Powered by Deep Web Technologies
Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Federal Offshore--Gulf of Mexico Natural Gas Repressuring (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Repressuring (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 2,759...

2

Nebraska Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Repressuring (Million Cubic Feet) Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

3

Ohio Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Repressuring (Million Cubic Feet) Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

4

Oklahoma Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Repressuring (Million Cubic Feet) Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0

5

Arizona Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Repressuring (Million Cubic Feet) Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0

6

Other States Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Repressuring (Million Cubic Feet) Repressuring (Million Cubic Feet) Other States Natural Gas Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 867 758 881 1992 718 641 691 666 662 642 653 653 645 697 694 725 1993 680 609 662 635 644 618 635 636 626 670 673 706 1994 656 588 637 610 620 596 612 613 603 644 645 676 1995 683 612 665 636 646 620 637 638 627 671 674 706 1996 196 185 205 187 218 212 192 191 193 201 218 156 1997 208 194 204 211 200 187 148 162 151 158 148 169 1998 126 117 123 127 121 113 90 98 91 95 89 102 1999 103 99 110 99 109 102 101 96 89 102 70 69 2000 0 0 0 0 0 0 0 0 8 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0

7

Physical property changes in hydrate-bearingsediment due to depressurization and subsequent repressurization  

SciTech Connect (OSTI)

Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed at least briefly to non-in situ conditions during recovery. To examine effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes and speeds are compared between the original and depressurized/repressurized samples. X-ray computed tomography (CT) images track how the gas-hydrate distribution changes in the hydrate-cemented sands due to the depressurization/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

Kneafsey, Timothy; Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

2008-06-01T23:59:59.000Z

8

Natural Gas Used for Repressuring  

Gasoline and Diesel Fuel Update (EIA)

1-2013 1-2013 Oklahoma NA NA NA NA NA NA 1996-2013 Texas NA NA NA NA NA NA 1991-2013 Wyoming NA NA NA NA NA NA 1991-2013 Other States Other States Total NA NA NA NA NA NA 1991-2013 Alabama NA NA NA NA NA NA 1991-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1991-2013 Colorado NA NA NA NA NA NA 1991-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Maryland NA NA NA NA NA NA 1991-2013 Michigan NA NA NA NA NA NA 1996-2013 Mississippi NA NA NA NA NA NA 1991-2013 Missouri NA NA NA NA NA NA 1991-2013

9

Nevada Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

10

Indiana Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

11

Colorado Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 657 638 525 665 651 635 507 611 607 1992 665 667 720 787 782 766 787 513 840 822 915 821 1993 1,034 857 948 531 965 949 922 936 879 982 976 1,016 1994 1,024 885 999 948 553 949 969 999 1,000 1,003 1,010 1,009 1995 1,594 931 2,253 893 1,451 1,976 976 958 1,256 830 929 993 1996 954 931 858 862 907 849 880 865 762 1,028 957 863 1997 543 530 578 485 612 618 588 623 609 609 712 664 1998 594 589 751 704 764 400 626 641 604 677 588 306 1999 556 566 558 520 542 528 526 527 504 537 522 511 2000 534 510 541 521 539 524 534 540 522 551 547 561 2001 612 556 603 569 585 591 587 623 610 633 627 666

12

Utah Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 15,073 14,081 15,757 15,821 14,757 15,209 15,209 15,665 12,137 14,694 14,486 14,329 1992 15,221 13,656 13,168 11,390 11,537 11,941 11,954 11,375 11,617 10,161 10,609 9,069 1993 9,234 8,048 8,426 10,843 10,044 9,739 10,136 9,860 9,381 8,310 7,236 7,372 1994 7,057 6,684 6,978 6,450 6,086 6,183 6,058 6,000 5,912 4,935 5,287 5,167 1995 4,736 3,880 3,400 3,383 3,441 1,323 1,293 1,492 1,056 1,076 907 886 1996 762 708 215 187 210 167 165 169 163 135 142 141 1997 148 150 133 57 62 55 85 58 51 106 40 46 1998 47 40 55 45 47 40 45 43 44 44 42 69 1999 62 36 43 39 39 42 64 48 42 39 38 28 2000 42 39 45 46 46 45 51 55 44 42 69 39

13

Michigan Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 195 195 195 195 195 195 195 195 195 195 195 195 1997 195 195 195 195 195 195 195 195 195 195 195 195 1998 195 195 195 195 195 195 195 195 195 195 195 195 1999 195 195 195 195 195 195 195 195 195 195 195 195 2000 195 195 195 195 195 195 195 195 195 195 195 195 2001 195 195 195 195 195 195 195 195 195 195 195 195 2002 195 195 195 195 195 195 195 195 195 195 195 195 2003 195 195 195 195 195 195 195 195 195 195 195 195 2004 195 195 195 195 195 195 195 195 195 195 195 195 2005 195 195 195 195 195 195 195 195 195 195 195 195 2006 195 195 195 195 195 195 195 195 195 195 195 195

14

Louisiana Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,244 4,734 4,225 4,287 4,497 4,051 3,869 2,184 3,937 4,254 2,076 1,935 1992 3,882 3,446 3,606 3,528 3,694 3,572 3,661 3,278 3,265 3,553 3,480 3,668 1993 3,051 2,763 2,983 2,907 3,017 2,891 2,959 2,994 2,996 3,134 3,065 3,144 1994 3,119 2,825 3,049 2,971 3,083 2,955 3,024 3,060 3,062 3,204 3,133 3,215 1995 3,033 2,747 2,965 2,887 2,993 2,869 2,939 2,977 2,978 3,118 3,048 3,130 1996 3,068 2,866 3,008 2,923 3,036 3,346 3,525 3,543 3,488 3,445 3,738 3,964 1997 1,004 907 1,005 945 965 883 915 929 900 896 844 867 1998 721 650 719 677 691 633 653 664 644 641 602 619 1999 951 859 952 896 915 837 868 881 854 850 802 823

15

Maryland Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

16

Montana Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 7 6 6 7 8 7 7 7 5 5 6 6 1997 6 5 6 5 5 5 5 5 5 5 5 6 1998 6 5 5 8 6 6 5 5 5 6 6 6 1999 6 5 6 6 5 7 5 5 5 5 5 6 2000 0 0 0 0 0 0 0 1 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 1 1 1 2004 0 0 0 0 1 0 1 0 0 0 0 1 2005 0 0 1 2 1 1 0 0 0 1 1 1 2006 1 0 4 5 5 1 1 0 1 0 1 0 2007 0 1 0 0 1 0 0 0 0 0 0 1 2008 0 0 1 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 1 0 0 2010 0 0 0 0 0 0 0 0 0 0 1 1 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 NA NA NA NA NA NA NA NA NA

17

Oregon Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 3 2 3 3 4 4 4 4 4 4 3 2 1997 3 2 3 3 4 4 4 5 4 4 4 4 1998 3 3 3 3 4 4 4 4 4 4 4 4 1999 4 4 4 4 4 4 4 4 4 5 4 4 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 NA NA NA NA NA NA NA NA NA NA

18

Natural Gas Used for Repressuring (Summary)  

Gasoline and Diesel Fuel Update (EIA)

NA NA NA NA NA NA 1973-2013 NA NA NA NA NA NA 1973-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2013 Alabama NA NA NA NA NA NA 1991-2013 Alaska NA NA NA NA NA NA 1991-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1991-2013 Colorado NA NA NA NA NA NA 1991-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Louisiana NA NA NA NA NA NA 1991-2013 Maryland NA NA NA NA NA NA 1991-2013 Michigan NA NA NA NA NA NA 1996-2013 Mississippi NA NA NA NA NA NA 1991-2013 Missouri NA NA NA NA NA NA 1991-2013

19

California Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,315 5,658 6,757 6,471 6,507 6,127 6,736 6,497 6,688 7,419 7,161 6,900 1992 7,314 6,701 7,119 7,071 7,197 6,573 6,884 6,683 6,498 6,759 6,244 6,286 1993 7,750 6,919 7,484 7,167 7,241 6,955 7,081 7,093 6,997 7,570 7,597 7,950 1994 7,447 6,648 7,191 6,887 6,958 6,683 6,804 6,816 6,723 7,273 7,300 7,639 1995 8,960 7,999 8,653 8,286 8,372 8,041 8,187 8,201 8,089 8,751 8,783 9,192 1996 9,703 9,320 9,579 9,504 9,323 9,273 9,490 9,132 8,872 9,551 8,761 8,808 1997 8,205 7,851 9,616 9,165 9,100 9,599 10,094 10,132 9,188 9,435 8,806 8,943 1998 9,271 7,306 10,350 8,962 9,292 6,986 7,080 4,299 3,979 4,100 3,688 4,303

20

Kentucky Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Arkansas Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 854 748 874 377 368 398 320 289 301 116 43 35 1992 714 638 688 663 660 639 651 651 643 693 693 724 1993 679 609 661 633 642 617 633 635 624 668 670 702 1994 649 582 632 605 614 589 605 606 596 638 641 671 1995 683 612 665 636 646 620 637 638 627 671 674 706 1996 196 185 205 187 218 212 192 191 193 201 218 156 1997 208 194 204 211 200 187 148 162 151 158 148 169 1998 126 117 123 127 121 113 90 98 91 95 89 102 1999 103 99 110 99 109 102 101 96 89 102 70 69 2000 0 0 0 0 0 0 0 0 8 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0

22

Virginia Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

23

Colorado Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 657 638 525 665 651 635 507 611 607 1992 665 667 720 787 782 766 787 513 840 822 915 821 1993 1,034 857 948 531 965 949...

24

Colorado Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,501 6,645 3,257 1970's 2,227 1,960 415 709 266 220 327 218 256 1980's 196 398 227 388 94 748...

25

Wyoming Natural Gas Repressuring (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

1970's 8,563 8,046 8,412 12,643 11,796 6,892 6,149 14,163 14,484 23,768 1980's 39,895 43,871 35,168 45,870 46,291 48,107 52,977 66,604 51,982 52,783 1990's 56,581 90,465 81,712...

26

Alaska Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 165,196 155,820 172,824 157,592 156,292 156,913 163,560 160,337 144,609 169,116 159,810 168,222 1992 177,791 178,481 186,092 181,395 176,802 169,069 171,059 170,930 179,174 189,695 185,519 202,013 1993 200,110 178,483 201,238 185,464 188,032 168,714 169,336 185,382 178,508 211,134 223,628 235,477 1994 217,133 193,581 219,086 201,450 203,950 182,418 182,384 200,295 192,711 228,960 241,471 253,820 1995 249,424 222,370 251,668 231,409 234,281 209,546 209,508 230,082 221,371 263,010 277,382 291,567 1996 256,039 244,327 258,675 235,873 216,656 225,006 218,556 229,586 234,296 254,528 251,365 260,779 1997 257,697 245,909 260,350 237,401 218,058 226,463 219,971 231,072 235,813 256,176 252,993 262,467

27

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Gross Withdrawals Year and State From Gas Wells From Oil Wells Total Repressuring Vented And Flared Nonhydro- carbon Gases Removed Marketed Production Extraction Loss Dry Production 1999 Total ................ 17,590,187 6,232,524 23,822,711 3,292,564 110,285 615,014 19,804,848 972,614 18,832,234 2000 Total ................ 17,726,056 6,447,820 24,173,875 3,379,661 91,232 505,472 20,197,511 1,015,542 19,181,969 2001 Total ................ 18,129,408 6,371,371 24,500,779 3,370,832 96,913 462,738 20,570,295 953,984 19,616,311 2002 Total ................ R 17,794,858 R 6,146,420 R 23,941,279 3,455,145 R 99,178 502,176 R 19,884,780 956,992 R 18,927,788 2003 Total ................ 17,819,244 6,237,176 24,056,420 3,547,781 98,113 498,724 19,911,802 875,816 19,035,986 Alabama Total

28

Historical Data  

Gasoline and Diesel Fuel Update (EIA)

99. 99. Quantity and Average Price of Natural Gas Production in the United States, 1930-1996 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production Average Wellhead Price of Marketed Production 1930 ....................... NA NA NA NA 1,978,911 75,140 1,903,771 0.08 1931 ....................... NA NA NA NA 1,721,902 62,288 1,659,614 0.07 1932 ....................... NA NA NA NA 1,593,798 51,816 1,541,982 0.06 1933 ....................... NA NA NA NA 1,596,673 48,280 1,548,393 0.06 1934 ....................... NA NA NA NA 1,815,796 52,190 1,763,606 0.06 1935 ....................... NA NA NA NA 1,968,963 55,488 1,913,475 0.06 1936 ....................... 2,691,512 73,507 NA 392,528 2,225,477

29

NGA98fin5.vp  

Gasoline and Diesel Fuel Update (EIA)

7 7 98. Quantity and Average Price of Natural Gas Production in the United States, 1930-1998 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production Average Wellhead Price of Marketed Production 1930 ...................... NA NA NA NA 1,978,911 75,140 1,903,771 0.08 1931 ...................... NA NA NA NA 1,721,902 62,288 1,659,614 0.07 1932 ...................... NA NA NA NA 1,593,798 51,816 1,541,982 0.06 1933 ...................... NA NA NA NA 1,596,673 48,280 1,548,393 0.06 1934 ...................... NA NA NA NA 1,815,796 52,190 1,763,606 0.06 1935 ...................... NA NA NA NA 1,968,963 55,488 1,913,475 0.06 1936 ...................... 2,691,512 73,507 NA 392,528 2,225,477 61,064 2,164,413

30

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Supplies Energy Information Administration / Natural Gas Annual 2003 6 Gross Withdrawals Year and State From Gas Wells From Oil Wells Total Repressuring Vented And Flared Nonhydro- carbon Gases Removed Marketed Production Extraction Loss Dry Production 1999 Total ................ 17,590,187 6,232,524 23,822,711 3,292,564 110,285 615,014 19,804,848 972,614 18,832,234 2000 Total ................ 17,726,056 6,447,820 24,173,875 3,379,661 91,232 505,472 20,197,511 1,015,542 19,181,969 2001 Total ................ 18,129,408 6,371,371 24,500,779 3,370,832 96,913 462,738 20,570,295 953,984 19,616,311 2002 Total ................ R 17,794,858 R 6,146,420 R 23,941,279 3,455,145 R 99,178 502,176 R 19,884,780 956,992 R 18,927,788 2003 Total ................ 17,819,244 6,237,176 24,056,420 3,547,781

31

C:\ANNUAL\Vol2chps.v8\ANNUAL2.VP  

Gasoline and Diesel Fuel Update (EIA)

Energy Energy Information Administration / Historical Natural Gas Annual 1930 Through 2000 2 1. Quantity and Average Price of Natural Gas Production in the United States, 1930-2000 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production Average Wellhead Price of Marketed Production 1930 ...................... NA NA NA NA 1,978,911 75,140 1,903,771 0.08 1931 ...................... NA NA NA NA 1,721,902 62,288 1,659,614 0.07 1932 ...................... NA NA NA NA 1,593,798 51,816 1,541,982 0.06 1933 ...................... NA NA NA NA 1,596,673 48,280 1,548,393 0.06 1934 ...................... NA NA NA NA 1,815,796 52,190 1,763,606 0.06 1935 ...................... NA NA NA NA 1,968,963 55,488 1,913,475 0.06

32

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

96 96 Energy Information Administration / Natural Gas Annual 1999 92. Quantity and Average Price of Natural Gas Production in the United States, 1930-1999 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production Average Wellhead Price of Marketed Production 1930 ...................... NA NA NA NA 1,978,911 75,140 1,903,771 0.08 1931 ...................... NA NA NA NA 1,721,902 62,288 1,659,614 0.07 1932 ...................... NA NA NA NA 1,593,798 51,816 1,541,982 0.06 1933 ...................... NA NA NA NA 1,596,673 48,280 1,548,393 0.06 1934 ...................... NA NA NA NA 1,815,796 52,190 1,763,606 0.06 1935 ...................... NA NA NA NA 1,968,963 55,488 1,913,475 0.06 1936 ......................

33

C:\ANNUAL\Vol2chps.v8\ANNUAL2.VP  

Gasoline and Diesel Fuel Update (EIA)

2 2 1. Quantity and Average Price of Natural Gas Production in the United States, 1930-2000 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production Average Wellhead Price of Marketed Production 1930 ...................... NA NA NA NA 1,978,911 75,140 1,903,771 0.08 1931 ...................... NA NA NA NA 1,721,902 62,288 1,659,614 0.07 1932 ...................... NA NA NA NA 1,593,798 51,816 1,541,982 0.06 1933 ...................... NA NA NA NA 1,596,673 48,280 1,548,393 0.06 1934 ...................... NA NA NA NA 1,815,796 52,190 1,763,606 0.06 1935 ...................... NA NA NA NA 1,968,963 55,488 1,913,475 0.06 1936 ...................... 2,691,512 73,507 NA 392,528 2,225,477 61,064 2,164,413

34

Average Price of Natural Gas Production  

Gasoline and Diesel Fuel Update (EIA)

. . Quantity and Average Price of Natural Gas Production in the United States, 1930-1996 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production Average Wellhead Price of Marketed Production 1930 ....................... NA NA NA NA 1,978,911 75,140 1,903,771 0.08 1931 ....................... NA NA NA NA 1,721,902 62,288 1,659,614 0.07 1932 ....................... NA NA NA NA 1,593,798 51,816 1,541,982 0.06 1933 ....................... NA NA NA NA 1,596,673 48,280 1,548,393 0.06 1934 ....................... NA NA NA NA 1,815,796 52,190 1,763,606 0.06 1935 ....................... NA NA NA NA 1,968,963 55,488 1,913,475 0.06 1936 ....................... 2,691,512 73,507 NA 392,528 2,225,477

35

Microsoft Word - table_03.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Gross Withdrawals Year and State From Gas Wells From Oil Wells Total Repressuring Vented And Flared Nonhydro- carbon Gases Removed Marketed Production Extraction Loss Dry Production 2000 Total ................ 17,726,056 6,447,820 24,173,875 3,379,661 91,232 505,472 20,197,511 1,015,542 19,181,969 2001 Total ................ 18,129,408 6,371,371 24,500,779 3,370,832 96,913 462,738 20,570,295 953,984 19,616,311 2002 Total ................ 17,794,858 6,146,420 23,941,279 3,455,145 99,178 502,176 19,884,780 956,992 18,927,788 2003 Total ................ R 17,881,802 6,237,176 R 24,118,978 3,547,781 98,113 498,724 R 19,974,360 875,816 R 19,098,544 2004 Total ................ 17,993,520 6,061,912 24,055,432 3,701,656 97,595 572,103 19,684,077 926,600 18,757,477 Alabama Total

36

C:\ANNUAL\VENTCHAP.V8\NGA.VP  

Gasoline and Diesel Fuel Update (EIA)

99 99 98. Quantity and Average Price of Natural Gas Production in the United States, 1930-1997 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production Average Wellhead Price of Marketed Production 1930 ...................... NA NA NA NA 1,978,911 75,140 1,903,771 0.08 1931 ...................... NA NA NA NA 1,721,902 62,288 1,659,614 0.07 1932 ...................... NA NA NA NA 1,593,798 51,816 1,541,982 0.06 1933 ...................... NA NA NA NA 1,596,673 48,280 1,548,393 0.06 1934 ...................... NA NA NA NA 1,815,796 52,190 1,763,606 0.06 1935 ...................... NA NA NA NA 1,968,963 55,488 1,913,475 0.06 1936 ...................... 2,691,512 73,507 NA 392,528 2,225,477 61,064 2,164,413

37

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 93. Quantity and Average Price of Natural Gas Production in the United States, 1930-2000 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production Average Wellhead Price of Marketed Production 1930 ...................... NA NA NA NA 1,978,911 75,140 1,903,771 0.08 1931 ...................... NA NA NA NA 1,721,902 62,288 1,659,614 0.07 1932 ...................... NA NA NA NA 1,593,798 51,816 1,541,982 0.06 1933 ...................... NA NA NA NA 1,596,673 48,280 1,548,393 0.06 1934 ...................... NA NA NA NA 1,815,796 52,190 1,763,606 0.06 1935 ...................... NA NA NA NA 1,968,963 55,488 1,913,475 0.06 1936 ...................... 2,691,512 73,507 NA 392,528 2,225,477 61,064 2,164,413

38

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

86 86 Energy Information Administration / Natural Gas Annual 2000 93. Quantity and Average Price of Natural Gas Production in the United States, 1930-2000 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production Average Wellhead Price of Marketed Production 1930 ...................... NA NA NA NA 1,978,911 75,140 1,903,771 0.08 1931 ...................... NA NA NA NA 1,721,902 62,288 1,659,614 0.07 1932 ...................... NA NA NA NA 1,593,798 51,816 1,541,982 0.06 1933 ...................... NA NA NA NA 1,596,673 48,280 1,548,393 0.06 1934 ...................... NA NA NA NA 1,815,796 52,190 1,763,606 0.06 1935 ...................... NA NA NA NA 1,968,963 55,488 1,913,475 0.06 1936 ......................

39

North Dakota Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 223 222 230 228 233 230 239 233 222 207 220 242 1997 110 87 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0

40

U.S. Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1930's 73,507 84,925 101,551 171,401 1940's 362,916 644,379 752,619 824,803 882,979 1,061,951 1,038,242 1,083,119 1,220,579 1,273,205 1950's 1,396,546 1,438,827 1,410,501 1,438,606 1,518,737 1,540,804 1,426,648 1,417,263 1,482,975 1,612,109 1960's 1,753,996 1,682,754 1,736,722 1,843,297 1,647,108 1,604,204 1,451,516 1,590,574 1,486,092 1,455,205 1970's 1,376,351 1,310,458 1,236,292 1,171,361 1,079,890 860,956 859,410 934,801 1,181,432 1,245,074 1980's 1,365,454 1,311,735 1,388,392 1,458,054 1,630,152 1,915,197 1,837,552 2,207,559 2,478,382 2,475,179 1990's 2,489,040 2,771,928 2,972,552 3,103,014 3,230,667 3,565,023 3,510,753 3,491,542 3,427,045 3,292,564

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite  

E-Print Network [OSTI]

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite · C-C supplied in two forms · T300: C-C composite containing continuous PAN T300 fibers · SWB: Chopped Fiber Composite containing SWB fibers Crush strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine

Rollins, Andrew M.

42

Carbon sequestration  

Science Journals Connector (OSTI)

...Leaver and Howard Dalton Carbon sequestration Rattan Lal * * ( lal.1...and biotic technologies. Carbon sequestration implies transfer of atmospheric...and biomass burning. 3. Carbon sequestration Emission rates from fossil...

2008-01-01T23:59:59.000Z

43

Carbon Sequestration  

Science Journals Connector (OSTI)

Carbon sequestration refers to a portfolio of activities for ... capture, separation and storage or reuse of carbon or CO2. Carbon sequestration technologies encompass both the prevention of CO2 emissions into ...

Robert L. Kane MS; Daniel E. Klein MBA

2005-01-01T23:59:59.000Z

44

Carbon Smackdown: Carbon Capture  

SciTech Connect (OSTI)

In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

Jeffrey Long

2010-07-12T23:59:59.000Z

45

Carbon Conference  

Science Journals Connector (OSTI)

Carbon Conference ... The Fourth Hienninl Conference on Carbon will be held at the University of Buffalo, June 15 to 19. ... The Pittsburgh Section's coal technology group will meet in the conference room at Mellon Institute, Pittsburgh, June ... ...

1959-06-01T23:59:59.000Z

46

Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

47

Carbon Isotopes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

48

Carbon Nanotubes.  

E-Print Network [OSTI]

?? Carbon nanotubes have extraordinary mechanical, electrical, thermal andoptical properties. They are harder than diamond yet exible, have betterelectrical conductor than copper, but can also (more)

Fredriksson, Tore

2014-01-01T23:59:59.000Z

49

Capturing carbon | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capturing carbon Capturing carbon New technology enables molecular-level insight into carbon sequestration Carbon sequestration is a potential solution for reducing greenhouse...

50

Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov andrew chizmeshya Arizona State University Center for Solid State Science Tempe, AZ 85287-1704 480-965-6072 chizmesh@asu.edu A Novel ApproAch to MiNerAl cArboNAtioN: eNhANciNg cArboNAtioN While AvoidiNg MiNerAl pretreAtMeNt process cost Background Carbonation of the widely occurring minerals of the olivine group, such as forsterite (Mg 2 SiO 4 ), is a potential large-scale sequestration process that converts CO 2 into the environmentally benign mineral magnesite (MgCO 3 ). Because the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is the key to economic viability. Previous

51

Carbon Nanotubes  

Science Journals Connector (OSTI)

A broad review of the structure and properties of carbon nanotubes is presented. Particular emphasis is given to ... dimensional density of states predicted for single-wall nanotubes of small diameter. The eviden...

M. S. Dresselhaus; G. Dresselhaus

2000-01-01T23:59:59.000Z

52

Carbon Fiber  

ScienceCinema (OSTI)

Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

McGetrick, Lee

2014-07-23T23:59:59.000Z

53

Carbon Fiber  

SciTech Connect (OSTI)

Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

McGetrick, Lee

2014-04-17T23:59:59.000Z

54

Low Carbon Fuel Standards  

E-Print Network [OSTI]

gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. Forenergy and could capture and sequester carbon emissions.

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

55

Delayed carbon sequestration and rising carbon prices  

Science Journals Connector (OSTI)

We set out a dynamic model to investigate optimal time paths of emissions, carbon stocks and carbon sequestration by land conversion, allowing for non-instantaneous carbon sequestration. Previous research in a dy...

