feet) Alaska--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 35,577 40,269 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Dry Production Alaska State Offshore

  10. ,"Oregon Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160sor2m.xls" ,"Available from ...

  11. ,"Nebraska Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160sne2m.xls" ,"Available from ...

  12. ,"Virginia Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160sva2m.xls" ,"Available from ...

  13. ,"Texas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160stx2m.xls" ,"Available from ...

  14. ,"Utah Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160sut2m.xls" ,"Available from ...

  15. ,"Ohio Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160soh2m.xls" ,"Available from ...

  16. ,"New York Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160sny2m.xls" ,"Available from ...

  17. ,"North Dakota Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160snd2m.xls" ,"Available from ...

  18. ,"Pennsylvania Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160spa2m.xls" ,"Available from ...

  19. ,"West Virginia Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160swv2m.xls" ,"Available from ...

  20. ,"Oklahoma Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160sok2m.xls" ,"Available from ...

  1. ,"Nevada Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160snv2m.xls" ,"Available from ...

  2. ,"South Dakota Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160ssd2m.xls" ,"Available from ...

  3. ,"Wyoming Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160swy2m.xls" ,"Available from ...

  4. ,"Tennessee Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)",1,"Monthly","122013" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1160stn2m.xls" ,"Available from ...

  5. Nebraska Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 2,916 2,255 1,980 1,328 1,032 402 1967-2014 From Gas Wells 2,734 2,092 1,854 1,317 1,027 400 1967-2014 From Oil Wells 182 163 126 11 5 1 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 9 24 21 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 2,908 2,231 1,959 1,328 1,032 402 1967-2014 Dry Production

  6. Ohio Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    78,122 78,858 84,482 166,017 518,767 1,014,600 1967-2015 From Gas Wells 73,459 30,655 65,025 55,583 78,204 1967-2014 From Oil Wells 4,651 45,663 6,684 10,317 13,037 1967-2014 From Shale Gas Wells 11 2,540 12,773 100,117 427,525 2007-2014 From Coalbed Wells 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 2006-2014 Marketed Production 78,122 78,858 84,482 166,017 518,767 1,014,600 1967-2015 Dry Production 78,122

  7. Oregon Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 821 1,407 1,344 770 770 950 1979-2014 From Gas Wells 821 1,407 1,344 770 770 950 1979-2014 From Oil Wells 0 0 0 0 0 0 1996-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2002-2014 Repressuring 0 0 0 0 0 0 1994-2014 Vented and Flared 0 0 0 0 0 0 1996-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1994-2014 Marketed Production 821 1,407 1,344 770 770 950 1979-2014 Dry Production 821 1,407 1,344 770 770 950

  8. Tennessee Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Gas Wells 5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014 Marketed Production 5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 Dry Production 5,478 4,638 4,335 5,324 4,912 4,912

  9. Florida Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    290 13,938 17,129 18,681 18,011 21,259 1971-2014 From Gas Wells 0 0 0 17,182 16,459 19,742 1996-2014 From Oil Wells 290 13,938 17,129 1,500 1,551 1,517 1971-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2002-2014 Repressuring 0 0 0 17,909 17,718 20,890 1976-2014 Vented and Flared 0 0 0 0 0 0 1971-2014 Nonhydrocarbon Gases Removed 32 1,529 2,004 0 NA NA 1980-2014 Marketed Production 257 12,409 15,125 773 292 369 1967-2014 Dry Production 257 12,409 15,125 773 292

  10. Illinois Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,443 1,702 2,121 2,125 2,887 2,626 1967-2014 From Gas Wells 1,438 1,697 2,114 2,125 2,887 2,626 1967-2014 From Oil Wells 5 5 7 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 1,443 1,702 2,121 2,125 2,887 2,626 1967-2014 Dry Production 1,412 1,357 1,078 2,125 2,887 2,579

  11. Indiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Gas Wells 4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared 0 0 0 0 0 0 2003-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014 Marketed Production 4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 Dry Production 4,927 6,802 9,075 8,814 7,938 6,616

  12. Physical property changes in hydrate-bearingsediment due to depressurization and subsequent repressurization

    SciTech Connect (OSTI)

    Kneafsey, Timothy; Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

    2008-06-01

    Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed at least briefly to non-in situ conditions during recovery. To examine effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes and speeds are compared between the original and depressurized/repressurized samples. X-ray computed tomography (CT) images track how the gas-hydrate distribution changes in the hydrate-cemented sands due to the depressurization/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

  13. ,"New Mexico - East Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico - East Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  14. ,"New Mexico - West Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico - West Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  15. ,"California Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  16. ,"Illinois Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  17. ,"Indiana Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"Louisiana - North Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - North Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  19. ,"Louisiana - South Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - South Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  20. ,"Lower 48 States Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 States Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  1. ,"Maryland Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  2. ,"Miscellaneous States Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  3. ,"Missouri Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. Land application uses for dry FGD by-products. Phase 2 report

    SciTech Connect (OSTI)

    Stehouwer, R.; Dick, W.; Bigham, J.

    1996-03-01

    A study was initiated in December 1990 to demonstrate large volume beneficial uses of flue gas desulfurization (FGD) by-products. A Phase 1 report provided results of an extensive characterization of chemical, physical, mineralogical and engineering properties of 58 dry FGD by-product samples. The Phase 1 report concluded that high volume beneficial reuses will depend on the economics related to their ability to substitute for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mine lands). Phase 2 objectives were (1) to conduct laboratory and greenhouse studies of FGD and soil (spoil) mixtures for agronomic and engineering applications, (2) to initiate field studies related to high volume agronomic and engineering uses, and (3) to develop the basic methodological framework for estimation of the financial and economic costs and benefits to society of several FGD reuse options and to make some preliminary runs of economic models. High volume beneficial reuses of dry FGD by-products have been successfully demonstrated. Adverse environmental impacts have been negligible. Although few sources of dry FGD by-products currently exist in Ohio and the United States there is potential for smaller coal-fired facilities to adopt S0{sub 2} scrubbing technologies that produce dry FGD material. Also much of what we have learned from studies on dry FGD by-products is applicable to the more prevalent wet FGD by-products. The adaptation of the technologies demonstrated in this project seem to be not only limited by economic constraints, but even more so, by the need to create awareness of the market potential of using these FGD by-products.

  5. New York Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4,849 35,813 31,124 26,424 23,458 20,201 1967-2014 From Gas Wells 44,273 35,163 30,495 25,985 23,111 19,808 1967-2014 From Oil Wells 576 650 629 439 348 393 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 44,849 35,813 31,124 26,424 23,458 20,201 1967-2014 Dry Production 44,849 35,813 31,124 26,424 23,458

  6. South Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    12,927 12,540 12,449 15,085 16,205 15,307 1967-2014 From Gas Wells 1,561 1,300 933 14,396 15,693 15,005 1967-2014 From Oil Wells 11,366 11,240 11,516 689 512 303 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 2,160 2,136 2,120 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 8,638 8,543 8,480 0 NA NA 1997-2014 Marketed Production 2,129 1,862 1,848 15,085 16,205 15,307 1970-2014 Dry Production 2,129

  7. Texas State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    8-2014 From Gas Wells 36,820 27,421 23,791 15,953 13,650 10,924 1978-2014 From Oil Wells 991 1,153 0 552 386 299 1978-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 0 0 2012-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared 0 0 0 0 0 0 2003-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2003-2014 Marketed Production 37,811 28,574 23,791 16,506 14,036 11,222 1992-2014 Dry Production 16,506 11,222 2012

  8. West Virginia Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    65,174 394,125 539,860 741,853 1,040,250 1,319,251 1967-2015 From Gas Wells 151,401 167,113 193,537 167,118 242,241 1967-2014 From Oil Wells 0 0 1,477 2,660 1,643 1967-2014 From Shale Gas Wells 113,773 227,012 344,847 572,076 796,366 2007-2014 From Coalbed Wells 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 2006-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 2006-2014 Marketed Production 265,174 394,125 539,860 741,853 1,040,250 1,319,251 1967-2015 Dry Production

  9. Other States Total Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    52,422 52,053 51,181 51,756 49,472 48,285 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2015 Marketed Production 50,729 50,372 49,527 50,084 47,874 46,725 1989-2015 Dry Production 2006-2

  10. California State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    6,052 5,554 5,163 5,051 5,470 5,961 1978-2014 From Gas Wells 582 71 259 640 413 431 1978-2014 From Oil Wells 5,470 5,483 4,904 4,411 5,057 5,530 1978-2014 Repressuring 219 435 403 NA NA NA 1992-2014 Vented and Flared 0 0 0 NA NA NA 2003-2014 Nonhydrocarbon Gases Removed 0 0 0 NA NA NA 2003-2014 Marketed Production 5,832 5,120 4,760 5,051 5,470 5,961 1992-2014 Dry Production 5,051 5,952

  11. Louisiana State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    8-2014 From Gas Wells 72,278 63,222 64,448 67,801 70,015 54,501 1978-2014 From Oil Wells 4,108 6,614 6,778 5,443 7,735 7,161 1978-2014 Repressuring 285 116 120 NA NA NA 1992-2014 Vented and Flared 215 146 149 NA NA NA 1999-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production 75,885 69,574 70,957 73,244 77,750 61,662 1992-2014 Dry Production 68,145 58,077 2012

  12. Method for lowering the VOCS emitted during drying of wood products

    DOE Patents [OSTI]

    Banerjee, Sujit (1832 Jacksons Creek Point, Marietta, GA 30068); Boerner, James Robert (154 Junedale Rd., Cincinnati, OH 45218); Su, Wei (2262 Orleans Ave., Marietta, GA 30062)

    2000-01-01

    The present invention is directed to a method for removal of VOCs from wood products prior to drying the wood products. The method of the invention includes the steps of providing a chamber having an opening for receiving wood and loading the chamber with green wood. The wood is loaded to an extent sufficient to provide a limited headspace in the chamber. The chamber is then closed and the wood is heated in the chamber for a time and at a temperature sufficient to saturate the headspace with moisture and to substantially transfer VOCs from the wood product to the moisture in the headspace.

  13. Lower 48 States Dry Natural Gas Expected Future Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Lower 48 States Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175,170 175,988 168,738 1980's 165,639 168,693 166,522 165,964 162,987 159,522 158,922 153,986 158,946 158,177 1990's 160,046 157,509 155,377 152,508 154,104 155,649 157,180 156,661 154,114 157,672 2000's 168,190 174,660 178,478 180,759 184,106 196,214 200,840

  14. Texas - RRC District 1 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 1 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,319 986 919 1980's 829 1,022 892 1,087 838 967 913 812 1,173 1,267 1990's 1,048 1,030 933 698 703 712 906 953 1,104 1,008 2000's 1,032 1,018 1,045 1,062 1,184 1,161 1,063 1,040 985 1,398 2010's 2,399 5,910 8,868 7,784 11,945 - = No Data Reported;

  15. Texas - RRC District 2 Onshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 2 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,162 2,976 2,974 1980's 2,502 2,629 2,493 2,534 2,512 2,358 2,180 2,273 2,037 1,770 1990's 1,737 1,393 1,389 1,321 1,360 1,251 1,322 1,634 1,614 1,881 2000's 1,980 1,801 1,782 1,770 1,844 2,073 2,060 2,255 2,238 1,800 2010's 2,090

  16. Texas - RRC District 3 Onshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 3 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,518 7,186 6,315 1980's 5,531 5,292 4,756 4,680 4,708 4,180 3,753 3,632 3,422 3,233 1990's 2,894 2,885 2,684 2,972 3,366 3,866 4,349 4,172 3,961 3,913 2000's 3,873 3,770 3,584 3,349 3,185 3,192 3,050 2,904 2,752 2,616 2010's 2,588

  17. Texas - RRC District 4 Onshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 4 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9,621 9,031 8,326 1980's 8,130 8,004 8,410 8,316 8,525 8,250 8,274 7,490 7,029 7,111 1990's 7,475 7,048 6,739 7,038 7,547 7,709 7,769 8,099 8,429 8,915 2000's 9,645 9,956 9,469 8,763 8,699 8,761 8,116 7,963 7,604 6,728 2010's 7,014

  18. Texas - RRC District 5 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 5 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 931 1,298 1,155 1980's 1,147 1,250 1,308 1,448 1,874 2,058 2,141 2,119 1,996 1,845 1990's 1,875 1,863 1,747 1,867 2,011 1,862 2,079 1,710 1,953 2,319 2000's 3,168 4,231 4,602 5,407 6,523 9,557 12,593 17,205 20,281 22,343 2010's 24,363 27,843 17,331

  19. Texas - RRC District 7B Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 7B Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 699 743 751 1980's 745 804 805 1,027 794 708 684 697 704 459 1990's 522 423 455 477 425 440 520 478 442 416 2000's 312 252 260 340 310 802 1,471 2,117 2,382 2,077 2010's 2,242 3,305 2,943 2,787 2,290 - = No Data Reported; -- = Not Applicable; NA =

  20. Texas - RRC District 8A Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 8A Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,630 1,473 1,055 1980's 1,057 1,071 1,041 966 907 958 845 876 832 1,074 1990's 1,036 1,073 1,239 1,043 1,219 941 931 847 807 1,257 2000's 1,101 1,085 1,084 1,056 1,188 1,366 1,290 1,431 1,172 1,218 2010's 1,164 1,226 1,214 1,269 1,257 - = No Data

  1. Texas - RRC District 9 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 9 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 724 908 700 1980's 649 953 1,103 932 900 892 868 834 783 703 1990's 776 738 670 688 728 738 705 794 734 1,137 2000's 1,626 2,289 2,877 3,309 4,221 4,328 6,218 7,476 9,037 10,904 2010's 12,464 10,115 8,894 9,195 8,791 - = No Data Reported; -- = Not

  2. U.S. Federal Offshore Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) U.S. Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 31,433 29,448 27,767 27,143 28,388 29,182 29,096 28,466 26,902 25,987 2000's 26,748 27,036 25,204 22,570 19,271 17,831 15,360 14,439 13,546 12,552 2010's 11,765 10,420 9,392 8,193 8,527 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  3. New Mexico - West Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) New Mexico - West Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8,152 8,799 9,693 1980's 9,757 10,272 8,986 8,446 8,167 7,866 9,114 8,739 14,221 12,359 1990's 14,004 15,333 15,868 15,585 14,207 14,624 13,695 12,872 12,294 12,412 2000's 13,785 13,896 13,688 13,719 14,891 14,410 14,020 13,251 12,254 11,457 2010's 11,186

  4. Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Dry Natural Gas Production (Million Cubic Feet) Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 244,584 213,829 239,860 238,542 256,010 247,754 256,378 250,819 238,653 242,261 235,960 237,319 2007 235,396 213,877 238,889 232,357 242,298 228,908 231,048 228,054 221,195 238,095 231,929 256,671 2008 241,064 228,507 239,263 209,165 208,428 219,044 230,193 211,888 61,961 133,579 157,377 173,874 2009

  5. Table 6.2 Natural Gas Production, 1949-2011 (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, 1949-2011 (Million Cubic Feet) Year Natural Gas Gross Withdrawals Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Extraction Loss 1 Dry Gas Production Natural Gas Wells Crude Oil Wells Coalbed Wells Shale Gas Wells Total 1949 4,986,126 2,560,699 NA NA 7,546,825 1,273,205 NA 853,884 5,419,736 224,332 5,195,404 1950 5,603,200 2,876,450 NA NA 8,479,650 1,396,546 NA 801,044 6,282,060 259,862 6,022,198 1951 6,481,452 3,207,920 NA NA 9,689,372

  6. Federal Offshore--Gulf of Mexico Natural Gas Repressuring (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Repressuring (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 2,759 2,577 2,704 2,628 2,728 3,009 3,168 3,155 3,079 3,055 3,298 3,469 1998 2,634 2,460 2,582 2,509 2,605 2,873 3,025 3,012 2,940 2,859 3,086 3,247 1999 1,809 1,689 1,773 1,723 1,789 1,973 2,077 2,068 2,019 1,963 2,119 2,230 2000 2,535 2,432 2,503 2,403 2,472 2,717 2,977 2,947 3,184 2,870 3,060 3,207 2001 1,207 1,359

  7. ,"New Mexico Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  8. ,"New Mexico Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  9. ,"New York Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  10. ,"North Dakota Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  11. ,"Ohio Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  12. ,"Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  13. ,"Pennsylvania Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  14. ,"Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  15. ,"U.S. Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  16. ,"Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  18. ,"West Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. ,"Wyoming Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  20. New York Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) New York Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 165 193 211 1980's 208 264 229 295 389 369 457 410 351 368 1990's 354 331 329 264 242 197 232 224 218 221 2000's 322 318 315 365 324 349 363 376 389 196 2010's 281 253 184 144 143 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. ,"Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  2. ,"Alaska Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  3. ,"Arkansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  4. ,"California Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  5. ,"California Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. ,"Colorado Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  7. ,"Colorado Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  8. ,"Florida Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  9. ,"Florida Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  10. ,"Kansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  11. ,"Kansas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  12. ,"Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  13. ,"Kentucky Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  14. ,"Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  15. ,"Louisiana Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  16. ,"Michigan Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"Michigan Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"Mississippi Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. ,"Mississippi Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  20. ,"Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. ,"Montana Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  2. California Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    258,983 273,136 237,388 214,509 219,386 218,512 1992-2014 From Gas Wells 80,500 71,189 62,083 76,704 73,493 61,265 1992-2014 From Oil Wells 76,456 106,442 80,957 49,951 51,625 49,734 1992-2014 From Shale Gas Wells 55,344 107,513 2012-2014 Repressuring 14,566 15,767 13,702 NA NA NA 1992-2014 Vented and Flared 2,501 2,790 2,424 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 2,879 3,019 2,624 NA NA NA 1992-2014 Marketed Production 239,037 251,559 218,638 214,509 219,386 218,512 1992-2014 Dry

  3. Land application uses for dry FGD by-products, Phase 1 report

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W.

