Powered by Deep Web Technologies
Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

2

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

3

Spare Capacity (2003) and Peak Production in World Oil  

Science Journals Connector (OSTI)

Reliable estimates of minimum spare capacity for world oil production can be obtained by comparing production ... before and following the collapse of the Iraqi oil industry in March 2003. Spare production was .....

Alfred J. Cavallo

2004-03-01T23:59:59.000Z

4

Non-Debye excess heat capacity and boson peak of binary lithium borate glasses  

Science Journals Connector (OSTI)

The non-Debye excess heat capacities of binary lithium borate glasses with different Li2O compositions of x=8, 14 and 22 (mol%) are investigated to understand origin of the boson peak. The low-temperature heat capacities are measured between 2 and 50K by a relaxation calorimeter. The experimental non-Debye heat capacities with x=14 is successfully reproduced using the excess vibrational density of states measured by inelastic neutron scattering. This finding indicates that the non-Debye heat capacities of lithium borate glasses originate from the excess vibrational density of states measureable by inelastic neutron scattering. Moreover, it is demonstrated that all of the excess heat capacity spectra lie on a single master curve by the scaling using boson peak temperature and intensity.

Yu Matsuda; Hitoshi Kawaji; Tooru Atake; Yasuhisa Yamamura; Shuma Yasuzuka; Kazuya Saito; Seiji Kojima

2011-01-01T23:59:59.000Z

5

Virtual reality simulation game approach to investigate transport adaptive capacity for peak oil planning  

Science Journals Connector (OSTI)

The peak and decline of world oil production is an emerging issue for transportation and urban planners. Peak oil from an energy perspective means that there will be progressively less fuel. Our work treats changes in oil supply as a risk to transport activity systems. A virtual reality survey method, based on the sim game concept, has been developed to audit the participants normal weekly travel activity, and to explore participants travel adaptive capacity. The travel adaptive capacity assessment (TACA) Sim survey uses avatars, Google Map, 2D scenes, interactive screens and feedback scores. Travel adaptive capacity is proposed as a measure of long-range resilience of activity systems to fuel supply decline. Mode adaptive potential is proposed as an indicator of the future demand growth for less energy intensive travel. Both adaptation indicators can be used for peak oil vulnerability assessment. A case study was conducted involving 90 participants in Christchurch New Zealand. All of the participants were students, general staff or academics at the University of Canterbury. The adaptive capacity was assessed by both simulated extreme fuel price shock and by asking, do you have an alternative mode? without price pressure. The travel adaptive capacity in number of kilometers was 75% under a 5-fold fuel price increase. The mode adaptive potential was 33% cycling, 21% walking and 22% bus. Academics had adaptive capacity of only 15% of trips by canceling or carrying out their activity from home compared to 1018% for students.

Montira Watcharasukarn; Shannon Page; Susan Krumdieck

2012-01-01T23:59:59.000Z

6

Relationship between low-temperature boson heat capacity peak and high-temperature shear modulus relaxation in a metallic glass  

SciTech Connect (OSTI)

Low-temperature (2 K{<=}T{<=}350 K) heat capacity and room-temperature shear modulus measurements ({nu}=1.4 MHz) have been performed on bulk Pd{sub 41.25}Cu{sub 41.25}P{sub 17.5} in the initial glassy, relaxed glassy, and crystallized states. It has been found that the height of the low-temperature Boson heat capacity peak strongly correlates with the changes in the shear modulus upon high-temperature annealing. It is this behavior that was earlier predicted by the interstitialcy theory, according to which dumbbell interstitialcy defects are responsible for a number of thermodynamic and kinetic properties of crystalline, (supercooled) liquid, and solid glassy states.

Vasiliev, A. N.; Voloshok, T. N. [Department of Low Temperature Physics and Superconductivity, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Granato, A. V.; Joncich, D. M. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Greet Street, Urbana, Illinois 61801 (United States); Mitrofanov, Yu. P. [Department of General Physics, Voronezh State Pedagogical University, 86 Lenin Street, Voronezh 394043 (Russian Federation); Khonik, V. A. [Department of General Physics, Voronezh State Pedagogical University, 86 Lenin Street, Voronezh 394043 (Russian Federation); Research Center, Voronezh State University, Universitetskaya Sq. 1, 394006 Voronezh (Russian Federation)

2009-11-01T23:59:59.000Z

7

Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level  

Science Journals Connector (OSTI)

Abstract High wind power penetration in power system leads to a significant challenge in balancing power production and consumption due to the intermittence of wind. Introducing energy storage system in wind energy system can help offset the negative effects, and make the wind power controllable. However, the power spectrum density of wind power outputs shows that the fluctuations of wind energy include various components with different frequencies and amplitudes. This implies that the hybrid energy storage system is more suitable for smoothing out the wind power fluctuations effectively rather than the independent energy storage system. In this paper, we proposed a preliminary scheme for capacity allocation of hybrid energy storage system for power system peak shaving by using spectral analysis method. The unbalance power generated from load dispatch plan and wind power outputs is decomposed into four components, which are outer-day, intra-day, short-term and very short-term components, by using Discrete Fourier Transform (DFT) and spectral decomposition method. The capacity allocation can be quantified according to the information in these components. The simulation results show that the power rating and energy rating of hybrid energy storage system in partial smoothing mode decrease significantly in comparison with those in fully smoothing mode.

Pan Zhao; Jiangfeng Wang; Yiping Dai

2015-01-01T23:59:59.000Z

8

Peak Oil  

Science Journals Connector (OSTI)

Wissenschaftliche Voraussagen deuten auf Peak Oil, das Maximum globaler Erdlfrderung, in unserer ... der demokratischen Systeme fhren. Psychoanalytische Betrachtung darf Peak Oil fr die Zivilisation als e...

Dr. Manuel Haus; Dr. med. Christoph Biermann

2013-03-01T23:59:59.000Z

9

Peak Oil  

Science Journals Connector (OSTI)

At the start of the new millennium, the expression Peak Oil was unknown. Nevertheless, a discussion about when the worlds rate of oil production would reach its maximum had already ... . King Hubbert presented...

Kjell Aleklett

2012-01-01T23:59:59.000Z

10

Preliminary Assumptions for Natural Gas Peaking  

E-Print Network [OSTI]

Preliminary Assumptions for Natural Gas Peaking Technologies Gillian Charles and Steve Simmons GRAC, Reciprocating Engines Next steps 2 #12;Definitions Baseload Energy: power generated (or conserved) across a period of time to serve system demands for electricity Peaking Capacity: capability of power generating

11

Desert Peak EGS Project  

Broader source: Energy.gov [DOE]

Desert Peak EGS Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

12

Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

063-2011 063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is approved for use by all DOE/National Nuclear Security Administration (NNSA) Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations,

13

Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1063-2006 April 2006 Superseding DOE-STD-1063-2000 March 2000 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2006 ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-STD-1063-2006 iii FOREWORD 1. This Department of Energy standard is approved for use by all DOE Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should

14

Economics of Peak Oil  

Science Journals Connector (OSTI)

Abstract Peak oil refers to the future decline in world production of crude oil and the accompanying potentially calamitous effects. The peak oil literature typically rejects economic analysis. This article argues that economic analysis is indeed appropriate for analyzing oil scarcity because standard economic models can replicate the observed peaks in oil production. Moreover, the emphasis on peak oil is misplaced as peaking is not a good indicator of scarcity, peak oil techniques are overly simplistic, the catastrophes predicted by the peak oil literature are unlikely, and the literature does not contribute to correcting identified market failures. Efficiency of oil markets could be improved by instead focusing on remedying market failures such as excessive private discount rates, environmental externalities, market power, insufficient innovation incentives, incomplete futures markets, and insecure property rights.

S.P. Holland

2013-01-01T23:59:59.000Z

15

Peak power ratio generator  

DOE Patents [OSTI]

A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

Moyer, Robert D. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

16

Department Safety Representatives Department Safety Representative  

E-Print Network [OSTI]

Department Safety Representatives Overview Department Safety Representative Program/Operations Guidance Document The Department Safety Representative (DSR) serves a very important role with implementation of safety, health, and environmental programs on campus. The role of the DSR is to assist

Pawlowski, Wojtek

17

Desert Peak EGS Project  

Broader source: Energy.gov [DOE]

Geothermal Technologies Program 2010 Peer Review Desert Peak EGS Project, for the Engineered Geothermal Systems Demonstration Projects and Innovative Exploration Technologies. Objective to stimulate permeability in tight well 27-15 and improve connection to rest of the field; improve overall productivity or injectivity. Successful stimulation yields more production and enables more power generation.

18

Facility Representative Program: 2000 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Facility Representative Workshop 0 Facility Representative Workshop May 16-18, 2000 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Tuesday, May 16, 2000 Theme for Day 1: Sustaining the Success of the Facility Representative Program 8:00 a.m. - Opening Remarks - Joe Arango, Facility Representative Program Manager 8:05 a.m. - Welcome - Kenneth Powers, Deputy Manager Nevada Operations Office 8:15 a.m. - Deputy Secretary Remarks - T. J. Glauthier, Deputy Secretary of Energy 8:30 a.m. - Keynote Address - Jerry Lyle, Assistant Manager for Environmental Management, Idaho Operations Office 9:00 a.m. - Facility Representative of the Year Presentation - Mark B. Whitaker, Departmental Representative 9:30 a.m. - Break 9:50 a.m. - Program Results and Goals - Joe Arango, Facility Representative Program Manager

19

Fundamentals of Capacity Control  

Science Journals Connector (OSTI)

Whereas capacity planning determines in advance the capacities required to implement a production program, capacity control determines the actual capacities implemented shortly beforehand. The capacity control...

Prof. Dr.-Ing. habil. Hermann Ldding

2013-01-01T23:59:59.000Z

20

Scenarios for a South African CSP Peaking System in the Short Term  

Science Journals Connector (OSTI)

Abstract The South African Integrated Resource Plan is a policy document, which by law allocates the energy resources that will be built to meet the future electricity needs of South Africa. The current Integrated Resource Plan indicates the electricity generation types that will be built from 2010 to 2030. It states that most of the future peak load will be met by Open Cycle Gas Turbines which operate using diesel and represents an allocation of 4,930M W. Further, the Integrated Resource Plan does not identify CSP as a potential peaking solution and allocates 1,200M W of capacity to CSP. This represents less than 2% of total capacity in 2030. This paper investigates the feasibility of utilizing CSP Plants as peaking plants in the short to medium term based on a proposition that under certain scenarios, a fleet of unsubsidized CSP peaking plants could drop the LCOE of the current Integrated Resource Plan. This is done by modeling a contemporary CSP tower system with Thermal Energy Storage. The Gemasolar CSP plant is used as the reference plant in order to obtain operating parameters. Our analysis suggests that at current fuels costs, diesel powered Open Cycle Gas Turbines produce electricity in excess of 5.08 ZAR/kWh (?0.63 US$/kWh), significantly above current CSP energy generating costs. This is the context that informed the undertaking of this study, to influence policy and provide technical evidence that CSP can guarantee and deliver energy at competitive costs in the short term. Two alternate scenarios show a lower LCOE for providing peak power. The most promising is a combined distributed CSP system wit h diesel powered Open Cycle Gas Turbine system as backup. The LCOE for this system is 2.78 ZAR (?0.34 $/kWh) or a drop of 45% when no fuel price inflation is considered. This system also increases security of supply due to a lower dependence on fuel prices.

C. Silinga; P. Gauch

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Definition: Deferred Generation Capacity Investments | Open Energy  

Open Energy Info (EERE)

Generation Capacity Investments Generation Capacity Investments Utilities and grid operators ensure that generation capacity can serve the maximum amount of load that planning and operations forecasts indicate. The trouble is, this capacity is only required for very short periods each year, when demand peaks. Reducing peak demand and flattening the load curve should reduce the generation capacity required to service load and lead to cheaper electricity for customers.[1] Related Terms load, electricity generation, peak demand, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Generation_Capacity_Investments&oldid=50257

22

Facility Representative Program: 2010 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 Facility Representative Workshop 10 Facility Representative Workshop May 12 - 13, 2010 Las Vegas, NV Facility Rep of the Year Award | Attendees | Summary Report Workshop Agenda and Presentations Day 1: Wednesday, May 12, 2010 8:00 a.m. Opening Remarks James Heffner, Facility Representative Program Manager Earl Hughes, Safety System Oversight Program Manager Office of Nuclear Safety Policy and Assistance Office of Health, Safety and Security 8:15 a.m. Welcome from the Nevada Site Office John Mallin, Deputy Assistant Manager for Site Operations Nevada Site Office 8:30 a.m. Workshop Keynote Address Todd Lapointe Chief of Nuclear Safety Central Technical Authority Staff 9:15 a.m. Facility Representative and Safety System Oversight Award Ceremony James Heffner, Facility Representative Program Manager

23

Facility Representative Program: 2007 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Facility Representative Workshop 7 Facility Representative Workshop May 15 - 17, 2007 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 15, 2007 8:00 a.m. Opening Remarks Joanne Lorence, Facility Representative Program Manager 8:15 a.m. Welcome from the Nevada Site Office Gerald Talbot, Manager, Nevada Site Office 8:30 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:45 a.m. Keynote Address - Safety Oversight Perspective and Expectations Glenn Podonsky, Chief Health, Safety and Security Officer, Office of Health, Safety and Security 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board,

24

Facility Representative Program: 2003 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Facility Representative Workshop 3 Facility Representative Workshop May 13 - 15, 2003 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 13, 2003 Theme: Program Successes and Challenges 8:00 a.m. John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathleen Carlson Manager, Nevada Site Office 8:30 a.m. Keynote Address Savannah River Site and Facility Reps - A Shared History and Common Future Jeffrey M. Allison Manager, Savannah River Operations Office 9:00 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board

25

Facility Representative Program: 2001 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Facility Representative Workshop 1 Facility Representative Workshop May 15 - 17, 2001 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 15, 2001 Theme: Program Successes and Challenges 8:00 a.m. - Logistics Announcements & Opening Remarks - Joe Arango, Facility Representative Program Manager 8:15 a.m. - Welcome - Debbie Monette, Assistant Manager for National Security, Nevada Operations Office 8:30 a.m. - Keynote Address - Ralph Erickson, National Nuclear Security Administration 9:00 a.m.- DOE Facility Representative of the Year Presentation - Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board 9:30 a.m. - Break 9:50 a.m. - Program Summary - Joe Arango 10:10 a.m. - Management Panel/Questions and Answers

26

Facility Representative Program: Facility Representative Program Sponsors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative Program Sponsors Facility Representative Program Sponsors There are 29 Facility Representative Program Sponsors Office Name Title E-Mail Phone ASO Larry Pendexter ES&H Div Dir (Argonne) larry.pendexter@ch.doe.gov 630-252-1485 BHSO Bob Desmarais Operations Management Division Director desmarai@bnl.gov 631-344-5434 CBFO Glenn Gamlin Facility Representative Supervisor glenn.gamlin@wipp.ws 575-234-8136 CBFO Casey Gadbury Operations Manager casey.gadbury@wipp.ws 575-234-7372 FSO Mark Bollinger Deputy Manager Mark.Bollinger@ch.doe.gov 630-840-8130 FSO John Scott FR Team Lead john.scott@ch.doe.gov 630-840-2250 HS-30 James O'Brien Director, Office of Nuclear Safety James.O'Brien@hq.doe.gov 301-903-1408 HS-32 Earl Hughes Facility Representative Program Manager Earl.Hughes@hq.doe.gov 202-586-0065

27

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

28

Facility Representative Program: 2004 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Facility Representative Workshop 4 Facility Representative Workshop May 18 - 20, 2004 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 18, 2004 Theme: Program Successes and Challenges 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathy Carlson, Nevada Site Office Manager 8:30 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy Deputy Secretary's Remarks 8:40 a.m. Keynote Address - NNSA Evaluation of Columbia Accident Investigation Board Report Brigadier General Ronald J. Haeckel, Principal Assistant Deputy Administrator for Military Applications, NNSA Other Information: NASA’S Columbia Accident Investigation Board Report

29

Facility Representative Program: 2006 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Facility Representative Workshop 6 Facility Representative Workshop May 16 - 19, 2006 Knoxville, Tennessee Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final To view Pictures, scroll the mouse over the Picture icon To view Presentations, Picture Slideshows and Video, click on the icon Day 1: Tuesday, May 16, 2006 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome from Oak Ridge Office Gerald Boyd, Manager, Oak Ridge Office 8:25 a.m. Welcome from Y-12 Site Office Theodore Sherry, Manager, Y-12 Site Office 8:35 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:40 a.m. Keynote Address - Safety Oversight at Environmental Management Activities Dr. Inés Triay, Chief Operating Officer, Office of Environmental Management

30

Measuring the capacity impacts of demand response  

SciTech Connect (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

31

Peak Oil, Peak Energy Mother Nature Bats Last  

E-Print Network [OSTI]

Peak Oil, Peak Energy Mother Nature Bats Last Martin Sereno 1 Feb 2011 (orig. talk: Nov 2004) #12;Oil is the Lifeblood of Industrial Civilization · 80 million barrels/day, 1000 barrels/sec, 1 cubicPods to the roads themselves) · we're not "addicted to oil" -- that's like saying a person has an "addiction

Sereno, Martin

32

winter_peak_2005.xls  

U.S. Energy Information Administration (EIA) Indexed Site

2b . Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, 2005 and Projected 2006 through 2010 (Megawatts and 2005 Base Year)...

33

Peak oil: diverging discursive pipelines.  

E-Print Network [OSTI]

??Peak oil is the claimed moment in time when global oil production reaches its maximum rate and henceforth forever declines. It is highly controversial as (more)

Doctor, Jeff

2012-01-01T23:59:59.000Z

34

Capacity Markets for Electricity  

E-Print Network [OSTI]

ternative Approaches for Power Capacity Markets, Papers andprof id=pjoskow. Capacity Markets for Electricity [13]Utility Commission- Capacity Market Questions, available at

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

35

MonteCarlo and Analytical Methods for Forced Outage Rate Calculations of Peaking Units  

E-Print Network [OSTI]

(unavailability) of such units. This thesis examines the representation of peaking units using a four-state model and performs the analytical calculations and Monte Carlo simulations to examine whether such a model does indeed represent the peaking units...

Rondla, Preethi 1988-

2012-10-26T23:59:59.000Z

36

summer_peak_2004.xls  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Megawatts and 2004 Base Year) Summer Noncoincident Peak Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN...

37

winter_peak_2003.xls  

Gasoline and Diesel Fuel Update (EIA)

and 2003 Base Year) Winter Noncoincident Peak Load Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN...

38

summer_peak_2003.xls  

U.S. Energy Information Administration (EIA) Indexed Site

(Megawatts and 2003 Base Year) Summer Noncoincident Peak Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN...

39

winter_peak_2004.xls  

U.S. Energy Information Administration (EIA) Indexed Site

and 2004 Base Year) Winter Noncoincident Peak Load Contiguous U.S. Eastern Power Grid Texas Power Grid Western Power Grid Projected Year Base Year ECAR FRCC MAAC MAIN...

40

monthly_peak_2003.xls  

U.S. Energy Information Administration (EIA) Indexed Site

O Form EIA-411 for 2005 Released: February 7, 2008 Next Update: October 2007 Table 3a . January Monthly Peak Hour Demand, Actual and Projected by North American Electric...

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

42

Monitoring Infrastructure Capacity Monitoring Infrastructure Capacity  

E-Print Network [OSTI]

Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban) task. Monitoring infrastructure capacity is at least as complex as monitoring urban land markets Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban

Levinson, David M.

43

Facility Representative Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative Facility Representative Office of Nuclear Safety Home Facility Representative Home Annual Facility Rep Workshop › 2012 › 2011 › 2010 › 2009 › 2008 › 2007 › 2006 › 2005 › 2004 › 2003 › 2002 › 2001 › 2000 DOE Safety Links › ORPS Info › Operating Experience › DOE Lessons Learned › Accident Investigation Assessment Tools › FR CRADs › Surveillance Guides › Manager's Guide for Safety and Health Subject Matter Links General Program Information › Program Mission Statement › Program Directives and Guidance › FR of the Year Award Program › FR of the Year Award › FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) FR Quarterly Performance Indicators Training & Qualification Information › Qualification Standards › Energy Online Courses

44

Economic vulnerability to Peak Oil  

Science Journals Connector (OSTI)

Abstract Peak Oil, which refers to the maximum possible global oil production rate, is increasingly gaining attention in both science and policy discourses. However, little is known about how this phenomenon will impact economies, despite its apparent imminence and potential dangers. In this paper, we construct a vulnerability map of the U.S. economy, combining two approaches for analyzing economic systems, i.e. inputoutput analysis and social network analysis (applied to economic data). Our approach reveals the relative importance of individual economic sectors, and how vulnerable they are to oil price shocks. As such, our dual-analysis helps identify which sectors, due to their strategic position, could put the entire U.S. economy at risk from Peak Oil. For the U.S., such sectors would include Iron Mills, Fertilizer Production and Transport by Air. Our findings thus provide early warnings to downstream companies about potential trouble in their supply chain, and inform policy action for Peak Oil. Although our analysis is embedded in a Peak Oil narrative, it is just as valid and useful in the context of developing a climate roadmap toward a low carbon economy.

Christian Kerschner; Christina Prell; Kuishuang Feng; Klaus Hubacek

2013-01-01T23:59:59.000Z

45

Refinery Capacity Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Report --- Full report in PDF (1 MB) XLS --- Refinery Capacity Data by individual refinery as of January 1, 2006 Tables 1 Number and Capacity of Operable Petroleum...

46

Definition: Variable Peak Pricing | Open Energy Information  

Open Energy Info (EERE)

Variable Peak Pricing Variable Peak Pricing Jump to: navigation, search Dictionary.png Variable Peak Pricing Variable Peak Pricing (VPP) is a hybrid of time-of-use and real-time pricing where the different periods for pricing are defined in advance (e.g., on-peak=6 hours for summer weekday afternoon; off-peak= all other hours in the summer months), but the price established for the on-peak period varies by utility and market conditions.[1] Related Terms real-time pricing References ↑ https://www.smartgrid.gov/category/technology/variable_peak_pricing [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssmart grid,off-peak,on-peak,smart grid, |Template:BASEPAGENAME]]smart grid,off-peak,on-peak,smart grid, Retrieved from "http://en.openei.org/w/index.php?title=Definition:Variable_Peak_Pricing&oldid=50262

47

Silver Peak Innovative Exploration Project  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Reduce the high level of risk during the early stages of geothermal project development by conducting a multi-faceted and innovative exploration and drilling program at Silver Peak. Determine the combination of techniques that are most useful and cost-effective in identifying the geothermal resource through a detailed, post-project evaluation of the exploration and drilling program.

48

Glossary Balancing Item: Represents  

Gasoline and Diesel Fuel Update (EIA)

Balancing Balancing Item: Represents differences between the sum of the components of natural gas supply and the sum of the components of natural gas disposition. These differences may be due to quantities lost or to the effects of data-report- ing problems. Reporting problems include differences due to the net result of conversions of flow data metered at varying temperature and pressure bases and converted to a standard temperature and pressure base; the effect of vari- ations in company accounting and billing practices; differ- ences between billing cycle and calendar period time frames; and imbalances resulting from the merger of data- reporting systems that vary in scope, format, definitions, and type of respondents. Biomass Gas: A medium Btu gas containing methane and carbon dioxide, resulting from the action of microorganisms on organic materials such as a landfill. British Thermal

49

On representing chemical environments  

Science Journals Connector (OSTI)

We review some recently published methods to represent atomic neighborhood environments, and analyze their relative merits in terms of their faithfulness and suitability for fitting potential energy surfaces. The crucial properties that such representations (sometimes called descriptors) must have are differentiability with respect to moving the atoms and invariance to the basic symmetries of physics: rotation, reflection, translation, and permutation of atoms of the same species. We demonstrate that certain widely used descriptors that initially look quite different are specific cases of a general approach, in which a finite set of basis functions with increasing angular wave numbers are used to expand the atomic neighborhood density function. Using the example system of small clusters, we quantitatively show that this expansion needs to be carried to higher and higher wave numbers as the number of neighbors increases in order to obtain a faithful representation, and that variants of the descriptors converge at very different rates. We also propose an altogether different approach, called Smooth Overlap of Atomic Positions, that sidesteps these difficulties by directly defining the similarity between any two neighborhood environments, and show that it is still closely connected to the invariant descriptors. We test the performance of the various representations by fitting models to the potential energy surface of small silicon clusters and the bulk crystal.

Albert P. Bartk; Risi Kondor; Gbor Csnyi

2013-05-28T23:59:59.000Z

50

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Geothermal Capacity Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Installed Geothermal Capacity International Market Map of U.S. Geothermal Power Plants List of U.S. Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of 2005 there was 8,933 MW of installed power capacity within 24 countries. The International Geothermal Association (IGA) reported 55,709 GWh per year of geothermal electricity. The generation from 2005 to 2010 increased to 67,246 GWh, representing a 20% increase in the 5 year period. The IGA has projected that by 2015 the new installed capacity will reach 18,500 MW, nearly 10,000 MW greater than 2005. [1] Countries with the greatest increase in installed capacity (MW) between

51

Economic effects of peak oil  

Science Journals Connector (OSTI)

Assuming that global oil production peaked, this paper uses scenario analysis to show the economic effects of a possible supply shortage and corresponding rise in oil prices in the next decade on different sectors in Germany and other major economies such as the US, Japan, China, the OPEC or Russia. Due to the price-inelasticity of oil demand the supply shortage leads to a sharp increase in oil prices in the second scenario, with high effects on GDP comparable to the magnitude of the global financial crises in 2008/09. Oil exporting countries benefit from high oil prices, whereas oil importing countries are negatively affected. Generally, the effects in the third scenario are significantly smaller than in the second, showing that energy efficiency measures and the switch to renewable energy sources decreases the countries' dependence on oil imports and hence reduces their vulnerability to oil price shocks on the world market.

Christian Lutz; Ulrike Lehr; Kirsten S. Wiebe

2012-01-01T23:59:59.000Z

52

Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model  

SciTech Connect (OSTI)

An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

2014-03-01T23:59:59.000Z

53

Peak load management: Potential options  

SciTech Connect (OSTI)

This report reviews options that may be alternatives to transmission construction (ATT) applicable both generally and at specific locations in the service area of the Bonneville Power Administration (BPA). Some of these options have potential as specific alternatives to the Shelton-Fairmount 230-kV Reinforcement Project, which is the focus of this study. A listing of 31 peak load management (PLM) options is included. Estimated costs and normalized hourly load shapes, corresponding to the respective base load and controlled load cases, are considered for 15 of the above options. A summary page is presented for each of these options, grouped with respect to its applicability in the residential, commercial, industrial, and agricultural sectors. The report contains comments on PLM measures for which load shape management characteristics are not yet available. These comments address the potential relevance of the options and the possible difficulty that may be encountered in characterizing their value should be of interest in this investigation. The report also identifies options that could improve the efficiency of the three customer utility distribution systems supplied by the Shelton-Fairmount Reinforcement Project. Potential cogeneration options in the Olympic Peninsula are also discussed. These discussions focus on the options that appear to be most promising on the Olympic Peninsula. Finally, a short list of options is recommended for investigation in the next phase of this study. 9 refs., 24 tabs.

