Powered by Deep Web Technologies
Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Distributed Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

2

CONSULTANT REPORT DISTRIBUTED GENERATION  

E-Print Network [OSTI]

Energy Jobs Plan, Governor Brown established a 2020 goal of 12,000 megawatts of localized renewable energy development, or distributed generation, in California. In May 2012, Southern California Edison, renewables, interconnection, integration, electricity, distribution, transmission, costs. Please use

3

GASIFICATION FOR DISTRIBUTED GENERATION  

SciTech Connect (OSTI)

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01T23:59:59.000Z

4

Distributively generated lattices Grigore Calugareanu  

E-Print Network [OSTI]

Distributively generated lattices Grigore Calugareanu Abstract In 1938 [6] Ore proved the following and distributive is equivalent to locally cyclic (i.e. each finite set of elements generates a cyclic group). A lattice is called distributively generated [resp. cycle generated] if every element is a join

Cãlugãreanu, Grigore

5

Arnold Schwarzenegger DISTRIBUTED GENERATION DRIVETRAIN  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor DISTRIBUTED GENERATION DRIVETRAIN FOR WINDPOWER APPLICATION Prepared in this report. #12;ENERGY INNOVATIONS SMALL GRANT (EISG) PROGRAM INDEPENDENT ASSESSMENT REPORT (IAR) DISTRIBUTED GENERATION DRIVETRAIN FOR WINDPOWER APPLICATION EISG AWARDEE Dehlsen Associates, LLC 7985 Armas Canyon Road

6

DISTRIBUTED GENERATION AND COGENERATION POLICY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION DISTRIBUTED GENERATION AND COGENERATION POLICY ROADMAP FOR CALIFORNIA to the development of this report by the Energy Commission's Distributed Generation Policy Advisory Team; Melissa;ABSTRACT This report defines a year 2020 policy vision for distributed generation and cogeneration

7

EIA - Distributed Generation in Buildings  

Gasoline and Diesel Fuel Update (EIA)

Previous reports Previous reports Distributed Generation in Buildings - AEO2005 Modeling Distributed Electricity Generation in the NEMS Buildings Models - July 2002 Modeling Distributed Generation in the Buildings Sectors Supplement to the Annual Energy Outlook 2013 - Release date: August 29, 2013 Distributed and dispersed generation technologies generate electricity near the particular load they are intended to serve, such as a residential home or commercial building. EIA defines distributed generation (DG) as being connected to the electrical grid and intended to directly offset retail sales, and dispersed generation as being off-grid and often used for remote applications where grid-connected electricity is cost-prohibitive. Dispersed generation in the buildings sector is not currently gathered by

8

Modeling distributed generation in the buildings sectors  

Gasoline and Diesel Fuel Update (EIA)

Modeling distributed generation Modeling distributed generation in the buildings sectors August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. July 2013 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors 1

9

Distributed Generation Status Update  

Broader source: Energy.gov (indexed) [DOE]

0 DOE Peer Review Presentation 0 DOE Peer Review Presentation © Chevron 2010 CERTS Microgrid Demonstration with Large scale Energy Storage & Renewable Generation November 5, 2010 Presented By: Craig Gee, Project Manager (for Mr. Eduardo Alegria - Principal Investigator) Energy Solutions November 2010 DOE Peer Review Presentation © Chevron 2010 Agenda * Introduction - Who we are * Project Team & Site * Project Purpose & Objectives * Project Impacts * System Elements * Project Status * Research Elements * Recent Developments in California * Questions & Comments November 2010 DOE Peer Review Presentation © Chevron 2010 Chevron Energy Solutions Designed & Implemented over 900 Projects in the U.S.  Chevron ES, a division of Chevron USA, Inc. is committed to delivering economically & environmentally advantageous green

10

Renewable Energy: Distributed Generation Policies and Programs...  

Energy Savers [EERE]

Distributed Generation Policies and Programs Distributed generation is the term used when electricity is generated from sources, often renewable energy sources, near the point of...

11

Distributions: generators of observations What about reality?  

E-Print Network [OSTI]

Distributions: generators of observations What about reality? An example: homeopathy Conclusion Models, Estimation and Reality #12;Distributions: generators of observations What about reality? An example: homeopathy Conclusion 1. Distributions: generators of observations Statistical modelling is based

Hennig, Christian

12

GENERATING TEXT DESCRIPTIONS FOR GEOGRAPHICALLY DISTRIBUTED SENSORS  

E-Print Network [OSTI]

GENERATING TEXT DESCRIPTIONS FOR GEOGRAPHICALLY DISTRIBUTED SENSORS Martin Molina and Javier generation of geographic descriptions in natural language for geographically distributed sensors. We describe generation of geographic descriptions in natural language for geographically distributed sensors. We describe

Molina, Martín

13

Other Distributed Generation Technologies | Open Energy Information  

Open Energy Info (EERE)

Generation Technologies Incentives Retrieved from "http:en.openei.orgwindex.php?titleOtherDistributedGenerationTechnologies&oldid267183...

14

Definition: Distributed generation | Open Energy Information  

Open Energy Info (EERE)

generation generation Jump to: navigation, search Dictionary.png Distributed generation A term used by the power industry to describe localized or on-site power generation[1] View on Wikipedia Wikipedia Definition Distributed generation, also called on-site generation, dispersed generation, embedded generation, decentralized generation, decentralized energy or distributed energy, generates electricity from many small energy sources. Most countries generate electricity in large centralized facilities, such as fossil fuel, nuclear, large solar power plants or hydropower plants. These plants have excellent economies of scale, but usually transmit electricity long distances and can negatively affect the environment. Distributed generation allows collection of energy from many

15

Network Reconfiguration at the Distribution System with Distributed Generators  

Science Journals Connector (OSTI)

This article proposes a novel model for distribution network reconfiguration to meet current distribution system operating demands. In the model the connection of distributed generators to distribution system is ...

Gao Xiaozhi; Li Linchuan; Xue Hailong

2010-01-01T23:59:59.000Z

16

Pseudoabsence Generation Strategies for Species Distribution Models  

E-Print Network [OSTI]

Pseudoabsence Generation Strategies for Species Distribution Models Brice B. Hanberry1 *, Hong S: Pseudoabsence generation strategy completely affected the area predicted as present for species distribution) Pseudoabsence Generation Strategies for Species Distribution Models. PLoS ONE 7(8): e44486. doi:10.1371/ journal

He, Hong S.

17

Air Quality Impact of Distributed Generation of Electricity  

E-Print Network [OSTI]

Distributed Generators .from a typical distributed generator. Therefore, there is aStations 3.3.1 Distributed Generators The physical

Jing, Qiguo

2011-01-01T23:59:59.000Z

18

Impacts of distributed generation on Smart Grid.  

E-Print Network [OSTI]

??With the concept of Smart Grid, there are high possibilities that the interconnection of distributed generation issues can be solved and minimised. This thesis discusses (more)

Hidayatullah, Nur Asyik

2011-01-01T23:59:59.000Z

19

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

Distributed Generation Dispatch Optimization Under Various Electricity Tariffs which generatorsDistributed Generation Dispatch Optimization Under Various Electricity Tariffs no-DG The generator

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

20

A reliability assessment methodology for distribution systems with distributed generation  

E-Print Network [OSTI]

Generation and Micro-Grid Networks. v TABLE OF CONTENTS CHAPTER Page I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B. Distribution System Reliability... Generation and Micro-Grid Networks. v TABLE OF CONTENTS CHAPTER Page I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B. Distribution System Reliability...

Duttagupta, Suchismita Sujaya

2006-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Distributed Generation and Grid Interconnection  

Science Journals Connector (OSTI)

Thus far we have considered point compensation and the correction of the voltage or current at a particular location in the network. This chapter considers the voltage profile of lines with distributed loads a...

Arindam Ghosh; Gerard Ledwich

2002-01-01T23:59:59.000Z

22

Abatement of Air Pollution: Distributed Generators (Connecticut) |  

Broader source: Energy.gov (indexed) [DOE]

Distributed Generators (Connecticut) Distributed Generators (Connecticut) Abatement of Air Pollution: Distributed Generators (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection

23

Nonlinear DSTATCOM controller design for distribution network with distributed generation to enhance voltage stability  

E-Print Network [OSTI]

Nonlinear DSTATCOM controller design for distribution network with distributed generation Accepted 19 June 2013 Keywords: Distributed generation Distribution network DSATACOM Partial feedback connected to a distribution network with distributed generation (DG) to regulate the line voltage

Pota, Himanshu Roy

24

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network [OSTI]

option on natural gas generation, which increases in valueL ABORATORY Distributed Generation Investment by a MicrogridORMMES06 Distributed Generation Investment by a Microgrid

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

25

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

States. Annex 8 provides a list of software tools for analysing various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of...

26

Distributed generation - the fuel processing example  

SciTech Connect (OSTI)

The increased costs of transportation and distribution are leading many commercial and industrial firms to consider the on-site generation for energy and other commodities used in their facilities. This trend has been accelerated by the development of compact, efficient processes for converting basic raw materials into finished services at the distributed sites. Distributed generation with the PC25{trademark} fuel cell power plant is providing a new cost effective technology to meet building electric and thermal needs. Small compact on-site separator systems are providing nitrogen and oxygen to many industrial users of these gases. The adaptation of the fuel processing section of the PC25 power plant for on-site hydrogen generation at industrial sites extends distributed generation benefits to the users of industrial hydrogen.

Victor, R.A. [Praxair, Inc., Tonawanda, NY (United States); Farris, P.J.; Maston, V. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

27

Implementation of a Distributed Pseudorandom Number Generator  

Science Journals Connector (OSTI)

In parallel Monte Carlo simulations, it is highly desirable to have a system of pseudo-random number generators that has good statistical properties and allows ... processes. In this work, we discuss a distributed

Jian Chen; Paula Whitlock

1995-01-01T23:59:59.000Z

28

Regulatory Considerations for Developing Distributed Generation Projects  

Broader source: Energy.gov (indexed) [DOE]

Regulatory Considerations for Developing Distributed Generation Regulatory Considerations for Developing Distributed Generation Projects Webinar Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 11:30AM to 1:00PM MDT The purpose of this webinar is to educate NRECA and APPA members, Tribes, and federal energy managers about a few of the regulatory issues that should be considered in developing business plans for distributed generation projects. This webinar is sponsored by the DOE Office of Indian Energy Policy and Programs, DOE Energy Efficiency and Renewable Energy Tribal Energy Program, Western Area Power Administration, DOE Federal Energy Management Program, DOE Office of Electricity Delivery and Energy Reliability, National Rural Electric Cooperative Association, and the American Public Power

29

Distributed Generation Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Systems Inc Distributed Generation Systems Inc Name Distributed Generation Systems Inc Address 200 Union Blvd Place Lakewood, Colorado Zip 80228 Sector Wind energy Product Developer of electricity generation wind power facilities Website http://www.disgenonline.com/ Coordinates 39.718048°, -105.1324055° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.718048,"lon":-105.1324055,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Distributed Generation System Characteristics and Costs in the Buildings Sector  

Gasoline and Diesel Fuel Update (EIA)

Distributed Generation System Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies.

31

FCT Technology Validation: Stationary/Distributed Generation Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stationary/Distributed Stationary/Distributed Generation Projects to someone by E-mail Share FCT Technology Validation: Stationary/Distributed Generation Projects on Facebook Tweet about FCT Technology Validation: Stationary/Distributed Generation Projects on Twitter Bookmark FCT Technology Validation: Stationary/Distributed Generation Projects on Google Bookmark FCT Technology Validation: Stationary/Distributed Generation Projects on Delicious Rank FCT Technology Validation: Stationary/Distributed Generation Projects on Digg Find More places to share FCT Technology Validation: Stationary/Distributed Generation Projects on AddThis.com... Home Transportation Projects Stationary/Distributed Generation Projects DOE Projects Non-DOE Projects Integrated Projects Quick Links Hydrogen Production

32

Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui  

E-Print Network [OSTI]

1 Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui University's decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long. KEYWORDS. OR in Energy; Distributed Generation; Real Options; Optimal Investment. 1. INTRODUCTION

Guillas, Serge

33

Consequences of Fault Currents Contributed by Distributed Generation  

E-Print Network [OSTI]

Consequences of Fault Currents Contributed by Distributed Generation Intermediate Project Report Currents Contributed by Distributed Generation Intermediate Report for the Project "New Implications in systems with distributed generation. The main concept described is that fault current throughout power

34

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network [OSTI]

flexibility. The DG investment opportunity is similar to aDistributed Generation Investment by a Microgrid Under06 Distributed Generation Investment by a Microgrid Under

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

35

Fuel Cell Comparison of Distributed Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power...

36

Worst Case Scenario for Large Distribution Networks with Distributed Generation  

E-Print Network [OSTI]

, tides, and geothermal heat, is the best choice as alternative source of energy. The interconnection and distribution networks, finally to the electric energy consumers. The life style of a nation is measured of these renewable energy sources and other forms of small generation such as combined heat and power (CHP) units

Pota, Himanshu Roy

37

NREL: Energy Analysis - Distributed Generation Energy Technology Capital  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capital Costs Capital Costs Transparent Cost Database Button The following charts indicate recent capital cost estimates for distributed generation (DG) renewable energy technologies. The estimates are shown in dollars per installed kilowatt of generating capacity or thermal energy capacity for thermal technologies. The charts provide a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. The red horizontal lines represent the first standard deviation of the mean. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) sponsored the distributed generation data used within these charts. If you are seeking utility-scale technology capital cost estimates, please visit the Transparent Cost Database website for NREL's information

38

NREL: Energy Analysis - Distributed Generation Energy Technology Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operations and Maintenance Costs Operations and Maintenance Costs Transparent Cost Database Button The following charts indicate recent operations and maintenance (O&M) cost estimates for distributed generation (DG) renewable energy technologies. The charts provide a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. The red horizontal lines represent the first standard deviation of the mean. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) sponsored the distributed generation data used within these charts. If you are seeking utility-scale technology operations and maintenance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation.

39

Efficient Generation of PH-distributed Random Gabor Horvath2  

E-Print Network [OSTI]

Efficient Generation of PH-distributed Random Variates G´abor Horv´ath2 , Philipp Reinecke1 , Mikl approaches. Simulations require the efficient generation of random variates from PH distributions. PH generation of PH distributed variates. Key words: PH distribution, pseudo random number generation. 1

Telek, Miklós

40

Property:Distributed Generation System Power Application | Open Energy  

Open Energy Info (EERE)

Application Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Power Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Based Load + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Based Load + Distributed Generation Study/Arrow Linen + Based Load + Distributed Generation Study/Dakota Station (Minnegasco) + Based Load +, Backup + Distributed Generation Study/Elgin Community College + Based Load +, Backup + Distributed Generation Study/Emerling Farm + Based Load + Distributed Generation Study/Floyd Bennett + Based Load + Distributed Generation Study/Harbec Plastics + Based Load + Distributed Generation Study/Hudson Valley Community College + Based Load +

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Automatically Generating Symbolic Prefetches for Distributed Transactional Memories  

E-Print Network [OSTI]

Automatically Generating Symbolic Prefetches for Distributed Transactional Memories Alokika Dash static compiler analysis that can automatically generate symbolic prefetches for distributed applications and Brian Demsky University of California, Irvine Abstract. Developing efficient distributed applications

Boyer, Edmond

42

Compiler Techniques for Determining Data Distribution and Generating Communication Sets on DistributedMemory Multicomputers 1  

E-Print Network [OSTI]

Compiler Techniques for Determining Data Distribution and Generating Communication Sets and generating communication sets on distributed memory multicomputers. First, we propose a dynamic programming; 1 Introduction Arrays distribution and communication sets generation are two problems we must solve

Chen, Sheng-Wei

43

An Optimized Adaptive Protection Scheme for Distribution Systems Penetrated with Distributed Generators  

Science Journals Connector (OSTI)

An intelligent adaptive protection scheme for distribution systems penetrated with distributed generators is proposed in this chapter. The scheme...

Ahmed H. Osman; Mohamed S. Hassan

2014-01-01T23:59:59.000Z

44

Property:Distributed Generation System Enclosure | Open Energy Information  

Open Energy Info (EERE)

System Enclosure System Enclosure Jump to: navigation, search This is a property of type String. The allowed values for this property are: Indoor Outdoor Dedicated Shelter Pages using the property "Distributed Generation System Enclosure" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Indoor + Distributed Generation Study/615 kW Waukesha Packaged System + Outdoor + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Outdoor + Distributed Generation Study/Arrow Linen + Outdoor + Distributed Generation Study/Dakota Station (Minnegasco) + Outdoor + Distributed Generation Study/Elgin Community College + Indoor + Distributed Generation Study/Emerling Farm + Dedicated Shelter + Distributed Generation Study/Floyd Bennett + Outdoor +

45

Consequences of Fault Currents Contributed by Distributed Generation  

E-Print Network [OSTI]

Consequences of Fault Currents Contributed by Distributed Generation Supplemental Project Report Currents Contributed by Distributed Generation Natthaphob Nimpitiwan Gerald Heydt Research Project Team distributed generation (DG) is growing in the over- all generation mix due in part to state and national

46

Reducing the Cost of Generating APH-distributed Random Numbers  

E-Print Network [OSTI]

Reducing the Cost of Generating APH-distributed Random Numbers Philipp Reinecke1 , Mikl´os Telek2 for generating PH-distributed random numbers. In this work, we discuss algorithms for generating random numbers from PH distributions and propose two algorithms for reducing the cost associated with generating

Telek, Miklós

47

Advanced Distributed Generation LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Advanced Distributed Generation LLC Address 200 West Scott Park Drive, MS # 410 Place Toledo, Ohio Zip 43607 Sector Solar Product Agriculture; Consulting; Installation; Maintenance and repair; Retail product sales and distribution Phone number 419-725-3401 Website http://www.advanced-dg.com Coordinates 41.6472294°, -83.5975882° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6472294,"lon":-83.5975882,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

Integrated, Automated Distributed Generation Technologies Demonstration  

SciTech Connect (OSTI)

The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Departments stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: Installation of a 100 kW wind turbine. Installation of a 300 kW battery storage system. Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: 100 kW new technology waste heat generation unit. Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

Jensen, Kevin

2014-09-30T23:59:59.000Z

49

Property:Distributed Generation System Application | Open Energy  

Open Energy Info (EERE)

System Application System Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Application" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Combined Heat and Power + Distributed Generation Study/615 kW Waukesha Packaged System + Combined Heat and Power + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Combined Heat and Power + Distributed Generation Study/Arrow Linen + Combined Heat and Power + Distributed Generation Study/Dakota Station (Minnegasco) + Combined Heat and Power + Distributed Generation Study/Elgin Community College + Combined Heat and Power + Distributed Generation Study/Emerling Farm + Combined Heat and Power +

50

Property:Distributed Generation Prime Mover | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Distributed Generation Prime Mover Jump to: navigation, search Property Name Distributed Generation Prime Mover Property Type Page Description Make and model of power sources. Pages using the property "Distributed Generation Prime Mover" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Ingersoll Rand I-R PowerWorks 70 + Distributed Generation Study/615 kW Waukesha Packaged System + Waukesha VGF 36GLD + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Aisin Seiki G60 + Distributed Generation Study/Arrow Linen + Coast Intelligen 150-IC with ECS + Distributed Generation Study/Dakota Station (Minnegasco) + Capstone C30 +

51

Fuel cycle comparison of distributed power generation technologies.  

SciTech Connect (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

52

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

53

A DISTRIBUTED SHARED KEY GENERATION PROCEDURE USING FRACTIONAL KEYS  

E-Print Network [OSTI]

A DISTRIBUTED SHARED KEY GENERATION PROCEDURE USING FRACTIONAL KEYS R. Poovendran, M. S. Corson, J}@isr.umd.edu ABSTRACT W e present a new class of distributed key generation and recovery algorithms suitable for group) with a Group Con- troller (GC) which can generate and distribute the keys. However, in these approaches

Baras, John S.

54

Generating Probability Distributions using Multivalued Stochastic Relay Circuits  

E-Print Network [OSTI]

Generating Probability Distributions using Multivalued Stochastic Relay Circuits David Lee Dept as well as for generating arbitrary distributions from unbiased bits. An equally interesting, but less networks that generate arbitrary probability distributions in an optimal way? In this paper, we study

Bruck, Jehoshua (Shuki)

55

Learning to model sequences generated by switching distributions Yoav Freund  

E-Print Network [OSTI]

Learning to model sequences generated by switching distributions Yoav Freund AT&T Bell Labs 600 distributions learning problem. A sequence S = oe 1 oe 2 : : : oe n , over a finite alphabet \\Sigma is generated run is generated by independent random draws from a distribution ~ p i over \\Sigma, where ~p i

Freund, Yoav

56

ON RANDOM VARIATE GENERATION FOR THE GENERALIZED HYPERBOLIC SECANT DISTRIBUTIONS  

E-Print Network [OSTI]

ON RANDOM VARIATE GENERATION FOR THE GENERALIZED HYPERBOLIC SECANT DISTRIBUTIONS Luc Devroye School distribution. Finally, we give a generator for the nef--ghs distribution. There are, of course, two things we of Computer Science McGill University Abstract. We give random variate generators for the generalized

Devroye, Luc

57

A FULLY DISTRIBUTED PRIME NUMBERS GENERATION USING THE WHEEL SIEVE  

E-Print Network [OSTI]

A FULLY DISTRIBUTED PRIME NUMBERS GENERATION USING THE WHEEL SIEVE Gabriel Paillard Laboratoire d distributed approach for generating all prime numbers up to a given limit. From Er- atosthenes, who elaborated. In this work, we propose a new distributed algorithm which generates all prime num- bers in a given finite

Paris-Sud XI, Université de

58

Practical Stability Assessement of Distributed Synchronous Generators Under Load Variations  

E-Print Network [OSTI]

Practical Stability Assessement of Distributed Synchronous Generators Under Load Variations Roman the practical stability of distribution systems with synchronous generators subject to changes in the system a mathematical model of the distribution system with synchronous generators in the form of a switched affine

Pota, Himanshu Roy

59

Poisson Distributed Noise Generation for Spiking Neural Applications  

E-Print Network [OSTI]

Poisson Distributed Noise Generation for Spiking Neural Applications Katherine Cameron, Thomas neural networks. However, it can be difficult to generate large truly random spike distributions which as randomly firing and a matlab generated Poisson distributed noise source. A hazard function shows

Cameron, Katherine

60

Our Data, Ourselves: Privacy via Distributed Noise Generation  

E-Print Network [OSTI]

Our Data, Ourselves: Privacy via Distributed Noise Generation Cynthia Dwork1 , Krishnaram of the noise generation is to create a distributed implemen- tation of the privacy-preserving statistical. The generation of Gaussian noise introduces a technique for distributing shares of many unbiased coins with fewer

Chang, Edward Y.

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Distributed Generation Technologies DGT | Open Energy Information  

Open Energy Info (EERE)

DGT DGT Jump to: navigation, search Name Distributed Generation Technologies (DGT) Place Ithaca, New York Zip 14850 Product Commercializing a technology to convert organic waste into pure and compressed methane gas via anaerobic digestion. Coordinates 39.93746°, -84.553194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.93746,"lon":-84.553194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

SOFC combined cycle systems for distributed generation  

SciTech Connect (OSTI)

The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

Brown, R.A.