Alejandro Caparrs

2009-10-01T23:59:59.000Z

56

Carbon Additionality: Discussion Paper  

E-Print Network [OSTI]

ahead, and identifying the carbon pools and other green house gas emissions sources and savings coveredCarbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 Carbon

57

Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4966 jose.figueroa@netl.doe.gov Kevin o'Brien Principal Investigator SRI International Materials Research Laboratory 333 Ravenswood Avenue Menlo Park, AK 94025 650-859-3528 kevin.obrien@sri.com Fabrication and Scale-Up oF polybenzimidazole - baSed membrane SyStem For pre - combUStion captUre oF carbon dioxide Background In order to effectively sequester carbon dioxide (CO 2 ) from a gasification plant, there must be an economically viable method for removing the CO 2 from other gases. While CO 2 separation technologies currently exist, their effectiveness is limited. Amine-based separation technologies work only at low temperatures, while pressure-swing absorption and cryogenic distillation consume significantly

58

Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

andrea Mcnemar andrea Mcnemar National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-2024 andrea.mcnemar@netl.doe.gov Gregory J. Elbring Principal Investigator Sandia National Laboratory P.O. Box 5800 Albuquerque, NM 87185 505-844-4904 gjelbri@sandia.gov GeoloGic SequeStration of carbon DioxiDe in a DepleteD oil reServoir: a comprehenSive moDelinG anD Site monitorinG project Background The use of carbon dioxide (CO 2 ) to enhance oil recovery (EOR) is a familiar and frequently used technique in the United States. The oil and gas industry has significant experience with well drilling and injecting CO 2 into oil-bearing formations to enhance production. While using similar techniques as in oil production, this sequestration field

59

Carbon Trading, Carbon Taxes and Social Discounting  

E-Print Network [OSTI]

Carbon Trading, Carbon Taxes and Social Discounting Elisa Belfiori belf0018@umn.edu University of Minnesota Abstract This paper considers the optimal design of policies to carbon emissions in an economy, such as price or quantity controls on the net emissions of carbon, are insufficient to achieve the social

Weiblen, George D

60

Carbon Fiber Consortium | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Fiber Consortium SHARE Carbon Fiber Consortium Oak Ridge Carbon Fiber Composites Consortium The Oak Ridge Carbon Fiber Composites Consortium was established in 2011 to...

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization  

E-Print Network [OSTI]

documented example of gas hydrate saturated sand in the Gulfa volume of water to gas hydrate in sands at these pressureseffects of hydrate redistribution in cemented, gas-rich sand

Waite, W.F.

2008-01-01T23:59:59.000Z

62

Carbon Sequestration Project Portfolio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Carbon Storage 2011 Carbon Storage Project Portfolio Table of Contents CARBON STORAGE OVERVIEW Carbon Storage Program Contacts [PDF-26KB] Carbon Storage Projects National Map [PDF-169KB] State Projects Summary Table [PDF-39KB] Carbon Storage Program Structure [PDF-181KB] Selected Carbon Sequestration Program Papers and Publications The U.S. Department of Energy's R&D Program to Reduce Greenhouse Gas Emissions Through Beneficial Uses of Carbon Dioxide (2011) [PDF-3.3MB] Greenhouse Gas Science and Technology Carbon Capture and Sequestration: The U.S. Department of Energy's R&D Efforts to Characterize Opportunities for Deep Geologic Storage of Carbon Dioxide in Offshore Resources (2011) [PDF-445KB]

63

CALIFORNIA CARBON SEQUESTRATION THROUGH  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN WASHINGTON. Carbon Sequestration Through Changes in Land Use in Washington: Costs and Opportunities. California for Terrestrial Carbon Sequestration in Oregon. Report to Winrock International. #12;ii #12;iii Preface

64

Method of making carbon-carbon composites  

DOE Patents [OSTI]

A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1993-01-01T23:59:59.000Z

65

Carbon Code Requirements for voluntary carbon sequestration projects  

E-Print Network [OSTI]

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon leakage 12 3.4 Project carbon sequestration 12 3.5 Net carbon sequestration 13 4. Environmental quality 14

66

Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production  

E-Print Network [OSTI]

#12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

Narasayya, Vivek

67

Low Carbon Fuel Standards  

E-Print Network [OSTI]

in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

68

Carbon Capture (Carbon Cycle 2.0)  

ScienceCinema (OSTI)

Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Smit, Berend

2011-06-08T23:59:59.000Z

69

Acetylenic carbon allotrope  

DOE Patents [OSTI]

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

Lagow, R.J.

1998-02-10T23:59:59.000Z

70

The Woodland Carbon Code  

E-Print Network [OSTI]

The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

71

Mesoporous carbon materials  

DOE Patents [OSTI]

A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

2014-09-09T23:59:59.000Z

72

Ultrafast Nonlinear Spectroscopy of Semiconducting Carbon Nanotubes  

E-Print Network [OSTI]

metallic nanotubes . . . . . . . . . . . . . . . . . Carbon2 Carbon Nanotubes Physical and ElectronicStructure of Carbon Nanotubes . . . . . . . . . .

Graham, Matthew Werden

2010-01-01T23:59:59.000Z

73

Ultrafast Nonlinear Spectroscopy of Semiconducting Carbon Nanotubes  

E-Print Network [OSTI]

2 Carbon Nanotubes Physical andElectronic Structure of Carbon Nanotubes . . . . . . . . . .Photophysics in Semiconducting Carbon Nanotubes . . . . .

Graham, Matthew Werden

2010-01-01T23:59:59.000Z

74

Carbon International | Open Energy Information  

Open Energy Info (EERE)

Kingdom Zip: NW1 8LH Sector: Carbon Product: London-based energy and communications agency specialising in low carbon energy and climate change. References: Carbon...

75

Carbon Nanostructure-Based Sensors  

E-Print Network [OSTI]

Control of Single-Walled Carbon Nanotube Functionalization.M. S. Characterizing carbon nanotube samples with resonancewith a Single-Walled Carbon Nanotube Capacitor. Science

Sarkar, Tapan

2012-01-01T23:59:59.000Z

76

Method of making carbon-carbon composites  

DOE Patents [OSTI]

A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1991-01-01T23:59:59.000Z

77

Carbon nanotube nanoelectrode arrays  

DOE Patents [OSTI]

The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

Ren, Zhifeng (Newton, MA); Lin, Yuehe (Richland, WA); Yantasee, Wassana (Richland, WA); Liu, Guodong (Fargo, ND); Lu, Fang (Burlingame, CA); Tu, Yi (Camarillo, CA)

2008-11-18T23:59:59.000Z

78

Quantifying Carbon Cycle Feedbacks  

Science Journals Connector (OSTI)

Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, ...

J. M. Gregory; C. D. Jones; P. Cadule; P. Friedlingstein

2009-10-01T23:59:59.000Z

79

Carbon Monoxide Safety Tips  

E-Print Network [OSTI]

Protect yourself and your family from the deadly effects of carbon monoxide--a colorless, odorless poisonous gas. This publication describes the warning signs of carbon monoxide exposure and includes a home safety checklist....

Shaw, Bryan W.; Garcia, Monica L.

1999-07-26T23:59:59.000Z

80

Terrestrial Carbon Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Terrestrial Carbon Management Data Sets and Analyses Terrestrial Carbon Management Data Sets and Analyses Carbon Accumulation with Cropland Management Influence of Agricultural Management on Soil Organic Carbon: A Compendium and Assessment of Canadian Studies (VandenBygaart et al., Agriculture and Agri-Food Canada) Soil Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (West and Post, Oak Ridge National Laboratory) Preliminary Estimates of the Potential for Carbon Mitigation in European Soils Through No-Till Farming (Smith et al., University of Aberdeen, United Kingdom) Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments (Smith et al., University of Aberdeen, United Kingdom) Carbon Accumulation with Grassland Management

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Supernova: Carbon detonation redux  

Science Journals Connector (OSTI)

... A DECADE ago carbon detonation was all the rage among supernova theorists. The idea was that the characteristic burst ... wind.

J. Craig Wheeler

1983-03-17T23:59:59.000Z

82

Carbon Capital | Open Energy Information  

Open Energy Info (EERE)

Sector: Carbon Product: Manages a carbon fund specialised in forestry projects References: Carbon Capital1 This article is a stub. You can help OpenEI by expanding it. Carbon...

83

Kinetics Of Carbon Gasification  

Science Journals Connector (OSTI)

Kinetics Of Carbon Gasification ... The steamcarbon reaction, which is the essential reaction of the gasification processes of carbon-based feed stocks (e.g., coal and biomass), produces synthesis gas (H2 + CO), a synthetically flexible, environmentally benign energy source. ... Coal Gasification in CO2 and Steam:? Development of a Steam Injection Facility for High-Pressure Wire-Mesh Reactors ...

C. W. Zielke; Everett. Gorin

1957-03-01T23:59:59.000Z

84

How Carbon Capture Works  

Broader source: Energy.gov [DOE]

Carbon capture, utilization and storage is a process that captures carbon dioxide emissions from sources like coal-fired power plants and either reuses or stores it so it will not enter the atmosphere. We'll break down the process step by step so you can learn how this technology can help us lower our carbon pollution.

85

Intro to Carbon Sequestration  

ScienceCinema (OSTI)

NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

None

2010-01-08T23:59:59.000Z

86

Carbon Connections | Open Energy Information  

Open Energy Info (EERE)

Product: Carbon Connections links partner universities with industry encouraging knowledge exchange and developing innovative ideas. References: Carbon Connections1 This...

87

Carbon in detonations  

SciTech Connect (OSTI)

We review three principal results from a five year study of carbon and its properties in detonations and discuss the implications of these results to the behavior of explosives. We first present a new determination of the carbon melt line from release wave velocity measurements in the shocked state. We then outline a colloidal theory of carbon clustering which from diffusion limited coagulation predicts a slow energy release rate for the carbon chemistry. Finally, we show the results from the examination of recovered soot. Here we see support for the colloid theory and find the diamond phase of carbon. The main theme of this paper is that the carbon in detonation products is in the form of a colloidal suspension of carbon clusters which grow through diffusion limited collisions. Even the final state is not bulk graphite or diamond, but is a collection of small, less than 100 /angstrom/A, diamond and graphitic clusters. 23 refs., 4 figs.

Johnson, J.D.

1989-01-01T23:59:59.000Z

88

Potential of Silicon Carbide-Derived Carbon for Carbon Capture  

Science Journals Connector (OSTI)

Potential of Silicon Carbide-Derived Carbon for Carbon Capture ... In contrast to conventional carbons made from natural precursors, carbide derived carbons (CDCs),(8, 10-13) being synthesized from an inorganic source, have no polar functional groups and are composed of purely covalently bonded carbon. ...

S. K. Bhatia; T. X. Nguyen

2011-08-08T23:59:59.000Z

89

Carbon Sequestration via Mineral Carbonation: Overview and Assessment  

E-Print Network [OSTI]

1 Carbon Sequestration via Mineral Carbonation: Overview and Assessment 14 March 2002 Howard Herzog overview and assessment of carbon sequestration by mineral carbonation (referred to as "mineral sequestration R&D. The first is that carbonates have a lower energy state than CO2. Therefore, at least

90

Carbon RRLs Carbon RRLs towards Ultra-compact HII Regions  

E-Print Network [OSTI]

Carbon RRLs Carbon RRLs towards Ultra-compact HII Regions Dana S. Balser D. Anish Roshi (Raman (Agnes Scott College) #12;Carbon RRLs Carbon Radio Recombination Lines (RRLs) NGC 2024 (Orion B) IC 1795 (W3) Palmer et al. (1967) #12;Carbon RRLs Photodissociation Regions (PDRs) Hollenbach & Tielens (1997

Balser, Dana S.

91

Would Border Carbon Adjustments prevent carbon leakage and heavy industry  

E-Print Network [OSTI]

No 52-2013 Would Border Carbon Adjustments prevent carbon leakage and heavy industry halshs-00870689,version1-7Oct2013 #12;Would Border Carbon Adjustments prevent carbon leakage and heavy The efficiency of unilateral climate policies may be hampered by carbon leakage and competitiveness losses

Paris-Sud XI, Université de

92

Cumulative Carbon and Just Allocation of the Global Carbon Commons  

E-Print Network [OSTI]

Cumulative Carbon and Just Allocation of the Global Carbon Commons R.T. Pierrehumbert1 on climate can be characterized by a single statistic, called Cumulative Carbon. This is the aggregate amount of carbon emitted in the form of carbon dioxide by activities such as fossil fuel burning and deforestation

Pierrehumbert, Raymond

93

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

94

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

95

The Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Carbon Cycle The Carbon Cycle The global carbon cycle involves the carbon in and exchanging between the earth's atmosphere, fossil fuels, the oceans, and the vegetation and soils of the earth's terrestrial ecosystems. image Each year, the world's terrestrial ecosystems withdraw carbon from the atmosphere through photosynthesis and add it again through respiration and decay. A more detailed look at the global carbon cycle for the 1990s is shown below. The main annual fluxes in GtC yr-1 are: pre-industrial "natural" fluxes in black and "anthropogenic" fluxes in red (modified from Sarmiento and Gruber, 2006, with changes in pool sizes from Sabine et al., 2004a). The net terrestrial loss of -39 GtC is inferred from cumulative fossil fuel emissions minus atmospheric increase minus ocean storage. The loss of

96

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

97

NETL: Carbon Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

98

Striving To Capture Carbon  

Science Journals Connector (OSTI)

Striving To Capture Carbon ... Energy ministers from around the world met in Washington, D.C., for three days earlier this month to wrestle with how to reenergize efforts to cut carbon emissions from coal-fired power plants. ... Their solution, not surprisingly, is a rapid acceleration of R&D for technologies that capture and sequester underground carbon dioxide emitted by power plants, refineries, and industrial manufacturers that burn fossil fuels. ...

JEFF JOHNSON

2013-11-25T23:59:59.000Z

99

Paraconductivity in carbon nanotubes  

Science Journals Connector (OSTI)

We report the calculation of paraconductivity in carbon nanotubes above the superconducting transition temperature. The complex behavior of paraconductivity depending upon the tube radius, temperature, and magnetic field strength is analyzed. The results are qualitatively compared with recent experimental observations in carbon nanotubes of an inherent transition to the superconducting state and pronounced thermodynamic fluctuations above Tc. The application of our results to single-wall and multiwall carbon nanotubes as well as ropes of nanotubes is discussed.

D. V. Livanov and A. A. Varlamov

2002-09-27T23:59:59.000Z

100

Carbon Sequestration - Public Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Public Meeting Programmatic Environmental Impact Statement Public Meeting May 18, 2004 National Energy Technology Laboratory Office of Fossil Energy Scott Klara Carbon Sequestration Technology Manager Carbon Sequestration Program Overview * What is Carbon Sequestration * The Fossil Energy Situation * Greenhouse Gas Implications * Pathways to Greenhouse Gas Stabilization * Sequestration Program Overview * Program Requirements & Structure * Regional Partnerships * FutureGen * Sources of Information What is Carbon Sequestration? Capture can occur: * at the point of emission * when absorbed from air Storage locations include: * underground reservoirs * dissolved in deep oceans * converted to solid materials * trees, grasses, soils, or algae Capture and storage of CO 2 and other Greenhouse Gases that

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NETL: Carbon Storage - Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

102

Carbon Sequestration 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R&D Overview R&D Overview Office of Fossil Energy Justin "Judd" R. Swift Asst. Secretary for International Affairs Office of Fossil Energy U.S. Department of Energy 2 nd U.S/China CO 2 Emission Control Science & Technology Symposium May 28-29, 2008 Hangzhou, China Office of Fossil Energy Technological Carbon Management Options Improve Efficiency Sequester Carbon  Renewables  Nuclear  Fuel Switching  Demand Side  Supply Side  Capture & Store  Enhance Natural Sinks Reduce Carbon Intensity All options needed to:  Affordably meet energy demand  Address environmental objectives Office of Fossil Energy DOE's Sequestration Program Structure Infrastructure Regional Carbon Sequestration

103

Activated Carbon Injection  

ScienceCinema (OSTI)

History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

None

2014-07-22T23:59:59.000Z

104

Carbon Capture and Storage  

Science Journals Connector (OSTI)

Shift to alternative energy sources, which have been introduced in Chap. 8 .... They are effective in air pollution control as well as carbon

Zhongchao Tan

2014-01-01T23:59:59.000Z

105

Composites of Carbon Nanotubes.  

E-Print Network [OSTI]

??The purpose of this research was to study various methods of incorporation of single-walled carbon nanotubes (SWNT) with polymers for producing electrically conductive polystyrene composites. (more)

Tchoul, Maxim N.

2008-01-01T23:59:59.000Z

106

Reinforced Carbon Nanotubes.  

DOE Patents [OSTI]

The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

Ren, Zhifen (Newton, MA); Wen, Jian Guo (Newton, MA); Lao, Jing Y. (Chestnut Hill, MA); Li, Wenzhi (Brookline, MA)

2005-06-28T23:59:59.000Z

107

Carbon Fiber SMC  

Broader source: Energy.gov (indexed) [DOE]

110,000 ACC capital) in 2008 * 54,000 for 2009 Partners * Continental Structural Plastic (CSP), a Tier One supplier * Discounted compounding and molding * Zoltek, a carbon...

108

Carbon Fiber Technology Facility  

Broader source: Energy.gov (indexed) [DOE]

- 4M AMO - 1.5M VTP - Remainder covered by carry- over and ARRA project contingency * Cost of carbon fiber * Technology scaling * Market development * Workforce development * Oak...

109

Activated Carbon Injection  

SciTech Connect (OSTI)

History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

None

2014-07-16T23:59:59.000Z

110

NETL: Carbon Storage - Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

111

SGL Carbon AG | Open Energy Information  

Open Energy Info (EERE)

Carbon AG Jump to: navigation, search Name: SGL Carbon AG Place: Wiesbaden, Hessen, Germany Zip: 65203 Sector: Carbon Product: A Germany-based manufacturer of carbon-based...

112

Eon Masdar Integrated Carbon | Open Energy Information  

Open Energy Info (EERE)

Carbon Jump to: navigation, search Name: Eon Masdar Integrated Carbon Place: Germany Sector: Carbon Product: Germany-based carbon emission projects developer. References:...

113

EMBODIED CARBON TARIFFS Christoph Bhringer  

E-Print Network [OSTI]

EMBODIED CARBON TARIFFS Christoph Böhringer Jared C. Carbone Thomas F. Rutherford Revised: August 2013 Abstract Embodied carbon tariffs tax the direct and indirect carbon emissions embodied in trade -- an idea popularized by countries seeking to extend the reach of domestic carbon regu- lations. We

114

Carbon-Optimal and Carbon-Neutral Supply Chains  

E-Print Network [OSTI]

Y. Li, M. Daskin. 2009. Carbon Footprint and the ManagementJ. van Houtum. 2011. E?ect of carbon emission regulations onStreamlined Enterprise Carbon Footprinting. Environmental

Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

2011-01-01T23:59:59.000Z

115

Global Carbon Cycle, Carbon Dioxide Emissions and Mitigation  

Science Journals Connector (OSTI)

The carbon cycle is one of the biogeochemical cycles and describes the movement of carbon, in its many forms, within the biosphere, atmosphere, oceans and geosphere. The global carbon cycle involves the earth...

2008-01-01T23:59:59.000Z

116

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...  

Broader source: Energy.gov (indexed) [DOE]

the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and...

117

Nanomechanics of carbon nanotubes  

Science Journals Connector (OSTI)

...nanotechnology II Nanomechanics of carbon nanotubes Andras Kis 1 * Alex Zettl 2 3 * * Authors...important potential applications of carbon nanotubes are related to their mechanical properties...characterization of the mechanical properties of nanotubes includes a rich variety of experiments...

2008-01-01T23:59:59.000Z

118

Carbon monoxide absorbing liquid  

SciTech Connect (OSTI)

The present disclosure is directed to a carbon monoxide absorbing liquid containing a cuprous ion, hydrochloric acid and titanum trichloride. Titanium trichloride is effective in increasing the carbon monoxide absorption quantity. Furthermore, titanium trichloride remarkably increases the oxygen resistance. Therefore, this absorbing liquid can be used continuously and for a long time.

Arikawa, Y.; Horigome, S.; Kanehori, K.; Katsumoto, M.

1981-07-07T23:59:59.000Z

119

Fly ash carbon passivation  

DOE Patents [OSTI]

A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

La Count, Robert B; Baltrus, John P; Kern, Douglas G

2013-05-14T23:59:59.000Z

120

Electronic Properties of Carbon Nanotubes  

E-Print Network [OSTI]

P. Avouris, in Carbon Nanotubes M. S. Dresselhaus, P.Physics of Carbon Nanotubes S. V. Rotkin, S. Subramoney,Properties of Carbon Nanotubes Philip G. Collins 1 and

Collins, Philip G

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Carbon Sequestration: A Comparative Analysis  

Science Journals Connector (OSTI)

Carbon sequestration refers to the provision and safe storage of carbon dioxide that otherwise would be emitted to ... isolation, and final storage of the produced carbon dioxide, utilizing biological, chemical, ...

Christopher J. Koroneos; Dimitrios C. Rovas

2010-01-01T23:59:59.000Z

122

Electronic Properties of Carbon Nanotubes  

E-Print Network [OSTI]

P. Avouris, in Carbon Nanotubes M. S. Dresselhaus, P.in Applied Physics of Carbon Nanotubes S. V. Rotkin, S.Electronic Properties of Carbon Nanotubes Philip G. Collins

Collins, Philip G

2008-01-01T23:59:59.000Z

123

Carbon-free generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon-free generation Carbon-free generation Carbon-free central generation of electricity, either through fossil fuel combustion with carbon dioxide capture and storage or development of renewable sources such as solar, wind, and/or nuclear power, is key to our future energy portfolio. Brookhaven also provides tools and techniques for studying geological carbon dioxide sequestration and analyzing safety issues for nuclear systems. Our nation faces grand challenges: finding alternative and cleaner energy sources and improving efficiency to meet our exponentially growing energy needs. Researchers at Brookhaven National Laboratory are poised to meet these challenges with basic and applied research programs aimed at advancing the effective use of renewable energy through improved conversion,

124

2013 Global Carbon Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 Global Carbon Project 2013 Global Carbon Project DOI: 10.3334/CDIAC/GCP_2013_V1.1 image 2013 Budget v1.1 (November 2013) image 2013 Budget v1.3 (December 2013, contains typographical corrections to 2011 Australia emissions from v1.1 and corrections to the 2011 Australia transfer and consumption emissions from v1.2) image image image image Global Carbon Dioxide Emissions to Reach 36 Billion Tonnes in 2013 Global emissions of carbon dioxide from the combustion of fossil fuels will reach 36 billion tonnes for the year 2013. "This is a level unprecedented in human history," says CSIRO's Dr Pep Canadell, Executive-Director of the Global Carbon Project (GCP) and co-author of a new report. Global emissions due to fossil fuel alone are set to grow this year at a slightly lower pace of 2.1% than the average 3.1% since 2000, reaching 36

125

Black Carbon and the Carbon Cycle  

Science Journals Connector (OSTI)

...reduces net CO 2 release by permanent deforestation...constitute a substantial fraction of the missing carbon...estimate of oxygen release assuming 10% of...constitute a substantial fraction of sedimentary organic...formation by vegetation fires may be important...from soils becoming airborne by wind erosion...

Thomas A. J. Kuhlbusch

1998-06-19T23:59:59.000Z

126

Carbon Capture Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center Lawrence Berkeley National Laboratory Research Institute of Innovative Energy Carbon Capture Research and Development Carbon capture and storage from fossil-based power...

127

Carbon Trust | Open Energy Information  

Open Energy Info (EERE)

company funded by the UK government to help business and the public sector cut carbon emissions and capture the commercial potential of low carbon technologies....

128

Pacific Northwest rangeland carbon sequestration.  

E-Print Network [OSTI]

??This paper models the supply curve of carbon sequestration on Pacific Northwest rangelands. Rangeland managers have the ability to sequester carbon in agricultural soils by (more)

Wiggins, Seth T.

2012-01-01T23:59:59.000Z

129

CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA  

E-Print Network [OSTI]

GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA: REPORT TO THE LEGISLATURE Regional Carbon Sequestration Partnership (WESTCARB) studies that we used, including Cameron Downey

130

Carbon nanotubes for organic electronics.  

E-Print Network [OSTI]

??This thesis investigated the use of carbon nanotubes as active components in solution processible organic semiconductor devices. We investigated the use of functionalized carbon nanotubes (more)

Goh, Roland Ghim Siong

2008-01-01T23:59:59.000Z

131

IMPACCT: Carbon Capture Technology  

SciTech Connect (OSTI)

IMPACCT Project: IMPACCTs 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for Innovative Materials and Processes for Advanced Carbon Capture Technologies, the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

None

2012-01-01T23:59:59.000Z

132

Trading Water for Carbon with Biological Carbon Sequestration  

E-Print Network [OSTI]

Trading Water for Carbon with Biological Carbon Sequestration Robert B. Jackson,1 * Esteban G. Farley,1 David C. le Maitre,5 Bruce A. McCarl,6 Brian C. Murray7 Carbon sequestration strategies plantations feature prominently among tools for carbon sequestration (1­8). Plantations typi- cally combine

Nacional de San Luis, Universidad

133

Accelerated Carbonation of Brucite in Mine Tailings for Carbon Sequestration  

Science Journals Connector (OSTI)

Atmospheric CO2 is sequestered within ultramafic mine tailings via carbonation of Mg-bearing minerals. ... If carbonation of bulk tailings were accelerated, large mines may have the capacity to sequester millions of tonnes of CO2 annually, offsetting mine emissions. ... A Greenhouse-Scale Photosynthetic Microbial Bioreactor for Carbon Sequestration in Magnesium Carbonate Minerals ...