Englin, J.E.; De Steese, J.G.; Schultz, R.W.; Kellogg, M.A.

1989-10-01T23:59:59.000Z

54

Wave represents displacement Wave represents pressure Source -Sound Waves  

E-Print Network [OSTI]

Wave represents displacement Wave represents pressure Source - Sound Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency

Colorado at Boulder, University of

55

ORISE: Capacity Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

56

Peak Oil Food Network | Open Energy Information  

Open Energy Info (EERE)

Network Network Jump to: navigation, search Name Peak Oil Food Network Place Crested Butte, Colorado Zip 81224 Website http://www.PeakOilFoodNetwork. References Peak Oil Food Network[1] LinkedIn Connections This article is a stub. You can help OpenEI by expanding it. The Peak Oil Food Network is a networking organization located in Crested Butte, Colorado, and is open to the general public that seeks to promote the creation of solutions to the challenge of food production impacted by the peak phase of global oil production. Private citizens are encouraged to join and contribute by adding comments, writing blog posts or adding to discussions about food and oil related topics. Peak Oil Food Network can be followed on Twitter at: http://www.Twitter.com/PeakOilFoodNtwk Peak Oil Food Network on Twitter

57

Ethylene capacity tops 77 million mty  

SciTech Connect (OSTI)

World ethylene production capacity is 77.8 million metric tons/year (mty). This total represents an increase of more than 6 million mty, or almost 9%, over last year`s survey. The biggest reason for the large change is more information about plants in the CIS. Also responsible for the increase in capacity is the start-up of several large ethylene plants during the past year. The paper discusses construction of ethylene plants, feedstocks, prices, new capacity, price outlook, and problems in Europe`s ethylene market.

Rhodes, A.K.; Knott, D.

1995-04-17T23:59:59.000Z

58

AUTOMATED CRITICAL PEAK PRICING FIELD TESTS  

E-Print Network [OSTI]

AUTOMATED CRITICAL PEAK PRICING FIELD TESTS: 2006 PROGRAM DESCRIPTION AND RESULTS APPENDICES.................................................................................... 5 B.2. DR Automation Server User Guide

59

Definition: On-Peak | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: On-Peak Jump to: navigation, search Dictionary.png On-Peak Those hours or other periods defined by NAESB business practices, contract, agreements, or guides as periods of higher electrical demand.[1] View on Wikipedia Wikipedia Definition Peak demand is used to refer to a historically high point in the sales record of a particular product. In terms of energy use, peak demand describes a period of strong consumer demand. Also Known As peak load Related Terms demand, peak demand References ↑ Glossary of Terms Used in Reliability Standards Temp Like Like You like this.Sign Up to see what your friends like. late:ISGANAttributionsmart grid,smart grid, Retrieved from "http://en.openei.org/w/index.php?title=Definition:On-Peak&oldid=502536"

60

EIA - Electricity Generating Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

62

Facility Representative Program: Facility Representative of the Year  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative of the Year Award Facility Representative of the Year Award Annual Facility Representative Workshop Facility Representative of the Year Award Process Facility Representative of the Year Award 2012 WINNER: John C. Barnes, Savannah River Operations Office Letter from DNFSB Chairman Peter S. Winokur, Ph.D 2012 Nominees: Peter W. Kelley, Brookhaven Site Office James E. Garza, Idaho Operations Office (EM) William R. Watson, Idaho Operations Office (NE) Darlene S. Rodriguez, Los Alamos Field Office Robert R. Robb, Livermore Field Office Kenneth W. Wethington, Grand Junction Project Office's Moab site Thomas P. Denny, Nevada Field Office Michael J. Childers, NNSA Production Office Pantex Site Catherine T. Schidel, NNSA Production Office Y12 Site Chelsea D. Hubbard, Oak Ridge Operations Office (EM)

63

FAQS Reference Guide Facility Representative  

Broader source: Energy.gov [DOE]

This reference guide addresses the competency statements in the October 2010 edition of DOE-STD-1151-2010, Facility Representative Functional Area Qualification Standard.

64

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

65

capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

66

Nanofluid heat capacities  

Science Journals Connector (OSTI)

Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work nano- and micron-sized particles were added to five base fluids (poly-? olefin mineral oil ethylene glycol a mixture of water and ethylene glycol and calcium nitrate tetrahydrate) and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

Anne K. Starace; Judith C. Gomez; Jun Wang; Sulolit Pradhan; Greg C. Glatzmaier

2011-01-01T23:59:59.000Z

67

Mt Peak Utility | Open Energy Information  

Open Energy Info (EERE)

Peak Utility Peak Utility Jump to: navigation, search Name Mt Peak Utility Facility Mt Peak Utility Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Mnt Peak Utility Energy Purchaser Mnt Peak Utility Location Midlothian TX Coordinates 32.42144978°, -97.02427357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.42144978,"lon":-97.02427357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

Peak Treatment Systems | Open Energy Information  

Open Energy Info (EERE)

Agreement Partnership Year 1998 Link to project description http:www.nrel.govnewspress199804licns.html Peak Treatment Systems is a company located in Golden, CO....

69

Measured Peak Equipment Loads in Laboratories  

E-Print Network [OSTI]

of measured equipment load data for laboratories, designersmeasured peak equipment load data from 39 laboratory spacesmeasured equipment load data from various laboratory spaces

Mathew, Paul A.

2008-01-01T23:59:59.000Z

70

Monthly Generation System Peak (pbl/generation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Monthly Generation System Peak (GSP) This site is no longer maintained. Page last...

71

An MBendi Profile: World: Oil And Gas Industry -Peak Oil: an Outlook on Crude Oil Depletion -C.J.Campbell -Revised February 2002 Search for  

E-Print Network [OSTI]

An MBendi Profile: World: Oil And Gas Industry - Peak Oil: an Outlook on Crude Oil Depletion - C - Contact Us - Newsletter Register subscribe to our FREE newsletter World: Oil And Gas Industry - Peak Oil the subsequent decline. q Gas, which is less depleted than oil, will likely peak around 2020. q Capacity limits

72

Facility Representative Program: Qualification Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training & Qualification Information Training & Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available Link to National Training Center Basic Courses for Facility Representative Qualification Recommended Courses to Expand Facility Representative's Knowledge Base Qualification Standards General Technical Base Qualification Standard, Qualification Card & Reference Guide -- GTB Qualification Standard (DOE-STD-1146-2007), December 2007 [PDF] -- GTB Qualification Card, December 2007 [DOC] -- GTB "Gap" Qualification Card, December 2007 [DOC] -- GTB Qualification Standard Reference Guide, May 2008 [PDF] Facility Representative Qualification Standard, Qualification Card & Reference Guide

73

Uplink Cell Capacity of Cognitive Radio Networks with Peak Interference Power Constraints  

E-Print Network [OSTI]

.wang@hw.ac.uk.john.thompson@ed.ac.uk Abstract-A cognitive radio (secondary) network can reuse the under-utilized spectrum licensed to a primary. I. INTRODUCTION The radio spectrum is a precious natural resource that underpins various wireless frequency bands to license holders for exclusive use. Such a static spectrum licensing policy eliminates

Wang, Cheng-Xiang

74

Storm Peak Lab Cloud Property Validation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storm Peak Lab Cloud Storm Peak Lab Cloud Property Validation Experiment (STORMVEX) Operated by the Atmospheric Radiation Measurement (ARM) Climate Research Facility for the U.S. Department of Energy, the second ARM Mobile Facility (AMF2) begins its inaugural deployment November 2010 in Steamboat Springs, Colorado, for the Storm Peak Lab Cloud Property Validation Experiment, or STORMVEX. For six months, the comprehensive suite of AMF2 instruments will obtain measurements of cloud and aerosol properties at various sites below the heavily instrumented Storm Peak Lab, located on Mount Werner at an elevation of 3220 meters. The correlative data sets that will be created from AMF2 and Storm Peak Lab will equate to between 200 and 300 in situ aircraft flight hours in liquid, mixed phase, and precipitating

75

Definition: Peak Demand | Open Energy Information  

Open Energy Info (EERE)

Peak Demand Peak Demand Jump to: navigation, search Dictionary.png Peak Demand The highest hourly integrated Net Energy For Load within a Balancing Authority Area occurring within a given period (e.g., day, month, season, or year)., The highest instantaneous demand within the Balancing Authority Area.[1] View on Wikipedia Wikipedia Definition Peak demand is used to refer to a historically high point in the sales record of a particular product. In terms of energy use, peak demand describes a period of strong consumer demand. Related Terms Balancing Authority Area, energy, demand, balancing authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from

76

WINDExchange: Wind Potential Capacity  

Wind Powering America (EERE)

area with a gross capacity factor1 of 35% and higher, which may be suitable for wind energy development. AWS Truepower LLC produced the wind resource data with a spatial...

77

Panama Canal capacity analysis  

SciTech Connect (OSTI)

Predicting the transit capacities of the various Panama Canal alternatives required analyzing data on present Canal operations, adapting and extending an existing computer simulation model, performing simulation runs for each of the alternatives, and using the simulation model outputs to develop capacity estimates. These activities are summarized in this paper. A more complete account may be found in the project final report (TAMS 1993). Some of the material in this paper also appeared in a previously published paper (Rosselli, Bronzini, and Weekly 1994).

Bronzini, M.S. [Oak Ridge National Lab., Knoxville, TN (United States). Center for Transportation Analysis

1995-04-27T23:59:59.000Z

78

Facility Representative Program: Basic Courses For Facility Representative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training & Qualification Information Training & Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available Link to National Training Center Basic Courses for Facility Representative Qualification Recommended Courses to Expand Facility Representative's Knowledge Base Basic Courses For Facility Rep Qualification (These courses may be beneficial during the initial qualification of Facility Representatives.) Course Title FR FAQS CN Point of Contact Comments Applied Engineering Fundamentals 13 days * See below Mike Schoener 803-641-8166 E-mail Course description at http://ntc.doe.gov course catalog Asbestos Awareness 2 hours 2.1 Federal employees register through the CHRIS system For course details see

79

Why Are We Talking About Capacity Markets? (Presentation)  

SciTech Connect (OSTI)

Capacity markets represent a new and novel way to achieve greater economic use of variable generation assets such as wind and solar, and this concept is discussed in this presentation.

Milligan, M.

2011-06-01T23:59:59.000Z

80

A Model for Predicting Daily Peak Visitation and Implications for Recreation Management and Water Quality: Evidence  

E-Print Network [OSTI]

A Model for Predicting Daily Peak Visitation and Implications for Recreation Management and Water carrying capacity. Keywords Visitation model Á Recreation management Á Water quality Á River visitation Á Clark, Fort Collins, Colorado 80523, USA 123 Environmental Management DOI 10.1007/s00267-008-9079-5 #12

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

LNG production for peak shaving operations  

SciTech Connect (OSTI)

LNG production facilities are being developed as an alternative or in addition to underground storage throughout the US to provide gas supply during peak gas demand periods. These facilities typically involved a small liquefaction unit with a large LNG storage tank and gas sendout facilities capable of responding to peak loads during the winter. Black and Veatch is active in the development of LNG peak shaving projects for clients using a patented mixed refrigerant technology for efficient production of LNG at a low installed cost. The mixed refrigerant technology has been applied in a range of project sizes both with gas turbine and electric motor driven compression systems. This paper will cover peak shaving concepts as well as specific designs and projects which have been completed to meet this market need.

Price, B.C.

1999-07-01T23:59:59.000Z

82

Peak Oil Futures: Same Crisis, Different Responses  

Science Journals Connector (OSTI)

Peak oil theory predicts that global oil production will soon start a terminal decline. ... resource and technology will be available to replace oil as the backbone resource of industrial society. ... understand ...

Jrg Friedrichs

2012-01-01T23:59:59.000Z

83

A perspective on the CMB acoustic peak  

E-Print Network [OSTI]

CMB angular spectrum measurements suggest a flat universe. This paper clarifies the relation between geometry and the spherical harmonic index of the first acoustic peak ($\\ell_{peak}$). Numerical and analytic calculations show that $\\ell_{peak}$ is approximately a function of $\\Omega_K/\\Omega_M$ where $\\Omega_K$ and $\\Omega_M$ are the curvature ($\\Omega_K > 0$ implies an open geometry) and mass density today in units of critical density. Assuming $\\Omega_K/\\Omega_M \\ll 1$, one obtains a simple formula for $\\ell_{peak}$, the derivation of which gives another perspective on the widely-recognized $\\Omega_M$-$\\Omega_\\Lambda$ degeneracy in flat models. This formula for near-flat cosmogonies together with current angular spectrum data yields familiar parameter constraints.

T. A. Marriage

2002-03-11T23:59:59.000Z

84

Dual capacity reciprocating compressor  

DOE Patents [OSTI]

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

85

Dual capacity reciprocating compressor  

DOE Patents [OSTI]

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

86

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

87

Facility Representative Program: Facility Representative of the Year  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative Facility Representative Office of Nuclear Safety Home Facility Representative Home Annual Facility Rep Workshop › 2012 › 2011 › 2010 › 2009 › 2008 › 2007 › 2006 › 2005 › 2004 › 2003 › 2002 › 2001 › 2000 DOE Safety Links › ORPS Info › Operating Experience › DOE Lessons Learned › Accident Investigation Assessment Tools › FR CRADs › Surveillance Guides › Manager's Guide for Safety and Health Subject Matter Links General Program Information › Program Mission Statement › Program Directives and Guidance › FR of the Year Award Program › FR of the Year Award › FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) FR Quarterly Performance Indicators Training & Qualification Information › Qualification Standards › Energy Online Courses

88

Flow shop scheduling with peak power consumption constraints  

E-Print Network [OSTI]

Mar 29, 2012 ... Flow shop scheduling with peak power consumption constraints ... Keywords: scheduling, flow shop, energy, peak power consumption, integer...

K. Fang

2012-03-29T23:59:59.000Z

89

Capacity of steganographic channels  

Science Journals Connector (OSTI)

An information-theoretic approach is used to determine the amount of information that may be safely transferred over a steganographic channel with a passive adversary. A steganographic channel, or stego-channel is a pair consisting of the channel transition ... Keywords: information spectrum, information theory, steganalysis, steganographic capacity, steganography, stego-channel

Jeremiah J. Harmsen; William A. Pearlman

2005-08-01T23:59:59.000Z

90

Property:NetProdCapacity | Open Energy Information  

Open Energy Info (EERE)

NetProdCapacity NetProdCapacity Jump to: navigation, search Property Name NetProdCapacity Property Type Quantity Description Sum of the property SummerPeakNetCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

91

Silver Peak Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Silver Peak Geothermal Project Silver Peak Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Silver Peak Geothermal Project Project Location Information Coordinates 37.755°, -117.63472222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.755,"lon":-117.63472222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

Pilot Peak Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Pilot Peak Geothermal Project Pilot Peak Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Pilot Peak Geothermal Project Project Location Information Coordinates 38.342266666667°, -118.10361111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.342266666667,"lon":-118.10361111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

93

Silver Peak Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Silver Peak Geothermal Area Silver Peak Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Silver Peak Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (5) 9 Exploration Activities (26) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.746167220142,"lon":-117.60267734528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Desert Peak Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Desert Peak Geothermal Area Desert Peak Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Desert Peak Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.75,"lon":-118.95,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

95

Capacity Value of Solar Power  

SciTech Connect (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

96

Vad r Peak Oil och existerar det?; What is Peak Oil and does it exist?.  

E-Print Network [OSTI]

?? The purpose of this study is the reports of Peak Oil in Swedish newspapers. In otherwords, how do the news portray or describe the (more)

Wlimaa, Peter

2013-01-01T23:59:59.000Z

97

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

98

Silver Peak Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Silver Peak Geothermal Area Silver Peak Geothermal Area (Redirected from Silver Peak Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Silver Peak Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (5) 9 Exploration Activities (26) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.746167220142,"lon":-117.60267734528,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Desert Peak Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Desert Peak Geothermal Area Desert Peak Geothermal Area (Redirected from Desert Peak Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Desert Peak Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.75,"lon":-118.95,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

GeoPeak Energy | Open Energy Information  

Open Energy Info (EERE)

GeoPeak Energy GeoPeak Energy Jump to: navigation, search Logo: GeoPeak Energy Name GeoPeak Energy Address 285 Davidson Avenue Place Somerset, New Jersey Zip 08873 Sector Solar Product Residential and Commercial PV Solar Installations Number of employees 11-50 Company Type For Profit Phone number 732-377-3700 Website http://www.geopeakenergy.com Coordinates 40.5326723°, -74.5284554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5326723,"lon":-74.5284554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Preliminary Assumptions for Natural Gas Peaking  

E-Print Network [OSTI]

Preliminary Assumptions for Natural Gas Peaking Technologies Gillian Charles GRAC 2/27/14 #12;Today Vernon, WA PSE Klamath Generation Peakers June 2002 (2) 54 MW P&W FT8 Twin- pac 95 MW Klamath, OR IPP; winter-only PPA w/ PSE Dave Gates Generating Station Jan 2011 (3) P&W SWIFTPAC 150 MW Anaconda, MT North

102

Scott McPeak Research Statement  

E-Print Network [OSTI]

Scott McPeak Research Statement My main research interest is in tools and techniques to improve software quality. In this statement I describe my past involvement in several research projects whose goal and server proxy I co-wrote with Dan Bonachea.) Our group's efforts on CCured have made it more than a mere

California at Berkeley, University of

103

AUTOMATED CRITICAL PEAK PRICING FIELD TESTS  

E-Print Network [OSTI]

AUTOMATED CRITICAL PEAK PRICING FIELD TESTS: 2006 PROGRAM DESCRIPTION AND RESULTS) for development of the DR Automation Server System This project could not have been completed without extensive: Greg Watson and Mark Lott · C&C Building Automation: Mark Johnson and John Fiegel · Chabot Space

104

MODELING THE GLOBAL PEAKS AND COOLING SY  

E-Print Network [OSTI]

of assessed building energy consumption and indoor air temperature peaks. At last, the coupling of the urban energy consumption. Building uses are an important part of the global energy use thus a good conception until the year 2100 highlight a regular increase building energy consumption and indoor At last

Boyer, Edmond

105

Peak Oil Awareness Network | Open Energy Information  

Open Energy Info (EERE)

Awareness Network Awareness Network Jump to: navigation, search Name Peak Oil Awareness Network Place Crested Butte, Colorado Zip 81224 Website http://www.PeakOilAwarenessNet Coordinates 38.8697146°, -106.9878231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8697146,"lon":-106.9878231,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Definition: Critical Peak Pricing | Open Energy Information  

Open Energy Info (EERE)

Pricing Pricing Jump to: navigation, search Dictionary.png Critical Peak Pricing When utilities observe or anticipate high wholesale market prices or power system emergency conditions, they may call critical events during a specified time period (e.g., 3 p.m.-6 p.m. on a hot summer weekday), the price for electricity during these time periods is substantially raised. Two variants of this type of rate design exist: one where the time and duration of the price increase are predetermined when events are called and another where the time and duration of the price increase may vary based on the electric grid's need to have loads reduced;[1] Related Terms electricity generation References ↑ https://www.smartgrid.gov/category/technology/critical_peak_pricing Ret LikeLike UnlikeLike

107

Definition: Critical Peak Rebates | Open Energy Information  

Open Energy Info (EERE)

Rebates Rebates Jump to: navigation, search Dictionary.png Critical Peak Rebates When utilities observe or anticipate high wholesale market prices or power system emergency conditions, they may call critical events during pre-specified time periods (e.g., 3 p.m.-6 p.m. summer weekday afternoons), the price for electricity during these time periods remains the same but the customer is refunded at a single, predetermined value for any reduction in consumption relative to what the utility deemed the customer was expected to consume.[1] Related Terms electricity generation References ↑ https://www.smartgrid.gov/category/technology/critical_peak_rebates [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitions|Template:BASEPAGENAME]]

108

Central peaking of magnetized gas discharges  

SciTech Connect (OSTI)

Partially ionized gas discharges used in industry are often driven by radiofrequency (rf) power applied at the periphery of a cylinder. It is found that the plasma density n is usually flat or peaked on axis even if the skin depth of the rf field is thin compared with the chamber radius a. Previous attempts at explaining this did not account for the finite length of the discharge and the boundary conditions at the endplates. A simple 1D model is used to focus on the basic mechanism: the short-circuit effect. It is found that a strong electric field (E-field) scaled to electron temperature T{sub e}, drives the ions inward. The resulting density profile is peaked on axis and has a shape independent of pressure or discharge radius. This universal profile is not affected by a dc magnetic field (B-field) as long as the ion Larmor radius is larger than a.

Chen, Francis F. [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States)] [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Curreli, Davide [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States)] [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States)

2013-05-15T23:59:59.000Z

109

Eyesight and the solar Wien peak  

Science Journals Connector (OSTI)

It is sometimes said that humans see best at yellowgreen wavelengths because they have evolved under a Sun whose blackbody spectrum has a Wien peak in the green part of the spectrum. However as a function of frequency the solar blackbody spectrum peaks in the infrared. Why did human vision not evolve toward a peak sensitivity in this range if the eye is an efficient quantum detector of photons? The puzzle is resolved if we assume that natural selection acted in such a way as to maximize the amount of energy that can be detected by the retina across a range of wavelengths (whose upper and lower limits are fixed by biological constraints). It is then found that our eyes are indeed perfectly adapted to life under a class G2 star. Extending this reasoning allows educated guesses to be made about the kind of eyesight that might have evolved in extrasolar planetary systems such as that of the red dwarf Gliese 876.

James M. Overduin

2003-01-01T23:59:59.000Z

110

General Engineer / Physical Scientist (Facility Representative)  

Broader source: Energy.gov [DOE]

Facility Representatives (FRs) are line management's on-site technical representative with responsibility for identifying and evaluating environmental, safety and health issues and concerns,...

111

FAQS Job Task Analyses - Facility Representative | Department...  

Broader source: Energy.gov (indexed) [DOE]

Facility Representative FAQS Job Task Analyses - Facility Representative FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task...

112

NREL: Energy Analysis - Utility-Scale Energy Technology Capacity Factors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility-Scale Energy Technology Capacity Factors Utility-Scale Energy Technology Capacity Factors This chart indicates the range of recent capacity factor estimates for utility-scale renewable energy technologies. The dots indicate the average, and the vertical lines represent the range: Average +1 standard deviation and average -1 standard deviation. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update) Operations & Maintenance (September 2013 Update) Utility-Scale Capacity Factors Useful Life Land Use by System Technology LCOE Calculator Capacity factor for energy technologies. For more information, please download supporting data for energy technology costs.

113

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Working and Net Available Shell Storage Capacity November 2013 With Data as of September 30, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Working and Net Available Shell Storage Capacity as of September 30, 2013 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

114

Mean and peak wind loads on heliostats  

SciTech Connect (OSTI)

Mean and peak wind loads on flat rectangular or circular heliostats were measured on models in a boundary layer wind tunnel which included an atmospheric surface layer simulation. Horizontal and vertical forces, moments about horizontal axes at the ground level and at the centerline of the heliostat, and the moment about the vertical axis through the heliostat center were measured. Results showed that loads are higher than predicted from results obtained in a uniform, low-turbulence flow due to the presence of turbulence. Reduced wind loads were demonstrated for heliostats within a field of heliostats and upper bound curves were developed to provide preliminary design coefficients.

Peterka, J.A.; Tan, Z.; Cermak, J.E.; Bienkiewicz, B.

1989-05-01T23:59:59.000Z

115

Estimating coal production peak and trends of coal imports in China  

SciTech Connect (OSTI)

More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

Bo-qiang Lin; Jiang-hua Liu [Xiamen University, Xiamen (China). China Center for Energy Economics Research (CCEER)

2010-01-15T23:59:59.000Z

116

Logistic curves, extraction costs and effective peak oil  

Science Journals Connector (OSTI)

Debates about the possibility of a near-term maximum in world oil production have become increasingly prominent over the past decade, with the focus often being on the quantification of geologically available and technologically recoverable amounts of oil in the ground. Economically, the important parameter is not a physical limit to resources in the ground, but whether market price signals and costs of extraction will indicate the efficiency of extracting conventional or nonconventional resources as opposed to making substitutions over time for other fuels and technologies. We present a hybrid approach to the peak-oil question with two models in which the use of logistic curves for cumulative production are supplemented with data on projected extraction costs and historical rates of capacity increase. While not denying the presence of large quantities of oil in the ground, even with foresight, rates of production of new nonconventional resources are unlikely to be sufficient to make up for declines in availability of conventional oil. Furthermore we show how the logistic-curve approach helps to naturally explain high oil prices even when there are significant quantities of low-cost oil yet to be extracted.

Robert J. Brecha

2012-01-01T23:59:59.000Z

117

Rank Name Peak Date Peak Location Bomb Peak Gradient Min Depth (Hr-Dy-Mn-Yr) (Lat, Lon) (Bergeron) (hPa/1000km) (hPa)  

E-Print Network [OSTI]

Rank Name Peak Date Peak Location Bomb Peak Gradient Min Depth (Hr-Dy-Mn-Yr) (Lat, Lon) (Bergeron, and northwest europe (Cambride Univ. Pr.). 1 #12;Figure S1(a): Evolution of 'Daria' (the top ranked storm arrow is approximately 50 m s-1). 2 #12;Figure S1(b): As for Figure S1(a) but for the storm ranked

Caballero, Rodrigo

118

First mideast capacity planned  

SciTech Connect (OSTI)

Kuwait catalyst Co.`s (KCC) plans to build a hydrodesulfurization (HDS) catalysts plant in Kuwait will mark the startup of the first refining catalysts production in the Persian Gulf region. KCC, owned by a conglomerate of Kuwait companies and governmental agencies, has licensed catalyst manufacturing technology from Japan Energy in a deal estimated at more than 7 billion ($62 million). Plant design will be based on technology from Orient Catalyst, Japan Energy`s catalysts division. Construction is expected to begin in January 1997 for production startup by January 1998. A source close to the deal says the new plant will eventually reach a capacity of 5,000 m.t./year of HDS catalysts to supply most of Kuwait`s estimated 3,500-m.t./year demand, driven primarily by Kuwait National Petroleum refineries. KCC also expects to supply demand from other catalyst consumers in the region. Alumina supply will be acquired on the open market. KCC will take all production from the plant and will be responsible for marketing.

Fattah, H.

1996-11-06T23:59:59.000Z

119

Peak Sun Silicon Corp | Open Energy Information  

Open Energy Info (EERE)

Corp Corp Jump to: navigation, search Name Peak Sun Silicon Corp Place Carlsbad, California Zip 92008 Product US-based manufacturer of granular electronic-grade polysilicon for the PV industry. Coordinates 31.60396°, -100.641609° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.60396,"lon":-100.641609,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Oil hills, ridges, peaks, cliffs and ravines  

Science Journals Connector (OSTI)

In an earlier paper Tanner and Berry (1985) considered the decay of a disturbance to an otherwise uniform thin oil film. This was followed analytically using the Navier-Stokes equation, and optically by interferometry. Solutions were obtained in the form of a series of three-dimensional hills and of two-dimensional ridges, decaying with time in a self-similar manner. The present work extends this in several ways. By better control of the applied disturbance, more of the original series are produced and illustrated. The original hill series is extended to a doubly-infinite one, providing the possibility, as with the ridges, of different time decay rates for each azimuthal structure. Negative j values, giving either vertical growth or static vertical heights, are considered and in a few cases produced experimentally. Finally nonlinear peaks, cliffs and ravines having self-similar scaling properties are studied. In all cases, good agreement between theory and experiment is obtained.