    1993-04-01

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. FGD by-product materials are treated as solid wastes and must be landfilled. It is highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. The results indicated the chemical composition of the FGD by-product materials were dominated by Ca, S, Al, and Si. Many of the elements regulated by the US Environmental Protection Agency reside primarily in the fly ash. Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD by-product materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  4. Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater

    Gasoline and Diesel Fuel Update (EIA)

    than 200 Meters Deep (Billion Cubic Feet) Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 162 224 288 361 544 565 711 1,099 2000's 1,165 1,334 1,328 1,513 1,222 1,069 1,086

  5. Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than

    Gasoline and Diesel Fuel Update (EIA)

    200 Meters Deep (Billion Cubic Feet) Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,346 4,353 4,437 4,266 4,447 4,568 4,161 3,786 2000's 3,608 3,578 3,095 2,793 2,652 1,837 1,652

  6. Texas - RRC District 10 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 10 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,744 7,406 6,784 1980's 6,435 6,229 6,210 5,919 5,461 5,469 5,276 4,962 4,830 4,767 1990's 4,490 4,589 4,409 4,040 4,246 4,436 4,391 4,094 4,273 4,424 2000's 4,079 3,955 3,838 4,064 4,873 4,910 5,387 6,281 6,922 6,882 2010's 7,663 7,513 7,253

  7. Texas - RRC District 6 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 6 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,214 3,240 3,258 1980's 4,230 4,177 4,326 4,857 4,703 4,822 4,854 4,682 4,961 5,614 1990's 5,753 5,233 5,317 5,508 5,381 5,726 5,899 5,887 5,949 5,857 2000's 5,976 6,128 6,256 6,685 7,638 8,976 9,087 11,257 12,184 12,795 2010's 14,886 15,480 11,340

  8. Texas - RRC District 7C Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 7C Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,831 2,821 2,842 1980's 2,378 2,503 2,659 2,568 2,866 2,914 2,721 2,708 2,781 3,180 1990's 3,514 3,291 3,239 3,215 3,316 3,107 3,655 3,407 3,113 3,178 2000's 3,504 3,320 3,702 4,327 4,668 5,123 5,126 5,341 4,946 4,827 2010's 4,787 4,475 4,890

  9. Texas - RRC District 8 Dry Natural Gas Expected Future Production (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 8 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11,728 11,093 10,077 1980's 9,144 8,546 8,196 8,156 7,343 7,330 7,333 6,999 7,058 6,753 1990's 6,614 6,133 5,924 5,516 5,442 5,441 5,452 5,397 4,857 5,434 2000's 5,388 5,255 5,361 5,142 5,301 5,993 6,070 6,560 6,824 6,672 2010's 7,206 7,039 7,738

  10. New Mexico - East Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) New Mexico - East Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,848 3,889 4,031 1980's 3,530 3,598 3,432 3,230 3,197 3,034 2,694 2,881 2,945 3,075 1990's 3,256 3,206 3,130 3,034 3,021 2,867 2,790 2,642 2,693 3,037 2000's 3,537 3,518 3,632 3,301 3,621 3,791 3,914 3,994 4,031 4,141 2010's 4,226 4,379 4,386 4,633 5,799 - =

  11. Gulf of Mexico Federal Offshore Dry Natural Gas Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    (Billion Cubic Feet) Expected Future Production (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 26,649 26,044 27,218 27,917 27,852 27,922 26,422 25,451 2000's 26,172 26,456 24,689 22,059 18,812 17,007 14,549 13,634 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  12. Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Production

    Gasoline and Diesel Fuel Update (EIA)

    from Greater than 200 Meters Deep (Percent) Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Production from Greater than 200 Meters Deep (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.6 4.9 6.1 7.8 10.9 11.0 14.6 22.5 2000's 24.4 27.4 30.0 35.1 31.5 36.8 39.6 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  13. U.S. Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) U.S. Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18,843 18,805 19,257 1980's 18,699 18,737 17,506 15,788 17,193 15,985 15,610 16,114 16,670 16,983 1990's 17,233 17,202 17,423 17,789 18,322 17,966 18,861 19,211 18,720 18,928 2000's 19,219 19,779 19,353 19,425 19,168 18,458 18,545 19,466 20,523 21,594 2010's 22,239 23,555 24,912 25,233 26,611 - = No

  14. U.S. Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) U.S. Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1920's 23,000 1930's 46,000 62,000 66,000 70,000 1940's 85,000 113,800 110,000 110,000 133,500 146,987 159,704 165,026 172,925 179,402 1950's 184,585 192,759 198,632 210,299 210,561 222,483 236,483 245,230 252,762 261,170 1960's 262,326 266,274 272,279 276,151 281,251 286,469 289,333 292,908 287,350

  15. New Mexico Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) New Mexico Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,000 12,688 13,724 1980's 13,287 13,870 12,418 11,676 11,364 10,900 11,808 11,620 17,166 15,434 1990's 17,260 18,539 18,998 18,619 17,228 17,491 16,485 15,514 14,987 15,449 2000's 17,322 17,414 17,320 17,020 18,512 18,201 17,934 17,245 16,285 15,598 2010's 15,412 15,005 13,586 13,576 15,283

  16. Value Added Products from Hemicellulose Utilization in Dry Mill Ethanol Plants

    SciTech Connect (OSTI)

    Rodney Williamson, ICPB; John Magnuson, PNNL; David Reed, INL; Marco Baez, Dyadic; Marion Bradford, ICPB

    2007-03-30

    The Iowa Corn Promotion Board is the principal contracting entity for this grant funded by the US Department of Agriculture and managed by the US Department of Energy. The Iowa Corn Promotion Board subcontracted with New Jersey Institute of Technology, KiwiChem, Pacific Northwest National Lab and Idaho National Lab to conduct research for this project. KiwiChem conducted the economic engineering assessment of a dry-mill ethanol plant. New Jersey Institute of Technology conducted work on incorporating the organic acids into polymers. Pacific Northwest National Lab conducted work in hydrolysis of hemicellulose, fermentation and chemical catalysis of sugars to value-added chemicals. Idaho National Lab engineered an organism to ferment a specific organic acid. Dyadic, an enzme company, was a collaborator which provided in-kind support for the project. The Iowa Corn Promotion Board collaborated with the Ohio Corn Marketing Board and the Minnesota Corn Merchandising Council in providing cost share for the project. The purpose of this diverse collaboration was to integrate the hydrolysis, the conversion and the polymer applications into one project and increase the likelihood of success. This project had two primary goals: (1) to hydrolyze the hemicellulose fraction of the distillers grain (DG) coproduct coming from the dry-mill ethanol plants and (2) convert the sugars derived from the hemicellulose into value-added co-products via fermentation and chemical catalysis.

  17. Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,508 4,577 4,725 4,627 4,991 5,133 4,872 4,885 2000's 4,773 4,913 4,423 4,306 3,874 2,906 2,738 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Gulf of

  18. Maryland Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    6-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production NA NA NA NA NA NA 1991

  19. ,"Texas - RRC District 1 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 1 Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  20. ,"Texas - RRC District 10 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 10 Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  1. ,"Texas - RRC District 2 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 2 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  2. ,"Texas - RRC District 3 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 3 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  3. ,"Texas - RRC District 4 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 4 Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"Texas - RRC District 5 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 5 Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  5. ,"Texas - RRC District 6 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 6 Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  6. ,"Texas - RRC District 7B Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7B Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"Texas - RRC District 7C Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7C Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"Texas - RRC District 8 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8 Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"Texas - RRC District 8A Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8A Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  10. ,"Texas - RRC District 9 Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 9 Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"U.S. Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"California - Coastal Region Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"California - Los Angeles Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  14. ,"California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  15. ,"Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  16. Drying '86. Volume 1-2

    SciTech Connect (OSTI)

    Mujumdar, A.S. )

    1986-01-01

    These proceedings contain 123 papers grouped under the headings of: Drying theory and modelling; Drying of granular materials; Spray drying; Drying of paper and wood products; Drying of foodstuff and biomaterials; Drying of agricultural products and grains; Superheated steam drying; Industrial drying systems and novel dryers; Use of solar energy in drying; Measurement and control of humidity and moisture; and Dewatering.

  17. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

    SciTech Connect (OSTI)

    Fdez-Gueelfo, L.A.; Alvarez-Gallego, C.; Sales, D.; Romero Garcia, L.I.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

  18. Evaluation of a dry process for conversion of U-AVLIS product to UF{sub 6}. Milestone U361

    SciTech Connect (OSTI)

    1992-05-01

    A technical and engineering evaluation has been completed for a dry UF{sub 6} production system to convert the product of an initial two-line U-AVLIS plant. The objective of the study has been to develop a better understanding of process design requirements, capital and operating costs, and demonstration requirements for this alternate process. This report summarizes the results of the study and presents various comparisons between the baseline and alternate processes, building on the information contained in UF{sub 6} Product Alternatives Review Committee -- Final Report. It also provides additional information on flowsheet variations for the dry route which may warrant further consideration. The information developed by this study and conceptual design information for the baseline process will be combined with information to be developed by the U-AVLIS program and by industrial participants over the next twelve months to permit a further comparison of the baseline and alternate processes in terms of cost, risk, and compatibility with U-AVLIS deployment schedules and strategies. This comparative information will be used to make a final process flowsheet selection for the initial U-AVLIS plant by March 1993. The process studied is the alternate UF{sub 6} production flowsheet. Process steps are (1) electron-beam distillation to reduce enriched product iron content from about 10 wt % or less, (2) hydrofluorination of the metal to UF{sub 4}, (3) fluorination of UF{sub 4} to UF{sub 6}, (4) cold trap collection of the UF{sub 6} product, (5) UF{sub 6} purification by distillation, and (6) final blending and packaging of the purified UF{sub 6} in cylinders. A preliminary system design has been prepared for the dry UF{sub 6} production process based on currently available technical information. For some process steps, such information is quite limited. Comparisons have been made between this alternate process and the baseline plant process for UF{sub 6} production.

  19. Dry particle coating of polymer particles for tailor-made product properties

    SciTech Connect (OSTI)

    Blümel, C. Schmidt, J. Dielesen, A. Sachs, M. Winzer, B. Peukert, W. Wirth, K.-E.

    2014-05-15

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratio and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.

  20. Land application uses for dry FGD by-products. Phase 1, [Annual report], December 1, 1991--November 30, 1992

    SciTech Connect (OSTI)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.

    1993-04-01

    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. Presently FGD by-product materials are treated as solid wastes and must be landfilled. However, landfill sites are becoming more scarce and tipping fees are constantly increasing. It is, therefore, highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. In summary Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD byproduct materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  1. Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.; Brackebusch, F.; Carpenter, J.

    1998-12-31

    This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

  2. Land application uses of dry FGD by-products. [Quarterly] report, July 1, 1993--September 30, 1993

    SciTech Connect (OSTI)

    Dick, W.A.; Beeghly, J.H.

    1993-12-31

    Reclamation of mine-sites with acid overburden requires the use of alkaline amendments and represents a potential high-volume use of alkaline dry flue gas desulfurization (FGD) by products. In a greenhouse study, 25-cm columns of acid mine spoil were amended with two FGD by-products; lime injection multistage burners (LIMB) fly ash or pressurized fluidized bed (PFBC) fly ash at rates of 0, 4, 8, 16, and 32% by weight (0, 40, 80, 160, and 320 tons/acre). Amended spoil was covered with 20 cm of acid topsoil amended with the corresponding FGD by-product to pH 7. Column leachate pH increased with FGD amendment rate while leachate Fe, Mn, and Zn decreased, Leachate Ca, S, and Mg decreased with LIMB amendment rate and increased with PFBC amendment. Leachate concentrations of regulated metals were decreased or unaffected by FGD amendment except for Se which was increased by PFBC. Spoil pH was increased up to 8.9 by PFBC, and up to 9.2 by LIMB amendment. Spoil pH also increased with depth with FGD amendments of 16 and 32%, Yield of fescue was increased by FGD amendment of 4 to 8%. Plant tissue content of most elements was unaffected by FGD amendment rate, and no toxicity symptoms were observed. Plant Ca and Mg were increased by LIMB and PFBC respectively, while plant S, Mn and Sr were decreased. Plant Ca and B was increased by LIMB, and plant Mg and S by PFBC amendment. These results indicate dry FGD by-products are effective in ameliorating acid, spoils and have a low potential for creating adverse environmental impacts.

  3. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-10-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues (CCBs) in abandoned coal mines, and will assess the environmental impact of such underground CCB placement. This report describes progress in the following areas: environmental characterization, mix development and geotechnical characterization, material handling and system economics, underground placement, and field demonstration.

  4. Dephosphorization when using DRI

    SciTech Connect (OSTI)

    2005-09-21

    The increase in high quality steel production in electric arc furnaces (EAFs) requires the use of scrap substitute materials, such as Direct Reduced Iron (DRI) and Hot Briquetted Iron (HBI). Although DRI and HBI products have lower copper and nickel contents than most scrap materials, they can contain up to ten times more phosphorus. This project, led by Carnegie Mellon University’s Center for Iron and Steelmaking Research, improves the understanding of how phosphorus behaves when DRI and HBI melt.

  5. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next

  6. Drying '84

    SciTech Connect (OSTI)

    Baunack, F.

    1984-01-01

    This book covers the following topics: mechanism of water sorption-desorption in polymers; progress in freeze drying; on drying of materials in through circulation system; safety aspects of spray drying; dewatering process enhanced by electroosmosis; pressure drop and particle circulation studies in modified slot spouted beds; and experience in drying coal slurries.

  7. Natural Gas Dry Production

    Gasoline and Diesel Fuel Update (EIA)

    313,621 2,325,646 2,262,709 2,303,042 2,222,905 2,289,433 1997-2015 Alaska 2006-2013 Arkansas 2006-2013 California 2006-2013 Colorado 2006-2013 Federal Offshore Gulf of Mexico 2006-2013 Kansas 2006-2013 Louisiana 2006-2013 Montana 2006-2013 New Mexico 2006-2013 North Dakota 2006-2013 Ohio 2006-2013 Oklahoma 2006-2013 Pennsylvania 2006-2013 Texas 2006-2013 Utah 2006-2013 West Virginia 2006-2013 Wyoming 2006-2013 Other States Other States Total 2006-2012 Alabama 2006-2013 Arizona 2006-2013 Florida

  8. Natural Gas Dry Production

    Gasoline and Diesel Fuel Update (EIA)

    2,313,621 2,325,646 2,262,709 2,303,042 2,222,905 2,289,433 1997-2015 Alaska 2006-2013 Arkansas 2006-2013 California 2006-2013 Colorado 2006-2013 Federal Offshore Gulf of Mexico 2006-2013 Kansas 2006-2013 Louisiana 2006-2013 Montana 2006-2013 New Mexico 2006-2013 North Dakota 2006-2013 Ohio 2006-2013 Oklahoma 2006-2013 Pennsylvania 2006-2013 Texas 2006-2013 Utah 2006-2013 West Virginia 2006-2013 Wyoming 2006-2013 Other States Other States Total 2006-2012 Alabama 2006-2013 Arizona 2006-2013

  9. Natural Gas Dry Production

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History U.S. 21,315,507 22,901,879 24,033,266 24,205,523 25,728,496 27,091,416 1930-2015 Alaska 353,391 334,671 329,789 317,503 326,897 1982-2014 Alaska Onshore 294,212 286,627 2012-2014 Alaska State Offshore 35,577 40,269 2012-2014 Arkansas 926,426 1,071,944 1,145,744 1,139,168 1,123,096 1982-2014 California 273,597 238,082 234,067 238,012 239,517 1982-2014 California Onshore 201,754 205,320 2012-2014 California State Offshore 5,051 5,952 2012-2014 Colorado

  10. Natural Gas Dry Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,315,507 22,901,879 24,033,266 24,205,523 25,728,496 27,091,416 1930-2015 Alaska 353,391 334,671 329,789 317,503 326,897 1982-2014 Alaska Onshore 294,212 286,627 2012-2014 Alaska State Offshore 35,577 40,269 2012-2014 Arkansas 926,426 1,071,944 1,145,744 1,139,168 1,123,096 1982-2014 California 273,597 238,082 234,067 238,012 239,517 1982-2014 California Onshore 201,754 205,320 2012-2014 California State Offshore 5,051 5,952 2012-2014 Colorado 1,495,742 1,546,775 1,627,334 1,517,347 1,546,193

  11. Natural Gas Dry Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History U.S. 21,315,507 22,901,879 24,033,266 24,205,523 25,728,496 27,091,416 1930-2015 Alaska 353,391 334,671 329,789 317,503 326,897 1982-2014 Alaska Onshore 294,212 286,627 2012-2014 Alaska State Offshore 35,577 40,269 2012-2014 Arkansas 926,426 1,071,944 1,145,744 1,139,168 1,123,096 1982-2014 California 273,597 238,082 234,067 238,012 239,517 1982-2014 California Onshore 201,754 205,320 2012-2014 California State Offshore 5,051 5,952 2012-2014 Colorado

  12. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, October 1--December 31, 1995

    SciTech Connect (OSTI)

    1997-05-01

    On September 30, 1993, the U.S. Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SITJC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC-30252). Under the agreement SIUC will develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mine workings, and assess the environmental impact of such underground placements. This report discusses the technical progress achieved during the period October 1 - December 31, 1995. Rapid Aging Test columns were placed in operation during the second quarter of 1995, and some preliminary data were acquired during this quarter. These data indicate that the highly caustic pH is initially generated in the pneumatic mix, but that such pH is short lived. The initial pH rapidly declines to the range of 8 to 9. Leachates in this pH range will have little or no effect on environmental concerns. Dedicated sampling equipment was installed in the groundwater monitoring wells at the proposed placement site at the Peabody Number 10 mine. Also, the groundwater monitoring wells were {open_quotes}developed{close_quotes} during the quarter to remove the fines trapped in the sand pack and screen. A new procedure was used in this process, and proved successful. A series of tests concerning the geotechnical characteristics of the pneumatic mixes were conducted. Results show that both moisture content and curing time have a direct effect on the strength of the mixes. These are, of course, the expected general results. The Christmas holidays and the closing of the University during an extended period affected the progress of the program during the quarter. However, the program is essentially on schedule, both technically and fiscally, and any delays will be overcome during the first quarter of 1996.