Anna L. Harrison; Ian M. Power; Gregory M. Dipple

2012-07-06T23:59:59.000Z

134

Cumulative Carbon and Just Allocation of the Global Carbon Commons  

E-Print Network [OSTI]

Cumulative Carbon and Just Allocation of the Global Carbon Commons R.T. Pierrehumbert* Abstract statistic, called cumulative carbon. This statistic is the aggregate amount ofcarbon emitted in theform such activitiespersist.In thispaper the conceptis usedto addressthe question offair allocation of carbon emissions

Pierrehumbert, Raymond

135

International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10)  

E-Print Network [OSTI]

International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10) 15 - 17th Since the discovery of the carbon nanotube (CNT) about two decades ago, research related to its of Materials and Process Engineering Kanpur Chapter hosted the `International Conference on Carbon

Srivastava, Kumar Vaibhav

136

Carbon nanotubes : synthesis, characterization, and applications  

E-Print Network [OSTI]

fibers, carbon nanotubes, and carbon capsule structures canand multi-walled nanotubes and carbon fiber, and occurs withMulti- walled carbon nanotubes, Carbon, v.43, pp.2608-2617,

Deck, Christian Peter

2009-01-01T23:59:59.000Z

137

Carbon Dioxide Capture by Absorption with Potassium Carbonate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Capture by Absorption Carbon Dioxide Capture by Absorption with Potassium Carbonate Background Although alkanolamine solvents, such as monoethanolamine (MEA), and solvent blends have been developed as commercially-viable options for the absorption of carbon dioxide (CO 2 ) from waste gases, natural gas, and hydrogen streams, further process improvements are required to cost-effectively capture CO 2 from power plant flue gas. The promotion of potassium carbonate (K

138

Carbon Capture and Storage  

Science Journals Connector (OSTI)

The main object of the carbon capture and storage (CCS) technologies is the...2...emissions produced in the combustion of fossil fuels such as coal, oil, or natural gas. CCS involves first the capture of the emit...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

139

Introduction to Carbon Capture  

Science Journals Connector (OSTI)

Chapters 79 examine nontraditional separation technologies that in the most ideal sense may be considered carbon-neutral. The topics covered in these chapters include the role that algae plays in CO2 capture, CO

Prof. Jennifer Wilcox

2012-01-01T23:59:59.000Z

140

Low Carbon Fuel Standards  

E-Print Network [OSTI]

S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ATK - Supersonic Carbon Capture  

SciTech Connect (OSTI)

ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

Castrogiovanni, Anthony (ACEnT Laboratories, President and CEO) [ACEnT Laboratories, President and CEO; Calayag, Bon (ATK, Program Manager) [ATK, Program Manager

2014-03-05T23:59:59.000Z

142

Carbon Capture Pilots (Kentucky)  

Broader source: Energy.gov [DOE]

Support for the Carbon Management Research Group (CMRG), a public/private partnership consisting of most of the Commonwealths utilities, the Electric Power Research Institute, the Center for...

143

Wetland (peat) Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wetland (peat) Carbon Cycle Methane (CH4) is an important greenhouse gas, twenty times more potent than CO2, but atmospheric concentrations of CH4 under future climate change are...

144

Research Summary Carbon Additionality  

E-Print Network [OSTI]

of the quality assurance of emissions reduction and carbon sequestration activities, but remains a source of much/reporting additionality rules. Technological Application of specific technology. Term Abatement arises within a specified

145

Method for synthesizing carbon nanotubes  

DOE Patents [OSTI]

A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

Fan, Hongyou

2012-09-04T23:59:59.000Z

146

4, 1367, 2007 Modelling carbon  

E-Print Network [OSTI]

BGD 4, 13­67, 2007 Modelling carbon overconsumption and extracellular POC formation M. Schartau et carbon overconsumption and the formation of extracellular particulate organic carbon M. Schartau1 , A Correspondence to: M. Schartau (markus.schartau@gkss.de) 13 #12;BGD 4, 13­67, 2007 Modelling carbon

Paris-Sud XI, Université de

147

Black Carbons Properties and Role in the Environment: A Comprehensive Review  

E-Print Network [OSTI]

H. Can reducing black carbon emissions counteract globalinventory of black carbon emissions. Atmos. Environ. 1993,commonly studied form of carbon emissions. Black carbon (BC)

Shrestha, Gyami

2010-01-01T23:59:59.000Z

148

Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber  

E-Print Network [OSTI]

were incorporated onto the surface of epoxy carbon fiber composites, as proposed fire shieldsStudy of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites Qiang Wu, Wei Zhu, Chuck Zhang *, Zhiyong Liang, Ben Wang Department

Das, Suman

149

Measurement of carbon capture efficiency and stored carbon leakage  

DOE Patents [OSTI]

Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

Keeling, Ralph F.; Dubey, Manvendra K.

2013-01-29T23:59:59.000Z

150

NETL: Carbon Storage - Big Sky Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BSCSP BSCSP Carbon Storage Big Sky Carbon Sequestration Partnership MORE INFO Additional information related to ongoing BSCSP efforts can be found on their website. The Big Sky Carbon Sequestration Partnership (BSCSP) is led by Montana State University-Bozeman and represents a coalition of more than 60 organizations including universities, national laboratories, private companies, state agencies, Native American tribes, and international collaborators. The partners are engaged in several aspects of BSCSP projects and contribute to the efforts to deploy carbon storage projects in the BSCSP region. The BSCSP region encompasses Montana, Wyoming, Idaho, South Dakota, and eastern Washington and Oregon. BSCSP Big Sky Carbon Sequestration Partnership Region Big Sky Carbon Sequestration Partnership Region

151

Chemically modified carbonic anhydrases useful in carbon capture systems  

SciTech Connect (OSTI)

The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

Novick, Scott; Alvizo, Oscar

2013-01-15T23:59:59.000Z

152

Chemically modified carbonic anhydrases useful in carbon capture systems  

DOE Patents [OSTI]

The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

Novick, Scott J; Alvizo, Oscar

2013-10-29T23:59:59.000Z

153

NETL: Carbon Dioxide 101 FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is carbon dioxide? is carbon dioxide? CO2 Dipole Carbon Dioxide Carbon dioxide (chemical name CO2) is a clear gas composed of one atom of carbon (C) and two atoms of oxygen (O). Carbon dioxide is one of many chemical forms of carbon on the Earth. It does not burn, and in standard temperature and pressure conditions it is stable, inert, and non-toxic. Carbon dioxide occurs naturally in small amounts (about 0.04%) in the Earth's atmosphere. The volume of CO2 in the atmosphere is equivalent to one individual in a crowd of 2,500. Carbon dioxide is produced naturally by processes deep within the Earth. This CO2 can be released at the surface by volcanoes or might be trapped in natural underground geologic CO2 deposits, similar to underground deposits of oil and natural gas. As a major greenhouse gas, CO2 helps create and

154

Carbon Trading Protocols for Geologic Sequestration  

E-Print Network [OSTI]

H. , 2005, IPCC: Carbon Capture and Storage: Technical05CH11231. INTRODUCTION Carbon capture and storage (CCS)Development Mechanism CCS: Carbon Capture and Storage C02e:

Hoversten, Shanna

2009-01-01T23:59:59.000Z

155

The Social Carbon Company | Open Energy Information  

Open Energy Info (EERE)

Carbon Company Jump to: navigation, search Name: The Social Carbon Company Place: Brasilia, Distrito Federal (Brasilia), Brazil Zip: CEP 70610-440 Sector: Carbon, Services Product:...

156

Carbon Nanohoops: Molecular Templates for Precision Nanotube...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

build carbon-ring "nanohoops," molecular building blocks for the formation of carbon nanotubes. Carbon nanohoops might serve as seeds, or templates, for the efficient and...

157

Electrochemical implications of defects in carbon nanotubes  

E-Print Network [OSTI]

in Hollow Carbon Nanotubes . . . . . . 4.3.2.1 IncreasingThe electrochemistry of carbon nanotubes. Journal of Thethe sidewalls of carbon nanotubes. Journal of the American

Hoefer, Mark

2012-01-01T23:59:59.000Z

158

Thermal Management Using Carbon Nanotubes - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Management Using Carbon Nanotubes Oak Ridge National Laboratory Contact ORNL About This Technology Vertically Aligned Carbon Nanotubes Vertically Aligned Carbon Nanotubes...

159

A cell nanoinjector based on carbon nanotubes  

E-Print Network [OSTI]

based on carbon nanotubes Xing Chen *|| , Andras Kis || ,that uses carbon nanotubes to deliver cargo into cells. Astrength (2, 3), carbon nanotubes (CNTs) are ideal nanoscale

Chen, Xing; Kis, Andras; Zettl, Alex; Bertozzi, Carolyn R.

2008-01-01T23:59:59.000Z

160

Electron transport through single carbon nanotubes  

E-Print Network [OSTI]

through single carbon nanotubes G. Chai Apollo Technologies,aligned multi-wall carbon nanotubes (CNT). Embedding of CNTsuse of fiber coated carbon nanotubes makes the handling of

Chai, G

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ultrafast Nonlinear Spectroscopy of Semiconducting Carbon Nanotubes  

E-Print Network [OSTI]

Exciton binding energies in carbon nanotubes from two-photonExciton binding energies in carbon nanotubes from two-photonoptical transition energies of carbon nanotubes: the role of

Graham, Matthew Werden

2010-01-01T23:59:59.000Z

162

Equinox Carbon Equities LLC | Open Energy Information  

Open Energy Info (EERE)

Equities, LLC Place: Newport Beach, California Zip: 92660 Sector: Carbon Product: Investment firm focused on carbon trading References: Equinox Carbon Equities, LLC1 This...

163

Carbon Trust Investments Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Place: United Kingdom Sector: Carbon Product: UK-based venture capital investment division of The Carbon Trust. References: Carbon Trust Investments Ltd1 This...

164

Carbon Nanotubes: Bearing Stress Like Never Before  

E-Print Network [OSTI]

Hart, A.J. (2013). Carbon Nanotubes: Present and Futureproduction of carbon nanotubes, and can be used to producesynthesized properly, and carbon nanotubes are no exception.

Limaye, Aditya

2013-01-01T23:59:59.000Z

165

Electrochemical implications of defects in carbon nanotubes  

E-Print Network [OSTI]

parameters. Fullerenes, Nanotubes and Carbon Nanostructures,in Hollow Carbon Nanotubes . . . . . . 4.3.2.1 Increasingmigration in graphite and carbon nanotubes. Chemical Physics

Hoefer, Mark

2012-01-01T23:59:59.000Z

166

Carbon Nanotube and Graphene Nanoelectromechanical Systems  

E-Print Network [OSTI]

Carbon Nanotubes on the2.4 Static Deformation of Carbon Nanotubes . . . . . .3.2 Field Emission from Carbon Nanotubes: Electrostatics

Aleman, Benjamin Jose

2011-01-01T23:59:59.000Z

167

Defects and Disorder in Carbon Nanotubes  

E-Print Network [OSTI]

Perebeinos, V. (2008) Carbon Nanotubes 111 423. Bachilo, S.M. & Mceuen, P. L. (2008) Carbon Nanotubes 111 Biro, L. P. ,sectional structure of carbon nanotubes. Fullerenes '96.

Collins, Philip G

2010-01-01T23:59:59.000Z

168

Electron transport through single carbon nanotubes  

E-Print Network [OSTI]

transport through single carbon nanotubes G. Chai Apolloaligned multi-wall carbon nanotubes (CNT). Embedding of CNTsuse of fiber coated carbon nanotubes makes the handling of

Chai, G

2008-01-01T23:59:59.000Z

169

How Carbon Capture Works | Department of Energy  

Energy Savers [EERE]

past two decades. Carbon capture, utilization and storage (CCUS) -- also referred to as carbon capture, utilization and sequestration -- is a process that captures carbon dioxide...

170

Participatory Carbon Monitoring: Operational Guidance for National...  

Open Energy Info (EERE)

Participatory Carbon Monitoring: Operational Guidance for National REDD+ Carbon Accounting Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Participatory Carbon...

171

Universal Carbon Credits Limited | Open Energy Information  

Open Energy Info (EERE)

Universal Carbon Credits Limited Jump to: navigation, search Name: Universal Carbon Credits Limited Place: London, England, United Kingdom Zip: EC3A6DF Sector: Carbon Product:...

172

Carbon nanotubes : synthesis, characterization, and applications  

E-Print Network [OSTI]

around Surface-Attached Carbon Nanotubes. Ind. Eng. Chem.the flexural rigidity of carbon nanotube ensembles. AppliedNanotechnology in Carbon Materials. Acta Metallurgica, 1997.

Deck, Christian Peter

2009-01-01T23:59:59.000Z

173

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network [OSTI]

Energy Resources for Carbon Emissions Mitigation RyanEnergy Resources for Carbon Emissions Mitigation Ryanand/or site-attributable carbon emissions at commercial and

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

174

GS Carbon Corporation | Open Energy Information  

Open Energy Info (EERE)

search Name: GS Carbon Corporation Place: New York, New York Zip: 10119 Sector: Carbon Product: The company offsets emissions output with carbon credits through the...

175

BNL | Carbon Cycle Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Carbon Cycle Science & Technology Group aims to increase understanding The Carbon Cycle Science & Technology Group aims to increase understanding of the impacts of global change on managed and unmanaged ecosystems and improve knowledge of possible global change mitigation approaches. The group has three main focus areas. FACE Climate Change Experimental Facility Design and Management The CCS&T group is an internationally recognized leader in the development of Free Air CO2 Enrichment (FACE) research facilities. We are interested in the design and management of manipulative experiments that examine the effects of carbon dioxide, ozone, other atmospheric pollutants, temperature and precipitation on natural and managed ecosystems. FACE Plant Physiology and High Throughput Biochemical Phenotyping At FACE facilities we have studied the mechanisms that underlie the

176

Carbon Sequestration 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Perspectives on Carbon Capture and Storage Perspectives on Carbon Capture and Storage - Directions, Challenges, and Opportunities Thomas J. Feeley, III National Energy Technology Laboratory Carbon Capture and Storage November 13-15, 2007 Austin, Texas C Capture & Storage, Austin, TX Nov. 13-15, 2007 U.S. Fossil Fuel Reserves / Production Ratio 250+ Year Supply at Current Demand Levels ! 258 11.7 9.7 0 100 200 300 Coal Oil Natural Gas Anthracite & Bituminous Sub- Bituminous & Lignite Sources: BP Statistical Review, June 2004, - for coal reserves data - World Energy Council; EIA, Advance Summary U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 2003 Annual Report, September 22, 2004 - for oil and gas reserves data. C Capture & Storage, Austin, TX Nov. 13-15, 2007 80 120 160 200 240 1970 1975 1980

177

Carbon Storage Review 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration Options in the Illinois Basin - Phase III DE-FC26-05NT42588 Robert J. Finley and the MGSC Project Team Illinois State Geological Survey (University of Illinois) and Schlumberger Carbon Services U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 * The Midwest Geological Sequestration Consortium is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal

178

RMOTC - Testing - Carbon Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Management Carbon Management Ten Sleep Time Structure, 2nd Wall Creek Formation at RMOTC Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC has the field setting, infrastructure, and expertise to play an important role in carbon management testing, demonstration, and research. The unique combination of a publicly-owned and DOE-operated oil field,

179

Success Stories: Carbon Explorer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LBNL Device Monitors Ocean Carbon LBNL Device Monitors Ocean Carbon Imagine waking up each morning and discovering that twenty percent of all plants in your garden had disappeared over night. They had been eaten. Equally astonishing would be the discovery in the afternoon that new plants had taken their place. This is the norm of life in the ocean. Without the ability to accurately observe these daily changes in ocean life cycles, over vast spatial scales, we lack the ability to predict how the ocean will respond to rising CO2 levels, crippling our ability to develop accurate models of global warming or devise strategies to prevent it. The Carbon Explorer, conceived by Berkeley Lab's James K. Bishop in collaboration with Scripps Institution of Oceanography (La Jolla, California) and WET labs, Inc. (Philomath, Oregon), bridges this

180

Carbon Materials Breakout Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Breakout Group Process Materials Breakout Group Process * Day 2, Thursday - Review results of Day 1 and modify if needed - Identify critical R&D needs - Outline R&D plan with key milestones - Report results to plenary Carbon Materials Breakout Group * Key Results - Target: get the science right to engineer carbon materials for hydrogen storage * Integrate theory, experiment, engineering * Understand mechanisms, effects, and interactions ranging from physisorption to chemisorption - Theory * Provide "directional" guidance for experiments (and vice- versa) * Provide baseline theory to elucidate parameters affecting the number and type of binding sites and the heat of their interaction with H2 (∆H ) for a broad range of (highly) modified carbon materials

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Authigenic Carbonate and the History of the Global Carbon Cycle  

Science Journals Connector (OSTI)

...Earth's surface reservoirs ({delta} 13 C...of carbonate rocks. In either case, this...history when the porosity and permeability of...track the bulk rock {delta} 13...of carbonate rocks...sedimentary reservoirs does...

Daniel P. Schrag; John. A. Higgins; Francis A. Macdonald; David T. Johnston

2013-02-01T23:59:59.000Z

182

Development of carbon-carbon composites from solvent extracted pitch  

SciTech Connect (OSTI)

There are several methods used to fabricate carbon-carbon composites. One used extensively in the fabrication of aerospace components such as rocket nozzles and reentry vehicle nosetips, as well as commercial components for furnace fixturing and glass manufacturing, is the densification of a woven preform with molten pitch, and the subsequent conversion of the pitch to graphite through heat treatment. Two types of pitch are used in this process; coal tar pitch and petroleum pitch. The objective of this program was to determine if a pitch produced by the direct extraction of coal could be used as a substitute for these pitches in the fabrication of carbon-carbon composites. The program involved comparing solvent extracted pitch with currently accepted pitches and rigidizing a carbon-carbon preform with solvent extracted pitch for comparison with carbon-carbon fabricated with currently available pitch.

NONE

1996-06-24T23:59:59.000Z

183

Carbon Capture and Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SECARB's SECARB's Mississippi SalineTest Site: A Field Project Update Robert C. Trautz (rtrautz@epri.com) Electric Power Research Institute Senior Project Manager DOE Regional Carbon Sequestration Partnership Annual Review Meeting October 6-8, 2008 Pittsburgh, PA 2 1. Introduction 2. Well Drilling & Completion 3. Reservoir Characterization 4. CO 2 Injection Operations 5. Monitoring and Verification Outline 3 Key Organizations and Acknowledgments SOUTHERN STATES ENERGY BOARD Dr. Gerald (Jerry) R. Hill OTHER FIELD PROJECTS AND SUPPORTING ACTIVITIES * Advanced Resources * Alabama Geological Survey/ SCS * Gulf Coast Carbon Center (TXBEG) * EPRI * Virginia Tech University * Mississippi State University * Others Richard Esposito MISSISSIPPI POWER CO. Rick Berry Richard (Dick) Rhudy Robert (Rob) Trautz

184

Carbon Capture and Storage  

SciTech Connect (OSTI)

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

185

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network [OSTI]

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National fiber reinforced composites have enjoyed limited acceptance in the automotive industry due to high costs to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model

186

ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION EFFORTS  

E-Print Network [OSTI]

ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION examines biological carbon sequestration using a grassland restoration as a model system. Chapter 1 for biological carbon sequestration. In this analysis, we found that significantly greater soil carbon

Wisconsin at Madison, University of

187

Carbon Jungle | Open Energy Information  

Open Energy Info (EERE)

Jungle Jungle Jump to: navigation, search Name Carbon Jungle Place El Segundo, California Zip 90246 Sector Carbon Product Carbon Jungle's mission is to decrease CO2 in the atmosphere by planting and managing tree plantations, increasing awareness of the facts behind increased CO2 in the atmosphere, and giving companies a means to participate in carbon credit trading. References Carbon Jungle[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Carbon Jungle is a company located in El Segundo, California . References ↑ "Carbon Jungle" Retrieved from "http://en.openei.org/w/index.php?title=Carbon_Jungle&oldid=343237" Categories: Clean Energy Organizations

188

Organic modification of carbon nanotubes  

Science Journals Connector (OSTI)

The organic modification of carbon nanotubes is a novel research field being developed ... and newest progress of organic modification of carbon nanotubes are reviewed from two aspects: organic covalent modificat...

Luqi Liu; Zhixin Guo; Liming Dai; Daoben Zhu

2002-03-01T23:59:59.000Z

189

Irradiation Stability of Carbon Nanotubes  

E-Print Network [OSTI]

Ion irradiation of carbon nanotubes is a tool that can be used to achieve modification of the structure. Irradiation stability of carbon nanotubes was studied by ion and electron bombardment of the samples. Different ion species at various energies...

Aitkaliyeva, Assel

2010-01-14T23:59:59.000Z

190

Asset Carbon | Open Energy Information  

Open Energy Info (EERE)

Carbon Place: United Kingdom Product: UK-based startup looking to invest in CDMJI projects. References: Asset Carbon1 This article is a stub. You can help OpenEI by expanding...

191

Forests, carbon and global climate  

Science Journals Connector (OSTI)

...through fossil-fuel combustion and land-use change...Atmosphere analysis Biomass Carbon metabolism Carbon...through fossil-fuel combustion and land-use change...during fossil fuel and biomass combustion and the release of ammo...

2002-01-01T23:59:59.000Z

192

Carbon smackdown: wind warriors  

ScienceCinema (OSTI)

July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

2010-09-01T23:59:59.000Z

193

Carbon-Fuelled Future  

SciTech Connect (OSTI)

Whether due to changes in policy or consumption of available fossil fuels, alternative sources of energy will be required, especially given the rising global energy demand. However, one of the main factors limiting the widespread utilization of renewable energy, such as wind, solar, wave or geothermal, is our ability to store energy. Storage of energy from carbon-neutral sources, such as electricity from solar or wind, can be accomplished through many routes. One approach is to store energy in the form of chemical bonds, as fuels. The conversion of low-energy compounds, such as water and carbon dioxide, to higher energy molecules, such as hydrogen or carbon-based fuels, enables the storage of carbon-neutral energy on a very large scale. The authors work in this area is supported by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Appel, Aaron M.

2014-09-12T23:59:59.000Z

194

CARBON DIOXIDE EMISSION REDUCTION  

E-Print Network [OSTI]

.5 Primary Energy Use and Carbon Dioxide Emissions for Selected US Chemical Subsectors in 1994 ...............................................................................................................16 Table 2.7 1999 Energy Consumption and Specific Energy Consumption (SEC) in the U.S. Cement Efficiency Technologies and Measures in Cement Industry.................22 Table 2.9 Energy Consumption

Delaware, University of

195

Carbon Footprint Calculator  

Broader source: Energy.gov [DOE]

This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.

196

decommissioning of carbon dioxide (CO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

decommissioning of carbon dioxide (CO decommissioning of carbon dioxide (CO 2 ) storage wells. The manual builds on lessons learned through NETL research; the experiences of the Regional Carbon Sequestration Partnerships' (RCSPs) carbon capture, utilization, and storage (CCUS) field tests; and the acquired knowledge of industries that have been actively drilling wells for more than 100 years. In addition, the BPM provides an overview of the well-

197

Less Carbon Ltd | Open Energy Information  

Open Energy Info (EERE)

Less Carbon Ltd Jump to: navigation, search Name: Less Carbon Ltd Place: London, Greater London, United Kingdom Zip: EC3M 4BT Sector: Carbon Product: Less Carbon advises energy...

198

First Carbon Fund Ltd | Open Energy Information  

Open Energy Info (EERE)

First Carbon Fund Ltd Jump to: navigation, search Name: First Carbon Fund Ltd Place: London, Greater London, United Kingdom Zip: EC1V 9EE Sector: Carbon Product: First Carbon Fund...

199

NETL: Gasifipedia - Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal: SNG from Coal: Process & Commercialization: Carbon Sequestration Coal: SNG from Coal: Process & Commercialization: Carbon Sequestration Carbon sequestration, also termed carbon storage, is the permanent storage of CO2, usually in deep geologic formations. Industrially-generated CO2 -- resulting from fossil fuel combustion, gasification, and other industrial processes -- is injected as a supercritical fluid into geologic reservoirs, where it is held in place by natural traps and seals. Carbon storage is one approach to minimizing atmospheric emissions of man-made CO2. As discussed above, the main purpose of CO2 EOR such as the Weyburn Project is tertiary recovery of crude oil, but in effect substantial CO2 remains sequestered/stored as a result. Current Status of CO2 Storage CO2 storage is currently underway in the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway and the Weyburn-Midale CO2 Project in Canada, have been injecting CO2 into geologic storage formations more than a decade. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, as well. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. In addition, a number of smaller pilot projects are underway in different parts of the world to determine suitable locations and technologies for future long-term CO2 storage. To date, more than 200 small-scale CO2 storage projects have been carried out worldwide. A demonstration project that captures CO2 from a pulverized coal power plant and pipes it to a geologic formation for storage recently came online in Alabama.

200

Carbon Nanotubes for Data Processing  

E-Print Network [OSTI]

Carbon Nanotubes for Data Processing Joerg Appenzeller, T. J. Watson Research Center, IBM Research.2 Electronic Structure of Graphene 4 2.3 Electronic Structure of Carbon Nanotubes 4 2.4 Transport Properties 6 2.5 Contacts 9 3 Synthesis of Carbon Nanotubes 10 3.1 Synthetic Methods 10 3.2 Growth Mechanisms 12

Joselevich, Ernesto

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

4, 99123, 2007 Amazon carbon  

E-Print Network [OSTI]

, suggested much larger estimates for tropical forest carbon sequestration in the Ama- zon BasinBGD 4, 99­123, 2007 Amazon carbon balanc J. Lloyd et al. Title Page Abstract Introduction Discussions is the access reviewed discussion forum of Biogeosciences An airborne regional carbon balance

Boyer, Edmond

202

Dispersion toughened silicon carbon ceramics  

DOE Patents [OSTI]

Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

Wei, G.C.

1984-01-01T23:59:59.000Z

203

CARBON NANOTUBE TRANSISTORS: AN EVALUATION  

E-Print Network [OSTI]

CARBON NANOTUBE TRANSISTORS: AN EVALUATION L.C. Castro, D.L. John, and D.L. Pulfrey Department A simple, non-equilibrium model is used to evaluate the likely DC performance of carbon nanotube field and transcon- ductance close to the low-quantum-capacitance limit. Keywords: Carbon nanotubes, field

Pulfrey, David L.

204

1, 167193, 2004 Terrestrial carbon  

E-Print Network [OSTI]

BGD 1, 167­193, 2004 Terrestrial carbon budget at country-scale I. A. Janssens et al. Title Page Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences The carbon budget.janssens@ua.ac.be) 167 #12;BGD 1, 167­193, 2004 Terrestrial carbon budget at country-scale I. A. Janssens et al. Title

Paris-Sud XI, Université de

205

NETL: Carbon Storage - Southeast Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southeast Regional Carbon Sequestration Partnership Southeast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing SECARB efforts can be found on their website. The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board (SSEB), represents a 13-State region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia, and portions of Kentucky and West Virginia. SECARB is comprised of over 100 participants representing Federal and State governments, industry, academia, and non-profit organizations. Southeast Regional Carbon Sequestration Partnership Region Southeast Regional Carbon Sequestration Partnership Region The primary goal of SECARB is to develop the necessary framework and

206

Hydrogen storage in multilayer carbon nanotubes  

Science Journals Connector (OSTI)

Multilayer carbon nanotubes obtained by pyrolysis and mechanical activation of plant-derived amorphous carbon are excellent sorbents for hydrogen.