1997-05-01T23:59:59.000Z

63

Property:Distributed Generation System Heating-Cooling Application | Open  

Open Energy Info (EERE)

Heating-Cooling Application Heating-Cooling Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Domestic Hot Water +, Space Heat and/or Cooling + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Domestic Hot Water + Distributed Generation Study/Arrow Linen + Domestic Hot Water + Distributed Generation Study/Dakota Station (Minnegasco) + Space Heat and/or Cooling +, Other + Distributed Generation Study/Elgin Community College + Space Heat and/or Cooling +, Domestic Hot Water + Distributed Generation Study/Emerling Farm + Domestic Hot Water +, Process Heat and/or Cooling +

64

Voltage Control of Distribution Networks with Distributed Generation using Reactive Power  

E-Print Network [OSTI]

Voltage Control of Distribution Networks with Distributed Generation using Reactive Power. Nasiruzzaman Abstract--Voltage profile of distribution networks with dis- tributed generation are affected significantly due to the integra- tion of distributed generation (DG) on it. This paper presents a way

Pota, Himanshu Roy

65

Enhancing reliability in passive anti-islanding protection schemes for distribution systems with distributed generation.  

E-Print Network [OSTI]

??This thesis introduces a new approach to enhance the reliability of conventional passive anti-islanding protection scheme in distribution systems embedding distributed generation. This approach uses (more)

Sheikholeslamzadeh, Mohsen

2012-01-01T23:59:59.000Z

66

Optimal Algorithms for Generating Discrete Random Variables with Changing Distributions  

E-Print Network [OSTI]

Optimal Algorithms for Generating Discrete Random Variables with Changing Distributions T. Hagerup arithmetic and the floor function, 3. generating a uniformly distributed real number between 0 and 1 K. Mehlhorn I. Munro Abstract We give optimal algorithms for generating discrete random variables

Mehlhorn, Kurt

67

Marking in Combinatorial Constructions: Generating Functions and Limiting Distributions  

E-Print Network [OSTI]

Marking in Combinatorial Constructions: Generating Functions and Limiting Distributions Michael generating function y(x) = P ynx n for the numbers yn of objects of size n and the bivariate generating of this paper is to provide general methods to obtain the asymptotic limiting distribution of this additional

Drmota, Michael

68

Distributions of permutations generated by inhomogeneous Markov chains  

E-Print Network [OSTI]

Distributions of permutations generated by inhomogeneous Markov chains Diplomarbeit von Thomas 72 C Matlab - code for MCIT generated distributions 74 D Maple - code for the number of non for distributions of Bernoulli trials . . . . . . . . . . . . . . . 4 2.2.2 MCIT for quality control schemes

Neininger, Ralph

69

Optimal Allocation of Distributed Generators in a Distribution Network Using Adaptive Multi-Objective Particle Swarm Optimization  

Science Journals Connector (OSTI)

This study presents the optimal allocation of distributed generators (DGs) in distribution network based on...

Shan Cheng; Min-You Chen; Peter J. Fleming

2012-01-01T23:59:59.000Z

70

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

of fossil fuel sources of waste heat and other lossesthat this is only the waste heat from fossil generation,an estimate of the total waste heat from fossil generation

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

71

Impact of Distributed Generation and Series Compensation on Distribution Network  

E-Print Network [OSTI]

are investigated. A doubly-fed induction generator (DFIG)-based DG unit and a series capacitor (SC) and a thyristor DFIG units. The converter of the DFIG is modeled as an unbalanced harmonic-generating source

Pota, Himanshu Roy

72

On Optimization of Reliability of Distributed Generation-Enhanced Feeders  

Science Journals Connector (OSTI)

Placement of protection devices in a conventionalfeeder (without distributed generation) is often performedso as to minimize traditional reliability indices (SAIDI,SAIFI, MAIFIe...), assuming the sole source(s) of energyat substation(s). Distributed ...

A. Pregelj; M. Begovic; A. Rohatgi; D. Novosel

2003-01-01T23:59:59.000Z

73

Distributed Renewable Energy Generation and Landscape Architecture: A Critical Review.  

E-Print Network [OSTI]

??Governments and utility organizations around the world have mandated and provided incentives for new distributed renewable energy generation (DREG) capacity, and market projections indicate strong (more)

Beck, Osmer DeVon

2010-01-01T23:59:59.000Z

74

Distributed Generation Study/Patterson Farms CHP System Using...  

Open Energy Info (EERE)

Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Field Test Technology Internal Combustion...

75

CleanDistributedGeneration.pdf | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

anDistributedGeneration.pdf More Documents & Publications Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004 CHP Assessment, California Energy...

76

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network [OSTI]

KM. Distributed generation investment and upgrade underin gas fired power plant investments. Review of Financial13] Dixit AK, Pindyck RS. Investment under uncertainty.

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

77

Stationary/Distributed Generation Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for fuel cells. Stationary fuel cell units are used for backup power, power for remote locations, stand-alone power plants for towns and cities, distributed generation...

78

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

most commercial buildings, electricity costs far exceed heatoffset by lower electricity costs from on- site generation (as much from lower electricity costs as it does from lower

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

79

Renewable Energy: Distributed Generation Policies and Programs...  

Broader source: Energy.gov (indexed) [DOE]

resources. Net Metering State net metering policies allow customers to produce onsite electricity and sell excess generation to the utility at a set price, which creates an...

80

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Generating Efficient Tiled Code for Distributed Memory Machines and Jingling Xue  

E-Print Network [OSTI]

Generating Efficient Tiled Code for Distributed Memory Machines Peiyi Tang and Jingling Xue issues are addressed: computation and data distribution, message-passing code generation, memory man Generate SPMD Code Computation Distribution Data Distribution Message-Passing Code Generation

Tang, Peiyi

82

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

power generation with combined heat and power applications,of carbon tax on combined heat and power adoption by a131(1), 2-25. US Combined Heat and Power Association (

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

83

Distributed Generation in Buildings (released in AEO2005)  

Reports and Publications (EIA)

Currently, distributed generation provides a very small share of residential and commercial electricity requirements in the United States. The Annual Energy Outlook 2005 reference case projects a significant increase in electricity generation in the buildings sector, but distributed generation is expected to remain a small contributor to the sectors energy needs. Although the advent of higher energy prices or more rapid improvement in technology could increase the use of distributed generation relative to the reference case projection, the vast majority of electricity used in buildings is projected to continue to be purchased from the grid.

2008-01-01T23:59:59.000Z

84

ARPA-E Announces $30 Million for Distributed Generation Technologies |  

Broader source: Energy.gov (indexed) [DOE]

30 Million for Distributed Generation 30 Million for Distributed Generation Technologies ARPA-E Announces $30 Million for Distributed Generation Technologies November 25, 2013 - 1:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, the Department of Energy announced up to $30 million in Advanced Research Projects Agency - Energy (ARPA-E) funding for a new program focused on the development of transformational electrochemical technologies to enable low-cost distributed power generation. ARPA-E's Reliable Electricity Based on ELectrochemical Systems (REBELS) program will develop fuel cell technology for distributed power generation to improve grid stability, increase energy security, and balance intermittent renewable technologies while reducing CO2 emissions associated with current

85

The Value of Distributed Generation (DG) under Different Tariff Structures  

Open Energy Info (EERE)

The Value of Distributed Generation (DG) under Different Tariff Structures The Value of Distributed Generation (DG) under Different Tariff Structures Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Value of Distributed Generation (DG) under Different Tariff Structures Focus Area: Renewable Energy Topics: Socio-Economic Website: eetd.lbl.gov/ea/emp/reports/60589.pdf Equivalent URI: cleanenergysolutions.org/content/value-distributed-generation-dg-under Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Utility/Electricity Service Costs This report examines the standby tariff structures recently implemented in New York as a result of utilities feelings toward distributed generation

86

Distributed Medium Access Control for Next Generation CDMA Wireless Networks  

E-Print Network [OSTI]

Distributed Medium Access Control for Next Generation CDMA Wireless Networks Hai Jiang, Princeton wireless networks are expected to have a simple infrastructure with distributed control. In this article, we consider a generic distributed network model for future wireless multi- media communications

Zhuang, Weihua

87

Notice of Study Availability - Potential Benefits of Distributed Generation  

Broader source: Energy.gov (indexed) [DOE]

Study Availability - Potential Benefits of Distributed Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 Notice of Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 Federal Register Notice of availability of a study of the potential benefits of distributed generation and rate-related issues that may impede their expansion, and request for public comment. Study of the Potential Benefits of Distributed Generation and Rate- Related Issues That May Impede Their Expansion More Documents & Publications Notice of inquiry and request for Information - Study of the potential

88

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

Sulc, Petr; Backhaus, Scott; Chertkov, Michael

2010-01-01T23:59:59.000Z

89

Optimal allocation of stochastically dependent renewable energy based distributed generators in unbalanced distribution networks  

Science Journals Connector (OSTI)

Abstract This paper proposes an algorithm for modeling stochastically dependent renewable energy based distributed generators for the purpose of proper planning of unbalanced distribution networks. The proposed algorithm integrate the diagonal band Copula and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. Secondly, an efficient algorithm based on modification of the traditional Big Bang-Big crunch method is proposed for optimal placement of renewable energy based distributed generators in the presence of dispatchable distributed generation. The proposed optimization algorithm aims to minimize the energy loss in unbalanced distribution systems by determining the optimal locations of non-dispatchable distributed generators and the optimal hourly power schedule of dispatchable distributed generators. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithms.

A.Y. Abdelaziz; Y.G. Hegazy; Walid El-Khattam; M.M. Othman

2015-01-01T23:59:59.000Z

90

Review of anti-islanding techniques in distributed generators  

Science Journals Connector (OSTI)

In this paper a revision about different techniques for islanding detection in distributed generators is presented. On one hand, remote techniques, not integrated in the distributed generators, are discussed. On the other hand, local techniques, integrated in the distributed generator, are described. Furthermore, it is discussed how the local techniques are divided into passive techniques, based on exclusively monitoring some electrical parameters, and active techniques, which intentionally introduce disturbances at the output of the inverter, in order to determine if some parameters are affected.

D. Velasco; C.L. Trujillo; G. Garcer; E. Figueres

2010-01-01T23:59:59.000Z

91

Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks.  

E-Print Network [OSTI]

??The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to (more)

Zhang, Xianjun

2013-01-01T23:59:59.000Z

92

Distributed Generation System Characteristics and Costs in the Buildings  

Gasoline and Diesel Fuel Update (EIA)

1.6 mb) 1.6 mb) Appendix A - Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications (1.0 mb) Appendix B - The Cost and Performance of Distributed Wind Turbines, 2010-35 (0.5 mb) Distributed Generation System Characteristics and Costs in the Buildings Sector Release date: August 7, 2013 Distributed generation in the residential and commercial buildings sectors refers to the on-site generation of energy, often electricity from renewable energy systems such as solar photovoltaics (PV) and small wind turbines. Many factors influence the market for distributed generation, including government policies at the local, state, and federal level, and project costs, which vary significantly depending on time, location, size, and application.

93

Smart Grids Operation with Distributed Generation and Demand Side Management  

Science Journals Connector (OSTI)

The integration of Distributed Generation (DG) based on renewable sources in the Smart Grids (SGs) is considered a challenging task because of the problems arising for the intermittent nature of the sources (e.g....

C. Cecati; C. Citro; A. Piccolo; P. Siano

2012-01-01T23:59:59.000Z

94

Characteristics of Vector Surge Relays for Distributed Synchronous Generator Protection  

SciTech Connect (OSTI)

This work presented a detailed investigation on the performance characteristics if vector surge relays to detect islanding of distributed synchronous generators. A detection time versus active power imbalance curve is proposed to evaluate the relay performance. Computer simulations are used to obtain the performance curves. The concept of critical active power imbalance is introduced based on these curves. Main factors affecting the performance of the relays are analyzed. The factors investigated are voltage-dependent loads, load power factor, inertia constant of the generator, generator excitation system control mode, feeder length and R/X ratio as well as multi-distributed generators. The results are a useful guideline to evaluate the effectiveness of anti-islanding schemes based on vector surge relays for distributed generation applications.

Freitas, Walmir; Xu, Wilsun; Huang, Zhenyu; Vieira, Jose C.

2007-02-28T23:59:59.000Z

95

Distributed Generation Investment by a Microgrid Under Uncertainty  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Generation Investment by a Microgrid Under Uncertainty Distributed Generation Investment by a Microgrid Under Uncertainty Speaker(s): Afzal Siddiqui Date: July 24, 2006 - 12:00pm Location: 90-3122 This study examines a California-based microgrid's decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastc, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generation cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an

96

Local Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

2010-01-01T23:59:59.000Z

97

Local control of reactive power by distributed photovoltaic generators  

SciTech Connect (OSTI)

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

98

Distributed generation capabilities of the national energy modeling system  

SciTech Connect (OSTI)

This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

99

Cogeneration and Distributed Generation1 This appendix describes cogeneration and distributed generating resources. Also provided is an  

E-Print Network [OSTI]

reinforcement, remote loads more economically served by small-scale generation than by distribution system. · Reliability upgrade for systems susceptible to outages. · Alternative to the expansion of transmission

100

Investment and Upgrade in Distributed Generation under Uncertainty  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investment and Upgrade in Distributed Generation under Uncertainty Investment and Upgrade in Distributed Generation under Uncertainty Speaker(s): Afzal Siddiqui Karl Maribu Date: September 4, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only effciency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attractiveness of on-site generation. Nevertheless, a microgrid contemplating the installation of gas-fired DG has to be aware of the uncertainty in the

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Next-Generation Distributed Power Management for Photovoltaic Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-Generation Distributed Power Management for Photovoltaic Systems Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth Date: July 29, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Steven Lanzisera In recent years, the balance of systems (BOS) side of photovoltaic (PV) energy has become a major focus in the effort to drive solar energy towards grid parity. The power management architecture has expanded to include a range of distributed solutions, including microinverters and 'micro' DC-DC converters to solve problems with mismatch (shading), expand networking and control, and solve critical BOS issues such as fire safety. This talk will introduce traditional and distributed approaches for PV systems, and will propose a next-generation architecture based on a new

102

A multistage model for distribution expansion planning with distributed generation in a deregulated electricity market  

Science Journals Connector (OSTI)

Distribution systems management is becoming an increasingly complicated issue due to the introduction of new technologies, new energy trading strategies and a new deregulated environment. In the new deregulated energy market and considering the incentives ... Keywords: GAMS-MATLAB interface, distributed generation (DG), distribution company (DISCO), investment payback time, microturbine, social welfare

S. Porkar; A. Abbaspour-Tehrani-Fard; P. Poure; S. Saadate

2010-06-01T23:59:59.000Z

103

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This report provides Annexes 1 through 7, which are country reports from

104

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This task of the International Energy Agency's (IEA's) Demand-Side

105

Determining the Adequate Level of Distributed Generation Penetration in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determining the Adequate Level of Distributed Generation Penetration in Determining the Adequate Level of Distributed Generation Penetration in Future Grids Speaker(s): Johan Driesen Date: March 18, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare In this talk, Johan will discuss the technical barriers met while deploying distributed generation (DG) technology in the grid. These are related to voltage quality, reliability, stability of the grid, but also safety, environmental and economic issues are important. Eventually, the question 'how far can you go ?' is addressed. The range from small-scale local DG such as photovoltaics to large-scale (off-shore) wind farms are dealt with, each with their specific issues. The talk is illustrated with examples from research projects at the KULeuven financied by national and European

106

Poland - Economic and Financial Benefits of Distributed Generation  

Open Energy Info (EERE)

Poland - Economic and Financial Benefits of Distributed Generation Poland - Economic and Financial Benefits of Distributed Generation Small-Scale, Gas-Fired CHP Jump to: navigation, search Name Poland - Economic and Financial Benefits of Distributed Generation Small-Scale, Gas-Fired CHP Agency/Company /Organization Argonne National Laboratory Sector Energy Topics Background analysis Website http://www.dis.anl.gov/pubs/41 Country Poland Eastern Europe References http://www.dis.anl.gov/pubs/41763.pdf This article is a stub. You can help OpenEI by expanding it. The Polish energy markets have recently been restructured, opening the door to new players with access to new products and instruments. In response to this changed environment, the Government of Poland and the Polish Power Grid Company were interested in analyzing the competitiveness of

107

Distributed Generation Study/SUNY Buffalo | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Study/SUNY Buffalo Distributed Generation Study/SUNY Buffalo < Distributed Generation Study Jump to: navigation, search Study Location Buffalo, New York Site Description Institutional-School/University Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 600000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2002/12/11 Monitoring Termination Date 2004/08/11

108

Distributed Generation: Which technologies? How fast will they emerge?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Generation: Which technologies? How fast will they emerge? Distributed Generation: Which technologies? How fast will they emerge? Speaker(s): Tony DeVuono Date: March 16, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Utility deregulation, environmental issues, increases in electricity demand, natural gas/electricity rate changes, new technologies, and several other key drivers are stimulating distributed generation globally. The technologies that have pushed ahead of the pack are micro turbines and fuel cells. Since Modine is a world leader in the manufacturing of heat transfer equipment, we are eager to play in this new, emerging market. Are the market drivers real? Will these technologies survive or even thrive? What are the pitfalls? If you had the responsibility in your company to spend millions and direct dozens of people down the DG path,

109

Acceptance-rejection methods for generating random variates from matrix exponential distributions and rational  

E-Print Network [OSTI]

Acceptance-rejection methods for generating random variates from matrix exponential distributions generation, Simulation, Matrix Exponential Distributions, Rational Arrival Processes. 1. INTRODUCTION Despite on the efficient generation of random variates of matrix exponential (ME) distributions [10] and rational arrival

Telek, Miklós

110

List of Other Distributed Generation Technologies Incentives | Open Energy  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 123 Other Distributed Generation Technologies Incentives. CSV (rows 1 - 123) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Portfolio Standard (Pennsylvania) Renewables Portfolio Standard Pennsylvania Investor-Owned Utility Retail Supplier Building Insulation Ceiling Fan

111

A 10 GS/s Distributed Waveform Generator for Sub-Nanosecond Pulse Generation and Modulation in Standard Digital CMOS  

E-Print Network [OSTI]

A 10 GS/s Distributed Waveform Generator for Sub-Nanosecond Pulse Generation and Modulation, Email:hwu@ece.rochester.edu Abstract-- A distributed waveform generator is presented for sub a distributed waveform generator (DWG) circuit in a time-interleaved architecture suitable for standard CMOS

Wu, Hui

112

GENERATING SYNCHRONIZABLE TEST SEQUENCES BASED ON FINITE STATE MACHINE WITH DISTRIBUTED PORTS 1  

E-Print Network [OSTI]

GENERATING SYNCHRONIZABLE TEST SEQUENCES BASED ON FINITE STATE MACHINE WITH DISTRIBUTED PORTS 1 with several distributed interfaces, called ports. A test generation method is developed for generating test generation and fault detectability. Several types of such interfaces have been standardized

von Bochmann, Gregor

113

A Game Strategy for Power Flow Control of Distributed Generators in Smart Grids  

Science Journals Connector (OSTI)

We consider the distributed power control problem of distributed generators(DGs) in smart grid. In order...

Jianliang Zhang; Donglian Qi; Guoyue Zhang

2014-01-01T23:59:59.000Z

114

Clean Distributed Generation for Slum Electrification: The Case of Mumbai  

E-Print Network [OSTI]

the lack of electrification in slums in India, focussing on the slums in the city of Mumbai as a case studyClean Distributed Generation for Slum Electrification: The Case of Mumbai This paper discusses the city's 16 million inhabitants in 2335 distinct settlements, are used as a case-study throughout

Mauzerall, Denise

115

Iowa Distributed Wind Generation Project | Open Energy Information  

Open Energy Info (EERE)

Generation Project Generation Project Jump to: navigation, search Name Iowa Distributed Wind Generation Project Facility Iowa Distributed Wind Generation Project Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Consortium -- Cedar Falls leads with 2/3 ownership Developer Iowa Distributed Wind Generation Project Energy Purchaser Consortium -- Cedar Falls leads with 2/3 ownership Location Algona IA Coordinates 43.0691°, -94.2255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0691,"lon":-94.2255,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Introduction to Distributed Generation and the CERTS Microgrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction to Distributed Generation and the CERTS Microgrid Introduction to Distributed Generation and the CERTS Microgrid Speaker(s): Chris Marnay Date: December 3, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare This is a first in a series of at least 5 seminars around the winter break to survey Distributed Energy Resources (DER) research questions and various Berkeley capabilities available to address them. The electricity industry in industrialized countries may be about to reverse a century long trend towards ever larger scale, ever more centrally controlled power systems. The emergence of technologies that are competitive at small scales, close to loads, in large part because of the opportunities created to capture waste heat and locally control power quality might signal a radical

117

A Radical Distributed Architecture for Local Energy Generation,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Radical Distributed Architecture for Local Energy Generation, A Radical Distributed Architecture for Local Energy Generation, Distribution, and Sharing Speaker(s): Randy Katz Date: April 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The LoCal Project is developing Information Age solutions to the limiting resource of this century: energy. One hundred fifty years ago, humanity was transformed by harnessing energy for machinery and work. Toil by hand became routinely mechanized, inconceivable constructions became reality, and powered transport shrunk the world. A century later, computers brought an equally profound transformation, replacing mundane bookkeeping and obviating libraries, simulating the imperceptible, and placing knowledge at our fingertips. Information processing has sustained a 50-100% annualized

118

Laboratories for the 21st Century Best Practices: Onsite Distributed Generation Systems For Laboratories  

Broader source: Energy.gov [DOE]

Guide describes general information on implementing onsite distributed generation systems in laboratory environments.

119

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

SciTech Connect (OSTI)

The motivation and objective of this research is to determine the role of distributed generation (DG) in greenhouse gas reductions by: (1) applying the Distributed Energy Resources Customer Adoption Model (DER-CAM); (2) using the California Commercial End-Use Survey (CEUS) database for commercial buildings; (3) selecting buildings with electric peak loads between 100 kW and 5 MW; (4) considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat utilization, solar thermal, and PV; (5) testing of different policy instruments, e.g. feed-in tariff or investment subsidies.

Marnay, Chris; Stadler, Michael; Lipman, Tim; Lai, Judy; Cardoso, Goncalo; Megel, Olivier

2009-09-01T23:59:59.000Z

120

Distributed Generation Study/Harbec Plastics | Open Energy Information  

Open Energy Info (EERE)

< Distributed Generation Study < Distributed Generation Study Jump to: navigation, search Study Location Ontario, New York Site Description Industrial-Plastics Processing Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Northern Development System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 25 Stand-alone Capability None Power Rating 750 kW0.75 MW 750,000 W 750,000,000 mW 7.5e-4 GW 7.5e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 3750000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2005/10/06 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Most Viewed Documents - Power Generation and Distribution | OSTI, US Dept  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Power Generation and Distribution Most Viewed Documents - Power Generation and Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; et al. (1994) ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993 Benemann, J.R.; Oswald, W.J. (1994) Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; et al. (1997) Multilevel converters -- A new breed of power converters Lai, J.S. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.]; Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United

122

April 2013 Most Viewed Documents for Power Generation And Distribution |  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Power Generation And Distribution April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 290 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 248 Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 106 Micro-CHP Systems for Residential Applications Timothy DeValve; Benoit Olsommer (2007)

123

September 2013 Most Viewed Documents for Power Generation And Distribution  

Office of Scientific and Technical Information (OSTI)

Power Generation And Distribution Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 200 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 76 Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 69 Seventh Edition Fuel Cell Handbook NETL (2004) 65 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 52 Controlled low strength materials (CLSM), reported by ACI Committee

124

Distributed Generation Study/Sea Rise 2 | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Study Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Coast Intelligen CI60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Grenadier Realty System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1300000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/08/30 Monitoring Termination Date 1969/12/31

125

Distributed Generation Study/Sea Rise 1 | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Study Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Coast Intelligen CI60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Grenadier Realty System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1300000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/08/30 Monitoring Termination Date 1969/12/31

126

Optimal Power Sharing for Microgrid with Multiple Distributed Generators  

Science Journals Connector (OSTI)

Abstract This paper describes the active power sharing of multiple distributed generators (DGs) in a microgrid. The operating modes of a microgrid are 1) a grid-connected mode and 2) an autonomous mode. During islanded operation, one DG unit should share its output power with other DG units in exact accordance with the load. Unit output power control (UPC) is introduced to control the active power of DGs. The viability of the proposed power control mode is simulated by MATLAB/SIMULINK.