  13. Federal Offshore Louisiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual-Million Cubic Feet Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Gross Withdrawals NA NA NA 0 0 0 1977-2014 From Gas Wells NA NA NA 0 0 0 1977-2014 From Oil Wells NA NA NA 0 0 0 1977-2014 Repressuring 1992-1998 Marketed Production 1992-1998

  14. PRESERVATION OF H2 PRODUCTION ACTIVITY IN NANOPOROUS LATEX COATINGS OF RHODOPSEUDOMONAS PALUSTRIS CGA009 DURING DRY STORAGE AT AMBIENT TEMPERATURES

    SciTech Connect (OSTI)

    Milliken, C.; Piskorska, M.; Soule, T.; Gosse, J.; Flickinger, M.; Smith, G.; Yeager, C.

    2012-08-27

    To assess the applicability of latex cell coatings as an "off-the-shelf' biocatalyst, the effect of osmoprotectants, temperature, humidity and O{sub 2} on preservation of H{sub 2} production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H{sub 2} production. Beyond 2 weeks of storage, sorbitol- treated coatings lost all H{sub 2} production activity, whereas considerable H{sub 2} production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H{sub 2} production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H{sub 2} (0-0.1% headspace accumulation), whereas those stored at <5% humidity retained 27-53% of their H{sub 2} production activity after 8 weeks of storage. When stored in argon at <5% humidity and room temperature, R. palustris coatings retained full H{sub 2} production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.

  15. DRI Companies | Open Energy Information

    Open Energy Info (EERE)

    Irvine, California Zip: 92614 Sector: Solar Product: US-based residential and commercial installer of turnkey solar systems, through subsidiary iDRI Energy. Coordinates:...

  16. Land application uses of dry FGD by-products. [Quarterly report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Dick, W.A.; Beeghly, J.H.

    1994-08-01

    This report contains three separate monthly reports on the progress to use flue gas desulfurization by-products for the land reclamation of an abandoned mine site in Ohio. Data are included on the chemical composition of the residues, the cost of the project, as well as scheduling difficulties and efforts to allay the fears of public officials as to the safety of the project. The use of by-products to repair a landslide on State Route 541 is briefly discussed.

  17. Nebraska Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production NA NA NA NA NA NA 1991

  18. Kentucky Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production NA NA NA NA NA NA 1991

  19. Virginia Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production NA NA NA NA NA NA

  20. Oregon Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1996-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1996-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1996-2015 Vented and Flared NA NA NA NA NA NA 1996-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2015 Marketed Production NA NA NA NA NA NA

  1. DRI Research Parks Ltd | Open Energy Information

    Open Energy Info (EERE)

    Research Parks Ltd Jump to: navigation, search Name: DRI Research Parks Ltd Place: United States Sector: Services Product: General Financial & Legal Services ( Academic Research...

  2. Combined Corex/DRI technology

    SciTech Connect (OSTI)

    Flickenschild, A.J.; Reufer, F.; Eberle, A.; Siuka, D.

    1996-08-01

    A feasible steelmaking alternative, the Corex/direct reduction/electric arc furnace combination, provides an economic route for the production of high quality steel products. This combination is a major step into a new generation of iron and steel mills. These mills are based on the production of liquid steel using noncoking coal and comply with the increasing demands of environmental protection. The favorable production costs are based on: Utilization of Corex and DRI/HBI plants; Production of hot metal equal to blast furnace quality; Use of low cost raw materials such as noncoking coal and lump ore; Use of process gas as reducing agent for DRI/HBI production; and Use of electric arc furnace with high hot metal input as the steelmaking process. The high flexibility of the process permits the adjustment of production in accordance with the strategy of the steel mills. New but proven technologies and applications of the latest state of art steelmaking process, e.g., Corex, in conjunction with DRI production as basic raw material for an electric arc furnace, will insure high quality, high availability, optimized energy generation at high efficiency rates, and high product quality for steelmaking.

  3. Microwave drying of ferric oxide pellets

    SciTech Connect (OSTI)

    Pickles, C.A.; Xia, D.K.

    1997-12-31

    The application of microwave energy for the drying of ferric oxide pellets has been investigated and evaluated. It is shown that the microwave drying rates are much higher than those observed in the conventional process. Also there is some potential for improved quality of the product. As a stand-alone technology it is unlikely that microwave drying would be economical for pellets due to the low cost of conventional fuels. However, based on an understanding of the drying mechanisms in the conventional process and in the microwave process, it is shown that microwave-assisted drying offers considerable potential. In this hybrid process, the advantages of the two drying techniques are combined to provide an improved drying process.

  4. Long Wavelength Catalytic Infrared Drying System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long Wavelength Catalytic Infrared Drying System Long Wavelength Catalytic Infrared Drying System New Infrared Drying System Removes Moisture More Efficiently Without Heating Surrounding Air Conventional drying systems for wood particulates, typically in the form of sawdust or chips, currently employ a rotary drum dryer that shoots a raw flame through a 20' to 30' rotating drum while tumbling the wood product. Product scorching and air emission problems, particularly with carbon, NOx, and

  5. Natural Gas Used for Repressuring

    Gasoline and Diesel Fuel Update (EIA)

    1-2015 Colorado NA NA NA NA NA NA 1991-2015 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2015 Kansas NA NA NA NA NA NA 1996-2015 Louisiana NA NA NA NA NA NA 1991-2015 Montana NA NA NA NA NA NA 1996-2015 New Mexico NA NA NA NA NA NA 1991-2015 North Dakota NA NA NA NA NA NA 1996-2015 Ohio NA NA NA NA NA NA 1991-2015 Oklahoma NA NA NA NA NA NA 1996-2015 Pennsylvania NA NA NA NA NA NA 1991-2015 Texas NA NA NA NA NA NA 1991-2015 Utah NA NA NA NA NA NA 1991-2015 West Virginia NA NA NA NA NA

  6. Natural Gas Used for Repressuring

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1991-2015 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2015 Kansas NA NA NA NA NA NA 1996-2015 Louisiana NA NA NA NA NA NA 1991-2015 Montana NA NA NA NA ...

  7. Natural Gas Used for Repressuring

    U.S. Energy Information Administration (EIA) Indexed Site

    3,522,090 3,431,587 3,365,313 3,277,588 3,331,456 3,319,559 1936-2014 Alaska 2,908,828 2,812,701 2,795,732 2,801,763 2,869,956 2,816,681 1967-2014 Alaska Onshore 2,600,167 2,502,371 2,494,216 2,532,559 2,597,184 2,492,589 1992-2014 Alaska State Offshore 308,661 310,329 301,516 269,203 272,772 324,092 1992-2014 Arkansas 520 414 4,051 0 NA NA 1967-2014 California 24,308 27,240 23,905 0 NA NA 1967-2014 California Onshore 14,566 15,767 13,702 NA NA NA 1992-2014 California State Offshore 219 435 403

  8. Natural Gas Used for Repressuring

    U.S. Energy Information Administration (EIA) Indexed Site

    3,522,090 3,431,587 3,365,313 3,277,588 3,331,456 3,319,559 1936-2014 Alaska 2,908,828 2,812,701 2,795,732 2,801,763 2,869,956 2,816,681 1967-2014 Alaska Onshore 2,600,167 2,502,371 2,494,216 2,532,559 2,597,184 2,492,589 1992-2014 Alaska State Offshore 308,661 310,329 301,516 269,203 272,772 324,092 1992-2014 Arkansas 520 414 4,051 0 NA NA 1967-2014 California 24,308 27,240 23,905 0 NA NA 1967-2014 California Onshore 14,566 15,767 13,702 NA NA NA 1992-2014 California State Offshore 219 435 403

  9. Michigan Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    159,400 136,782 143,826 129,333 123,622 114,946 1967-2014 From Gas Wells 20,867 7,345 18,470 17,041 17,502 13,799 1967-2014 From Oil Wells 12,919 9,453 11,620 4,470 4,912 5,507 1967-2014 From Shale Gas Wells 125,614 119,984 113,736 107,822 101,208 95,640 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2002-2014 Repressuring 2,340 2,340 2,340 0 NA NA 1967-2014 Vented and Flared 3,324 3,324 3,324 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1996-2014 Marketed Production 153,736 131,118

  10. Mississippi Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    352,888 401,660 443,351 452,915 59,272 54,440 1967-2014 From Gas Wells 337,168 387,026 429,829 404,457 47,385 43,091 1967-2014 From Oil Wells 8,934 8,714 8,159 43,421 7,256 7,150 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 6,785 5,921 5,363 5,036 4,630 4,199 2002-2014 Repressuring 3,039 3,480 3,788 0 NA NA 1967-2014 Vented and Flared 7,875 8,685 9,593 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 253,817 315,775 348,482 389,072 0 0 1980-2014 Marketed Production

  11. Montana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    93,266 79,506 66,954 63,242 59,930 57,296 1967-2015 From Gas Wells 51,117 37,937 27,518 19,831 11,796 1967-2014 From Oil Wells 19,292 21,777 20,085 23,152 23,479 1967-2014 From Shale Gas Wells 12,937 13,101 15,619 18,636 18,890 2007-2014 From Coalbed Wells 9,920 6,691 3,731 1,623 5,766 2002-2014 Repressuring 5 4 0 NA NA 1967-2014 Vented and Flared 5,722 4,878 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed NA NA 0 NA NA 1996-2014 Marketed Production 87,539 74,624 66,954 63,242 59,930 57,296

  12. Oklahoma Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,827,328 1,888,870 2,023,461 1,993,754 2,310,114 2,497,569 1967-2015 From Gas Wells 1,140,111 1,281,794 1,394,859 1,210,315 1,456,519 1967-2014 From Oil Wells 210,492 104,703 53,720 71,515 106,520 1967-2014 From Shale Gas Wells 406,143 449,167 503,329 663,507 706,837 2007-2014 From Coalbed Wells 70,581 53,206 71,553 48,417 40,238 2002-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1996-2014 Marketed Production 1,827,328

  13. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 572,902 1,310,592 2,256,696 3,259,042 4,214,643 4,765,305 1967-2015 From Gas Wells 173,450 242,305 210,609 207,872 174,576 1967-2014 From Oil Wells 0 0 3,456 2,987 3,564 1967-2014 From Shale Gas Wells 399,452 1,068,288 2,042,632 3,048,182 4,036,504 2007-2014 From Coalbed Wells 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1997-2014 Marketed Production

  14. Utah Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    436,885 461,507 490,393 470,863 453,207 422,353 1967-2015 From Gas Wells 328,135 351,168 402,899 383,216 360,587 1967-2014 From Oil Wells 42,526 49,947 31,440 36,737 44,996 1967-2014 From Shale Gas Wells 0 0 1,333 992 1,003 2007-2014 From Coalbed Wells 66,223 60,392 54,722 49,918 46,622 2002-2014 Repressuring 1,187 1,449 0 NA NA 1967-2014 Vented and Flared 2,080 1,755 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 1,573 778 0 NA NA 1996-2014 Marketed Production 432,045 457,525 490,393 470,863

  15. Texas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    752,341 754,086 731,049 739,603 714,788 720,593 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production 675,828 677,396 656,702 664,386 642,094 647,308

  16. Ohio Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    88,406 87,904 89,371 104,127 104,572 113,096 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production 88,406 87,904 89,371 104,127 104,572 113,096 1991

  17. Oklahoma Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    217,883 213,529 204,298 209,342 200,704 206,487 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1996-2015 Vented and Flared NA NA NA NA NA NA 1996-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2015 Marketed Production 217,883 213,529 204,298 209,342 200,704 206,487 1989

  18. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    398,737 408,325 396,931 404,431 403,683 429,251 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production 398,737 408,325 396,931 404,431 403,683 429,251

  19. Wyoming Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    68,548 167,539 162,880 167,555 163,345 165,658 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production 150,260 149,361 145,208 149,375 145,622 147,684 1989

  20. California Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    319,891 279,130 246,822 252,310 252,718 222,803 1967-2015 From Gas Wells 73,017 63,902 91,904 88,203 75,684 1967-2014 From Oil Wells 151,369 120,880 67,065 69,839 69,521 1967-2014 From Shale Gas Wells 95,505 94,349 87,854 94,268 107,513 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 27,240 23,905 0 NA NA 1967-2014 Vented and Flared 2,790 2,424 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 3,019 2,624 0 NA NA 1980-2014 Marketed Production 286,841 250,177 246,822 252,310 252,718

  1. Kansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 325,591 309,952 296,299 292,467 286,080 292,219 1967-2015 From Gas Wells 247,651 236,834 264,610 264,223 260,715 1967-2014 From Oil Wells 39,071 37,194 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 2007-2014 From Coalbed Wells 38,869 35,924 31,689 28,244 25,365 2002-2014 Repressuring 548 521 0 NA NA 1967-2014 Vented and Flared 323 307 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 2002-2014 Marketed Production 324,720 309,124

  2. Kentucky Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 113,300 135,330 124,243 106,122 94,665 78,737 1967-2014 From Gas Wells 111,782 133,521 122,578 106,122 94,665 78,737 1967-2014 From Oil Wells 1,518 1,809 1,665 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 113,300 135,330 124,243 106,122

  3. Utah Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    35,984 33,029 30,933 31,404 30,891 34,204 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1994-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2015 Marketed Production 35,984 33,029 30,933 31,404 30,891 34,204

  4. Freeze drying method

    SciTech Connect (OSTI)

    Coppa, N.V.; Stewart, P.; Renzi, E.

    1999-12-07

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  5. Freeze drying apparatus

    DOE Patents [OSTI]

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  6. Freeze drying method

    DOE Patents [OSTI]

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  7. Alabama Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  8. North Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    113,867 157,025 258,568 345,787 462,929 581,461 1967-2015 From Gas Wells 10,501 14,287 22,261 24,313 22,354 1967-2014 From Oil Wells 38,306 27,739 17,434 12,854 9,098 1967-2014 From Shale Gas Wells 65,060 114,998 218,873 308,620 431,477 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 0 0 0 0 0 1981-2014 Vented and Flared 24,582 49,652 79,564 102,855 129,384 1967-2014 Nonhydrocarbon Gases Removed 7,448 10,271 6,762 7,221 7,008 1984-2014 Marketed Production 81,837 97,102 172,242

  9. New Mexico Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    109,430 112,061 109,134 112,013 107,721 102,253 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1996-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2015 Marketed Production 105,797 108,340 105,510 108,294 104,145 98,858

  10. North Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    51,167 50,537 47,895 50,958 49,559 51,065 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1996-2015 Vented and Flared NA NA NA NA NA NA 1996-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2015 Marketed Production 40,494 39,995 37,904 40,328 39,221 40,413

  11. Federal Offshore California Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    41,229 41,200 36,579 27,262 27,454 28,245 1977-2014 From Gas Wells 1,206 1,757 1,560 14,559 14,296 13,988 1977-2014 From Oil Wells 40,023 39,444 35,020 12,703 13,158 14,257 1977-2014 Repressuring 9,523 11,038 9,800 NA NA NA 1992-2014 Vented and Flared NA NA 2003-2014 Nonhydrocarbon Gases Removed NA NA 2003-2014 Marketed Production 31,706 30,162 26,779 27,262 27,454 28,245 1992-2014

  12. Louisiana Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,482,252 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 1992-2014 From Gas Wells 1,027,728 848,745 819,264 707,705 710,608 682,684 1992-2014 From Oil Wells 53,930 57,024 61,727 43,936 44,213 43,477 1992-2014 From Shale Gas Wells 2,130,551 1,199,807 2012-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 5,409 3,490 4,895 NA 2,829 3,199 1992-2014 Vented and Flared 4,121 4,432 6,153 NA 3,912 4,143 1992-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production

  13. West Virginia Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    15,055 114,871 111,932 108,711 96,802 105,945 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production 115,055 114,871 111,932 108,711 96,802 105,945 1991

  14. Full containment spray drying

    SciTech Connect (OSTI)

    Masters, K.