D. V. Onishchenko; V. P. Reva; V. G. Kuryavyi

2013-05-01T23:59:59.000Z

207

Net carbon flux from agriculture: Carbon emissions, carbon sequestration, crop yield, and land-use change  

Science Journals Connector (OSTI)

There is a potential to sequester carbon in soil by changing agricultural management practices. ... fossil-fuel use, agricultural inputs, and the carbon emissions associated with fossil fuels and other ... with f...

Tristram O. West; Gregg Marland

2003-04-01T23:59:59.000Z

208

Carbon Sequestered, Carbon Displaced and the Kyoto Context  

SciTech Connect (OSTI)

The integrated system that embraces forest management, forest products, and land-use change impacts the global carbon cycle - and hence the net emission of the greenhouse gas carbon dioxide - in four fundamental ways. Carbon is stored in living and dead biomass, carbon is stored in wood products and landfills, forest products substitute in the market place for products made from other materials, and forest harvests can be used wholly or partially to displace fossil fuels in the energy sector. Implementation of the Kyoto Protocol to the United Nations Framework Convention on Climate Change would result in the creation of international markets for carbon dioxide emissions credits, but the current Kyoto text does not treat all carbon identically. We have developed a carbon accounting model, GORCAM, to examine a variety of scenarios for land management and the production of forest products. In this paper we explore, for two simple scenarios of forest management, the carbon flows that occur and how these might be accounted for under the Kyoto text. The Kyoto protocol raises questions about what activities can result in emissions credits, which carbon reservoirs will be counted, who will receive the credits, and how much credit will be available? The Kyoto Protocol would sometimes give credits for carbon sequestered, but it would always give credits when fossil-fuel carbon dioxide emissions are displaced.

Marland, G.; Schlamadinger, B.

1999-04-18T23:59:59.000Z

209

*** How PAN based Carbon Fibers are  

E-Print Network [OSTI]

*** How PAN based Carbon Fibers are Manufactured *** How Carbon Fiber Material Properties are Achieved *** Carbon Fiber Markets/Applications CarbonFiber AerospaceEngineeringGuestLecture: Friday as a Business Development Manager for Amoco's carbon fiber business unit (manufacturers of T-300 carbon fiber

Hu, Hui

210

6, 34193463, 2006 Black carbon or  

E-Print Network [OSTI]

ACPD 6, 3419­3463, 2006 Black carbon or brown carbon M. O. Andreae and A. Gelencs´er Title Page Chemistry and Physics Discussions Black carbon or brown carbon? The nature of light-absorbing carbonaceous;ACPD 6, 3419­3463, 2006 Black carbon or brown carbon M. O. Andreae and A. Gelencs´er Title Page

Paris-Sud XI, Université de

211

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

thermal, wind and Missouri R. and small hydro. Includes "IPP" resources #12;Nonhydro resources Resource Analyst SUBJECT: Treatment of Non-hydro and IPP resources for the resource adequacy assessment information concerning the treatment of non-hydro and independent power producer (IPP) generating resources

212

Carbon Cycle 2.0  

Broader source: Energy.gov (indexed) [DOE]

Carbon Cycle 2.0 Carbon Cycle 2.0 Pioneering science for sustainable energy solutions Artificial Photosynthesis Energy Storage Combustion Carbon Capture & Storage Developing World Efficiency Photovoltaics Biofuels Energy Analysis Climate Modeling Carbon Cycle 2.0 is... 1. A vision for * a global energy system integrated with the Earth's natural carbon cycles * an interactive Berkeley Lab environment with a shared sense of purpose 2. A program development plan that will allow us to deepen our capabilities and provide more opportunities to have impact 3. An attempt to integrate our basic research with applications using models of technology deployment constraints 4. Set of internal activities aimed at priming the effort

213

CHARTER FOR THE CARBON SEQUESTRATION  

Broader source: Energy.gov (indexed) [DOE]

CHARTER FOR THE CARBON SEQUESTRATION CHARTER FOR THE CARBON SEQUESTRATION LEADERSHIP FORUM (CSLF): A CARBON CAPTURE AND STORAGE TECHNOLOGY INITIATIVE The undersigned national governmental entities (collectively the "Members") set forth the following Terms of Reference for the Carbon Sequestration Leadership Forum (CSLF), a framework for international cooperation in research and development for the separation, capture, transportation and storage of carbon dioxide. The CSLF will seek to realize the promise of carbon capture and storage over the coming decades, making it commercially competitive and environmentally safe. 1. Purpose of the CSLF To facilitate the development of improved cost-effective technologies for the separation and capture of carbon dioxide for its transport and long-term safe storage; to make these

214

CARBON7510.pdf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Author's personal copy Author's personal copy NMR a critical tool to study the production of carbon fiber from lignin Marcus Foston a , Grady A. Nunnery b , Xianzhi Meng a , Qining Sun a , Frederick S. Baker b , Arthur Ragauskas a, * a BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332, United States b Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6087, United States A R T I C L E I N F O Article history: Received 7 April 2012 Accepted 6 September 2012 Available online 14 September 2012 A B S T R A C T The structural changes occurring to hardwood Alcell TM lignin as a result of fiber devolatiliza- tion/extrusion, oxidative thermo-stabilization and carbonization are investigated in this study by solid-state and solution nuclear magnetic resonance

215

Magnetoconductance of carbon nanotubes  

Science Journals Connector (OSTI)

As a result of the interaction between the spin and the magnetic field (B), special step structures are predicted to exist in the ballistic magnetoconductance of carbon nanotubes. The electronic structure of a carbon nanotube drastically changes from a metal (semiconductor) to a semiconductor (metal) during the variation of the magnetic flux. When the spin-B interaction is neglected, the Fermi level only touches the conductance and valence bands of a metallic nanotube. This paramagnetic interaction could make the subbands cross and intersect with the Fermi level within a certain magnetic-flux range; the ballistic magnetoconductance thus exhibits step structures. Such special structures are expected to be observable at low temperature (<1 K) and bias voltage (<0.1 mV). Moreover there exists another effect, the doping effect, which could lead to step structures even without the spin-B interaction.

M. F. Lin and Kenneth W. -K. Shung

1995-03-15T23:59:59.000Z

216

Magnetism of carbon clusters  

Science Journals Connector (OSTI)

The ?-electron ring current magnetic susceptibilities and endohedral chemical shifts of the fullerenes are calculated with the London theory. The diamagnetism calculated for the fullerenes that have been characterized to date does not show a monotonic increase toward the graphite value. By carrying out calculations on high-symmetry giant fullerenes (Cn) in the size regime 100magnetic susceptibility of graphite on a per carbon basis. Endohedral chemical shifts are predicted to be invariant to cluster size, but subject to the quantum size effects seen in smaller fullerenes and metallic clusters. The fullerenes are different from the metallic clusters because the finite band gap in conjugated carbon compounds allows the diamagnetic term to dominate at large cluster size. The experimentally observed decrease in nanotube material diamagnetism with temperature is attributed to the increased importance of the Van Vleck term due to finite-temperature effects.

R. C. Haddon and Alfredo Pasquarello

1994-12-01T23:59:59.000Z

217

Solitons in carbon nanotubes  

Science Journals Connector (OSTI)

The symmetries of spontaneous lattice distortions in carbon nanotubes are investigated. When the degeneracy of the ground states remains discrete, there are solitons or domain walls connecting the different symmetry-broken vaccua. These solitons, similarly to the case of polyacetelene, are fractionally charged states. In addition to the topological domain walls, there are polaron states with discrete energies within the energy gap. The energies and shapes of these localized midgap states should be accessible via scanning tunneling microscopy spectroscopy.

Claudio Chamon

2000-07-15T23:59:59.000Z

218

CARBON DIOXIDE FIXATION.  

SciTech Connect (OSTI)

Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

FUJITA,E.

2000-01-12T23:59:59.000Z

219

Electrochimica Acta 52 (2007) 39653975 Elucidating differences between carbon paper and carbon  

E-Print Network [OSTI]

of them are carbon-fiber-based porous materials: carbon paper is non-woven, while carbon cloth is wovenElectrochimica Acta 52 (2007) 3965­3975 Elucidating differences between carbon paper and carbon the performance differences between carbon paper (CP) and carbon cloth (CC). Three-dimensional simulations, based

220

EB2012-MS-43 ADVANCES IN THE MODELLING OF CARBON/CARBON  

E-Print Network [OSTI]

EB2012-MS-43 ADVANCES IN THE MODELLING OF CARBON/CARBON COMPOSITE UNDER TRIBOLOGICAL CONSTRAINTS 1, homogenization, carbon ABSTRACT Thermo mechanical properties of Carbon-Carbon composite (C/C) allow them, the Carbon-Carbon composites (C/C) are materials frequently used in industrial applications such as plane

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Carbon taxes and India  

SciTech Connect (OSTI)

Using the Indian module of the Second Generation Model 9SGM, we explore a reference case and three scenarios in which greenhouse gas emissions were controlled. Two alternative policy instruments (carbon taxes and tradable permits) were analyzed to determine comparative costs of stabilizing emissions at (1) 1990 levels (the 1 X case), (2) two times the 1990 levels (the 2X case), and (3) three times the 1990 levels (the 3X case). The analysis takes into account India`s rapidly growing population and the abundance of coal and biomass relative to other fuels. We also explore the impacts of a global tradable permits market to stabilize global carbon emissions on the Indian economy under the following two emissions allowance allocation methods: (1) {open_quotes}Grandfathered emissions{close_quotes}: emissions allowances are allocated based on 1990 emissions. (2) {open_quotes}Equal per capita emissions{close_quotes}: emissions allowances are allocated based on share of global population. Tradable permits represent a lower cost method to stabilize Indian emissions than carbon taxes, i.e., global action would benefit India more than independent actions.

Fisher-Vanden, K.A.; Pitcher, H.M.; Edmonds, J.A.; Kim, S.H. [Pacific Northwest Lab., Richland, WA (United States); Shukla, P.R. [Indian Institute of Management, Ahmedabad (India)

1994-07-01T23:59:59.000Z

222

Estimation of Carbon Credits in Carbon Dioxide Sequestration Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Credits in Carbon Credits in Carbon Dioxide Sequestration Activities K. Thomas Klasson and Brian H. Davison Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6226 Presentation First National Conference on Carbon Sequestration May 14-17, 2001 Washington, DC "The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes." * Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725 1 Estimation of Carbon Credits in Carbon Dioxide Sequestration Activities

223

Black Carbons Properties and Role in the Environment: A Comprehensive Review  

E-Print Network [OSTI]

NOAA/ESRL. Mauna Loa Carbon Dioxide Annual Mean Data.H. Can reducing black carbon emissions counteract globalanalysis of black carbon in soils. Global Biogeochem. Cycle.

Shrestha, Gyami

2010-01-01T23:59:59.000Z

224

Carbon Capital: The Political Ecology of Carbon Forestry and Development in Chiapas, Mexico  

E-Print Network [OSTI]

B v + B d ) C T = Total carbon B v = biomass contained indevelopment through carbon sequestration: experiences in2000) Rural livelihoods and carbon management, IIED Natural

Osborne, Tracey Muttoo

2010-01-01T23:59:59.000Z

225

NETL: Carbon Storage - Midwest Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MRCSP MRCSP Carbon Storage Midwest Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing MRCSP efforts can be found on their website. The Midwest Regional Carbon Sequestration Partnership (MRCSP) was established to assess the technical potential, economic viability, and public acceptability of carbon storage within a region consisting of nine contiguous states: Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. A group of leading universities, state geological surveys, non-governmental organizations and private companies, led by Battelle Memorial Institute, has been assembled to carry out this research. The MRCSP currently consists of nearly 40 members; each contributing technical knowledge, expertise and cost sharing.

226

Method for joining carbon-carbon composites to metals  

DOE Patents [OSTI]

A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to ``wick`` into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy. 1 fig.

Lauf, R.J.; McMillan, A.D.; Moorhead, A.J.

1997-07-15T23:59:59.000Z

227

Carbon-Optimal and Carbon-Neutral Supply Chains  

E-Print Network [OSTI]

in the life-cycle assessment (LCA) and carbon footprintingto integrate the economics- and LCA-based perspectives onto life-cycle assessment (LCA). The existing literature on

Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

2011-01-01T23:59:59.000Z

228

Method for joining carbon-carbon composites to metals  

DOE Patents [OSTI]

A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to "wick" into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy.

Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Moorhead, Arthur J. (Knoxville, TN)

1997-01-01T23:59:59.000Z

229

Agricultural Carbon Mitigation in Europe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agricultural Carbon Mitigation in Europe Agricultural Carbon Mitigation in Europe Agricultural Carbon Mitigation in Europe Smith P, Powlson DS, Smith JU, Falloon P, and Coleman K. 2000. Meeting Europe's climate change commitments: Quantitative estimates of the potential for carbon mitigation by agriculture. Global Climate Change 6:525-539. Abstract Under the Kyoto Protocol, the European Union is committed to a reduction in CO2 emissions to 92% of baseline (1990) levels during the first commitment period (2008-2012). The Kyoto Protocol allows carbon emissions to be offset by demonstrable removal of carbon from the atmosphere. Thus, land-use / land-management change and forestry activities that are shown to reduce atmospheric CO2 levels can be included in the Kyoto targets. These activities include afforestation, reforestation and deforestation (article

230

ARM - Field Campaign - Aircraft Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsAircraft Carbon govCampaignsAircraft Carbon Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aircraft Carbon 2006.07.01 - 2008.09.30 Lead Scientist : Margaret Torn For data sets, see below. Description Airborne trace-gas measurements at ARM-SGP provided valuable data for addressing carbon-cycle questions highlighted by the US Climate Change Research Program and the North American Carbon Program. A set of carbon-cycle instruments and sample collection systems were added to an ARM-managed aircraft at ARM-SGP user facility. A separate (in-place) grant covered the cost of developing the instrument systems, analyzing the data, and ingesting all data to the ARM data archives. In the short-term (~1 y) we had two priorities. The first was to acquire

231

Compilation of carbon-14 data  

SciTech Connect (OSTI)

A review and critical analysis was made of the original sources of carbon-14 in the graphite moderator and reflector zones of the eight Hanford production reactors, the present physical and chemical state of the carbon-14, pathways (other than direct combustion) by which the carbon-14 could be released to the biosphere, and the maximum rate at which it might be released under circumstances which idealistically favor the release. Areas of uncertainty are noted and recommendations are made for obtaining additional data in three areas: (1) release rate of carbon-14 from irradiated graphite saturated with aerated water; (2) characterization of carbon-14 deposited outside the moderator and reflector zones; and (3) corrosion/release rate of carbon-14 from irradiated steel and aluminum alloys.

Paasch, R.A.

1985-07-08T23:59:59.000Z

232

Polarons in Carbon Nanotubes  

Science Journals Connector (OSTI)

We use ab initio total-energy calculations to predict the existence of polarons in semiconducting carbon nanotubes (CNTs). We find that the CNTs' band edge energies vary linearly and the elastic energy increases quadratically with both radial and with axial distortions, leading to the spontaneous formation of polarons. Using a continuum model parametrized by the ab initio calculations, we estimate electron and hole polaron lengths, energies, and effective masses and analyze their complex dependence on CNT geometry. Implications of polaron effects on recently observed electro- and optomechanical behavior of CNTs are discussed.

M. Verissimo-Alves; R. B. Capaz; Belita Koiller; Emilio Artacho; H. Chacham

2001-04-09T23:59:59.000Z

233

Carbonate fuel cell anodes  

DOE Patents [OSTI]

A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

Donado, R.A.; Hrdina, K.E.; Remick, R.J.

1993-04-27T23:59:59.000Z

234

Southeast Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Sequestration Partnership Presented to: Regional Carbon Sequestration Partnerships Annual Review Meeting Development Phase Field Tests Pittsburgh, PA October 5, 2010 Presented by: Gerald R. Hill, Ph.D. Senior Technical Advisor Southern States Energy Board Acknowledgements  This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory.  Cost share and research support provided by SECARB/SSEB Carbon Management Partners Through innovations in energy and environmental policies, programs and technologies, the Southern States Energy Board enhances economic development and the quality of life in the South. - SSEB Mission Statement SSEB Carbon Management Program  Established 2003  Characterizing Southeast Region

235

Industrial Carbon Management Initiative (ICMI)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Carbon Management Initiative Industrial Carbon Management Initiative (ICMI) Background The ICMI project is part of a larger program called Carbon Capture Simulation and Storage Initiative (C2S2I). The C2S2I has a goal of expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a feedstock for the industrial sector. The American Recovery and Re-Investment Act (ARRA)-funded

236

The Viscosity of Carbon Dioxide  

Science Journals Connector (OSTI)

26 July 1912 research-article The Viscosity of Carbon Dioxide P. Phillips The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings...

1912-01-01T23:59:59.000Z

237

Carbon nanotube IR detectors (SV)  

SciTech Connect (OSTI)

Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

Leonard, F. L.

2012-03-01T23:59:59.000Z

238

Carbon Sequestration Atlas IV Video  

SciTech Connect (OSTI)

The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

Rodosta, Traci

2013-04-19T23:59:59.000Z

239

Industrial Carbon Capture Project Selections  

Broader source: Energy.gov [DOE]

Industrial Carbon Capture Project SelectionsSeptember 2, 2010These projects have been selected for negotiation of awards; final award amounts may vary.

240

Carbon-assisted flyer plates  

DOE Patents [OSTI]

A laser driven flyer plate utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited.

Stahl, David B. (Los Alamos, NM); Paisley, Dennis L. (Santa Fe, NM)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Magnetism of the carbon allotropes  

Science Journals Connector (OSTI)

... a benzene ring. This analysis clearly shows the rationale behind the continuing interest in the magnetism of conjugated carbon compounds: properly interpreted,

R. C. Haddon

1995-11-16T23:59:59.000Z

242

Carbon Stars | Open Energy Information  

Open Energy Info (EERE)

Stars Jump to: navigation, search Name: Carbon Stars Place: Netherlands Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References:...

243

Photosynthesis and carbon dioxide fixation  

Science Journals Connector (OSTI)

Photosynthesis and carbon dioxide fixation ... Photosynthetic pigments, photosystems, the Calvin cycle, the Hatch-Slack pathway, photorespiration, and photosynthetic yield improvement. ...

Muriel B. Bishop; Carl B. Bishop

1987-01-01T23:59:59.000Z

244

In Situ Infrared Spectroscopic Study of Brucite Carbonation in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbonation in Dry to Water-Saturated Supercritical Carbon Dioxide. Abstract: In geologic carbon sequestration, while part of the injected carbon dioxide will dissolve into host...

245

Self-assembling functionalized single-walled carbon nanotubes  

E-Print Network [OSTI]

Single-walled carbon nanotubes Carbon nanotubes (CNTs) arescale synthesis of carbon nanotubes." Nature, Vol.358, 220-Ropes of Metallic Carbon Nanotubes." Science, Vol.273(5274),

Gao, Yan

2011-01-01T23:59:59.000Z

246

Carbon/Ternary Alloy/Carbon Optical Stack on Mylar as an Optical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CarbonTernary AlloyCarbon Optical Stack on Mylar as an Optical Data Storage Medium to Potentially Replace Magnetic Tape. CarbonTernary AlloyCarbon Optical Stack on Mylar as an...

247

Carbon Efficiency, Carbon Reduction Potential, and Economic Development in  

Open Energy Info (EERE)

Carbon Efficiency, Carbon Reduction Potential, and Economic Development in Carbon Efficiency, Carbon Reduction Potential, and Economic Development in the People's Republic of China Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Efficiency, Carbon Reduction Potential, and Economic Development in the People's Republic of China Agency/Company /Organization: Asian Development Bank Sector: Energy Focus Area: Energy Efficiency, Industry Topics: Low emission development planning, Policies/deployment programs, Background analysis Resource Type: Publications, Case studies/examples Website: www.adb.org/documents/studies/carbon-efficiency-prc/carbon-efficiency- Country: China UN Region: Eastern Asia Coordinates: 35.86166°, 104.195397° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.86166,"lon":104.195397,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide  

Open Energy Info (EERE)

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Project Description Supercritical CO2 is currently becoming a more common fluid for extracting volatile oil and fragrance compounds from various raw materials that are used in perfumery. Furthermore, its use as a heat transmission fluid is very attractive because of the greater uptake capability of heat from hot reservoir rock, compared with that of water. However, one concern was the reactivity of CO2 with clay and rock minerals in aqueous and non-aqueous environments. So if this reaction leads to the formation of water-soluble carbonates, such formation could be detrimental to the integrity of wellbore infrastructure.

249

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide  

Broader source: Energy.gov [DOE]

Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250C, and to develop chemical modeling of CO2-reservior rock interactions.

250

Pyrolytic carbon electrodes Lithographically Defined Porous Carbon Electrodes**  

E-Print Network [OSTI]

to the intrinsic material properties of carbon, functionalized films can be produced through chemical modification fabrication method capable of producing large area (%100 s cm2 ) submicrometer porous carbon films. In our methodology. The palladium-modified electrodes exhibit a catalytic response for methanol oxidation

New Mexico, University of

251

Carbon Sequestration Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Science July 2001 Focus Area Overview Presentation Mission and Scope Program Relationships Scientific Challenges Research Plans Facility Plans Princeton.ppt 7/16/01 Carbon Sequestration Science Focus Area New Projects Contribute to Sequestration Science Systems Integration Virtual Simulation of CO 2 Capture Technologies Cleanup Stream Gas Gasification Gasification MEA CO 2 Capture Facility Oxygen Membrane 3 km 2 inch tube 800m - 20 °C, 20 atm Liquid CO 2 , 100 tons ~1 kg CO 2 / s = 5 MW ^ CO 2 Coal Other Fuels Coal Other Fuels CO 2 Sequestration Aquifer H 2 O Flue gas H 2 O CH 4 CH 4 CO 2 Oil field Oil well Power plant CH 4 Coal - bed Aquiclude H 2 O CO 2 /N 2 CO 2 N 2 CO 2 CO 2 CO 2 CO 2 CO 2 Water Rock , 2 Coal Other Fuels Coal Other Fuels Combustor Oxygen Membrane Princeton.ppt 7/16/01 Carbon Sequestration Science Focus Area

252

Chlorination of carbon nanotubes  

Science Journals Connector (OSTI)

We report ab initio density functional theory calculations for chlorinated single-wall carbon nanotubes and investigate the atomic structure, energetics, and electronic structure of the chlorinated nanotubes, as well as the energetics of the desorption reaction. We find that the Cl atoms should be adsorbed in pairs and thus focus on doubly chlorinated nanotubes. Using the terminology of arene substitution patterns, ortho and para configurations are the most stable. The physisorption is preferable to the chemisorption in large-diameter nanotubes. The impurity states appear near the Fermi level EF in the electronic structure and may alter the electronic properties considerably. The bonding character for adsorption outside the nanotube is mainly covalent, but inside it consists of physical bonding. The adsorption of several Cl atoms inside a carbon nanotube leads to the formation of a charged Cl chain. Our calculated desorption barrier of ?1.4 eV per Cl atom pair indicates that the cleansing by chlorination is a less damaging alternative with removable residue.

Dogan Erbahar and Savas Berber

2012-02-21T23:59:59.000Z

253

Carbon dioxide and climate  

SciTech Connect (OSTI)

Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

Not Available

1990-10-01T23:59:59.000Z

254

Structural graphitic carbon foams  

SciTech Connect (OSTI)

Graphitic carbon foams are a unique material form with very high structural and thermal properties at a light weight. A process has been developed to produce microcellular, open-celled graphitic foams. The process includes heating a mesophase pitch preform above the pitch melting temperature in a pressurized reactor. At the appropriate time, the pressure is released, the gas nucleates bubbles, and these bubbles grow forming the pitch into the foam structure. The resultant foamed pitch is then stabilized in an oxygen environment. At this point a rigid structure exists with some mechanical integrity. The foam is then carbonized to 800 C followed by a graphitization to 2700 C. The shear action from the growing bubbles aligns the graphitic planes along the foam struts to provide the ideal structure for good mechanical properties. Some of these properties have been characterized for some of the foam materials. It is known that variations of the blowing temperature, blowing pressure and saturation time result in foams of variously sized with mostly open pores; however, the mechanism of bubble nucleation is not known. Therefore foams were blown with various gases to begin to determine the nucleation method. These gases are comprised of a variety of molecular weights as well as a range of various solubility levels. By examining the resultant structures of the foam, differences were noted to develop an explanation of the foaming mechanism.

Kearns, K.M.; Anderson, H.J. [Air Force Lab., Wright-Patterson AFB, OH (United States). Materials and Mfg. Directorate

1998-12-31T23:59:59.000Z

255

Carbon Dioxide Carbonates in the Earth;s Mantle: Implications to the Deep Carbon Cycle  

SciTech Connect (OSTI)

An increase in the ionic character in C-O bonds at high pressures and temperatures is shown by the chemical/phase transformation diagram of CO{sub 2}. The presence of carbonate carbon dioxide (i-CO{sub 2}) near the Earth's core-mantle boundary condition provides insights into both the deep carbon cycle and the transport of atmospheric CO{sub 2} to anhydrous silicates in the mantle and iron core.