V. Logeshwari; N. Chitra; A. Senthil Kumar; Josiah Munda

2013-01-01T23:59:59.000Z

127

Application of particle swarm optimization for distribution feeder reconfiguration considering distributed generators  

Science Journals Connector (OSTI)

In many countries the power systems are going to move toward creating a competitive structure for selling and buying electrical energy. These changes and the numerous advantages of the distributed generation units (DGs) in term of their technology enhancement and economical considerations have created more incentives to use these kinds of generators than before. Therefore, it is necessary to study the impact of \\{DGs\\} on the power systems, especially on the distribution networks. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering DGs. The main objective of the DFR is to minimize the deviation of the bus voltage, the number of switching operations and the total cost of the active power generated by \\{DGs\\} and distribution companies. Since the DFR is a nonlinear optimization problem, we apply the particle swarm optimization (PSO) approach to solve it. The feasibility of the proposed approach is demonstrated and compared with other evolutionary methods such as genetic algorithm (GA), Tabu search (TS) and differential evolution (DE) over a realistic distribution test system.

J. Olamaei; T. Niknam; G. Gharehpetian

2008-01-01T23:59:59.000Z

128

Design of improved controller for thermoelectric generator used in distributed generation  

Science Journals Connector (OSTI)

This paper investigates the application of thermal generation based on solid-state devices such as thermoelectric generators (TEGs) as a novel technological alternative of distributed generation (DG). The full detailed modeling and the dynamic simulation of a three-phase grid-connected TEG used as a dispersed generator is studied. Moreover, a new control scheme of the TEG is proposed, which consists of a multi-level hierarchical structure and incorporates a maximum power point tracker (MPPT) for better use of the thermal resource. In addition, reactive power compensation of the electric grid is included, operating simultaneously and independently of the active power generation. Validation of models and control schemes is performed by using the MATLAB/Simulink environment. Moreover, a small-scale TEG experimental set-up was employed to demonstrate the accuracy of proposed models.

M.G. Molina; L.E. Juanic; G.F. Rinalde; E. Taglialavore; S. Gortari

2010-01-01T23:59:59.000Z

129

Property:Distributed Generation/Site Description | Open Energy Information  

Open Energy Info (EERE)

Generation/Site Description Generation/Site Description Jump to: navigation, search This is a property of type String. The allowed values for this property are: Agricultural Commercial-Hotel Commercial-Ice Arena Commercial-High Rise Office Commercial-Low Rise Office Commercial-Refrigerated Warehouse Commercial-Restaurant Commercial-Retail Store Commercial-Supermarket Commercial-Theater Commercial-Other Institutional-Hospital/Health Care Institutional-Nursing Home Institutional-School/University Institutional-Other Residential-Multifamily-Single Building Residential-Multifamily-Multibuilding Residential-Single Family Industrial-Food Processing Industrial-Plastics Processing Industrial-Wood Products Industrial-Other Testing Laboratory Water Utility Other Utility Other Pages using the property "Distributed Generation/Site Description"

130

Distributed voltage control strategy for LV networks with inverter-interfaced generators  

Science Journals Connector (OSTI)

Abstract Low voltage distribution networks are characterized by an ever growing diffusion of single and three phase distributed generators whose unregulated operation may deplete the power quality levels, in particular as regard voltage profiles and unbalances. This issue is at present under discussion by several national and international standardization bodies and the general trend is to require, for the new connections of generators to medium and low voltage grids, their participation to the reactive power network management. In this paper a novel strategy proposes to control the network voltage unbalance suitably for coordinating single and three-phase inverter interfaced embedded generators, concurrently with a local volt/var regulation action as foreseen by the new grid connection requirements. Simulations conducted on case study network representing a typical Italian 4-wire LV distribution system under different load/generation conditions, demonstrate that the coordinated action of single-phase and three-phase inverters may considerably reduce the degree of unbalance thus improving the network power quality levels.

R. Caldon; M. Coppo; R. Turri

2014-01-01T23:59:59.000Z

131

Efficiency and Air Quality Implications of Distributed Generation and Combined Heat  

E-Print Network [OSTI]

Efficiency and Air Quality Implications of Distributed Generation and Combined Heat and Power March 2011 The Issue Distributed generation generates electricity from many small energy sources near where the electricity is used. The use of distributed generation in urban areas, however, can

132

SYSTEM WIDE ECONOMIC BENEFITS OF DISTRIBUTED GENERATION IN THE NEW ENGLAND  

E-Print Network [OSTI]

SYSTEM WIDE ECONOMIC BENEFITS OF DISTRIBUTED GENERATION IN THE NEW ENGLAND ENERGY MARKET-1027 © Copyright by CEERE #12;1. INTRODUCTION Distributed generation (DG) is generation of electricity close was to evaluate the benefits and costs associated with a distributed generation unit from the perspectives

Massachusetts at Amherst, University of

133

On Linear Independence of Generators of FSI Distribution Spaces on IR  

E-Print Network [OSTI]

On Linear Independence of Generators of FSI Distribution Spaces on IR Jianzhong Wang Abstract. A distribution space is called finitely shift invariant (FSI) if it is generated by a vector-valued distribution of an FSI distribution space and presents a way to find the generators with linear independent shifts

Wang, Jianzhong

134

On the Cost of Generating PH-distributed Random Philipp Reinecke, Katinka Wolter  

E-Print Network [OSTI]

On the Cost of Generating PH-distributed Random Numbers Philipp Reinecke, Katinka Wolter Humboldt systems. The use of these distributions in simulation studies requires efficient methods for generating PH-distributed random numbers. In this work, we consider the cost of PH-distributed random-number generation. I

Telek, Miklós

135

RANDOM VARIATE GENERATION FOR THE DIGAMMA AND TRIGAMMA DISTRIBUTIONS Luc Devroye  

E-Print Network [OSTI]

RANDOM VARIATE GENERATION FOR THE DIGAMMA AND TRIGAMMA DISTRIBUTIONS Luc Devroye School of Computer these distributions and selected generalized hypergeometric distributions. The generators can also be used. Keywords and phrases. Digamma distribution. Random variate generation. Trigamma dis­ tribution. Probability

Devroye, Luc

136

Distributed Generation Systems Inc DISGEN | Open Energy Information  

Open Energy Info (EERE)

DISGEN DISGEN Jump to: navigation, search Name Distributed Generation Systems Inc (DISGEN) Place Lakewood, Colorado Zip 80228 Sector Wind energy Product Developer of Green Mountain (10.4 MW) and Ponnequin (16 MW) wind generation projects in the US. Manages everything from site selection through construction. Coordinates 45.300538°, -88.522572° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.300538,"lon":-88.522572,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

138

Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

063-2011 063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is approved for use by all DOE/National Nuclear Security Administration (NNSA) Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations,

139

Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1063-2006 April 2006 Superseding DOE-STD-1063-2000 March 2000 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2006 ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-STD-1063-2006 iii FOREWORD 1. This Department of Energy standard is approved for use by all DOE Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should

140

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect (OSTI)

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

LO Generation and Distribution for 60GHz Phased Array Transceivers  

E-Print Network [OSTI]

goal of the LO distribution network design was minimizing7. Given a distribution impedance, Z o , design an input5. LO DISTRIBUTION Mixer LO Buffer Design Methodology The

Marcu, Cristian

2011-01-01T23:59:59.000Z

142

Siting and sizing of distributed generation units using GA and OPF  

Science Journals Connector (OSTI)

This paper deals with the important task of finding the optimal siting and sizing of Distributed Generation (DG) units for a given distribution network so that the cost of active and reactive power generation can be minimized. The optimization technique ... Keywords: distributed generation, genetic alghorithm(GA), optimal power flow(OPF)

M. Hosseini Aliabadi; M. Mardaneh; B. Behbahan

2008-01-01T23:59:59.000Z

143

Load Distributed Whole-body Motion Generation Method for Humanoids by  

E-Print Network [OSTI]

1 Load Distributed Whole-body Motion Generation Method for Humanoids by Minimizing Average Joint. Keywords. Humanoid robot, Load distribution, Whole-body motion generation method, Joint Torque, Environment generation method under whole-body coor- dination, it is very important to consider a load distribution

Yamamoto, Hirosuke

144

Distributed clock generator for synchronous SoC using ADPLL network  

E-Print Network [OSTI]

Distributed clock generator for synchronous SoC using ADPLL network E. Zianbetov1 , D. Galayko1 , F, as well as suffering from reduced communication speed. Distributed clock generators are based on the local. The latter is a good candidate for on-chip distributed clock generation, because of better compatibility

Paris-Sud XI, Université de

145

Published in IET Generation, Transmission & Distribution Received on 5th October 2012  

E-Print Network [OSTI]

Published in IET Generation, Transmission & Distribution Received on 5th October 2012 Revised on 31 are small scale power systems that facilitate the effective integration of distributed generators (DG) [1 of multiple photovoltaic generators in a power distribution system [16]. Networked multi-agent systems have

Qu, Zhihua

146

Efficient protocols for generating bipartite classical distributions and quantum Zhaohui Wei  

E-Print Network [OSTI]

Efficient protocols for generating bipartite classical distributions and quantum states Rahul Jain in optimization, convex geometry, and information theory. 1. To generate a classical distribution P(x, y), we an approximation of is allowed to generate a distribution (X, Y ) P, we present a classical protocol

Jain, Rahul

147

Reactive power management of distribution networks with wind generation for improving voltage stability  

E-Print Network [OSTI]

Reactive power management of distribution networks with wind generation for improving voltage February 2013 Available online Keywords: Composite load Distributed generation D-STATCOM Q with distributed wind generation. Firstly, the impact of high wind penetration on the static voltage stability

Pota, Himanshu Roy

148

A Brief History of Generative Models for Power Law and Lognormal Distributions  

E-Print Network [OSTI]

A Brief History of Generative Models for Power Law and Lognormal Distributions Michael Mitzenmacher generative models that lead to these distributions. One #12;nding is that lognormal and power law of an underlying generative model which suggested that #12;le sizes were better modeled by a lognormal distribution

Mitzenmacher, Michael

149

The Plausibility of Semantic Properties Generated by a Distributional Model: Evidence from a Visual World Experiment  

E-Print Network [OSTI]

The Plausibility of Semantic Properties Generated by a Distributional Model: Evidence from a Visual the plausibility of the properties generated by a distributional model using data from a visual world experiment, recently, a distributional model has been proposed that is able to generate properties associated

Koehn, Philipp

150

Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters  

E-Print Network [OSTI]

1 Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters Sriram power distribution system of a next generation transport aircraft is addressed. Detailed analysis with the analysis of subsystem integration in power distribution systems of next generation transport aircraft

Lindner, Douglas K.

151

Application of honey-bee mating optimization on state estimation of a power distribution system including distributed generators  

Science Journals Connector (OSTI)

We present a new approach based on honey-bee mating optimization to estimate the state variables in distribution networks including distributed generators. The proposed method considers practical models of...

Taher Niknam

2008-12-01T23:59:59.000Z

152

UK scenario of islanded operation of active distribution networks with renewable distributed generators  

Science Journals Connector (OSTI)

This paper reports on the current UK scenario of islanded operation of active distribution networks with renewable distributed generators (RDGs). Different surveys indicate that the present scenario does not economically justify islanding operation of active distribution networks with RDGs. With rising DG penetration, much benefit would be lost if the \\{DGs\\} are not allowed to island only due to conventional operational requirement of utilities. Technical studies clearly indicate the need to review parts of the Electricity Safety, Quality and Continuity Regulations (ESQCR) for successful islanded operations. Commercial viability of islanding operation must be assessed in relation to enhancement of power quality, system reliability and supply of potential ancillary services through network support. Demonstration projects under Registered Power Zone and Technical Architecture Projects should be initiated to investigate the utility of DG islanding. However these efforts should be compounded with a realistic judgement of the associated technical and economic issues for the development of future power networks beyond 2010.

S.P. Chowdhury; S. Chowdhury; P.A. Crossley

2011-01-01T23:59:59.000Z

153

Distributed Generation Study/Dakota Station (Minnegasco) | Open Energy  

Open Energy Info (EERE)

Station (Minnegasco) Station (Minnegasco) < Distributed Generation Study Jump to: navigation, search Study Location Burnsville, Minnesota Site Description Other Utility Study Type Case Study Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Unifin Fuel Natural Gas System Installer Capstone Turbine Corp System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 30 kW0.03 MW 30,000 W 30,000,000 mW 3.0e-5 GW 3.0e-8 TW Nominal Voltage (V) 0 Heat Recovery Rating (BTU/hr) 290000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Customer Assembled Start Date 2000/03/13 Monitoring Termination Date 2002/03/31 Primary Power Application Based Load

154

Distributed Generation Study/Emerling Farm | Open Energy Information  

Open Energy Info (EERE)

Emerling Farm Emerling Farm < Distributed Generation Study Jump to: navigation, search Study Location Perry, New York Site Description Agricultural Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G379 Heat Recovery Systems Built-in Fuel Biogas System Installer RCM Digesters System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 200 kW0.2 MW 200,000 W 200,000,000 mW 2.0e-4 GW 2.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2000000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/06/07 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

155

Distributed Generation Study/Hudson Valley Community College | Open Energy  

Open Energy Info (EERE)

Valley Community College Valley Community College < Distributed Generation Study Jump to: navigation, search Study Location Troy, New York Site Description Institutional-School/University Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3516, Caterpillar DM5498, Caterpillar DM7915 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Siemens Building Technologies System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 6 Stand-alone Capability Seamless Power Rating 7845 kW7.845 MW 7,845,000 W 7,845,000,000 mW 0.00785 GW 7.845e-6 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 32500000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Custom Made Component Integration Factory Integrated

156

Distributed Generation Study/Floyd Bennett | Open Energy Information  

Open Energy Info (EERE)

Bennett Bennett < Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Other Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Montreal Construction System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability Seamless Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 230000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2005/07/21 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

157

Distributed Generation Study/Arrow Linen | Open Energy Information  

Open Energy Info (EERE)

Study/Arrow Linen Study/Arrow Linen < Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Commercial-Other Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Coast Intelligen 150-IC with ECS Heat Recovery Systems Built-in Fuel Natural Gas System Installer Energy Concepts System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 300 kW0.3 MW 300,000 W 300,000,000 mW 3.0e-4 GW 3.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 3000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2005/03/01 Monitoring Termination Date 1969/12/31

158

Distributed Generation Study/Elgin Community College | Open Energy  

Open Energy Info (EERE)

Elgin Community College Elgin Community College < Distributed Generation Study Jump to: navigation, search Study Location Elgin, Illinois Site Description Institutional-School/University Study Type Case Study Technology Internal Combustion Engine Prime Mover Waukesha VHP5108GL Heat Recovery Systems Beaird Maxim Model TRP-12 Fuel Natural Gas System Installer Morse Electric Company System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 4 Stand-alone Capability Manual Power Rating 3220 kW3.22 MW 3,220,000 W 3,220,000,000 mW 0.00322 GW 3.22e-6 TW Nominal Voltage (V) 4160 Heat Recovery Rating (BTU/hr) 11200000 Cooling Capacity (Refrig/Tons) 550 Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 1997/05/01

159

Distributed Generation Study/Wyoming County Community Hospital | Open  

Open Energy Info (EERE)

Wyoming County Community Hospital Wyoming County Community Hospital < Distributed Generation Study Jump to: navigation, search Study Location Warsaw, New York Site Description Institutional-Hospital/Health Care Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha VGF L36GSID Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 560 kW0.56 MW 560,000 W 560,000,000 mW 5.6e-4 GW 5.6e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2001/09/26

160

Distributed Generation Study/Patterson Farms CHP System Using Renewable  

Open Energy Info (EERE)

Farms CHP System Using Renewable Farms CHP System Using Renewable Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Field Test Technology Internal Combustion Engine Prime Mover Caterpillar G379 Heat Recovery Systems Built-in Fuel Biogas System Installer Martin Machinery System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 200 kW0.2 MW 200,000 W 200,000,000 mW 2.0e-4 GW 2.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1366072 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Custom Made Component Integration Customer Assembled Start Date 2007/05/02 Monitoring Termination Date 2007/05/26

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Distributed Generation Study/Tudor Gardens | Open Energy Information  

Open Energy Info (EERE)

Tudor Gardens Tudor Gardens < Distributed Generation Study Jump to: navigation, search Study Location New York, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Tecogen CM-75 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Aegis Energy System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 150 kW0.15 MW 150,000 W 150,000,000 mW 1.5e-4 GW 1.5e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 980000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2005/07/01 Monitoring Termination Date 1969/12/31

162

Distributed Generation Study/Patterson Farms | Open Energy Information  

Open Energy Info (EERE)

Farms Farms < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3508 Heat Recovery Systems Built-in Fuel Biogas System Installer RCM Digesters System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 180 kW0.18 MW 180,000 W 180,000,000 mW 1.8e-4 GW 1.8e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/03/10 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

163

Distributed Generation Study/Oakwood Health Care Center | Open Energy  

Open Energy Info (EERE)

Oakwood Health Care Center Oakwood Health Care Center < Distributed Generation Study Jump to: navigation, search Study Location Williamsville, New York Site Description Institutional-Hospital/Health Care Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha VGF 18GLD Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability Seamless Power Rating 600 kW0.6 MW 600,000 W 600,000,000 mW 6.0e-4 GW 6.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2800000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2001/12/20 Monitoring Termination Date 2003/01/03

164

Distributed Generation Study/Matlink Farm | Open Energy Information  

Open Energy Info (EERE)

Matlink Farm Matlink Farm < Distributed Generation Study Jump to: navigation, search Study Location Clymers, New York Site Description Agricultural Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha 145 Heat Recovery Systems Built-in Fuel Biogas System Installer Martin Machine System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 145 kW0.145 MW 145,000 W 145,000,000 mW 1.45e-4 GW 1.45e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1500000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2004/10/28 Monitoring Termination Date 2005/07/16 Primary Power Application Based Load

165

Distributed Generation Study/Modern Landfill | Open Energy Information  

Open Energy Info (EERE)

Landfill Landfill < Distributed Generation Study Jump to: navigation, search Study Location Model City, New York Site Description Other Utility Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3516 Heat Recovery Systems Built-in Fuel Biogas System Installer Innovative Energy Systems System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 7 Stand-alone Capability Seamless Power Rating 5600 kW5.6 MW 5,600,000 W 5,600,000,000 mW 0.0056 GW 5.6e-6 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 28000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2004/12/31 Monitoring Termination Date 1969/12/31

166

Distributed Generation Study/VIP Country Club | Open Energy Information  

Open Energy Info (EERE)

VIP Country Club VIP Country Club < Distributed Generation Study Jump to: navigation, search Study Location New Rochelle, New York Site Description Commercial-Other Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Advanced Power Systems System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 3 Stand-alone Capability Seamless Power Rating 180 kW0.18 MW 180,000 W 180,000,000 mW 1.8e-4 GW 1.8e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 750000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/01/24 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

167

Distributed Generation Study/Waldbaums Supermarket | Open Energy  

Open Energy Info (EERE)

Waldbaums Supermarket Waldbaums Supermarket < Distributed Generation Study Jump to: navigation, search Study Location Hauppauge, New York Site Description Commercial-Supermarket Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Unifin HX Fuel Natural Gas System Installer CDH Energy Corp. System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 60 kW0.06 MW 60,000 W 60,000,000 mW 6.0e-5 GW 6.0e-8 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 500000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2002/08/02 Monitoring Termination Date 2006/07/21 Primary Power Application Based Load

168

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

SciTech Connect (OSTI)

This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

Unknown

2002-03-01T23:59:59.000Z

169

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect (OSTI)

This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

Nguyen Minh

2002-03-31T23:59:59.000Z

170

Advanced Distributed Generation LLC ADG | Open Energy Information  

Open Energy Info (EERE)

LLC ADG LLC ADG Jump to: navigation, search Name Advanced Distributed Generation LLC (ADG) Place Toledo, Ohio Zip OH 43607 Product ADG is a general contracting company specializing in the design and installation of photovoltaic (PV) systems. Coordinates 46.440613°, -122.847838° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.440613,"lon":-122.847838,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Practical stability assessment of distributed synchronous generators under variations in the system equilibrium conditions  

Science Journals Connector (OSTI)

Abstract This paper proposes a method to assess the practical stability of power distribution systems with synchronous generators subject to changes in the system equilibrium conditions due to fast varying loads. The concept of practical stability deals with two known state-space regions ?1 (which contains all the initial conditions reflecting the perturbations at which the system is subject during its operation) and ?2 (which represents the operating security region of the power distribution system) satisfying ?1??2. The practical stability problem and the focus of this paper is to determine under which conditions the system trajectories will be confined into a security region of operation for a certain time interval of interest, as the equilibrium point of the model changes. This study was carried out using a mathematical model of the distribution system with synchronous generators in the form of a switched affine system. This proposed model is capable of describing the system behavior over a certain period within which changes on the equilibrium conditions of the system can occur. Sufficient conditions for the power distribution system with synchronous generators described as a switched affine system to be practically stable with respect to its operating security region ?2 are given in the form of matrix inequalities constraints. The results, obtained for the model of a cogeneration plant of 10MW added to a distribution network constituted by a feeder and six buses, show that the less stringent properties of the concept of practical stability can be very well-suited to the security analysis of power systems subjected to frequent variations in the load level.

Roman Kuiava; Rodrigo A. Ramos; Hemanshu R. Pota; Luis F.C. Alberto

2014-01-01T23:59:59.000Z

172

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network [OSTI]

Solar Turbines Inc Olinda Generating Plant Marina Landfill GasSolar Turbines Inc Olinda Generating Plant Marina Landfill Gas

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

173

GENERATING SYNCHRONIZABLE TEST SEQUENCES BASED ON FINITE STATE MACHINE WITH DISTRIBUTED PORTS1  

E-Print Network [OSTI]

GENERATING SYNCHRONIZABLE TEST SEQUENCES BASED ON FINITE STATE MACHINE WITH DISTRIBUTED PORTS1 Gang with several distributed interfaces, called ports. A test generation method is developed for generating test generation and fault detectability. Several types of such interfaces have been standardized

von Bochmann, Gregor

174

A Model of U.S. Commercial Distributed Generation Adoption  

SciTech Connect (OSTI)

Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

2006-01-10T23:59:59.000Z

175

GRR/Section 8-TX-c - Distributed Generation Interconnection | Open Energy  

Open Energy Info (EERE)

GRR/Section 8-TX-c - Distributed Generation Interconnection GRR/Section 8-TX-c - Distributed Generation Interconnection < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-c - Distributed Generation Interconnection 8-TX-c - Distributed Generation Interconnection.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive Rule 25.211 PUCT Substantive Rule 25.212 Triggers None specified Click "Edit With Form" above to add content 8-TX-c - Distributed Generation Interconnection.pdf 8-TX-c - Distributed Generation Interconnection.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process for distributed generation (DG)

176

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network [OSTI]

Cost of Natural Gas Generation, p Figure 6. Normalised NetCost of Natural Gas Generation, p Figure 7. Wait InvestCost of Natural Gas Generation (US$/kWh e ), C Figure 8.