    1999-11-01

    Aspects of safety, environmental protection, and powder quality will continue to influence advances within spray dryer design and operation, and the concept of full containment spray drying offers a means to meet future industrial requirements. Process air recycle and powder containment within the drying chamber leads to no process air discharge to atmosphere, provides a more favorable operator environment around the spray dryer installation, reduces regions within the dryer layout where potential explosive powder/air mixtures can exist, improves yields, reduces powder losses, and provides easier cleaning operations with reduced wash water requirements.

  15. Spray-drying FGD

    SciTech Connect (OSTI)

    Yeager, K.

    1984-05-01

    Limited data are available on spray drying for SO/SUB/2 and particulate control to enable utilities to evaluate the claims of vendors. EPRI is sponsoring pilot- and full-scale testing of this technology and some results are presented.

  16. C:\ANNUAL\Vol2chps.v8\ANNUAL2.VP

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration / Historical Natural Gas Annual 1930 Through 2000 2 1. Quantity and Average Price of Natural Gas Production in the United States, 1930-2000 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production Average Wellhead Price of Marketed Production 1930 ...................... NA NA NA NA 1,978,911

  17. Dry Natural Gas Estimated Production (Summary)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,594 22,239 23,555 24,912 25,233 26,611 1977-2014 Federal Offshore Gulf of Mexico 1992-2007 Alabama 254 223 218 214 175 176 1977-2014 Alaska 358 317 327 299 285 304 1977-2014...

  18. Dry Natural Gas Reserves Estimated Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,594 22,239 23,555 24,912 25,233 26,611 1977-2014 Federal Offshore U.S. 2,377 2,154 1,660 1,360 1,198 1,148 1990-2014 Pacific (California) 37 28 31 22 21 20 1977-2014 Gulf of...

  19. Draft dry year tools (generation/planning)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA White Book Dry Year Tools Firstgov Dry Year Tools November 9, 2006 - Final Dry Year Guide: The Final Dry Year Guide (PDF, 5 pages, 44 kb) and Figure 1 - Dry Year Strategy (PDF,...

  20. Dry borax applicator operator's manual.

    SciTech Connect (OSTI)

    Karsky, Richard, J.

    1999-01-01

    Annosum root rot affects conifers throughout the Northern Hemisphere, infecting their roots and eventually killing the trees. The fungus Heterobasidion annosum causes annosum root rot. The fungus colonizes readily on freshly cut stumps. Partially cut stands have a high risk of infestation because the fungus can colonize on each of the stumps and potentially infect the neighboring trees. Wind and rain carry the annosum spores. Spores that land on freshly cut stumps grow down the stump's root system where they can infect living trees through root grafts or root contacts. Once annosum becomes established, it can remain active for many years in the Southern United States and for several decades in the north. About 7% of the trees that become infected die. When thinning, stumps can be treated successfully using a competing fungus, Phlebia gigantea, and with ''Tim-Bor'' in liquid formulations. These liquid products are no longer approved in the United States. Only the dry powder form is registered and approved by the EPA. Stumps can be treated with a dry formula of borax, (Sporax), significantly reducing one of the primary routes by which Heterobasidion annosum infects a stand of trees. Sporax is used by the USDA Forest Service to control annosum root rot. Sporax is now applied by hand, but once the felled trees are skidded it becomes very hard to locate the stumps. A stump applicator will reduce error, labor costs, and hazards to workers.

  1. Dry Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimated natural gas plant liquids and dry natural gas content of total natural gas proved reserves, 2014 million barrels and billion cubic feet 2014 Dry Natural Gas billion cubic feet billion cubic feet Alaska 6,805 241 6,745 Lower 48 States 382,036 14,788 361,959 Alabama 2,121 59 2,036 Arkansas 12,795 5 12,789 California 2,260 112 2,107 Coastal Region Onshore 277 12 261 Los Angeles Basin Onshore 84 4 80 San Joaquin Basin Onshore 1,823 96 1,690 State Offshore 76 0 76 Colorado 21,992 813 20,851

  2. Session: Hot Dry Rock

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  3. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  4. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  5. Natural Gas Citygate Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  6. Natural Gas Electric Power Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  7. Natural Gas Industrial Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  8. Natural Gas Underground Storage Capacity (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  9. Average Commercial Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  10. Average Residential Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  11. Injections of Natural Gas into Storage (Annual Supply & Disposition)

    U.S. Energy Information Administration (EIA) Indexed Site

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  12. Advanced dry scrubbing on Ohio coals

    SciTech Connect (OSTI)

    Amrhein, G.T.; Kudlac, G.A.; Smith, P.V.

    1994-12-31

    The objective of this project is to demonstrate, at pilot scale, that advanced dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} emissions while burning high-sulfur Ohio coal, and that these technologies are economically competitive with wet scrubber systems. Dry scrubbing involves injecting an atomized mist of sorbent-containing slurry droplets into hot flue gas. The reaction products exit the scrubber as a dry powder that can be filtered from the gas and recycled or disposed. The project consists of testing an advanced dry scrubber system on two high sulfur Ohio coals. All testing will be conducted in the 5 MBtu pilot facility at B and W`s Alliance Research Center. The facility consists of a test furnace, a dry scrubber using a B and W DuraJet{trademark} two fluid atomizer, a pulse-jet baghouse, and an ash slaking system. Tests were conducted with and without recycling the solids collected from the baghouse. During recycle operation the solids were slurried with water and injected into the dry scrubber with the fresh lime slurry. Test results will be presented, including SO{sub 2} removal (70--99%), calcium to sulfur ratios (1.1--1.9), dry scrubber outlet temperatures (10--30 F), and system performance. An advanced feature of the project was the use of the B and W patented Droplet Impingement Device which removes large slurry droplets from the gas stream prior to the baghouse to prevent baghouse deposition. This allows operation at low approach temperatures.

  13. Method of drying articles

    DOE Patents [OSTI]

    Janney, Mark A. (Knoxville, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

    1999-01-01

    A method of drying a green particulate article includes the steps of: a. Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and b. contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores.

  14. Method of drying articles

    DOE Patents [OSTI]

    Janney, M.A.; Kiggans, J.O. Jr.

    1999-03-23

    A method of drying a green particulate article includes the steps of: (a) Providing a green article which includes a particulate material and a pore phase material, the pore phase material including a solvent; and (b) contacting the green article with a liquid desiccant for a period of time sufficient to remove at least a portion of the solvent from the green article, the pore phase material acting as a semipermeable barrier to allow the solvent to be sorbed into the liquid desiccant, the pore phase material substantially preventing the liquid desiccant from entering the pores. 3 figs.

  15. Dry reforming of hydrocarbon feedstocks

    SciTech Connect (OSTI)

    Shah, Yatish T.; Gardner, Todd H.

    2014-09-25

    Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

  16. Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon

    DOE Patents [OSTI]

    Sircar, Shivaji (Wescosville, PA); Hufton, Jeffrey Raymond (Fogelsville, PA); Nataraj, Shankar (Allentown, PA)

    2000-01-01

    In the steam reforming of hydrocarbon, particularly methane, under elevated temperature and pressure to produce hydrogen, a feed of steam and hydrocarbon is fed into a first reaction volume containing essentially only reforming catalyst to partially reform the feed. The balance of the feed and the reaction products of carbon dioxide and hydrogen are then fed into a second reaction volume containing a mixture of catalyst and adsorbent which removes the carbon dioxide from the reaction zone as it is formed. The process is conducted in a cycle which includes these reactions followed by countercurrent depressurization and purge of the adsorbent to regenerate it and repressurization of the reaction volumes preparatory to repeating the reaction-sorption phase of the cycle.

  17. No Heat Spray Drying Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Objective Advance research from prototype dryer ... First commercial market is dry flavors designed to ... change from existing practice Requires novel dryer ...

  18. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  19. Drilling Complete on Australian Hot Dry Rock Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drilling Complete on Australian Hot Dry Rock Project Drilling Complete on Australian Hot Dry Rock Project January 23, 2008 - 4:37pm Addthis The first commercial attempt to create a commercial geothermal power plant using hot dry rock technology reached a crucial milestone on January 22, when a production well successfully reached its target depth. Hot dry rock technology was invented to draw energy from deep underground areas where geothermal heat is abundant, but no water exists to carry the

  20. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  1. California - Coastal Region Onshore Dry Natural Gas Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California - Coastal Region Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 334 350 365 1980's 299 306 362 381 265 256 255 238 215 222 1990's 217 216 203 189 194 153 156 164 106 192 2000's 234 177 190 167 189 268 206 205 146 163 2010's 173 165 290 266 261 - = No Data Reported; -- = Not

  2. California - Los Angeles Basin Onshore Dry Natural Gas Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California - Los Angeles Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 255 178 163 1980's 193 154 96 107 156 181 142 148 151 137 1990's 106 115 97 102 103 111 109 141 149 168 2000's 193 187 207 187 174 176 153 144 75 84 2010's 87 97 93 86 80 - = No Data Reported; -- = Not Applicable;

  3. Dry Process Electrode Fabrication | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dry Process Electrode Fabrication Dry Process Electrode Fabrication 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es134_wixom_2012_p.pdf More Documents & Publications Dry Process Electrode Fabrication Vehicle Technologies Office Merit Review 2015: Dry Process Electrode Fabrication Vehicle Technologies Office Merit Review 2014: Dry Process Electrode Fabrication

  4. Texas Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 973,206 946,090 950,096 1970's 940,505 897,717 832,808 739,962 653,815 471,714 443,671 417,546 414,103 391,571 1980's 375,345 368,478 358,584 354,048 374,612 371,466 364,168 406,291 456,627 450,733 1990's 380,032 360,852 362,458 348,558 319,360 296,192 273,301 250,949 249,055 202,328 2000's 138,372 195,150 212,638 237,723 284,491 303,477 325,967 546,659 555,796 552,907 2010's 558,854 502,020 437,367 423,413

  5. Kentucky Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  6. Maryland Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  7. Michigan Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,642 2,330 1,719 1970's 378 788 63 176 327 981 1,401 2,169 1980's 2,375 2,390 2,400 2,340 2,340 2,340 2,340 2,606 2,340 2,768 1990's 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2000's 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2010's 2,340 2,340 0

  8. Mississippi Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,714 30,656 29,383 1970's 23,756 12,641 12,036 7,288 9,421 6,293 5,553 5,646 5,630 9,882 1980's 13,009 9,311 8,767 7,048 7,788 7,552 18,913 22,091 38,948 30,390 1990's 36,262 23,929 24,993 14,092 12,083 11,321 9,366 8,414 9,830 6,286 2000's 6,353 6,194 5,975 6,082 8,069 9,906 8,522 4,682 2,998 3,039 2010's 3,480 3,788 0

  9. Missouri Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA 2010's NA NA NA 0 0

  10. Montana Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 722 365 377 1970's 394 499 441 1,065 750 611 464 267 567 517 1980's 230 41 171 197 186 208 214 177 1990's 222 231 180 231 105 82 76 64 68 65 2000's 1 0 0 2 5 9 19 6 6 5 2010's 5 4 0

  11. Utah Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 26,319 30,242 25,632 1970's 27,753 28,916 30,684 28,132 24,192 20,447 20,182 21,212 21,342 19,509 1980's 107,469 127,157 144,693 173,181 174,772 156,831 1990's 172,419 177,218 141,698 108,629 72,798 26,874 3,165 990 559 519 2000's 563 575 2,150 1,785 1,337 1,294 1,300 1,742 1,571 608 2010's 1,187 1,449 0

  12. Virginia Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  13. Wyoming Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 16,393 22,397 21,849 1970's 8,563 8,046 8,412 12,643 11,796 6,892 6,149 14,163 14,484 23,768 1980's 39,895 43,871 35,168 45,870 46,291 48,107 52,977 66,604 51,982 52,783 1990's 56,581 90,465 81,712 110,044 110,064 131,893 134,867 128,186 106,161 75,250 2000's 50,216 114,407 129,598 131,125 164,164 171,616 114,343 8,063 9,118 3,112 2010's 2,810 5,747 6,630 2,124 5,210

  14. Nevada Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  15. Oregon Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 55 43 39 43 44 50 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  16. Alabama Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 35 99 241 1970's 452 1,085 2,860 2,718 3,383 1980's 3,134 3,805 8,304 11,042 12,557 14,769 18,238 17,850 23,444 28,256 1990's 28,540 30,689 29,996 31,179 33,961 30,949 22,601 17,724 14,002 13,793 2000's 13,988 12,758 10,050 4,062 1,307 478 301 311 475 783 2010's 736 531 0

  17. Alabama Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,458 2,389 2,720 2,493 2,406 2,588 2,821 2,744 2,725 1,738 2,719 2,889 1992 2,814 2,535 2,529 2,618 2,573 2,492 2,655 2,556 2,255 2,467 2,183 2,320 1993 2,339 2,156 2,542 2,270 2,745 2,742 2,772 2,790 2,755 2,719 2,632 2,717 1994 2,547 2,348 2,769 2,473 2,990 2,986 3,019 3,039 3,001 2,961 2,867 2,959 1995 2,321 2,140 2,523 2,254 2,725 2,722 2,751 2,770 2,735 2,699 2,613 2,697 1996 2,244 1,340 2,142 2,001 2,003 1,786 1,891 2,000 1,957

  18. Alaska Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 39,989 57,702 66,240 1970's 71,470 72,674 75,719 87,302 89,504 82,556 96,485 170,258 385,254 507,710 1980's 658,351 694,865 813,421 882,884 905,571 1,015,911 1,061,351 1,319,430 1,545,391 1,561,498 1990's 1,639,689 1,930,290 2,168,019 2,325,506 2,517,259 2,891,618 2,885,686 2,904,370 2,904,028 2,892,017 2000's 3,062,853 2,948,652 3,006,824 3,082,204 3,166,098 3,149,237 2,753,901 3,039,347 3,007,418 2,908,828

  19. Alaska Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 165,196 155,820 172,824 157,592 156,292 156,913 163,560 160,337 144,609 169,116 159,810 168,222 1992 177,791 178,481 186,092 181,395 176,802 169,069 171,059 170,930 179,174 189,695 185,519 202,013 1993 200,110 178,483 201,238 185,464 188,032 168,714 169,336 185,382 178,508 211,134 223,628 235,477 1994 217,133 193,581 219,086 201,450 203,950 182,418 182,384 200,295 192,711 228,960 241,471 253,820 1995 249,424 222,370 251,668 231,409

  20. Arkansas Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,010 4,633 4,752 1970's 2,073 995 0 0 0 3,963 10,387 17,507 20,293 17,546 1980's 15,494 38,991 24,278 25,376 25,359 26,036 20,329 24,779 22,994 23,837 1990's 20,165 4,722 8,056 7,773 7,426 7,815 2,354 2,139 1,293 1,150 2000's 8 0 0 0 0 0 439 516 511 520 2010's 414 4,051 0

  1. Arkansas Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 854 748 874 377 368 398 320 289 301 116 43 35 1992 714 638 688 663 660 639 651 651 643 693 693 724 1993 679 609 661 633 642 617 633 635 624 668 670 702 1994 649 582 632 605 614 589 605 606 596 638 641 671 1995 683 612 665 636 646 620 637 638 627 671 674 706 1996 196 185 205 187 218 212 192 191 193 201 218 156 1997 208 194 204 211 200 187 148 162 151 158 148 169 1998 126 117 123 127 121 113 90 98 91 95 89 102 1999 103 99 110 99 109 102 101

  2. Louisiana Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year-8 Year-9 1960's 208,719 195,062 174,349 1970's 133,792 133,080 123,418 146,680 134,607 126,304 104,977 102,672 132,627 66,517 1980's 45,714 26,281 25,459 21,596 37,980...