Yoo, Choong-Shik; Sengupta, Amartya; Kim, Minseob (Princeton); (WSU)

2012-05-22T23:59:59.000Z

256

Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao  

E-Print Network [OSTI]

Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao promising carbon uptake results and is a viable option for carbonation curing. Carbon sequestration increase in Carbon dioxide (CO2) emissions over the past five decades, specific ways to reduce

Barthelat, Francois

257

46 (2009-6) Nucleation of a single-walled carbon nanotube inside a carbon nanotube  

E-Print Network [OSTI]

of the metal-carbide. Key Words : Molecular Dynamics, Double-Walled Carbon Nanotube, Growth Mechanism, Carbon functions of carbon atoms and metal atoms in the metal carbide cluster #12;,10) Carbon (11,11) Carbon (15,6) Carbon (10,10) Metal (11,11) Metal (15,6) Metal Fig. 4 Density distribution

Maruyama, Shigeo

258

University of Glasgow Carbon Management Programme Carbon Management Plan working with  

E-Print Network [OSTI]

carbon vision 11 2.3 Strategic themes 12 Targets and objectives 13 3 Emissions Baseline and Projections. Professor Anton Muscatelli, Principal Foreword from the Carbon Trust Cutting carbon emissions as partUniversity of Glasgow Carbon Management Programme Carbon Management Plan working with Page 1 Carbon

Mottram, Nigel

259

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

260

Controlled growth of carbon nanotubes  

Science Journals Connector (OSTI)

...Terrones Controlled growth of carbon nanotubes R. Vajtai 1 B. Q. Wei 2 P. M. Ajayan...Rouge, LA 70803-5901, USA Carbon nanotubes have extraordinary mechanical and electronic...state-of-the-art account of tailored nanotube growth. To provide these properties...

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Plasmachemical Synthesis of Carbon Suboxide  

E-Print Network [OSTI]

A nonthermal carbon monoxide plasma is known to produce a solid deposition which is thought to be a polymer of carbon suboxide (C3O2); however there are very few investigations of this deposition in the literature. This thesis contains an analysis...

Geiger, Robert

2012-12-11T23:59:59.000Z

262

Capture of carbon dioxide from ambient air  

Science Journals Connector (OSTI)

Carbon dioxide capture from ambient air could compensate for all carbon dioxide emissions to the atmosphere. Such capture would, for example, make it possible to use liquid, carbon-based fuels in cars or airplane...

K.S. Lackner

2009-09-01T23:59:59.000Z

263

Carbon dioxide capture and geological storage  

Science Journals Connector (OSTI)

...Blundell and Fraser Armstrong Carbon dioxide capture and geological storage Sam...Nottingham NG12 5GG, UK Carbon dioxide capture and geological storage is a...80-90%. It involves the capture of carbon dioxide at a large industrial...

2007-01-01T23:59:59.000Z

264

Nanobiocatalysts for Carbon Capture, Sequestration and Valorisation  

Science Journals Connector (OSTI)

The approaches being pursued for carbon management includes: (i) increased efficiency of ... energy conversion, (ii) usage of low-carbon or carbon-free energy sources, and (iii) capturing and sequestering anthrop...

Sadhana Rayalu; Renu Yadav; Snehal Wanjari; Chandan Prabhu

2012-11-01T23:59:59.000Z

265

Carbon Market Brasil Consulting | Open Energy Information  

Open Energy Info (EERE)

Brasil Consulting Jump to: navigation, search Name: Carbon Market Brasil Consulting Place: Sao Paulo, Brazil Zip: 04120-070 Sector: Carbon Product: Brazil-based carbon Market is a...

266

Microstructure of metal-filled carbon nanotubes  

Science Journals Connector (OSTI)

......Microstructure of metal-filled carbon nanotubes Shoichi Toh 1 Kenji Kaneko 2 Yasuhiko...are usually required to produce carbon nanotubes (CNTs) and play important roles during...mechanisms. metal filling|MPCVD|carbon|nanotube|palladium|microstructure| Microstructure......

Shoichi Toh; Kenji Kaneko; Yasuhiko Hayashi; Tomoharu Tokunaga; Won-Jin Moon

2004-04-01T23:59:59.000Z

267

A method for characterizing carbon nanotubes  

Science Journals Connector (OSTI)

......Letter A method for characterizing carbon nanotubes Toshie Yaguchi 1 Takahiro Sato 1 Takeo...spectroscopy of a multi-walled carbon nanotube (MWCNT) at elevated temperatures were...spectroscopy|multi&hyphen|walled carbon nanotube|specimen&hyphen|heating holder......

Toshie Yaguchi; Takahiro Sato; Takeo Kamino; Yoshifumi Taniguchi; Kenichi Motomiya; Kazuyuki Tohji; Atsuo Kasuya

2001-07-01T23:59:59.000Z

268

Carbon Capital Markets | Open Energy Information  

Open Energy Info (EERE)

Carbon Product: London-based fund manager and trader specialising in the carbon and clean energy markets. References: Carbon Capital Markets1 This article is a stub. You can help...

269

Carbon Nanotubes: Bearing Stress Like Never Before  

E-Print Network [OSTI]

A.J. (2013). Carbon Nanotubes: Present and Future CommercialP.M. (2008). Carbon Nanotubes. A. Jorio, G. Dresselhaus, &V.N. (2004). Carbon Nanotubes: properties and application.

Limaye, Aditya

2013-01-01T23:59:59.000Z

270

Defects and Disorder in Carbon Nanotubes  

E-Print Network [OSTI]

Perebeinos, V. (2008) Carbon Nanotubes 111 423. Bachilo, S.P. L. (2008) Carbon Nanotubes 111 Biro, L. P. , Khanh, N.structure of carbon nanotubes. Fullerenes '96. Oxford, UK.

Collins, Philip G

2010-01-01T23:59:59.000Z

271

Carbon Fiber Composite Cellular A Dissertation  

E-Print Network [OSTI]

Carbon Fiber Composite Cellular Structures ____________________________________ A Dissertation and honeycombs. However, for weight sensitive, ambient temperature applications, carbon fiber composites have emerged as a promising material due to its high specific strength and low density. Carbon fiber reinforced

Wadley, Haydn

272

Porous Carbon Nanoparticle Networks with Tunable Absorbability  

E-Print Network [OSTI]

and repel liquid droplets2,3 . Recently, carbon materials such as amorphous carbon coatings, graphene foams carbon materials or structures have been used extensively as electrode materials for batteries and super

Kim, Ho-Young

273

ASSESSMENT OF BUILDING LIFECYLE CARBON EMISSIONS  

E-Print Network [OSTI]

Even though the Carbon Capture & Sequestration Technologies (CC & ST) program at the Massachusetts Institute of Technology initiated carbon emission research in late 1990s (CSI, 2013), carbon emissions has only become a hot topic in the last decade...

Kwok, George

2014-05-31T23:59:59.000Z

274

2e Carbon Access | Open Energy Information  

Open Energy Info (EERE)

Access Jump to: navigation, search Name: 2e Carbon Access Place: New York, New York Zip: 10280 Sector: Carbon Product: 2E Carbon Access is an enterprise focused solely on bringing...

275

Carbon Nanotubes: Bearing Stress Like Never Before  

E-Print Network [OSTI]

of the mechanical properties of carbon nanotube polymercomposites. Carbon, 44. 1624 1652 doi: 10.1016/j.R.H. , & Hart, A.J. (2013). Carbon Nanotubes: Present and

Limaye, Aditya

2013-01-01T23:59:59.000Z

276

Who Pays a Price on Carbon?  

E-Print Network [OSTI]

on a per-capita basis a carbon price is much more regressiveadverse distributional effects of a carbon emissions policy.Distributional incidence Carbon tax Tradable permits Q52

Grainger, Corbett A.; Kolstad, Charles D.

2010-01-01T23:59:59.000Z

277

Carbon Dioxide and Methane Emissions from Estuaries  

Science Journals Connector (OSTI)

Carbon dioxide and methane emissions from estuaries are reviewed in relation with biogeochemical processes and carbon cycling. In estuaries, carbon dioxide and methane emissions show a large spatial and temporal ...

Gwenal Abril; Alberto Vieira Borges

2005-01-01T23:59:59.000Z

278

Climate policy and dependence on traded carbon  

E-Print Network [OSTI]

of human development and carbon emissions embodied in trade03.html) Lo A Y 2012 Carbon emissions trading in Chinagoal is to regulate carbon emissions, then, because only a

Andrew, Robbie M; Davis, Steven J; Peters, Glen P

2013-01-01T23:59:59.000Z

279

ARM - Measurement - Organic Carbon Concentration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsOrganic Carbon Concentration govMeasurementsOrganic Carbon Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Organic Carbon Concentration The concentration of carbon bound in organic compounds. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments ACSM : Aerosol Chemical Speciation Monitor Field Campaign Instruments AEROSCARBON : Aerosol Carbon Analyzer AEROSMASSSPEC : Aerosol Mass Spectrometer Datastreams AOS : Aerosol Observing System Datastreams

280

Natural materials for carbon capture.  

SciTech Connect (OSTI)

Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

Myshakin, Evgeniy M. (National Energy Technology Laboratory, Pittsburgh, PA); Romanov, Vyacheslav N. (National Energy Technology Laboratory, Pittsburgh, PA); Cygan, Randall Timothy

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NETL: Carbon Capture FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How is CO2 captured? How is CO2 captured? Chilled Ammonia CO2 Capture Process Facility at American Electric Power's (AEP) Mountaineer Plant Chilled Ammonia CO2 Capture Process Facility at American Electric Power's (AEP) Mountaineer Plant Carbon dioxide (CO2) capture involves separating CO2 from other gases generated by industrial processes or burning fossil fuels. CO2 capture can remove as much as 95% of the CO2 from these processes. There are two major types of anthropogenic CO2 sources: mobile and stationary. Mobile sources include things like cars, trucks, trains, boats, and aircrafts that burn fossil fuels and generate CO2. Capturing CO2 from mobile sources is currently impractical. Stationary sources include power plants and industrial facilities that burn fossil fuels, as

282

NETL: Carbon Storage FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Where is CO2 storage happening today? Where is CO2 storage happening today? Sleipner Project (Norway) Sleipner Project (Norway) Carbon dioxide (CO2) storage is currently happening across the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway, the Weyburn-Midale CO2 Project in Canada, and the In Salah project in Algeria, have been injecting CO2 for many years. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, too. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. Additionally, a multitude of pilot efforts are underway in different parts of the world to determine suitable locations and technologies for future

283

NETL Mineral Carbonation Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview Mineral Carbonation Workshop August 8, 2001 Carl O. Bauer, Associate Laboratory Director Descriptor - include initials, /org#/date We Are: * One of DOE's 15 national laboratories * Government owned and operated * Sites in Oklahoma, Pennsylvania, and West Virginia * Over 1,100 federal and support contractor employees * FY01 budget of $774 million July 2001 Descriptor - include initials, /org#/date Sites in Pennsylvania, West Virginia, Oklahoma Morgantown, WV Pittsburgh, PA Tulsa, OK Descriptor - include initials, /org#/date Our Mission * Resolve the environmental, supply, and reliability constraints of producing and using fossil resources to provide Americans with a stronger economy, healthier environment, and more secure future * Support development and deployment of environmental technologies that reduce

284

Dominoes in Carbon Nanotubes  

Science Journals Connector (OSTI)

We demonstrate by molecular dynamics simulations that the domino process can be developed in single-walled carbon nanotubes (SWCNTs). Once a section of a SWCNT with an appropriate diameter (>3.5??nm) is collapsed, the successive collapse of the neighboring portions can generate a domino wave along the longitudinal direction of the tube. The wave is driven by vanderWaals potential energy and its natural speed can be up to 1??km/s. Molecules inside the SWCNT can be accelerated by the domino wave and finally shot out. The finding shows for the first time that a SWCNT can be an energy supplier, which provides opportunities for designing new concept (domino-driven) nanoelectromechanical system devices.

Tienchong Chang

2008-10-21T23:59:59.000Z

285

Carbon and carbon monoxide hydrogenation on nickel: support effects  

SciTech Connect (OSTI)

Hydrogenation of carbon, deposited on nickel catalysts by CO disproportionation, was investigated by temperature-programmed surface reaction (TPSR) for four oxide supports, alumina (Al/sub 2/O/sub 3/), silica (SiO/sub 2/), titanium oxide (TiO/sub 2/), and SiO/sub 2/.Al/sub 2/O/sub 3/. The rate of carbon monoxide hydrogenation was measured by temperature-programmed reaction (TPR) for comparison. The rate of carbon hydrogenation to methane was found to be independent of the support and an average activation energy of 42 kJ/mol was estimated. In contrast, the rate of carbon monoxide hydrogenation was very sensitive to the catalyst support. Nickel (Ni) supported on TiO/sub 2/ exhibited the highest specific activity, and two distinct sites for methanation were observed on Ni/TiO/sub 2/ and Ni/Al/sub 2/O/sub 3/. The lowest specific activities were observed for Ni/SiO/sub 2/ and Ni/SiO/sub 2/.Al/sub 2/O/sub 3/. For all catalysts, carbon hydrogenation occurred at a lower temperature than carbon monoxide hydrogenation. For both TPR and TPSR, small amounts of ethane were formed and at a lower temperature than methane. The amount of less-active, ..beta..-carbon observed in TPSR experiments was very small on all catalysts. These results indicate that at high coverages, carbon hydrogenation does not depend on the support, and thus it is not rate-determining for CO hydrogenation in excess hydrogen. The support is also shown to change the specific rate of carbon monoxide methanation; activity differences seen in steady-state experiments are not just due to differences in site densities. 5 figures, 5 tables.

Ozdogan, S.Z.; Gochis, P.D.; Falconer, J.L.

1983-10-01T23:59:59.000Z

286

Speeding Up Zeolite Evaluation for Carbon Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Speeding Up Zeolite Evaluation for Carbon Capture Speeding Up Zeolite Evaluation for Carbon Capture Zeolite.png Schematic of an important class of porous materials known as...

287

Multiphase Sequestration Geochemistry: Model for Mineral Carbonation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Mineral Carbonation. Abstract: Carbonation of formation minerals converts low viscosity supercritical CO2 injected into deep saline reservoirs for geologic sequestration...

288

GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA to extend our thanks to the authors of various West Coast Regional Carbon Sequestration Partnership

289

Putting the pressure on carbon dioxide | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Putting the pressure on carbon dioxide Improving the chances for fuel recovery and carbon sequestration Artwork from this research graces the cover of Environmental Science...

290

Prospects for Enhancing Carbon Sequestration and Reclamation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prospects for Enhancing Carbon Sequestration and Reclamation of Degraded Lands with Fossil-fuel Combustion By-products. Prospects for Enhancing Carbon Sequestration and Reclamation...

291

Robust carbon monolith having hierarchical porosity  

DOE Patents [OSTI]

A carbon monolith includes a robust carbon monolith characterized by a skeleton size of at least 100 nm, and a hierarchical pore structure having macropores and mesopores.

Dai, Sheng; Guiohon, Georges A; Liang, Chengdu

2013-02-05T23:59:59.000Z

292

Robust carbon monolith having hierarchical porosity  

SciTech Connect (OSTI)

A carbon monolith includes a robust carbon monolith characterized by a skeleton size of at least 100 nm, and a hierarchical pore structure having macropores and mesopores.

Dai, Sheng; Guiochon, Georges A; Liang, Chengdu

2014-01-14T23:59:59.000Z

293

Thermoelectric Fabrics? based on carbon nanotube composites...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

based on carbon nanotube composites Composite films of multi-walled carbon nanotubespolyvinylidene fluoride layered into multiple element modules, results in...

294

Carbon nanotubes : synthesis, characterization, and applications  

E-Print Network [OSTI]

Surface-Attached Carbon Nanotubes. Ind. Eng. Chem. Res. ,Structure of Carbon Nanotubes. Journal of Physical ChemistryP.G. and P. Avouris, Nanotubes for Electronics. Scientific

Deck, Christian Peter

2009-01-01T23:59:59.000Z

295

Functionalized carbon nanotubes and nanofibers for biosensing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

carbon nanotubes and nanofibers for biosensing applications. Functionalized carbon nanotubes and nanofibers for biosensing applications. Abstract: This review summarizes the recent...

296

Carbon nanotubes : synthesis, characterization, and applications  

E-Print Network [OSTI]

of carbon nanotubes by transmission electron energy-lossEnergy Gaps in "Metallic" Single-Walled Carbon Nanotubes.nanotubes, absorbance increases with increasing light energy

Deck, Christian Peter

2009-01-01T23:59:59.000Z

297

Hydrogen Adsorption Induces Interlayer Carbon Bond Formation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Adsorption Induces Interlayer Carbon Bond Formation in Supported Few-Layer Graphene Friday, February 28, 2014 Among the allotropes of carbon, diamond has some of the most...

298

Metal supported carbon nanostructures for hydrogen storage.  

E-Print Network [OSTI]

??Carbon nanocones are the fifth equilibrium structure of carbon, first synthesized in 1997. They have been selected for investigating hydrogen storage capacity, because initial temperature (more)

Matelloni, Paolo

2012-01-01T23:59:59.000Z

299

Electrical Transport in Carbon Nanotubes and Graphene  

E-Print Network [OSTI]

Introduction to Carbon Nanotubes and Graphene Single wallCarbon nanotubes and graphene are the most popular Carbonin the Normal Metal Graphene Superconductor Junctions

Liu, Gang

2010-01-01T23:59:59.000Z

300

CFTF | Carbon Fiber Technology Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BTRIC CNMS CSMB CFTF Working with CFTF HFIR MDF NTRC OLCF SNS Carbon Fiber Technology Facility Home | User Facilities | CFTF CFTF | Carbon Fiber Technology Facility SHARE Oak...

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Project Profile: Regenerative Carbonate-Based Thermochemical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power Project Profile: Regenerative Carbonate-Based Thermochemical Energy Storage System...

302

California Low Carbon Fuels Infrastructure Investment Initiative...  

Broader source: Energy.gov (indexed) [DOE]

California Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and...

303

Numerical simulation and modeling of carbon nanotubes.  

E-Print Network [OSTI]

??The discovery of carbon nanotubes has triggered a significant amount of interest. Since then, much research has been done on these new forms of carbon (more)

Wong, Chee How.

2008-01-01T23:59:59.000Z

304

CHEMICAL MODIFICATION AND CHARACTERIZATION OF CARBON NANOTUBES.  

E-Print Network [OSTI]

??Carbon nanotubes (CNTs) are a relatively new allotrope of carbon that possess very unique and exciting physical characteristics. However, much is still unknown regarding their (more)

Cassity, Kelby Brandan

2010-01-01T23:59:59.000Z

305

Economics of geological sequestration and carbon management.  

E-Print Network [OSTI]

??In this carbon-constrained world, carbon management options for climate change mitigation are becoming increasingly important, especially in China, one of the largest energy consuming and (more)

Su, Hui, 1976-

2010-01-01T23:59:59.000Z

306

CARBON SEQUESTRATION IN NATURAL AND CREATED WETLANDS.  

E-Print Network [OSTI]

?? Wetland ecosystems are significant carbon sinks. Their high productivity and presence of water gives them the ability to efficiently sequester carbon in the soil, (more)

Bernal, Blanca

2012-01-01T23:59:59.000Z

307

Carbon Fiber Technology Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Fiber Technology Facility Carbon Fiber Technology Facility 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

308

Carbon Fiber Technology Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Fiber Technology Facility Carbon Fiber Technology Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

309

Carbon Fiber Technology Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Fiber Technology Facility Carbon Fiber Technology Facility 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

310

A chemistry tale of two carbons | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A chemistry tale of two carbons A chemistry tale of two carbons Comprehensive field study of urban, natural emissions interacting to affect climate change Data from the CARES...

311

Greenstone Carbon Management Ltd | Open Energy Information  

Open Energy Info (EERE)

London-based specialist carbon solutions provider to measure, manage and mitigate their carbon emissions and realise business and financial benefits. References: Greenstone...

312

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

313

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

314

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

315

Black carbon snow albedo reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Black carbon snow albedo reduction Black carbon snow albedo reduction Title Black carbon snow albedo reduction Publication Type Journal Article Year of Publication 2012 Authors Hadley, Odelle L., and Thomas W. Kirchstetter Journal Nature Climate Change Volume 2 Pagination 437-440 Abstract Climate models indicate that the reduction of surface albedo caused by black-carbon contamination of snow contributes to global warming and near-worldwide melting of ice1, 2. In this study, we generated and characterized pure and black-carbon-laden snow in the laboratory and verified that black-carbon contamination appreciably reduces snow albedo at levels that have been found in natural settings1, 3, 4. Increasing the size of snow grains in our experiments decreased snow albedo and amplified the radiative perturbation of black carbon, which justifies the aging-related positive feedbacks that are included in climate models. Moreover, our data provide an extensive verification of the Snow, Ice and Aerosol Radiation model1, which will be included in the next assessment of the Intergovernmental Panel on Climate Change5.

316

Large Magnetization at Carbon Surfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Magnetization at Carbon Surfaces Print Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

317

PlaneCarbon | Open Energy Information  

Open Energy Info (EERE)

PlaneCarbon PlaneCarbon Jump to: navigation, search Name PlaneCarbon Address 9149 N. 109th Place Place Scottsdale, Arizona Zip 85259 Sector Carbon Product PlaneCarbon Year founded 2002 Number of employees 1-10 Phone number 480-205-0881 Website http://iteknowledgies.com/tran References Iteknowledgies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! TODO: Determine if all of this content is appropriate and has a neutral point of view. PlaneCarbon, a division of Iteknowledgies International, is a company based in Scottsdale, Arizona. PlaneCarbon purchases carbon credits to achieve carbon neutral operation of your aircraft based on the average utilization of a specific aircraft in hours per year and then calculating the amount of fuel burned and purchasing offsetting carbon credits to achieve carbon

318

Workshop on Carbon Sequestration Science - Ocean Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ocean Carbon Ocean Carbon Sequestration Howard Herzog MIT Energy Laboratory May 24, 2001 Ocean Carbon Sequestration Options * The direct injection of a relatively pure CO 2 stream that has been generated, for example, at a power plant or from an industrial process * The enhancement of the net oceanic uptake from the atmosphere, for example, through iron fertilization The DOE Center for Research on Ocean Carbon Sequestration (DOCS) * Established July 1999 * Centered at LBNL and LLNL * Participants S Eric Adams MIT S Jim Barry MBARI S Jim Bishop DOCS Scientific Co-director LBNL S Ken Caldeira DOCS Scientific Co-director LLNL S Sallie Chisholm MIT S Kenneth Coale Moss Landing Marine Laboratory S Russ Davis Scripps Institution of Oceanography S Paul Falkowski Rutgers S Howard Herzog MIT S Gerard Nihous Pacific International Center for High Technology Research

319

NETL: Carbon Storage - NETL Carbon Capture and Storage Database  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS Database CCS Database Carbon Storage NETL's Carbon Capture, Utilization, and Storage Database - Version 4 Welcome to NETL's Carbon Capture, Utilization, and Storage (CCUS) Database. The database includes active, proposed, canceled, and terminated CCUS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCUS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCUS technology. As of November 2012, the database contained 268 CCUS projects worldwide. The 268 projects include 68 capture, 61 storage, and 139 for capture and storage in more than 30 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 37 are actively capturing and injecting CO2

320

NETL: Carbon Storage - West Coast Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WESTCARB WESTCARB Carbon Storage West Coast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing WESTCARB efforts can be found on their website. The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is led by the California Energy Commission and represents a coalition of more than 90 organizations from state and provincial resource management and environmental protection agencies; national laboratories and research institutions; colleges and universities; conservation non-profits; oil and gas companies; power companies; pipeline companies; trade associations; vendors and service firms; and consultants. The partners are engaged in several aspects of WESTCARB projects and contribute to the efforts to deploy carbon storage projects on the west coast of North America. WESTCARB

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NETL: Carbon Storage - Southwest Regional Partnership on Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southwest Regional Partnership on Carbon Sequestration Southwest Regional Partnership on Carbon Sequestration MORE INFO Additional information related to ongoing SWP efforts can be found on their website. The Southwest Regional Partnership on Carbon Sequestration (SWP) is led by the New Mexico Institute of Mining and Technology and represents a coalition composed of a diverse group of experts in geology, engineering, economics, public policy, and outreach. The 50 SWP partners represent state and federal agencies, universities, electric utilities, non-governmental organizations, coal, oil and gas companies, and the Navajo Nation. The partners are engaged in several aspects of SWP projects and contribute to the efforts to deploy carbon capture and storage (CCS) projects in the southwestern region of the United States. SWP encompasses Arizona,

322

Carbon Dioxide Capture with Amine-Grafted Activated Carbon  

Science Journals Connector (OSTI)

There are several possible methods by which amine groups can be grafted on the surface of activated carbon (AC) to improve their capacity for...2 adsorption. Ethylenediamine and diethylenetriamine were selected a...

Amirhossein Houshmand; Wan Mohd Ashri Wan Daud; Min-Gyu Lee

2012-02-01T23:59:59.000Z

323

The Role of Mineral Carbonation in Carbon Capture  

Science Journals Connector (OSTI)

A number of aqueous-phase-based indirect mineral carbonation studies have focused on enhancing the reactivity of Mg-silicates through the addition of weak acids and additives that increase silicate dissolution...

Prof. Jennifer Wilcox

2012-01-01T23:59:59.000Z

324

Carbon Cloth Reinforced Carbon Aerogel Films Derived from Resorcinol Formaldehyde  

Science Journals Connector (OSTI)

Carbon cloth reinforced RF (Resorcinol Formaldehyde) aerogel films have been produced with extremely high RC ratio (molar ratio of resorcinol to catalyst) or with no catalyst at all. The gels were subcriticall...

J. Wang; M. Glora; R. Petricevic; R. Saliger; H. Proebstle

2001-03-01T23:59:59.000Z

325

Soil warming, carbonnitrogen interactions, and forest carbon budgets  

Science Journals Connector (OSTI)

...atmosphereoceanland earth system models to accurately simulate land...atmosphereoceanland earth system models by comparing terrestrial carbon...atmosphereoceanland earth system models (44...

Jerry M. Melillo; Sarah Butler; Jennifer Johnson; Jacqueline Mohan; Paul Steudler; Heidi Lux; Elizabeth Burrows; Francis Bowles; Rose Smith; Lindsay Scott; Chelsea Vario; Troy Hill; Andrew Burton; Yu-Mei Zhou; Jim Tang

2011-01-01T23:59:59.000Z

326

Thermoelectric power in carbon nanotubes  

SciTech Connect (OSTI)

The theoretical results for the temperature dependence of the thermoelectric power of graphite and semimetal carbon nanotubes are reported. In the calculations, the cylindrical superatomic range structure of nanotubes is taken into account. The Boltzmann equation and the {pi}-electron model of semimetal carbon nanotubes are used. The basic parameters of the calculation are the concentration of electrons, the Fermi energy, and the energy of the local level associated with the cylindrical structure of carbon nanotubes. The theoretical results are compared with the available experimental data.