L H Tanner

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Gamow peak approximation near strong resonances  

E-Print Network [OSTI]

We discuss the most effective energy range for charged particle induced reactions in a plasma environment at a given plasma temperature. The correspondence between the plasma temperature and the most effective energy should be modified from the one given by the Gamow peak energy, in the presence of a significant incident-energy dependence in the astrophysical S-factor as in the case of resonant reactions. The suggested modification of the effective energy range is important not only in thermonuclear reactions at high temperature in the stellar environment, e.g., in advanced burning stages of massive stars and in explosive stellar environment, as it has been already claimed, but also in the application of the nuclear reactions driven by ultra-intense laser pulse irradiations.

Kimura, Sachie

2013-01-01T23:59:59.000Z

122

Electric Capacity | OpenEI  

Open Energy Info (EERE)

Capacity Capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated December 15th, 2010 (3 years ago) Keywords Electric Capacity Electricity Generation New Zealand projections

123

Adaptive capacity and its assessment  

SciTech Connect (OSTI)

This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

Engle, Nathan L.

2011-04-20T23:59:59.000Z

124

BroadPeak: a novel algorithm for identifying broad peaks in dif-fuse ChIP-seq datasets  

E-Print Network [OSTI]

1 BroadPeak: a novel algorithm for identifying broad peaks in dif- fuse ChIP-seq datasets JianrongIP-seq datasets. We show that BroadPeak is a linear time algorithm that requires only two parame- ters, and we validate its performance on real and simulated histone modification ChIP-seq datasets. BroadPeak calls

Jordan, King

125

Views on peak oil and its relation to climate change policy  

Science Journals Connector (OSTI)

Definitions of fossil fuel reserves and resources and assessed stock data are reviewed and clarified. Semantics explain a large stake of conflict between advocate and critical voices on peak oil. From a holistic sourcessinks perspective, limited carrying capacity of atmospheric sinks, not absolute scarcity in oil resources, will impose tight constraints on oil use. Eventually observed peaks in oil production in nearby years will result from politically imposed limits on carbon emissions, and not be caused by physical lack of oil resources. Peak-oil belief induces passive climate policy attitudes when suggesting carbon dioxide emissions will peak naturally linked to dwindling oil supplies. Active policies for reducing emissions and use of fossil fuels will also encompass higher energy end-use prices. Revenues obtained from higher levies on oil use can support financing energy efficiency and renewable energy options. But when oil producers charge the higher prices they can pump new oil for many decades, postponing peak oil to occur while extending carbon lock-in.

Aviel Verbruggen; Mohamed Al Marchohi

2010-01-01T23:59:59.000Z

126

Facility Representative of the Year Award  

Broader source: Energy.gov (indexed) [DOE]

REPRESENTATIVE OF THE YEAR AWARD PROGRAM REPRESENTATIVE OF THE YEAR AWARD PROGRAM OBJECTIVE The Facility Representative Award Program is a special award designed to recognize superior or exemplary service by a Facility Representative over a period of one year. This special award program has been established in accordance with the requirements of Department of Energy (DOE) Order 331.1C, Employee Performance Management and Recognition Program. FACILITY REPRESENTATIVE OF THE YEAR AWARD The Facility Representative of the Year Award is determined by a panel representing the Chief Health, Safety and Security Officer and managers from the National Nuclear Security Administration (NNSA), the Office of Environmental Management (EM), the Office of Science (SC), and the Office of Nuclear Energy (NE). The Facility Representative Program Manager in

127

Peak Population: Timing and Influences of Peak Energy on the World and the United States  

E-Print Network [OSTI]

Peak energy is the notion that the worlds total production of usable energy will reach a maximum value and then begin an inexorable decline. Ninety-two percent of the worlds energy is currently derived from the non-renewable sources (oil, coal...

Warner, Kevin 1987-

2012-11-28T23:59:59.000Z

128

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

129

SunPeak Solar LLC | Open Energy Information  

Open Energy Info (EERE)

SunPeak Solar LLC Jump to: navigation, search Name: SunPeak Solar LLC Place: Palm Desert, California Zip: 92260 Product: US project developer and asset manager, focussing on PV...

130

A Multimethod analysis of the Phenomenon of Peak-Oil.  

E-Print Network [OSTI]

??El concepto de Peak-Oil (el cnit del petrleo) es complejo y a menudo malentendido. Despus de aclarar que el Peak-Oil es tanto un problema de (more)

Kerschner, Christian

2012-01-01T23:59:59.000Z

131

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY  

Broader source: Energy.gov (indexed) [DOE]

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Partnerships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Process Chart: From Agency to Community. . . . . . . . . . . . . . . . . . . 7 Case Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

132

THE COMPACT STEEP SPECTRUM AND GHZ PEAKED SPECTRUM RADIO SOURCES  

E-Print Network [OSTI]

THE COMPACT STEEP SPECTRUM AND GHZ PEAKED SPECTRUM RADIO SOURCES Christopher P. O'Dea Space@stsci.edu ABSTRACT I review the radio to X­ray properties of GHz Peaked Spectrum (GPS) and Compact Steep Spectrum The GHz Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources make up significant fractions

133

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

134

generation capacity | OpenEI  

Open Energy Info (EERE)

generation capacity generation capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

135

High Capacity Immobilized Amine Sorbents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Immobilized Amine Sorbents Capacity Immobilized Amine Sorbents Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,288,136 entitled "High Capacity Immobilized Amine Sorbents." Disclosed in this patent is the invention of a method that facilitates the production of low-cost carbon dioxide (CO 2 ) sorbents for use in large-scale gas-solid processes. This method treats an amine to increase the number of secondary amine groups and impregnates the amine in a porous solid support. As a result of this improvement, the method increases CO 2 capture capacity and decreases the cost of using an amine-enriched solid sorbent in CO 2 capture systems. Overview The U.S. Department of Energy has placed a high priority on the separation

136

DOE ORP Contracting Officer Representatives - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE ORP Contracting Officer Representatives DOE - ORP ContractsProcurements ORP Contracts & Procurements Home DOE-ORP Contract Management Plans DOE-ORP Prime Contracts DOE-ORP...

137

Promoting Employment Across Kansas (PEAK) (Kansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Promoting Employment Across Kansas (PEAK) (Kansas) Promoting Employment Across Kansas (PEAK) (Kansas) Promoting Employment Across Kansas (PEAK) (Kansas) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Corporate Tax Incentive Provider Commerce Promoting Employment Across Kansas (PEAK) allows for the retention of employee payroll withholding taxes for qualified companies or third parties performing services on behalf of such companies. This program offers qualified companies the ability to retain 95 percent of their payroll withholding tax for up to five to seven years. PEAK is available to new

138

Demonstration of Smart Building Controls to Manage Building Peak Loads: Innovative Non-Wires Technologies  

SciTech Connect (OSTI)

As a part of the non-wires solutions effort, BPA in partnership with Pacific Northwest National Laboratory (PNNL) is exploring the use of two distributed energy resources (DER) technologies in the City of Richland. In addition to demonstrating the usefulness of the two DER technologies in providing peak demand relief, evaluation of remote direct load control (DLC) is also one of the primary objectives of this demonstration. The concept of DLC, which is used to change the energy use profile during peak hours of the day, is not new. Many utilities have had success in reducing demand at peak times to avoid building new generation. It is not the need for increased generation that is driving the use of direct load control in the Northwest, but the desire to avoid building additional transmission capacity. The peak times at issue total between 50 and 100 hours a year. A transmission solution to the problem would cost tens of millions of dollars . And since a ?non wires? solution is just as effective and yet costs much less, the capital dollars for construction can be used elsewhere on the grid where building new transmission is the only alternative. If by using DLC, the electricity use can be curtailed, shifted to lower use time periods or supplemented through local generation, the existing system can be made more reliable and cost effective.

Katipamula, Srinivas; Hatley, Darrel D.

2004-12-22T23:59:59.000Z

139

Representativeness models of systems: smart grid example  

Science Journals Connector (OSTI)

Given the great emphasis being placed on energy efficiency in contemporary society, in which the smart grid plays a prominent role, this is an opportune time to explore methodologies for appropriately representing system attributes. We suggest this is ... Keywords: Smart grid, System representativeness

Norman Schneidewind

2011-03-01T23:59:59.000Z

140

Incentives for the Department's Facility Representative Program,  

Broader source: Energy.gov (indexed) [DOE]

Incentives for the Department's Facility Representative Program, Incentives for the Department's Facility Representative Program, 12/17/1998 Incentives for the Department's Facility Representative Program, 12/17/1998 The Department's Revised Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 93-3 has once again underscored the Department's commitment to maintaining the technical capability necessary to safely manage and operate our defense nuclear facilities. Attracting and retaining highly qualified employees and placing them in our critical technical positions is vital to fi.dfilling this commitment. You have identified 95'% of your Facility Representative positions as critical technical positions. The Office of Field Management has noted a 12'?40annual attrition rate of Facility Representatives from the Facility

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CORRELATION BETWEEN PEAK ENERGY AND PEAK LUMINOSITY IN SHORT GAMMA-RAY BURSTS  

SciTech Connect (OSTI)

A correlation between the peak luminosity and the peak energy has been found by Yonetoku et al. as L{sub p} {proportional_to}E{sup 2.0}{sub p,i} for 11 pre-Swift long gamma-ray bursts (GRBs). In this study, for a greatly expanded sample of 148 long GRBs in the Swift era, we find that the correlation still exists, but most likely with a slightly different power-law index, i.e., L{sub p} {proportional_to} E{sup 1.7}{sub p,i}. In addition, we have collected 17 short GRBs with necessary data. We find that the correlation of L{sub p} {proportional_to} E{sup 1.7}{sub p,i} also exists for this sample of short events. It is argued that the radiation mechanism of both long and short GRBs should be similar, i.e., of quasi-thermal origin caused by the photosphere, with the dissipation occurring very near the central engine. Some key parameters of the process are constrained. Our results suggest that the radiation processes of both long and short bursts may be dominated by thermal emission, rather than by the single synchrotron radiation. This might put strong physical constraints on the theoretical models.

Zhang, Z. B.; Chen, D. Y. [Department of Physics, College of Sciences, Guizhou University, Guiyang 550025 (China); Huang, Y. F., E-mail: sci.zbzhang@gzu.edu.cn, E-mail: hyf@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

2012-08-10T23:59:59.000Z

142

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

143

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

144

Economic Dispatch of Electric Generation Capacity | Department...  

Broader source: Energy.gov (indexed) [DOE]

Economic Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the...

145

production capacity | OpenEI  

Open Energy Info (EERE)

production capacity production capacity Dataset Summary Description No description given. Source Oak Ridge National Laboratory Date Released November 30th, 2009 (4 years ago) Date Updated Unknown Keywords biodiesel ethanol location production capacity transportation Data application/zip icon Biorefineries.zip (zip, 7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

146

installed capacity | OpenEI  

Open Energy Info (EERE)

installed capacity installed capacity Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments

147

Hybrid Zero-capacity Channels  

E-Print Network [OSTI]

There are only two known kinds of zero-capacity channels. The first kind produces entangled states that have positive partial transpose, and the second one - states that are cloneable. We consider the family of 'hybrid' quantum channels, which lies in the intersection of the above classes of channels and investigate its properties. It gives rise to the first explicit examples of the channels, which create bound entangled states that have the property of being cloneable to the arbitrary finite number of parties. Hybrid channels provide the first example of highly cloneable binding entanglement channels, for which known superactivation protocols must fail - superactivation is the effect where two channels each with zero quantum capacity having positive capacity when used together. We give two methods to construct a hybrid channel from any binding entanglement channel. We also find the low-dimensional counterparts of hybrid states - bipartite qubit states which are extendible and possess two-way key.

Sergii Strelchuk; Jonathan Oppenheim

2012-07-04T23:59:59.000Z

148

Building Regulatory Capacity for Change  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regulatory Capacity for Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities that can accept changes that would support building energy objectives" Presentation Highlights Rulemaking Community and Stakeholder Identification To Support Code Changes Engagement: Building Capacity for Change Pay It Forward RULEMAKING : Plan Development and Research of Laws Relevant to Buildings How is it conducted? 'Landscape' Review Key words or phrases to look for Identify "home rule" jurisdictions Update and review cycle built in 'Landscape' Review:

149

Calculation and Use of Peaking Factors for Remote Terminal Emulation  

Science Journals Connector (OSTI)

An important goal of the remote terminal emulator-driven tests described here was obtaining a representative test workload. Reaching this goal depended on (i) imposing the test workload in a representative manner, (ii) using representative types of user ...

William A. Ward, Jr.; David Langan

2000-03-01T23:59:59.000Z

150

On peaked solitary waves of Camassa-Holm equation  

E-Print Network [OSTI]

Unlike the Boussinesq, KdV and BBM equations, the celebrated Casamma-Holm (CH) equation can model both phenomena of soliton interaction and wave breaking. Especially, it has peaked solitary waves in case of omega=0. Besides, in case of omega > 0, its solitary wave "becomes $C^\\infty$ and there is no derivative discontinuity at its peak", as mentioned by Camassa and Holm in 1993 (PRL). However, it is found in this article that the CH equation has peaked solitary waves even in case of omega > 0. Especially, all of these peaked solitary waves have an unusual property: their phase speeds have nothing to do with the height of peakons or anti-peakons. Therefore, in contrast to the traditional view-points, the peaked solitary waves are a common property of the CH equation: in fact, all mainstream models of shallow water waves admit such kind of peaked solitary waves

Liao, Shijun

2012-01-01T23:59:59.000Z

151

Natural gas productive capacity for the lower 48 States, 1980 through 1995  

SciTech Connect (OSTI)

The purpose of this report is to analyze monthly natural gas wellhead productive capacity in the lower 48 States from 1980 through 1992 and project this capacity from 1993 through 1995. For decades, natural gas supplies and productive capacity have been adequate to meet demand. In the 1970`s the capacity surplus was small because of market structure (split between interstate and intrastate), increasing demand, and insufficient drilling. In the early 1980`s, lower demand, together with increased drilling, led to a large surplus capacity as new productive capacity came on line. After 1986, this large surplus began to decline as demand for gas increased, gas prices fell, and gas well completions dropped sharply. In late December 1989, the decline in this surplus, accompanied by exceptionally high demand and temporary weather-related production losses, led to concerns about the adequacy of monthly productive capacity for natural gas. These concerns should have been moderated by the gas system`s performance during the unusually severe winter weather in March 1993 and January 1994. The declining trend in wellhead productive capacity is expected to be reversed in 1994 if natural gas prices and drilling meet or exceed the base case assumption. This study indicates that in the low, base, and high drilling cases, monthly productive capacity should be able to meet normal production demands through 1995 in the lower 48 States (Figure ES1). Exceptionally high peak-day or peak-week production demand might not be met because of physical limitations such as pipeline capacity. Beyond 1995, as the capacity of currently producing wells declines, a sufficient number of wells and/or imports must be added each year in order to ensure an adequate gas supply.

Not Available

1994-07-14T23:59:59.000Z

152

Advisory Board Seats New Student Representatives | Department...  

Office of Environmental Management (EM)

15, 2013 - 12:00pm Addthis The Oak Ridge Site Specific Advisory Board (ORSSAB) welcomed two new student representatives at its May meeting. Gracie Hall and Julia Riley will serve...

153

Authorizing Official Designated Representative (AODR) | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the AO Representative role will have a working knowledge of system function, security policies, and technical security safeguards, and serve as technical advisor(s) to the AO. AODR...

154

Facility Representative Program, Criteria & Review Approach Documents  

Broader source: Energy.gov [DOE]

This page provides Criteria Review and Approach Documents (CRADS) to assist Facility Representatives. Please submit your CRADS for posting by sending them to the HQ FR Program Manager. Please include the subject, date, and a contact person.

155

A Capital Market Test of Representativeness  

E-Print Network [OSTI]

. I also provide evidence that rejects a theory based on fixation in favor of representativeness. These results document evidence of overreaction to past sales growth in firms where underreaction to fundamentals does not confound the overreaction due...

Safdar, Mohammad

2012-07-16T23:59:59.000Z

156

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) Exploration Activity Details...

157

,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

and 2007 Base Year)" ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid",,,," " ,"Projected Year...

158

,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

and 2008 Base Year)" ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid",,,," " ,"Projected Year...

159

,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

and 2003 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,"Texas Power Grid","Western Power Grid" ,"Projected Year...

160

,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

and 2009 Base Year)" ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid",,,," " ,"Projected Year...

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Base Year)",,,," " ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,"Texas Power Grid","Western Power Grid" ,"Projected Year...

162

,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

and 2004 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,"Texas Power Grid","Western Power Grid" ,"Projected Year...

163

,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

January 23, 2008" ,"Next Update: October 2007" ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, " ,"2005...

164

Peak Oil: Knowledge, Attitudes, and Programming Activities in Public Health.  

E-Print Network [OSTI]

?? Peak Oil, or the world reaching the maximum rate of petroleum extraction, poses risks such as depletion of energy resources, amplification of existing threats (more)

Tuckerman, Samantha Lynn

2012-01-01T23:59:59.000Z

165

Peak Oil, Energiesicherheit und die Grenzen des Marktes  

Science Journals Connector (OSTI)

Der lpreis wird von zahlreichen Faktoren beeinflusst. Die OPEC spielt bei der Preisbildung derzeit nur eine geringe Rolle. Ein Peak Oil wird die lpreise stark beeinflussen und zahlreiche...

Dr. Nikolaus Supersberger

2009-04-01T23:59:59.000Z

166

Residential implementation of critical-peak pricing of electricity  

E-Print Network [OSTI]

to time-of-day electricity pricing: first empirical results.S. The trouble with electricity markets: understandingresidential peak-load electricity rate structures. Journal

Herter, Karen

2006-01-01T23:59:59.000Z

167

Gas Flux Sampling At Desert Peak Area (Lechler And Coolbaugh...  

Open Energy Info (EERE)

2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Desert Peak Area (Lechler And Coolbaugh, 2007) Exploration Activity...

168

Peak CO2? China's Emissions Trajectories to 2050  

E-Print Network [OSTI]

Electricity includes hydropower, wind, solar and otherNuclear Power NG Fired CC Hydropower Oil Fired Units Biomassand higher renewable and hydropower capacity each contribute

Zhou, Nan

2012-01-01T23:59:59.000Z

169

Capacity Allocation with Competitive Retailers Masabumi Furuhata  

E-Print Network [OSTI]

to uncertainty of market demands, costly capacity construction and time consuming capacity expansion. This makes the market to be unstable and malfunc- tioning. Such a problem is known as the capacity allocation investigate the properties of capacity allocation mechanisms for the markets where a sin- gle supplier

Zhang, Dongmo

170

Peak Oil and REMI PI+: State Fiscal Implications  

E-Print Network [OSTI]

, nation, and states) · Shale oil not included ­ Shale oil reserve estimates 2.0 Trillion bbls in USPeak Oil and REMI PI+: State Fiscal Implications Jim Peach Arrowhead Center Prosper Project is peak oil? · Why peak oil (and gas) matters ­ (In energy and non-energy states) ­ National Real GDP

Johnson, Eric E.

171

Energy solutions for CO2 emission peak and subsequent decline  

E-Print Network [OSTI]

Energy solutions for CO2 emission peak and subsequent decline Edited by Leif Sønderberg Petersen and Hans Larsen Risø-R-1712(EN) September 2009 Proceedings Risø International Energy Conference 2009 #12;Editors: Leif Sønderberg Petersen and Hans Larsen Title: Energy solutions for CO2 emission peak

172

On Transforming Spectral Peaks in Voice Conversion Elizabeth Godoy 1  

E-Print Network [OSTI]

On Transforming Spectral Peaks in Voice Conversion Elizabeth Godoy 1 , Olivier Rosec1 , Thierry.chonavel@telecom-bretagne.eu Abstract This paper explores the benefits of transforming spectral peaks in voice conversion. First, in examining classic GMM- based transformation with cepstral coefficients, we show that the lack of transformed

Paris-Sud XI, Université de

173

Emcore/SunPeak Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Emcore/SunPeak Solar Power Plant Emcore/SunPeak Solar Power Plant < Emcore Jump to: navigation, search Name Emcore/SunPeak Solar Power Plant Facility Emcore/SunPeak Sector Solar Facility Type Concentrating Photovoltaic Developer SunPeak Solar Location Albuquerque, New Mexico Coordinates 35.0844909°, -106.6511367° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0844909,"lon":-106.6511367,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

Geographies of peak oil: The other carbon problem  

Science Journals Connector (OSTI)

This extended editorial introduction to a themed issue of Geoforum on geographies of peak oil has three objectives. First, it provides a concise account of the peak oil claim, identifying the key protagonists in the debate, and outlining different stances with regard to the timing, shape and composition (conventional vs. non-conventional hydrocarbons) of the peak. Second, after briefly characterising the limited engagement with peak oil by human geographers, it offers a provisional set of claims about what a geographical analysis of peak oil might yield. Finally, it introduces each of the papers and, in doing so, makes the case for a fuller and more sustained engagement by geography with this other carbon problem.

Gavin Bridge

2010-01-01T23:59:59.000Z

175

OpenEI - Electric Capacity  

Open Energy Info (EERE)

New Zealand Energy New Zealand Energy Outlook (2010): Electricity and Generation Capacity http://en.openei.org/datasets/node/357 The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included.

License

176

FOOD SECURITY FUEL INDEPENDENCE These projects represent  

E-Print Network [OSTI]

FOOD SECURITY FUEL INDEPENDENCE These projects represent a huge effort to determine and improve pressing challenges. ASH 1% ASH 1% ASH 1% OTHERS 6% OTHERS 6% OTHERS 6% OIL 2% OIL 10% OIL 20% SUCROSE 45% LIPID CANE Produce and store oil in the stem in place of sugar During photosynthesis, sugarcane

Bashir, Rashid

177

An iconic approach to representing climate change  

E-Print Network [OSTI]

1 An iconic approach to representing climate change Saffron Jessica O'Neill A thesis submitted-experts to be meaningfully engaged with the issue of climate change. This thesis investigates the value of engaging non-experts with climate change at the individual level. Research demonstrates that individuals perceive climate change

Feigon, Brooke

178

Book Reviews NETL: A System for Representing  

E-Print Network [OSTI]

Book Reviews NETL: A System for Representing and Using Real-World Knowledge Scott E. Fahlman structure which can be con- sidered on its own merits, independently of such tim- ing considerations. NETL in the original]. The central organizing principle of NETL is a prop- erty inheritance hierarchy using nodes

Shapiro, Stuart C.

179

High capacity immobilized amine sorbents  

DOE Patents [OSTI]

A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

Gray, McMahan L. (Pittsburgh, PA); Champagne, Kenneth J. (Fredericktown, PA); Soong, Yee (Monroeville, PA); Filburn, Thomas (Granby, CT)

2007-10-30T23:59:59.000Z

180

Microsoft Word - BUGS_The Next Smart Grid Peak Resource Final 4_19.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 15, 2010 April 15, 2010 DOE/NETL-2010/1406 Backup Generators (BUGS): The Next Smart Grid Peak Resource Backup Generators (BUGS): The Next Smart Grid Peak Resource v1.0 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

182

A model of peak production in oil fields  

Science Journals Connector (OSTI)

We developed a model for oil production on the basis of simple physical considerations. The model provides a basic understanding of Hubberts empirical observation that the production rate for an oil-producing region reaches its maximum when approximately half the recoverable oil has been produced. According to the model the oil production rate at a large field must peak before drilling peaks. We use the model to investigate the effects of several drilling strategies on oil production. Despite the models simplicity predictions for the timing and magnitude of peak production match data on oil production from major oil fields throughout the world.

Daniel M. Abrams; Richard J. Wiener

2010-01-01T23:59:59.000Z

183

Data structures and apparatuses for representing knowledge  

DOE Patents [OSTI]

Data structures and apparatuses to represent knowledge are disclosed. The processes can comprise labeling elements in a knowledge signature according to concepts in an ontology and populating the elements with confidence values. The data structures can comprise knowledge signatures stored on computer-readable media. The knowledge signatures comprise a matrix structure having elements labeled according to concepts in an ontology, wherein the value of the element represents a confidence that the concept is present in an information space. The apparatus can comprise a knowledge representation unit having at least one ontology stored on a computer-readable medium, at least one data-receiving device, and a processor configured to generate knowledge signatures by comparing datasets obtained by the data-receiving devices to the ontologies.

Hohimer, Ryan E; Thomson, Judi R; Harvey, William J; Paulson, Patrick R; Whiting, Mark A; Tratz, Stephen C; Chappell, Alan R; Butner, Robert S

2014-02-18T23:59:59.000Z

184

Calculation and Use of Peaking Factors for Remote Terminal Emulation  

Science Journals Connector (OSTI)

An important goal of the remote terminal emulator-driven tests described here was obtaining a representative test workload. Reaching this goal depended on (i) imposing the test workload in a representative man...