  3. Louisiana Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,244 4,734 4,225 4,287 4,497 4,051 3,869 2,184 3,937 4,254 2,076 1,935 1992 3,882 3,446 3,606 3,528 3,694 3,572 3,661 3,278 3,265 3,553 3,480 3,668 1993 3,051 2,763 2,983 2,907 3,017 2,891 2,959 2,994 2,996 3,134 3,065 3,144 1994 3,119 2,825 3,049 2,971 3,083 2,955 3,024 3,060 3,062 3,204 3,133 3,215 1995 3,033 2,747 2,965 2,887 2,993 2,869 2,939 2,977 2,978 3,118 3,048 3,130 1996 3,068 2,866 3,008 2,923 3,036 3,346 3,525 3,543 3,488

  4. Michigan Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 195 195 195 195 195 195 195 195 195 195 195 195 1997 195 195 195 195 195 195 195 195 195 195 195 195 1998 195 195 195 195 195 195 195 195 195 195 195 195 1999 195 195 195 195 195 195 195 195 195 195 195 195 2000 195 195 195 195 195 195 195 195 195 195 195 195 2001 195 195 195 195 195 195 195 195 195 195 195 195 2002 195 195 195 195 195 195 195 195 195 195 195 195 2003 195 195 195 195 195 195 195 195 195 195 195 195 2004 195 195 195 195

  5. Mississippi Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,616 2,686 2,471 1,829 1,467 1,373 1,598 1,758 1,730 2,200 2,025 2,177 1992 2,152 1,997 2,170 2,085 2,270 2,135 2,053 2,031 2,060 2,003 2,016 2,021 1993 1,658 1,080 1,219 1,154 1,199 1,227 1,260 1,063 1,109 1,148 1,060 915 1994 870 784 850 1,004 1,034 953 1,044 1,103 1,174 1,110 1,057 1,100 1995 1,087 1,004 1,048 1,097 1,088 1,014 1,019 886 722 742 733 879 1996 865 842 898 905 892 838 696 685 667 695 678 706 1997 699 703 526 664 728 593

  6. Missouri Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0

  7. Montana Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 7 6 6 7 8 7 7 7 5 5 6 6 1997 6 5 6 5 5 5 5 5 5 5 5 6 1998 6 5 5 8 6 6 5 5 5 6 6 6 1999 6 5 6 6 5 7 5 5 5 5 5 6 2000 0 0 0 0 0 0 0 1 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 1 1 1 2004 0 0 0 0 1 0 1 0 0 0 0 1 2005 0 0 1 2 1 1 0 0 0 1 1 1 2006 1 0 4 5 5 1 1 0 1 0 1 0 2007 0 1 0 0 1 0 0 0 0 0 0 1 2008 0 0 1 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 1 0 0 2010 0 0 0 0 0 0 0 0 0 0 1 1 2011 0 0 0 0

  8. Nevada Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  9. California Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 176,675 99,252 86,579 1970's 75,629 66,040 68,114 62,218 60,060 47,808 72,018 74,997 71,457 88,038 1980's 95,982 99,196 97,490 92,518 96,094 102,758 93,351 100,128 97,816 99,799 1990's 81,159 79,235 81,330 87,806 84,369 101,513 111,317 110,134 79,614 47,924 2000's 39,812 35,052 30,991 23,806 22,405 29,134 29,001 27,172 31,305 24,308 2010's 27,240 23,905 0

  10. California Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,315 5,658 6,757 6,471 6,507 6,127 6,736 6,497 6,688 7,419 7,161 6,900 1992 7,314 6,701 7,119 7,071 7,197 6,573 6,884 6,683 6,498 6,759 6,244 6,286 1993 7,750 6,919 7,484 7,167 7,241 6,955 7,081 7,093 6,997 7,570 7,597 7,950 1994 7,447 6,648 7,191 6,887 6,958 6,683 6,804 6,816 6,723 7,273 7,300 7,639 1995 8,960 7,999 8,653 8,286 8,372 8,041 8,187 8,201 8,089 8,751 8,783 9,192 1996 9,703 9,320 9,579 9,504 9,323 9,273 9,490 9,132 8,872

  11. Colorado Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,501 6,645 3,257 1970's 2,227 1,960 415 709 266 220 327 218 256 1980's 196 398 227 388 94 748 485 593 2,241 6,703 1990's 10,986 6,267 9,085 10,995 11,347 15,040 10,715 7,172 7,244 6,397 2000's 6,423 7,263 7,479 8,885 9,229 9,685 10,285 10,625 11,945 11,173 2010's 10,043 10,439 0

  12. Colorado Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 657 638 525 665 651 635 507 611 607 1992 665 667 720 787 782 766 787 513 840 822 915 821 1993 1,034 857 948 531 965 949 922 936 879 982 976 1,016 1994 1,024 885 999 948 553 949 969 999 1,000 1,003 1,010 1,009 1995 1,594 931 2,253 893 1,451 1,976 976 958 1,256 830 929 993 1996 954 931 858 862 907 849 880 865 762 1,028 957 863 1997 543 530 578 485 612 618 588 623 609 609 712 664 1998 594 589 751 704 764 400 626 641 604 677 588 306 1999 556

  13. Florida Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,511 1980's 2,173 1,094 1990's 115 - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 17,909 17,718 20,890

  14. Florida Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0

  15. Indiana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0

  16. Indiana Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0

  17. Kansas Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,752 1,689 1,781 1970's 1,807 1,779 1,787 1,794 1,779 1,693 1,663 1,565 1,726 1,600 1980's 1,474 1,078 861 872 935 1,028 753 917 963 1,017 1990's 930 1,098 1,092 1,140 1,215 1,230 2,120 1,157 1,029 943 2000's 896 818 775 714 677 643 620 618 631 601 2010's 548 521 0

  18. Kansas Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 187 186 187 181 185 167 170 164 165 171 174 181 1997 103 94 102 99 105 102 99 91 85 92 92 92 1998 94 84 91 88 88 89 77 81 82 87 83 84 1999 89 75 81 78 79 79 79 78 76 77 75 78 2000 79 73 76 85 76 74 76 76 71 71 69 70 2001 72 63 70 68 69 67 70 70 67 68 66 69 2002 68 60 67 65 67 66 67 66 62 63 61 63 2003 62 55 62 59 61 58 61 62 59 60 57 59 2004 58 54 58 56 58 57 59 58 55 56 54 54 2005 54 51 55 55 54 51 55 56 53 54 52 52 2006 51 46 51 51 52

  19. Michigan Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,642 2,330 1,719 1970's 378 788 63 176 327 981 1,401 2,169 1980's 2,375 2,390 2,400 2,340 2,340 2,340 2,340 2,606 2,340 2,768 1990's 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2000's 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2,340 2010's 2,340 2,340 0

  20. Mississippi Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,714 30,656 29,383 1970's 23,756 12,641 12,036 7,288 9,421 6,293 5,553 5,646 5,630 9,882 1980's 13,009 9,311 8,767 7,048 7,788 7,552 18,913 22,091 38,948 30,390 1990's 36,262 23,929 24,993 14,092 12,083 11,321 9,366 8,414 9,830 6,286 2000's 6,353 6,194 5,975 6,082 8,069 9,906 8,522 4,682 2,998 3,039 2010's 3,480 3,788 0

  1. Missouri Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA 2010's NA NA NA 0 0

  2. Montana Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 722 365 377 1970's 394 499 441 1,065 750 611 464 267 567 517 1980's 230 41 171 197 186 208 214 177 1990's 222 231 180 231 105 82 76 64 68 65 2000's 1 0 0 2 5 9 19 6 6 5 2010's 5 4 0

  3. Nevada Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  4. Oregon Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 55 43 39 43 44 50 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  5. Texas Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 973,206 946,090 950,096 1970's 940,505 897,717 832,808 739,962 653,815 471,714 443,671 417,546 414,103 391,571 1980's 375,345 368,478 358,584 354,048 374,612 371,466 364,168 406,291 456,627 450,733 1990's 380,032 360,852 362,458 348,558 319,360 296,192 273,301 250,949 249,055 202,328 2000's 138,372 195,150 212,638 237,723 284,491 303,477 325,967 546,659 555,796 552,907 2010's 558,854 502,020 437,367 423,413

  6. Utah Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 26,319 30,242 25,632 1970's 27,753 28,916 30,684 28,132 24,192 20,447 20,182 21,212 21,342 19,509 1980's 107,469 127,157 144,693 173,181 174,772 156,831 1990's 172,419 177,218 141,698 108,629 72,798 26,874 3,165 990 559 519 2000's 563 575 2,150 1,785 1,337 1,294 1,300 1,742 1,571 608 2010's 1,187 1,449 0

  7. Texas Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 29,716 27,721 28,289 33,787 30,735 29,340 32,148 30,155 32,120 32,502 27,144 27,197 1992 30,338 29,299 31,475 28,146 33,286 31,532 31,163 29,863 29,516 30,469 28,278 29,094 1993 29,540 27,563 30,228 28,902 30,023 27,936 29,094 29,382 29,156 30,018 27,867 28,850 1994 29,039 25,212 28,126 26,378 27,245 26,325 26,457 25,057 26,425 26,984 25,018 27,093 1995 26,932 23,383 26,086 24,464 25,269 24,416 24,538 23,239 24,508 25,026 23,203 25,128

  8. Oregon Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 3 2 3 3 4 4 4 4 4 4 3 2 1997 3 2 3 3 4 4 4 5 4 4 4 4 1998 3 3 3 3 4 4 4 4 4 4 4 4 1999 4 4 4 4 4 4 4 4 4 5 4 4 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0

  9. Wyoming Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,127 4,605 8,610 8,415 7,743 8,318 8,211 8,971 7,226 10,425 7,920 4,894 1992 7,886 7,507 4,809 7,021 7,608 15,649 4,881 7,665 4,623 4,660 4,544 4,859 1993 6,544 6,120 6,276 6,226 10,323 6,573 21,075 10,246 9,455 6,476 10,110 10,620 1994 6,371 7,194 5,976 7,649 8,952 7,896 8,341 12,156 7,771 13,020 12,298 12,440 1995 11,460 10,137 13,117 10,183 9,733 10,159 10,446 11,174 11,080 11,833 11,224 11,348 1996 11,440 9,821 11,800 11,600 10,739

  10. California Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 176,675 99,252 86,579 1970's 75,629 66,040 68,114 62,218 60,060 47,808 72,018 74,997 71,457 88,038 1980's 95,982 99,196 97,490 92,518 96,094 102,758 93,351 100,128 97,816 99,799 1990's 81,159 79,235 81,330 87,806 84,369 101,513 111,317 110,134 79,614 47,924 2000's 39,812 35,052 30,991 23,806 22,405 29,134 29,001 27,172 31,305 24,308 2010's 27,240 23,905 0

  11. Colorado Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,501 6,645 3,257 1970's 2,227 1,960 415 709 266 220 327 218 256 1980's 196 398 227 388 94 748 485 593 2,241 6,703 1990's 10,986 6,267 9,085 10,995 11,347 15,040 10,715 7,172 7,244 6,397 2000's 6,423 7,263 7,479 8,885 9,229 9,685 10,285 10,625 11,945 11,173 2010's 10,043 10,439 0

  12. Florida Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,511 1980's 2,173 1,094 1990's 115 - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 17,909 17,718 20,890

  13. Illinois Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  14. Indiana Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0

  15. Kansas Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,752 1,689 1,781 1970's 1,807 1,779 1,787 1,794 1,779 1,693 1,663 1,565 1,726 1,600 1980's 1,474 1,078 861 872 935 1,028 753 917 963 1,017 1990's 930 1,098 1,092 1,140 1,215 1,230 2,120 1,157 1,029 943 2000's 896 818 775 714 677 643 620 618 631 601 2010's 548 521 0

  16. Louisiana Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 208,719 195,062 174,349 1970's 133,792 133,080 123,418 146,680 134,607 126,304 104,977 102,672 132,627 66,517 1980's 45,714 26,281 25,459 21,596 37,980 179,383 45,191 57,185 45,103 42,948 1990's 40,836 45,292 42,631 35,904 36,703 35,684 39,949 11,061 7,913 10,487 2000's 9,250 10,838 9,754 18,446 19,031 8,638 10,454 10,999 5,732 5,695 2010's 3,606 5,015 0 2,829 3,199

  17. Utah Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 15,073 14,081 15,757 15,821 14,757 15,209 15,209 15,665 12,137 14,694 14,486 14,329 1992 15,221 13,656 13,168 11,390 11,537 11,941 11,954 11,375 11,617 10,161 10,609 9,069 1993 9,234 8,048 8,426 10,843 10,044 9,739 10,136 9,860 9,381 8,310 7,236 7,372 1994 7,057 6,684 6,978 6,450 6,086 6,183 6,058 6,000 5,912 4,935 5,287 5,167 1995 4,736 3,880 3,400 3,383 3,441 1,323 1,293 1,492 1,056 1,076 907 886 1996 762 708 215 187 210 167 165 169 163

  18. Wyoming Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 16,393 22,397 21,849 1970's 8,563 8,046 8,412 12,643 11,796 6,892 6,149 14,163 14,484 23,768 1980's 39,895 43,871 35,168 45,870 46,291 48,107 52,977 66,604 51,982 52,783 1990's 56,581 90,465 81,712 110,044 110,064 131,893 134,867 128,186 106,161 75,250 2000's 50,216 114,407 129,598 131,125 164,164 171,616 114,343 8,063 9,118 3,112 2010's 2,810 5,747 6,630 2,124 5,210

  19. Hollow-Fiber Membrane Compressed Air Drying System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hollow-Fiber Membrane Compressed Air Drying System Hollow-Fiber Membrane Compressed Air Drying System New Membrane Allows Drying of Compressed Air at Lower Energy and Higher Productivity With the support of a NICE3 grant, a new hollow-fiber membrane for dehydrating gases has been developed by Air Products and Chemicals, Inc. The membrane has 5 times higher water vapor permeation coefficient and 25 times higher water vapor/air selectivity compared with first-generation membrane dryers. The

  20. Report on Biomass Drying Technology

    SciTech Connect (OSTI)

    Amos, W. A.

    1999-01-12

    Using dry fuel provides significant benefits to combustion boilers, mainly increased boiler efficiency, lower air emissions, and improved boiler operation. The three main choices for drying biomass are rotary dryers, flash dryers, and superheated steam dryers. Which dryer is chosen for a particular application depends very much on the material characteristics of the biomass, the opportunities for integrating the process and dryer, and the environmental controls needed or already available.

  1. Dry Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; M. F. Simpson

    2009-09-01

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  2. Bioenergy Impacts Â… Billion Dry Tons

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Oak Ridge National Laboratory published research that shows that U.S. resources could sustainably produce by 2030 at least one billion dry tons of non-food biomass resources, yielding up to 60 billion gallons of biofuels, as well as bio- based chemicals, products, and electricity. This could potentially reduce greenhouse gas emissions by up to 500 million tons per year, create 1.5 million new jobs, and keep about $200 billion extra in the U.S. economy each year. Research is showing that U.S.

  3. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  4. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  5. Drying rate and temperature profile for superheated steam vacuum drying and moist air drying of softwood lumber

    SciTech Connect (OSTI)

    Pang, S.; Dakin, M. [New Zealand Forest Research Inst., Ltd., Rotorua (New Zealand). Mfg. Technologies Portfolio

    1999-07-01

    Two charges of green radiata pine sapwood lumber were dried, ether using superheated steam under vacuum (90 C, 0.2 bar abs.) or conventionally using hot moist air (90/60 C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air. The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying.

  6. DRI Renewable Energy Center (REC) (NV)

    SciTech Connect (OSTI)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.

  7. Process and apparatus for indirect-fired heating and drying

    DOE Patents [OSTI]

    Abbasi, Hamid Ali; Chudnovsky, Yaroslav

    2005-04-12

    A method for heating flat or curved surfaces comprising injecting fuel and oxidant along the length, width or longitudinal side of a combustion space formed between two flat or curved plates, transferring heat from the combustion products via convection and radiation to the surface being heated on to the material being dried/heated, and recirculating at least 20% of the combustion products to the root of the flame.

  8. No Heat Spray Drying Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charles Beetz, Chief Scientist, ZoomEssence, Inc. U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective ï‚— Advance research from prototype dryer to integrated pilot system for our ambient temperature spray drying technology ï‚— Several objectives: ï‚— Improve emulsion formulation ï‚— Develop an industrialized atomizer ï‚— Develop a

  9. Florida Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    6-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA ...

  10. Illinois Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and ...

  11. Guides and Case Studies for Hot-Dry and Mixed-Dry Climates | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Dry and Mixed-Dry Climates Guides and Case Studies for Hot-Dry and Mixed-Dry Climates Map of the Hot-Dry and Mixed-Dry Zone of the United States. The zone contains the eastern side of California and follows the US border to cover the western half of Texas. The Department of Energy (DOE) has developed a series of best practices and case studies to help builders improve whole-house energy performance in buildings found in hot-dry and mixed-dry climates. Best Practice Guides 40%

  12. The influence of the drying medium on high temperature convective drying of single wood chips

    SciTech Connect (OSTI)

    Johansson, A.; Rasmuson, A.