Mavrinskiy, A. V., E-mail: mavrinsky@gmail.com; Baitinger, E. M. [Chelyabinsk State Pedagogical University (Russian Federation)

2009-04-15T23:59:59.000Z

327

Carbon Dioxide: Threat or Opportunity?  

E-Print Network [OSTI]

tion will be by direct combustion for the generation of power, but an increasing proportion will be con verted to syngas for chemical and fuel uses. Coal gasification is projected to become a major industry in the next decade. For every ton of coal... entering the gasification process, 1.88 lons of carbon dio xide are produced. This carbon dioxide is removed in virtually pure form by existing technology. This same technology can be applied to remove carbon dioxide from stack gases produced by power...

McKinney, A. R.

1982-01-01T23:59:59.000Z

328

NETL: Carbon Storage FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

different options for CO2 storage? different options for CO2 storage? Oil and gas reservoirs, many containing carbon dioxide (CO2), as well as natural deposits of almost pure CO2, can be found in many places in the United States and around the world. These are examples of long-term storage of CO2 by nature, where "long term" means millions of years. Their existence demonstrates that naturally occurring geologic formations and structures of various kinds are capable of securely storing CO2 deep in the subsurface for very long periods of time. Because of the economic importance of oil and gas, scientists and engineers have studied these natural deposits for many decades in order to understand the physical and chemical processes which led to their formation. There are also many decades of engineering experience in subsurface operations similar to those needed for CO2 storage. The most directly applicable experience comes from the oil industry, which, for 40 years, has injected CO2 in depleted oil reservoirs for the recovery of additional product through enhanced oil recovery (EOR). Additional experience comes from natural gas storage operations, which have utilized depleted gas reservoirs, as well as reservoirs containing only water. Scientists and engineers are now combining the knowledge obtained from study of natural deposits with experience from analogous operations as a basis for studying the potential for large-scale storage of CO2 in the deep subsurface.

329

Shallow Carbon Sequestration Demonstration Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shallow Carbon SequeStration Shallow Carbon SequeStration DemonStration ProjeCt Background The Shallow Carbon Sequestration Pilot Demonstration Project is a cooperative effort involving City Utilities of Springfield (CU); Missouri Department of Natural Resources (MDNR); Missouri State University (MSU); Missouri University of Science & Technology (MS&T); AmerenUE; Aquila, Inc.; Associated Electric Cooperative, Inc.; Empire District Electric Company; and Kansas City Power & Light. The purpose of this project is to assess the feasibility of carbon sequestration at Missouri power plant sites. The six electric utilities involved in the project account for approximately 90 percent of the electric generating capacity in Missouri. Description The pilot demonstration will evaluate the feasibility of utilizing the Lamotte and

330

Carbon Capture & Sequestration Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Laboratory Battelle Memorial Institute CARBON CAPTURE & SEQUESTRATION TECHNOLOGIES J. Edmonds, J.J. Dooley, and S.H. Kim Battelle Pacific Northwest National Laboratory Battelle Memorial Institute Pacific Northwest National Laboratory Battelle Memorial Institute THE ROADMAP * Greenhouse gas emissions may not control themselves. * Climate policy may happen.--There are smart and dumb ways to proceed. The smart ways involve getting both the policy and the technology right--the GTSP. * There are no silver bullets--Expanding the set of options to include carbon capture and sequestration can help limit the cost of any ceiling on CO 2 concentrations. * Managing greenhouse emissions means managing carbon. * Carbon can be captured, transported, and sequestered in many ways.

331

Industrial Carbon Management Initiative (ICMI)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Initiative (ICMI) Background The ICMI project is part of a larger program called Carbon Capture Simulation and Storage Initiative (C2S2I). The C2S2I has a goal of...

332

Carbon nanotubes in new materials  

Science Journals Connector (OSTI)

Studies of materials consisting of carbon nanotubes or containing them have been analyzed and generalized. Classification of these materials is proposed, their general features and main types are considered, and individual examples are presented. The bibliography includes 372 references.

Eduard G Rakov

2013-01-01T23:59:59.000Z

333

Reducing carbon dioxide to products  

DOE Patents [OSTI]

A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

2014-09-30T23:59:59.000Z

334

Carbon-Neutral Energy Sources  

Science Journals Connector (OSTI)

Among the main approaches to decarbonizing global economy, the switching to carbon-neutral energy sources such as nuclear and renewables (solar, wind, biomass, etc.) is mentioned most often. Nuclear energy is ...

Nazim Muradov

2014-01-01T23:59:59.000Z

335

Increasing carbon nanotube forest density  

E-Print Network [OSTI]

The outstanding mechanical, electrical, thermal, and morphological properties of individual carbon nanotubes (CNTs) open up exciting potential applications in a wide range of fields. One such application is replacing the ...

McCarthy, Alexander P

2014-01-01T23:59:59.000Z

336

Emerging Applications of Carbon Nanotubes  

E-Print Network [OSTI]

On the basis of their unique electrical and mechanical properties, carbon nanotubes (CNTs) have attracted great attention in recent years. A diverse array of methods has been developed to modify CNTs and to assemble them ...

Schnorr, Jan Markus

337

Carbon-assisted flyer plates  

DOE Patents [OSTI]

A laser driven flyer plate is described utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited. 2 figures.

Stahl, D.B.; Paisley, D.L.

1994-04-12T23:59:59.000Z

338

Non-carbon induction furnace  

DOE Patents [OSTI]

The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

1984-01-06T23:59:59.000Z

339

Carbon Sequestration in Agroforestry Systems  

Science Journals Connector (OSTI)

Agroforestry systems have great potential as carbon (C) sinks, through C sequestration both above- and belowground. The C-sequestration potentials of tropical agroforestry systems are highly ... caused by (i) the...

Alain Atangana; Damase Khasa; Scott Chang; Ann Degrande

2014-01-01T23:59:59.000Z

340

Carbon Sequestration in Organic Farming  

Science Journals Connector (OSTI)

Organic farming has been developed as a new mode of farming vs. conventional farming. Evidence showed that organic farming management can well maintain the soil carbon up to 23 times higher in organic matter ...

Raymond Liu; Jianming M. Xu; C. Edward Clapp

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lower Cost Carbon Fiber Precursors  

Broader source: Energy.gov (indexed) [DOE]

1 Lower Cost Carbon Fiber Precursors P.I. Name: Dave Warren Presenter: Dr. Amit K. Naskar Oak Ridge National Laboratory 05162012 Project ID LM004 This presentation does not...

342

WithCarbonSequestration Biological-  

E-Print Network [OSTI]

WithCarbonSequestration Biomass Hydro Wind Solar Coal Nuclear Natural Gas Oil Biological BARRIERS · Cost · Feedstock availability · Fermentative micro-organisms #12;Targets and Status 322726Net

343

Carbon nanotube electron source technology  

Science Journals Connector (OSTI)

The carbon nanotube embodies a unique combination of properties which make it potentially an extraordinary field emission electron source. These properties include small tip radii (and small source size), high el...

Kenneth Teo

2007-03-01T23:59:59.000Z

344

Carbon dioxide storage professor Martin Blunt  

E-Print Network [OSTI]

Carbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS) referS to the Set of technologies developed to capture carbon dioxide (Co2) gas from the exhausts of technologies developed to capture carbon dioxide (Co2) gas from the exhausts of power stations and from other

345

March 2005 Number 238 CARBON CAPTURE AND  

E-Print Network [OSTI]

March 2005 Number 238 CARBON CAPTURE AND STORAGE (CCS) As part of the government's global strategy. This POSTnote discusses the potential of carbon capture and storage (CCS), a method of carbon sequestration2 stages: CO2 capture, transport and storage. CO2 capture Carbon capture is best applied to large

Mather, Tamsin A.

346

Biochar and Carbon Sequestration: A Regional Perspective  

E-Print Network [OSTI]

Biochar and Carbon Sequestration: A Regional Perspective A report prepared for East of England #12;Low Carbon Innovation Centre Report for EEDA Biochar and Carbon Sequestration: A Regional Perspective 20/04/2009 ii Biochar and Carbon Sequestration: A Regional Perspective A report prepared for East

Everest, Graham R

347

Carbon nanotubes : synthesis, characterization, and applications  

E-Print Network [OSTI]

carbon nanotube ceramic matrix composites. Acta Materialia,ceramic matrix material. These fiber reinforced composites

Deck, Christian Peter

2009-01-01T23:59:59.000Z

348

Carbon nanotube composites P. J. F. Harris*  

E-Print Network [OSTI]

Carbon nanotube composites P. J. F. Harris* Carbon nanotubes are molecular-scale tubes of graphitic. There is currently great interest in exploiting these properties by incorporating carbon nanotubes into some form/ceramic and nanotube/metal composites. This review outlines the properties of carbon nanotubes and describes

Harris, Peter J F

349

Irradiation-induced phenomena in carbon  

E-Print Network [OSTI]

Chapter 1 Irradiation-induced phenomena in carbon nanotubes To appear in "Chemistry of Carbon@acclab.helsinki.fi 1 #12;2CHAPTER 1. IRRADIATION-INDUCED PHENOMENA IN CARBON NANOTUBES #12;Contents 1 Irradiation-induced phenomena in carbon nanotubes 1 1.1 Introduction

Krasheninnikov, Arkady V.

350

EIA - Will carbon capture and storage reduce the world's carbon dioxide  

Gasoline and Diesel Fuel Update (EIA)

Will carbon capture and storage reduce the world's carbon dioxide emissions? Will carbon capture and storage reduce the world's carbon dioxide emissions? International Energy Outlook 2010 Will carbon capture and storage reduce the world'ss carbon dioxide emissions? The pursuit of greenhouse gas reductions has the potential to reduce global coal use significantly. Because coal is the most carbon-intensive of all fossil fuels, limitations on carbon dioxide emissions will raise the cost of coal relative to the costs of other fuels. Under such circumstances, the degree to which energy use shifts away from coal to other fuels will depend largely on the costs of reducing carbon dioxide emissions from coal-fired plants relative to the costs of using other, low-carbon or carbon-free energy sources. The continued widespread use of coal could rely on the cost and availability of carbon capture and storage (CCS) technologies that capture carbon dioxide and store it in geologic formations.

351

Plastic Deformations of Carbon Nanotubes  

Science Journals Connector (OSTI)

Although the elastic properties of a carbon nanotube are nearly independent of wrapping indices, we show that the onset of plastic deformation depends very strongly on the wrapping index. An (n,0) nanotube has an elastic limit nearly twice that of an (n,n) tube with the same radius. Such great variation has important consequences for structural applications of carbon nanotubes. In addition, the remnant bond rotations remaining after strain release strongly affect the electronic structure of the distorted nanotube.

Peihong Zhang; Paul E. Lammert; Vincent H. Crespi

1998-12-14T23:59:59.000Z

352

Recuperative supercritical carbon dioxide cycle  

DOE Patents [OSTI]

A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

2014-11-18T23:59:59.000Z

353

Activated carbon to the rescue  

SciTech Connect (OSTI)

This article describes the response to pipeline spill of ethylene dichloride (EDC) on the property of an oil company. Activated carbon cleanup proceedure was used. During delivery, changeout, transport, storage, thermal reactivation, and return delivery to the site, the carbon never came into direct contact with operating personnel or the atmosphere. More than 10,000 tones of dredge soil and 50 million gallons of surface water were processed during the emergency response.

Sen, S. [Calgon Carbon Corp., Pittsburgh, PA (United States)

1996-03-01T23:59:59.000Z

354

Carbon Joins the Magnetic Club  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Press Release 29 May 2007 Carbon Joins the Magnetic Club summary written by Brad Plummer, SLAC Communication Office The exclusive club of magnetic elements officially has a new member-carbon. Using a proton beam and advanced x-ray techniques, SLAC researchers in collaboration with colleagues from LBNL and the University of Leipzig in Germany have finally put to rest doubts about carbon's ability to be made magnetic. "In the past, some groups thought they had discovered magnetic carbon," said Hendrik Ohldag, the paper's lead author and SSRL staff scientist. "Unfortunately, they realized later that they were misled by small amounts of iron, cobalt or nickel in their samples." In Leipzig, Ohldag's team applied a beam of protons to disrupt and align a portion of the electrons in samples of pure carbon, magnetizing tiny, measurable spots within the carbon. The team then used the x-ray microscope at ALS to obtain images of the magnetized portions-a measurement only possible with a state-of-the-art microscope that uses the brilliant x-ray beams generated when electrons accelerate around the ring of a synchrotron. The x-ray beam also enabled the team to verify beyond doubt that the sample remained free of impurities during the experiments, unlike the case in previous studies.

355

First Proof of Ferromagnetic Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proof of Ferromagnetic Carbon Print Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon. Carbon's Magnetic Personality Attracts Attention Most materials exhibit weak forms of magnetism-diamagnetism, which repels an external magnetic field, or paramagnetism, which attracts it. However, take away the external magnetic field, and the material is no longer magnetized. So-called real magnets like refrigerator and horseshoe magnets are ferromagnets. They're stronger because of long-range ordering, which allows domains of aligned electrons to have a high degree of magnetization. Left on their own, these domains cancel each other out. But when even a small magnetic field is applied to a ferromagnetic material, these domains line up with each other, and the material becomes fully magnetized. In addition, once magnetized, it retains some of its magnetism.

356

First Proof of Ferromagnetic Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proof of Ferromagnetic Carbon Print Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon. Carbon's Magnetic Personality Attracts Attention Most materials exhibit weak forms of magnetism-diamagnetism, which repels an external magnetic field, or paramagnetism, which attracts it. However, take away the external magnetic field, and the material is no longer magnetized. So-called real magnets like refrigerator and horseshoe magnets are ferromagnets. They're stronger because of long-range ordering, which allows domains of aligned electrons to have a high degree of magnetization. Left on their own, these domains cancel each other out. But when even a small magnetic field is applied to a ferromagnetic material, these domains line up with each other, and the material becomes fully magnetized. In addition, once magnetized, it retains some of its magnetism.

357

First Proof of Ferromagnetic Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proof of Ferromagnetic Carbon Print Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon. Carbon's Magnetic Personality Attracts Attention Most materials exhibit weak forms of magnetism-diamagnetism, which repels an external magnetic field, or paramagnetism, which attracts it. However, take away the external magnetic field, and the material is no longer magnetized. So-called real magnets like refrigerator and horseshoe magnets are ferromagnets. They're stronger because of long-range ordering, which allows domains of aligned electrons to have a high degree of magnetization. Left on their own, these domains cancel each other out. But when even a small magnetic field is applied to a ferromagnetic material, these domains line up with each other, and the material becomes fully magnetized. In addition, once magnetized, it retains some of its magnetism.

358

First Proof of Ferromagnetic Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

First Proof of Ferromagnetic Carbon Print First Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon. Carbon's Magnetic Personality Attracts Attention Most materials exhibit weak forms of magnetism-diamagnetism, which repels an external magnetic field, or paramagnetism, which attracts it. However, take away the external magnetic field, and the material is no longer magnetized. So-called real magnets like refrigerator and horseshoe magnets are ferromagnets. They're stronger because of long-range ordering, which allows domains of aligned electrons to have a high degree of magnetization. Left on their own, these domains cancel each other out. But when even a small magnetic field is applied to a ferromagnetic material, these domains line up with each other, and the material becomes fully magnetized. In addition, once magnetized, it retains some of its magnetism.

359

First Proof of Ferromagnetic Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proof of Ferromagnetic Proof of Ferromagnetic Carbon First Proof of Ferromagnetic Carbon Print Wednesday, 25 July 2007 00:00 Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon. Carbon's Magnetic Personality Attracts Attention Most materials exhibit weak forms of magnetism-diamagnetism, which repels an external magnetic field, or paramagnetism, which attracts it. However, take away the external magnetic field, and the material is no longer magnetized. So-called real magnets like refrigerator and horseshoe magnets are ferromagnets. They're stronger because of long-range ordering, which allows domains of aligned electrons to have a high degree of magnetization. Left on their own, these domains cancel each other out. But when even a small magnetic field is applied to a ferromagnetic material, these domains line up with each other, and the material becomes fully magnetized. In addition, once magnetized, it retains some of its magnetism.

360

First Proof of Ferromagnetic Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proof of Ferromagnetic Carbon Print Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to prove that pure carbon can be magnetized have remained unconvincing. However, using a proton beam and an advanced x-ray microscope at the Advanced Light Source, a multinational team of researchers from the SSRL, the University of Leipzig, and the ALS finally put to rest doubts about the existence of magnetic carbon. Carbon's Magnetic Personality Attracts Attention Most materials exhibit weak forms of magnetism-diamagnetism, which repels an external magnetic field, or paramagnetism, which attracts it. However, take away the external magnetic field, and the material is no longer magnetized. So-called real magnets like refrigerator and horseshoe magnets are ferromagnets. They're stronger because of long-range ordering, which allows domains of aligned electrons to have a high degree of magnetization. Left on their own, these domains cancel each other out. But when even a small magnetic field is applied to a ferromagnetic material, these domains line up with each other, and the material becomes fully magnetized. In addition, once magnetized, it retains some of its magnetism.

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Carbon sequestration research and development  

SciTech Connect (OSTI)

Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

1999-12-31T23:59:59.000Z

362

Mar., 1955 GASIFICATIONOF CARBONRODSWITH CARBONDIOXIDE 241 GASIFICATION OF CARBON RODS WITH CARBON DIOXIDE1*2  

E-Print Network [OSTI]

Mar., 1955 GASIFICATIONOF CARBONRODSWITH CARBONDIOXIDE 241 GASIFICATION OF CARBON RODS WITH CARBON commercial carbons and their gasification rates with carbon dioxide at a series of temperatures between 900. No general correlation between these properties and the carbon gasification rates was found. Introduction

363

A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes  

E-Print Network [OSTI]

A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes Zhongwu) A quenchable superhard high-pressure carbon phase was synthe- sized by cold compression of carbon nanotubes. Carbon nanotubes were placed in a diamond anvil cell, and x-ray diffraction measure- ments were conducted

Downs, Robert T.

364

PERGAMON Carbon 39 (2001) 369373 Effect of carbon fiber grade on the electrical behavior of  

E-Print Network [OSTI]

PERGAMON Carbon 39 (2001) 369­373 Effect of carbon fiber grade on the electrical behavior of carbon 2000 Abstract Electrical conduction in cement reinforced by short carbon fibers below the percolation is decreased by increasing the fiber crystallinity, but is increased by using intercalated fibers. The carbon

Chung, Deborah D.L.

365

Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes  

E-Print Network [OSTI]

Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon August 2008 A B S T R A C T Woven carbon fiber (CF) laminae are functionalized in situ with carbon nanotubes (CNTs) to test the hypothesis that growing CNTs on CF (i.e., carbon fiber bundles or tow) would

Bennett, Gisele

366

Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets  

E-Print Network [OSTI]

by chem- ical vapor infiltration (CVI) of carbon source gases into fiber preforms. While CVI of carbon fasteners [1]. While the above applications are currently filled by traditional carbon fiber C/ C compositesStructural annealing of carbon coated aligned multi-walled carbon nanotube sheets Shaghayegh Faraji

Zhu, Yuntian T.

367

Carbon monoxide-assisted growth of carbon nanotubes Y.H. Tang a,b  

E-Print Network [OSTI]

Carbon monoxide-assisted growth of carbon nanotubes Y.H. Tang a,b , Y.F. Zheng a , C.S. Lee a , N was used to synthesize carbon nanotubes (CNTs) in a hot-®lament chemical vapor deposition (HFCVD) system in the formation of multi-walled carbon nanotubes (MWNT)s. The CNTs synthesized from carbon monoxide validate

Zheng, Yufeng

368

Mechanistical studies on the formation of carbon dioxide in extraterrestrial carbon monoxide ice analog samples  

E-Print Network [OSTI]

be produced via radiolysis of carbon monoxide ices.5 Indeed, the effects of ionizing radiation on pure carbonMechanistical studies on the formation of carbon dioxide in extraterrestrial carbon monoxide ice901220f Binary ice mixtures of two carbon monoxide isotopomers, 13 C16 O and 12 C18 O, were subjected

Kaiser, Ralf I.

369

Endohedral Carbon Chains in Single-Wall Carbon Nanotubes R. K. Vadapalli  

E-Print Network [OSTI]

Endohedral Carbon Chains in Single-Wall Carbon Nanotubes R. K. Vadapalli and J. W. Mintmire of endohedral linear carbon chains. In these calculations, all-carbon nanowire structures were constructed by inserting cumulenic linear carbon chains inside the semiconducting (7,3) and metallic (7,4) single

Mintmire, John W.

370

Analytical relationships between atmospheric carbon dioxide, carbon emissions, and ocean processes  

E-Print Network [OSTI]

Analytical relationships between atmospheric carbon dioxide, carbon emissions, and ocean processes of the air-sea system. The perturbation, dIc, includes carbon emissions and changes in the terrestrial), Analytical relationships between atmospheric carbon dioxide, carbon emissions, and ocean processes, Global

Follows, Mick

371

CarbonSolve | Open Energy Information  

Open Energy Info (EERE)

CarbonSolve CarbonSolve Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CarbonSolve Agency/Company /Organization: CarbonSolve Sector: Climate Focus Area: Greenhouse Gas Resource Type: Software/modeling tools User Interface: Website Website: www.carbonsolve.com Web Application Link: www.carbonsolve.com Cost: Paid CarbonSolve Screenshot References: CarbonSolve[1] Logo: CarbonSolve The CarbonSolve platform is designed to address a broad spectrum of needs, and makes possible for organizations to transform their sustainability objectives - including carbon, water, waste, employee engagement, or supply chain related initiatives into measureable metrics and trackable processes. Overview The CarbonSolve platform is designed to address a broad spectrum of needs, and makes possible for organizations to transform their sustainability

372

Effect of potassium carbonate on char gasification by carbon dioxide  

SciTech Connect (OSTI)

A differential packed-bed reactor has been employed to study the gasification of 7.5 wt% K/sub 2/CO/sub 3/-catalyzed Saran char in carbon dioxide/carbon monoxide mixtures at a total pressure near 1 atm (101.3 kPa) and temperatures between 922 and 1046 K. The rate data were tested with a model which involves two-site adsorption and subsequent dissociation of CO/sub 2/ on the char surface. The results indicate that this model adequately explains the catalyzed gasification data. Moreover, the activation energy for desorption of carbon-oxygen complex is lower for the catalyzed case than for the uncatalyzed case. Adsorption of CO and CO/sub 2/ on both catalyzed and uncatalyzed chars was also followed with a volumetric adsorption apparatus at pressures between 1 and 100 kPa and temperatures from 273 to 725 K. The catalyzed char adsorbed an order of magnitude more CO/sub 2/ at 560 K than the uncatalyzed char. Subsequent dissociation of CO/sub 2/ on the carbon surface does not appear to be catalyzed by potassium. Thus, the catalyst's role is to enhance CO/sub 2/ adsorption, thereby creating more oxygen on the surface, and lowering the activation energy for desorption of the resultant carbon-oxygen species.

Koenig, P.C.; Squires, R.G.; Laurendeau, N.M.

1986-07-01T23:59:59.000Z

373

Carbon nanotubes on a substrate  

DOE Patents [OSTI]

The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

2002-03-26T23:59:59.000Z

374

CARBON ISOTOPE STRATIGRAPHY AND DIAGENESIS OF PENNSYLVANIAN (DESMOINESIAN-MISSOURIAN) CARBONATES IN EAST-CENTRAL IDAHO  

E-Print Network [OSTI]

Carbon isotope stratigraphy of carbonate sediments is instrumental in examining major perturbations in the global carbon cycle and in correlating strata. However, the primary isotopic signal recorded in these sediments can vary with depositional...

Wood, Stephanie

2011-05-10T23:59:59.000Z

375

A study of the remineralization of organic carbon in nearshore sediments using carbon isotopes  

E-Print Network [OSTI]

A study of the remineralization of organic carbon was conducted in the organic-rich sediments of Buzzards Bay, MA. Major processes affecting the carbon chemistry in sediments are reflected by changes in the stable carbon ...

McNichol, Ann P., 1956-

1986-01-01T23:59:59.000Z

376

Extraneous Carbon Assessments in Radiocarbon Measurements of Black Carbon in Environmental Matrices  

E-Print Network [OSTI]

rived (black/elemental) carbon in soils and sediments usingbon measurements of black carbon in aerosols and oceanMWI, Noack AG. 2000. Black carbon in soils and sediments:

Coppola, Alysha; Ziolkowski, L. A.; Druffel, E. R. M.

2013-01-01T23:59:59.000Z

377

Thermodynamics of an Aqueous-Alkaline/Carbonate Carbon Fuel Cell  

Science Journals Connector (OSTI)

In view of the fact that aqueous-alkaline hydrogen fuel cells have been used to power an Austin car and a commercial Black Cab in London, these recent results suggest the potential use of aqueous-alkaline carbon fuel cells for vehicular transportation. ... Thus, biocarbons can be a sustainable, environmentally friendly fuel for carbon fuel cell applications, whose production complements the production of bioethanol and biodiesel fuels in a biomass refinery. ... Our interest in the aqueous-alkaline biocarbon fuel cell is stimulated by the fact that aqueous-alkaline hydrogen fuel cells have been used to power an Austin car and a commercial London Black Cab.29-31 Thus, the development of a functional aqueous-alkaline carbon fuel cell could facilitate the replacement of non-renewable, liquid hydrocarbon transportation fuels by renewable, solid biocarbons. ...