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

177

The Potential Benefits of Distributed Generation and the Rate-Related  

Broader source: Energy.gov (indexed) [DOE]

The Potential Benefits of Distributed Generation and the The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion. Report Pursuant to Section 1817 of the Energy Policy Act of 2005. The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion More Documents & Publications The potential benefits of distributed deneration and rate-related issues that may impede issues its expansion. June 2007 Notice of inquiry and request for Information - Study of the potential benefits of distributed generation: Federal Register Notice Volume 71, No.

178

Fuel cell power plants in a distributed generator application  

SciTech Connect (OSTI)

ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

179

Optimal planning of distributed generation systems in distribution system: A review  

Science Journals Connector (OSTI)

This paper attempts to present the state of art of research work carried out on the optimal planning of distributed generation (DG) systems under different aspects. There are number of important issues to be considered while carrying out studies related to the planning and operational aspects of DG. The planning of the electric system with the presence of DG requires the definition of several factors, such as: the best technology to be used, the number and the capacity of the units, the best location, the type of network connection, etc. The impact of DG in system operating characteristics, such as electric losses, voltage profile, stability and reliability needs to be appropriately evaluated. For that reason, the use of an optimization method capable of indicating the best solution for a given distribution network can be very useful for the system planning engineer, when dealing with the increase of DG penetration that is happening nowadays. The selection of the best places for installation and the preferable size of the DG units in large distribution systems is a complex combinatorial optimization problem. This paper aims at providing a review of the relevant aspects related to DG and its impact that DG might have on the operation of distributed networks. This paper covers the review of basics of DG, DG definition, current status of DG technologies, potential advantages and disadvantages, review for optimal placement of DG systems, optimizations techniques/methodologies used in optimal planning of DG in distribution systems. An attempt has been made to judge that which methodologies/techniques are suitable for optimal placement of DG systems based on the available literature and detail comparison(s) of each one.

Rajkumar Viral; D.K. Khatod

2012-01-01T23:59:59.000Z

180

Regional Distribution of the Locomotor Pattern-Generating Network in the Neonatal Rat Spinal Cord  

E-Print Network [OSTI]

Regional Distribution of the Locomotor Pattern-Generating Network in the Neonatal Rat Spinal Cord K/NMA, and was evidence of a distributed organization of unit generators inmonitored via hindlimb flexor (peroneal, Winnipeg, Manitoba R3E 0W3, Canada Cowley, K. C. and B. J. Schmidt. Regional distribution of the rhythmic

Manitoba, University of

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fault response of inverter interfaced distributed generators in grid-connected applications  

Science Journals Connector (OSTI)

Abstract Inverter-interfaced distributed generation is prominent in some distribution networks because of the growth of PV and other new sources. In order to ensure that protection system design remains effective in this environment, it is essential to be able to accurately represent inverters in fault current calculations. Calculating the fault current contribution is complicated because of the nature of the transition into current limiting mode and because the current produced is a function of control choices as well as physical components. The desire is for a simple source plus impedance model for incorporation into network studies. Based on knowledge of the control strategy and the details of the method of current limiting, linear analytical equivalent models are proposed whose source and impedance values (at fundamental frequency) can be expressed as a function of the inverter's hardware parameters and controller gains. The dependence of the entry into current limit on the nature and location of other generators in the network leads to a proposal for a load flow based fault analysis incorporating the new models. This iteratively determines which inverter experiences current limiting. The proposed inverter fault models and their use in a network fault analysis have been verified against experimental results in a 3-inverter network.

Cornelis A. Plet; Timothy C. Green

2014-01-01T23:59:59.000Z

182

Generators for Synthesis of QoS Adaptation in Distributed Real-Time Embedded Systems  

Science Journals Connector (OSTI)

This paper presents a model-driven approach for generating Quality-of-Service (QoS) adaptation in Distributed Real-Time Embedded (DRE) systems. The ... - the Adaptive Quality Modeling Language. Multiple generators

Sandeep Neema; Ted Bapty; Jeff Gray

2002-01-01T23:59:59.000Z

183

Artificial Neural Network Based Approach for Anti-islanding Protection of Distributed Generators  

Science Journals Connector (OSTI)

The anti-islanding protection of synchronous generators is typically performed by voltage and frequency ... is possible to recognize existent patterns on the distributed generator voltage waveform, which makes po...

Victor Luiz Merlin

2014-06-01T23:59:59.000Z

184

Methods of calculating currents of induction, self-excited generators with two distributed windings  

Science Journals Connector (OSTI)

A simplified way of calculating the current frequency of induction self-excited generator with two distributed windings on the stator is suggested. It ... do not influence the current frequency of the generator; ...

S. I. Kitsis; D. N. Pautov

2009-04-01T23:59:59.000Z

185

Methodology The electricity generation and distribution network in the Western United States is  

E-Print Network [OSTI]

Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

Hall, Sharon J.

186

Micro-grid operation of inverter based distributed generation with voltage and frequency dependent loads  

E-Print Network [OSTI]

Distribution systems are experiencing increasing penetration of distributed generation (DG). One attractive option is to use the available DG capacity during utility outages by forming planned micro-grids. Load sharing ...

Zeineldin, H. H.

187

A Study of Distributed Generation System Characteristics and Protective Load Control Strategy  

E-Print Network [OSTI]

turbines: Doubly-fed Induction Generator (DFIG) and Fixed-speed Wind Turbine (FSWT) are compared), Distributed Generation System (DGS), Doubly- fed Induction Generator (DFIG), Fixed-speed Wind Turbine (FSWT (FSWT) and doubly-fed induction generator wind turbine (DFIG) have different characteristics, when

Chen, Zhe

188

A distributed parameter model for the torsional vibration analysis of turbine-generator shafts  

Science Journals Connector (OSTI)

A distributed parameter model is presented for the calculation of torsional vibrations of large turbine-generator shafts, on the basis of electrical analogy...

A. Deri; L. Kiss; G. Toth

1987-01-01T23:59:59.000Z

189

Intelligent Power Management of a Hybrid Fuel Cell/Energy Storage Distributed Generator  

Science Journals Connector (OSTI)

This book chapter addresses the intelligent power management of a hybrid ( fuel cell/energy storage( distributed generator connected to a power grid. It presents...

Amin Hajizadeh; Ali Feliachi; Masoud Aliakbar Golkar

2012-01-01T23:59:59.000Z

190

Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)  

SciTech Connect (OSTI)

About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

2010-05-01T23:59:59.000Z

191

Is The Distributed Generation Revolution Coming: A Federal Perspective  

Office of Environmental Management (EM)

generation and transmission construction and retirements, energy efficiency and demand response programs, regional system plans, and the implications of federal and state...

192

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network [OSTI]

DG) and combined heat and power (CHP) applications matchedpower generation with combined heat and power applications,tax on microgrid combined heat and power adoption, Journal

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

193

Most Viewed Documents for Power Generation and Distribution:...  

Office of Scientific and Technical Information (OSTI)

Methods for Power Distribution Systems: Final Report Tom McDermott (2010) 34 Industrial Power Factor Analysis Guidebook. Electrotek Concepts. (1995) 29 Recovery of Water from...

194

Future of Distributed Generation and IEEE 1547 (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the background on IEEE 1547, including its purpose, changes, new boundary issues and requirements, islanding issues, and how it impacts distributed wind.

Preus, R.

2014-06-01T23:59:59.000Z

195

Can Satellite Sampling of Offshore Wind Speeds Realistically Represent Wind Speed Distributions? Part II: Quantifying Uncertainties Associated with Distribution Fitting Methods  

Science Journals Connector (OSTI)

Remote sensing tools represent an attractive proposition for measuring wind speeds over the oceans because, in principle, they also offer a mechanism for determining the spatial variability of flow. Presented here is the continuation of research ...

S. C. Pryor; M. Nielsen; R. J. Barthelmie; J. Mann

2004-05-01T23:59:59.000Z

196

Multivariate distributed ensemble generator: A new scheme for ensemble radar precipitation estimation over temperate maritime climate  

Science Journals Connector (OSTI)

Summary It is broadly recognized that large uncertainties are associated with radar rainfall (RR) estimates, which could propagate in the hydrologic forecast system and contaminate its final outcomes. Ensemble generation of probable true rainfall is an elegant and practical solution to characterize the uncertainty of RR estimates and behavior in the hydrologic forecast system. In this study, we have proposed a fully formulated uncertainty model that can statistically quantify the characteristics of the RR errors and their spatial and temporal structure, which is a novel method of its kind in the radar data uncertainty field. The error model is established based on the distribution of gauge rainfall conditioned on radar rainfall (GR|RR). Its spatial and temporal dependencies are simulated based on the t-copula function. With this proposed error model, a Multivariate Distributed Ensemble Generator (MDEG) driven by the copula and autoregressive filter is designed and applied in the Brue catchment (135km2), an extensively gauged site in the United Kingdom. The products from MDEG include a time series of ensemble rainfall fields with each of them representing a probable true rainfall. A series of tests show that the ensemble fields generated by MDEG have realistically maintained the spatial and temporal structure of the random error in RR as they have relatively low mean absolute errors (MAEs) of spatio-temporal correlation towards the observed ones. In addition, the results show that the simulated uncertainty bands derived by the 500 realizations of ensemble rainfall encompass most of the reference rain gauge measurements, indicating that the proposed scheme is statistically reliable.

Qiang Dai; Dawei Han; Miguel Rico-Ramirez; Prashant K. Srivastava

2014-01-01T23:59:59.000Z

197

Galaxy-cluster gas-density distributions of the Representative XMM-Newton Cluster Structure Survey (REXCESS)  

E-Print Network [OSTI]

We present a study of the structural and scaling properties of the gas distributions in the intracluster medium (ICM) of 31 nearby (z 3 keV scale self-similarly, with no temperature dependence of gas-density normalisation. We find some evidence of a correlation between dynamical state and outer gas density slope, and between dynamical state and both central gas normalisation and cooling time. We find no evidence of a significant bimodality in the distributions of central density, density gradient, or cooling time. Finally, we present the gas mass-temperature relation for the REXCESS sample, which is consistent with the expectation of self-similar scaling modified by the presence of an entropy excess in the inner regions of the cluster, and has a logarithmic intrinsic scatter of ~10%.

J. H. Croston; G. W. Pratt; H. Boehringer; M. Arnaud; E. Pointecouteau; T. J. Ponman; A. J. R. Sanderson; R. F. Temple; R. G. Bower; M. Donahue

2008-01-22T23:59:59.000Z

198

A genetic algorithm approach to voltage-VAR control in systems with distributed generation  

Science Journals Connector (OSTI)

This paper presents a case study that highlights the influences which the connection of distributed generation sources may have over the solutions of reactive power compensation and voltage control already existing in a given network. The problem of ... Keywords: distributed generation, genetic algorithms, renewable sources, voltage-var control

Iulia Coroama; Mihai Gavrilas; Ovidiu Ivanov

2010-10-01T23:59:59.000Z

199

Bulk ACCVD Generation of SWNTs with Narrow Chirality Distribution Shigeo Maruyama1)  

E-Print Network [OSTI]

Bulk ACCVD Generation of SWNTs with Narrow Chirality Distribution Shigeo Maruyama1) , Yuhei-1, Sonoyama 1-chome, Otsu, Shiga 520-8558, Japan By scaling up the alcohol CCVD (ACCVD) generation technique to determine the chirality distribution of SWNTs, dispersed and centrifuged SWNTs in NaDDBS/D2O was examined

Maruyama, Shigeo

200

Generation of high-resolution surface temperature distributions Anton A. Darhuber and Sandra M. Troiana)  

E-Print Network [OSTI]

Generation of high-resolution surface temperature distributions Anton A. Darhuber and Sandra M have performed numerical calculations to study the generation of arbitrary temperature profiles with high spatial resolution on the surface of a solid. The characteristics of steady-state distributions

Troian, Sandra M.

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Autonomous Control of Inverter-Interfaced Distributed Generation Units for Harmonic Current Filtering and  

E-Print Network [OSTI]

Autonomous Control of Inverter-Interfaced Distributed Generation Units for Harmonic Current-interfaced Distributed Generation (DG) units, which can autonomously share harmonic currents and resonance damping, such that harmonic resonances and voltage distortions can be damped. To autonomously share harmonic currents, a droop

Chen, Zhe

202

Integrating Small Scale Distributed Generation into a Deregulated Market: Control Strategies and Price Feedback  

E-Print Network [OSTI]

Small scale power generating technologies, such as gas turbines, small hydro turbines, photovoltaics, wind turbines and fuel cells, are gradually replacing conventional generating technologies, for various applications, in the electric power system. The industry restructuring process in the United States is exposing the power sector to market forces, which is creating competitive structures for generation and alternative regulatory structures for the transmission and distribution systems. The potentially conflicting economic and technical demands of the new, independent generators introduce a set of significant uncertainties. What balance between market forces and centralized control will be found to coordinate distribution system operations? How will the siting of numerous small scale generators in distribution feeders impact the technical operations and control of the distribution system? Who will provide ancillary services (such as voltage support and spinning reserves) in the new competitive environment? This project investigates both the engineering and market integration of distributed generators into the distribution system. On the technical side, this project investigates the frequency performance of a distribution system that has multiple small scale generators. Using IEEE sample distribution systems and new dynamic generator models, this project develops general methods for

Judith Cardell; Marija Ili?; Richard D. Tabors

1997-01-01T23:59:59.000Z

203

Distributed Private-Key Generators for Identity-Based Cryptography  

Science Journals Connector (OSTI)

An identity-based encryption (IBE) scheme can greatly reduce the complexity of sending encrypted messages. However, an IBE scheme necessarily requires a private-key generator (PKG), which can create private keys ...

Aniket Kate; Ian Goldberg

2010-01-01T23:59:59.000Z

204

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network [OSTI]

power generation with combined heat and power applications.tax on microgrid combined heat and power adoption. JournalCHP Application Center. Combined heat and power in a dairy.

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

205

Distributed Online Learning of Central Pattern Generators in Modular Robots  

Science Journals Connector (OSTI)

In this paper we study distributed online learning of locomotion gaits for modular robots. The learning is based on a stochastic approximation method, SPSA, which optimizes the parameters of coupled oscillator...

David Johan Christensen; Alexander Sprwitz

2010-01-01T23:59:59.000Z

206

A Multi-State Model for the Reliability Assessment of a Distributed Generation System via Universal Generating Function  

E-Print Network [OSTI]

renewable technology (e.g. wind or solar, etc.) whose behavior is described by a binary state, working assessment, multi-state modeling, universal generating function #12;2 Notations Solar irradiance Total number of discretized solar irradiance states Discretized solar irradiance at state i Random variable representing

Boyer, Edmond

207

A new HBMO algorithm for multiobjective daily Volt/Var control in distribution systems considering Distributed Generators  

Science Journals Connector (OSTI)

In recent years, Distributed Generators (DGs) connected to the distribution network have received increasing attention. The connection of enormous \\{DGs\\} into existing distribution network changes the operation of distribution systems. Because of the small X/R ratio and radial structure of distribution systems, \\{DGs\\} affect the daily Volt/Var control. This paper presents a new algorithm for multiobjective daily Volt/Var control in distribution systems including Distributed Generators (DGs). The objectives are costs of energy generation by \\{DGs\\} and distribution companies, electrical energy losses and the voltage deviations for the next day. A new optimization algorithm based on a Chaotic Improved Honey Bee Mating Optimization (CIHBMO) is proposed to determine the active power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. Since objectives are not the same, a fuzzy system is used to calculate the best solution. The plausibility of the proposed algorithm is demonstrated and its performance is compared with other methods on a 69-bus distribution feeder. Simulation results illustrate that the proposed algorithm has better outperforms the other algorithms.

Taher Niknam

2011-01-01T23:59:59.000Z

208

Distributed Generation Potential of the U.S. CommercialSector  

SciTech Connect (OSTI)

Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25 percent of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Department of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman,Etan; Marnay, Chris

2005-06-01T23:59:59.000Z

209

PSCAD Modules Representing PV Generator  

SciTech Connect (OSTI)

Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

Muljadi, E.; Singh, M.; Gevorgian, V.

2013-08-01T23:59:59.000Z

210

Uncertainty Analysis of the Adequacy Assessment Model of a Distributed Generation System  

E-Print Network [OSTI]

of evidence theory, the hybrid propagation approach is introduced. A demonstration is given on a DG system enables end-users to install renewable generators (e.g. solar generators and wind turbines) on1 Uncertainty Analysis of the Adequacy Assessment Model of a Distributed Generation System Yanfu Li

Paris-Sud XI, Université de

211

hal-00015991,version2-14Nov2006 Gibbs distributions for random partitions generated by a  

E-Print Network [OSTI]

hal-00015991,version2-14Nov2006 Gibbs distributions for random partitions generated) distribution is obtained by sampling uniformly among such partitions with k clusters. We provide conditions has the Gibbs (n, k, w) distribution, so the partition is subject to irreversible fragmentation

Paris-Sud XI, Université de

212

OPTIMAL DISTRIBUTED POWER GENERATION UNDER NETWORK LOAD CONSTRAINTS,  

E-Print Network [OSTI]

-producers. Decentralized Power Generation (DPG) refers to an electric power source such as solar, wind or combined heat (the approach used in the traditional electric power paradigm), DPG systems employ numerous, but small¨EL BLOEMHOF, JOOST BOSMAN§, DAAN CROMMELIN¶, JASON FRANK , AND GUANGYUAN YANG Abstract. In electrical power

Frank, Jason

213

Distributed State Space Generation of Discrete-State Stochastic Models  

E-Print Network [OSTI]

of the numerical approach, since the size of the state space can easily be orders of magnitude larger than the main charts [17], and ad hoc textual languages [14], the correct logical behavior can, in principle--it makes sense to distribute the state-space principally when one has to in order to avoid paging overhead

Ciardo, Gianfranco

214

Distributed Generation versus Centralised Supply: a Social Cost-Benefit Analysis  

E-Print Network [OSTI]

, regulators and legislators in distributed generation (DG), namely, the integrated or stand-alone use of small, modular power generation close to the point of consumption as an alternative to large power generation and electricity transport over long distances... condensing boiler providing heat for space heating and sanitary uses (hot water). A conventional compressing refrigerator supplies cold for air conditioning. Imported electricity is assumed to be generated by a combined cycle-gas turbine plant (CCGT), with 51...

Gulli, Francesco

2004-06-16T23:59:59.000Z

215

Distributed Generation and Renewable Energy in the Electric Cooperative Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation and Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero Cooperative Research Network (CRN) National Rural Electric Cooperative Association September 22, 2004 Co-op Basics  Customer owned  Serve 35 million people in 47 states  75 percent of nation's area  2.3 million miles of line is close to half of nation's total  Growth rate twice that of IOU Electrics  Six customers per line-mile vs 33 for IOU  Co-ops view DP as a needed solution; not as a "problem" Broad Range of Technologies Chugach EA 1-MW Fuel Cell Installation Post Office in Anchorage, AK Chugach EA Microturbine Demo Unit at Alaska Village Electric Co-op CRN Transportable 200kW Fuel Cell at Delta- Montrose EA in Durango, CO Plug Power Fuel Cell at Fort Jackson, SC

216

Integrated operation of electric vehicles and renewable generation in a smart distribution system  

Science Journals Connector (OSTI)

Abstract Distribution system complexity is increasing mainly due to technological innovation, renewable Distributed Generation (DG) and responsive loads. This complexity makes difficult the monitoring, control and operation of distribution networks for Distribution System Operators (DSOs). In order to cope with this complexity, a novel method for the integrated operational planning of a distribution system is presented in this paper. The method introduces the figure of the aggregator, conceived as an intermediate agent between end-users and DSOs. In the proposed method, energy and reserve scheduling is carried out by both aggregators and DSO. Moreover, Electric Vehicles (EVs) are considered as responsive loads that can participate in ancillary service programs by providing reserve to the system. The efficiency of the proposed method is evaluated on an 84-bus distribution test system. Simulation results show that the integrated scheduling of \\{EVs\\} and renewable generators can mitigate the negative effects related to the uncertainty of renewable generation.

Alireza Zakariazadeh; Shahram Jadid; Pierluigi Siano

2015-01-01T23:59:59.000Z

217

A new approach based on ant colony optimization for daily Volt/Var control in distribution networks considering distributed generators  

Science Journals Connector (OSTI)

This paper presents a new approach to daily Volt/Var control in distribution systems with regard to distributed generators (DGs). Due to the small X/R ratio and radial configuration of distribution systems, \\{DGs\\} have much impact on this problem. A cost-based compensation methodology is proposed as a proper signal to encourage owners of \\{DGs\\} in active and reactive power generation. An evolutionary method based on ant colony optimization (ACO) is used to determine the active and reactive power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. The results indicate that the proposed encouraging factor has improved the performance of distribution networks on a large scale.

Taher Niknam

2008-01-01T23:59:59.000Z

218

Solar Valuation and the Modern Utility's Expansion into Distributed Generation  

Science Journals Connector (OSTI)

Residential solar's diffusion across the U.S. power grid is inspiring concern in the utility industry. Of particular debate have been net energy metering policies (NEM), which engender revenue losses and lead to cross-subsidization of solar customers by non-solar customers. An emerging alternative to NEM is the value of solar tariff (VOST), which is designed to pay residential solar generation based on a more nuanced benefit-cost analysis to determine the actual value of residential solar to utility operations.

Griselda Blackburn; Clare Magee; Varun Rai

2014-01-01T23:59:59.000Z

219

Novel Control of PV Solar and Wind Farm Inverters as STATCOM for Increasing Connectivity of Distributed Generators.  

E-Print Network [OSTI]

??The integration of distributed generators (DGs) such as wind farms and PV solar farms in distribution networks is getting severely constrained due to problems of (more)

AC, Mahendra

2013-01-01T23:59:59.000Z

220

Distributed Central Pattern Generator Model for Robotics Application Based on Phase Sensitivity Analysis  

Science Journals Connector (OSTI)

A method is presented to predict phase relationships between coupled phase oscillators. As an illustration of how the method can be applied, a distributed Central Pattern Generator (CPG) model based on amplitude ...

Jonas Buchli; Auke Jan Ijspeert

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Synthesis of Droop-Based Distributed Generators in a Micro Grid System  

Science Journals Connector (OSTI)

Distributed Generation (DG) systems are being increasingly favored for meeting the ever-growing demands of electrical energy and smart grids. Todays DG technologies include energy sources such as conventional...

Mahesh S. Illindala

2012-01-01T23:59:59.000Z

222

Applying epoch-era analysis for homeowner selection of distributed generation power systems  

E-Print Network [OSTI]

The current shift from centralized energy generation to a more distributed model has opened a number of choices for homeowners to provide their own power. While there are a number of systems to purchase, there are no tools ...