    1997-10-01

    High temperature convective drying of single wood chips with air and superheated steam respectively is studied theoretically. The two-dimensional model presented describes the coupled transport of water, vapor, air and heat. Transport mechanisms included are the convection of gas and liquid, intergas as well as bound water diffusion. In the initial part of the drying process, moisture is transported to the surface mainly due to capillary forces in the transversal direction where evaporation occurs. As the surface becomes dry, the drying front moves towards the center of the particle and an overpressure is simultaneously built up which affects the drying process. The differences between drying in air and steam respectively can be assigned to the physical properties of the drying medium. The period of constant drying rate which does not exist (or is very short) in air drying becomes more significant with decreasing amounts of air in the drying medium and is clearly visible in pure superheated steam drying. The maximal drying rate is larger in air drying, and shorter drying times are obtained since the heat flux to the wood chip particle increases with increasing amounts of air in the drying medium. The period of falling drying rate can be divided into two parts: in the first, the drying rate is dependent upon the humidity of the drying medium whereas in the second, there is no such correlation.

  13. California - San Joaquin Basin Onshore Dry Natural Gas Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,784 3,960 3,941 1980's 4,344 4,163 3,901 3,819 3,685 3,574 3,277 3,102 2,912 2,784 1990's 2,670 2,614 2,415 2,327 2,044 1,920 1,768 1,912 1,945 1,951 2000's 2,331 2,232 2,102 2,013 2,185 2,694 2,345 2,309 2,128

  14. Compton Dry-Cask Imaging System

    ScienceCinema (OSTI)

    None

    2013-05-28

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  15. Dry scrubbing of SO/sub 2/

    SciTech Connect (OSTI)

    Shah, N.D.

    1982-06-01

    The advantages of dry scrubbing over wet scrubbing or spray drying are considered. One of the problem areas is that of waste disposal. The most cost-effective solutions are land disposal or landfill in clay cells. The factors influencing the selection of an SO/sub 2/ scrubbing system are discussed. Nahcolite appears to be the most promising agent for dry scrubbing.

  16. Dry-cleaning of graphene

    SciTech Connect (OSTI)

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  17. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  18. C:\ANNUAL\Vol2chps.v8\ANNUAL2.VP

    Gasoline and Diesel Fuel Update (EIA)

    2 1. Quantity and Average Price of Natural Gas Production in the United States, 1930-2000 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production Average Wellhead Price of Marketed Production 1930 ...................... NA NA NA NA 1,978,911 75,140 1,903,771 0.08 1931 ...................... NA NA NA NA 1,721,902 62,288 1,659,614

  19. Non-aqueous spray drying as a route to ultrafine ceramic powders

    SciTech Connect (OSTI)

    Armor, J.N. ); Fanelli, A.J.; Marsh, G.M. ); Zambri, P.M. )

    1988-09-01

    Spray drying imparts unique powder handling features to a wide variety of dried products and is usually carried out in a heated air stream while feeding an aqueous suspension of some solid material. The present work, however, describes non-aqueous spray drying as a means of preparing fine powders of metal oxides. In this case an alcohol solvent was used in place of water and the slurry sprayed under an inert atmosphere. Using the non-aqueous technique, the product consists of distinct but loosely aggregated primary particles. Such materials have potential for use as catalysts or catalyst supports.

  20. Wet/dry cooling tower and method

    DOE Patents [OSTI]

    Glicksman, Leon R. (Lynnfield, MA); Rohsenow, Warren R. (Waban, MA)

    1981-01-01

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  1. Cold vacuum drying system conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W.

    1996-05-01

    This document summarizes the activities involved in the removal of the SNF from the leaking basins and to place it in stable dry storage.

  2. ,"New Mexico Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301977" ,"Release Date:","11...

  3. dry-regen | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No.: FC26-07NT43089 Schematic of RTI's Dry Carbonate Process (click image to enlarge) Research Triangle Institute (RTI) International completed two projects, NT43089 and...

  4. FINAL REPORT: Transformational electrode drying process

    SciTech Connect (OSTI)

    Claus Daniel, C.; Wixom, M.

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

  5. Dry FGD (flue-gas desulfurization) at Argonne National Laboratory

    SciTech Connect (OSTI)

    Livengood, C.D.

    1990-01-01

    Flue-gas desulfurization (FGD) systems based on spray drying are a relatively recent addition to the spectrum of sulfur dioxide (SO{sub 2}) control options available to utility and industrial boiler operators. Such systems appear to offer advantages over wet lime/limestone systems in a number of areas: low energy consumption, low capital cost, high reliability, and production of a dry waste that is easily handled and disposed of. These advantages have promoted rapid acceptance of dry scrubbers for applications using western low-sulfur coal, but uncertainties regarding the performance and economics of such systems for control of high-sulfur-coal emissions have slowed adoption of the technology in the Midwest and East. At Argonne National Laboratory (ANL) we have had more than eight years of operating experience with an industrial-scale dry scrubber used with a boiler firing high-sulfur (3.5%) midwestern coal. This paper describes our operating experience with that system and summarizes several research programs that have utilized it. 7 refs., 15 figs., 6 tabs.

  6. South Dakota Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 85 78 84 73 81 80 81 80 79 83 79 80 2007 80 72 84 81 82 81 84 83 90 79 88 93 2008 88 76 82 81 57 101 148 203 212 214 193 190 2009 201 166 180 179 190 183 187 180 163 173 163 166 2010 158 144 179 152 159 151 149 153 162 168 146 142 2011 128 121 134 138 135 145 165 170 166 181 178 188 2012 1,277 1,224 1,321 1,301 1,377 1,275 1,313 1,236 1,185 1,210 1,240 1,095 2013 1,303 1,205 1,367 1,369 1,390 1,317 1,360 1,449 1,355 1,300 1,366 1,3

  7. Tennessee Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 215 192 208 199 201 193 232 233 230 249 250 261 2007 319 284 308 295 298 286 344 345 340 368 370 387 2008 380 339 367 351 355 341 410 412 406 439 441 461 2009 443 395 427 409 414 397 478 480 473 511 514 537 2010 374 333 359 344 346 332 405 407 402 436 440 460 2011 354 317 340 324 327 314 384 385 387 378 413 414 2012 451 422 451 437 451 437 451 451 436 450 436 451 2013 417 391 417 403 416 403 415 416 402 416 402 416

  8. Texas Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 430,569 385,770 433,275 423,525 440,256 425,524 439,080 442,449 430,887 444,407 431,300 447,631 2007 441,468 412,905 470,928 455,133 486,205 470,615 487,991 495,092 484,416 509,596 500,023 521,459 2008 526,847 493,754 538,080 528,645 559,589 540,512 564,006 567,203 518,543 574,401 562,985 584,625 2009 590,953 516,416 574,898 542,453 553,391 527,916 533,023 540,469 505,084 514,658 486,991 508,678 2010 517,709 473,363 532,310 504,173

  9. Louisiana Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 103,179 94,149 106,787 103,292 108,053 105,465 106,944 106,844 104,031 107,110 103,481 106,548 2007 104,710 93,081 105,356 103,432 108,896 105,641 109,196 105,741 103,080 106,353 102,678 106,424 2008 108,824 101,639 109,423 106,887 113,001 111,049 115,083 111,736 81,165 106,694 108,950 108,733 2009 109,484 101,528 112,915 112,335 118,741 115,297 121,967 126,920 125,045 134,323 135,546 139,146 2010 143,710 137,013 157,580 158,568 168,520

  10. Maryland Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 4 4 4 4 4 3 4 4 4 3 4 4 2007 4 4 4 4 3 3 7 3 3 1 1 1 2008 4 2 3 2 1 2 2 2 8 1 1 1 2009 4 3 3 3 3 3 3 3 4 3 3 8 2010 3 3 5 3 3 3 3 4 3 4 3 4 2011 5 3 4 3 3 4 4 3 3 1 1 1 2012 4 3 4 4 4 3 4 4 3 4 3 4 2013 2 2 2 3 2 3 3 3 3 3 3 3

  11. Michigan Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 19,883 17,063 27,033 13,724 16,250 29,932 19,947 23,815 21,426 21,485 15,743 33,432 2007 28,452 18,375 20,205 16,164 26,215 19,657 22,244 23,754 24,229 20,800 22,560 19,160 2008 12,815 11,826 12,767 12,084 12,618 12,241 12,726 12,935 12,320 12,670 11,930 12,277 2009 11,969 10,885 14,918 11,443 11,360 11,504 14,266 11,778 12,143 11,495 14,682 14,960 2010 11,162 9,983 11,016 10,515 10,841 10,502 10,765 11,025 10,631 10,776 10,390 10,571

  12. Mississippi Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 3,091 2,334 3,199 3,696 3,506 3,804 3,410 3,383 4,657 4,850 4,726 5,213 2007 5,557 4,821 5,290 5,225 5,893 5,906 4,586 4,655 3,756 4,590 5,237 4,847 2008 7,506 7,722 6,936 6,274 7,681 6,976 7,347 7,921 5,291 7,039 6,796 8,307 2009 6,662 6,156 5,705 5,085 5,101 4,803 5,384 5,682 5,195 6,100 6,656 7,274 2010 4,424 3,807 4,610 3,842 4,561 4,336 4,709 4,674 4,764 5,053 5,302 5,233 2011 6,123 5,484 6,073 5,948 6,389 5,724 6,505 5,806 5,370

  13. Missouri Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 NA NA NA NA NA NA NA NA NA NA NA NA 2009 NA NA NA NA NA NA NA NA NA NA NA NA 2010 NA NA NA NA NA NA NA NA NA NA NA NA 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA 2013 1 1 1 1 1 1 1 1 0 1 0 0

  14. Montana Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 9,638 8,592 9,528 9,014 9,319 8,878 9,287 9,370 9,040 9,427 9,373 9,957 2007 9,955 8,979 9,752 9,324 9,619 9,399 9,580 9,745 9,506 9,861 9,638 9,914 2008 9,770 8,988 9,655 9,277 9,393 9,043 9,332 9,324 9,120 9,411 9,017 8,578 2009 8,643 7,927 8,627 8,256 8,436 7,992 8,158 8,057 7,718 7,751 7,425 7,402 2010 7,480 6,781 7,629 7,355 7,386 7,125 7,316 7,202 7,003 7,143 6,926 6,826 2011 6,552 5,781 6,330 6,122 6,280 6,001 6,227 6,202 6,223

  15. Utah Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 27,437 25,286 28,290 27,483 28,644 27,847 28,492 29,681 29,397 30,752 30,381 31,719 2007 29,988 28,560 33,003 32,061 33,877 31,501 32,760 33,005 28,517 26,805 30,668 32,935 2008 32,803 31,759 34,564 34,498 36,027 34,967 36,376 38,620 37,492 37,537 37,429 38,213 2009 38,301 35,045 39,153 37,217 37,721 35,385 36,704 36,646 34,201 35,878 35,013 34,409 2010 34,299 31,732 35,722 35,570 37,007 35,259 35,850 35,972 34,721 36,116 33,992 35,826

  16. Virginia Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 8,410 7,694 8,597 8,227 8,671 8,619 8,741 8,829 8,709 8,803 8,721 9,005 2007 9,148 8,368 9,350 8,949 9,431 9,373 9,507 9,602 9,472 9,575 9,485 9,795 2008 10,492 9,594 10,715 10,259 10,812 10,742 10,897 11,008 10,856 10,976 10,872 11,232 2009 11,622 10,525 11,426 11,297 11,760 11,406 12,201 12,234 11,878 12,407 12,107 11,875 2010 12,528 11,363 12,405 11,914 12,502 12,105 12,490 12,520 12,229 12,417 12,190 12,593 2011 12,845 12,027 12,789

  17. West Virginia Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 17,570 16,517 17,882 16,886 18,179 17,814 18,110 19,598 18,177 18,604 18,675 19,501 2007 18,467 16,618 18,206 17,927 18,705 18,260 18,995 18,805 19,189 18,779 19,513 19,650 2008 19,831 18,927 19,828 19,168 19,680 19,392 20,149 20,299 19,102 20,753 19,727 19,634 2009 20,302 18,759 21,305 21,006 21,913 21,331 21,994 22,211 21,832 22,310 21,540 21,147 2010 21,055 19,252 21,215 20,713 21,499 21,133 21,876 21,878 21,425 22,542 21,895 22,085

  18. Wyoming Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 140,315 127,195 142,024 137,452 139,641 138,682 148,930 146,759 146,638 167,924 152,523 160,683 2007 166,896 146,993 164,340 158,481 163,728 159,840 166,396 168,804 161,583 164,866 171,890 179,831 2008 175,028 162,752 182,223 178,266 184,184 180,655 189,720 187,104 172,883 189,055 189,099 200,959 2009 192,681 177,886 194,383 186,104 190,168 185,519 181,948 183,947 172,228 191,868 192,494 192,308 2010 193,239 174,720 194,306 186,131

  19. Nebraska Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 103 92 100 95 105 105 108 102 100 102 95 93 2007 77 73 96 99 115 116 122 129 156 202 193 177 2008 235 257 260 243 243 245 272 256 265 267 275 263 2009 283 287 303 269 273 255 217 226 211 202 195 187 2010 187 177 191 188 200 189 191 194 185 184 177 168 2011 168 143 163 164 168 177 172 176 167 164 151 146 2012 155 145 147 98 109 105 97 97 98 97 93 88 2013 82 77 87 81 82 83 81 78 81 117 74 109

  20. New Mexico Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 127,437 115,388 128,902 122,927 128,084 124,586 129,037 129,014 125,936 129,125 124,185 124,630 2007 119,393 109,187 121,690 117,659 123,424 119,500 122,821 119,157 119,563 121,079 116,311 111,886 2008 107,116 104,184 116,572 113,727 117,935 108,215 118,203 115,370 111,828 118,098 111,215 111,162 2009 111,273 103,156 112,939 108,259 111,243 104,631 108,759 110,345 103,173 109,398 104,277 100,711 2010 101,117 91,571 100,542 99,013 102,984

  1. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 3,771 3,299 3,804 3,813 3,983 3,930 4,094 4,171 4,246 4,415 4,230 4,263 2007 4,435 4,028 4,338 4,314 4,459 4,436 4,653 4,833 4,576 4,609 4,543 3,593 2008 3,423 3,225 3,449 3,499 3,819 4,025 4,087 4,155 4,245 4,154 4,001 2,486 2009 3,345 3,148 3,575 3,684 3,908 3,912 4,295 4,439 4,340 4,525 4,628 5,432 2010 5,032 4,753 5,480 5,497 5,995 5,315 6,372 5,999 6,498 6,650 6,497 6,368 2011 6,124 5,393 6,212 5,812 6,025 6,145 7,170 7,580 7,341

  2. Ohio Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 7,654 6,838 7,366 7,066 7,116 6,830 6,936 6,938 6,841 7,449 7,463 7,814 2007 7,812 6,979 7,518 7,211 7,263 6,971 7,078 7,080 6,981 7,602 7,616 7,975 2008 7,525 6,723 7,242 6,947 6,996 6,715 6,819 6,821 6,726 7,323 7,337 7,682 2009 7,876 7,038 7,581 7,272 7,324 7,030 7,138 7,140 7,041 7,665 7,679 8,040 2010 6,926 6,191 6,667 6,396 6,441 6,184 6,279 6,280 6,193 6,741 6,754 7,070 2011 6,993 6,248 6,730 6,456 6,502 6,240 6,337 6,339 6,250

  3. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 129,135 117,495 130,894 129,451 133,836 135,150 137,891 136,729 133,990 139,235 134,308 138,934 2007 135,745 128,559 147,430 135,563 146,113 139,520 143,803 144,436 138,754 144,998 139,076 143,042 2008 146,796 140,901 148,341 147,602 152,741 148,502 153,761 142,734 148,998 150,213 145,633 155,799 2009 155,239 143,226 153,344 146,913 155,448 150,595 154,540 152,852 143,223 147,247 142,838 143,200 2010 142,477 130,222 145,015 141,968

  4. Oregon Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 47 56 56 46 72 71 57 32 56 40 43 46 2007 60 48 38 33 35 38 35 27 18 13 24 42 2008 78 60 64 42 48 53 66 73 78 78 58 80 2009 69 55 60 46 57 45 45 53 42 45 63 242 2010 175 193 152 158 150 119 82 30 55 69 103 121 2011 144 158 129 96 114 134 153 85 54 90 86 98 2012 90 71 72 57 81 69 70 24 44 49 57 85 2013 90 71 72 57 81 69 70 24 44 49 57 85

  5. Pennsylvania Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 15,535 14,899 15,034 14,005 14,160 14,321 14,028 14,483 14,369 14,856 13,892 15,574 2007 16,091 15,432 15,572 14,506 14,665 14,833 14,530 15,001 14,883 15,387 14,388 16,130 2008 17,498 16,779 16,933 15,773 15,947 16,130 15,797 16,312 16,194 16,736 15,647 17,542 2009 24,171 23,181 23,393 21,793 22,033 22,286 21,831 22,539 22,364 23,121 21,622 24,240 2010 22,335 20,167 22,326 38,154 39,423 38,156 54,758 54,755 52,986 75,906 73,457 75,900