Michael Jerry Antal, Jr.; Grard C. Nihous

2008-02-28T23:59:59.000Z

378

Carbon tax or carbon permits: The impact on generators' risks  

SciTech Connect (OSTI)

Volatile fuel prices affect both the cost and price of electricity in a liberalized market. Generators with the price-setting technology will face less risk to their profit margins than those with costs that are not correlated with price, even if those costs are not volatile. Emissions permit prices may respond to relative fuel prices, further increasing volatility. This paper simulates the impact of this on generators' profits, comparing an emissions trading scheme and a carbon tax against predictions for the UK in 2020. The carbon tax reduces the volatility faced by nuclear generators, but raises that faced by fossil fuel stations. Optimal portfolios would contain a higher proportion of nuclear plant if a carbon tax was adopted.

Green, R. [University of Birmingham, Birmingham (United Kingdom). Inst. for Energy Research & Policy

2008-07-01T23:59:59.000Z

379

How the Carbon Emissions Were Estimated  

U.S. Energy Information Administration (EIA) Indexed Site

How the Carbon Emissions Were Estimated How the Carbon Emissions Were Estimated How the Carbon Emissions Were Estimated Carbon dioxide emissions are the main component of greenhouse gas emissions caused by human activity. Carbon dioxide is emitted mostly as a byproduct of the combustion of fossil fuels for energy, although certain industrial processes (e.g., cement manufacture) also emit carbon dioxide. The estimates of energy-related carbon emissions require both data on the energy use and carbon emissions coefficients relating energy use to the amount of carbon emitted. The Energy Information Administration (EIA) is the main source of data on U.S. energy use. Emissions of Greenhouse Gases in the United States 1998 used annual data provided by energy suppliers. However, to obtain more detail on how different sectors use energy, the emissions estimates in Energy and GHG Analysis rely data from on surveys of energy users, such as manufacturing establishments and commercial buildings.

380

Direct Carbon Fuel Cell Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Carbon Fuel Cell Workshop Direct Carbon Fuel Cell Workshop July 30, 2003 Table of Contents Disclaimer Papers and Presentations Carbon Anode Electrochemistry Carbon Conversion Fuel Cells Coal Preprocessing Prior to Introduction Into the Fuel Cell Potential Market Applications for Direct Carbon Fuel Cells Discussion of Key R&D Needs Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Carbon sequestration and carbon management policy effects on production agriculture in the Texas High Plains.  

E-Print Network [OSTI]

??Increased concentration of greenhouse gases in the atmosphere, especially of carbon dioxide, has led to attempts to implement carbon policies in order to limit and (more)

Zivkovic, Sanja

2012-01-01T23:59:59.000Z

382

Renewable Low-Cost Carbon Fiber Workshop Agenda | Department...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Carbon Fiber Workshop Agenda Renewable Low-Cost Carbon Fiber Workshop Agenda Renewable Low-Cost Carbon Fiber Workshop Agenda carbonfiberworkshopagenda.pdf More...

383

Beryllium-7 labeled carbon particles and method of making  

DOE Patents [OSTI]

Beryllium-7 labeled carbon particles made from the proton irradiation of carbon materials, preferably from dry carbon black are disclosed. Such particles are useful as gamma emitting radiotracers.

Richards, P.; Mausner, L.F.; Prach, T.F.

1987-11-17T23:59:59.000Z

384

Study of Porous Adsorbents for Carbon Capture via Molecular Simulation  

E-Print Network [OSTI]

4 Ab initio carbon capture Background . . . . . .K. ; Haranczyk, M. ; Carbon Capture Materials Database;silico screening of carbon capture mate- rials C Additional

Swisher, Joseph Andrew

2012-01-01T23:59:59.000Z

385

Regional evaluation of brine management for geologic carbon sequestration  

E-Print Network [OSTI]

of the build decision for carbon capture and sequestrationTenth Annual Conference on Carbon Capture and Sequestration.be managed early on. Carbon capture technology is water-,

Breunig, H.M.

2014-01-01T23:59:59.000Z

386

China's Energy and Carbon Emissions Outlook to 2050  

E-Print Network [OSTI]

commercialization of carbon capture and sequestration (CCS)commercialization of carbon capture and sequestration (CCS)of installing carbon capture and sequestration (CCS)

Zhou, Nan

2011-01-01T23:59:59.000Z

387

Perspectives on Carbon Capture and Sequestration in the United States  

E-Print Network [OSTI]

Community acceptance of carbon capture and sequestrationand realities of carbon capture and storage; www.eenews.net/Howard. What Future for Carbon Capture and Sequestration?

Wong-Parodi, Gabrielle

2011-01-01T23:59:59.000Z

388

Assessment of Brine Management for Geologic Carbon Sequestration  

E-Print Network [OSTI]

Equation 2 5 Carbon capture technology requires for Geologic Carbon Capture and Sequestration." the additional carbon capture system (1.24 assuming

Breunig, Hanna M.

2014-01-01T23:59:59.000Z

389

Water Challenges for Geologic Carbon Capture and Sequestration  

E-Print Network [OSTI]

and HB 90:Carbon capture and sequestration, http://legisweb.6th annual conference on carbon capture and sequestration,7th annual conference on carbon capture & seques- tration,

Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

2010-01-01T23:59:59.000Z

390

Beryllium-7 labeled carbon particles and method of making  

DOE Patents [OSTI]

Beryllium-7 labeled carbon particles made from the proton irradiation of carbon materials, preferably from dry carbon black are disclosed. Such particles are useful as gamma emitting radiotracers.

Richards, P.; Mausner, L.F.; Prach, T.F.

1985-04-29T23:59:59.000Z

391

2011 Department of Energy Investments in Carbon Capture Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Investments in Carbon Capture Technologies 2011 Department of Energy Investments in Carbon Capture Technologies 2011 Department of Energy Investments in Carbon...

392

Mechanisms controlling soil carbon turnover and their potential...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

controlling soil carbon turnover and their potential application for enhancing carbon sequestration . Mechanisms controlling soil carbon turnover and their potential application...

393

Processable Conducting Polyaniline, Carbon Nanotubes, Graphene and Their Composites  

E-Print Network [OSTI]

Polyaniline, Carbon Nanotubes, Graphene and Their CompositesPolyaniline, Carbon Nanotubes, Graphene and Their Compositespolyaniline (PANI), carbon nanotubes (CNTs) and graphene.

Wang, Kan

2014-01-01T23:59:59.000Z

394

Bloomberg New Energy Finance Carbon Markets formerly New Energy...  

Open Energy Info (EERE)

Bloomberg New Energy Finance Carbon Markets formerly New Energy Finance Carbon Markets Group Jump to: navigation, search Name: Bloomberg New Energy Finance Carbon Markets (formerly...

395

Self-assembling functionalized single-walled carbon nanotubes  

E-Print Network [OSTI]

scale synthesis of carbon nanotubes." Nature, Vol.358, 220-Ropes of Metallic Carbon Nanotubes." Science, Vol.273(5274),of single- wall carbon nanotubes. Process, product, and

Gao, Yan

2011-01-01T23:59:59.000Z

396

Synthesis of supported carbon nanotubes in mineralized silica...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

supported carbon nanotubes in mineralized silica-wood composites. Synthesis of supported carbon nanotubes in mineralized silica-wood composites. Abstract: Multiwall carbon...

397

Carbon 40 (2002) 445467 Letters to the editor  

E-Print Network [OSTI]

Carbon 40 (2002) 445­467 Letters to the editor Increasing the electromagnetic interference; Activated carbon; Carbon fibers; D. Electrical (electronic) properties Electromagnetic interference (EMI

Chung, Deborah D.L.

398

Achieving Carbon Neutrality in the Global Aluminum Industry  

Science Journals Connector (OSTI)

TableVII...illustrates a suggested carbon scoreboard. The global aluminum industry can become carbon neutral, reducing its current carbon print of 500million metric tonnes per year... ...

Subodh Das

2012-02-01T23:59:59.000Z

399

Climate control of terrestrial carbon exchange across biomes and continents  

E-Print Network [OSTI]

control, terrestrial carbon sequestration, temperature,on terrestrial carbon sequestration (Nemani et al 2003, Xiaodeposition and forest carbon sequestration Glob. Change

Yi, C.; Ricciuota, D.; Goulden, M. L.

2010-01-01T23:59:59.000Z

400

Buckling and Topological Defects in Graphene and Carbon Nanotubes  

E-Print Network [OSTI]

4 Plasticity in Carbon Nanotubes 4.1Ultimate strength of carbon nanotubes: a theoretical study.formation energy in carbon nanotubes and graphene. In:

Chen, Shuo

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Carbon Credit Capital and Feedback Ventures JV | Open Energy...  

Open Energy Info (EERE)

and Feedback Ventures JV Jump to: navigation, search Name: Carbon Credit Capital and Feedback Ventures JV Place: India Sector: Carbon Product: String representation "Carbon Credit...

402

Easy Carbon Consultancy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Easy Carbon Consultancy Co Ltd Jump to: navigation, search Name: Easy Carbon Consultancy Co Ltd Place: Chaoyang District, Beijing Municipality, China Zip: 100022 Sector: Carbon...

403

Optically Functional Nanomaterials: Optothermally Responsive Composites and Carbon Nanotube Photovoltaics  

E-Print Network [OSTI]

and Carbon Nanotube Photovoltaics by David Christopher OkawaPart II: Carbon Nanotube Photovoltaics Chapter 6:Carbon Nanotube Polymer Photovoltaics 6.1 Polymer-Nanotube

Okawa, David

2010-01-01T23:59:59.000Z

404

Carbon sequestration and greenhouse gas emissions in urban turf  

E-Print Network [OSTI]

D. C. Lal, R. (2004), Carbon emission from farm operations,facts: Average carbon dioxide emissions resulting fromcalculation of carbon dioxide (CO 2 ) emissions from fuel

Townsend-Small, Amy; Czimczik, Claudia I

2010-01-01T23:59:59.000Z

405

Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry  

E-Print Network [OSTI]

Table 2. Energy Consumption, Carbon Emissions Coefficients,and Carbon Emissions from Energy Consumption, and CarbonEnergy Related Carbon Emissions Fuel Energy Use Carbon (

Martin, Nathan; Worrell, Ernst; Price, Lynn

1999-01-01T23:59:59.000Z

406

Theorizing the carbon economy: introduction to the special issue The term `carbon economy'often has an adjective placed nearby: the `new'carbon economy,  

E-Print Network [OSTI]

of carbon capture and storage and nuclear technologies. These dimensionsöand surface-level to deeperTheorizing the carbon economy: introduction to the special issue The term `carbon economy'often has an adjective placed nearby: the `new'carbon economy, the `low' carbon economy, the carbon `neutral' economy

407

Capturing Carbon Dioxide From Air  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capturing Carbon Dioxide From Air Capturing Carbon Dioxide From Air Klaus S. Lackner (kl2010@columbia.edu; 212-854-0304) Columbia University 500 West 120th Street New York, NY 10027 Patrick Grimes (pgrimes@worldnet.att.net; 908-232-1134) Grimes Associates Scotch Plains, NJ 07076 Hans-J. Ziock (ziock@lanl.gov; 505-667-7265) Los Alamos National Laboratory P.O.Box 1663 Los Alamos, NM 87544 Abstract The goal of carbon sequestration is to take CO 2 that would otherwise accumulate in the atmosphere and put it in safe and permanent storage. Most proposed methods would capture CO 2 from concentrated sources like power plants. Indeed, on-site capture is the most sensible approach for large sources and initially offers the most cost-effective avenue to sequestration. For distributed, mobile sources like cars, on-board capture at affordable cost would not be

408

NETL-Developed Carbon Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2, Issue 26 2, Issue 26 NETL-Developed Carbon Capture Technology Wins 2012 R&D 100 Award page 2 NETL Scientists Awarded Prestigious Phase Equilibria Research Prize by the American Ceramic Society page 4 Collaborative Stent Research Helps Create Hundreds of High Paying Jobs page 5 the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY 2 NETL-Developed Carbon Capture Technology Wins 2012 R&D 100 Award _____________________________2 Field-proven Meter Rapidly Determines Carbon Dioxide Levels in Groundwater ____________________________3 NETL Scientists Awarded Prestigious Phase Equilibria Research Prize by the American Ceramic Society _______4 Collaborative Stent Research Helps Create Hundreds of High Paying Jobs ______________________________5 NETL Issued Patent for Novel Catalyst Technology ______6

409

NETL: Carbon Storage - Program Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Overview Program Overview Carbon Storage Program Overview The Carbon Storage Program involves three key elements for technology development: Core Research and Development (Core R&D), Infrastructure, and Global Collaborations. The image below displays the relationship among the three elements and provides a means for navigation throughout NETL's Storage Program Website. Click on Image to Navigate Storage Website Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player NETL's Carbon Storage Program Structure CORE R&D Core R&D is driven by industry's technology needs and segregates those needs into focus areas to more efficiently obtain solutions that can then be tested and deployed in the field. The Core R&D Element contains four

410

NETL: Carbon Dioxide 101 FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What are people doing now to manage CO2? What are people doing now to manage CO2? SECARB's injection operations at the Mississippi test site in Escatawpa, Mississippi SECARB's injection operations at the Mississippi test site in Escatawpa, Mississippi. A combined portfolio of carbon management options is being implemented to reduce current emission levels associated with energy production while enhancing energy security and building the technologies and knowledge base for export to other countries faced with reducing emissions. The U.S. portfolio includes: (1) use fuels with reduced carbon intensity - renewables, nuclear, and natural gas; (2) adopt more efficient technologies on both the energy demand and supply sides; and (3) use carbon capture and storage (CCS) technology. CCS is a viable emission management option

411

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Refining Industry Petroleum Refining Industry Carbon Emissions in the Petroleum Refining Industry The Industry at a Glance, 1994 (SIC Code: 2911) Total Energy-Related Emissions: 79.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.5% -- Nonfuel Emissions: 16.5 MMTC Total First Use of Energy: 6,263 trillion Btu -- Pct. of All Manufacturers: 28.9% Nonfuel Use of Energy Sources: 3,110 trillion Btu (49.7%) -- Naphthas and Other Oils: 1,328 trillion Btu -- Asphalt and Road Oil: 1,224 trillion Btu -- Lubricants: 416 trillion Btu Carbon Intensity: 12.75 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey", "Monthly Refinery Report" for 1994, and Emissions of Greenhouse Gases in the United States 1998.

412

Hydrodynamic properties of carbon nanotubes  

Science Journals Connector (OSTI)

We study water flowing past an array of single walled carbon nanotubes using nonequilibrium molecular dynamics simulations. For carbon nanotubes mounted with a tube spacing of 16.416.4 nm and diameters of 1.25 and 2.50 nm, respectively, we find drag coefficients in reasonable agreement with the macroscopic, Stokes-Oseen solution. The slip length is -0.11 nm for the 1.25 nm carbon nanotube, and 0.49 for the 2.50 nm tube for a flow speed of 50 m/s, respectively, and 0.28 nm for the 2.50 nm tube at 200 m/s. A slanted flow configuration with a stream- and spanwise velocity component of 100 ms-1 recovers the two-dimensional results, but exhibits a significant 88 nm slip along the axis of the tube. These results indicate that slip depends on the particular flow configuration.

J. H. Walther; T. Werder; R. L. Jaffe; P. Koumoutsakos

2004-06-04T23:59:59.000Z

413

Weyburn Carbon Dioxide Sequestration Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weyburn Carbon DioxiDe SequeStration Weyburn Carbon DioxiDe SequeStration ProjeCt Background Since September 2000, carbon dioxide (CO 2 ) has been transported from the Dakota Gasification Plant in North Dakota through a 320-km pipeline and injected into the Weyburn oilfield in Saskatchewan, Canada. The CO 2 has given the Weyburn field, discovered 50 years ago, a new life: 155 million gross barrels of incremental oil are slated to be recovered by 2035 and the field is projected to be able to store 30 million tonnes of CO 2 over 30 years. CO 2 injection began in October of 2005 at the adjacent Midale oilfield, and an additional 45-60 million barrels of oil are expected to be recovered during 30 years of continued operation. A significant monitoring project associated with the Weyburn and Midale commercial

414

Forest Carbon Portal | Open Energy Information  

Open Energy Info (EERE)

Forest Carbon Portal Forest Carbon Portal Jump to: navigation, search Tool Summary Name: Forest Carbon Portal Agency/Company /Organization: United Nations Development Programme, United States Agency for International Development, United Kingdom Department for International Development, Forest Trends Sector: Land Focus Area: Forestry Topics: GHG inventory Resource Type: Lessons learned/best practices Website: www.forestcarbonportal.com/ Forest Carbon Portal Screenshot References: FCP[1] "Ecosystem Marketplace's Forest Carbon Portal is a clearinghouse of information, feature stories, event listings, project details, 'how-to' guides, news, and market analysis on forest-based carbon sequestration projects. Deforestation and land-use change are responsible for 17% of the

415

Carbon nanotubes: from production to functional composites  

Science Journals Connector (OSTI)

In this paper, we present our work on carbon nanotubes, including our most recent results, in two important fields: production of carbon nanotubes itself and fabrication of carbon nanotube based composites with enhanced functionality. Firstly, we focus on the three main carbon nanotube production techniques, namely electric arc, laser evaporation and CVD. Based on our results, for each method the importance of the key parameters is highlighted. A comparison of production possibilities towards commercialisation concludes this section. Secondly, we report on the synthesis of a soluble and highly functional polyaniline/carbon nanotube composite and emphasise the general importance of conformational changes in order to achieve proper carbon nanotube??matrix interactions.

A.M. Benito; W.K. Maser; M.T. Martinez

2005-01-01T23:59:59.000Z

416

Method for extracting and sequestering carbon dioxide  

DOE Patents [OSTI]

A method and apparatus to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said method and apparatus hydrates CO.sub.2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

Rau, Gregory H. (Castro Valley, CA); Caldeira, Kenneth G. (Livermore, CA)

2005-05-10T23:59:59.000Z

417

Common Carbon Metric | Open Energy Information  

Open Energy Info (EERE)

Common Carbon Metric Common Carbon Metric Jump to: navigation, search Tool Summary Name: Common Carbon Metric Agency/Company /Organization: United Nations Environment Programme, World Resources Institute Sector: Energy Focus Area: Buildings, Energy Efficiency, Industry Topics: GHG inventory, Implementation Resource Type: Guide/manual, Publications Website: www.unep.org/sbci/pdfs/Common-Carbon-Metric-for_Pilot_Testing_220410.p Common Carbon Metric Screenshot References: Common Carbon Metrics [1] "This paper is offered by the United Nations Environment Programme's Sustainable Buildings & Climate Initiative (UNEP-SBCI), a partnership between the UN and public and private stakeholders in the building sector, promoting sustainable building practices globally. The purpose of this

418

Growth model for carbon nanotubes  

Science Journals Connector (OSTI)

Evidence is presented, through high-resolution electron microscopy images, for the open-end growth of carbon nanotubes. Terminations of incomplete layers of carbon, seen on the tube surfaces and cone tips, suggest that the extension and thickening of the tubes occur by the island growth of graphite basal planes on existing tube surfaces. The nucleation of positive (pentagons) and negative (heptagons) disclinations on open tube ends results in changes of growth directions, producing different morphologies. A novel structure that shows complete turn around growth, involving pentagon-heptagon pairs, of the tubular assemblies is presented.

Sumio Iijima; P. M. Ajayan; T. Ichihashi

1992-11-23T23:59:59.000Z

419

Coulomb interactions in carbon nanotubes  

Science Journals Connector (OSTI)

The effect of electron-electron interactions on the electronic properties of nonchiral single-wall carbon nanotubes is investigated by an extended Hubbard model resolved within the generalized unrestricted Hartree-Fock approximation. On-site U and nearest-neighbor u Coulomb interactions are considered in tubules with different geometries at half-filling. A phase diagram is obtained in the coordinates U and u. For the electron-electron interaction strength estimated to hold for graphite, carbon nanotubes would lie close to the boundary region between metallic and insulator density wave states. Therefore, any small external perturbation can substantially modify their electronic properties.

M. P. Lpez Sancho; M. C. Muoz; L. Chico

2001-04-04T23:59:59.000Z

420

Acoustoelectric Effects in Carbon Nanotubes  

Science Journals Connector (OSTI)

We report observations of acoustoelectric effects in carbon nanotubes. We excite sound in ?m long ropes of single walled carbon nanotubes suspended between two metallic contacts by applying radio-frequency electric field. The sound is detected by measuring either the dc resistance of the tubes in a region of strong temperature dependence (in the vicinity of superconducting or metal-insulator transition), or their critical current. We show that, depending on the excitation power, the vibrations produce either electron heating or phase coherence breaking.

B. Reulet; A. Yu. Kasumov; M. Kociak; R. Deblock; I. I. Khodos; Yu. B. Gorbatov; V. T. Volkov; C. Journet; H. Bouchiat

2000-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Impurity screening in carbon nanotubes  

Science Journals Connector (OSTI)

Nanotube geometry determines electronic structure and thus impurity screening. A metallic carbon nanotube could effectively screen a charged impurity, while a semiconducting carbon nanotube could not. The ability to screen a long-range Coulomb field is mainly determined by whether there are free carriers in the subbands nearest the Fermi level. The detailed screening properties are sensitive to the impurity position, and the tubular structure (such as radius and chiral angle). Strong, short-wavelength Friedel oscillations at long distances are found to exist only in metallic armchair nanotubes. They are relatively obvious for a smaller armchair nanotube, and could survive at room temperature.

M. F. Lin and D. S. Chuu

1997-08-15T23:59:59.000Z

422

Supersymmetric twisting of carbon nanotubes  

E-Print Network [OSTI]

We construct exactly solvable models of twisted carbon nanotubes via supersymmetry, by applying the matrix Darboux transformation. We derive the Green's function for these systems and compute the local density of states. Explicit examples of twisted carbon nanotubes are produced, where the back-scattering is suppressed and bound states are present. We find that the local density of states decreases in the regions where the bound states are localized. Dependence of bound-state energies on the asymptotic twist of the nanotubes is determined. We also show that each of the constructed unextended first order matrix systems possesses a proper nonlinear hidden supersymmetric structure with a nontrivial grading operator.

Vit Jakubsky; Mikhail S. Plyushchay

2012-02-28T23:59:59.000Z

423

Simple ocean carbon cycle models  

SciTech Connect (OSTI)

Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

Caldeira, K. [Lawrence Livermore National Lab., CA (United States); Hoffert, M.I. [New York Univ., NY (United States). Dept. of Earth System Sciences; Siegenthaler, U. [Bern Univ. (Switzerland). Inst. fuer Physik

1994-02-01T23:59:59.000Z

424

Nanoporous carbon for electrochemical capacitors.  

SciTech Connect (OSTI)

Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

2010-05-01T23:59:59.000Z

425

Nanoporous carbon for electrochemical capacitors.  

SciTech Connect (OSTI)

Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

Overmyer, Donald L.; Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

2010-04-01T23:59:59.000Z

426

Authigenic Carbonate and the History of the Global Carbon Cycle  

Science Journals Connector (OSTI)

...production and consumption throughout the...the sediment-water interface or...usually those that reduce sulfate or ferric ironresulting...meters in the water column...of a separate pool of water (pore fluid or intracellular...authigenic carbonate make up 29 to 37...

Daniel P. Schrag; John. A. Higgins; Francis A. Macdonald; David T. Johnston

2013-02-01T23:59:59.000Z

427

Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model  

E-Print Network [OSTI]

2009 P. E. Thornton et al. : Carbon-nitrogen interactionsregulate climate-carbon cycle feedbacks Monfray, P. ,T. H. : A global ocean carbon climatology: Results from

2009-01-01T23:59:59.000Z

428

Assessment Of Carbon Leakage In Multiple Carbon-Sink Projects: A Case Study In Jambi Province, Indonesia  

E-Print Network [OSTI]

LBNL-61463 Assessment Of Carbon LeakageIn Multiple Carbon-Sink Projects: A Case Study In Jambithrough implementation of carbon sink projects can increase

2008-01-01T23:59:59.000Z

429

Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of todays carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Poriferas carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

None

2010-03-01T23:59:59.000Z

430

COPPER-CATALYZED CROSS-COUPLING REACTIONS: THE FORMATION OF CARBON-CARBON AND CARBON-SULFUR BONDS  

E-Print Network [OSTI]

COPPER-CATALYZED CROSS-COUPLING REACTIONS: THE FORMATION OF CARBON-CARBON AND CARBON-SULFUR BONDS Chemistry #12;© Copyright by Craig G. Bates 2005 All Rights Reserved #12;COPPER-CATALYZED CROSS without her. Thank You January 24, 2005 #12;vi ABSTRACT COPPER-CATALYZED CROSS-COUPLING REACTIONS

Venkataraman, Dhandapani "DV"

431

Carbon Trust Enterprises Limited | Open Energy Information  

Open Energy Info (EERE)

Enterprises Limited Enterprises Limited Jump to: navigation, search Name Carbon Trust Enterprises Limited Place London, United Kingdom Zip WC2A 2AZ Sector Carbon Product Carbon Trust Enterprises creates and invests in new, high growth, carbon reducing businesses. Typically the company focuses on use of mature technologies rather than on technology innovations. References Carbon Trust Enterprises Limited[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Carbon Trust Enterprises Limited is a company located in London, United Kingdom . References ↑ "Carbon Trust Enterprises Limited" Retrieved from "http://en.openei.org/w/index.php?title=Carbon_Trust_Enterprises_Limited&oldid=343250"

432

NPP and the Global Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Global Carbon Cycle the Global Carbon Cycle Introduction Photosynthetic carbon fixation comprises a major component of the global carbon cycle. Data on net primary productivity (NPP) may be sparse, but a consistent NPP data set may be used to calibrate, parameterize and evaluate models of terrestrial carbon cycling, as well as for validation of remote sensing data and other applications (identifying trends, investigating biogeochemical processes, etc.). It is also useful to place such data within the context of carbon cycling and carbon storage worldwide. For example: How much carbon exists in the biosphere, and where exactly is it stored? How much is in fossil fuels (coal, oil, gas), and how large are current fossil-fuel emissions? How much is in living biomass (plants/ animals/ humans)?

433

Regional Carbon Sequestration Partnerships | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science & Innovation » Carbon Capture and Storage » Regional Science & Innovation » Carbon Capture and Storage » Regional Carbon Sequestration Partnerships Regional Carbon Sequestration Partnerships DOE's Regional Carbon Sequestration Partnerships Program DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also called carbon sequestration) in different regions and geologic formations within the Nation. Collectively, the seven RCSPs represent regions encompassing: 97 percent of coal-fired CO2 emissions; 97 percent of industrial CO2 emissions; 96 percent of the total land mass; and essentially all the geologic sequestration sites in the U.S. potentially available for carbon storage.