William A. Ward Jr.; David D. Langan

2000-01-01T23:59:59.000Z

185

Track B - Critical Guidance for Peak Performance Homes | Department of  

Broader source: Energy.gov (indexed) [DOE]

Track B - Critical Guidance for Peak Performance Homes Track B - Critical Guidance for Peak Performance Homes Track B - Critical Guidance for Peak Performance Homes Presentations from Track B, Critical Guidance for Peak Performance Homes of the U.S. Department of Energy Building America program's 2012 Residential Energy Efficiency Stakeholder Meeting are provided below as Adobe Acrobat PDFs. These presentations for this track covered the following topics: Ventilation Strategies in High Performance Homes; Combustion Safety in Tight Houses; Implementation Program Case Studies; Field Testing from Start to Finish; and Humidity Control and Analysis. why_we_ventilate.pdf formaldehyde_new_homes.pdf whole_bldg_ventilation.pdf combustion_safety_codes.pdf combustion_diagnostics.pdf test_protocols_results.pdf utility_incentive_programs.pdf

186

EA-1921: Silver Peak Area Geothermal Exploration Project Environmental  

Broader source: Energy.gov (indexed) [DOE]

921: Silver Peak Area Geothermal Exploration Project 921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada EA-1921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada SUMMARY The Bureau of Land Management (BLM)(lead agency) and DOE are jointly preparing this EA, which evaluates the potential environmental impacts of a project proposed by Rockwood Lithium Inc (Rockwood), formerly doing business as Chemetall Foote Corporation. Rockwood has submitted to the BLM, Tonopah Field Office, an Operations Plan for the construction, operation, and maintenance of the Silver Peak Area Geothermal Exploration Project within Esmeralda County, Nevada. The purpose of the project is to determine subsurface temperatures, confirm the existence of geothermal resources, and

187

Multispectral Imaging At Silver Peak Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Silver Peak Area (Laney, 2005) Exploration Activity Details Location Silver Peak Area Exploration Technique Multispectral Imaging Activity Date Usefulness not indicated DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. A third objective was testing ASTER multispectral data for small-scale mapping of the geology of the northern Silver Peak Range, Nevada near the Fish Lake Valley geothermal field. References Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Retrieved from "http://en.openei.org/w/index.php?title=Multispectral_Imaging_At_Silver_Peak_Area_(Laney,_2005)&oldid=511017"

188

EA-1921: Silver Peak Area Geothermal Exploration Project Environmental  

Broader source: Energy.gov (indexed) [DOE]

921: Silver Peak Area Geothermal Exploration Project 921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada EA-1921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada SUMMARY The Bureau of Land Management (BLM)(lead agency) and DOE are jointly preparing this EA, which evaluates the potential environmental impacts of a project proposed by Rockwood Lithium Inc (Rockwood), formerly doing business as Chemetall Foote Corporation. Rockwood has submitted to the BLM, Tonopah Field Office, an Operations Plan for the construction, operation, and maintenance of the Silver Peak Area Geothermal Exploration Project within Esmeralda County, Nevada. The purpose of the project is to determine subsurface temperatures, confirm the existence of geothermal resources, and

189

Resistivity Tomography At Silver Peak Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Resistivity Tomography At Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Resistivity At Silver Peak Area (DOE GTP) Exploration Activity Details Location Silver Peak Area Exploration Technique Single-Well and Cross-Well Resistivity Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Resistivity_Tomography_At_Silver_Peak_Area_(DOE_GTP)&oldid=689883" Categories:

190

Application of Thermal Storage, Peak Shaving and Cogeneration for Hospitals  

E-Print Network [OSTI]

Energy costs of hospitals can be managed by employing various strategies to control peak electrical demand (KW) while at the same time providing additional security of operation in the event that an equipment failure or a disruption of power from...

McClure, J. D.; Estes, J. M.; Estes, M. C.

1987-01-01T23:59:59.000Z

191

Off peak cooling using an ice storage system  

E-Print Network [OSTI]

The electric utilities in the United States have entered a period of slow growth due to a combination of increased capital costs and a staggering rise in the costs for fuel. In addition to this, the rise in peak power ...

Quinlan, Edward Michael

1980-01-01T23:59:59.000Z

192

Potential Peak Load Reductions From Residential Energy Efficient Upgrades  

E-Print Network [OSTI]

of the distribution network can be improved; and added environmental pollution can be minimized. Energy efficiency improvements, especially through residential programs, are increasingly being used to mitigate this rise in peak demand. This paper examines...

Meisegeier, D.; Howes, M.; King, D.; Hall, J.

2002-01-01T23:59:59.000Z

193

,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

and 2009 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC",...

194

,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

and 2007 Base Year)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,"Projected Year Base","Year",,"FRCC",...

195

Robust powder auto-indexing using many peaks  

Science Journals Connector (OSTI)

A new algorithm, CONOGRAPH, carries out exhaustive powder auto-indexing in a short time, even if the q values of many peaks are used for robust powder auto-indexing. Some results from CONOGRAPH are presented.

Oishi-Tomiyasu, R.

2014-03-11T23:59:59.000Z

196

Optimization of Demand Response Through Peak Shaving , D. Craigie  

E-Print Network [OSTI]

Optimization of Demand Response Through Peak Shaving G. Zakeri , D. Craigie , A. Philpott , M. Todd for the demand response of such a consumer. We will establish a monotonicity result that indicates fuel supply

Todd, Michael J.

197

The peak of oil productionTimings and market recognition  

Science Journals Connector (OSTI)

Energy is essential for present societies. In particular, transportation systems depend on petroleum-based fuels. That world oil production is set to pass a peak is now a reasonably accepted concept, although its date is far from consensual. In this work, we analyze the true expectations of the oil market participants about the future availability of this fundamental energy source. We study the evolution through time of the curves of crude oil futures prices, and we conclude that the market participants, among them the crude oil producers, already expect a near-term peak of oil production. This agrees with many technical predictions for the date of peak production, including our own, that point to peak dates around the end of the present decade. If this scenario is confirmed, it can cause serious social and economical problems because societies will have little time to perform the necessary adjustments.

Pedro de Almeida; Pedro D. Silva

2009-01-01T23:59:59.000Z

198

Peak Oil and the Arctic National Wildlife Refuge  

Science Journals Connector (OSTI)

When Peak Oil is reached, oil production is slated to decline. If the ... worlds economic engine is still running on oil, there is potential for instability in the global economy as oil becomes scarcer and more ...

Peter Van Tuyn

2014-01-01T23:59:59.000Z

199

High Energy Density Science with High Peak Power Light Sources  

Science Journals Connector (OSTI)

High energy density (HED) science is a growing sub-field of plasma and condensed matter physics. I will examine how recent technological developments in high peak power, petawatt-class...

Ditmire, Todd

200

Structural Analysis of the Desert Peak-Brady Geothermal Fields,  

Open Energy Info (EERE)

Structural Analysis of the Desert Peak-Brady Geothermal Fields, Structural Analysis of the Desert Peak-Brady Geothermal Fields, Northwestern Nevada: Implications for Understanding Linkages Between Northeast-Trending Structures and Geothermal Reservoirs in the Humboldt Structural Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Structural Analysis of the Desert Peak-Brady Geothermal Fields, Northwestern Nevada: Implications for Understanding Linkages Between Northeast-Trending Structures and Geothermal Reservoirs in the Humboldt Structural Zone Abstract Detailed geologic mapping, delineation of Tertiary strata, analysis of faults and folds, and a new gravity survey have elucidated the structural controls on the Desert Peak and Brady geothermal fields in the Hot Springs Mountains of northwestern Nevada. The fields lie within the Humboldt

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Twin Peaks Motel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Peaks Motel Space Heating Low Temperature Geothermal Facility Peaks Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Peaks Motel Space Heating Low Temperature Geothermal Facility Facility Twin Peaks Motel Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716°, -107.6714487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

202

Silver Peak, Nevada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Peak, Nevada: Energy Resources Peak, Nevada: Energy Resources (Redirected from Silver Peak, NV) Jump to: navigation, search Name Silver Peak, Nevada Equivalent URI DBpedia GeoNames ID 5512346 Coordinates 37.7549309°, -117.6348148° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7549309,"lon":-117.6348148,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Off-peak cooling using phase change material  

E-Print Network [OSTI]

The electric utilities in the United States are faced with continued rapid growth in electrical demand. The traditional response to growth in demand has been the expansion of generating capacity. However, economic, ...

Benton, Charles Crisp

1979-01-01T23:59:59.000Z

204

MASS-ANGULAR-MOMENTUM RELATIONS IMPLIED BY MODELS OF TWIN PEAK QUASI-PERIODIC OSCILLATIONS  

SciTech Connect (OSTI)

Twin peak quasi-periodic oscillations (QPOs) appear in the X-ray power-density spectra of several accreting low-mass neutron star (NS) binaries. Observations of the peculiar Z-source Circinus X-1 display unusually low QPO frequencies. Using these observations, we have previously considered the relativistic precession (RP) twin peak QPO model to estimate the mass of the central NS in Circinus X-1. We have shown that such an estimate results in a specific mass-angular-momentum (M - j) relation rather than a single preferred combination of M and j. Here we confront our previous results with another binary, the atoll source 4U 1636-53 that displays the twin peak QPOs at very high frequencies, and extend the consideration to various twin peak QPO models. In analogy to the RP model, we find that these imply their own specific M - j relations. We explore these relations for both sources and note differences in the {chi}{sup 2} behavior that represent a dichotomy between high- and low-frequency sources. Based on the RP model, we demonstrate that this dichotomy is related to a strong variability of the model predictive power across the frequency plane. This variability naturally comes from the radial dependence of characteristic frequencies of orbital motion. As a consequence, the restrictions on the models resulting from observations of low-frequency sources are weaker than those in the case of high-frequency sources. Finally we also discuss the need for a correction to the RP model and consider the removing of M - j degeneracies, based on the twin peak QPO-independent angular momentum estimates.

Toeroek, Gabriel; Bakala, Pavel; Sramkova, Eva; Stuchlik, Zdenek; Urbanec, Martin; Goluchova, Katerina, E-mail: pavel.bakala@fpf.slu.cz, E-mail: martin.urbanec@fpf.slu.cz, E-mail: zdenek.stuchlik@fpf.slu.cz, E-mail: terek@volny.cz, E-mail: sram_eva@centrum.cz [Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava, Bezrucovo nam. 13, CZ-746 01 Opava (Czech Republic)

2012-12-01T23:59:59.000Z

205

Yucca Mountain Climate Technical Support Representative  

SciTech Connect (OSTI)

The primary objective of Project Activity ORD-FY04-012, Yucca Mountain Climate Technical Support Representative, was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.

Sharpe, Saxon E

2007-10-23T23:59:59.000Z

206

Jiminy Peak Ski Resort Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Jiminy Peak Ski Resort Wind Farm Jiminy Peak Ski Resort Wind Farm Jump to: navigation, search Name Jiminy Peak Ski Resort Wind Farm Facility Jiminy Peak Ski Resort Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Jiminy Peak Mountain Resort Developer Sustainable Energy Developments Energy Purchaser Jiminy Peak Mountain Resort Location Hancock MA Coordinates 42.5554°, -73.2898° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5554,"lon":-73.2898,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

207

Peak oil: The four stages of a new idea  

Science Journals Connector (OSTI)

The present paper reviews the reactions and the path of acceptance of the theory known as peak oil. The theory was proposed for the first time by M.K. Hubbert in the 1950s as a way to describe the production pattern of crude oil. According to Hubbert, the production curve is bell shaped and approximately symmetric. Hubbert's theory was verified with good approximation for the case of oil production in the United States that peaked in 1971, and is now being applied to the worldwide oil production. It is generally believed that the global peak of oil production (peak oil) will take place during the first decade of the 21st century, and some analysts believe that it has already occurred in 2005 or 2006. The theory and its consequences have unpleasant social and economical implications. The present paper is not aimed at assessing the peak date but offers a discussion on the factors that affect the acceptance and the diffusion of the concept of peak oil with experts and with the general public. The discussion is based on a subdivision of four stages of acceptance, loosely patterned after a sentence by Thomas Huxley.

Ugo Bardi

2009-01-01T23:59:59.000Z

208

Capacity Value of PV and Wind Generation in the NV Energy System  

SciTech Connect (OSTI)

Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

2014-03-21T23:59:59.000Z

209

[working paper] Regional Economic Capacity, Economic Shocks,  

E-Print Network [OSTI]

1 [working paper] Regional Economic Capacity, Economic Shocks, and Economic that makes them more likely to resist economic shocks or to recover quickly from of resilience capacity developed by Foster (2012) is related to economic resilience

Sekhon, Jasjeet S.

210

Fair capacity sharing of multiple aperiodic servers  

E-Print Network [OSTI]

For handling multiple aperiodic tasks with different temporal requirements, multiple aperiodic servers are used. Since capacity is partitioned statically among the multiple servers, they suffer from heavy capacity exhaustions. Bernat and Burns...

Melapudi, Vinod Reddy

2002-01-01T23:59:59.000Z

211

Can Science and Technology Capacity be Measured?  

E-Print Network [OSTI]

The ability of a nation to participate in the global knowledge economy depends to some extent on its capacities in science and technology. In an effort to assess the capacity of different countries in science and technology, this article updates a classification scheme developed by RAND to measure science and technology capacity for 150 countries of the world.

Wagner, Caroline S; Dutta, Arindum

2015-01-01T23:59:59.000Z

212

Internal Markets for Supply Chain Capacity Allocation  

E-Print Network [OSTI]

Internal Markets for Supply Chain Capacity Allocation David McAdams and Thomas W. Malone Sloan David McAdams & Thomas Malone #12;Internal Markets for Supply Chain Capacity Allocation David Mc ("internal markets") to help allocate manufacturing capacity and determine the prices, delivery dates

213

1997 Annual Facility Representative Workshop Attendees  

Broader source: Energy.gov (indexed) [DOE]

Annual Facility Representative Workshop Attendees Annual Facility Representative Workshop Attendees Last Name First Office Location Phone E-Mail Anderson Mike ID CFATAN (208) 526-7418 andersmr@id.doe.gov Bell Bill AL LAAO (505) 665-6324 bbell@doeal.gov Biro Brian RL LABS (509) 376-7660 brian_a_biro@rl.gov Brown Mark RL TANKS (509) 373-9150 mark_c_brown@rl.gov Charboneau Briant RL 324/327 (509) 373-6137 briant_L_charboneau@rl.gov Daniels Rick OR HFIR (423) 574-9143 e29@ornl.gov Dennis Jack AL AAO (806) 477-3176 jdennis@pantex.com Dikeakos Maria CH BHG (516) 344-3950 dikeako@bnl.gov Duey Don AL AAO (806) 477-6987 dduey@pantex.com Earley Larry RL WRAP (509) 373-9388 larry_d_earley@rl.gov Eddy Doug OAK LLNL (925) 422-3379 doug.eddy@oak.doe.gov Edwards Robert SR NMSD (803) 208-2645 robert-e.edwards@srs.gov

214

1998 Annual Facility Representative Workshop Attendees  

Broader source: Energy.gov (indexed) [DOE]

8 Annual Facility Representative Workshop Attendees 8 Annual Facility Representative Workshop Attendees Last Name First Office Location Phone Fax E-Mail Alvord Bob OAK LLNL (925) 422-0830 (925) 422-0832 robert.alvord@oak.doe.gov Barnes John SR SRTC (803) 208-2628 (803) 208-1123 johnc.barnes@srs.gov Bell Fred AL LAAO (505) 665-4856 (505) 665-9230 fbell@doeal.gov Bell Bill AL LAAO (505) 665-6324 (505) 665-9230 bbell@doeal.gov Bennett Rick RF DOE (303) 966-8155 (303) 966-7447 rick.bennett@rfets.gov Biro Brian RL LABS (509) 376-7660 (509) 376-9837 brian_a_biro@rl.gov Blanco Jose SR DWPF (803) 208-7022 (803) 557-8223 jose.blanco@srs.gov Charboneau Briant RL 324/327 (509) 373-6137 (509) 373-9839 briant_L_charboneau@rl.gov Christensen Debbie AL OMD (505) 845-5239 dschristensen@doeal.gov Clifton Gary OR ORNL (423) 576-6810 (423) 574-9275 g7y@ornl.gov

215

Graphene-Wrapped Sulfur Particles as a Rechargeable LithiumSulfur Battery Cathode Material with High Capacity and Cycling Stability  

Science Journals Connector (OSTI)

Graphene-Wrapped Sulfur Particles as a Rechargeable LithiumSulfur Battery Cathode Material with High Capacity and Cycling Stability ... The resulting graphenesulfur composite showed high and stable specific capacities up to ?600 mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density. ...

Hailiang Wang; Yuan Yang; Yongye Liang; Joshua Tucker Robinson; Yanguang Li; Ariel Jackson; Yi Cui; Hongjie Dai

2011-06-24T23:59:59.000Z

216

Achieving sustainable urban transport mobility in post peak oil era  

Science Journals Connector (OSTI)

Peak oil is the term used to describe the point at which global oil production will peak and thereafter start to decline. Recognising that transport uses a significant portion of global energy, the shortage of fossil fuel in post peak oil era will pose a global challenge in the transport sector. The paper presents an assessment of international research to illustrate the possible time frame of peak oil. It investigates the key implications of the oil shortage that threaten to render the urban transport system of Australia ineffective. Synthesis of documented research evidence suggests three major implications in the urban transport sector: (1) a reduction of mobility for individuals, (2) an increase of transport disadvantage, and (3) a disruption of urban freight movement. In addition, the paper explores strategies to cope with the devastating effects of the shortage of the fossil fuel in the post peak oil era. A number of strategies to achieve sustainable mobility in the future urban transport system are presented. These strategies are summarised into three main themes: (1) a mode shift to alternate transport modes, (2) an integration of land use and transport planning, and (3) a global technical effort for alternate fuels and vehicles. It is expected that a concerted global effort in this regard can have a far-reaching effect in achieving sustainability in urban transport mobility.

Md Aftabuzzaman; Ehsan Mazloumi

2011-01-01T23:59:59.000Z

217

DOE Transmission Capacity Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission Capacity Report Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise market power; and provides flexibility to protect against uncertainties about future fuel prices, load growth, generator construction, and other factors affecting the electric system. DOE Transmission Capacity Report More Documents & Publications Report to Congress:Impacts of the Federal Energy Regulatory Commission's

218

Peak oil analyzed with a logistic function and idealized Hubbert curve  

Science Journals Connector (OSTI)

A logistic function is used to characterize peak and ultimate production of global crude oil and petroleum-derived liquid fuels. Annual oil production data were incrementally summed to construct a logistic curve in its initial phase. Using a curve-fitting approach, a population-growth logistic function was applied to complete the cumulative production curve. The simulated curve was then deconstructed into a set of annual oil production data producing an idealized Hubbert curve. An idealized Hubbert curve (IHC) is defined as having properties of production data resulting from a constant growth-rate under fixed resource limits. An IHC represents a potential production curve constructed from cumulative production data and provides a new perspective for estimating peak production periods and remaining resources. The IHC model data show that idealized peak oil production occurred in 2009 at 83.2Mb/d (30.4Gb/y). IHC simulations of truncated historical oil production data produced similar results and indicate that this methodology can be useful as a prediction tool.

Brian Gallagher

2011-01-01T23:59:59.000Z

219

Capacity Value of Concentrating Solar Power Plants  

SciTech Connect (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

220

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma  

Broader source: Energy.gov (indexed) [DOE]

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant challenges from severe weather, hot summers, and about 2% annual load growth. To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and techniques from 2010-2012. The objective is to engage customers in lowering peak demand using smart technologies in homes and businesses and to achieve greater efficiencies on the distribution system. The immediate goal: To defer two 165 MW power plants currently planned for

222

Silver Peak, Nevada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Peak, Nevada: Energy Resources Peak, Nevada: Energy Resources Jump to: navigation, search Name Silver Peak, Nevada Equivalent URI DBpedia GeoNames ID 5512346 Coordinates 37.7549309°, -117.6348148° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7549309,"lon":-117.6348148,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Price Server System for Automated Critical Peak Pricing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Price Server System for Automated Critical Peak Pricing Price Server System for Automated Critical Peak Pricing Speaker(s): David S. Watson Date: June 3, 2005 - 12:00pm Location: 90-3148 Overview of current California Energy Commission (CEC)/Demand Response Research Center (DRRC) Auto-CPP project: This summer, some select commercial CPP customers of PG&E will have the option of joining the Automated Critical Peak Pricing pilot. The pilot will have the same tariffs as standard CPP programs, but will include an added feature: automated shedding of electric loads. Through use of the Price Server System, day-ahead CPP event signals initiated by PG&E will ultimately cause electric loads to be automatically curtailed on commercial customer sites. These optional predetermined shed strategies will occur without

224

Cuttings Analysis At Desert Peak Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Desert Peak Area (Laney, 2005) Desert Peak Area (Laney, 2005) Exploration Activity Details Location Desert Peak Area Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Remote Sensing for Exploration and Mapping of Geothermal Resources, Wendy Calvin, 2005. Task 1: Detailed analysis of hyperspectral imagery obtained in summer of 2003 over Brady's Hot Springs region was completed and validated (Figure 1). This analysis provided a local map of both sinter and tufa deposits surrounding the Ormat plant, identified fault extensions not previously recognized from field mapping and has helped constrain where to put additional wells that were drilled at the site. Task 2: Initial analysis of Landsat and ASTER data for Buffalo Valley and Pyramid Lake was

225

The Peak/Dip Picture of the Cosmic Web  

E-Print Network [OSTI]

The initial shear field plays a central role in the formation of large-scale structures, and in shaping the geometry, morphology, and topology of the cosmic web. We discuss a recent theoretical framework for the shear tensor, termed the `peak/dip picture', which accounts for the fact that halos/voids may form from local extrema of the density field - rather than from random spatial positions; the standard Doroshkevich's formalism is generalized, to include correlations between the density Hessian and shear field at special points in space around which halos/voids may form. We then present the `peak/dip excursion-set-based' algorithm, along with its most recent applications - merging peaks theory with the standard excursion set approach.

Rossi, Graziano

2014-01-01T23:59:59.000Z

226

Desert Peak II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

II Geothermal Facility II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Desert Peak II Geothermal Facility General Information Name Desert Peak II Geothermal Facility Facility Desert Peak II Sector Geothermal energy Location Information Location Churchill, Nevada Coordinates 39.753854931241°, -118.95378112793° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.753854931241,"lon":-118.95378112793,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Data aggregation for capacity management  

E-Print Network [OSTI]

applying the Bartlett?s test to this problem, its approximation can test the significance of the eigen values, , of the W 2? ? ? -1B matrix because the eigen value represent variance of the corresponding discriminant function. Then the hypothesis... + g - 2j degree of freedom. Because the discriminant functions are uncorrelated, the additive components of V are each approximately variates. Therefore, the significance of the jth eigen value, , can be computed individually as 2? j? ? )?21 jj g...

Lee, Yong Woo

2004-09-30T23:59:59.000Z

228

Scenario Analysis of Peak Demand Savings for Commercial Buildings with  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California Title Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California Publication Type Conference Paper LBNL Report Number LBNL-3636e Year of Publication 2010 Authors Yin, Rongxin, Sila Kiliccote, Mary Ann Piette, and Kristen Parrish Conference Name 2010 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response and distributed energy resources center, demand response research center, demand shifting (pre-cooling), DRQAT Abstract This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30% using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

229

Silver Peak Innovative Exploration Project (Ram Power Inc.)  

SciTech Connect (OSTI)

Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a deep-circulation (amagmatic) meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or core, of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.

Miller, Clay

2010-01-01T23:59:59.000Z

230

PacifiCorp Capacity Power Sale Contract Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

Statement Statement file:///I|/Data%20Migration%20Task/EIS-0171-FEIS-Summary-1994.htm[6/27/2011 10:42:49 AM] Summary PacifiCorp Capacity Sale Final Environmental Impact Statement (EIS) Purpose of and Need for the Action The Bonneville Power Administration (BPA) must respond to the need for power as represented by PacifiCorp's request for a continued supply of firm capacity. BPA has surplus electrical capacity (peakload energy) that BPA projects will not be required to meet its existing obligations. Such obligations include those to meet the loads of firm power customers, pursuant to the Pacific Northwest Electric Power Planning and Conservation Act (Northwest Power Act), and previously committed capacity contracts. BPA is authorized under the Northwest Power Act to sell system capacity and/or energy that is surplus to its needs,

231

Laboratory or Facility Representative Email Addresses Phone #  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory or Facility Representative Email Addresses Phone # Ames Laboratory Stacy Joiner joiner@ameslab.gov 515-294-5932 Argonne National Laboratory Connie Cleary ccleary@anl.gov 630-252-8111 Brookhaven National Laboratory Walter Copan wcopan@bnl.gov 631-344-3035 Fermi National Acclerator Laboratory Bruce Chrisman chrisman@fnal.gov 630-840-6657 Idaho National Laboratory Steven McMaster steven.mcmaster@inl.gov 208-526-1340 Kansas City Plant Caron O'Dower codower@kcp.com 816-997-2645 Lawrence Berkeley National Laboratory Viviana Wolinsky viwolinsky@lbl.gov 510-486-6463 Lawrence Livermore National Laboratory Roger Werne werne1@llnl.gov 925-423-9353 Los Alamos National Laboratory John Mott jmott@lanl.gov 505-665-0883 National Energy Technology Laboratory Jessica Sosenko jessica.sosenko@netl.doe.gov 412-386-7417

232

Facility Representative Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1151-2010 October 2010 DOE STANDARD FACILITY REPRESENTATIVE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1151-2010 ii This document is available on the Department of Energy Office of Health, Safety and Security Approved DOE Technical Standards Web Site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/standard/standard.html DOE-STD-1151-2010 iii APPROVAL The Federal Technical Capability Panel consists of senior U.S. Department of Energy (DOE) managers responsible for overseeing the Federal Technical Capability Program. This Panel is

233

A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year ActualWeather Data Title A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year ActualWeather Data Publication Type Journal Year of Publication 2013 Authors Hong, Tianzhen, Wen-Kuei Chang, and Hung-Wen Lin Keywords Actual meteorological year, Building simulation, Energy use, Peak electricity demand, Typical meteorological year, Weather data Abstract Buildings consume more than one third of the world's total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small office; and 5) simulated energy savings and peak demand reduction by energy conservation measures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term performance of buildings, and to evaluate the energy savings potential of energy conservation measures for new and existing buildings from a life cycle perspective.

234

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation...  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE 1. Nuclear Reactor, State, Type, Net Capacity, Generation, and Capacity Factor " "PlantReactor Name","Generator ID","State","Type","2009 Summer Capacity"," 2010 Annual...

235

Design and Evaluation of Novel High Capacity Cathode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Capacity Cathodes Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes Design and Evaluation of Novel High Capacity Cathode Materials...

236

Injection Solvent Effect on Peak Height in Ion Exchange HPLC  

Science Journals Connector (OSTI)

......2. To further evaluate the effect of the injection volume only...injection volume were varied. Effect of weak injection solvent There...same eluent ion strength. The effect of eluent ion strength. Figure...nitrate in the mobile phase. 418 ship of the peak height of phenylacetate......

Hyunjoo Kim Lee; Norman E. Hoffman

1992-10-01T23:59:59.000Z

237

SCHOOL OF HISTORY & PHILOSOPHY Peak Carbon. Climate change and energy  

E-Print Network [OSTI]

SCHOOL OF HISTORY & PHILOSOPHY Peak Carbon. Climate change and energy policy ARTS2241 S2, 2010 #12 to be overcome before Australia can make deep cuts in greenhouse emissions, particularly from energy generation AIMS · Create awareness of the `bigger picture' that connects concerns over climate change and energy

Green, Donna

238

Scalable Scheduling of Building Control Systems for Peak Demand Reduction  

E-Print Network [OSTI]

Behl, Rahul Mangharam and George J. Pappas Department of Electrical and Systems Engineering University operation of sub- systems such as heating, ventilating, air conditioning and refrigeration (HVAC&R) systems is fundamental for their efficient behavior, especially in elec- trical systems and the electric grid [1]. Peak

Pappas, George J.

239

Providing Regulation Services and Managing Data Center Peak Power Budgets  

E-Print Network [OSTI]

-based peak shaving. However, none of these publications consider the feasibility of using the energy storage AND RELATED WORK Substantial integration of electric vehicles and renewable energy sources into the electric utility companies use to ensure stability. It includes multiple mechanisms, such as demand-response (DR

Simunic, Tajana

240

Why Military and Intelligence Agencies Are Peeking at Peak Oil  

Science Journals Connector (OSTI)

In the spring of 2003 I received a telephone call that was, to me, astonishing. A lady introduced herself and told me that she worked for MUST. She and a colleague wanted to come to Uppsala to discuss Peak Oil wi...