  6. U.S. Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 1,617,923 1,465,907 1,627,602 1,551,268 1,610,527 1,525,325 1,584,526 1,581,520 1,545,194 1,597,116 1,547,069 1,575,412 1998 1,658,885 1,476,580 1,648,339 1,591,701 1,650,538 1,582,144 1,611,386 1,622,594 1,473,001 1,589,442 1,539,977 1,578,976 1999 1,625,336 1,465,120 1,621,893 1,549,496 1,578,623 1,540,990 1,585,739 1,582,361 1,531,563 1,587,111 1,560,232 1,603,767 2000 1,622,726 1,494,676 1,635,707 1,546,594 1,606,752 1,568,345

  7. Mississippi Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,400 150,571 157,293 143,714 140,370 139,290 123,242 102,265 1990's 94,171 107,520 91,281 80,300 63,023 95,156 102,923 107,000 107,573 105,559 2000's 77,181 92,087 96,503 122,471 49,656 38,615 45,869 60,363 85,795 69,803 2010's 55,316 70,266 63,357 58,806 53,945

  8. Missouri Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 4 4 4 4 4 4 1990's 7 15 27 14 8 16 25 5 0 0 2000's 0 0 0 0 0 0 0 0 NA NA 2010's NA NA NA 9 9

  9. Montana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 55,577 50,918 50,405 51,305 45,506 45,398 50,582 50,212 1990's 49,338 50,944 52,960 53,787 49,785 49,667 50,420 52,028 57,235 60,728 2000's 69,664 80,927 85,500 85,412 96,128 106,769 111,423 115,272 110,907 96,392 2010's 86,172 73,372 65,463 61,597 58,261

  10. Nebraska Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,147 1,954 2,168 1,829 1,326 1,180 851 849 1990's 793 771 1,174 2,114 2,890 2,240 1,876 1,670 1,695 1,395 2000's 1,218 1,208 1,188 1,454 1,476 1,172 1,200 1,555 3,082 2,908 2010's 2,231 1,959 1,328 1,032 402

  11. New Mexico Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 934,321 838,975 898,786 851,319 651,319 758,617 728,464 793,021 1990's 898,478 967,821 1,193,343 1,326,236 1,471,082 1,540,169 1,445,746 1,449,587 1,394,433 1,403,821 2000's 1,584,884 1,580,167 1,522,044 1,492,723 1,527,127 1,544,102 1,509,252 1,421,672 1,353,625 1,288,164 2010's 1,200,222 1,147,012 1,131,211 1,084,845 1,091,91

  12. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 48,216 62,148 62,636 64,213 48,142 54,399 50,802 45,041 1990's 45,725 47,137 48,828 53,927 52,134 44,141 44,737 47,325 47,704 47,058 2000's 46,405 48,564 51,052 49,875 48,776 45,699 48,019 52,817 44,566 49,229 2010's 70,456 82,920 146,128 198,871 275,94

  13. Ohio Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138,368 151,271 186,439 182,178 182,004 166,543 166,646 159,684 1990's 154,561 147,602 144,743 137,190 132,047 126,242 119,166 116,163 115,005 109,431 2000's 105,047 100,021 103,086 93,573 90,418 83,494 86,310 88,086 84,858 88,824 2010's 78,122 78,858 84,327 163,901 485,434

  14. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,899,450 1,688,769 1,948,032 1,893,472 1,871,683 1,974,291 2,063,748 2,142,148 1990's 2,161,773 2,052,001 1,912,747 1,947,980 1,833,300 1,716,804 1,634,508 1,607,058 1,576,582 1,500,694 2000's 1,516,103 1,526,499 1,500,319 1,483,410 1,571,414 1,551,906 1,597,048 1,687,039 1,782,021 1,788,665 2010's 1,706,697 1,754,838 1,883,532 1,851,159 2,140,250

  15. Oregon Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3 2,790 4,080 4,600 3,800 4,000 2,500 1990's 2,815 2,741 2,580 4,003 3,221 1,923 1,439 1,173 1,067 1,291 2000's 1,214 1,110 837 731 467 454 621 409 778 821 2010's 1,407 1,344 770 770 950

  16. Pennsylvania Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,071 118,317 166,281 150,089 159,655 163,000 166,817 191,520 1990's 177,309 152,105 138,071 131,617 119,993 110,418 134,397 79,266 129,585 173,822 2000's 149,414 130,162 157,234 159,180 196,583 167,801 175,156 181,418 197,287 272,574 2010's 568,324 1,301,661 2,244,693 3,238,106 4,174,655

  17. Florida Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,062 12,787 5,954 5,074 4,031 4,397 3,900 3,983 1990's 3,652 2,991 4,094 4,528 5,697 4,833 4,357 4,551 4,273 4,376 2000's 5,137 4,551 2,498 2,316 2,505 2,121 2,055 1,646 2,414 257 2010's 12,409 15,125 773 292 136

  18. Illinois Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -10,579 -11,813 -10,157 -10,112 -7,372 -5,291 1,277 1,396 1990's 596 366 247 254 253 258 234 31 139 140 2000's 147 150 133 126 121 120 123 1,346 1,151 1,412 2010's 1,357 1,078 2,125 2,887 2,579

  19. Indiana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 221 135 394 367 365 217 412 416 1990's 399 232 174 192 107 249 360 526 615 855 2000's 899 1,064 1,309 1,464 3,401 3,135 2,921 3,606 4,701 4,927 2010's 6,802 9,075 8,814 7,938 6,616

  20. Kansas Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 417,928 418,646 450,504 499,068 451,913 444,355 563,045 570,923 1990's 543,961 586,611 615,274 642,333 665,794 673,994 664,800 648,991 557,785 505,312 2000's 481,529 441,628 415,705 384,169 362,548 345,708 340,318 337,814 346,008 327,492 2010's 298,469 283,320 275,080 277,022 269,564

  1. Kentucky Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 45,070 40,507 55,002 66,792 75,729 68,122 71,487 70,973 1990's 73,434 76,723 77,348 84,714 71,057 72,451 79,050 77,143 79,606 74,483 2000's 80,129 80,165 86,423 86,145 91,846 91,079 93,068 93,480 111,715 110,030 2010's 130,754 119,559 99,551 88,221 72,266

  2. Louisiana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,042,769 5,207,920 5,692,554 4,895,966 4,779,790 4,997,619 5,060,175 4,956,700 1990's 5,122,584 4,905,207 4,781,644 4,860,802 5,041,122 4,962,318 5,149,901 5,079,813 5,132,579 5,110,936 2000's 4,928,223 1,349,224 1,209,027 1,225,444 1,219,815 1,192,667 1,255,883 1,254,588 1,283,184 1,453,248 2010's 2,107,651 2,933,576 2,920,753 2,319,844 1,942,642

  3. Maryland Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 36 31 60 39 20 44 29 34 1990's 22 29 33 28 26 22 135 118 63 18 2000's 34 32 22 48 34 46 48 35 28 43 2010's 43 34 44 32 20

  4. Michigan Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138,869 125,373 131,708 120,726 115,643 136,120 135,662 146,102 1990's 163,834 187,646 186,722 197,623 216,286 231,875 239,341 299,803 272,138 271,419 2000's 291,234 270,534 270,246 233,149 255,482 257,404 259,732 261,813 149,209 151,402 2010's 128,175 135,697 126,853 121,277 113,024

  5. Alabama Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 70,276 86,092 96,699 102,106 102,348 112,354 124,750 123,389 1990's 130,337 165,850 349,609 382,435 509,625 514,388 525,480 578,635 558,451 527,385 2000's 499,589 343,056 341,235 334,852 300,888 282,769 265,155 250,576 240,662 218,797 2010's 203,873 178,310 208,577 188,651 174,010

  6. Alaska Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 263,896 276,251 286,280 314,643 300,635 340,247 355,398 373,797 1990's 381,431 409,382 411,593 398,093 524,457 434,498 442,375 426,776 426,528 424,555 2000's 419,671 435,291 428,595 456,441 438,855 459,326 420,086 407,153 374,105 374,152 2010's 353,391 334,671 329,789 317,503 326,897

  7. Arizona Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 99 132 45 85 63 60 56 1,360 1990's 2,125 1,225 771 597 752 558 463 452 457 474 2000's 368 307 301 443 331 233 611 655 523 712 2010's 183 168 117 72 106

  8. Arizona Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 24 44 53 61 60 52 51 47 50 59 50 60 2007 51 54 58 36 60 58 50 56 62 52 56 61 2008 75 56 66 68 64 17 18 17 17 57 25 44 2009 44 67 72 65 54 59 54 68 64 55 48 62 2010 16 15 16 14 15 15 16 15 15 15 15 15 2011 16 14 14 14 14 14 15 10 14 15 14 15 2012 15 14 15 14 14 13 10 10 9 0 1 0 2013 1 0 1 0 4 3 11 11 10 12 8 10

  9. Arkansas Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 123,324 126,303 133,961 153,958 129,757 139,876 165,512 173,309 1990's 174,156 164,412 202,066 195,863 187,120 186,754 221,343 207,960 187,921 169,575 2000's 171,265 166,396 161,476 169,279 186,815 190,302 270,081 269,724 446,318 679,784 2010's 926,426 1,071,944 1,145,744 1,139,168 1,123,096

  10. Arkansas Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 18,546 16,947 19,757 19,566 21,048 21,471 22,642 23,956 24,198 26,472 26,928 28,550 2007 18,430 16,848 19,649 19,459 21,011 21,441 22,595 23,921 24,250 26,634 26,925 28,562 2008 29,068 29,082 32,973 33,043 35,331 35,806 38,869 40,631 39,412 42,558 42,579 46,966 2009 49,673 45,476 51,973 53,142 56,218 56,255 56,932 63,384 47,067 62,797 66,448 70,419 2010 70,073 64,169 72,458 73,424 76,475 75,411 79,934 82,380 80,488 83,809 81,415 86,390

  11. California Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 369,864 400,381 460,891 474,310 446,015 409,619 384,771 349,484 1990's 350,324 366,598 353,247 303,798 298,177 268,046 274,325 274,090 305,035 371,953 2000's 365,517 366,764 347,223 323,245 305,858 303,889 301,153 293,639 282,497 262,853 2010's 273,597 238,082 234,067 238,012 239,517

  12. Colorado Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 196,930 152,231 162,486 166,320 153,243 154,362 179,955 203,397 1990's 229,819 270,139 304,892 382,327 433,595 497,859 548,709 608,524 671,956 696,315 2000's 723,880 788,011 905,293 977,635 1,043,414 1,098,304 1,166,504 1,204,391 1,335,809 1,431,463 2010's 1,495,742 1,546,775 1,627,334 1,517,347 1,546,193

  13. South Dakota Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,331 1,846 1,947 2,558 2,231 3,431 3,920 4,369 1990's 881 882 1,456 1,306 1,437 1,252 1,329 1,598 1,620 1,566 2000's 1,652 1,100 1,025 1,103 1,093 992 963 995 1,644 2,129 2010's 1,862 1,848 15,055 16,180 15,286

  14. Tennessee Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,976 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 1,510 1,420 1,230 2000's 1,150 2,000 2,050 1,803 2,100 2,200 2,663 3,942 4,700 5,478 2010's 4,638 4,335 5,324 4,912 4,912

  15. Texas Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,112,411 5,562,712 5,791,148 5,668,944 5,767,082 5,761,838 5,928,273 5,898,192 1990's 6,000,960 5,926,917 5,771,736 5,864,561 5,972,824 5,948,336 6,072,178 6,062,699 6,020,433 5,839,047 2000's 6,037,631 4,926,863 4,780,540 4,911,162 4,707,205 4,920,812 5,174,672 5,735,831 6,559,190 6,394,931 2010's 6,281,672 6,631,555 6,896,085 6,943,731 7,146,549

  16. U.S. Dry Natural Gas Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 1,869 1,883 1,830 1,741 1,821 1,765 1,804 1,819 1,766 1,799 1,788 1,848 1974 1,851 1,688 1,817 1,707 1,771 1,669 1,743 1,716 1,683 1,694 1,658 1,716 1975 1,702 1,574 1,663 1,599 1,616 1,563 1,604 1,604 1,533 1,575 1,548 1,655 1976 1,676 1,576 1,641 1,554 1,601 1,570 1,604 1,566 1,498 1,569 1,566 1,678 1977 1,665 1,602 1,676 1,573 1,619 1,578 1,602 1,574 1,530 1,558 1,537 1,652 1978 1,669 1,579 1,673 1,597 1,593 1,554 1,621 1,587 1,509

  17. California Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 26,709 24,159 26,358 25,054 26,148 25,090 26,049 24,843 24,309 24,405 23,739 24,290 2007 26,089 23,578 25,703 24,498 25,549 24,512 25,418 24,212 23,675 23,693 23,054 23,658 2008 25,012 22,663 24,661 23,567 24,458 23,530 24,570 23,341 22,976 22,823 22,101 22,796 2009 23,307 21,069 22,988 21,884 22,871 21,921 22,770 21,669 21,242 21,219 20,627 21,287 2010 24,284 21,962 23,900 22,672 23,732 22,814 23,742 22,596 22,130 22,126 21,427 22,211

  18. Colorado Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 99,662 90,391 99,510 95,525 99,046 95,410 98,219 99,973 95,857 100,635 97,085 95,190 2007 100,556 90,237 101,062 100,196 103,056 100,423 103,567 100,909 104,352 102,823 102,047 95,164 2008 109,302 100,430 108,336 111,486 109,203 101,723 113,009 119,947 116,373 114,033 113,738 118,229 2009 127,323 115,584 126,323 120,547 124,736 117,837 121,810 120,398 114,487 116,778 114,187 111,453 2010 123,488 114,687 125,234 118,989 125,591 122,570

  19. Florida Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 185 182 219 195 187 143 168 165 173 129 140 170 2007 147 143 171 154 148 117 135 133 138 108 115 137 2008 214 207 248 223 217 174 199 196 202 161 171 202 2009 23 22 26 24 23 19 21 21 22 17 18 22 2010 495 725 704 912 917 829 1,010 1,360 1,359 1,290 1,376 1,432 2011 1,258 1,323 1,285 1,339 1,338 1,311 1,132 965 1,233 1,254 1,306 1,381 2012 28 28 29 11 10 27 29 26 27 29 500 28 2013 28 27 23 19 5 27 30 21 27 30 28 27

  20. Illinois Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 13 13 12 11 11 11 8 9 9 9 8 9 2007 134 128 128 119 120 120 96 99 99 103 95 106 2008 114 109 109 101 103 103 82 85 85 88 81 91 2009 140 134 134 124 126 126 101 104 104 108 100 111 2010 175 161 168 169 169 126 94 79 98 111 157 194 2011 99 81 106 95 94 71 56 84 78 88 114 112 2012 184 156 193 181 183 156 144 173 165 180 205 205 2013 532 203 267 204 160 155 157 155 186 158 165 546

  1. Indiana Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 218 211 246 234 246 254 179 244 282 275 259 272 2007 282 235 286 324 301 267 308 343 310 374 351 224 2008 349 364 407 409 438 397 416 357 368 423 420 353 2009 425 301 419 414 428 393 366 422 370 472 450 468 2010 475 457 421 502 468 539 575 556 633 736 717 723 2011 761 622 799 751 807 760 758 759 746 788 744 779 2012 619 734 797 737 741 707 754 772 742 747 714 749 2013 722 647 718 693 719 684 675 643 655 527 657 599

  2. Kansas Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 29,881 26,619 29,613 28,810 29,602 29,084 29,222 29,033 26,997 27,603 26,611 27,244 2007 29,683 26,410 29,381 28,600 29,344 28,883 29,025 28,833 26,819 27,425 26,382 27,028 2008 29,063 27,490 29,485 28,317 27,862 28,278 29,479 29,490 28,775 29,371 30,304 28,092 2009 28,859 26,305 28,387 27,223 28,433 26,975 27,149 28,170 26,932 27,198 26,261 25,597 2010 25,774 23,787 25,958 25,013 22,913 24,881 24,848 25,690 24,446 25,528 24,560 25,072

  3. Kentucky Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 5,697 7,677 8,520 8,183 7,489 9,115 5,881 6,968 11,760 2,755 7,527 11,496 2007 3,406 11,177 11,028 2,999 9,590 13,070 1,236 8,146 7,953 7,263 7,873 9,740 2008 5,222 7,491 8,501 8,780 9,590 9,270 14,157 11,552 8,504 8,568 14,157 5,923 2009 7,603 12,215 4,388 4,959 12,194 10,773 3,106 10,861 11,461 10,245 9,907 12,318 2010 9,912 17,124 4,128 10,287 10,652 9,940 11,821 9,979 11,091 18,920 4,638 12,261 2011 9,162 9,704 11,350 10,611 8,658

  4. Louisiana Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 103,179 94,149 106,787 103,292 108,053 105,465 106,944 106,844 104,031 107,110 103,481 106,548 2007 104,710 93,081 105,356 103,432 108,896 105,641 109,196 105,741 103,080 106,353 102,678 106,424 2008 108,824 101,639 109,423 106,887 113,001 111,049 115,083 111,736 81,165 106,694 108,950 108,733 2009 109,484 101,528 112,915 112,335 118,741 115,297 121,967 126,920 125,045 134,323 135,546 139,146 2010 143,710 137,013 157,580 158,568 168,520