Pia, Alexander L

2014-01-01T23:59:59.000Z

223

Generating multipartite entangled states of qubits distributed in different cavities  

E-Print Network [OSTI]

Cavity-based large-scale quantum information processing (QIP) needs a large number of qubits and placing all of them in a single cavity quickly runs into many fundamental and practical problems such as the increase of cavity decay rate and decrease of qubit-cavity coupling strength. Therefore, future QIP most likely will require quantum networks consisting of a large number of cavities, each hosting and coupled to multiple qubits. In this work, we propose a way to prepare a $W$-class entangled state of spatially-separated multiple qubits in different cavities, which are connected to a coupler qubit. Because no cavity photon is excited, decoherence caused by the cavity decay is greatly suppressed during the entanglement preparation. This proposal needs only one coupler qubit and one operational step, and does not require using a classical pulse, so that the engineering complexity is much reduced and the operation is greatly simplified. As an example of the experimental implementation, we further give a numerical analysis, which shows that high-fidelity generation of the $W$ state using three superconducting phase qubits each embedded in a one-dimensional transmission line resonator is feasible within the present circuit QED technique. The proposal is quite general and can be applied to accomplish the same task with other types of qubits such as superconducting flux qubits, charge qubits, quantum dots, nitrogen-vacancy centers and atoms.

Xiao-Ling He; Qi-Ping Su; Feng-Yang Zhang; Chui-Ping Yang

2014-10-12T23:59:59.000Z

224

A distributed data storage and processing framework for next-generation residential distribution systems  

Science Journals Connector (OSTI)

Abstract As the number of smart meters/sensors increases to more than hundreds of thousands, it is rather intuitive that the state-of-the-art centralized information processing architecture will no longer be sustainable under such a big data explosion. Hence, an innovative data management system is urgently needed to facilitate the real-world deployment of a future residential distribution system. In this paper, we investigate a radically different approach through distributed software agents to translate the legacy centralized data storage and processing scheme to a completely distributed cyber-physical architecture. We further substantiate the proposed distributed data storage and processing framework on a proof-of-concept testbed using a cluster of low-cost and credit-card-sized single-board computers. Finally, we evaluate the proposed distributed framework and proof-of-concept testbed with a comprehensive set of performance measures.

Ni Zhang; Yu Yan; Shengyao Xu; Wencong Su

2014-01-01T23:59:59.000Z

225

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost  

E-Print Network [OSTI]

is to perform demand side management (DSM) [1], which aims at matching the consum- ers' electricity demand between electricity consumption and generation. On the consumption side, electric demand ramps upDistributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue

Pedram, Massoud

226

Modeling and Generating Daily Changes in Market Variables Using A Multivariate Mixture of Normal Distributions  

E-Print Network [OSTI]

Modeling and Generating Daily Changes in Market Variables Using A Multivariate Mixture of Normal Distributions Jin Wang Department of Mathematics and Computer Science Valdosta State University Valdosta, GA 31698-0040 January 28, 2000 Abstract The mixture of normal distributions provides a useful extension

Wang, Jin

227

Assessment of the Distributed Generation Market Potential for Solid Oxide Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Distributed the Distributed Generation Market Potential for Solid Oxide Fuel Cells September 29, 2013 DOE/NETL- 342/093013 NETL Contact: Katrina Krulla Analysis Team: Arun Iyengar, Dale Keairns, Dick Newby Contributors: Walter Shelton, Travish Shulltz, Shailesh Vora OFFICE OF FOSSIL ENERGY Table of Contents Executive Summary .........................................................................................................................1 1 Introduction ...................................................................................................................................2 2 DG Market Opportunity ................................................................................................................3 3 SOFC Technology Development Plan ..........................................................................................6

228

A 10.9 GS/s, 64 Taps Distributed Waveform Generator with DAC-Assisted Current-Steering Pulse Generators in  

E-Print Network [OSTI]

A 10.9 GS/s, 64 Taps Distributed Waveform Generator with DAC-Assisted Current-Steering Pulse Generators in ¢¡¤£¦¥¨§© Digital CMOS Yunliang Zhu , Jonathan D. Zuegel , John R. Marciante , and Hui Wu, Email:hwu@ece.rochester.edu Abstract-- A distributed waveform generator (DWG) with DAC-assisted pulse

Wu, Hui

229

Performance Enhancement of Radial Distributed System with Distributed Generators by Reconfiguration Using Binary Firefly Algorithm  

Science Journals Connector (OSTI)

The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/cl...

N. Rajalakshmi; D. Padma Subramanian

2014-08-01T23:59:59.000Z

230

Laying the Groundwork: Lessons Learned from the Telecommunications Industry for Distributed Generation; Preprint  

SciTech Connect (OSTI)

The telecommunications industry went through growing pains in the past that hold some interesting lessons for the growing distributed generation (DG) industry. The technology shifts and stakeholders involved with the historic market transformation of the telecommunications sector mirror similar factors involved in distributed generation today. An examination of these factors may inform best practices when approaching the conduits necessary to accelerate the shifting of our nation's energy system to cleaner forms of generation and use. From a technical perspective, the telecom industry in the 1990s saw a shift from highly centralized systems that had no capacity for adaptation to highly adaptive, distributed network systems. From a management perspective, the industry shifted from small, private-company structures to big, capital-intensive corporations. This presentation will explore potential correlation and outline the lessons that we can take away from this comparison.

Wise, A. L.

2008-05-01T23:59:59.000Z

231

A distributed model for capacitance requirements for self-excited induction generators  

Science Journals Connector (OSTI)

The main objective of this paper is to construct a distributed environment through which the capacitance requirements of self-excited induction generators can be monitored and controlled. A single-server/multiclient architecture has been proposed which enables that the self-excited induction generators can access the remote server at any time, with their respective data and can able to get the minimum capacitance requirements. An Remote Method Invocation (RMI)-based distributed model has been developed in such a way that for every specific period of time, the remote server obtains the system data simultaneously from the neighbouring self-excited induction generators which are the clients registered with it and the server send back the capacitance requirements as response to the respective clients. The server creates a new thread of control for every client request and hence complete distributed environment has been exploited.

K. Nithiyananthan; V. Ramachandran

2008-01-01T23:59:59.000Z

232

The impact of large-scale distributed generation on power grid and microgrids  

Science Journals Connector (OSTI)

Abstract With the widespread application of distributed generation (DG), their utilization rate is increasingly higher and higher in the power system. This paper analyzes the static and transient impact of large-scale \\{DGs\\} integrated with the distribution network load models on the power grid. Studies of static voltage stability based on continuous power flow method have shown that a reasonable choice of DG's power grid position will help to improve the stability of the system. The transient simulation results show that these induction motors in the distribution network would make effect on the start-up and fault conditions, which may cause the instability of \\{DGs\\} and grid. The simulation results show that modeling of distributed generations and loads can help in-depth study of the microgrid stability and protection design.

Qian Ai; Xiaohong Wang; Xing He

2014-01-01T23:59:59.000Z

233

Cost reduction of distribution network protection in presence of distributed generation using optimized fault current limiter allocation  

Science Journals Connector (OSTI)

Using Solid State Fault Current Limiters (SSFCLs) has been proposed as a potential cost-efficient candidate to minimize the effect of exposing Distributed Generation (DG) to the distribution system. Genetic Algorithm (GA) is employed to find the optimum number, location and size of \\{FCLs\\} to be used in the network. The numerical and simulation results show the efficiency of proposed GA-based FCL allocation and sizing method in terms of minimizing the cost of distribution protection system. The prices of \\{FCLs\\} are estimated using real market prices and simulations are performed in four cases assuming prices more than the estimated one, less than estimated price and equal to the real estimated cost for FCL. Numerical results show that FCL price highly affects the optimum choices for \\{FCLs\\} and the price imposed by using FCLs.

Sayyed Ali Akbar Shahriari; Ali Yazdian Varjani; Mahmood Reza Haghifam

2012-01-01T23:59:59.000Z

234

Enhancement of loading capacity of distribution system through distributed generator placement considering techno-economic benefits with load growth  

Science Journals Connector (OSTI)

Abstract Load growth in a system is a natural phenomenon. With the increase in load demand, system power loss and voltage drop increases. Distributed generators (DGs) are one of the best solutions to cope up with the load growth if they are allocated appropriately in the distribution system. In this work, optimal size and location of multiple \\{DGs\\} are found to cater the incremental load on the system and minimization of power loss without violating system constraints. For this a predetermined annual load growth up to five years is considered with voltage regulation as a constraint. The particle swarm optimization with constriction factor approach is applied to determine the optimum size and location with multiple DGs. To see the effect of load growth on system, 33-node IEEE standard test case is considered. It is observed that with the penetration of multiple number of \\{DGs\\} in distribution system, there is great improvement in several distribution system parameters. Moreover, the loading capacity of distribution system is enhanced through DG placement and its techno-economic benefits are also established.

Khyati D. Mistry; Ranjit Roy

2014-01-01T23:59:59.000Z

235

transmission april may 2003 re-gen56 Privately-owned distributed generation  

E-Print Network [OSTI]

transmission grid to Distributed renewable energy systems, such as mini- hydro, can significantly affect, including mini-hydro. Mini- hydro resources are commonly found in areas with low population and load new techniques that could facilitate a greater capacity of mini- hydro generation. The first allows

Harrison, Gareth

236

Generation of communication schedules for multi-mode distributed real-time applications  

Science Journals Connector (OSTI)

A key problem in designing multi-mode real-time systems is the generation of schedules to reduce the complexities of transforming the model semantics to code. Moreover, distributed multi-mode applications are prone to suffer from delays incurred during ...

Akramul Azim; Gonzalo Carvajal; Rodolfo Pellizzoni; Sebastian Fischmeister

2014-03-01T23:59:59.000Z

237

Apply: Small Business Funding Opportunity for Lighting, Integrated Storage, and Distributed Generation  

Broader source: Energy.gov [DOE]

Closed Application Deadline: February 3, 2015 The Small Business Innovation Research program has announced its FY 2015 Phase 1 Release 2 topics, which include buildings-related topics: energy efficient solid-state lighting luminaires, products, and systems; and integrated storage and distributed generation for buildings.

238

Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study  

E-Print Network [OSTI]

Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study Zhi Zhou1 Fangming Liu of fuel cell energy in cloud computing, yet it is unclear what and how much benefit it may bring. This paper, for the first time, attempts to quantitatively examine the benefits brought by fuel cell

Li, Baochun

239

Statistics for PV, wind and biomass generators and their impact on distribution grid planning  

Science Journals Connector (OSTI)

The integration of renewable energy generation leads to major challenges for distribution grid operators. When the feed-in of photovoltaic (PV), biomass and wind generators exceed significantly the local consumption, large investments are needed. To improve the knowledge on the interaction between these technologies, statistical information for load curves, correlation coefficients and general feed-in behavior is derived. These derivations are based on measured data of different generators in a German distribution area. In this paper, we give new insights useful for the dimensioning of grid structures and assets. Furthermore, an approach is presented which allows the calculation of the maximum and minimum feed-in resulting from different combinations of the considered technologies.

Stefan Nykamp; Albert Molderink; Johann L. Hurink; Gerald J.M. Smit

2012-01-01T23:59:59.000Z

240

Planning of grid integrated distributed generators: A review of technology, objectives and techniques  

Science Journals Connector (OSTI)

Abstract The world is witnessing a transition from its present centralized generation paradigm to a future with increased share of distributed generation (DG). Integration of renewable energy sources (RES) based distributed generators is seen as a solution to decrease reliance on depleting fossil fuel reserves, increase energy security and provide an environment friendly solution to growing power demand. The planning of power system incorporating \\{DGs\\} has to take into account various factors such as nature of DG technology, impact of DG on operating characteristics of power system and economic considerations. This paper put forwards a comprehensive review on planning of grid integrated distributed generators. An overview of different DG technologies has been presented. Different issues associated with DG integration have been discussed. The planning objectives of DG integration have been surveyed in detail and have been critically reviewed with respect to conventional and RES based DG technologies. Different techniques used for optimal placement of \\{DGs\\} have also been investigated and compared. The extensive literature survey revealed that researchers have mostly focussed on DG integration planning using conventional DGs. RES based \\{DGs\\} have not been given due consideration. While integrating RES, their stochastic behaviour has not been appropriately accounted. Finally, visualizing the wide scope of research in the planning of grid integrated DGs; an attempt has been made to identify future research avenues.

Priyanka Paliwal; N.P. Patidar; R.K. Nema

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Time dependent evolution of RF-generated non-thermal particle distributions in fusion plasmas  

Science Journals Connector (OSTI)

We describe fully self-consistent time-dependent simulations of radio frequency (RF) generated ion distributions in the ion cyclotron range of frequencies and RF-generated electron distributions in the lower hybrid range of frequencies using combined FokkerPlanck and full wave electromagnetic field solvers. In each regime, the non-thermal particle distributions have been used in synthetic diagnostic codes to compare with diagnostic measurements from experiment, thus providing validation of the simulation capability. The computational intensive simulations require multiple full wave code runs that iterate with a FokkerPlanck code. We will discuss advanced algorithms that have been implemented to accelerate both the massively parallel full wave simulations as well as the iteration with the distribution code. A vector extrapolation method (Sidi A 2008 Comput. Math. Appl. 56) that permits Jacobian-free acceleration of the traditional fixed point iteration technique is used to reduce the number of iterations needed between the distribution and wave codes to converge to self-consistency. The computational burden of the parallel full wave codes has been reduced by using a more efficient two level parallel decomposition that improves the strong scaling of the codes and reduces the communication overhead.

J C Wright; A Bader; L A Berry; P T Bonoli; R W Harvey; E F Jaeger; J-P Lee; A Schmidt; E D'Azevedo; I Faust; C K Phillips; E Valeo

2014-01-01T23:59:59.000Z

242

Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems  

Science Journals Connector (OSTI)

Abstract This paper presents a novel quasi-oppositional teaching learning based optimization (QOTLBO) methodology in order to find the optimal location of distributed generator to simultaneously optimize power loss, voltage stability index and voltage deviation of radial distribution network. The basic disadvantage of the original teaching learning based optimization (TLBO) algorithm is that it gives a near optimal solution rather than an optimal one in a limited iteration cycles. In this paper, opposition based learning (OBL) and quasi OBL concepts are introduced in original TLBO algorithm for improving the convergence speed and simulation results of TLBO. In order to show the effectiveness and superiority, the proposed algorithms are tested on 33-bus, 69-bus and 118-bus radial distribution networks. The simulation results of the proposed methods are compared with those obtained by other artificial intelligence techniques like GA/PSO, GA, PSO and loss sensitivity factor simulated annealing (LSFSA). The results show that the QOTLBO surpasses the other techniques in terms of solution quality.

Sneha Sultana; Provas Kumar Roy

2014-01-01T23:59:59.000Z

243

S & P Opines on Securitizing Distributed Generation | OpenEI Community  

Open Energy Info (EERE)

S & P Opines on Securitizing Distributed Generation S & P Opines on Securitizing Distributed Generation Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1992) Super contributor 10 July, 2012 - 14:04 imported OpenEI Article originally published at NREL's Renewable Energy Project Finance website Renewable energy-related asset securitization has been gaining a lot of traction lately as a number of key stakeholders from both the private and public sectors have been stepping up their collaborative efforts (including NREL's finance team). To help frame the discussion and facilitate the creation of ratings-quality renewable energy asset pools, Standard and Poor's (S&P) rating agency has recently produced high-level guidance on various possible risk factors in the potential securitization

244

An ExpressionRewriting Framework to Generate Communication Sets for HPF Programs with BlockCyclic Distribution  

E-Print Network [OSTI]

information (how data are distributed among processors), and generate the communication codes[3, 16, 19An Expression­Rewriting Framework to Generate Communication Sets for HPF Programs with Block­Cyclic Distribution Gwan­Hwan Hwang Jenq Kuen Lee Department of Computer Science, National Tsing­Hua University

Lee, Jenq-Kuen

245

Department Safety Representatives Department Safety Representative  

E-Print Network [OSTI]

Department Safety Representatives Overview Department Safety Representative Program/Operations Guidance Document The Department Safety Representative (DSR) serves a very important role with implementation of safety, health, and environmental programs on campus. The role of the DSR is to assist

Pawlowski, Wojtek

246

Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint  

SciTech Connect (OSTI)

This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

2007-06-01T23:59:59.000Z

247

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

SciTech Connect (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

248

Flicker attenuation and transfer study for induction generator integrated into distribution network  

Science Journals Connector (OSTI)

Abstract Squirrel-cage induction generators (IGs) are widely used in distributed generation (DG). When the voltage at the point of common coupling is fluctuant, the embedded IG will show the impedance characteristic with dynamic changes under the different fluctuation frequencies. In addition, the drive train of IG set has great impact on the voltage flicker attenuation. This paper observes the dynamic response of IG to the voltage flicker through the experiments and further defines the flicker attenuation factor and transfer coefficient. A linearization model of IG with two-mass equivalent drive train is constructed through comparing the impacts of different drive trains (such as diesel engine, wind turbine) on the voltage flicker attenuation. Then an analytical method is proposed to determine the dynamic impedance, attenuation factor, transfer coefficient and flicker limit for IG integrated into distribution network. The correctness of the proposed method is verified by the experimental tests and the dynamic simulation using the detailed model of IG set. The parameters sensitivities of drive train and generator to the voltage flicker attenuation effect are analyzed and discussed in the paper.

Qianggang Wang; Niancheng Zhou; Jizhong Zhu; Wei Yan; Shu Pan

2014-01-01T23:59:59.000Z

249

Optimizing Geographic Allotment of Photovoltaic Capacity in a Distributed Generation Setting: Preprint  

SciTech Connect (OSTI)

A multi-objective optimization was performed to allocate 2MW of PV among four candidate sites on the island of Lanai such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in an optimal solution set which provides a range of geographic allotment alternatives for the fixed PV capacity. Within the optimal set, a tradeoff between energy produced and variability experienced was found, whereby a decrease in variability always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study which decreased extreme ramp rates by over 50% while only decreasing annual energy generation by 3% over the maximum generation allocation. To quantify the allotment mix selected, a metric was developed, called the ramp ratio, which compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience over single site allotment and how much a single site is being under-utilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid.

Urquhart, B.; Sengupta, M.; Keller, J.

2012-09-01T23:59:59.000Z

250

Optimal allocation of multi-type distributed generators using backtracking search optimization algorithm  

Science Journals Connector (OSTI)

Abstract In this article, a very recently swarm optimization technique namely a backtracking search optimization algorithm (BSOA) is addressed to assign the distributed generators (DGs) along radial distribution networks. One of the main features of the BSOA is a single control parameter and not over sensitive to the initial value of this factor. The objective function is adapted with weighting factor to reduce the network real loss and enhance the voltage profile with the purpose of improving the operating performance. In addition, the combined power factor and reduction in network reactive power loss are spotted. Set of fuzzy expert rules using loss sensitivity factors and bus voltages are employed to identify the initial DGs locations. The proposed approach is attuned to tackle the shortfall of loss sensitivity factors and to decide the final placement of the DGs. Two types of the \\{DGs\\} are studied and investigated. The proposed method is demonstrated and validated thru many radial distribution networks with different sizes and complexities. The BSOA-based methodology can efficiently generate high-quality solutions compared to other competitive techniques in the literature.

Attia El-Fergany

2015-01-01T23:59:59.000Z

251

Laboratories for the 21st Century: Best Practices (Brochure): Onsite Distributed Generation Systems For Laboratories  

Broader source: Energy.gov (indexed) [DOE]

L L a b o r a t o r i e s f o r t h e 2 1 s t C e n t u r y : B e s t P r a c t i c e s This combined heat and power system at the Bristol-Myers Squibb laboratory in Wallingford, Connecticut, could meet 100% of the lab's power requirement, if necessary. Bernard Blesinger / PIX 12552 ONSITE DISTRIBUTED GENERATION SYSTEMS FOR LABORATORIES Introduction Laboratories have unique requirements for lighting, ventilation, and scientific equipment with each requiring a considerable amount of energy. The reliability of that energy is very important. Laboratories must be able to conduct research without power interruptions, which can damage both equipment and experiments. Generating power and heat on site is one good way to enhance energy reliability, improve fuel utilization efficiency, reduce utility costs,

252

Spatial distribution of very low?frequency wind?generated noise in the ocean  

Science Journals Connector (OSTI)

We have adapted our model of surface?generated noise in a stratified lossy ocean to the case of low?frequency wind?generated noise produced in deep water by turbulentpressure fluctuations in the atmosphere. The model assumes a random pressure distribution at the surface and includes the effects of sound?speed profile and bottom characteristics. Using Wilson's source levels [J. H. Wilson J. Acoust. Soc. Am. 66 14991507 (1979)] we have calculated the noise level as functions of frequency and depth and compared the results with measured data. We show these results along with calculations of the spatial coherence function which differs significantly from the standard deep?water result. Finally we present calculations of the effective surface area that is the area of the surface centered above the receiver which contributes most of the noise intensity. We show that this quantity is dependent on receiver depth.

F. Ingenito; W. A. Kuperman

1980-01-01T23:59:59.000Z

253

Design optimization of a fuzzy distributed generation (DG) system with multiple renewable energy sources  

Science Journals Connector (OSTI)

The global rise in energy demands brings major obstacles to many energy organizations in providing adequate energy supply. Hence many techniques to generate cost effective reliable and environmentally friendly alternative energy source are being explored. One such method is the integration of photovoltaic cells wind turbine generators and fuel-based generators included with storage batteries. This sort of power systems are known as distributed generation (DG) power system. However the application of DG power systems raise certain issues such as cost effectiveness environmental impact and reliability. The modelling as well as the optimization of this DG power system was successfully performed in the previous work using Particle Swarm Optimization (PSO). The central idea of that work was to minimize cost minimize emissions and maximize reliability (multi-objective (MO) setting) with respect to the power balance and design requirements. In this work we introduce a fuzzy model that takes into account the uncertain nature of certain variables in the DG system which are dependent on the weather conditions (such as; the insolation and wind speed profiles). The MO optimization in a fuzzy environment was performed by applying the Hopfield Recurrent Neural Network (HNN). Analysis on the optimized results was then carried out.

2012-01-01T23:59:59.000Z

254

Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report  

SciTech Connect (OSTI)

This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

Greenberg, S.; Cooley, C.

2005-01-01T23:59:59.000Z

255

Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)  

SciTech Connect (OSTI)

This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

Not Available

2011-09-01T23:59:59.000Z

256

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network [OSTI]

Distributed Generation in Japanese Prototype Buildings: English Version On-site absorption cooling On-site heating On-site generatorsDistributed Generation in Japanese Prototype Buildings: English Version On-site direct absorption cooling On-site heating On-site generatorDistributed Generation in Japanese Prototype Buildings: English Version Macrogrid On-site heating fuel consumption (tJ/a) carbon (t/a) On-site generators

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

257

Paradigm shift in urban energy systems through distributed generation: Methods and models  

Science Journals Connector (OSTI)

The path towards energy sustainability is commonly referred to the incremental adoption of available technologies, practices and policies that may help to decrease the environmental impact of energy sector, while providing an adequate standard of energy services. The evaluation of trade-offs among technologies, practices and policies for the mitigation of environmental problems related to energy resources depletion requires a deep knowledge of the local and global effects of the proposed solutions. While attempting to calculate such effects for a large complex system like a city, an advanced multidisciplinary approach is needed to overcome difficulties in modeling correctly real phenomena while maintaining computational transparency, reliability, interoperability and efficiency across different levels of analysis. Further, a methodology that rationally integrates different computational models and techniques is necessary to enable collaborative research in the field of optimization of energy efficiency strategies and integration of renewable energy systems in urban areas. For these reasons, a selection of currently available models for distributed generation planning and design is presented and analyzed in the perspective of gathering their capabilities in an optimization framework to support a paradigm shift in urban energy systems. This framework embodies the main concepts of a local energy management system and adopts a multicriteria perspective to determine optimal solutions for providing energy services through distributed generation.