434

Low Carbon World | Open Energy Information  

Open Energy Info (EERE)

Low Carbon World Low Carbon World Jump to: navigation, search Tool Summary LAUNCH TOOL Name: LowCarbonWorld Agency/Company /Organization: LowCarbonEconomy Partner: United Nations Environment Programme Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Dataset, Maps Website: www.lowcarboneconomy.com/Low_Carbon_World/Data/Home LowCarbonWorld Screenshot References: LowCarbonWorld[1] Background The idea behind this project was conceived at the 2008 United Nations Conference of Parties (COP14) event in Poznan (Poland). By listening to many speeches by energy ministers from numerous countries in the high level segment of the event, Toddington Harper Managing Director of The Low Carbon Economy Ltd (TLCE) became aware of the depth of valuable information being

435

Modeling the Costs of Carbon Capture  

Science Journals Connector (OSTI)

This paper explores the fundamental concepts required to model intertemporal carbon capture costs. A technical overview of post-combustion, pre-combustion, and alternative combustion carbon capture technologies i...

Erin Baker; Gregory Nemet; Peter Rasmussen

2012-01-01T23:59:59.000Z

436

Carbon Capture and Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and technology. Fossil...

437

Prospects for Improved Carbon Capture Technology  

E-Print Network [OSTI]

Prospects for Improved Carbon Capture Technology Report to the Congressional Research Service Kitchin July 2010 #12;(this page intentionally left blank) #12;Prospects for Improved Carbon Capture Technology i Table of Contents CHAPTER 1. EXECUTIVE SUMMARY

438

Biomass Combustion: Carbon Capture and Storage  

Science Journals Connector (OSTI)

This chapter deals with the capture and storage of carbon dioxide produced by the combustion of biomass. Since biomass combustion is potentially carbon neutral, this technique could provide a method of reducing t...

Jenny M. Jones; Amanda R. Lea-Langton

2014-01-01T23:59:59.000Z

439

Optimal Carbon Capture and Storage Policies  

Science Journals Connector (OSTI)

The IPCC recommends the use of carbon capture and sequestration (CCS) technologies in order ... may be a long-term solution to curb carbon emissions. We also show that over time ... planner will choose to decreas...

Alain Ayong Le Kama; Mouez Fodha; Gilles Lafforgue

2013-08-01T23:59:59.000Z

440

Torsional instability of chiral carbon nanotubes  

E-Print Network [OSTI]

In this work we investigate the presence of a torsional instability in single-wall carbon nanotubes which causes small diameter chiral carbon nanotubes to show natural torsion. To obtain insight into the nature of this ...

Dresselhaus, Mildred

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Multi-Scale Reinforced Carbon Fiber Nanocomposites  

E-Print Network [OSTI]

of epoxy-based polymer composites and the dielectric breakdown of the epoxy, catastrophic failure may occur when subjected to high voltages (as in a lightning strike). The addition of carbon nanofibers and carbon nanotubes to the epoxy resin has...

VanRooyen, Ainsley

2008-08-19T23:59:59.000Z

442

Assessment of Oxidation in Carbon Foam  

E-Print Network [OSTI]

Carbon foams exhibit numerous unique properties which are attractive for light weight applications such as aircraft and spacecraft as a tailorable material. Carbon foams, when exposed to air, oxidize at temperatures as low as 500-600 degrees Celsius...

Lee, Seung Min

2010-07-14T23:59:59.000Z

443

Carbon Fiber Cluster Strategy | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economic Development | Carbon Fiber Cluster Strategy SHARE Carbon Fiber Cluster Strategy ORNL has a 40-year history in R&D on fiber-reinforced composite materials, and has been...

444

Carbon nanotube electron sources and applications  

Science Journals Connector (OSTI)

...Review | 0 Biocompatible Materials 0 Macromolecular Substances...Carbon | Biocompatible Materials chemistry Crystallization...Wang et al. 2001), cathode-ray lamps (Saito...al. 2002) are under active consideration. Present...of carbon and related materials'. Phil. Trans. R...

2004-01-01T23:59:59.000Z

445

Soil Carbon Sequestration and the Greenhouse Effect  

E-Print Network [OSTI]

Soil Carbon Sequestration and the Greenhouse Effect Second edition Rattan Lal & Ronald F. Follett. Printed in the United States of America. #12;181 Soil Carbon Sequestration and the Greenhouse Effect, 2nd

Archer, Steven R.

446

On the metallicity of some carbon nanotubes .  

E-Print Network [OSTI]

??Some zigzag and all armchair single-walled carbon nanotubes are believed to behave as metals. However, recent experimental results suggest that only armchair single-walled carbon nanotubes (more)

Gmez Jeria, Juan Sebastin

2007-01-01T23:59:59.000Z

447

Hydrogen storage in sonicated carbon materials  

Science Journals Connector (OSTI)

The hydrogen storage in purified single-wall carbon nanotubes (SWNTs...3...for various periods of time using an ultrasonic probe of the alloy Ti-6Al-4V. The goal of this treatment was to open the carbon nanotubes...

M. Hirscher; M. Becher; M. Haluska; U. Dettlaff-Weglikowska

2001-02-01T23:59:59.000Z

448

Crystallization of carbon tetrachloride in confined geometries  

E-Print Network [OSTI]

1 Crystallization of carbon tetrachloride in confined geometries Adil Meziane1 , Jean-Pierre E 40 71 08 #12;2 Abstract The thermal behaviour of carbon tetrachloride confined in silica gels

Paris-Sud XI, Université de

449

THE PATH OF CARBON IN PHOTOSYNTHESIS  

E-Print Network [OSTI]

The Path ot Carbon in Photosynthesis. Science" l2J. , 476 (48 THE PATH OF CARBON IN PHOTOSYNTHESIS Melvin Calvin Nobel8-A Fig. 1. Elementary photosynthesis scheme. DES IOU OF THE

Calvin, Melvin Nobel Prize lecture

2008-01-01T23:59:59.000Z

450

THE PATH OF CARBON IN PHOTOSYNTHESIS  

E-Print Network [OSTI]

The Path of Carbon in Photosynthesis, Prentice-Hall, Ino. ,to StUdy the Products of Photosynthesis as Depending on the48 THE PATH OF CARBON IN PHOTOSYNTHESIS J. A. Bassham and

Bassham, J.A.; Calvin, Melvin

2008-01-01T23:59:59.000Z

451

Gasdynamic lasers utilizing carbon gasification  

Science Journals Connector (OSTI)

A theoretical investigation was made of the influence of the processes of carbon gasification by combustion products and oxidants on the chemical composition of the active medium and the energy characteristics of a gasdynamic CO2 laser. Conditions were found under which the stored energy of the active medium was greater than 100 J/g.

A S Biryukov; V M Marchenko; A M Prokhorov

1985-01-01T23:59:59.000Z

452

Biexciton Stability in Carbon Nanotubes  

Science Journals Connector (OSTI)

We have applied the quantum MonteCarlo method and tight-binding modeling to calculate the binding energy of biexcitons in semiconductor carbon nanotubes for a wide range of diameters and chiralities. For typical nanotube diameters we find that biexciton binding energies are much larger than previously predicted from variational methods, which easily brings the biexciton binding energy above the room temperature threshold.

David Kammerlander; Deborah Prezzi; Guido Goldoni; Elisa Molinari; Ulrich Hohenester

2007-09-21T23:59:59.000Z

453

BOOKS & MEDIA UPDATE Carbon Nanotechnology  

E-Print Network [OSTI]

of organic semiconductors are introduced in this book, which also gives a clear impression of the rangeBOOKS & MEDIA UPDATE Carbon Nanotechnology Liming Dai (ed.) Elsevier · 2006 · 750 pp ISBN: 0 are reviewed. Contributions by different authors are grouped into three sections on the synthesis, chemistry

Elliott, James

454

Carbon Nanoscience and Electronic Structure  

E-Print Network [OSTI]

Carbon Nanoscience and Electronic Structure Louis Brus We explore the fundamental nature electromagnetic fields, and solar energy nanoscience. He has received the APS Langmuir Prize, the ACS Chemistry of Materials Prize, the OSA Wood Prize, the inaugural Kavli Prize in Nanoscience and in 2012 the Bower Prize

Lewis, Jennifer

455

Terahertz detection and carbon nanotubes  

SciTech Connect (OSTI)

Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

Leonard, Francois

2014-06-11T23:59:59.000Z

456

Terahertz detection and carbon nanotubes  

ScienceCinema (OSTI)

Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

Leonard, Francois

2014-06-13T23:59:59.000Z

457

NETL: Carbon Storage Technology R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Technology Areas Geologic Storage, Simulation, and Risk Assessment Regional Carbon Sequestration Partnerships Initiative NATCARB Monitoring, Verification, Accounting,...

458

Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arrays: Fabrication, Evaluation and Application in Voltammetric Analysis. Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation and Application in Voltammetric...

459

Carbon Nanotubes: Bearing Stress Like Never Before  

E-Print Network [OSTI]

energy effects that cause aggregation in the first place to attaching mol- ecules to the outside of carbon nanotubes

Limaye, Aditya

2013-01-01T23:59:59.000Z

460

Carbon sequestration in depleted oil shale deposits  

SciTech Connect (OSTI)

A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

Burnham, Alan K; Carroll, Susan A

2014-12-02T23:59:59.000Z

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The Electrical Resistance of Carbon under Pressure  

Science Journals Connector (OSTI)

... interesting comparisons between the behaviour of carbon and of metals in respect of change of electric ...electricresistance ...

SILVANUS P. THOMPSON

1882-03-23T23:59:59.000Z

462

Identifying and counting point defects in carbon nanotubes  

E-Print Network [OSTI]

of single-walled carbon nanotubes. J. Phys. Chem. B 103,single-walled carbon nanotubes on patterned silicon wafers.of single-walled carbon nanotubes from carbon monoxide.

Fan, Y W; Goldsmith, B R; Collins, Philip G

2005-01-01T23:59:59.000Z

463

Identifying and Counting Point Defects in Carbon Nanotubes  

E-Print Network [OSTI]

single-walled carbon nanotubes on patterned silicon wafers.of single-walled carbon nanotubes from carbon monoxide.single-walled carbon nanotubes. Science 306, 13621364 (

Collins, Philip G

2005-01-01T23:59:59.000Z

464

High surface area silicon carbide-coated carbon aerogel  

SciTech Connect (OSTI)

A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

2014-01-14T23:59:59.000Z

465

RELATIVE CHIRAL ABUNDANCES OF CARBON NANOTUBES DETERMINED BYRELATIVE CHIRAL ABUNDANCES OF CARBON NANOTUBES DETERMINED BYRELATIVE CHIRAL ABUNDANCES OF CARBON NANOTUBES DETERMINED BYRELATIVE CHIRAL ABUNDANCES OF CARBON NANOTUBES DETERMINED BY RESONANT RAMAN  

E-Print Network [OSTI]

RELATIVE CHIRAL ABUNDANCES OF CARBON NANOTUBES DETERMINED BYRELATIVE CHIRAL ABUNDANCES OF CARBON NANOTUBES DETERMINED BYRELATIVE CHIRAL ABUNDANCES OF CARBON NANOTUBES DETERMINED BYRELATIVE CHIRAL ABUNDANCES OF CARBON NANOTUBES DETERMINED BY RESONANT RAMAN SPECTROSCOPY USING A TUNABLE DYE LASERRESONANT

Mellor-Crummey, John

466

Assessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon Capture and Storage  

E-Print Network [OSTI]

: The Case of Carbon Capture and Storage By Eleanor Ereira Submitted to the Engineering Systems Division on Coal-fired Power Plants with Carbon Capture and Storage (CCS) as a case study of a new high-cost energyAssessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon

467

The carbon question Debate The carbon question Comment/Q&A he key to climate change  

E-Print Network [OSTI]

research, development, demonstration, and diffusion of low-emission technolo- gies. Carbon capture to What does carbon capture and storage (CCS) involve? Separating out the carbon dioxide (CO2) emitted has not yet been applied in power stations on a commercial scale. So what's "carbon capture ready

468

Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes  

E-Print Network [OSTI]

Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes Yonghoon Choi and Yang Wang Department of Geological Sciences, Florida State. Measurements of stable carbon isotopic ratios as well as carbon (C), nitrogen (N), and phosphorus (P) contents

Wang, Yang

469

Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183  

E-Print Network [OSTI]

73 Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183. Blaine Metting2 The purpose of this chapter is to review terrestrial biological carbon sequestration Northwest National Laboratory, Richland, Washington, USA. #12;74 TERRESTRIAL BIOLOGICAL CARBON SEqUESTRATION

Pennycook, Steve

470

Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide from the post-  

E-Print Network [OSTI]

Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide dioxide separation and sequestration because the lower cost of carbon dioxide separation from for injection of carbon dioxide into oil or gas-bearing formations. An advantage of sequestration involving

471

Carbon nanotubes Growth of Single-Walled Carbon Nanotubes from Sharp  

E-Print Network [OSTI]

Carbon nanotubes Growth of Single-Walled Carbon Nanotubes from Sharp Metal Tips Julio A. Rodri Banhart* The nucleation and growth of single-walled carbon nanotubes is observed in situ in a transmission a region of high surface curvature, spontaneous nucleation and growth of single-walled carbon nanotubes

Nordlund, Kai

472

Enriched stable carbon isotopes in the pore waters of carbonate sediments dominated by seagrasses: Evidence  

E-Print Network [OSTI]

Enriched stable carbon isotopes in the pore waters of carbonate sediments dominated by seagrasses inorganic carbon (d13 C-DIC) were carried out in shallow water carbonate sediments of the Great Bahamas Bank (GBB) to further examine sediment­seagrass relationships and to more quantitatively describe the cou

Burdige, David

473

Carbon 39 (2001) 19952001 Silane-treated carbon fiber for reinforcing cement  

E-Print Network [OSTI]

Carbon 39 (2001) 1995­2001 Silane-treated carbon fiber for reinforcing cement *Yunsheng Xu, D-treated carbon fibers and silane-treated silica fume, relative to the values for cement paste with as-received carbon fibers and as-received silica fume. Silane treatment of fibers and silica fume contributed about

Chung, Deborah D.L.

474

Carbon 40 (2002) 429436 Quantum-mechanical simulations of field emission from carbon  

E-Print Network [OSTI]

Carbon 40 (2002) 429­436 Quantum-mechanical simulations of field emission from carbon nanotubes *A simulations of field emission from 2-nm long open (5,5), closed (5,5) and open (10,0) carbon nanotubes recently where the carbon nanotubes [1,2], a vast literature has appeared on field-emission current from

Mayer, Alexandre

475

Estimating Biomass Burnt and CarbonEstimating Biomass Burnt and Carbon Emissions from Large Wildfires  

E-Print Network [OSTI]

Estimating Biomass Burnt and CarbonEstimating Biomass Burnt and Carbon Emissions from Large: Global Biomass Burning & Carbon Emissions Standard Emissions Inventories: Burned Area & GFED recently daily. Fire occurrenceoccurrence Roy et al.Roy et al. Carbon emissions (C) = burned area . fuel

476

Technologies for Carbon Capture and Storage  

E-Print Network [OSTI]

FutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production to optimize hydrogen production or carbon capture The prototype plant would be the world's 1st #12;24-Jun-03Gen? · The world's first plant [prototype] to: - Capture and permanently sequester carbon dioxide - Emit virtually

477

Is Carbon Capture and Storage Really Needed?  

Science Journals Connector (OSTI)

Is Carbon Capture and Storage Really Needed?1 ... In addition to the costs associated with capturing CO2, equipment must also be in place to transport the captured stream. ... Due to their low price, wide availability, and stability of the resulting carbonates, Mg-rich minerals are promising materials for carbonating CO2. ...

Costas Tsouris; Douglas S. Aaron; Kent A. Williams

2010-05-12T23:59:59.000Z

478

Officials launch Carbon Fiber Technology Facility, announce  

E-Print Network [OSTI]

to reduce carbon fiber's high cost, Danielson noted: "Many of these new clean energy technologies are withinSCIENCE Officials launch Carbon Fiber Technology Facility, announce new manufacturing initiative and a large crowd of local business and civic leaders came to the Carbon Fiber Technology Facility (CFTF

Pennycook, Steve

479

Experimental Study of Carbon Sequestration Reactions Controlled  

E-Print Network [OSTI]

Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO2-Rich. Carbonation of ultramafic rocks in geological reservoirs is, in theory, the most efficient way to trap CO2 irreversibly; however, possible feedback effects between carbonation reactions and changes in the reservoir

Demouchy, Sylvie

480

Geological carbon sequestration: critical legal issues  

E-Print Network [OSTI]

Geological carbon sequestration: critical legal issues Ray Purdy and Richard Macrory January 2004 Tyndall Centre for Climate Change Research Working Paper 45 #12;1 Geological carbon sequestration an integrated assessment of geological carbon sequestration (Project ID code T2.21). #12;2 1 Introduction

Watson, Andrew

Note: This page contains sample records for the topic "repressuring nonhydro carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Optimize carbon dioxide sequestration, enhance oil recovery  

E-Print Network [OSTI]

- 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

482

THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION  

E-Print Network [OSTI]

THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION BRUCE A. MCCARL, BRIAN C. MURRAY, AND UWE A. SCHNEIDER A. Abstract Carbon sequestration via forests and agricultural soils saturates over time to sequestration because of (1) an ecosystems limited ability to take up carbon which we will call saturation

McCarl, Bruce A.

483

All carbon nanotubes are not created equal  

SciTech Connect (OSTI)

This chapter presents the various factors that enter into consideration when choosing the source of carbon nanotubes for a specific application. Carbon nanotubes are giant molecules made of pure carbon. They have captured the imagination of the scientific community by the unique structure that provides superior physical, chemical, and electrical properties. However, a surprisingly wide disparity exists between the intrinsic properties determined under ideal conditions and the properties that carbon nanotubes exhibit in real world situations. The lack of uniformity in carbon nanotube properties is likely to be the main obstacle holding back the development of carbon nanotube applications. This tutorial addresses the nonuniformity of carbon nanotube properties from the synthesis standpoint. This synthesis-related nonuniformity is on top of the intrinsic chirality distribution that gives the ~1:2 ratio of metallic to semiconducting nanotubes. From the standpoint of carbon bonding chemistry the variation in the quality and reproducibility of carbon nanotube materials is not unexpected. It is an intrinsic feature that is related to the metastability of carbon structures. The extent to which this effect is manifested in carbon nanotube formation is governed by the type and the kinetics of the carbon nanotube synthesis reaction. Addressing this variation is critical if nanotubes are to live up to the potential already demonstrated by their phenomenal physical properties.

Geohegan, David B [ORNL; Puretzky, Alexander A [ORNL; Rouleau, Christopher M [ORNL

2010-01-01T23:59:59.000Z

484

Carbon dioxide capture process with regenerable sorbents  

DOE Patents [OSTI]

A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

2002-05-14T23:59:59.000Z

485

Doped Carbon Nanotubes for Hydrogen Storage  

E-Print Network [OSTI]

Doped Carbon Nanotubes for Hydrogen Storage U. S. DOE Hydrogen Program Annual Review May, 2003 structure carbon nanotube systems ·Not restricted to physisorption or chemisorption (weak covalent bond structures of doped carbon nanotubes APPROACH Based on C-H bond Dihydrogen bond H H M = + charge = - charge

486

Predicting Future Atmospheric Carbon Dioxide Levels  

Science Journals Connector (OSTI)

...Predicting future atmospheric carbon dioxide levels...1978012175 air atmosphere biosphere carbon...Predicting future atmospheric carbon dioxide levels...re-quired 5-Mhz bandwidth, which...synchronization rate of 16 khz and the picture...the interstellar plasma. For UHF frequencies...

U. Siegenthaler; H. Oeschger

1978-01-27T23:59:59.000Z

487

Carbon Fiber Composite Pyramidal Lattice Structures  

E-Print Network [OSTI]

Carbon Fiber Composite Pyramidal Lattice Structures A Thesis Presented to the faculty of the School the facesheets and the core were created from pre-cured, bi-axial carbon fiber laminated plates. The cores were approach which permits lattice fabrication from high specific strength aluminum and titanium alloys. Carbon

Wadley, Haydn

488

Lee McGetrick Director, Carbon Fiber  

E-Print Network [OSTI]

Contact Lee McGetrick Director, Carbon Fiber Technology Facility (865) 574-6549 mcgetricklb@ornl.gov INNOVATIONS IN MANUFACTURING www.ornl.gov/manufacturing Demonstrating Innovative Low-Cost Carbon Fiber of Energy's (DOE) new Carbon Fiber Technology Facility (CFTF)--a 42,000 ft2 innovative technology facility

489

Sequestration of CO2 by Concrete Carbonation  

Science Journals Connector (OSTI)

Sequestration of CO2 by Concrete Carbonation ... Carbonation of reinforced concrete is one of the causes of corrosion, but it is also a way to sequester CO2. ... This work attempts to advance the knowledge of the carbon footprint of cement. ...

Isabel Galan; Carmen Andrade; Pedro Mora; Miguel A. Sanjuan

2010-03-12T23:59:59.000Z

490

THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION  

E-Print Network [OSTI]

THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 sequestration and between 1 and 49 percent for forest based carbon sequestration. Value adjustments 18 19 20 21 22 BRUCE A. MCCARL, BRIAN C. MURRAY, AND UWE A. SCHNEIDER Abstract Carbon sequestered via

McCarl, Bruce A.

491

CARBON NANOTUBE TRANSISTORS, SENSORS, AND A Dissertation  

E-Print Network [OSTI]

CARBON NANOTUBE TRANSISTORS, SENSORS, AND BEYOND A Dissertation Presented to the Faculty of Philosophy by Xinjian Zhou January 2008 #12;#12;CARBON NANOTUBE TRANSISTORS, SENSORS, AND BEYOND Xinjian Zhou, Ph. D. Cornell University 2008 Carbon nanotubes are tiny hollow cylinders, made from a single

McEuen, Paul L.

492

Scanning Probe Microscopy Studies of Carbon Nanotubes  

E-Print Network [OSTI]

Scanning Probe Microscopy Studies of Carbon Nanotubes Teri Wang Odom1 , Jason H. Hafner1 relationship between Single-Walled Carbon Nanotube (SWNT) atomic structure and electronic properties, (2, properties and application of carbon nanotube probe microscopy tips to ultrahigh resolution and chemically

Odom, Teri W.

493

Carbon Microelectrodes with a Renewable Surface  

Science Journals Connector (OSTI)

Carbon Microelectrodes with a Renewable Surface ... Carbon electrodes have several beneficial properties including a wide positive potential window, simplicity of surface modifications, and low cost. ... (1, 2) These benefits have allowed applications of carbon electrodes in energy sources(3) and electroanalytical detection. ...

Pavel Takmakov; Matthew K. Zachek; Richard B. Keithley; Paul L. Walsh; Carrie Donley; Gregory S. McCarty; R. Mark Wightman

2010-02-10T23:59:59.000Z

494

9, 1443714473, 2012 Soil carbon drivers  

E-Print Network [OSTI]

BGD 9, 14437­14473, 2012 Soil carbon drivers and benchmarks in Earth system models K. E. O. Todd if available. Causes of variation in soil carbon predictions from CMIP5 Earth system models and comparison #12;BGD 9, 14437­14473, 2012 Soil carbon drivers and benchmarks in Earth system models K. E. O. Todd

Ickert-Bond, Steffi

495

Fish are crucial in oceanic carbon cycle  

Science Journals Connector (OSTI)

... Fish may play a more important role in the marine carbon cycle than previously thought, ... marine carbon cycle than previously thought, a new study shows. Researchers have found that fish excrete prodigious amounts of a mineral, calcium carbonate, that had been thought to come ...

Roberta Kwok

2009-01-15T23:59:59.000Z

496

5, 11391174, 2008 Organic carbon and  

E-Print Network [OSTI]

BGD 5, 1139­1174, 2008 Organic carbon and nutrient export from disturbed peatlands S. Waldron et al of Biogeosciences The significance of organic carbon and nutrient export from peatland-dominated landscapes subject Union. 1139 #12;BGD 5, 1139­1174, 2008 Organic carbon and nutrient export from disturbed peatlands S

Boyer, Edmond

497

Carbon Allocation in Underground Storage Organs  

E-Print Network [OSTI]

Carbon Allocation in Underground Storage Organs Studies on Accumulation of Starch, Sugars and Oil Cover: Starch granules in cells of fresh potato tuber visualised by iodine staining. #12;Carbon By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve

498

Carbon-based Materials for Energy Storage  

E-Print Network [OSTI]

G. Luo, W. Qian and F. Wei, Carbon, 18. Q. Zhang, G. Xu, J.Wang, W. Qian and F. Wei, Carbon, 2009, 47, 538 1. Z. Chen,Frackowiak, E. and Bguin, F. Carbon 39, 937-950 (2001) 13.

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

499

CARBON MITIGATION HS 2013 Prof. Nicolas Gruber  

E-Print Network [OSTI]

CARBON MITIGATION HS 2013 Prof. Nicolas Gruber Mondays 10-12, CHN E42 (nicolas & Introduction (Gruber) Introduction to the carbon mitigation problem 9/23 2 Ocean Sequestration (Gruber) Putting2 sequestration (Mazzotti) Putting the CO2 underground... 10/14 5 Carbon sinks on land (Gruber) How

Fischlin, Andreas

500

CARBON MITIGATION HS 2014 Prof. Nicolas Gruber  

E-Print Network [OSTI]

CARBON MITIGATION HS 2014 Prof. Nicolas Gruber Mondays 10-12, CHN E42 (nicolas & Introduction (Gruber) Introduction to the carbon mitigation problem 9/22 2 Geological CO2 sequestration (Mazzotti) Putting the CO2 underground... 9/29 3 No class ­ group formation 10/06 4 Carbon sinks on land

Fischlin, Andreas