  5. Maryland Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 4 4 4 4 4 3 4 4 4 3 4 4 2007 4 4 4 4 3 3 7 3 3 1 1 1 2008 4 2 3 2 1 2 2 2 8 1 1 1 2009 4 3 3 3 3 3 3 3 4 3 3 8 2010 3 3 5 3 3 3 3 4 3 4 3 4 2011 5 3 4 3 3 4 4 3 3 1 1 1 2012 4 3 4 4 4 3 4 4 3 4 3 4 2013 2 2 2 3 2 3 3 3 3 3 3 3

  6. Michigan Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 19,883 17,063 27,033 13,724 16,250 29,932 19,947 23,815 21,426 21,485 15,743 33,432 2007 28,452 18,375 20,205 16,164 26,215 19,657 22,244 23,754 24,229 20,800 22,560 19,160 2008 12,815 11,826 12,767 12,084 12,618 12,241 12,726 12,935 12,320 12,670 11,930 12,277 2009 11,969 10,885 14,918 11,443 11,360 11,504 14,266 11,778 12,143 11,495 14,682 14,960 2010 11,162 9,983 11,016 10,515 10,841 10,502 10,765 11,025 10,631 10,776 10,390 10,571

  7. Mississippi Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 3,091 2,334 3,199 3,696 3,506 3,804 3,410 3,383 4,657 4,850 4,726 5,213 2007 5,557 4,821 5,290 5,225 5,893 5,906 4,586 4,655 3,756 4,590 5,237 4,847 2008 7,506 7,722 6,936 6,274 7,681 6,976 7,347 7,921 5,291 7,039 6,796 8,307 2009 6,662 6,156 5,705 5,085 5,101 4,803 5,384 5,682 5,195 6,100 6,656 7,274 2010 4,424 3,807 4,610 3,842 4,561 4,336 4,709 4,674 4,764 5,053 5,302 5,233 2011 6,123 5,484 6,073 5,948 6,389 5,724 6,505 5,806 5,370

  8. Missouri Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 NA NA NA NA NA NA NA NA NA NA NA NA 2009 NA NA NA NA NA NA NA NA NA NA NA NA 2010 NA NA NA NA NA NA NA NA NA NA NA NA 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA 2013 1 1 1 1 1 1 1 1 0 1 0 0

  9. Montana Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 9,638 8,592 9,528 9,014 9,319 8,878 9,287 9,370 9,040 9,427 9,373 9,957 2007 9,955 8,979 9,752 9,324 9,619 9,399 9,580 9,745 9,506 9,861 9,638 9,914 2008 9,770 8,988 9,655 9,277 9,393 9,043 9,332 9,324 9,120 9,411 9,017 8,578 2009 8,643 7,927 8,627 8,256 8,436 7,992 8,158 8,057 7,718 7,751 7,425 7,402 2010 7,480 6,781 7,629 7,355 7,386 7,125 7,316 7,202 7,003 7,143 6,926 6,826 2011 6,552 5,781 6,330 6,122 6,280 6,001 6,227 6,202 6,223

  10. Nebraska Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 103 92 100 95 105 105 108 102 100 102 95 93 2007 77 73 96 99 115 116 122 129 156 202 193 177 2008 235 257 260 243 243 245 272 256 265 267 275 263 2009 283 287 303 269 273 255 217 226 211 202 195 187 2010 187 177 191 188 200 189 191 194 185 184 177 168 2011 168 143 163 164 168 177 172 176 167 164 151 146 2012 155 145 147 98 109 105 97 97 98 97 93 88 2013 82 77 87 81 82 83 81 78 81 117 74 109

  11. Indiana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 218 211 246 234 246 254 179 244 282 275 259 272 2007 282 235 286 324 301 267 308 343 310 374 351 224 2008 349 364 407 409 438 397 416 357 368 423 420 353 2009 425 301 419 414 428 393 366 422 370 472 450 468 2010 475 457 421 502 468 539 575 556 633 736 717 723 2011 761 622 799 751 807 760 758 759 746 788 744 779 2012 619 734 797 737 741 707 754 772 742 747 714 749 2013 722 647 718 693 719 684 675 643 655 527 657 599

  12. Kansas Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 29,881 26,619 29,613 28,810 29,602 29,084 29,222 29,033 26,997 27,603 26,611 27,244 2007 29,683 26,410 29,381 28,600 29,344 28,883 29,025 28,833 26,819 27,425 26,382 27,028 2008 29,063 27,490 29,485 28,317 27,862 28,278 29,479 29,490 28,775 29,371 30,304 28,092 2009 28,859 26,305 28,387 27,223 28,433 26,975 27,149 28,170 26,932 27,198 26,261 25,597 2010 25,774 23,787 25,958 25,013 22,913 24,881 24,848 25,690 24,446 25,528 24,560 25,072

  13. Kentucky Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 5,697 7,677 8,520 8,183 7,489 9,115 5,881 6,968 11,760 2,755 7,527 11,496 2007 3,406 11,177 11,028 2,999 9,590 13,070 1,236 8,146 7,953 7,263 7,873 9,740 2008 5,222 7,491 8,501 8,780 9,590 9,270 14,157 11,552 8,504 8,568 14,157 5,923 2009 7,603 12,215 4,388 4,959 12,194 10,773 3,106 10,861 11,461 10,245 9,907 12,318 2010 9,912 17,124 4,128 10,287 10,652 9,940 11,821 9,979 11,091 18,920 4,638 12,261 2011 9,162 9,704 11,350 10,611 8,658

  14. Michigan Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138,869 125,373 131,708 120,726 115,643 136,120 135,662 146,102 1990's 163,834 187,646 186,722 197,623 216,286 231,875 239,341 299,803 272,138 271,419 2000's 291,234 270,534 270,246 233,149 255,482 257,404 259,732 261,813 149,209 151,402 2010's 128,175 135,697 126,853 121,277 113,024

  15. Mississippi Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,400 150,571 157,293 143,714 140,370 139,290 123,242 102,265 1990's 94,171 107,520 91,281 80,300 63,023 95,156 102,923 107,000 107,573 105,559 2000's 77,181 92,087 96,503 122,471 49,656 38,615 45,869 60,363 85,795 69,803 2010's 55,316 70,266 63,357 58,806 53,945

  16. Missouri Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 4 4 4 4 4 4 1990's 7 15 27 14 8 16 25 5 0 0 2000's 0 0 0 0 0 0 0 0 NA NA 2010's NA NA NA 9 9

  17. Montana Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 55,577 50,918 50,405 51,305 45,506 45,398 50,582 50,212 1990's 49,338 50,944 52,960 53,787 49,785 49,667 50,420 52,028 57,235 60,728 2000's 69,664 80,927 85,500 85,412 96,128 106,769 111,423 115,272 110,907 96,392 2010's 86,172 73,372 65,463 61,597 58,261

  18. Nebraska Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,147 1,954 2,168 1,829 1,326 1,180 851 849 1990's 793 771 1,174 2,114 2,890 2,240 1,876 1,670 1,695 1,395 2000's 1,218 1,208 1,188 1,454 1,476 1,172 1,200 1,555 3,082 2,908 2010's 2,231 1,959 1,328 1,032 402

  19. New Mexico Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 934,321 838,975 898,786 851,319 651,319 758,617 728,464 793,021 1990's 898,478 967,821 1,193,343 1,326,236 1,471,082 1,540,169 1,445,746 1,449,587 1,394,433 1,403,821 2000's 1,584,884 1,580,167 1,522,044 1,492,723 1,527,127 1,544,102 1,509,252 1,421,672 1,353,625 1,288,164 2010's 1,200,222 1,147,012 1,131,211 1,084,845 1,091,91

  20. New York Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,877 17,836 25,200 31,561 29,964 25,676 23,455 20,433 1990's 25,023 22,777 23,508 21,183 20,465 18,400 18,131 16,188 16,699 16,122 2000's 17,757 27,787 36,816 36,137 46,050 55,180 55,980 54,942 50,320 44,849 2010's 35,813 31,124 26,424 23,458 20,201

  1. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 48,216 62,148 62,636 64,213 48,142 54,399 50,802 45,041 1990's 45,725 47,137 48,828 53,927 52,134 44,141 44,737 47,325 47,704 47,058 2000's 46,405 48,564 51,052 49,875 48,776 45,699 48,019 52,817 44,566 49,229 2010's 70,456 82,920 146,128 198,871 275,94

  2. Ohio Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138,368 151,271 186,439 182,178 182,004 166,543 166,646 159,684 1990's 154,561 147,602 144,743 137,190 132,047 126,242 119,166 116,163 115,005 109,431 2000's 105,047 100,021 103,086 93,573 90,418 83,494 86,310 88,086 84,858 88,824 2010's 78,122 78,858 84,327 163,901 485,434

  3. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,899,450 1,688,769 1,948,032 1,893,472 1,871,683 1,974,291 2,063,748 2,142,148 1990's 2,161,773 2,052,001 1,912,747 1,947,980 1,833,300 1,716,804 1,634,508 1,607,058 1,576,582 1,500,694 2000's 1,516,103 1,526,499 1,500,319 1,483,410 1,571,414 1,551,906 1,597,048 1,687,039 1,782,021 1,788,665 2010's 1,706,697 1,754,838 1,883,532 1,851,159 2,140,250

  4. Oregon Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3 2,790 4,080 4,600 3,800 4,000 2,500 1990's 2,815 2,741 2,580 4,003 3,221 1,923 1,439 1,173 1,067 1,291 2000's 1,214 1,110 837 731 467 454 621 409 778 821 2010's 1,407 1,344 770 770 950

  5. Pennsylvania Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,071 118,317 166,281 150,089 159,655 163,000 166,817 191,520 1990's 177,309 152,105 138,071 131,617 119,993 110,418 134,397 79,266 129,585 173,822 2000's 149,414 130,162 157,234 159,180 196,583 167,801 175,156 181,418 197,287 272,574 2010's 568,324 1,301,661 2,244,693 3,238,106 4,174,655

  6. West Virginia Dry Natural Gas Production (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 143,764 122,573 135,092 135,293 126,750 151,170 165,103 167,071 1990's 168,892 188,860 172,564...

  7. South Dakota Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,331 1,846 1,947 2,558 2,231 3,431 3,920 4,369 1990's 881 882 1,456 1,306 1,437 1,252 1,329 1,598 1,620 1,566 2000's 1,652 1,100 1,025 1,103 1,093 992 963 995 1,644 2,129 2010's 1,862 1,848 15,055 16,180 15,286

  8. Tennessee Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,976 3,950 5,022 4,686 3,464 2,707 2,100 1,900 1990's 2,067 1,856 1,770 1,660 1,990 1,820 1,690 1,510 1,420 1,230 2000's 1,150 2,000 2,050 1,803 2,100 2,200 2,663 3,942 4,700 5,478 2010's 4,638 4,335 5,324 4,912 4,912

  9. Texas Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,112,411 5,562,712 5,791,148 5,668,944 5,767,082 5,761,838 5,928,273 5,898,192 1990's 6,000,960 5,926,917 5,771,736 5,864,561 5,972,824 5,948,336 6,072,178 6,062,699 6,020,433 5,839,047 2000's 6,037,631 4,926,863 4,780,540 4,911,162 4,707,205 4,920,812 5,174,672 5,735,831 6,559,190 6,394,931 2010's 6,281,672 6,631,555 6,896,085 6,943,731 7,146,549

  10. Utah Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 90,325 58,978 70,439 79,531 79,874 74,762 80,135 101,787 1990's 128,296 130,425 159,442 212,101 257,078 227,611 239,797 239,267 265,539 251,207 2000's 256,490 272,534 271,387 264,654 274,588 298,408 345,409 373,680 430,286 435,673 2010's 422,067 442,615 474,756 455,454 434,555

  11. Virginia Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,880 4,346 8,901 15,041 15,427 19,223 18,424 17,935 1990's 14,774 14,906 24,733 37,840 50,259 49,818 54,290 58,249 57,263 72,189 2000's 71,545 71,543 76,915 143,644 85,508 88,610 103,027 112,057 128,454 140,738 2010's 147,255 151,094 146,405 139,382 131,885

  12. West Virginia Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 143,764 122,573 135,092 135,293 126,750 151,170 165,103 167,071 1990's 168,892 188,860 172,564 160,194 172,872 178,835 162,746 165,089 172,663 168,681 2000's 253,741 180,795 180,289 180,497 189,561 213,433 217,513 223,113 236,489 255,650 2010's 256,567 385,498 528,973 722,289 982,669

  13. Utah Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 90,325 58,978 70,439 79,531 79,874 74,762 80,135 101,787 1990's 128,296 130,425 159,442 212,101 257,078 227,611 239,797 239,267 265,539 251,207 2000's 256,490 272,534 271,387 264,654 274,588 298,408 345,409 373,680 430,286 435,673 2010's 422,067 442,615 474,756 455,454 434,555

  14. Virginia Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,880 4,346 8,901 15,041 15,427 19,223 18,424 17,935 1990's 14,774 14,906 24,733 37,840 50,259 49,818 54,290 58,249 57,263 72,189 2000's 71,545 71,543 76,915 143,644 85,508 88,610 103,027 112,057 128,454 140,738 2010's 147,255 151,094 146,405 139,382 131,885

  15. Wyoming Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 409,175 424,320 487,514 384,694 377,447 473,153 479,624 636,452 1990's 707,137 745,058 811,198 605,839 662,532 637,717 617,782 689,035 859,478 920,591 2000's 1,023,243 1,298,139 1,379,570 1,469,501 1,521,372 1,571,754 1,748,766 1,973,648 2,191,928 2,241,532 2010's 2,212,748 2,061,834 1,919,726 1,783,798 1,714,292

  16. California Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 26,709 24,159 26,358 25,054 26,148 25,090 26,049 24,843 24,309 24,405 23,739 24,290 2007 26,089 23,578 25,703 24,498 25,549 24,512 25,418 24,212 23,675 23,693 23,054 23,658 2008 25,012 22,663 24,661 23,567 24,458 23,530 24,570 23,341 22,976 22,823 22,101 22,796 2009 23,307 21,069 22,988 21,884 22,871 21,921 22,770 21,669 21,242 21,219 20,627 21,287 2010 24,284 21,962 23,900 22,672 23,732 22,814 23,742 22,596 22,130 22,126 21,427 22,211

  17. Texas Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 430,569 385,770 433,275 423,525 440,256 425,524 439,080 442,449 430,887 444,407 431,300 447,631 2007 441,468 412,905 470,928 455,133 486,205 470,615 487,991 495,092 484,416 509,596 500,023 521,459 2008 526,847 493,754 538,080 528,645 559,589 540,512 564,006 567,203 518,543 574,401 562,985 584,625 2009 590,953 516,416 574,898 542,453 553,391 527,916 533,023 540,469 505,084 514,658 486,991 508,678 2010 517,709 473,363 532,310 504,173

  18. New Mexico Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 127,437 115,388 128,902 122,927 128,084 124,586 129,037 129,014 125,936 129,125 124,185 124,630 2007 119,393 109,187 121,690 117,659 123,424 119,500 122,821 119,157 119,563 121,079 116,311 111,886 2008 107,116 104,184 116,572 113,727 117,935 108,215 118,203 115,370 111,828 118,098 111,215 111,162 2009 111,273 103,156 112,939 108,259 111,243 104,631 108,759 110,345 103,173 109,398 104,277 100,711 2010 101,117 91,571 100,542 99,013 102,984

  19. New York Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 4,613 4,122 4,443 4,261 4,291 4,119 4,821 4,809 4,741 5,168 5,174 5,419 2007 4,528 4,046 4,360 4,182 4,211 4,042 4,732 4,720 4,653 5,072 5,078 5,318 2008 4,147 3,705 3,994 3,830 3,857 3,702 4,334 4,323 4,262 4,645 4,651 4,871 2009 3,696 3,303 3,559 3,413 3,438 3,300 3,863 3,853 3,798 4,140 4,145 4,341 2010 2,951 2,637 2,842 2,726 2,745 2,635 3,084 3,077 3,033 3,306 3,310 3,467 2011 2,565 2,292 2,470 2,369 2,386 2,290 2,681 2,674 2,636

  20. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 3,771 3,299 3,804 3,813 3,983 3,930 4,094 4,171 4,246 4,415 4,230 4,263 2007 4,435 4,028 4,338 4,314 4,459 4,436 4,653 4,833 4,576 4,609 4,543 3,593 2008 3,423 3,225 3,449 3,499 3,819 4,025 4,087 4,155 4,245 4,154 4,001 2,486 2009 3,345 3,148 3,575 3,684 3,908 3,912 4,295 4,439 4,340 4,525 4,628 5,432 2010 5,032 4,753 5,480 5,497 5,995 5,315 6,372 5,999 6,498 6,650 6,497 6,368 2011 6,124 5,393 6,212 5,812 6,025 6,145 7,170 7,580 7,341