Massimiliano Manfren; Paola Caputo; Gaia Costa

2011-01-01T23:59:59.000Z

258

Facility Representative Program: 2000 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Facility Representative Workshop 0 Facility Representative Workshop May 16-18, 2000 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Tuesday, May 16, 2000 Theme for Day 1: Sustaining the Success of the Facility Representative Program 8:00 a.m. - Opening Remarks - Joe Arango, Facility Representative Program Manager 8:05 a.m. - Welcome - Kenneth Powers, Deputy Manager Nevada Operations Office 8:15 a.m. - Deputy Secretary Remarks - T. J. Glauthier, Deputy Secretary of Energy 8:30 a.m. - Keynote Address - Jerry Lyle, Assistant Manager for Environmental Management, Idaho Operations Office 9:00 a.m. - Facility Representative of the Year Presentation - Mark B. Whitaker, Departmental Representative 9:30 a.m. - Break 9:50 a.m. - Program Results and Goals - Joe Arango, Facility Representative Program Manager

259

Reduction in subsidy for solar power as distributed electricity generation in Indian future competitive power market  

Science Journals Connector (OSTI)

Developed countries have seen renewable energy as a key tool for emission reduction as well as reducing reliance on oil gas and coal.Renewable energy sources (RESs) and technologies have potential to provide solutions to the longstanding energy problems being faced by the developing countries. In the future competitive electricity market for India it becomes very much important to give special consideration for development of RESs due to economic environmental and other social problems related with conventional generations.Solar energy can be an important part of India's plan not only to add new capacity but also to increase energy security and lead the massive market for renewable energy. The major problem with solar powergeneration (SPG) is high cost of renewable generation. The Indian government is providing a lot of subsidy in order to encourage renewable energygenerations. This paper presents an approach for reduction in subsidy of SPG used as distributed generator in competitive power market. The proposed approach has been validated with IEEE 14-bus and IEEE 30-bus systems.

Naveen Kumar Sharma; Yog Raj Sood

2012-01-01T23:59:59.000Z

260

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation  

E-Print Network [OSTI]

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design renewable energy applications. A key advantage of a solar thermal system is that they can incorporate

Sanders, Seth

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advancing theory and application of cognitive research in sport: Using representative tasks to explain and predict skilled anticipation, decision-making, and option-generation behavior  

Science Journals Connector (OSTI)

AbstractObjectives Three main goals were addressed in this research. First, we tested the claims of two cognitive mechanisms that have been proposed to explain expert performance. This was done during assessment and intervention phases of decision making. Second, we tested the validity of an online test of perceptual-cognitive skill in soccer: The Online Assessment of Strategic Skill In Soccer (OASSIS). Third, we compared the OASSIS to other predictors of skill in soccer. Design Over the course of a three-part experiment, participants completed an updated version of the option-generation paradigm employed by Ward, Ericsson, and Williams (2013), the OASSIS, and a battery of other cognitive tests. Performance on these tests was used to inform theory and validate the OASSIS as an applied tool for domain professionals. Methods NCAA Division 1 and recreational-level soccer players completed a battery of tests, both using paper/pencil (see Ward etal., 2013) and online. Results Support for Long Term Working Memory theory (LTWM; see Ericsson & Kintsch, 1995) was observed during both phases of decision making, though the prescriptions of the Take-The-First heuristic (see Johnson & Raab, 2003) tend to hold, particularly within intervention phase. When used to predict skill-group membership, the OASSIS accounted for more variance than domain-general tests of cognition. Furthermore, scores on the OASSIS correlated with other measures of perceptual-cognitive skill in soccer and the process-level predictions made by LTWM. Conclusions Updates to our theoretical understanding of expert performance are provided and the validity of the OASSIS is demonstrated.

Patrick K. Belling; Joel Suss; Paul Ward

2014-01-01T23:59:59.000Z

262

Distributed Generation Study/10 West 66th Street Corp | Open Energy  

Open Energy Info (EERE)

10 West 66th Street Corp 10 West 66th Street Corp < Distributed Generation Study Jump to: navigation, search Study Location New York, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Microturbine Prime Mover Ingersoll Rand I-R PowerWorks 70 Heat Recovery Systems Built-in Fuel Natural Gas System Installer DSM Engineering System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 70 kW0.07 MW 70,000 W 70,000,000 mW 7.0e-5 GW 7.0e-8 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 300000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2005/11/17 Monitoring Termination Date 1969/12/31

263

Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC  

SciTech Connect (OSTI)

One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Bolte, N. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Marsili, P. [Department of Physics, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Roche, T. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Wessel, F. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

2010-10-15T23:59:59.000Z

264

Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation  

SciTech Connect (OSTI)

Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

Torrey, David A.

2006-05-26T23:59:59.000Z

265

Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille |  

Open Energy Info (EERE)

Aisin Seiki G60 at Hooligans Bar and Grille Aisin Seiki G60 at Hooligans Bar and Grille < Distributed Generation Study Jump to: navigation, search Study Location Liverpool, New York Site Description Commercial-Restaurant Study Type Field Test Technology Internal Combustion Engine Prime Mover Aisin Seiki G60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer ECO Technical Solutions System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 6 kW0.006 MW 6,000 W 6,000,000 mW 6.0e-6 GW 6.0e-9 TW Nominal Voltage (V) 240 Heat Recovery Rating (BTU/hr) 46105 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Customer Assembled Start Date 2005/07/10 Monitoring Termination Date 2005/07/21

266

Facility Representative Program: 2010 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 Facility Representative Workshop 10 Facility Representative Workshop May 12 - 13, 2010 Las Vegas, NV Facility Rep of the Year Award | Attendees | Summary Report Workshop Agenda and Presentations Day 1: Wednesday, May 12, 2010 8:00 a.m. Opening Remarks James Heffner, Facility Representative Program Manager Earl Hughes, Safety System Oversight Program Manager Office of Nuclear Safety Policy and Assistance Office of Health, Safety and Security 8:15 a.m. Welcome from the Nevada Site Office John Mallin, Deputy Assistant Manager for Site Operations Nevada Site Office 8:30 a.m. Workshop Keynote Address Todd Lapointe Chief of Nuclear Safety Central Technical Authority Staff 9:15 a.m. Facility Representative and Safety System Oversight Award Ceremony James Heffner, Facility Representative Program Manager

267

Facility Representative Program: 2007 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Facility Representative Workshop 7 Facility Representative Workshop May 15 - 17, 2007 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 15, 2007 8:00 a.m. Opening Remarks Joanne Lorence, Facility Representative Program Manager 8:15 a.m. Welcome from the Nevada Site Office Gerald Talbot, Manager, Nevada Site Office 8:30 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:45 a.m. Keynote Address - Safety Oversight Perspective and Expectations Glenn Podonsky, Chief Health, Safety and Security Officer, Office of Health, Safety and Security 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board,

268

Facility Representative Program: 2003 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Facility Representative Workshop 3 Facility Representative Workshop May 13 - 15, 2003 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 13, 2003 Theme: Program Successes and Challenges 8:00 a.m. John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathleen Carlson Manager, Nevada Site Office 8:30 a.m. Keynote Address Savannah River Site and Facility Reps - A Shared History and Common Future Jeffrey M. Allison Manager, Savannah River Operations Office 9:00 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board

269

Facility Representative Program: 2001 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Facility Representative Workshop 1 Facility Representative Workshop May 15 - 17, 2001 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 15, 2001 Theme: Program Successes and Challenges 8:00 a.m. - Logistics Announcements & Opening Remarks - Joe Arango, Facility Representative Program Manager 8:15 a.m. - Welcome - Debbie Monette, Assistant Manager for National Security, Nevada Operations Office 8:30 a.m. - Keynote Address - Ralph Erickson, National Nuclear Security Administration 9:00 a.m.- DOE Facility Representative of the Year Presentation - Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board 9:30 a.m. - Break 9:50 a.m. - Program Summary - Joe Arango 10:10 a.m. - Management Panel/Questions and Answers

270

Facility Representative Program: Facility Representative Program Sponsors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative Program Sponsors Facility Representative Program Sponsors There are 29 Facility Representative Program Sponsors Office Name Title E-Mail Phone ASO Larry Pendexter ES&H Div Dir (Argonne) larry.pendexter@ch.doe.gov 630-252-1485 BHSO Bob Desmarais Operations Management Division Director desmarai@bnl.gov 631-344-5434 CBFO Glenn Gamlin Facility Representative Supervisor glenn.gamlin@wipp.ws 575-234-8136 CBFO Casey Gadbury Operations Manager casey.gadbury@wipp.ws 575-234-7372 FSO Mark Bollinger Deputy Manager Mark.Bollinger@ch.doe.gov 630-840-8130 FSO John Scott FR Team Lead john.scott@ch.doe.gov 630-840-2250 HS-30 James O'Brien Director, Office of Nuclear Safety James.O'Brien@hq.doe.gov 301-903-1408 HS-32 Earl Hughes Facility Representative Program Manager Earl.Hughes@hq.doe.gov 202-586-0065

271

Evaluation of distributed building thermal energy storage in conjunction with wind and solar electric power generation  

Science Journals Connector (OSTI)

Abstract Energy storage is often seen as necessary for the electric utility systems with large amounts of solar or wind power generation to compensate for the inability to schedule these facilities to match power demand. This study looks at the potential to use building thermal energy storage as a load shifting technology rather than traditional electric energy storage. Analyses are conducted using hourly electric load, temperature, wind speed, and solar radiation data for a 5-state central U.S. region in conjunction with simple computer simulations and economic models to evaluate the economic benefit of distributed building thermal energy storage (TES). The value of the TES is investigated as wind and solar power generation penetration increases. In addition, building side and smart grid enabled utility side storage management strategies are explored and compared. For a relative point of comparison, batteries are simulated and compared to TES. It is found that cooling TES value remains approximately constant as wind penetration increases, but generally decreases with increasing solar penetration. It is also clearly shown that the storage management strategy is vitally important to the economic value of TES; utility side operating methods perform with at least 75% greater value as compared to building side management strategies. In addition, TES compares fairly well against batteries, obtaining nearly 90% of the battery value in the base case; this result is significant considering TES can only impact building thermal loads, whereas batteries can impact any electrical load. Surprisingly, the value of energy storage does not increase substantially with increased wind and solar penetration and in some cases it decreases. This result is true for both TES and batteries and suggests that the tie between load shifting energy storage and renewable electric power generation may not be nearly as strong as typically thought.

Byron W. Jones; Robert Powell

2015-01-01T23:59:59.000Z

272

Central power generation versus distributed generation e An air quality assessment in the South Coast Air Basin of California  

E-Print Network [OSTI]

., Suite 200, San Francisco, CA 94111, USA c Advanced Power and Energy Program, Department of Mechanical obstacles to transmission line additions may force even central power generation back into air basins by the year 2020. The intermittent nature of renewable sources like wind and solar power may require

Dabdub, Donald

273

Facility Representative Program: 2004 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Facility Representative Workshop 4 Facility Representative Workshop May 18 - 20, 2004 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 18, 2004 Theme: Program Successes and Challenges 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathy Carlson, Nevada Site Office Manager 8:30 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy Deputy Secretary's Remarks 8:40 a.m. Keynote Address - NNSA Evaluation of Columbia Accident Investigation Board Report Brigadier General Ronald J. Haeckel, Principal Assistant Deputy Administrator for Military Applications, NNSA Other Information: NASA’S Columbia Accident Investigation Board Report

274

Facility Representative Program: 2006 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Facility Representative Workshop 6 Facility Representative Workshop May 16 - 19, 2006 Knoxville, Tennessee Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final To view Pictures, scroll the mouse over the Picture icon To view Presentations, Picture Slideshows and Video, click on the icon Day 1: Tuesday, May 16, 2006 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome from Oak Ridge Office Gerald Boyd, Manager, Oak Ridge Office 8:25 a.m. Welcome from Y-12 Site Office Theodore Sherry, Manager, Y-12 Site Office 8:35 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:40 a.m. Keynote Address - Safety Oversight at Environmental Management Activities Dr. Inés Triay, Chief Operating Officer, Office of Environmental Management

275

Distributed Generation Study/615 kW Waukesha Packaged System | Open Energy  

Open Energy Info (EERE)

kW Waukesha Packaged System kW Waukesha Packaged System < Distributed Generation Study Jump to: navigation, search Study Location Des Plaines, Illinois Site Description Testing Laboratory Study Type Laboratory Test Technology Internal Combustion Engine Prime Mover Waukesha VGF 36GLD Heat Recovery Systems Sondex PHE-Type SL140-TM-EE-190, Sondex PHE-Type SL140-TM-EE-150, Cain UTR1-810A17.5SSP Fuel Natural Gas System Installer GTI System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 615 kW0.615 MW 615,000 W 615,000,000 mW 6.15e-4 GW 6.15e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2500000 Cooling Capacity (Refrig/Tons) 90 Origin of Controller 3rd Party Off-the-Shelf Component Integration Factory Integrated

276

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book [EERE]

7 7 Characteristics of New and Stock Generating Capacities, by Plant Type Total Capital Costs Size Overnight Costs (2) of Typical New Plant New Plant Type (MW) (2010 $/kW) ($2010 million) Scrubbed Coal 1300 2809 3652 Integrated Coal-Gasification Combined Cycle (IGCC) 1200 3182 3818 IGCC w/Carbon Sequestration 520 5287 2749 Conv. Gas/Oil Combined Cycle 540 967 522 Adv. Gas/Oil Combined Cycle 400 991 396 Conv. Combustion Turbine 85 961 82 Adv. Combustion Turbine 210 658 138 Fuel Cell 10 6752 68 Advanced Nuclear 2236 5275 11795 Municipal Solid Waste 50 8237 412 Conventional Hydropower (3) 500 2221 1111 Wind 100 2409 241 Stock Plant Type 2010 2015 2020 2025 2030 2035 Fossil Fuel Steam Heat Rate (Btu/kWh) Nuclear Energy Heat Rate (Btu/kWh) Note(s): Source(s): 1) Plant use of electricity is included in heat rate calculations; however, transmission and distribution losses of the electric grid are excluded.

277

Economic and sensitivity analyses of dynamic distributed generation dispatch to reduce building energy cost  

Science Journals Connector (OSTI)

Abstract The practicality of any particular distributed generation (DG) installation depends upon its ability to reduce overall energy costs. A parametric study summarizing DG performance capabilities is developed using an economic dispatch strategy that minimizes building energy costs. Various electric rate structures are considered and applied to simulate meeting various measured building demand dynamics for heat and power. A determination of whether investment in DG makes economic sense is developed using a real-time dynamic dispatch and control strategy to meet real building demand dynamics. Under the economic dispatch strategy, capacity factor is influenced by DG electrical efficiency, operations and maintenance cost, and fuel price. Under a declining block natural gas rate structure, a large local thermal demand improves DG economics. Increasing capacity for DG that produces low cost electricity increases savings, but installing further capacity beyond the average building electrical demand reduces savings. For DG that produces high cost electricity, reducing demand charges can produce savings. Heat recovery improves capacity factor and DG economics only if thermal and electrical demand is coincident and DG heat is utilized. Potential DG economic value can be improved or impaired depending upon how the utility electricity cost is determined.

Robert J. Flores; Brendan P. Shaffer; Jacob Brouwer

2014-01-01T23:59:59.000Z

278

Generation of Initial Kinetic Distributions for Simulation of Long-Pulse Charged Particle Beams with High Space-Charge intensity  

SciTech Connect (OSTI)

Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel--both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

Lund, Steven M.; Kikuchi, Takashi; Davidson, Ronald C.

2007-04-03T23:59:59.000Z

279

Generation of initial Vlasov distributions for simulation of charged particle beams with high space-charge intensity  

SciTech Connect (OSTI)

Self-consistent Vlasov simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel, both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of distributions commonly in use as initial Vlasov distributions in simulations of beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

Lund, S M; Kikuchi, T; Davidson, R C

2007-04-12T23:59:59.000Z

280

J. Phys. B: At. Mol. Opt. Phys. 29 (1996) 47714786. Printed in the UK Angular distributions of high-order harmonics generated  

E-Print Network [OSTI]

distributions of high-order harmonics generated with a femtosecond Cr:LiSrAlF6 laser. We investigate-atom response. The far-field distributions of the harmonics (11 to 41) generated in heavy rare gases are foundJ. Phys. B: At. Mol. Opt. Phys. 29 (1996) 4771­4786. Printed in the UK Angular distributions

Ditmire, Todd

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.  

SciTech Connect (OSTI)

This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

Robinett, Rush D., III; Kukolich, Keith (Opal RT Technologies, Montreal, Quebec, Canada); Wilson, David Gerald; Schenkman, Benjamin L.

2010-06-01T23:59:59.000Z

282

Generation of lower hybrid and whistler waves by an ion velocity ring distribution  

SciTech Connect (OSTI)

Using fully kinetic simulations in two and three spatial dimensions, we consider the generation and nonlinear evolution of lower hybrid waves produced by a cold ion ring velocity distribution in a low beta plasma. We show that the initial development of the instability is very similar in two and three dimensions and not significantly modified by electromagnetic effects, consistent with linear theory. At saturation, the level of electric field fluctuations is a small fraction of the background thermal energy; the electric field and corresponding density fluctuations consist of long, field-aligned striations. Energy extracted from the ring goes primarily into heating the background ions and the electrons at comparable rates. The initial growth and saturation of the magnetic components of the lower hybrid waves are related to the electric field components, consistent with linear theory. As the growing electric field fluctuations saturate, parallel propagating whistler waves develop by the interaction of two lower hybrid waves. At later times, these whistlers are replaced by longer wavelength, parallel propagating whistlers that grow through the decay of the lower hybrid fluctuations. Wave matching conditions demonstrate these conversion processes of lower hybrid waves to whistler waves. The conversion efficiency (=ratio of the whistler wave energy to the energy in the saturated lower hybrid waves) is computed and found to be significant ({approx}15%) for the parameters of the three-dimensional simulation (and even larger in the two-dimensional simulation), although when normalized in terms of the initial kinetic energy in the ring ions the overall efficiency is very small (<10{sup -4}). The results are compared with relevant linear and nonlinear theory.

Winske, D.; Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-07-15T23:59:59.000Z

283

The Sensitivity of DPF Performance to the Spatial Distribution of Ash Generated from Six Lubricant Formulations  

Broader source: Energy.gov [DOE]

Discusses potential of DPF pressure drop reduction by optimizing the spatial distribution of ash inside DPF inlet channel

284

Proposal for the award of a contract for the supply and maintenance of six 380 V 50 Hz diesel generators for the LEP electrical distribution system  

E-Print Network [OSTI]

Proposal for the award of a contract for the supply and maintenance of six 380 V 50 Hz diesel generators for the LEP electrical distribution system

1986-01-01T23:59:59.000Z

285

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network [OSTI]

State Prepared for the New York State Energy Research andPatterns and Trends: New York State Energy Profiles: 1988-to represent New York State energy rates more accurately.

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

286

A study of small-scale energy networks of the Japanese Syowa Base in Antarctica by distributed engine generators  

Science Journals Connector (OSTI)

Abstract Fuel traffic to the Syowa Base of the South Pole is increasing from Japan, with growing research and observation occurring every year. Limits to fuel traffic and the spread of green energy utilization are topics of interest for Syowa Base; this research considers the construction of a Syowa Base small-scale energy network (Syowa Base Micro-Grid: SBMG) for the purposes of reducing fuel consumption and increasing green energy utilization. The number of engine generators, the operation plan for the batterys charge and discharge, and the introduction of an exhaust heat pump provided a means by which the load factor of the engine generator could be maintained high value from the fluctuations of green energy. This might be accomplished by modifying the main power supply of Syowa Base into a distributed power supply system rather than a conventional central power supply system. The relationship between the amount of green energy (photovoltaics and wind power generation) connected to the proposed power supply distribution and the amount of fuel consumed by the engine generators and backup boiler was clarified. Moreover, the outside temperatures, insulation levels, and wind velocity at the Syowa Base change seasonally, resulting in large changes in the SBMG operation method. Therefore, differences in the operation methods between the proposed power supply distribution system and the conventional central power supply were assessed during the summer (January), winter (July), and mid-season (October), and the resulting differences in fuel consumption were clarified.

Shinya Obara; Yuta morizane; Jorge Morel

2013-01-01T23:59:59.000Z

287

Effective Integration of Wind-Distributed Generation to Power Grid with STATCOM  

Science Journals Connector (OSTI)

Worldwide fast depletion of conventional energy resources necessitates the implementation of renewable energy sources for generation to satisfy the growing demand. Since last decade, technological innovations and...

Surekha Manoj; P. S. Puttaswamy

2014-01-01T23:59:59.000Z

288

Connecting to the Grid: A Guide to Distributed Generation Interconnection Issues, 6th Edition, 2009  

Broader source: Energy.gov [DOE]

This guide addresses issues relevant to all DG technologies, including net excess generation, third-party ownership, energy storage and networks

289

Optimization of a stand?alone Solar PV?Wind?DG Hybrid System for Distributed Power Generation at Sagar Island  

Science Journals Connector (OSTI)

An estimation of a stand?alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV?Wind?DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind?DG compared to Solar PV?DG.

P. C. Roy; A. Majumder; N. Chakraborty

2010-01-01T23:59:59.000Z

290

3D phase-differentiated GDL microstructure generation with binder and PTFE distributions  

E-Print Network [OSTI]

December 2011 Keywords: PEM fuel cell Gas diffusion layer Stochastic generation a b s t r a c exchange membrane fuel cells (PEMFCs) are an attractive alternative for electrical power generation, partic) digital 3D micro- structures in a cost- and time-effective manner for the first time. The results

Kandlikar, Satish

291

Performance Analysis of Positive-feedback-based Active Anti-islanding Schemes for Inverter-Based Distributed Generators  

SciTech Connect (OSTI)

Recently proposed positive-feedback-based anti-islanding schemes (AI) are highly effective in preventing islanding without causing any degradation in power quality. This paper aims to analyze the performance of these schemes quantitatively in the context of the dynamic models of inverter-based distributed generators (DG). In this study, the characteristics of these active anti-islanding methods are discussed and design guidelines are derived.

Du, Pengwei; Aponte, Erick E.; Nelson, J. Keith

2010-06-14T23:59:59.000Z

292

Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012  

Broader source: Energy.gov (indexed) [DOE]

Jay Morrison Jay Morrison Vice President, Regulatory Issues National Rural Electric Cooperative Association jay.morrison@nreca.coop Susan Kelly General Counsel, Senior Vice President American Public Power Association skelly@publicpower.org  DG penetration rates are increasing rapidly  Careful selection of business model can maximize value for all participants by:  Maximizing access to government incentives  Maximize access to all available value streams for the developer, customer, and utility  Minimize regulatory burdens for all parties  Provide win-win-win solution 2  What size generator?  What fuel or energy source? Does it include storage?  Who pays the up-front cost of the generator?  Who owns the generator?  Who operates the generator?

293

Voltage distribution over capacitively coupled plasma electrode for atmospheric-pressure plasma generation  

Science Journals Connector (OSTI)

When capacitively coupled plasma (CCP) is used to generate large-area plasma, the standing wave effect becomes significant, ... which results in the hindering of the uniform plasma process such as in a plasma etc...

Mitsutoshi Shuto; Fukumi Tomino; Hiromasa Ohmi

2013-05-01T23:59:59.000Z

294

Optical and thermodynamic analysis and optimization of a novel solar concentrating system for distributed power generation.  