Kjell Aleklett

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Green Scheduling: Scheduling of Control Systems for Peak Power Reduction  

E-Print Network [OSTI]

approach to fine-grained coordination of energy demand by scheduling energy consuming control systems of the system variables only, control system execution (i.e. when energy is supplied to the system-Scheduling; Energy Systems; Peak Power Reduction; Load Balancing; I. INTRODUCTION During a major sporting event

Pappas, George J.

242

Assessing the Control Systems Capacity for Demand Response in California  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Control Systems Capacity for Demand Response in California the Control Systems Capacity for Demand Response in California Industries Title Assessing the Control Systems Capacity for Demand Response in California Industries Publication Type Report LBNL Report Number LBNL-5319E Year of Publication 2012 Authors Ghatikar, Girish, Aimee T. McKane, Sasank Goli, Peter L. Therkelsen, and Daniel Olsen Date Published 01/2012 Publisher CEC/LBNL Keywords automated dr, controls and automation, demand response, dynamic pricing, industrial controls, market sectors, openadr Abstract California's electricity markets are moving toward dynamic pricing models, such as real-time pricing, within the next few years, which could have a significant impact on an industrial facility's cost of energy use during the times of peak use. Adequate controls and automated systems that provide industrial facility managers real-time energy use and cost information are necessary for successful implementation of a comprehensive electricity strategy; however, little is known about the current control capacity of California industries. To address this gap, Lawrence Berkeley National Laboratory, in close collaboration with California industrial trade associations, conducted a survey to determine the current state of controls technologies in California industries. This study identifies sectors that have the technical capability to implement Demand Response (DR) and Automated Demand Response (Auto-DR). In an effort to assist policy makers and industry in meeting the challenges of real-time pricing, facility operational and organizational factors were taken into consideration to generate recommendations on which sectors Demand Response efforts should be focused. Analysis of the survey responses showed that while the vast majority of industrial facilities have semi- or fully automated control systems, participation in Demand Response programs is still low due to perceived barriers. The results also showed that the facilities that use continuous processes are good Demand Response candidates. When comparing facilities participating in Demand Response to those not participating, several similarities and differences emerged. Demand Response-participating facilities and non-participating facilities had similar timings of peak energy use, production processes, and participation in energy audits. Though the survey sample was smaller than anticipated, the results seemed to support our preliminary assumptions. Demonstrations of Auto-Demand Response in industrial facilities with good control capabilities are needed to dispel perceived barriers to participation and to investigate industrial subsectors suggested of having inherent Demand Response potential.

243

Property:PlannedCapacity | Open Energy Information  

Open Energy Info (EERE)

PlannedCapacity PlannedCapacity Jump to: navigation, search Property Name PlannedCapacity Property Type Quantity Description The total planned capacity for a given area, region or project. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

244

Property:MeanCapacity | Open Energy Information  

Open Energy Info (EERE)

MeanCapacity MeanCapacity Jump to: navigation, search Property Name MeanCapacity Property Type Quantity Description Mean capacity potential at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

245

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

246

Definition: Nameplate Capacity | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Nameplate Capacity Jump to: navigation, search Dictionary.png Nameplate Capacity The maximum amount of electric energy that a generator can produce under specific conditions, as rated by the manufacturer. Generator nameplate capacity is expressed in some multiple of watts such as megawatts (MW), as indicated on a nameplate that is physically attached to the generator.[1] View on Wikipedia Wikipedia Definition Also Known As Capacity Related Terms electricity generation, power References ↑ http://www.nrc.gov/reading-rm/basic-ref/glossary/generator-nameplate-capacity.html Retr LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ieved from "http://en.openei.org/w/index.php?title=Definition:Nameplate_Capacity&oldid=480378"

247

EEI/DOE Transmission Capacity Report  

Broader source: Energy.gov (indexed) [DOE]

TRANSMISSION CAPACITY: TRANSMISSION CAPACITY: PRESENT STATUS AND FUTURE PROSPECTS Eric Hirst Consulting in Electric-Industry Restructuring Bellingham, Washington June 2004 Prepared for Energy Delivery Group Edison Electric Institute Washington, DC Russell Tucker, Project Manager and Office of Electric Transmission and Distribution U.S. Department of Energy Washington, DC Larry Mansueti, Project Manager ii iii CONTENTS Page SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. TRANSMISSION CAPACITY: DATA AND PROJECTIONS . . . . . . . . . . . . . . . . . . . 5 HISTORICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 CURRENT CONDITIONS . . . . . . .

248

Quantum capacity of channel with thermal noise  

E-Print Network [OSTI]

The quantum capacity of thermal noise channel is studied. The extremal input state is obtained at the postulation that the coherent information is convex or concave at its vicinity. When the input energy tends to infinitive, it is verified by perturbation theory that the coherent information reaches its maximum at the product of identical thermal state input. The quantum capacity is obtained for lower noise channel and it is equal the one shot capacity.

Xiao-yu Chen

2006-02-11T23:59:59.000Z

249

Controlling the bullwhip with transport capacity constraints  

Science Journals Connector (OSTI)

The bullwhip effect can be costly to companies in terms of capacity-on costs and stock-out costs. This paper examines the possibilities for controlling the bullwhip effect with transport capacity management in the supply chain. The goal is to examine how inventories and service levels react to transport capacity constraints in a simulated supply chain that is prone to the bullwhip effect. By controlling the transport capacities, the companies may be able to reduce the impacts of demand amplification and inventory variations. Thus, there may be significant practical implications of the findings for logistics managers in today's volatile business environments.

Jouni Juntunen; Jari Juga

2009-01-01T23:59:59.000Z

250

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage Capacity",12,"Annual",2013,"6301988" ,"Release...

251

Increasing the Capacity of Existing Power Lines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

works with Idaho Power engineers to train system operators in the use of weather station data and software tools to generate transmission capacity operat- ing limits. The ability...

252

Generation capacity expansion in restructured energy markets.  

E-Print Network [OSTI]

??With a significant number of states in the U.S. and countries around the world trading electricity in restructured markets, a sizeable proportion of capacity expansion (more)

Nanduri, Vishnuteja

2009-01-01T23:59:59.000Z

253

Increasing water holding capacity for irrigation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Increasing water holding capacity for irrigation Reseachers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine...

254

Property:USGSMeanCapacity | Open Energy Information  

Open Energy Info (EERE)

Resource Assessment of the United States. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For...

255

Solar Energy and Capacity Value (Fact Sheet)  

SciTech Connect (OSTI)

This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

Not Available

2013-09-01T23:59:59.000Z

256

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage Capacity",11,"Annual",2013,"6301988" ,"Release...

257

WINDExchange: U.S. Installed Wind Capacity  

Wind Powering America (EERE)

The animation shows the progress of installed wind capacity between 1999 and 2013. The Energy Department's annual Wind Technologies Market Report provides information about wind...

258

Department of Defense Representatives Visit Hanford to Benchmark...  

Office of Environmental Management (EM)

Representatives Visit Hanford to Benchmark Safety Department of Defense Representatives Visit Hanford to Benchmark Safety FLUOR News Release RICHLAND, Wash., December 16, 2005,...

259

Fact or artifact: the representativeness of ESIMS for complex...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2, potential dimers were distinguished from the other unrepresentative ions and colored green. Peaks also present in corresponding blanks were not considered. Mixes 1-7...

260

Capacity Value of Wind Plants and Overview of U.S. Experience (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview and summary of the capacity value of wind power plants, based primarily on the U.S. experience. Resource adequacy assessment should explicitly consider risk. Effective load carrying capability (ELCC) captures each generators contribution to resource adequacy. On their own, reserve margin targets as a percent of peak can't capture risks effectively. Recommend benchmarking reliability-based approaches with others.

Milligan, M.

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Categorical Exclusion for Pinnacle Peak Substation PCB contaminated Electrical  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion for Pinnacle Peak Substation PCB contaminated Electrical Equipment Removal Project located north of Phoenix, Maricopa County, Arizona RECORD OF CATEGORICAL EXCLUSION DETERMINATION A. Proposed Action: Western proposes drain and dispose of PCB contaminated oil from two bushings, and decontaminate one· bushing and rack, break apart PCB contaminated concrete and excavate PCB contaminated soil at Pinnacle Peak Substation. Western will be use existing access roads and vehicles such as cranes, backhoes, dozers, bucket trucks, crew trucks and pickup trucks to bring personnel and equipment to the work area. This work is necessary to maintain the safety and reliability of the bulk electrical system. The project is located in Maricopa County, Arizona. The attached map shows the

262

ARM - Field Campaign - Colorado: The Storm Peak Lab Cloud Property  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsColorado: The Storm Peak Lab Cloud Property Validation govCampaignsColorado: The Storm Peak Lab Cloud Property Validation Experiment (STORMVEX) Campaign Links STORMVEX Website Related Campaigns Colorado: CFH/CMH Deployment to StormVEx 2011.02.01, Mace, AMF Colorado: SP2 Deployment at StormVEx 2010.11.15, Sedlacek, AMF Colorado : Cavity Attenuated Phase Shift 2010.11.15, Massoli, AMF Colorado: Infrared Thermometer (IRT) 2010.11.15, Mace, AMF Colorado: StormVEX Aerosol Size Distribution 2010.11.15, Hallar, AMF Colorado: Direct Measurements of Snowfall 2010.11.15, McCubbin, AMF Colorado: Thunderhead Radiative Flux Analysis Campaign 2010.11.15, Long, AMF Colorado: Ice Nuclei and Cloud Condensation Nuclei Characterization 2010.11.15, Cziczo, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA.

263

Saving Power at Peak Hours (LBNL Science at the Theater)  

ScienceCinema (OSTI)

California needs new, responsive, demand-side energy technologies to ensure that periods of tight electricity supply on the grid don't turn into power outages. Led by Berkeley Lab's Mary Ann Piette, the California Energy Commission (through its Public Interest Energy Research Program) has established a Demand Response Research Center that addresses two motivations for adopting demand responsiveness: reducing average electricity prices and preventing future electricity crises. The research seeks to understand factors that influence "what works" in Demand Response. Piette's team is investigating the two types of demand response, load response and price response, that may influence and reduce the use of peak electric power through automated controls, peak pricing, advanced communications, and other strategies.

Piette, Mary Ann

2011-04-28T23:59:59.000Z

264

Wanxiang Silicon Peak Electronics Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Wanxiang Silicon Peak Electronics Co Ltd Wanxiang Silicon Peak Electronics Co Ltd Jump to: navigation, search Name Wanxiang Silicon-Peak Electronics Co Ltd Place Kaihua, Zhejiang Province, China Zip 324300 Sector Solar Product Maker of monocrystalline silicon ingots and wafers and subsidiary of the Wanxiang Group which includes solar cell and module maker Wanxiang Solar. Coordinates 29.140209°, 118.405113° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.140209,"lon":118.405113,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

Deconvolution of mixed gamma emitters using peak parameters  

SciTech Connect (OSTI)

When evaluating samples containing mixtures of nuclides using gamma spectroscopy the situation sometimes arises where the nuclides present have photon emissions that cannot be resolved by the detector. An example of this is mixtures of {sup 241}Am and plutonium that have L x-ray emissions with slightly different energies which cannot be resolved using a high-purity germanium detector. It is possible to deconvolute the americium L x-rays from those plutonium based on the {sup 241}Am 59.54 keV photon. However, this requires accurate knowledge of the relative emission yields. Also, it often results in high uncertainties in the plutonium activity estimate due to the americium yields being approximately an order of magnitude greater than those for plutonium. In this work, an alternative method of determining the relative fraction of plutonium in mixtures of {sup 241}Am and {sup 239}Pu based on L x-ray peak location and shape parameters is investigated. The sensitivity and accuracy of the peak parameter method is compared to that for conventional peak decovolution.

Gadd, Milan S [Los Alamos National Laboratory; Garcia, Francisco [Los Alamos National Laboratory; Magadalena, Vigil M [Los Alamos National Laboratory

2011-01-14T23:59:59.000Z

266

K2 Energy Solutions formerly Peak Energy Solutions | Open Energy  

Open Energy Info (EERE)

Energy Solutions formerly Peak Energy Solutions Energy Solutions formerly Peak Energy Solutions Jump to: navigation, search Name K2 Energy Solutions (formerly Peak Energy Solutions) Place Henderson, Nevada Zip 89074 Product Nevada-based designer and fabricator of Lithium Iron Phosphate (LFP) batteries for such applications as EVs, power tools and larger-scale storage. Coordinates 38.83461°, -82.140509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.83461,"lon":-82.140509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Representation of the Solar Capacity Value in the ReEDS Capacity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model Preprint Ben Sigrin, Patrick Sullivan, Eduardo Ibanez, and Robert Margolis Presented at the 40th...

268

On Quantum Capacity and its Bound  

E-Print Network [OSTI]

The quantum capacity of a pure quantum channel and that of classical-quantum-classical channel are discussed in detail based on the fully quantum mechanical mutual entropy. It is proved that the quantum capacity generalizes the so-called Holevo bound.

Masanori Ohya; Igor V. Volovich

2004-06-29T23:59:59.000Z

269

Property:Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

270

Planned Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Planned Geothermal Capacity Planned Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Planned Geothermal Capacity This article is a stub. You can help OpenEI by expanding it. General List of Development Projects Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and Development Report (April 2011). Related Pages: GEA Development Phases Geothermal Development Projects Add.png Add a new Geothermal Project Please be sure the project does not already exist in the list below before adding - perhaps under a different name. Technique Developer Phase Project Type Capacity Estimate (MW) Location Geothermal Area Geothermal Region GEA Report

271

Property:GeneratingCapacity | Open Energy Information  

Open Energy Info (EERE)

GeneratingCapacity GeneratingCapacity Jump to: navigation, search Property Name GeneratingCapacity Property Type Quantity Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

272

Definition: Deferred Distribution Capacity Investments | Open Energy  

Open Energy Info (EERE)

Deferred Distribution Capacity Investments Deferred Distribution Capacity Investments Jump to: navigation, search Dictionary.png Deferred Distribution Capacity Investments As with the transmission system, reducing the load and stress on distribution elements increases asset utilization and reduces the potential need for upgrades. Closer monitoring and load management on distribution feeders could potentially extend the time before upgrades or capacity additions are required.[1] Related Terms load, transmission lines, transmission line, sustainability References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Distribution_Capacity_Investments&oldid=502613

273

1Q CY2012 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2012 (PDF), Facility Representative Program Performance 1Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January through March 2012. Data for these indicators were gathered by Field elements per Department of Energy (DOE) Technical Standarf 1063-2011, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Facility Representative Program Performance Indicators for January-March 2012 More Documents & Publications 1Q CY2011 (PDF), Facility Representative Program Performance Indicators

274

3Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2011 (PDF), Facility Representative Program Performance 3Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the Period July through September 2011. Data for these indicators were gathered by Field Elements per Department of Energy's (DOE) Technical Standard (STD) 1063-2011, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Facility Representative Program Performance Indicators for July - September 2011 More Documents & Publications 3Q CY2010 (PDF), Facility Representative Program Performance Indicators

275

Facility Representative Program ID Selects FR of the Year  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative Program ID Selects Facility Representative Program ID Selects FR of the Year John Martin DOE-ID Facility Representative John Martin DOE-ID Facility Representative of the Year. John Martin was selected as DOE-ID's Facility Representative of the Year and the office's nominee for the 2007 DOE Facility Representative of the Year Award. John was selected from an exceptional field of candidates to represent DOE-ID at the Facility Representative Annual Workshop in Las Vegas this May. Each year the Department of Energy recognizes the Facility Representative whose achievements during the calendar year are most exemplary. A panel of senior personnel representing the Office of Health, Safety and Security (HSS) National Nuclear Security Administration (NNSA), Environmental Management (EM), Science (SC), Nuclear Energy (NE) and at least five

276

Bose-Einstein condensation and heat capacity of two-dimensional spin-polarized atomic hydrogen  

SciTech Connect (OSTI)

The static fluctuation approximation (SFA) is used to study the condensate fraction and the specific heat capacity of finite two-dimensional spin-polarized atomic hydrogen. It is found that Bose-Einstein condensation occurs in this system. The transition temperature at different densities decreases as the number of particles of the system increases. At low density, a sharp peak in the specific heat capacity is observed at the transition temperature. On the other hand, as the density of the system increases, the transition temperature becomes no longer well-defined, and a hump is observed in the specific heat capacity around the transition temperature. A qualitative comparison of our results to published results for finite Bose systems shows good agreement.

Al-Sugheir, M. K. [Department of Physics, Hashemite University, Zarqa (Jordan); Ghassib, H. B. [Department of Physics, University of Jordan, Amman (Jordan); Awawdeh, M. [Department of Physics, Yarmouk University, Irbid (Jordan)

2011-07-15T23:59:59.000Z

277

DOE/SC-ARM-10-021 STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan J Mace Principal Investigator S Matrosov B Orr M Shupe R Coulter P Lawson A Sedlacek G Hallar L Avallone I McCubbin C Long R Marchand September 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service

278

Soil Sampling At Silver Peak Area (Henkle, Et Al., 2005) | Open...  

Open Energy Info (EERE)

Silver Peak Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Silver Peak Area (Henkle, Et Al., 2005)...

279

Maintenance Assessment Plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

MAINTENANCE MAINTENANCE Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: An effective facilities maintenance program should optimize the material condition of components and equipment to support safe and effective operations and ensure the peak performance and reliability of those systems and equipment important to operations. Criteria: The program, facility or operation has a Maintenance Implementation Plan (MIP), or equivalent document, which defines and documents the approach to conduct of maintenance. The maintenance organization structure is well defined and understood. Responsibilities, organizational interfaces, and administrative activities are adequately defined and implemented to provide timely availability of

280

Hanford Waste Vitrification Plant capacity increase options  

SciTech Connect (OSTI)

Studies are being conducted by the Hanford Waste Vitrification Plant (HWVP) Project on ways to increase the waste processing capacity within the current Vitrification Building structural design. The Phase 1 study on remote systems concepts identification and extent of capacity increase was completed. The study concluded that the HWVP capacity could be increased to four times the current capacity with minor design adjustments to the fixed facility design, and the required design changes would not impact the current footprint of the vitrification building. A further increase in production capacity may be achievable but would require some technology development, verification testing, and a more systematic and extensive engineering evaluation. The primary changes included a single advance melter with a higher capacity, new evaporative feed tank, offgas quench collection tank, ejector venturi scrubbers, and additional inner canister closure station,a smear test station, a new close- coupled analytical facility, waste hold capacity of 400,000 gallon, the ability to concentrate out-of-plant HWVP feed to 90 g/L waste oxide concentration, and limited changes to the current base slab construction package.

Larson, D.E.

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Transverse Polarization for Energy Calibration at the Z peak  

E-Print Network [OSTI]

In this paper we deal with aspects of transverse polarization for the purpose of energy calibration of proposed circular colliders like the FCC-ee and the CEPC. The main issues of such a measurement will be discussed. The possibility of using this method to accurately determine the energy at the WW threshold as well as the Z peak will be addressed. The use of wigglers for reducing long polarization times will be discussed and a possible strategy will be presented for minimising the energy uncertainty error in these large machines.

Koratzinos, M

2015-01-01T23:59:59.000Z

282

Photovoltaics effective capacity: Interim final report 2  

SciTech Connect (OSTI)

The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

Perez, R.; Seals, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

1997-11-01T23:59:59.000Z

283

Capacity payment impact on gas-fired generation investments under rising renewable feed-in A real options analysis  

Science Journals Connector (OSTI)

Abstract We assess the effect of capacity payments on investments in gas-fired power plants in the presence of different degrees of renewable energy technology (RET) penetration. Low variable cost renewables increasingly make investments in gas-fired generation unprofitable. At the same time, growing feed-in from intermittent \\{RETs\\} amplifies fluctuations in power generation, thus entailing the need for flexible buffer capacitycurrently mostly gas-fired power plants. A real options approach is applied to evaluate investment decisions and timing of a single investor in gas-fired power generation. We investigate the necessity and effectiveness of capacity payments. Our model incorporates multiple uncertainties and assesses the effect of capacity payments under different degrees of RET penetration. In a numerical study, we implement stochastic processes for peak-load electricity prices and natural gas prices. We find that capacity payments are an effective measure to promote new gas-fired generation projects. Especially in times of high renewable feed-in, capacity payments are required to incentivize peak-load investments.

Daniel Hach; Stefan Spinler

2014-01-01T23:59:59.000Z

284

3Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2003 (PDF), Facility Representative Program Performance 3Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from July to September 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. 3Q CY2003, Facility Representative Program Performance Indicators More Documents & Publications 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2005 (PDF), Facility Representative Program Performance Indicators

285

Using energy audits to investigate the impacts of common air-conditioning design and installation issues on peak power demand and energy consumption in Austin, Texas  

Science Journals Connector (OSTI)

This study presents an analysis of a unique dataset of 4971 energy audits performed on homes in Austin, Texas in 20092010. We quantify the prevalence of typical air-conditioner design and installation issues such as low efficiency, oversizing, duct leakage, and low measured capacity, and estimate the impacts that resolving these issues would have on peak power demand and cooling energy consumption. We estimate that air-conditioner use in single-family residences currently accounts for 1718% of peak demand in Austin, and we found that improving equipment efficiency alone could save up to 205MW, or 8%, of peak demand. We estimate that 31% of systems in this study were oversized, leading to up to 41MW of excess peak demand. Replacing oversized systems with correctly sized higher efficiency units has the potential for further savings of up to 81MW. We estimate that the mean system could achieve 18% and 20% in cooling energy savings by sealing duct leaks and servicing their air-conditioning units to achieve 100% of nominal capacity, respectively. Although this analysis is limited to the City of Austin, understanding the methods described herein could allow electric utilities in similar climates to make better-informed decisions when considering efficiency improvement programs.

Joshua D. Rhodes; Brent Stephens; Michael E. Webber

2011-01-01T23:59:59.000Z

286

Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint  

SciTech Connect (OSTI)

An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

2014-08-01T23:59:59.000Z

287

Preparing Guyana's REDD+ Participation: Developing Capacities for  

Open Energy Info (EERE)

Guyana's REDD+ Participation: Developing Capacities for Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Jump to: navigation, search Name Preparing Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Agency/Company /Organization Guyana Forestry Commission, The Government of Norway Sector Land Focus Area Forestry Topics Implementation, Policies/deployment programs, Background analysis Resource Type Workshop, Guide/manual Website http://unfccc.int/files/method Country Guyana UN Region Latin America and the Caribbean References Preparing Guyana's REDD+ Participation[1] Overview "In this context, the overall goal of the activities reported here are to develop a road map for the establishment of a MRV system for REDD+

288

wind power capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international

289

FAQS Qualification Card - Facility Representative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Representative Representative FAQS Qualification Card - Facility Representative A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-FacilityRepresentative.docx Description Facility Representative Qualification Card More Documents & Publications FAQS Gap Analysis Qualification Card - Facility Representative

290

Peak oil supply or oil not for sale?  

Science Journals Connector (OSTI)

Abstract The restrictions imposed by climate change are inevitable and will be exerted either via precautionary mitigation of (mainly energy-related) CO2 emissions or via irreversible impacts on ecosystems and on human habitats. Either way, oil markets are bound to incur drastic shrinking. Concern over peak oil supply will crumble when the irrevocable peak oil demand is created. Replacing oil in the world's energy economies requires redirected market forces, notably in the form of steadily increasing oil end-use prices. Yet, thus far, crude oil prices have obeyed the market fundamentals of expanding-contracting demand and oligopolistic supply. A hockey stick supply curve supports high sales prices, providing large rents to submarginal sources. Cutting oil demand and maintaining high prices implies reducing the supply hockey stick's length by curtailing some oil producers. In such a scenario, the alliances, goals, and tactics of oil geopolitics are set to change. We identify a distribution over friendly and hostile oil suppliers, with others drifting in between the two sides. Conflicts and warfare are less aimed at conquering oil fields for exploitation than at paralyzing production capabilities of opponents or of unreliable transient sources. Covert warfare and instigation of internal conflicts are likely tactics to exhaust hostile opponents.

Aviel Verbruggen; Thijs Van de Graaf

2013-01-01T23:59:59.000Z

291

Developing High Capacity, Long Life Anodes  

Broader source: Energy.gov (indexed) [DOE]

2000 25000 30000 35000 40000 1578 G Intensity Raman Shift cm -1 1340 D Two Raman scattering peaks at 1578 and 1340 cm -1 are assigned as G and D band, respectively. ...

292

renewable energy generating capacity | OpenEI  

Open Energy Info (EERE)

energy generating capacity energy generating capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 16, and contains only the reference case. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO generation renewable energy renewable energy generating capacity Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generating Capacity and Generation- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

293

U.S. Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

2008 2009 2010 2011 2012 2013 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,027 14,659 15,177 15,289 15,373 15,724 1985-2013 Operable Capacity (Calendar...

294

Information capacity of a single photon  

Science Journals Connector (OSTI)

Quantum states of light are the obvious choice for communicating quantum information. To date, encoding information into the polarization states of single photons has been widely used as these states form a natural closed two-state qubit. However, photons are able to encode much morein principle, infiniteinformation via the continuous spatiotemporal degrees of freedom. Here we consider the information capacity of an optical quantum channel, such as an optical fiber, where a spectrally encoded single photon is the means of communication. We use the Holevo bound to calculate an upper bound on the channel capacity, and relate this to the spectral encoding basis and the spectral properties of the channel. Further, we derive analytic bounds on the capacity of such channels, and, in the case of a symmetric two-state encoding, calculate the exact capacity of the corresponding channel.

Peter P. Rohde; Joseph F. Fitzsimons; Alexei Gilchrist

2013-08-09T23:59:59.000Z

295

Information capacity of holograms in photorefractive crystals  

Science Journals Connector (OSTI)

From a single measurement of the signal-to-noise ratio of the image reconstructed from a hologram it is possible to estimate the information capacity of superimposed holograms and to...

Miridonov, S V; Kamshilin, A A; Khomenko, A V; Tentori, D

1994-01-01T23:59:59.000Z

296

Internal Markets for Supply Chain Capacity Allocation  

E-Print Network [OSTI]

This paper explores the possibility of solving supply chain capacity allocation problems using internal markets among employees of the same company. Unlike earlier forms of transfer pricing, IT now makes it easier for such ...

McAdams, David

2005-07-08T23:59:59.000Z

297

Tripling the capacity of wireless communications using  

E-Print Network [OSTI]

channels of electric-®eld polarization for wireless communication. In order to make our statements more................................................................. Tripling the capacity of wireless .............................................................................................................................................. Wireless communications are a fundamental part of modern information infrastructure. But wireless bandwidth

298

Heat Capacity as A Witness of Entanglement  

E-Print Network [OSTI]

We demonstrate that the presence of entanglement in macroscopic bodies (e.g. solids) in thermodynamical equilibrium could be revealed by measuring heat-capacity. The idea is that if the system were in a separable state, then for certain Hamiltonians heat capacity would not tend asymptotically to zero as the temperature approaches absolute zero. Since this would contradict the third law of thermodynamics, one concludes that the system must contain entanglement. The separable bounds are obtained by minimization of the heat capacity over separable states and using its universal low-temperature behavior. Our results open up a possibility to use standard experimental techniques of solid state physics -- namely, heat capacity measurements -- to detect entanglement in macroscopic samples.