E-Print Network [OSTI]

??A novel central receiver power system utilizing linked-tracking heliostats is analyzed for distributed-scale concentrated solar power. Smaller linkage groupings are typically found to have a (more)

Dunham, Marc Tyler Deo

2012-01-01T23:59:59.000Z

295

Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity  

SciTech Connect (OSTI)

Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations may cause some voltage control challenges or overloading problems, respectively. But when combined, there at least intuitively could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

2012-11-30T23:59:59.000Z

296

Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units  

SciTech Connect (OSTI)

Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

2012-07-06T23:59:59.000Z

297

Dynamically generated electric charge distributions in Abelian projected SU(2) lattice gauge theories  

E-Print Network [OSTI]

We show in the maximal Abelian gauge the dynamical electric charge density generated by the coset fields, gauge fixing and ghosts shows antiscreening as in the case of the non-Abelian charge. We verify that with the completion of the ghost term all contributions to flux are accounted for in an exact lattice Ehrenfest relation.

A. Hart; R. W. Haymaker; Y. Sasai

1998-08-28T23:59:59.000Z

298

Atmospheric Environment 40 (2006) 55085521 Air quality impacts of distributed power generation in the South  

E-Print Network [OSTI]

entails the use of power generation technologies (e.g., fuel cells, gas turbines) to produce electricity in the South Coast Air Basin of California 1: Scenario development and modeling analysis M.A. Rodriguez, M are developed to determine the potential impacts of unexpected outcomes. Realistic implementations of DG

Dabdub, Donald

299

Self-triggered Communication Enabled Control of Distributed Generation in Microgrids  

E-Print Network [OSTI]

Tahir Member, IEEE Dept. of Elect. Eng. and Al-Khwarizmi Institute of Comp. Science University. System reliability for secondary control in microgrids can be improved by using a distributed cooperative control approach. For realizing the cooperative control of multiple DGs in smart-grid, a multi-agent based

Mazumder, Sudip K.

300

Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems  

SciTech Connect (OSTI)

This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

Schauder, C.

2014-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Temperature and thermal stress distributions for the HFIR permanent reflector generated by nuclear heating  

SciTech Connect (OSTI)

The beryllium permanent reflector of the High Flux Isotope Reactor has the main functions for slowing down and reflecting the neutrons and housing the experimental facilities. The reflector is heated as a result of the nuclear reaction. Heat is removed mainly by the cooling water passing through the densely distributed coolant holes along the vertical or axial direction of the reflector. The reflector neutronic distribution and its heating rate are calculated by J.C. Gehin of the Oak Ridge National Laboratory by applying the Monte Carlo Code MCNP. The heat transfer boundary conditions along several reflector interfaces are estimated to remove additional heat from the reflector. The present paper is to report the calculation results of the temperature and the thermal stress distributions of the permanent reflector by applying the computer aided design code I-DEAS and the finite element code ABAQUS. The present calculation is to estimate the high stress areas as a result of the new beam tube cutouts along the horizontal mid-plane of the reflector of the recent reactor upgrade project. These high stresses were not able to be calculated in the preliminary design analysis in earlier 60`s. The heat transfer boundary conditions are used in this redesigned calculation. The material constants and the acceptance criteria for the allowable stresses are mainly based on that assumed in the preliminary design report.

Chang, S.J.

1998-04-01T23:59:59.000Z

302

Can distributed generation offer substantial benefits in a Northeastern American context? A case study of small-scale renewable technologies using a life cycle methodology  

Science Journals Connector (OSTI)

Renewable distributed electricity generation can play a significant role in meeting today's energy policy goals, such as reducing greenhouse gas emissions, improving energy security, while adding supply to meet increasing energy demand. However, the exact potential benefits are still a matter of debate. The objective of this study is to evaluate the life cycle implications (environmental, economic and energy) of distributed generation (DG) technologies. A complementary objective is to compare the life cycle implications of DG technologies with the centralized electricity production representing the Northeastern American context. Environmental and energy implications are modeled according to the recommendations in the ISO 14040 standard and this, using different indicators: Human Health; Ecosystem Quality; Climate Change; Resources and Non-Renewable Energy Payback Ratio. Distinctly, economic implications are modeled using conventional life cycle costing. DG technologies include two types of grid-connected photovoltaic panels (3kWp mono-crystalline and poly-crystalline) and three types of micro-wind turbines (1, 10 and 30kW) modeled for average, below average and above average climatic conditions in the province of Quebec (Canada). A sensitivity analysis was also performed using different scenarios of centralized energy systems based on average and marginal (short- and long-term) technology approaches. Results show the following. First, climatic conditions (i.e., geographic location) have a significant effect on the results for the environmental, economic and energy indicators. More specifically, it was shown that the 30kW micro-wind turbine is the best technology for above average conditions, while 3kWp poly-crystalline photovoltaic panels are preferable for below average conditions. Second, the assessed DG technologies do not show benefits in comparison to the centralized Quebec grid mix (average technology approach). On the other hand, the 30kW micro-wind turbine shows a potential benefit as long as the Northeastern American electricity market is considered (i.e., oil and coal centralized technologies are affected for the short- and long-term marginal scenarios, respectively). Photovoltaic panels could also become more competitive if the acquisition cost decreased. In conclusion, DG utilization will represent an improvement over centralized electricity production in a Northeastern American context, with respect to the environmental, energy and economic indicators assessed, and under the appropriate conditions discussed (i.e., geographical locations and affected centralized electricity production scenarios).

Mourad Ben Amor; Pascal Lesage; Pierre-Olivier Pineau; Rjean Samson

2010-01-01T23:59:59.000Z

303

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book [EERE]

2 2 Net Internal Demand, Capacity Resources, and Capacity Margins in the Contiguous United States (GW) Net Internal Capacity Capacity Demand (1) Resources (2) Margin (3) 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Note(s): Source(s): 778.5 980.3 20.6% 1) Net internal demand represents the system demand that is planned for by the electric power industry`s reliability authority and is equal to internal demand less direct control load management and interruptible demand. Direct control load management: Customer demand that can be interrupted at the time of the seasonal peak by direct control of the system operator by interrupting power supply to individual appliances or equipment on customer premises. This type of control usually reduces the demand of residential customers. Interruptible demand: Customer

304

Distributively generated near rings on the dihedral group of order eight  

E-Print Network [OSTI]

DISTRIBHvlri "LY GEZERKTED NEZR RINGS ON THE DIH ', DRAL GRODP OP ORDER EIGHT A Thesis INRy LING VILLHITE Submitted to the Gra~', . ate ' allege of Tezas jan& Rnid e'r, si!, y in Parti "1 fulfillment of the reGui rom nt fo- the eSree o MASTER... GP BC. E. ":lOE December le~70 Major Subject: llathematics DISTRIBUTIVELY GMWRA ED NEAR RINGE ON THE DIHED tAL GROUP OF ORDER EIGHT A Thesis NARY LYNN VILLHITE Approved as to st'yle and. content 'by: ax man. of Gom; i ee , member A &. ~;g...

Willhite, Mary Lynn

1970-01-01T23:59:59.000Z

305

Facility Representative Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative Facility Representative Office of Nuclear Safety Home Facility Representative Home Annual Facility Rep Workshop › 2012 › 2011 › 2010 › 2009 › 2008 › 2007 › 2006 › 2005 › 2004 › 2003 › 2002 › 2001 › 2000 DOE Safety Links › ORPS Info › Operating Experience › DOE Lessons Learned › Accident Investigation Assessment Tools › FR CRADs › Surveillance Guides › Manager's Guide for Safety and Health Subject Matter Links General Program Information › Program Mission Statement › Program Directives and Guidance › FR of the Year Award Program › FR of the Year Award › FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) FR Quarterly Performance Indicators Training & Qualification Information › Qualification Standards › Energy Online Courses

306

A new method for power generation and distribution in outer space  

SciTech Connect (OSTI)

The power system is a major component of a space system's size, mass, technical complexity, and hence, cost. To date, space systems include the energy source as an integral part of the mission satellite. Potentially significant benefit could be realized by separating the energy source from the end-use system and transmitting the power via an energy beam (power beaming) (Coomes et al., 1989). This concept parallels the terrestrial central generating station and transmission grid. In this summary, the system components required for power beaming implementation are outlined and applied to a satellite for power beaming implementation are outlined and applied to a satellite constellation to demonstrate the feasibility of implementing power beaming in the next 20 years. 5 refs., 1 fig., 3 tabs.

Bamberger, J.A.

1989-09-01T23:59:59.000Z

307

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book [EERE]

9 9 2009 Peak Load and Capacity Margin, Summer and Winter by NERC Region (MW) NERC Region Capacity Margin Capacity Margin TRE 16.7% 19.1% FRCC 6.0% 2.0% MRO (U.S.) 24.6% 26.8% NPCC (U.S.) 29.1% 43.2% RFC 25.2% 33.3% SERC 24.6% 26.2% SPP 16.4% 34.6% WECC 19.4% 29.6% U.S. TOTAL 22.2% 28.5% Note(s): Source(s): 128,245 109,565 725,958 668,818 1) Summer Demand includes the months of June, July, August, and September. 2) Winter Demand includes December of the previous year and January-March of the current year. 3) Capacity Margin is the amount of unused available capability of an electric power system at peak load as a percentage of net capacity resources. Net Capacity Resources: Utility- and IPP-owned generating capacity that is existing or in various stages of planning or construction, less inoperable capacity, plus planned capacity purchases from other resources, less planned

308

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book [EERE]

3 3 Electric Capacity Factors, by Year and Fuel Type (1) Conventional Coal Petroleum Natural Gas Nuclear Hydroelectric Solar/PV Wind Total 1990 59% 17% 23% 66% 45% 13% 18% 46% 1991 59% 18% 22% 70% 43% 17% 18% 46% 1992 59% 14% 22% 71% 38% 13% 18% 45% 1993 61% 16% 21% 70% 41% 16% 19% 46% 1994 61% 15% 22% 74% 38% 17% 23% 46% 1995 62% 11% 22% 77% 45% 17% 21% 47% 1996 65% 11% 19% 76% 52% 18% 22% 48% 1997 66% 13% 20% 72% 51% 17% 23% 48% 1998 67% 20% 23% 79% 47% 17% 20% 50% 1999 67% 20% 22% 85% 46% 15% 23% 51% 2000 70% 18% 22% 88% 40% 15% 27% 51% 2001 68% 20% 21% 89% 31% 16% 20% 48% 2002 69% 16% 18% 90% 38% 16% 27% 46% 2003 71% 21% 14% 88% 40% 15% 21% 44% 2004 71% 22% 16% 90% 39% 17% 25% 44% 2005 72% 22% 17% 89% 40% 15% 23% 45% 2006 71% 11% 19% 90% 42% 14% 27% 45% 2007 72% 12% 21% 92% 36% 14% 24% 45% 2008 71% 8% 20% 91% 37% 18% 26% 44% 2009 63% 7% 21% 90% 40% 16% 25% 42% 2010 (2) 65% 6% 23% 91% 37% 17% 29% 43% Note(s): Source(s) 1) EIA defines capacity factor to be "the ratio of the electrical energy produced by a generating unit for the period of time considered to the

309

Glossary Balancing Item: Represents  

Gasoline and Diesel Fuel Update (EIA)

Balancing Balancing Item: Represents differences between the sum of the components of natural gas supply and the sum of the components of natural gas disposition. These differences may be due to quantities lost or to the effects of data-report- ing problems. Reporting problems include differences due to the net result of conversions of flow data metered at varying temperature and pressure bases and converted to a standard temperature and pressure base; the effect of vari- ations in company accounting and billing practices; differ- ences between billing cycle and calendar period time frames; and imbalances resulting from the merger of data- reporting systems that vary in scope, format, definitions, and type of respondents. Biomass Gas: A medium Btu gas containing methane and carbon dioxide, resulting from the action of microorganisms on organic materials such as a landfill. British Thermal

310

Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution  

Buildings Energy Data Book [EERE]

4 4 Electric Conversion Factors and Transmission and Distribution (T&D) Losses Average Utility Average Utility Growth Rate Delivery Efficiency (1, 2) Delivery Ratio (Btu/kWh) (2, 3) (2010-year) 1980 29.4% 1981 29.9% 1982 29.7% 1983 29.8% 1984 30.5% 1985 30.4% 1986 30.8% 1987 31.1% 1988 31.1% 1989 30.2% 1990 30.3% 1991 30.5% 1992 30.7% 1993 30.6% 1994 30.9% 1995 30.7% 1996 30.7% 1997 30.8% 1998 30.7% 1999 30.6% 2000 30.7% 2001 31.1% 2002 31.1% 2003 31.3% 2004 31.3% 2005 31.5% 2006 31.7% 2007 31.8% 2008 31.8% 2009 32.2% 2010 32.3% 2011 32.1% 2012 32.4% 2013 32.7% 2014 33.0% 2015 33.1% 2016 33.2% 2017 33.1% 2018 33.1% 2019 33.1% 2020 33.1% 2021 33.2% 2022 33.2% 2023 33.2% 2024 33.2% 2025 33.1% 2026 33.2% 2027 33.3% 2028 33.4% 10,218 0.2% 10,294 0.2% 10,266 0.2% 10,247 0.2% 10,277 0.2% 10,291 0.2% 10,281 0.2% 10,300 0.3% 10,301 0.3% 10,282 0.3% 10,292 0.4% 10,310 0.4% 10,305

311

Development and Testing of a 6-Cylinder HCCI Engine for Distributed Generation  

SciTech Connect (OSTI)

This paper describes the technical approach for converting a Caterpillar 3406 natural gas spark ignited engine into HCCI mode. The paper describes all stages of the process, starting with a preliminary analysis that determined that the engine can be operated by preheating the intake air with a heat exchanger that recovers energy from the exhaust gases. This heat exchanger plays a dual role, since it is also used for starting the engine. For start-up, the heat exchanger is preheated with a natural gas burner. The engine is therefore started in HCCI mode, avoiding the need to handle the potentially difficult transition from SI or diesel mode to HCCI. The fueling system was modified by replacing the natural gas carburetor with a liquid petroleum gas (LPG) carburetor. This modification sets an upper limit for the equivalence ratio at {phi} {approx} 0.4, which is ideal for HCCI operation and guarantees that the engine will not fail due to knock. Equivalence ratio can be reduced below 0.4 for low load operation with an electronic control valve. Intake boosting has been a challenge, as commercially available turbochargers are not a good match for the engine, due to the low HCCI exhaust temperature. Commercial introduction of HCCI engines for stationary power will therefore require the development of turbochargers designed specifically for this mode of operation. Considering that no appropriate off-the-shelf turbocharger for HCCI engines exists at this time, we are investigating mechanical supercharging options, which will deliver the required boost pressure (3 bar absolute intake) at the expense of some reduction in the output power and efficiency. An appropriate turbocharger can later be installed for improved performance when it becomes available or when a custom turbocharger is developed. The engine is now running in HCCI mode and producing power in an essentially naturally aspirated mode. Current work focuses on developing an automatic controller for obtaining consistent combustion in the 6 cylinders. The engine will then be tested for 1000 hours to demonstrate durability. This paper presents intermediate progress towards development of an HCCI engine for stationary power generation and next steps towards achieving the project goals.

Flowers, D L; Martinez-Frias, J; Espinosa-Loza, F; Killingsworth, N; Aceves, S M; Dibble, R; Kristic, M; Bining, A

2005-07-12T23:59:59.000Z

312

Modeling, control, and power management of a power electrical system including two distributed generators based on fuel cell and supercapacitor  

Science Journals Connector (OSTI)

This paper focuses on Distributed Generator (DG) integration in Power Electrical System (PES) for dispersed nodes. The main objective of the DG use can be classified into two aspects: a load following service and ancillary service systems. In this study the DG system contains a Fuel cell and a Supercapacitor storage device. A gas turbine system is modeled in order to estimate the PES frequency behavior under a variable power demand. The main goal of this work is to develop a DG control strategy with the aim to smooth the frequency and the voltage peak variations. To assess the different management stages the power flow exchanged between DGs and PES is depicted and discussed for different power demand variations. The results found with the DGs integration strategy confirm the frequency and voltage regulations and also prove the well power flow management.

L. Krichen

2013-01-01T23:59:59.000Z

313

On representing chemical environments  

Science Journals Connector (OSTI)

We review some recently published methods to represent atomic neighborhood environments, and analyze their relative merits in terms of their faithfulness and suitability for fitting potential energy surfaces. The crucial properties that such representations (sometimes called descriptors) must have are differentiability with respect to moving the atoms and invariance to the basic symmetries of physics: rotation, reflection, translation, and permutation of atoms of the same species. We demonstrate that certain widely used descriptors that initially look quite different are specific cases of a general approach, in which a finite set of basis functions with increasing angular wave numbers are used to expand the atomic neighborhood density function. Using the example system of small clusters, we quantitatively show that this expansion needs to be carried to higher and higher wave numbers as the number of neighbors increases in order to obtain a faithful representation, and that variants of the descriptors converge at very different rates. We also propose an altogether different approach, called Smooth Overlap of Atomic Positions, that sidesteps these difficulties by directly defining the similarity between any two neighborhood environments, and show that it is still closely connected to the invariant descriptors. We test the performance of the various representations by fitting models to the potential energy surface of small silicon clusters and the bulk crystal.

Albert P. Bartk; Risi Kondor; Gbor Csnyi

2013-05-28T23:59:59.000Z

314

Distribution:  

Office of Legacy Management (LM)

JAN26 19% JAN26 19% Distribution: OR00 Attn: h.H.M.Roth DFMusser ITMM MMMann INS JCRyan FIw(2) Hsixele SRGustavson, Document rocm Formal file i+a@mmm bav@ ~@esiaw*cp Suppl. file 'Br & Div rf's s/health (lic.only) UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAB MATERIAL LICENSE pursuant to the Atomic Energy Act of 1954 and Title 10, Code of Federal Regulations, Chapter 1, P&t 70, "Special Nuclear Material Reg)llatiqm," a license is hereby issued a$hortztng the licensee to rekeive and possess the special nuclear material designated below; to use such special nuclear mat&ial for the purpose(s) and at the place(s) designated below; and to transfer such material to per&s authorized to receive it in accordance with the regula,tions in said Part.

315

Wave represents displacement Wave represents pressure Source -Sound Waves  

E-Print Network [OSTI]

Wave represents displacement Wave represents pressure Source - Sound Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio Waves Distance between crests is wavelength Number of crests passing a point in 1 second is frequency

Colorado at Boulder, University of

316

A novel control strategy of a distributed generator operating in seven modes for ancillary services under grid faults  

Science Journals Connector (OSTI)

This study was interested in a renewable distributed generator (RDG) made up of a wind turbine used as a principal source and a supercapacitor (SC) considered as a storage system. The studied RDG is associated with loads to constitute a micro-grid (MG) which can operate in grid connected mode, stand alone mode or synchronization mode. The objective of this work is to investigate a novel control scheme for MG integrated into power electrical system in order to maintain the voltage and the frequency of the grid in an allowable range and to ensure the continuity of power supply in case of grid failure. This control strategy made up of two parts: the first one is the power management algorithm used to detect islanding in case of defect and to monitor the RDG into seven operating modes. The second one is the droop control used to control the exported or imported active and reactive powers transferred with the grid ensuring its stability by adjusting the frequency and amplitude of its output voltage. The system is simulated using MATLAB software and results are provided in order to show the feasibility of this control strategy.

Mouna Rekik; Achraf Abdelkafi; Lotfi Krichen

2013-01-01T23:59:59.000Z

317

Abstract--This paper presents the impact of different types of load models in distribution network with distributed wind  

E-Print Network [OSTI]

as a major enabler of the smart grid for the integration of small and medium sized renewable energy basedAbstract--This paper presents the impact of different types of load models in distribution network with distributed wind generation. The analysis is carried out for a test distribution system representative

Pota, Himanshu Roy

318

Student Assembly Offices Student Assembly Representatives: There are four representatives per class to the Student Assembly. Their duties are to  

E-Print Network [OSTI]

Student Assembly Offices Student Assembly Representatives: There are four representatives per class to the Student Assembly. Their duties are to: Represent the student body of the Medical College of Wisconsin-section of the student body. Fairly administer and distribute all funds including those designated as Student Activity

319

Facility Representative Program: Facility Representative of the Year  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative of the Year Award Facility Representative of the Year Award Annual Facility Representative Workshop Facility Representative of the Year Award Process Facility Representative of the Year Award 2012 WINNER: John C. Barnes, Savannah River Operations Office Letter from DNFSB Chairman Peter S. Winokur, Ph.D 2012 Nominees: Peter W. Kelley, Brookhaven Site Office James E. Garza, Idaho Operations Office (EM) William R. Watson, Idaho Operations Office (NE) Darlene S. Rodriguez, Los Alamos Field Office Robert R. Robb, Livermore Field Office Kenneth W. Wethington, Grand Junction Project Office's Moab site Thomas P. Denny, Nevada Field Office Michael J. Childers, NNSA Production Office Pantex Site Catherine T. Schidel, NNSA Production Office Y12 Site Chelsea D. Hubbard, Oak Ridge Operations Office (EM)

320

FAQS Reference Guide Facility Representative  

Broader source: Energy.gov [DOE]

This reference guide addresses the competency statements in the October 2010 edition of DOE-STD-1151-2010, Facility Representative Functional Area Qualification Standard.

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Convergence problem in forward/backward sweep power flow method caused by non-positive-sequence impedance of distributed generators and its solution  

Science Journals Connector (OSTI)

Abstract A variety of distributed generators (DGs) are integrated in distribution system which is usually operated under three-phase unbalanced conditions. The zero and negative sequence impedances of \\{DGs\\} may vary within a large range. In this paper, the convergence problem caused by the zero and negative sequence impedances of \\{DGs\\} in forward/backward sweep three-phase power flow is found through numerical experiments. The reason of this phenomenon is explained and an impedance compensation method is proposed to solve this problem.

Yuntao Ju; Wenchuan Wu; Boming Zhang

2014-01-01T23:59:59.000Z

322

Fluid Flow Model Development for Representative Geologic Media | Department  

Broader source: Energy.gov (indexed) [DOE]

Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Clay and granitic geologic rock units are potential host media for future repositories for used nuclear fuel and high level waste. This report addresses the representation of flow in these two media within numerical process models. Discrete fracture network (DFNs) models are an approach to representing flow in fractured granite that explicitly represents the geometry and flow properties of individual fractures. New DFN generation and computational grid generation methods have been developed and tested. Mesh generation and the generation of flow streamlines within the DFN are also included. Traditional form of Darcy's law is not adequate

323

Facility Representative Program: Qualification Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training & Qualification Information Training & Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available Link to National Training Center Basic Courses for Facility Representative Qualification Recommended Courses to Expand Facility Representative's Knowledge Base Qualification Standards General Technical Base Qualification Standard, Qualification Card & Reference Guide -- GTB Qualification Standard (DOE-STD-1146-2007), December 2007 [PDF] -- GTB Qualification Card, December 2007 [DOC] -- GTB "Gap" Qualification Card, December 2007 [DOC] -- GTB Qualification Standard Reference Guide, May 2008 [PDF] Facility Representative Qualification Standard, Qualification Card & Reference Guide

324

In situ diagnostic of the size distribution of nanoparticles generated by ultrashort pulsed laser ablation in vacuum  

SciTech Connect (OSTI)

We aim to characterize the size distribution of nanoparticles located in the ablation plume produced by femtosecond laser interaction. The proposed method relies on the use of white-light extinction spectroscopy setup assisted by ultrafast intensified temporal gating. This method allows measurement of optical absorbance of a nickel nanoparticles cloud. Simulation of the extinction section of nickel nanoparticles size distributions has been developed in order to compare the measured optical absorbance to the optical extinction by theoretical and experimental nanoparticles size distributions (measured by scanning electron microscopy). A good agreement has been found between the in situ measured optical absorbance and the optical extinction cross section calculated from ex situ nanoparticles size distribution measurements.