Marcin Wiesniak; Vlatko Vedral; Caslav Brukner

2005-08-26T23:59:59.000Z

299

Capacity factors and solar job creation  

Science Journals Connector (OSTI)

We discuss two main job creation statistics often used by solar advocates to support increased solar deployment. Whilst overall solar technologies have a tendency to be labor-intensive, we find that the jobs per gigawatt hour statistic is relatively mis-leading as it has a tendency to reward technologies that have a low capacity factor. Ultimately the lower the capacity factor the more amplified the solar job creation number.

Matt Croucher

2011-01-01T23:59:59.000Z

300

2Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2003 (PDF), Facility Representative Program Performance 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from April to June 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. A total of 13 Facility Representatives transferred to other positions during the quarter. Five of these accepted Facility Representative positions at other sites. Of the 8 that left the Program. 1 recieved a promotion and 7 accepted lateral positions. All of

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

2Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2006 (PDF), Facility Representative Program Performance 2Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. 2Q CY2006, Facility Representative Program Performance Indicators More Documents & Publications 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2004 (PDF), Facility Representative Program Performance Indicators

302

4Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2003 (PDF), Facility Representative Program Performance 4Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from October to December 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. As of December 31,2003, 93% of all Facility Representatives were fully qualified, exceeding the DOE goal of 80%. Currently, 23 of 27 sites meet the goal of 80%. Currently, 23 of 27 sites meet the goal for Facility Representative

303

1999 FACILITY REPRESENTATIVE CONFERENCE June 21 25, 1999  

Broader source: Energy.gov [DOE]

The Department of Energy will host the Facility Representative Annual Meeting on June 21-25, 1999 at the Alexis Park Hotel in Las Vegas, Nevada. The meeting will give Facility Representatives and...

304

Clostridium ljungdahlii represents a microbial production platform based on syngas  

Science Journals Connector (OSTI)

...represents a microbial production platform based on syngas 10.1073/pnas...novel biotechnological production platform based on syngas and CO 2 /H 2 . Results and Discussion...represents a microbial production platform based on syngas. | Clostridium...

Michael Kpke; Claudia Held; Sandra Hujer; Heiko Liesegang; Arnim Wiezer; Antje Wollherr; Armin Ehrenreich; Wolfgang Liebl; Gerhard Gottschalk; Peter Drre

2010-01-01T23:59:59.000Z

305

Automated Critical Peak Pricing Field Tests: 2006 Pilot Program Description and Results  

E-Print Network [OSTI]

Centrifugal _ Screw Fuel type Heat rejection type Number of units Capacity (tons for each) VSD compressor

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila

2007-01-01T23:59:59.000Z

306

On the effect of spatial dispersion of wind power plants on the wind energy capacity credit  

Science Journals Connector (OSTI)

Wind energy is now a mature technology and can be considered as a significant contributor in reducing CO2 emissions and protecting the environment. To meet the wind energy national targets, effective implementation of massive wind power installed capacity in the power supply system is required. Additionally, capacity credit is an important issue for an unstable power supply system as in Greece. To achieve high and reliable wind energy penetration levels into the system, the effect of spatial dispersion of wind energy installations within a very wide area (e.g.national level) on the power capacity credit should be accounted for. In the present paper, a methodology for estimating the effect of spatial dispersion of wind farm installations on the capacity credit is presented and applied for the power supply system of Greece. The method is based on probability theory and makes use of wind forecasting models to represent the wind energy potential over any candidate area for future wind farm installations in the country. Representative wind power development scenarios are studied and evaluated. Results show that the spatial dispersion of wind power plants contributes beneficially to the wind capacity credit.

George Caralis; Yiannis Perivolaris; Konstantinos Rados; Arthouros Zervos

2008-01-01T23:59:59.000Z

307

Measurement of a Peak in the Cosmic Microwave Background Power  

Science Journals Connector (OSTI)

We describe a measurement of the angular power spectrum of anisotropies in the cosmic microwave background (CMB) at scales of 03 to 5 from the North American test flight of the Boomerang experiment. Boomerang is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotropies on a long-duration balloon flight. During a 6 hr test flight of a prototype system in 1997, we mapped more than 200 deg2 at high Galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26' and 165 FWHM, respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of 1 with an amplitude 70 ?KCMB.

P. D. Mauskopf; P. A. R. Ade; P. de Bernardis; J. J. Bock; J. Borrill; A. Boscaleri; B. P. Crill; G. DeGasperis; G. De Troia; P. Farese; P. G. Ferreira; K. Ganga; M. Giacometti; S. Hanany; V. V. Hristov; A. Iacoangeli; A. H. Jaffe; A. E. Lange; A. T. Lee; S. Masi; A. Melchiorri; F. Melchiorri; L. Miglio; T. Montroy; C. B. Netterfield; E. Pascale; F. Piacentini; P. L. Richards; G. Romeo; J. E. Ruhl; E. Scannapieco; F. Scaramuzzi; R. Stompor; N. Vittorio

2000-01-01T23:59:59.000Z

308

3Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2006 (PDF), Facility Representative Program Performance 3Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. A summary of this quarters data concluded: 76% fully qualified 41% staffing level

309

2Q CY2007 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2007 (PDF), Facility Representative Program Performance 2Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2007. Data for these indicators are gathered by field elements quarterly per DOE-STD-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to impove the FR Program. A summary of this quarter's data concluded: 74% Fully Qualified 94% Staffing Level ( last quarter was

310

4Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2006 (PDF), Facility Representative Program Performance 4Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. A summary of this quarters data concluded: 72% Fully Qualified ( last Quarter was

311

2Q CY2008 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2008 (PDF), Facility Representative Program Performance 2Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2008. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 87% Fully Qualifed ( last quarter was 85%) 86% Staffing Level ( last quarter was 88%)

312

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network [OSTI]

playing key role in peak-oil debate, future energy supply.of di?ering views of peak oil, including Yergins, isHubberts Peak: The Impending World Oil Shortage. Princeton

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

313

1Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2010 (PDF), Facility Representative Program Performance 1Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March2010. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report are presented below." 1Q CY2010, Facility Representative Program Performance Indicators More Documents & Publications 1Q CY2011 (PDF), Facility Representative Program Performance Indicators

314

3Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2010 (PDF), Facility Representative Program Performance 3Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period of July through September 2010. Data for these indicators are gathered by Field elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representative and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Facility Representative Program Performance Indicators for July - September 2010 More Documents & Publications 3Q CY2011 (PDF), Facility Representative Program Performance Indicators

315

1Q CY2000 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2000 (PDF), Facility Representative Program Performance 1Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report "The Facility Representative Program Performance Indicators (PIs) Quarterly Report is attached, covering the period from January 2000 to March 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, DOE-STD-1 063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definitions of the PIs from the Standard are also attached for your use in evaluating the data." 1Q CY2000, Facility Representative Program Performance Indicators

316

4Q CY2002 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2 (PDF), Facility Representative Program Performance 2 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (Pis) Quarterly Report Covering the Period from October to December 2002. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. The format of the report is changed from past reports. Information will now be provided according to the major offices having field or site office Facility Representative programs: National Nuclear Security Administration (NNSSA), the Office of

317

3Q CY2007 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2007 (PDF), Facility Representative Program Performance 3Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2007. Data for these indicators are gathered by Field elements quarterly per Department of Energy (DOE-STD-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR program. A summary of this quarter 's data concluded: 3Q CY2007, Facility Representative Program Performance Indicators More Documents & Publications 2Q CY2009 (PDF), Facility Representative Program Performance Indicators

318

1Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2003 (PDF), Facility Representative Program Performance 1Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from January to March 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. The percentage of Facility Representatives who are fully qualified reached 91% across DOE. In EM the percenage of 97%, in Sc the percentage is 95% and in NNSA the percentage is 78%. The DOE goal is 75%. Staffing levels for the three organizations continue to be below

319

Student Committee Representatives Guidelines Congratulations on being selected as a student representative to a GSLIS committee! We are  

E-Print Network [OSTI]

Student Committee Representatives Guidelines Congratulations on being selected as a student to your resume or CV. Your job is to represent students to committees and committees to students. You represent the student body to the committee. Your job is to advocate for your fellow students by bringing

Gilbert, Matthew

320

Student Assembly Offices Student Assembly Representatives: There are four representatives per class to the Student Assembly. Their duties are to  

E-Print Network [OSTI]

Student Assembly Offices Student Assembly Representatives: There are four representatives per class to the Student Assembly. Their duties are to: Represent the student body of the Medical College of Wisconsin-section of the student body. Fairly administer and distribute all funds including those designated as Student Activity

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DECENTRALIZING SEMICONDUCTOR CAPACITY PLANNING VIA INTERNAL MARKET COORDINATION  

E-Print Network [OSTI]

1 DECENTRALIZING SEMICONDUCTOR CAPACITY PLANNING VIA INTERNAL MARKET COORDINATION SULEYMAN KARABUK semiconductor manufacturer: marketing managers reserve capacity from manufacturing based on product demands, while attempting to maximize profit; manufacturing managers allocate capacity to competing marketing

Wu, David

322

Increasing the Capacity of Existing Power Lines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Increasing the Capacity of Existing Power Lines Increasing the Capacity of Existing Power Lines The capacity of the grid has been largely unchanged for decades and needs to expand...

323

Colorado Working Natural Gas Underground Storage Capacity (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

324

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter Expanded Capacity Microwave-Cleaned Diesel Particulate Filter 2002 DEER Conference Presentation: Industrial Ceramic...

325

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Broader source: Energy.gov (indexed) [DOE]

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

326

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Broader source: Energy.gov (indexed) [DOE]

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

327

Los Alamos Neutron Science Center gets capacity boost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neutron Science Center capacity boost Los Alamos Neutron Science Center gets capacity boost The facility can simulate the effects of hundreds or thousands of years of...

328

Working and Net Available Shell Storage Capacity as of September...  

Gasoline and Diesel Fuel Update (EIA)

capacity and also allows for tracking seasonal shifts in petroleum product usage of tanks and underground storage. Using the new storage capacity data, it will be possible to...

329

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

330

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

331

Guatemala-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Guatemala-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Guatemala-Enhancing Capacity for Low Emission Development Strategies...

332

Kazakhstan-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Kazakhstan-Enhancing Capacity for Low Emission Development Strategies...

333

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 Study Finds 54 Gigawatts of Offshore Wind Capacity Technically Possible by 2030 September 11, 2014 -...

334

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

335

National CHP Roadmap: Doubling Combined Heat and Power Capacity...  

Broader source: Energy.gov (indexed) [DOE]

National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the...

336

High-capacity hydrogen storage in lithium and sodium amidoboranes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

capacity hydrogen storage in lithium and sodium amidoboranes. High-capacity hydrogen storage in lithium and sodium amidoboranes. Abstract: A substantial effort worldwide has been...

337

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

338

Development of High-Capacity Cathode Materials with Integrated...  

Broader source: Energy.gov (indexed) [DOE]

Development of High-Capacity Cathode Materials with Integrated Structures Development of High-Capacity Cathode Materials with Integrated Structures 2013 DOE Hydrogen and Fuel Cells...

339

Design and Evaluation of Novel High Capacity Cathode Materials...  

Broader source: Energy.gov (indexed) [DOE]

Design and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High Capacity Cathode Materials 2009 DOE Hydrogen Program and Vehicle Technologies...

340

Development of high-capacity cathode materials with integrated...  

Broader source: Energy.gov (indexed) [DOE]

Development of high-capacity cathode materials with integrated structures Development of high-capacity cathode materials with integrated structures 2009 DOE Hydrogen Program and...

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Design and Evaluation of Novel High Capacity Cathode Materials...  

Broader source: Energy.gov (indexed) [DOE]

and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High Capacity Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

342

,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...  

U.S. Energy Information Administration (EIA) Indexed Site

Other",,,"All Technologies" ,,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back MWh",,,,,"Capacity MW",,,,,"Number of Meters",,,,,"Energy Sold Back...

343

Modeling of GE Appliances in GridLAB-D: Peak Demand Reduction  

SciTech Connect (OSTI)

The widespread adoption of demand response enabled appliances and thermostats can result in significant reduction to peak electrical demand and provide potential grid stabilization benefits. GE has developed a line of appliances that will have the capability of offering several levels of demand reduction actions based on information from the utility grid, often in the form of price. However due to a number of factors, including the number of demand response enabled appliances available at any given time, the reduction of diversity factor due to the synchronizing control signal, and the percentage of consumers who may override the utility signal, it can be difficult to predict the aggregate response of a large number of residences. The effects of these behaviors can be modeled and simulated in open-source software, GridLAB-D, including evaluation of appliance controls, improvement to current algorithms, and development of aggregate control methodologies. This report is the first in a series of three reports describing the potential of GE's demand response enabled appliances to provide benefits to the utility grid. The first report will describe the modeling methodology used to represent the GE appliances in the GridLAB-D simulation environment and the estimated potential for peak demand reduction at various deployment levels. The second and third reports will explore the potential of aggregated group actions to positively impact grid stability, including frequency and voltage regulation and spinning reserves, and the impacts on distribution feeder voltage regulation, including mitigation of fluctuations caused by high penetration of photovoltaic distributed generation and the effects on volt-var control schemes.

Fuller, Jason C.; Vyakaranam, Bharat GNVSR; Prakash Kumar, Nirupama; Leistritz, Sean M.; Parker, Graham B.

2012-04-29T23:59:59.000Z

344

Africa - CCS capacity building | Open Energy Information  

Open Energy Info (EERE)

Africa - CCS capacity building Africa - CCS capacity building Jump to: navigation, search Name Africa - CCS capacity building Agency/Company /Organization Energy Research Centre of the Netherlands Partner EECG Consultants, the University of Maputo, the Desert Research Foundation Namibia and the South Africa New Energy Research Institute Sector Energy Focus Area Conventional Energy Resource Type Training materials Website http://www.ccs-africa.org/ Program Start 2010 Program End 2011 Country Botswana, Mozambique, Namibia UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

345

DOE mixed waste treatment capacity analysis  

SciTech Connect (OSTI)

This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

1994-06-01T23:59:59.000Z

346

Silver Peak Innovative Exploration Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Innovative Exploration Project Geothermal Project Innovative Exploration Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Silver Peak Innovative Exploration Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The scope of this three phase project includes tasks to validate a variety of innovative exploration and drilling technologies which aim to accurately characterize the geothermal site and thereby reduce project risk. Phase 1 exploration will consist of two parts: 1) surface and near surface investigations and 2) subsurface geophysical surveys and modeling. The first part of Phase 1 includes: a hyperspectral imaging survey (to map thermal anomalies and geothermal indicator minerals), shallow temperature probe measurements, and drilling of temperature gradient wells to depths of 1000 feet. In the second part of Phase 1, 2D & 3D geophysical modeling and inversion of gravity, magnetic, and magnetotelluric datasets will be used to image the subsurface. This effort will result in the creation of a 3D model composed of structural, geological, and resistivity components. The 3D model will then be combined with the temperature data to create an integrated model that will be used to prioritize drill target locations.

347

Facility Representative of the Year Award | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facility Representative of the Year Award Facility Representative of the Year Award Facility Representative of the Year Award Departmental Award Program administered by the Office of Chief Information Officer The Facility Representative Award Program is a special award designed to recognize superior or exemplary service by a Facility Representative over a period of one year. This special award program has been established in accordance with the requirements of Department of Energy (DOE) Order 331.1C, Employee Performance Management and Recognition Program. Facility Representative of the Year Award Responsible Contacts Lorrenda Buckner HUMAN RESOURCES SPECIALIST (PERFORMANCE MANAGEMENT) E-mail lorrenda.buckner@hq.doe.gov Phone 202-586-8451 More Documents & Publications Safety System Oversight Annual Award

348

1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 | Department  

Broader source: Energy.gov (indexed) [DOE]

1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 The Department of Energy will host the Facility Representative Annual Meeting on June 21-25, 1999 at the Alexis Park Hotel in Las Vegas, Nevada. The meeting will give Facility Representatives and line management the opportunity to share lessons learned, and to discuss upcoming program improvements. There is no cost for the meeting, however, rooms reserved at the government rate are limited so if you are planning on attending, please make reservations as soon as possible. The hotel phone number is 1-800-453-8000. For more information, please contact Joe Hassenfeldt, Facility Representative Program Manager, FM-10, at 202-586-1643." Microsoft Word - Document1

349

2Q CY2002 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2002 (PDF), Facility Representative Program Performance 2Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from April to June 2002. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standards , DOE-STD-1063-2000, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definition of the PIs from the Standard are also attached for your use in evaluating the data. Overall, the percentage of fully qualified Facility Representatives increased to 80% last quarter, from 78% the previous quarter , and

350

1Q CY2000, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

May May 9,2000 MEMORANDUM FOR DISTRIBUTION FROM: .yc,..,%$'! L.W.T oseph Arango, Facl ity Representative Program Manager (S-3.1) SUBJECT: Facility Representative Program Performance Indicators Quarterly Report The Facility Representative Program Performance Indicators (PIs) Quarterly Report is attached, covering the period from January 2000 to March 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, DOE-STD-1 063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definitions of the PIs from the Standard are also attached for your use in evaluating the data. You will note that the indicators show the attrition of five Facility Representatives from the program during this reporting period. Of those five, two were promoted

351

4Q CY2001 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2001 (PDF), Facility Representative Program Performance 4Q CY2001 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2001 (PDF), Facility Representative Program Performance Indicators Quarterly Report The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from October to December 2001. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standards , DOE-STD-1063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definition of the PIs from the Standard are also attached for your use in evaluating the data 4Q CY2001, Facility Representative Program Performance Indicators More Documents & Publications

352

2Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2005 (PDF), Facility Representative Program Performance 2Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. As of June 30,2005, 97% of all FRs were fully qualified, down from 88% the previous quarter, but exceeding the DOE goal of 80%. Eighteen of 27 reporting sites meet the goal of FR qualifications. 2Q CY2005, Facility Representative Program Performance Indicators

353

Facility Representative of the Year Award | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facility Representative of the Year Award Facility Representative of the Year Award Facility Representative of the Year Award Departmental Award Program administered by the Office of Chief Information Officer The Facility Representative Award Program is a special award designed to recognize superior or exemplary service by a Facility Representative over a period of one year. This special award program has been established in accordance with the requirements of Department of Energy (DOE) Order 331.1C, Employee Performance Management and Recognition Program. Facility Representative of the Year Award Responsible Contacts Lorrenda Buckner HUMAN RESOURCES SPECIALIST (PERFORMANCE MANAGEMENT) E-mail lorrenda.buckner@hq.doe.gov Phone 202-586-8451 More Documents & Publications Safety System Oversight Annual Award

354

1Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2011 (PDF), Facility Representative Program Performance 1Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the Period January through March 2011. Data for these indicators were gathered by Field Elements per Department of Energy's (DOE) Technical Standard (STD) 1063-2011, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. This report reflects changes in DOE STD 1063-2011 that deleted one indicator and changed the way two others are calculated. The changes are discussed below. Facility Representative Program Performance Indicators for January - March

355

3Q CY2002 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2002 (PDF), Facility Representative Program Performance 3Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from July to September 2002. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standards , DOE-STD-1063-2000, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definition of the PIs from the Standard are also attached for your use in evaluating the data. The percentage of fully qualified Facility Representatives in the DOE complex

356

Ethical receptive capacity and teaching business ethics  

Science Journals Connector (OSTI)

In this study, we proposed the ethical receptive capacity (ERC) perspective on teaching business ethics. The ERC perspective was developed on two premises: the separation of personal moral values and professional ethics, and the path dependent nature of professional ethics, such that individuals in the early stage of their profession have higher ERC (i.e., individuals' capacity to receive ethical contents) and thus are more receptive to new ethical contents prescribed to them. The experimental results in this study supported the ERC perspective, suggesting that business ethics education should be introduced to students as early as possible in their business programme.

Chanchai Tangpong; Michael D. Michalisin; Jin Li

2012-01-01T23:59:59.000Z

357

The effect of rain on freeway capacity  

E-Print Network [OSTI]

. The procedure used was basically a process of selection and processing of data from historical records. The facility used as a source of traific information was t' he Gulf Freeway in Houston, Texas, and rs. infall records were obtained from the Weather... to separate acceptable data, and the accepted capacity figures were related to the weather condition of wet or dry which prevs. iled on the relevant occs. sion. The results showed that rain does have a significant effect on freevray capacity which is very...

Jones, Edward Roy

2012-06-07T23:59:59.000Z

358

Definition: Capacity Benefit Margin | Open Energy Information  

Open Energy Info (EERE)

Benefit Margin Benefit Margin Jump to: navigation, search Dictionary.png Capacity Benefit Margin The amount of firm transmission transfer capability preserved by the transmission provider for Load- Serving Entities (LSEs), whose loads are located on that Transmission Service Provider's system, to enable access by the LSEs to generation from interconnected systems to meet generation reliability requirements. Preservation of CBM for an LSE allows that entity to reduce its installed generating capacity below that which may otherwise have been necessary without interconnections to meet its generation reliability requirements. The transmission transfer capability preserved as CBM is intended to be used by the LSE only in times of emergency generation deficiencies.[1] Related Terms

359

October 2010, Facility Representative Qualification Standard Reference Guide  

Broader source: Energy.gov (indexed) [DOE]

Facility Facility Representative Qualification Standard Reference Guide OCTOBER 2010 Table of Contents i LIST OF FIGURES ..................................................................................................................... iii LIST OF TABLES ........................................................................................................................ v ACRONYMS ................................................................................................................................ vi PURPOSE ...................................................................................................................................... 1 SCOPE ........................................................................................................................................... 1

360

General Engineer/Physical Scientist (Senior Facility Representative)  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as the Site Managers Senior Facility Representative, and responsible for program management, technical monitoring, advising and evaluating all...

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

A Minneapolis, Minnesota Reference Buildings by Climate Zone and Representative City: 6A Minneapolis, Minnesota In addition to the ZIP file for each building type, you can directly...

362

Appointment of Contracting Officers and Contracting Officer Representatives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order established procedures governing the selection, appointment and termination of Department of Energy contracting officers and contracting officer representatives. Cancels DOE O 541.1A.

2004-04-21T23:59:59.000Z

363

Evaluation of the Antioxidant Capacity of Limonin, Nomilin, and Limonin Glucoside  

Science Journals Connector (OSTI)

The antioxidant capacity (AOC) of three representative citrus limonoids, limonin, nomilin, and limonin glucoside, was examined by the oxygen radical absorbance capacity (ORAC), Trolox equivalent antioxidant capacity (TEAC), ?-carotene?linoleic acid bleaching, and 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging assays. ... Briefly, in a glass 96-well reaction plate, samples, along with positive (BHT, ascorbic acid) and negative (cinnamic acid) controls (50 ?L) prepared in methanol (0.001?1 mg/mL), were combined in triplicate with 155 ?M methanolic DPPH (200 ?L). ... After incubation (37 C, 15 min), AAPH (60 ?L, 37 C) was added rapidly using a multichannel pipet, and the microplate was immediately placed in a Molecular Devices Gemini-EM (Sunnyvale, CA) fluorescence plate reader. ...

Andrew P. Breksa; III; Gary D. Manners

2006-05-03T23:59:59.000Z

364

Power, Capacity, and Efficiency of Pumps  

Science Journals Connector (OSTI)

Power, Capacity, and Efficiency of Pumps ... p. motor through a 40-foot head, friction head included, efficiency of the pump being 50 per cent, join the 40 (column A ) with the 50 per cent (column E ) and locate the intersection with column C . ...

W. F. SCHAPHORST

1940-08-10T23:59:59.000Z

365

Building Environmental Health Capacity in Allegheny County  

E-Print Network [OSTI]

Building Environmental Health Capacity in Allegheny County: Environmental Indicators Outcomes standard Air Quality Computer Systems Days exceeding ozone standard Air Quality Computer Systems Attainment of the annual PM-2.5 standard (Fine particulates) Air Quality Computer Systems Annual PM-2.5 level Air Quality

366

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY  

E-Print Network [OSTI]

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY ANALYSIS TOOLS APPLICABLE TO MULTI Commercial HVAC Design Process 12 5.0 Conclusion 18 6.0 References 19 TABLE OF CONTENTS SECTIONS #12;MULTI performance by collectively improving the enve- lope, lighting and HVAC systems. The primary goals of the UC

California at Davis, University of

367

Fagatele Bay National Marine Sanctuary GIS Capacity  

E-Print Network [OSTI]

Report, configuration notes American Samoa Spatial Data Infrastructure Maps GIS Data CDs Operating System, a number of issues regarding map projections and datums were resolved allowing GIS users to processFagatele Bay National Marine Sanctuary GIS Capacity Binder Index Background 2 Hardware, Software

Wright, Dawn Jeannine

368

CSEM WP 124 Capacity Markets for Electricity  

E-Print Network [OSTI]

CSEM WP 124 Capacity Markets for Electricity Anna Creti, LEEERNA, University of Toulouse for Electricity Anna Creti LEEERNA, University of Toulouse Natalia Fabra Universidad Carlos III de Madrid February 2004 Abstract The creation of electricity markets has raised the fundamental question as to whether

California at Berkeley. University of

369

Capacity Building in Wind Energy for PICs  

E-Print Network [OSTI]

1 Capacity Building in Wind Energy for PICs Presentation of the project Regional Workshop Suva hydropower is relatively important (Papua New Guinea, Fiji and Samoa · The traditional use of wind energy has indicates that significant wind energy potential exists. · A monitoring project showed that in Rarotonga

370

Partial energies fluctuations and negative heat capacities  

E-Print Network [OSTI]

We proceed to a critical examination of the method used in nuclear fragmentation to exhibit signals of negative heat capacity. We show that this method leads to unsatisfactory results when applied to a simple and well controlled model. Discrepancies are due to incomplete evaluation of potential energies.

Xavier Campi; H. Krivine; E. Plagnol; N. Sator

2004-08-03T23:59:59.000Z

371

Design and evaluation of seasonal storage hydrogen peak electricity supply system  

E-Print Network [OSTI]

The seasonal storage hydrogen peak electricity supply system (SSHPESS) is a gigawatt-year hydrogen storage system which stores excess electricity produced as hydrogen during off-peak periods and consumes the stored hydrogen ...

Oloyede, Isaiah Olanrewaju

2011-01-01T23:59:59.000Z

372

Signal Peak-Tracker based on the Teager-Kaiser Energy (TKE) Operator  

E-Print Network [OSTI]

Described is a modification of the TKE operator from its usual `energy form'. The resulting `peak-tracker' (or peak-detector) is especially useful in studies that involve the frequency domain.

Randall D. Peters

2010-10-25T23:59:59.000Z

373

The evolution and present status of the study on peak oil in China  

Science Journals Connector (OSTI)

Peak oil theory is a theory concerning long-term oil reserves and the rate of oil production. Peak oil refers to the maximum rate of the production of oil or gas in any area under consideration. ... from three as...

Xiongqi Pang; Lin Zhao; Lianyong Feng; Qingyang Meng; Xu Tang

2009-06-01T23:59:59.000Z

374

Two kinds of peaked solitary waves of the KdV, BBM and Boussinesq equations  

Science Journals Connector (OSTI)

It is well-known that the celebrated Camassa-Holm equation has the peaked solitary waves, which have ... solutions of peaked solitary waves of the KdV equation, the BBM equation and the Boussinesq equation are gi...

ShiJun Liao

2012-12-01T23:59:59.000Z

375

THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND  

E-Print Network [OSTI]

LBNL-49947 THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND? ..................................... 8 What are the seasonal aspects of electric peak demand?............................ 9 What because of the California electricity crisis (Borenstein 2001). Uncertainties surrounding the reliability

376

Truth-telling A Representative Johannes Abeler1  

E-Print Network [OSTI]

Truth-telling ­ A Representative Assessment Johannes Abeler1 Anke Becker2 Armin Falk3 University people do report the payoff-maximizing outcome, some report their private informa- tion truthfully or at least do not lie maximally. We measure truth-telling outside the laboratory by calling a representative

Huber, Bernhard A.

377

PEDOT: Cathode active material with high specific capacity in novel electrolyte system  

Science Journals Connector (OSTI)

Poly(3,4-ethylenedioxythiophene) (PEDOT) was chemically synthesized and characterized by FT-IR, XRD, XPS, TGA and organic elemental analysis (EA). The polymer was tested as cathode active material for rechargeable lithium batteries. The cyclic voltammetry (CV) and chargedischarge tests of PEDOT as the cathode active material was investigated in an electrolyte system of LiN(CF3SO2)2/1,2-dimethoxyethane/1,3-dioxopentane (1:2 by weight). The peak discharge capacity of up to 691mAh/g was obtained during the 1st cycle, and remained above 330mAh/g after 44 cycles. These results indicate that PEDOT can afford a high specific capacity as a cathode active material. A redox mechanism is tentatively proposed.

Lizhi Zhan; Zhiping Song; Jingyu Zhang; Jing Tang; Hui Zhan; Yunhong Zhou; Caimao Zhan

2008-01-01T23:59:59.000Z

378

Wireless Network Capacity Management: A Real Options Approach  

E-Print Network [OSTI]

capacity, market price of risk, investment timing option 1 Introduction Wireless networks are now regarded

Forsyth, Peter A.

379

4Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2011 (PDF), Facility Representative Program Performance 4Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October through December 2011. Data for these indicators were gathered by field elements per Department of Energy (DOE) Technical Standard 1063-2011 , Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report include: FR Staffing/Qualification/Oversight Data: * DOE was staffed at 179 FR Full Time Equivalents (FTE), which is 92 percent of the full staffing level (DOE goal is 100 percent). Four FRs left due to transfer,

380

4Q CY2007 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2007 (PDF), Facility Representative Program Performance 4Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2007. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 83% Fully Qualified (last Quarter was 82%) 85% Staffing Level (last Quarter was 93%) 45% Time Spent in the Field (DOE goal is >40%) 73% Time Spent in Oversight Activities (DOE Goal is> 65%)"

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

1Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

6 (PDF), Facility Representative Program Performance 6 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. As of March 31,2006 81% of all FRs were fully qualified,up from 78% the previous quarter, and just above the DOE goal of 80%. To assist site offices in continuing to meet the qualification goal, there will be two focused training sessions for FR candidates in the coming months. These

382

2Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2011 (PDF), Facility Representative Program Performance 2Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period April through June 20 1 1. Data for these indicators were gathered by Field Elements per Department of Energy (DOE) Technical Standard (STD) 1063-20 1 1, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report: FR Staffing/Qualification/Oversight data DOE was staffed at 180 FR Full Time Equivalents (FTEs), which is 9 1 percent of the full staffing level (DOE goal is 100 percent).

383

2Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

Q CY2010 (PDF), Facility Representative Program Performance Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the highlight of, and announces the availablity on-line of, the Facility Representative (FR) Program Performance Indicators are gathered by Field elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. This memorandum also announces that Mr. James Heffner has turned over FR Program Manager duties to Mr. Earl Huges. Mr. Heffner is assuming expanded team leader duties over several additional programs within the

384

4Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2005 (PDF), Facility Representative Program Performance 4Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. As of December 31, 2005 78% of all FRs were fully qualified , down from the 84% the previous quarter, and below the DOE goal of 80%. Site offices hired 11 new FRs in the quarter and several sites moved FRs to new facilities, thus requiring new qualifications.

385

1Q CY2009 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2009 (PDF), Facility Representative Program Performance 1Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2009. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 78% Fully Qualified ( last Quarter was 76%) 90% Staffing Level ( last Quarter was 89%) 47% Time Spent in the Field (DOE goal is>40%) 74% Time Spent in Oversight Activites (DOE Goal is>65%)"

386

Fluid Flow Model Development for Representative Geologic Media | Department  

Broader source: Energy.gov (indexed) [DOE]

Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Clay and granitic geologic rock units are potential host media for future repositories for used nuclear fuel and high level waste. This report addresses the representation of flow in these two media within numerical process models. Discrete fracture network (DFNs) models are an approach to representing flow in fractured granite that explicitly represents the geometry and flow properties of individual fractures. New DFN generation and computational grid generation methods have been developed and tested. Mesh generation and the generation of flow streamlines within the DFN are also included. Traditional form of Darcy's law is not adequate

387

Reference Buildings by Climate Zone and Representative City: 8 Fairbanks,  

Broader source: Energy.gov (indexed) [DOE]

Climate Zone and Representative City: 8 Climate Zone and Representative City: 8 Fairbanks, Alaska Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_8a_usa_ak_fairbanks_post1980_v1.3_5.0.zip refbldg_8a_usa_ak_fairbanks_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 3A Atlanta, Georgia Reference Buildings by Climate Zone and Representative City: 6B Helena, Montana Reference Buildings by Building Type: Secondary school

388

2Q CY2012 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2012 (PDF), Facility Representative Program Performance 2Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April through June 2012. Data for these indicators were gathered by field elements per Department of Energy (DOE) Technical Standard 1063-2011, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report include: FR Staffing/Qualification/Oversight Data * DOE was staffed at 176 FR Full Time Equivalents (FTE), which is 95 percent of the full staffing level (DOE goal is 100 percent). This staff reflects a

389

1Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2005 (PDF), Facility Representative Program Performance 1Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives. and reported to Headquarters program offices for evaluation and feedback in order to improve the FR Program. As of March 31st, 2005, 88% of all FRs were fully qualified, up from 86% the previous quarter, and exceeding the DOE goal of 80%. Several of the new FRs hired recently completed qualifications. Eighteen of 27 reporting sites meet the goal of FR qualifications

390

4Q CY2004 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4 (PDF), Facility Representative Program Performance 4 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from October to December 2004. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the FR program. As of December 31, 2004, 86% of all FRs were fully qualified,down from 89% the previous quarter, and exceeding the DOE goal of 80%. Several sites added new FRs or switched FRs from their exisiting facilities to new facilities, reducing the overall qualification rate.

391

2Q CY2004 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2004 (PDF), Facility Representative Program Performance 2Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from April to June 2004. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the FR program. As of June 30, 2004, 89% of all FRs were fully qualified , exceeding the DOE goal of 80%, but down slightly from the previous quarter. Twenty of 28 reporting sites meet the goal for FR qualifications. Overall FR staffing is at 85% of the levels needed per the staffing

392

3Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2005 (PDF), Facility Representative Program Performance 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. As of September 30,2005, 84% of all FRs were fully qualified , down from 87% the previous quarter, but exceeding the DOE goal of 80%. Several sites shifted fully-qualifed FRs to new facilities, thus requiring new qualifications. Although the overall percentage of fully qualified FRS

393

3Q CY2004 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2004 (PDF), Facility Representative Program Performance 3Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from July to September 2004. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the FR program. As of September 30, 2004, 89% of all FRs were fully qualified, the same as last quarter, and exceeding the DOE goal of 80%. Twenty of 28 reporting sites meet the goal for FR qualifications. Overall FR stadding is at 85% of the levels needed per the staffing analysis methodology in

394

2Q CY2009 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2009 (PDF), Facility Representative Program Performance 2Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2009. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 77% Fully Qualified (last quarter was 78%) 90% Staffing Level ( last Quarter was 90%); 45% Time Spent in the Field (DOE goal is>40%); and 73% Time Spent in Oversight Activites (DOE Goal is > 65%)"

395

4Q CY2000, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Department of Energy Washington, DC 20585 February 26,2001 MEMORANDUM FOR DISTRIBUTION FROM: seph Arango, Facility Representative Program Manager (S-3.1) SUBJECT: Facility Representative Program Performance Indicators Quarterly Report The Facility Representative Program Performance Indicators Quarterly Report is attached, covering the period from October to December 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, 063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definitions of the PIs from the Standard are also attached for your use in evaluating the data. I intend to continue to provide this summary information to you quarterly. These provide

396

4Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2010 (PDF), Facility Representative Program Performance 4Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period October through December 2010. Data for these indicators were gathered by Field Elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report are presented below: FR Staffing/Qualification/Oversight Data * DOE was staffed at 184 FR Full Time Equivalents (FTEs) which is 92

397

4Q CY2008 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2008 (PDF), Facility Representative Program Performance 4Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2008. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 76% Fully Qualified ( last Quarter was 80%) 89% Staffing Level (last Quarter was 89%) 44% Time Spent in the Field ( Department of Energy)(DOE) goal is > 40%) 73% Time Spent in Oversight Activites (DOE Goal is> 65%)"

398

The suppression of fluorescence peaks in energy-dispersive X-ray diffraction  

Science Journals Connector (OSTI)

It is shown experimentally that diffraction peaks which are normally obscured by fluorescence peaks in energy-dispersive X-ray diffraction can be revealed by tuning of the X-ray tube excitation voltage in order to suppress the fluorescence peaks.

Hansford, G.M.

2014-09-30T23:59:59.000Z

399

Polyribosomes in Rat Tissues: IV. On the Abnormal Dimer Peak in Hepatomas  

Science Journals Connector (OSTI)

...previously (11) that the dimer peak which is present in both the...between the monomer and dimer peaks. Also only slight changes are...height of the monomer and dimer peaks when the Novikoff hepatoma was...in an equal volume of mineral oil 12 hr before removal of the...

Thomas E. Webb and Van R. Potter

1966-05-01T23:59:59.000Z

400

Result Demonstration Report Pigweed Control in Grain Sorghum Using Peak. 1996 to 1999  

E-Print Network [OSTI]

74 78 Peak + Methylated Oil 0.75 oz + 1 pt 78 88 93 1) WAT = Weeks after treatment application. #12Result Demonstration Report Pigweed Control in Grain Sorghum Using Peak. 1996 to 1999 Brent Bean Summary Studies were conducted from 1996 to 1999 to evaluate pigweed control in grain sorghum using Peak

Mukhtar, Saqib

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Structure and heat capacity of Ne and Xe adsorbed on a bundle of carbon nanotubes  

E-Print Network [OSTI]

The structural and thermal properties of Ne and Xe gases adsorbed on the outer surface of a large nanotube bundle have been evaluated with computer simulation. The potential energy model and numerical techniques were used previously to study Ar [N. M. Urban, S. M. Gatica, M. W. Cole, and J. L. Riccardo, ``Correlation functions and thermal properties of Ar adsorbed on the external surface of a bundle of carbon nanotubes'', Phys. Rev. B 71, 245410 (2005)]. Heat capacity results for Ne and Xe exhibit peaks associated with reordering and ``stripe'' melting transitions for these gases.

Daniel E. Shai; Nathan M. Urban; Milton W. Cole

2007-02-08T23:59:59.000Z

402

Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay  

Science Journals Connector (OSTI)

We report on the application of a simple and versatile antioxidant capacity assay for dietary polyphenols, vitamin C and vitamin E utilizing the copper(II)-neocuproine (Cu(II)-Nc) reagent as the chromogenic ox...

Re?at Apak; Kubilay Gl; Mustafa zyrek; Saliha Esin elik

2008-04-01T23:59:59.000Z

403

Facility Representative Program Performance Indicators for October - December 2010  

Broader source: Energy.gov (indexed) [DOE]

FOR DISTRIBUTION FOR DISTRIBUTION FROM: ANDREW C. LAWRENCE DIRECTOR OFFICE OF NUCLEAR SAFETY, QUALITY ASSURANCE AND ENVIRONMENT OFFICE OF HEALTH, SAFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, October-December (Fourth Quarter Calendar Year 2010) This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period October through December 2010. Data for these indicators were gathered by Field Elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report are presented below:

404

Radionuclide Interaction and Transport in Representative Geologic Media |  

Broader source: Energy.gov (indexed) [DOE]

Radionuclide Interaction and Transport in Representative Geologic Radionuclide Interaction and Transport in Representative Geologic Media Radionuclide Interaction and Transport in Representative Geologic Media The report presents information related to the development of a fundamental understanding of disposal-system performance in a range of environments for potential wastes that could arise from future nuclear fuel cycle alternatives. It addresses selected aspects of the development of computational modeling capability for the performance of storage and disposal options. Topics include radionuclide interaction with geomedia, colloid-facilitated radionuclide transport (Pu colloids), interaction between iodide (accumulate in the interlayer regions of clay minerals) and a suite of clay minerals, adsorption of uranium onto granite and bentonite,

405

Statewide Electrical Energy Cost Savings and Peak Demand Reduction from the IECC Code-Compliant, Single-Family Residences in Texas (2002-2009)  

E-Print Network [OSTI]

peaking plant (i.e., capacity savings), the calculated demand savings in MW were then multiplied by the average capital cost of natural gas combined cycle power plant, $1,165 per kW (Kaplan, 2008) using a 15% reserve margin (Faruqui et al. 2007... to the 2001 and 2006 IECC codes. 72?F Heating, 75?F CoolingSpace Temperature Set point (Simulation adjustment3: Heating 72F, Cooling 75F) (b) Heat Pump House: 0.904 360 0.88 kW (Simulation adjustment3: 1.095 kW) HVAC System Type (a) Electric/Gas...

Kim, H; Baltazar, J.C.; Haberl, J.

406

Kuwait pressing toward preinvasion oil production capacity  

SciTech Connect (OSTI)

Oil field reconstruction is shifting focus in Kuwait as the country races toward prewar production capacity of 2 million b/d. Oil flow last month reached 1.7 million b/d, thanks largely to a massive workover program that has accomplished about as much as it can. By midyear, most of the 19 rigs in Kuwait will be drilling rather than working over wells vandalized by retreating Iraqi troops in February 1991. Seventeen gathering centers are at work, with capacities totaling 2.4 million b/d, according to state-owned Kuwait Oil Co. (KOC). This article describes current work, the production infrastructure, facilities strategy, oil recovery, well repairs, a horizontal pilot project, the drilling program, the constant reminders of war, and heightened tensions.

Tippee, B.

1993-03-15T23:59:59.000Z

407

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Net Available Shell Storage Capacity by PAD District as of September 30, 2013 Net Available Shell Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 Refineries Crude Oil 17,334 831 21,870 1,721 86,629 3,468 4,655 174 39,839 1,230 170,327 7,424 Fuel Ethanol 174 - 175 1 289 - 134 - 92 - 864 1 Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,267 23 11,599 382 28,865 78 641 19 2,412 23 44,784 525 Propane/Propylene (dedicated)

408

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working Storage Capacity by PAD District as of September 30, 2013 Working Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity 1 2 3 4 5 U.S. Total Ending Stocks Utilization Rate 1 Refineries Crude Oil 15,154 17,952 72,858 4,109 35,324 145,397 90,778 62% Fuel Ethanol 151 142 257 114 79 743 482 65% Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,149 10,996 24,902 581 2,219 39,847 19,539 49% Propane/Propylene (dedicated) 3 405 3,710 3,886 54 199 8,254 4,104 NA Motor Gasoline (incl. Motor Gasoline Blending Components)

409

Calculations of Heat-Capacities of Adsorbates  

E-Print Network [OSTI]

PHYSICAL REVIEW B VOLUME 14, NUMBER 7 1 OCTOBER 1976 Calculations of heat capacities of adsorbates W. R. Lawrence and R. E. Allen Department of Physics, Texas A& M University, College Station, Texas 77843 (Received 2 September 1975) The phonon... the substrate has a perfect (100) surface and the adsorbate goes down as a solid monolayer in registry with the substrate. The quasiharmonic approximation was used, and the results for Ne adsorbates were considerably different from those obtained...

LAWRENCE, WR; Allen, Roland E.

1976-01-01T23:59:59.000Z

410

Storage capacity in hot dry rock reservoirs  

DOE Patents [OSTI]

A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

Brown, Donald W. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

411

Reference Buildings by Climate Zone and Representative City: 7 Duluth,  

Broader source: Energy.gov (indexed) [DOE]

7 7 Duluth, Minnesota Reference Buildings by Climate Zone and Representative City: 7 Duluth, Minnesota In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_7a_usa_mn_duluth_pre1980_v1.3_5.0.zip refbldg_7a_usa_mn_duluth_pre1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 3B Los Angeles, California Reference Buildings by Climate Zone and Representative City: 3C San Francisco, California Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois

412

WIPP Representative Selected For National Environmental Justice Advisory  

Broader source: Energy.gov (indexed) [DOE]

WIPP Representative Selected For National Environmental Justice WIPP Representative Selected For National Environmental Justice Advisory Board WIPP Representative Selected For National Environmental Justice Advisory Board March 1, 2012 - 12:00pm Addthis Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. CARLSBAD, N.M. - Organizers say no similar opportunity or conference exists in America. In April, representatives from federal and state

413

Reference Buildings by Climate Zone and Representative City: 6A  

Broader source: Energy.gov (indexed) [DOE]

A A Minneapolis, Minnesota Reference Buildings by Climate Zone and Representative City: 6A Minneapolis, Minnesota In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_6a_usa_mn_minneapolis_post1980_v1.3_5.0.zip refbldg_6a_usa_mn_minneapolis_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 7 Duluth, Minnesota Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois Reference Buildings by Climate Zone and Representative City: 5B Boulder,

414

WIPP Representative Selected For National Environmental Justice Advisory  

Broader source: Energy.gov (indexed) [DOE]

Representative Selected For National Environmental Justice Representative Selected For National Environmental Justice Advisory Board WIPP Representative Selected For National Environmental Justice Advisory Board March 1, 2012 - 12:00pm Addthis Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. CARLSBAD, N.M. - Organizers say no similar opportunity or conference exists in America. In April, representatives from federal and state

415

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

WIPP Representative for Cutting Travel Costs, Greenhouse WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 1, 2012 - 12:00pm Addthis Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. WASHINGTON, D.C. - A representative of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., on Tuesday received the Secretary of Energy's Appreciation Award for her efforts to improve sustainability and reduce travel costs and the number of fleet vehicles. Judy A. McLemore, who works for URS Regulatory and Environmental Services, based in Carlsbad, was honored for helping advance DOE's management and

416

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

1A Miami, Florida Reference Buildings by Climate Zone and Representative City: 1A Miami, Florida In addition to the ZIP file for each building type, you can directly view the...

417

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

B Boulder, Colorado Reference Buildings by Climate Zone and Representative City: 5B Boulder, Colorado In addition to the ZIP file for each building type, you can directly view the...

418

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

A Chicago, Illinois Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois In addition to the ZIP file for each building type, you can directly view the...

419

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

B Phoenix, Arizona Reference Buildings by Climate Zone and Representative City: 2B Phoenix, Arizona In addition to the ZIP file for each building type, you can directly view the...

420

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

7 Duluth, Minnesota Reference Buildings by Climate Zone and Representative City: 7 Duluth, Minnesota In addition to the ZIP file for each building type, you can directly view the...

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

A Baltimore, Maryland Reference Buildings by Climate Zone and Representative City: 4A Baltimore, Maryland In addition to the ZIP file for each building type, you can directly view...

422

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

C Seattle, Washington Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington In addition to the ZIP file for each building type, you can directly view...

423

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

A Atlanta, Georgia Reference Buildings by Climate Zone and Representative City: 3A Atlanta, Georgia In addition to the ZIP file for each building type, you can directly view the...

424

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

8 Fairbanks, Alaska Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska In addition to the ZIP file for each building type, you can directly view the...

425

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

B Las Vegas, Nevada Reference Buildings by Climate Zone and Representative City: 3B Las Vegas, Nevada In addition to the ZIP file for each building type, you can directly view the...

426

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

A Houston, Texas Reference Buildings by Climate Zone and Representative City: 2A Houston, Texas In addition to the ZIP file for each building type, you can directly view the...

427

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

B Helena, Montana Reference Buildings by Climate Zone and Representative City: 6B Helena, Montana In addition to the ZIP file for each building type, you can directly view the...

428

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

C San Francisco, California Reference Buildings by Climate Zone and Representative City: 3C San Francisco, California In addition to the ZIP file for each building type, you can...

429

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

B Los Angeles, California Reference Buildings by Climate Zone and Representative City: 3B Los Angeles, California In addition to the ZIP file for each building type, you can...

430

DOE/Advisory Board Recognize Service of Student Representatives...  

Energy Savers [EERE]

Board Recognize Service of Student Representatives April 16, 2014 - 12:58pm Addthis The Oak Ridge Site Specific Advisory Board (ORSSAB) and the U.S. Department of Energy's (DOE)...

431

August 20, 2014 meeting with DOE representatives regarding the...  

Energy Savers [EERE]

August 20, 2014 meeting with DOE representatives regarding the remand of the DOE Direct Final Rule as it relates to efficiency standards for non-weatherized gas furnaces August 20,...

432

*Official Academic Senate Representative Dean of UC Davis Extension  

E-Print Network [OSTI]

*Official Academic Senate Representative Dean of UC Davis Extension Recruitment Advisory Committee, Health Sciences, Public Policy & Business Programs, UC Davis Extension Chloe Fox Undergraduate Student, International Agricultural Development; Outreach Coordinator, Program for International Energy Technologies

Schladow, S. Geoffrey

433

Appointment of Contracting Officers and Contracting Officer Representatives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish procedures governing the selection, appointment, and termination of contracting officers and for the appointment of contracting officer representatives. Cancels DOE Order 4200.4A. Canceled by DOE O 541.1A.

1996-04-30T23:59:59.000Z

434

W&M Student Elected to Represent American Physical Society's...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W&M Student Elected to Represent American Physical Society's Graduate Student Forum V Gray Valerie Gray, a graduate student at The College of William and Mary and a researcher at...

435

A representative individual from Arrovian aggregation of parametric individual utilities  

E-Print Network [OSTI]

A representative individual from Arrovian aggregation of parametric individual utilities social choice theory Assumptions Assumption on decisive coalitions Assumptions on individual utility functions Assumptions on the social welfare function Results The socially acceptable utility function

436

2Q CY2007, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

0,2007 0,2007 M E M 0 R A N D ; p s ' X Z FROM: M RK B. WHI DEPARTMENTAL REPRESENTATIVE TO THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD OFFICE OF HEALTH, SAFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, April - June (2nd Quarter CY2007) Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2007. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 74% Fully Qualified (last Quarter was 72%) 94% Staffing Level (last Quarter was 9 1 %)

437

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing countries.

438

Simulating a Nationally Representative Housing Sample Using EnergyPlus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulating a Nationally Representative Housing Sample Using EnergyPlus Simulating a Nationally Representative Housing Sample Using EnergyPlus Title Simulating a Nationally Representative Housing Sample Using EnergyPlus Publication Type Report LBNL Report Number LBNL-4420E Year of Publication 2011 Authors Hopkins, Asa S., Alexander B. Lekov, James D. Lutz, and Gregory J. Rosenquist Subsidiary Authors Energy Analysis Department Pagination 55 Date Published March 1 Publisher Lawrence Berkeley National Laboratory City Berkeley ISBN Number LBNL-4420E Abstract This report presents a new simulation tool under development at Lawrence Berkeley National Laboratory (LBNL). This tool uses EnergyPlus to simulate each single-family home in the Residential Energy Consumption Survey (RECS), and generates a calibrated, nationally representative set of simulated homes whose energy use is statistically indistinguishable from the energy use of the single-family homes in the RECS sample. This research builds upon earlier work by Ritchard et al. for the Gas Research Institute and Huang et al. for LBNL. A representative national sample allows us to evaluate the variance in energy use between individual homes, regions, or other subsamples; using this tool, we can also evaluate how that variance affects the impacts of potential policies.

439

Capacity computations of right-turn-on-red using the Highway Capacity Manual  

SciTech Connect (OSTI)

Right-turn-on-red (RTOR) is a traffic control strategy at signalized intersections that allows vehicles to turn right during red phases provided they do not impede the vehicles and pedestrians in green phases. RTOR is primarily a delay and energy conservation measure. Several studies that examined the impact of RTOR on vehicular delays have shown the potential of reducing fuel consumption by about 5 percent on urban streets. The reduction of delay and fuel consumption is related to extra capacity because RTOR allows vehicles to pass through an intersection in red phases. The extra capacity can be significant if an exclusive right-turn lane is provided. The 1985 {ital Highway Capacity Manual} (HCM) provides a powerful technique for evaluating how well an intersection will operate. This technique, however, is less successful in dealing with intersections where RTOR movement is permitted because it requires the analyst to supply RTOR volumes. This situation has led to a need for a formula to compute RTOR capacity. This paper proposes a method to calculate this capacity.

Luh, J.Z. (Langan Engineering Associates, NJ (US)); Lu, Y.J. (Concordia Univ., Loyola Campus, Montreal, PQ (Canada))

1990-04-01T23:59:59.000Z

440

Impact of Smart Grid Technologies on Peak Load to 2050 | Open Energy  

Open Energy Info (EERE)

Impact of Smart Grid Technologies on Peak Load to 2050 Impact of Smart Grid Technologies on Peak Load to 2050 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Impact of Smart Grid Technologies on Peak Load to 2050 Focus Area: Crosscutting Topics: Deployment Data Website: www.iea.org/papers/2011/smart_grid_peak_load.pdf Equivalent URI: cleanenergysolutions.org/content/impact-smart-grid-technologies-peak-l Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: Cost Recovery/Allocation This working paper analyses the evolution of peak load demand to 2050 in four key regions: Organisation for Economic Co-operation and Development

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

1992 Annual Capacity Report. Revision 1  

SciTech Connect (OSTI)

The Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (10 CFR Part 961) requires the Department of Energy (DOE) to issue an Annual Capacity Report (ACR) for planning purposes. This report is the fifth in the series published by DOE. In May 1993, DOE published the 1992 Acceptance Priority Ranking (APR) that established the order in which DOE will allocate projected acceptance capacity. As required by the Standard Contract, the acceptance priority ranking is based on the date the spent nuclear fuel (SNF) was permanently discharged, with the owners of the oldest SNF, on an industry-wide basis, given the highest priority. The 1992 ACR applies the projected waste acceptance rates in Table 2.1 to the 1992 APR, resulting in individual allocations for the owners and generators of the SNF. These allocations are listed in detail in the Appendix, and summarized in Table 3.1. The projected waste acceptance rates for SNF presented in Table 2.1 are nominal and assume a site for a Monitored Retrievable Storage (MRS) facility will be obtained; the facility will initiate operations in 1998; and the statutory linkages between the MRS facility and the repository set forth in the Nuclear Waste Policy Act of 1982, as amended (NWPA), will be modified. During the first ten years following projected commencement of Civilian Radioactive Waste Management System (CRWMS) operation, the total quantity of SNF that could be accepted is projected to be 8,200 metric tons of uranium (MTU). This is consistent with the storage capacity licensing conditions imposed on an MRS facility by the NWPA. The annual acceptance rates provide an approximation of the system throughput and are subject to change as the program progresses.

Not Available

1993-05-01T23:59:59.000Z

442

Temporal and Spatial Deployment of Carbon Dioxide Capture and Storage Technologies across the Representative Concentration Pathways  

SciTech Connect (OSTI)

The Intergovernmental Panel on Climate Changes (IPCC) Fifth Assessment (to be published in 2013-2014) will to a significant degree be built around four Representative Concentration Pathways (RCPs) that are intended to represent four scenarios of future development of greenhouse gas emissions, land use, and concentrations that span the widest range of potential future atmospheric radiative forcing. Under the very stringent climate policy implied by the 2.6 W/m2 overshoot scenario, all electricity is eventually generated from low carbon sources. However, carbon dioxide capture and storage (CCS) technologies never comprise more than 50% of total electricity generation in that very stringent scenario or in any of the other cases examined here. There are significant differences among the cases studied here in terms of how CCS technologies are used, with the most prominent being is the significant expansion of biomass+CCS as the stringency of the implied climate policy increases. Cumulative CO2 storage across the three cases that imply binding greenhouse gas constraints ranges by nearly an order of magnitude from 170GtCO2 (radiative forcing of 6.0W/m2 in 2100) to 1600GtCO2 (2.6W/m2 in 2100) over the course of this century. This potential demand for deep geologic CO2 storage is well within published estimates of total global CO2 storage capacity.

Dooley, James J.; Calvin, Katherine V.

2011-04-18T23:59:59.000Z

443

Parametric study of relay seismic capacity  

Science Journals Connector (OSTI)

An evaluation of the existing relay test data base at Brookhaven National Laboratory (BNL) has indicated that the seismic capacity of a relay may depend on various parameters related to the design or the input motion. In order to investigate the effect of these parameters on the seismic fragility level, BNL has conducted a relay test program. Establishing the correlation between the single frequency fragility test input and the corresponding multifrequency response spectrum (TRS) is also an objective of this test program. The testing has been performed at Wyle Laboratories. This paper discusses the methodology used for testing and presents a brief summary of important test results.

K. Bandyopadhyay; C. Hofmayer

1992-01-01T23:59:59.000Z

444

LEDS Capacity Building and Training Inventory | Open Energy Information  

Open Energy Info (EERE)

LEDS Capacity Building and Training Inventory LEDS Capacity Building and Training Inventory Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve LEDS Capacity Building and Training Activities and Resources Upcoming Capacity Building Events CLEAN shares capacity building activity information to encourage technical institutions to better coordinate efforts and avoid duplication of effort. If you are aware of an upcoming LEDS-related training or capacity building event please add it to the calendar below. Add Capacity Building or Training Event Webinars Title Developer Biopower Tool Webinar National Renewable Energy Laboratory United States Department of Energy Centro de Energías Renovables (CER) CESC-Webinar: Building an Innovation and Entrepreneurship Driven Economy: How Policies Can Foster Risk Capital Investment in Renewable Energy Clean Energy Solutions Center

445

Natural Gas Productive Capacity for the Lower-48 States  

Gasoline and Diesel Fuel Update (EIA)

for the Lower-48 States for the Lower-48 States 6/4/01 Click here to start Table of Contents Natural Gas Productive Capacity for the Lower-48 States Natural Gas Productive Capacity for the Lower-48 States Natural Gas Productive Capacity for the Lower-48 States - Summary - Natural Gas Productive Capacity for the Lower-48 States - Summary - PPT Slide Natural Gas Productive Capacity for the Lower-48 States - Summary - Natural Gas Productive Capacity for the Lower-48 States - Methodology - Natural Gas Productive Capacity for the Lower-48 States - Methodology - Natural Gas Productive Capacity for the Lower-48 States - Methodology - PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide Other Areas PPT Slide PPT Slide PPT Slide

446

U.S. Fuel Ethanol Plant Production Capacity  

Gasoline and Diesel Fuel Update (EIA)

U.S. Fuel Ethanol Plant Production Capacity U.S. Fuel Ethanol Plant Production Capacity Release Date: May 20, 2013 | Next Release Date: May 2014 Previous Issues Year: 2013 2012 2011 Go Notice: Changes to Petroleum Supply Survey Forms for 2013 This is the third release of U.S. Energy Information Administration data on fuel ethanol production capacity. EIA first reported fuel ethanol production capacities as of January 1, 2011 on November 29, 2011. This new report contains production capacity data for all operating U.S. fuel ethanol production plants as of January 1, 2013. U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District Number of Plants 2013 Nameplate Capacity 2012 Nameplate Capacity (MMgal/year) (mb/d) (MMgal/year) (mb/d) PADD 1 4 360 23 316 21

447

A reduction theorem for capacity of positive maps  

E-Print Network [OSTI]

We prove a reduction theorem for capacity of positive maps of finite dimensional C*-algebras, thus reducing the computation of capacity to the case when the image of a nonscalar projection is never a projection.

Erling Stormer

2005-10-06T23:59:59.000Z

448

Evaluation of capacity release transactions in the natural gas industry  

E-Print Network [OSTI]

The purpose of this thesis is to analyze capacity release transactions in the natural gas industry and to state some preliminary conclusions about how the capacity release market is functioning. Given FERC's attempt to ...

Lautzenhiser, Stephen

1994-01-01T23:59:59.000Z

449

Storage and capacity rights markets in the natural gas industry  

E-Print Network [OSTI]

This dissertation presents a different approach at looking at market power in capacity rights markets that goes beyond the functional aspects of capacity rights markets as access to transportation services. In particular, ...

Paz-Galindo, Luis A.

1999-01-01T23:59:59.000Z

450

Economics and Design of Capacity Markets for the Power Sector  

Science Journals Connector (OSTI)

Capacity markets are a means to assure resource adequacy. The need for a capacity market stems from several market failures the most prominent of which is the absence of a robust demand-side. Limited demand response

Peter Cramton; Axel Ockenfels

2012-06-01T23:59:59.000Z

451

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 - 12:19pm Addthis Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE’s vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were reduced by greater than 60 percent. Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE's vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were

452

DOE Order Self Study Modules - DOE STD 1063, Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

63-2011 63-2011 FACILITY REPRESENTATIVES DOE-STD-1063-2011 Familiar Level August 2011 1 DOE-STD-1063-2011 FACILITY REPRESENTATIVES FAMILIAR LEVEL OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to answer the following questions: 1. What are the purpose and scope of DOE-STD-1063-2011? 2. What are the definitions of the terms listed in section 3 of DOE-STD-1063-2011? 3. What are the duties, responsibilities, and authorities of facility representatives (FRs) and other key personnel? 4. What are the requirements of the FR program? 5. What are the Department of Energy (DOE)-wide FR performance indicators (PIs)? 6. How are DOE-wide FR PIs calculated? 7. What are the FR program objectives that should be measured by an FR program

453

SUBJECT: Guidance on Retention of Facility Representative Technical  

Broader source: Energy.gov (indexed) [DOE]

SUBJECT: Guidance on Retention of Facility Representative Technical SUBJECT: Guidance on Retention of Facility Representative Technical Competence during Reductions in Force, 4/21/1998 SUBJECT: Guidance on Retention of Facility Representative Technical Competence during Reductions in Force, 4/21/1998 The Department's Revised Implementation Plan (IP) for Defense Nuclear Facilities Safety Board Recommendation 93-3 renews the Department's commitment to maintaining the technical capability necessary to safely manage and operate defense nuclear facilities. Retaining highly qualified employees in critical technical skills areas is vital to the maintenance of these technical capabilities. The Department has therefore committed in the revised R? to the development of a model that offices can use to proactively manage and preserve critical technical capabilities. During the

454

Facility Representative Program Performance Indicators for October-December 2011  

Broader source: Energy.gov (indexed) [DOE]

2012 2012 MEMORANDUM FOR DISTRIBUTION FROM: JAMES B. O'BRIEN DIRECTOR ~ OFFICE OF :-IDC~AR AFETY OFFICE OF HEAL 'l;H, AFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, October- December 20 ll This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October through December 2011. Data for these indicators were gathered by field elements per Department of Energy (DOE) Technical Standard 1063-2011 , Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report include: FR Staffing/Qualification/Oversight Data * DOE was staffed at 179 FR Full Time Equivalents (FTE), which is 92 percent of the full

455

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 - 12:19pm Addthis Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE’s vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were reduced by greater than 60 percent. Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE's vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were

456

Facility Representative Program Performance Indicators for April - June 2011  

Broader source: Energy.gov (indexed) [DOE]

0 , 2011 MEMORANDUM FOR DISTRIBUTION FROM: JAMES B. O'BRIEN SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, April - June 20 1 I This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period April through June 20 1 1. Data for these indicators were gathered by Field Elements per Department of Energy (DOE) Technical Standard (STD) 1063-20 1 1, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report: FR Staffin~/Qualification/Oversi~ht Data DOE was staffed at 180 FR Full Time Equivalents (FTEs), which is 9 1 percent of the full staffing level (DOE goal is 100 percent).

457

4Q CY2007, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

6, 2008 6, 2008 MEMORANDUM FROM: DEPARTMENTAL REPRESENTATNE TO THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD OFFICE OF HEALTH, SAFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, October - December (4th Quarter CY2007) Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2007. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 83% Fully Qualified (last Quarter was 82%) 85% Staffing Level (last Quarter was 93%) 45% Time Spent in the Field (DOE goal is >40%)

458

Landscape Characterization and Representativeness Analysis for Understanding Sampling Network Coverage  

SciTech Connect (OSTI)

Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.

Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William

2014-08-01T23:59:59.000Z

459

Landscape Characterization and Representativeness Analysis for Understanding Sampling Network Coverage  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.

Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William

460

June 21, 1999 Memo, Facility Representative Program Status  

Broader source: Energy.gov (indexed) [DOE]

June June 21, 1999 MEMORANDUM FOR: Assistant Secretary for Defense Programs Assistant Secretary for Environmental Management Director, Office of Science Director, Office of Nuclear Energy, Science and Technology FROM: John Wilcynski, Director, Office of Field Integration SUBJECT: FACILITY REPRESENTATIVE PROGRAM STATUS Since September, 1993, the Office of Field Management has served as the Department's corporate advocate for the Facility Representative Program. The Facility Representative (FR) is a critical technical position serving as line management's "eyes and ears" for operational safety in our contractor-operated facilities. I recognize the importance of the FR Program, and commit the Office of Field Integration (FI) to its continued crosscutting support. The FI staff continues to work with your staff members and with the Defense Nuclear Facilities

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative,  

Broader source: Energy.gov (indexed) [DOE]

Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative, 12/03 Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative, 12/03 An assessment of the Electrical Safety (ES) program at XXXX was conducted during the week of December XX-XX, 2003. The assessment team evaluated the program using the programmatic areas and specific Lines of Inquiry (LOI) contained in the approved Assessment plan provided. The team consisted of the Facility Representative from National Nuclear Security Administration, as well as ES, Subject Matter Expert support. The assessment plan identified 5 areas of review for Electrical Safety. An integrated process has been established to ensure electrical safety hazards are identified and that adequate controls are defined and

462

Pressure Temperature Log At Silver Peak Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Pressure Temperature Log At Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Silver Peak Area (DOE GTP) Exploration Activity Details Location Silver Peak Area Exploration Technique Pressure Temperature Log Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Pressure_Temperature_Log_At_Silver_Peak_Area_(DOE_GTP)&oldid=511053" Categories: Exploration Activities

463

E-Print Network 3.0 - annihilation coincidence peak Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

peak is seen at 3375 keV with 6000... . the annihilation spectra from the polyethylene and gold tar- ... Source: Golovchenko, Jene A. - Department of Physics, Harvard...

464

RESCHEDULED: Webinar on Material Handling Fuel Cells for Building Electric Peak Shaving Applications  

Broader source: Energy.gov [DOE]

The Fuel Cell Technologies Office will present a live webinar entitled "Material Handling Fuel Cells for Building Electric Peak Shaving Applications".

465

The origin of brucite in hydrothermally altered limestone near Devil Peak, Nevada.  

E-Print Network [OSTI]

??Open-space brucite was identified in veins crosscutting hydrothermally altered limestone near the Devil Peak rhyolite plug in southern Nevada. The brucite occurs with serpentine, calcite, (more)

Knupp, Rhonda L.

1999-01-01T23:59:59.000Z

466

E-Print Network 3.0 - artificial extra peaks Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A L . 2004 American Meteorological Society Summary: with theory, extratropical stochastic wind forces a decadal spectral peak in the tropical and eastern boundary... forcing, with...

467

E-Print Network 3.0 - adduct peak elimination Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in 1,2-eliminations observed for HF loss... peak could be the CF3 + adduct of acrolein ... Source: Morton, Thomas Hellman - Department of Chemistry, University of...

468

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network [OSTI]

combination of the total energy consumption and the peakalso reduces the total energy consumption of the occupancyTotal and Peak Energy Consumption Minimization of Building

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

469

Konsekvenser av Peak Oil i relation till fysisk planering - En fallstudie av Vxj kommun.  

E-Print Network [OSTI]

??Arbetets syfte r att uppmrksamma den problematik som r kopplad till Peak Oil, samt genom att exemplifiera med Vxj kommun, underska p vilket stt fysisk (more)

Edholm, Hedvig

2012-01-01T23:59:59.000Z

470

Food production after peak oil| Oregon's Willamette river basin as a bioregional case study.  

E-Print Network [OSTI]

?? Agriculture will experience radical new challenges in the next forty years. Peak oil, which is likely to occur before 2020, will result in potentially (more)

Hruska, Tracy

2010-01-01T23:59:59.000Z

471

2-M Probe At Desert Peak Area (Sladek, Et Al., 2007) | Open Energy...  

Open Energy Info (EERE)

Sladek, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Desert Peak Area (Sladek, Et Al., 2007) Exploration Activity...

472

Development of high-capacity cathode materials with integrated...  

Broader source: Energy.gov (indexed) [DOE]

to improve rate performance * Optimize composition (Li- and Mn composition) and synthesis conditions * Evaluation of electrochemical properties (capacity, cycling performance...

473

Weak locking capacity of quantum channels can be much larger than private capacity  

E-Print Network [OSTI]

We show that it is possible for the so-called weak locking capacity of a quantum channel [Guha et al., PRX 4:011016, 2014] to be much larger than its private capacity. Both reflect different ways of capturing the notion of reliable communication via a quantum system while leaking almost no information to an eavesdropper; the difference is that the latter imposes an intrinsically quantum security criterion whereas the former requires only a weaker, classical condition. The channels for which this separation is most straightforward to establish are the complementary channels of classical-quantum (cq-)channels, and hence a subclass of Hadamard channels. We also prove that certain symmetric channels (related to photon number splitting) have positive weak locking capacity in the presence of a vanishingly small pre-shared secret, whereas their private capacity is zero. These findings are powerful illustrations of the difference between two apparently natural notions of privacy in quantum systems, relevant also to quantum key distribution (QKD): the older, naive one based on accessible information, contrasting with the new, composable one embracing the quantum nature of the eavesdropper's information. Assuming an additivity conjecture for constrained minimum output Renyi entropies, the techniques of the first part demonstrate a single-letter formula for the weak locking capacity of complements to cq-channels, coinciding with a general upper bound of Guha et al. for these channels. Furthermore, still assuming this additivity conjecture, this upper bound is given an operational interpretation for general channels as the maximum weak locking capacity of the channel activated by a suitable noiseless channel.

Andreas Winter

2014-03-25T23:59:59.000Z

474

Theory of Molecular Machines. I. Channel Capacity of Molecular Machines  

E-Print Network [OSTI]

Theory of Molecular Machines. I. Channel Capacity of Molecular Machines running title: Channel Capacity of Molecular Machines Thomas D. Schneider version = 5.76 of ccmm.tex 2004 Feb 3 Version 5.67 was submitted 1990 December 5 Schneider, T. D. (1991). Theory of molecular machines. I. Channel capacity

Schneider, Thomas D.

475

Electrical Generating Capacities of Geothermal Slim Holes  

SciTech Connect (OSTI)

Theoretical calculations are presented to estimate the electrical generating capacity of the hot fluids discharged from individual geothermal wells using small wellhead generating equipment over a wide range of reservoir and operating conditions. The purpose is to appraise the possibility of employing slim holes (instead of conventional production-size wells) to power such generators for remote off-grid applications such as rural electrification in developing countries. Frequently, the generating capacity desired is less than one megawatt, and can be as low as 100 kilowatts; if slim holes can be usefully employed, overall project costs will be significantly reduced. This report presents the final results of the study. Both self-discharging wells and wells equipped with downhole pumps (either of the ''lineshaft'' or the ''submersible'' type) are examined. Several power plant designs are considered, including conventional single-flash backpressure and condensing steam turbines, binary plants, double-flash steam plants, and steam turbine/binary hybrid designs. Well inside diameters from 75 mm to 300 mm are considered; well depths vary from 300 to 1200 meters. Reservoir temperatures from 100 C to 240 C are examined, as are a variety of reservoir pressures and CO2 contents and well productivity index values.

Pritchett, J.W.

1998-10-01T23:59:59.000Z

476

Thermal capacity of composite floor slabs  

Science Journals Connector (OSTI)

AbstractObjective Thermal building simulation tools take account of the thermal capacity of the walls and floors by a one-dimensional characterization. The objective was to obtain thermal equivalent parameters for ribbed or composite slab elements that can be input into one-dimensional models. Method Transient finite element calculations (FEM) were used to establish the heat transfer to and from composite floors using four deck profiles and for daily heating cycles in compartments with defined heat gains and operating conditions. Results The performance of composite slabs was compared to a concrete flat slab for a typical office in the UK and Germany. It was shown that a deep ribbed slab generates a maximum heat flux of 30.5W/m2 for a 5C temperature variation about the mean, and that the daily heat absorbed by a typical composite slab was 220Wh/m2 floor area. Conclusions Using the thermal capacity of the ribbed floor slabs, the comfort conditions defined in terms of the number of hours over 25C are acceptable for many classes of offices. Practical implications Thermally equivalent properties of ribbed slabs can be used in conventional software to predict the thermal performance.

B. Doering; C. Kendrick; R.M. Lawson

2013-01-01T23:59:59.000Z

477

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 9,072,508 9,104,181 9,111,242 9,117,296 9,132,250 9,171,017 1989-2013 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2013 Lower 48 States 8,988,916 9,020,589 9,027,650 9,033,704 9,048,658 9,087,425 2012-2013 Alabama 35,400 35,400 35,400 35,400 35,400 35,400 2002-2013 Arkansas 21,853 21,853 21,853 21,853 21,853 21,853 2002-2013 California 592,711 592,711 592,711 599,711 599,711 599,711 2002-2013 Colorado 122,086 122,086 122,086 122,086 122,086 122,086 2002-2013

478

Multi-region capacity planning model with contracts of varying duration under uncertainty : a satellite capacity acquisition case study  

E-Print Network [OSTI]

This paper highlights the issues associated with and presents a modeling framework for long-term capacity planning problems constrained in a similar fashion to satellite capacity acquisition. Although ambiguities exist, ...

Lydiard, John M., IV

2014-01-01T23:59:59.000Z

479

Wave Energy Resources Representative Sites Around the Hawaiian Islands  

E-Print Network [OSTI]

Wave Energy Resources for Representative Sites Around the Hawaiian Islands Prepared by: Luis A Foreword This report provides wave energy resource information required to select coastal segments for specific wave-energy-conversion (WEC) technology and to initiate engineering design incorporating

480

Representing and encoding plant architecture: A review Christophe Godin*  

E-Print Network [OSTI]

Review Representing and encoding plant architecture: A review Christophe Godin* CIRAD, Programme de and topological organisation of these components defines the plant architecture. Before the early 1970's-performance computers have become available for plant growth analysis and simulation, trig- gering the development

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "represents peaking capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A Mathematical Programming Model for Scheduling Pharmaceutical Sales Representatives  

E-Print Network [OSTI]

% to nearly 80,000 from 50,000, and that visits by sales representatives to doctors' offices increased ten. In the next section, we present some background material relevant to this research. Then, in Section 3, we instances in Section 4. We present concluding remarks in Section 5. 2. Background For multi

Gautam, Natarajan

482

Representing SN1 Reaction Mechanism Using the Qualitative Process Theory  

E-Print Network [OSTI]

nucleophilic substitution) and the SN2 (bimolecular nucleophilic substitution). Our intention is not to trainRepresenting SN1 Reaction Mechanism Using the Qualitative Process Theory Alicia Tang Y domain remains widely open. The application of Qualitative Process Theory (QPT) in organic reaction

Bailey-Kellogg, Chris

483

Appointment of Contracting Officers and Contracting Officer's Representatives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish procedures governing the selection, appointment, and termination of contracting officers and for the appointment of contracting officer's representatives. To ensure that only trained and qualified procurement and financial assistance professionals, within the scope of this Order, serve as contracting officers. Cancels DOE O 541.1. Canceled by DOE O 541.1B.

2000-10-27T23:59:59.000Z

484

Anthropogenic Biomes ver. 1 Anthropogenic biomes represent heterogeneous  

E-Print Network [OSTI]

defined by population density and vegetation cover. The 21 biomes are grouped into six major categoriesAnthropogenic Biomes ver. 1 Africa Anthropogenic biomes represent heterogeneous landscape mosaics: Populated irrigated cropland 34: Populated rainfed cropland 35: Remote croplands 41: Residential rangelands

Columbia University

485

IAEA Planning and Economic Studies Section (PESS) Capacity Building | Open  

Open Energy Info (EERE)

IAEA Planning and Economic Studies Section (PESS) Capacity Building IAEA Planning and Economic Studies Section (PESS) Capacity Building Jump to: navigation, search Tool Summary Name: IAEA Planning and Economic Studies Section (PESS) Capacity Building Agency/Company /Organization: International Atomic Energy Agency Sector: Energy Focus Area: Non-renewable Energy, Energy Efficiency, Renewable Energy Topics: Pathways analysis Resource Type: Software/modeling tools, Training materials References: IAEA PESS capacity building[1] Logo: IAEA Planning and Economic Studies Section (PESS) Capacity Building "PESS offers assistance to Member States, particularly from developing regions, to improve their energy system analysis & planning capabilities. Assistance can include: transferring modern planning methods, tools and databanks

486

UNDP-Low Emission Capacity Building Programme | Open Energy Information  

Open Energy Info (EERE)

Programme Programme Jump to: navigation, search Logo: UNDP-Low Emission Capacity Building Programme Name UNDP-Low Emission Capacity Building Programme Agency/Company /Organization United Nations Development Programme (UNDP), European Union Sector Climate, Energy, Land, Water Topics Low emission development planning Resource Type Training materials Website http://www.undp.org/climatestr References UNDP-Low Emission Capacity Building Programme[1] UNDP-Low Emission Capacity Building Programme Screenshot "This collaborative programme aims to strengthen technical and institutional capacities at the country level, while at the same time facilitating inclusion and coordination of the public and private sector in national initiatives addressing climate change. It does so by utilizing the

487

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

488

Plasmonic Nature of the Terahertz Conductivity Peak in Single-Wall Carbon Nanotubes  

E-Print Network [OSTI]

Plasmonic Nature of the Terahertz Conductivity Peak in Single-Wall Carbon Nanotubes Qi Zhang, Erik resonance is expected to occur in metallic and doped semiconducting carbon nanotubes in the terahertz conductivity peak commonly observed for carbon nanotube ensembles remains controversial. Here we present

Kono, Junichiro

489

Distributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers  

E-Print Network [OSTI]

Rack PDU BackupMain Bus-type power network Utility Diesel Generator ATS PDU Server Rack Server RackDistributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers Baris Aksanli, Eddie Pettis and Tajana S. Rosing UCSD, Google Stored energy in batteries can be used to cap peak power

Simunic, Tajana

490

20 th International Sacramento Peak Summer Workshop Advanced Solar Polarimetry -Theory, Observation, and Instrumentation  

E-Print Network [OSTI]

in the Quiet Sun Alexei A. Pevtsov National Solar Observatory/Sacramento Peak, PO Box 62, Sunspot, New Mexico20 th International Sacramento Peak Summer Workshop Advanced Solar Polarimetry - Theory in the solar activity on all spatial scales. It is believed that the strong magnetic #12;eld (active regions

Pevtsov, Alexei A.

491

An Approximate Method to Assess the Peaking Capability of the NW Hydroelectric System  

E-Print Network [OSTI]

DRAFT 1 An Approximate Method to Assess the Peaking Capability of the NW Hydroelectric System September 26, 2005 The best way to assess the hydroelectric system's peaking capability is to simulate its. This model simulates the operation of the major hydroelectric projects over a one-week (168 hour) period

492

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2006-2030) for Electricity Capacity and Generation by Fuel Tables (2006-2030) International Energy Outlook 2009 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2006-2030) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

493

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) International Energy Outlook 2008 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Formats Data Table Titles (1 to 12 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

494

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2007-2035) for Electricity Capacity and Generation by Fuel Tables (2007-2035) International Energy Outlook 2010 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2007-2035) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Appendix H. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

495

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building (Redirected from US EPA GHG Inventory Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing

496

InSAR At Desert Peak Area (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

InSAR At Desert Peak Area (Laney, 2005) InSAR At Desert Peak Area (Laney, 2005) Exploration Activity Details Location Desert Peak Area Exploration Technique InSAR Activity Date Usefulness not indicated DOE-funding Unknown Notes InSAR Ground Displacement Analysis, Gary Oppliger and Mark Coolbaugh. This project supports increased utilization of geothermal resources in the Western United States by developing basic measurements and interpretations that will assist reservoir management and expansion at Bradys, Desert Peak and the Desert Peak EGS study area (80 km NE of Reno, Nevada) and will serve as a technology template for other geothermal fields. Raw format European Space Agency (ESA) ERS 1/2 satellite synthetic Aperture Radar (SAR) radar scenes acquired from 1992 through 2002 are being processed to

497

On the portents of peak oil (and other indicators of resource scarcity)  

Science Journals Connector (OSTI)

Economists have studied various indicators of resource scarcity but largely ignored the phenomenon of peaking due to its connection to non-economic (physical) theories of resource exhaustion. I consider peaking from the economic point of view, where economic forces determine the shape of the equilibrium extraction path. Within that framework, I ask whether the timing of peak production reveals anything useful about scarcity. I find peaking to be an ambiguous indicator. If someone announced the peak would arrive earlier than expected, and you believed them, you would not know whether the news was good or bad. However, I also show that the traditional economic indicators of resource scarcity (price, cost, and rent) fare no better, and argue that previous studies have misconstrued the connection between changes in underlying scarcity and movements in these traditional indicators.

James L. Smith

2012-01-01T23:59:59.000Z

498

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 64,000 64,000 64,000 64,000 64,000 64,000 1988-2012 Salt Caverns

499

Ohio Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 572,477 572,477 580,380 580,380 580,380 577,944 1988-2012

500

Texas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 690,678 740,477 766,768 783,579 812,394 831,190 1988-2012