Bourquard, Florent; Loir, Anne-Sophie; Donnet, Christophe; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr [Universit de Lyon, CNRS UMR 5516, Laboratoire Hubert Curien, Universit Jean Monnet, Saint-tienne (France)] [Universit de Lyon, CNRS UMR 5516, Laboratoire Hubert Curien, Universit Jean Monnet, Saint-tienne (France)

2014-03-10T23:59:59.000Z

325

Facility Representative Program: Basic Courses For Facility Representative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training & Qualification Information Training & Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available Link to National Training Center Basic Courses for Facility Representative Qualification Recommended Courses to Expand Facility Representative's Knowledge Base Basic Courses For Facility Rep Qualification (These courses may be beneficial during the initial qualification of Facility Representatives.) Course Title FR FAQS CN Point of Contact Comments Applied Engineering Fundamentals 13 days * See below Mike Schoener 803-641-8166 E-mail Course description at http://ntc.doe.gov course catalog Asbestos Awareness 2 hours 2.1 Federal employees register through the CHRIS system For course details see

326

Data structures and apparatuses for representing knowledge  

DOE Patents [OSTI]

Data structures and apparatuses to represent knowledge are disclosed. The processes can comprise labeling elements in a knowledge signature according to concepts in an ontology and populating the elements with confidence values. The data structures can comprise knowledge signatures stored on computer-readable media. The knowledge signatures comprise a matrix structure having elements labeled according to concepts in an ontology, wherein the value of the element represents a confidence that the concept is present in an information space. The apparatus can comprise a knowledge representation unit having at least one ontology stored on a computer-readable medium, at least one data-receiving device, and a processor configured to generate knowledge signatures by comparing datasets obtained by the data-receiving devices to the ontologies.

Hohimer, Ryan E; Thomson, Judi R; Harvey, William J; Paulson, Patrick R; Whiting, Mark A; Tratz, Stephen C; Chappell, Alan R; Butner, Robert S

2014-02-18T23:59:59.000Z

327

Foreword to the Handbook of Research on "Mobile Peer-to-Peer Computing for Next Generation Distributed Environments: Advancing  

E-Print Network [OSTI]

Foreword to the Handbook of Research on "Mobile Peer-to-Peer Computing for Next Generation, namely mobile P2P systems, are in their infancy. This does not mean that research on the subject has physically. Thus, serious security and privacy concerns arise. Additionally, many mobile P2P systems cannot

Wolfson, Ouri E.

328

Facility Representative Program: Facility Representative of the Year  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative Facility Representative Office of Nuclear Safety Home Facility Representative Home Annual Facility Rep Workshop › 2012 › 2011 › 2010 › 2009 › 2008 › 2007 › 2006 › 2005 › 2004 › 2003 › 2002 › 2001 › 2000 DOE Safety Links › ORPS Info › Operating Experience › DOE Lessons Learned › Accident Investigation Assessment Tools › FR CRADs › Surveillance Guides › Manager's Guide for Safety and Health Subject Matter Links General Program Information › Program Mission Statement › Program Directives and Guidance › FR of the Year Award Program › FR of the Year Award › FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) FR Quarterly Performance Indicators Training & Qualification Information › Qualification Standards › Energy Online Courses

329

Facility Representative Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1151-2010 October 2010 DOE STANDARD FACILITY REPRESENTATIVE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1151-2010 ii This document is available on the Department of Energy Office of Health, Safety and Security Approved DOE Technical Standards Web Site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/standard/standard.html DOE-STD-1151-2010 iii APPROVAL The Federal Technical Capability Panel consists of senior U.S. Department of Energy (DOE) managers responsible for overseeing the Federal Technical Capability Program. This Panel is

330

Abundance and distribution of macro-crustaceans in the intake and discharge areas before and during early operation of the Cedar Bayou Generating Station  

E-Print Network [OSTI]

at Stations 4 and 5 varied from 3. 0 to 4. 0 m. The substrate at these two stations was silt and clay, with a very high content of organic debris. Trinity Bay, Discharge Area Each of shoreline Stations 6, 9, 19, 21, and 24 were located at 1610 m (I mile...ABUNDANCE AND DISTRIBUTION OF MACRO-CRUSTACEANS IN THE INTAKE AND DISCHARGE AREAS BEFORE AND DURING EARLY OPERATION OF THE CEDAR BAYOU GENERATING STATION A Thesis by MONROE SCHMIDT Submitted to the Graduate College of Texas A&M University...

Schmidt, Monroe

1972-01-01T23:59:59.000Z

331

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

SciTech Connect (OSTI)

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

332

Facility Representative Program Performance Indicators for October - December 2010  

Broader source: Energy.gov (indexed) [DOE]

FOR DISTRIBUTION FOR DISTRIBUTION FROM: ANDREW C. LAWRENCE DIRECTOR OFFICE OF NUCLEAR SAFETY, QUALITY ASSURANCE AND ENVIRONMENT OFFICE OF HEALTH, SAFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, October-December (Fourth Quarter Calendar Year 2010) This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period October through December 2010. Data for these indicators were gathered by Field Elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report are presented below:

333

The Flare-energy Distributions Generated by Kink-unstable Ensembles of Zero-net-current Coronal Loops  

E-Print Network [OSTI]

It has been proposed that the million degree temperature of the corona is due to the combined effect of barely-detectable energy releases, so called nanoflares, that occur throughout the solar atmosphere. Alas, the nanoflare density and brightness implied by this hypothesis means that conclusive verification is beyond present observational abilities. Nevertheless, we investigate the plausibility of the nanoflare hypothesis by constructing a magnetohydrodynamic (MHD) model that can derive the energy of a nanoflare from the nature of an ideal kink instability. The set of energy-releasing instabilities is captured by an instability threshold for linear kink modes. Each point on the threshold is associated with a unique energy release and so we can predict a distribution of nanoflare energies. When the linear instability threshold is crossed, the instability enters a nonlinear phase as it is driven by current sheet reconnection. As the ensuing flare erupts and declines, the field transitions to a lower energy sta...

Bareford, M R; Van der Linden, R A M

2011-01-01T23:59:59.000Z

334

Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation  

Science Journals Connector (OSTI)

Biomass based decentralized power generation using externally fired gas turbine (EFGT) can be a technically feasible option. In this work, thermal performance and sizing of such plants have been analyzed at different cycle pressure ratio (rp=2?8), turbine inlet temperature (TIT=10501350K) and the heat exchanger cold end temperature difference (CETD=200300K). It is found that the thermal efficiency of the EFGT plant reaches a maximum at an optimum pressure ratio depending upon the TIT and heat exchanger CETD. For a particular pressure ratio, thermal efficiency increases either with the increase in TIT or with the decrease in heat exchanger CETD. The specific air flow, associated with the size of the plant equipment, decreases with the increase in pressure ratio. This decrease is rapid at the lower end of the pressure ratio (rp<4) but levels-off at higher rp values. An increase in the TIT reduces the specific air flow, while a change in the heat exchanger CETD has no influence on it. Based on this comparison, the performance of a 100kW EFGT plant has been analyzed for three sets of operating parameters and a trade-off in the operating condition is reached.

Amitava Datta; Ranjan Ganguly; Luna Sarkar

2010-01-01T23:59:59.000Z

335

Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System  

SciTech Connect (OSTI)

This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

2014-09-01T23:59:59.000Z

336

1Q CY2000, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

May May 9,2000 MEMORANDUM FOR DISTRIBUTION FROM: .yc,..,%$'! L.W.T oseph Arango, Facl ity Representative Program Manager (S-3.1) SUBJECT: Facility Representative Program Performance Indicators Quarterly Report The Facility Representative Program Performance Indicators (PIs) Quarterly Report is attached, covering the period from January 2000 to March 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, DOE-STD-1 063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definitions of the PIs from the Standard are also attached for your use in evaluating the data. You will note that the indicators show the attrition of five Facility Representatives from the program during this reporting period. Of those five, two were promoted

337

In case you're interested, I started with two normally-distributed random variables X,Y ~ N(0,1) then applied the following transformation to generate new random variables  

E-Print Network [OSTI]

Hi John, In case you're interested, I started with two normally-distributed random variables X,Y ~ N(0,1) then applied the following transformation to generate new random variables U,V: U = { |X distributions in each of U and V (also if projected onto each axis) and cov(U,V) = 0, i

Masci, Frank

338

General Engineer / Physical Scientist (Facility Representative)  

Broader source: Energy.gov [DOE]

Facility Representatives (FRs) are line management's on-site technical representative with responsibility for identifying and evaluating environmental, safety and health issues and concerns,...

339

FAQS Job Task Analyses - Facility Representative | Department...  

Broader source: Energy.gov (indexed) [DOE]

Facility Representative FAQS Job Task Analyses - Facility Representative FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task...

340

4Q CY2000, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Department of Energy Washington, DC 20585 February 26,2001 MEMORANDUM FOR DISTRIBUTION FROM: seph Arango, Facility Representative Program Manager (S-3.1) SUBJECT: Facility Representative Program Performance Indicators Quarterly Report The Facility Representative Program Performance Indicators Quarterly Report is attached, covering the period from October to December 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, 063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definitions of the PIs from the Standard are also attached for your use in evaluating the data. I intend to continue to provide this summary information to you quarterly. These provide

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

What is Distributed Wind?  

Broader source: Energy.gov (indexed) [DOE]

and refurbishers, including those from Canada, Mexico, Europe, China, and South Africa. In 2013, 30.4 MW of new distributed wind capacity was added, representing nearly...

342

Facility Representative of the Year Award  

Broader source: Energy.gov (indexed) [DOE]

REPRESENTATIVE OF THE YEAR AWARD PROGRAM REPRESENTATIVE OF THE YEAR AWARD PROGRAM OBJECTIVE The Facility Representative Award Program is a special award designed to recognize superior or exemplary service by a Facility Representative over a period of one year. This special award program has been established in accordance with the requirements of Department of Energy (DOE) Order 331.1C, Employee Performance Management and Recognition Program. FACILITY REPRESENTATIVE OF THE YEAR AWARD The Facility Representative of the Year Award is determined by a panel representing the Chief Health, Safety and Security Officer and managers from the National Nuclear Security Administration (NNSA), the Office of Environmental Management (EM), the Office of Science (SC), and the Office of Nuclear Energy (NE). The Facility Representative Program Manager in

343

Flapping wing applied to wind generators  

Science Journals Connector (OSTI)

The new conditions at the international level for energy source distributions and the continuous increasing of energy consumption must lead to a new alternative resource with the condition of keeping the environment clean. This paper offers a new approach for a wind generator and is based on the theoretical aerodynamic model. This new model of wind generator helped me to test what influences would be if there will be a bird airfoil instead of a normal wind generator airfoil. The aim is to calculate the efficiency for the new model of wind generator. A representative direction for using the renewable energy is referred to the transformation of wind energy into electrical energy with the help of wind turbines; the development of such systems lead to new solutions based on high efficiency reduced costs and suitable to the implementation conditions.

Alexandra Colidiuc; Stelian Galetuse; Bogdan Suatean

2012-01-01T23:59:59.000Z

344

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network [OSTI]

the other hand, such distributed generators as fuel cells ordistributed and conventional. Nuclear plants and conventional coal fired generators

Kahn, E.

2011-01-01T23:59:59.000Z

345

DOE ORP Contracting Officer Representatives - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE ORP Contracting Officer Representatives DOE - ORP ContractsProcurements ORP Contracts & Procurements Home DOE-ORP Contract Management Plans DOE-ORP Prime Contracts DOE-ORP...

346

Facility Representative Program Performance Indicators for October-December 2011  

Broader source: Energy.gov (indexed) [DOE]

2012 2012 MEMORANDUM FOR DISTRIBUTION FROM: JAMES B. O'BRIEN DIRECTOR ~ OFFICE OF :-IDC~AR AFETY OFFICE OF HEAL 'l;H, AFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, October- December 20 ll This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October through December 2011. Data for these indicators were gathered by field elements per Department of Energy (DOE) Technical Standard 1063-2011 , Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report include: FR Staffing/Qualification/Oversight Data * DOE was staffed at 179 FR Full Time Equivalents (FTE), which is 92 percent of the full

347

Facility Representative Program Performance Indicators for April - June 2011  

Broader source: Energy.gov (indexed) [DOE]

0 , 2011 MEMORANDUM FOR DISTRIBUTION FROM: JAMES B. O'BRIEN SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, April - June 20 1 I This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period April through June 20 1 1. Data for these indicators were gathered by Field Elements per Department of Energy (DOE) Technical Standard (STD) 1063-20 1 1, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report: FR Staffin~/Qualification/Oversi~ht Data DOE was staffed at 180 FR Full Time Equivalents (FTEs), which is 9 1 percent of the full staffing level (DOE goal is 100 percent).

348

Landscape Characterization and Representativeness Analysis for Understanding Sampling Network Coverage  

SciTech Connect (OSTI)

Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.

Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William

2014-08-01T23:59:59.000Z

349

Landscape Characterization and Representativeness Analysis for Understanding Sampling Network Coverage  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.

Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William

350

Representativeness models of systems: smart grid example  

Science Journals Connector (OSTI)

Given the great emphasis being placed on energy efficiency in contemporary society, in which the smart grid plays a prominent role, this is an opportune time to explore methodologies for appropriately representing system attributes. We suggest this is ... Keywords: Smart grid, System representativeness

Norman Schneidewind

2011-03-01T23:59:59.000Z

351

Incentives for the Department's Facility Representative Program,  

Broader source: Energy.gov (indexed) [DOE]

Incentives for the Department's Facility Representative Program, Incentives for the Department's Facility Representative Program, 12/17/1998 Incentives for the Department's Facility Representative Program, 12/17/1998 The Department's Revised Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 93-3 has once again underscored the Department's commitment to maintaining the technical capability necessary to safely manage and operate our defense nuclear facilities. Attracting and retaining highly qualified employees and placing them in our critical technical positions is vital to fi.dfilling this commitment. You have identified 95'% of your Facility Representative positions as critical technical positions. The Office of Field Management has noted a 12'?40annual attrition rate of Facility Representatives from the Facility

352

Simulating a Nationally Representative Housing Sample Using EnergyPlus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulating a Nationally Representative Housing Sample Using EnergyPlus Simulating a Nationally Representative Housing Sample Using EnergyPlus Title Simulating a Nationally Representative Housing Sample Using EnergyPlus Publication Type Report LBNL Report Number LBNL-4420E Year of Publication 2011 Authors Hopkins, Asa S., Alexander B. Lekov, James D. Lutz, and Gregory J. Rosenquist Subsidiary Authors Energy Analysis Department Pagination 55 Date Published March 1 Publisher Lawrence Berkeley National Laboratory City Berkeley ISBN Number LBNL-4420E Abstract This report presents a new simulation tool under development at Lawrence Berkeley National Laboratory (LBNL). This tool uses EnergyPlus to simulate each single-family home in the Residential Energy Consumption Survey (RECS), and generates a calibrated, nationally representative set of simulated homes whose energy use is statistically indistinguishable from the energy use of the single-family homes in the RECS sample. This research builds upon earlier work by Ritchard et al. for the Gas Research Institute and Huang et al. for LBNL. A representative national sample allows us to evaluate the variance in energy use between individual homes, regions, or other subsamples; using this tool, we can also evaluate how that variance affects the impacts of potential policies.

353

The abundance and distribution of macro-invertebrates in the cooling-water canal system of the P. H. Robinson Generating Station located on Galveston Bay, Texas, with emphasis on the effect of supplemental cooling towers  

E-Print Network [OSTI]

and Goodyear 1972; Raney et al. 1973; Belts et al. 1974). There is aslo increasing awareness and concern for other power plant related problems such as mechanical and pressure stress due to entrainment through the condenser tubes, impingement upon intake... to determine the abundance, distribution and survival rate of macro- invertebrates present in the cooling-water canal system of Houston Lighting 6 Power Company's P. H. Robinson Generating Station. Surface and bottom, day and night collections were taken...

Margraf, F. Joseph

2012-06-07T23:59:59.000Z

354

Advisory Board Seats New Student Representatives | Department...  

Office of Environmental Management (EM)

15, 2013 - 12:00pm Addthis The Oak Ridge Site Specific Advisory Board (ORSSAB) welcomed two new student representatives at its May meeting. Gracie Hall and Julia Riley will serve...

355

Authorizing Official Designated Representative (AODR) | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the AO Representative role will have a working knowledge of system function, security policies, and technical security safeguards, and serve as technical advisor(s) to the AO. AODR...

356

Facility Representative Program, Criteria & Review Approach Documents  

Broader source: Energy.gov [DOE]

This page provides Criteria Review and Approach Documents (CRADS) to assist Facility Representatives. Please submit your CRADS for posting by sending them to the HQ FR Program Manager. Please include the subject, date, and a contact person.

357

A Capital Market Test of Representativeness  

E-Print Network [OSTI]

. I also provide evidence that rejects a theory based on fixation in favor of representativeness. These results document evidence of overreaction to past sales growth in firms where underreaction to fundamentals does not confound the overreaction due...

Safdar, Mohammad

2012-07-16T23:59:59.000Z

358

Departmental Representative to the Defense Nuclear Facilities...  

Energy Savers [EERE]

to ensure the health, safety, and security of the workers, public, and environment. This web site is an important means to efficiently manage, distribute, and archive information...

359

A hybrid method combining JFPSO and probabilistic three-phase load flow for improving unbalanced voltages in distribution systems with photovoltaic generators  

Science Journals Connector (OSTI)

This paper presents a new hybrid method that combines jumping frog and particle swarm optimization and probabilistic three-phase load flow to improve unbalanced voltages in distribution systems with photovoltaic

F. J. Ruiz-Rodriguez; F. Jurado; M. Gomez-Gonzalez

2014-09-01T23:59:59.000Z

360

Scram signal generator  

DOE Patents [OSTI]

A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

Johanson, Edward W. (New Lenox, IL); Simms, Richard (Westmont, IL)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

generation equipment, substations, distribution lines,energyresources(DER), substationanddistribution. thenextgenerationofsubstationautomationsolutions. It

Birman, Kenneth

2012-01-01T23:59:59.000Z

362

Processes, data structures, and apparatuses for representing knowledge  

DOE Patents [OSTI]

Processes, data structures, and apparatuses to represent knowledge are disclosed. The processes can comprise labeling elements in a knowledge signature according to concepts in an ontology and populating the elements with confidence values. The data structures can comprise knowledge signatures stored on computer-readable media. The knowledge signatures comprise a matrix structure having elements labeled according to concepts in an ontology, wherein the value of the element represents a confidence that the concept is present in an information space. The apparatus can comprise a knowledge representation unit having at least one ontology stored on a computer-readable medium, at least one data-receiving device, and a processor configured to generate knowledge signatures by comparing datasets obtained by the data-receiving devices to the ontologies.

Hohimer, Ryan E. (West Richland, WA); Thomson, Judi R. (Guelph, CA); Harvey, William J. (Richland, WA); Paulson, Patrick R. (Pasco, WA); Whiting, Mark A. (Richland, WA); Tratz, Stephen C. (Richland, WA); Chappell, Alan R. (Seattle, WA); Butner, R. Scott (Richland, WA)

2011-09-20T23:59:59.000Z

363

FOOD SECURITY FUEL INDEPENDENCE These projects represent  

E-Print Network [OSTI]

FOOD SECURITY FUEL INDEPENDENCE These projects represent a huge effort to determine and improve pressing challenges. ASH 1% ASH 1% ASH 1% OTHERS 6% OTHERS 6% OTHERS 6% OIL 2% OIL 10% OIL 20% SUCROSE 45% LIPID CANE Produce and store oil in the stem in place of sugar During photosynthesis, sugarcane

Bashir, Rashid

364

An iconic approach to representing climate change  

E-Print Network [OSTI]

1 An iconic approach to representing climate change Saffron Jessica O'Neill A thesis submitted-experts to be meaningfully engaged with the issue of climate change. This thesis investigates the value of engaging non-experts with climate change at the individual level. Research demonstrates that individuals perceive climate change

Feigon, Brooke

365

Book Reviews NETL: A System for Representing  

E-Print Network [OSTI]

Book Reviews NETL: A System for Representing and Using Real-World Knowledge Scott E. Fahlman structure which can be con- sidered on its own merits, independently of such tim- ing considerations. NETL in the original]. The central organizing principle of NETL is a prop- erty inheritance hierarchy using nodes

Shapiro, Stuart C.

366

DOE-STD-1063-2000 - Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-STD-1063-2000 March 2000 Superseding DOE-STD-1063-97 October 1997 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1063-2000 iii FOREWORD 1. This Department of Energy standard is approved for use by all DOE Components. 2. The Revision to this DOE standard was developed by a working group consisting of

367

Distribution, relative abundance and species composition of shrimp, crabs and fish in the intake area, discharge canal and cooling lake of the Cedar Bayou generating station, Baytown, Texas  

E-Print Network [OSTI]

area and discharge waters of Houston Lighting S Power Company's Cedar Bayou Generating Station, Baytown, Texas. Hydrological data were taken at each sampling station. A total of 12 species of crustaceans and 53 species of fish was captured. The 10... juvenile stages risk entrainment through the plant (Mihursky and Kennedy 1967; Bascom 1974) or impingement on the intake screens. As Landry (1977) found, the impact of either entrainment or impingement depends mainly on the season of recruitment...

St. Clair, Lou Ann

2012-06-07T23:59:59.000Z

368

Yucca Mountain Climate Technical Support Representative  

SciTech Connect (OSTI)

The primary objective of Project Activity ORD-FY04-012, Yucca Mountain Climate Technical Support Representative, was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.

Sharpe, Saxon E

2007-10-23T23:59:59.000Z

369

Diophantine Generation,  

E-Print Network [OSTI]

Diophantine Generation, Horizontal and Vertical Problems, and the Weak Vertical Method Alexandra Shlapentokh Diophantine Sets, Definitions and Generation Diophantine Sets Diophantine Generation Properties of Diophantine Generation Diophantine Family of Z Diophantine Family of a Polynomial Ring Going Down Horizontal

Shlapentokh, Alexandra

370

1997 Annual Facility Representative Workshop Attendees  

Broader source: Energy.gov (indexed) [DOE]

Annual Facility Representative Workshop Attendees Annual Facility Representative Workshop Attendees Last Name First Office Location Phone E-Mail Anderson Mike ID CFATAN (208) 526-7418 andersmr@id.doe.gov Bell Bill AL LAAO (505) 665-6324 bbell@doeal.gov Biro Brian RL LABS (509) 376-7660 brian_a_biro@rl.gov Brown Mark RL TANKS (509) 373-9150 mark_c_brown@rl.gov Charboneau Briant RL 324/327 (509) 373-6137 briant_L_charboneau@rl.gov Daniels Rick OR HFIR (423) 574-9143 e29@ornl.gov Dennis Jack AL AAO (806) 477-3176 jdennis@pantex.com Dikeakos Maria CH BHG (516) 344-3950 dikeako@bnl.gov Duey Don AL AAO (806) 477-6987 dduey@pantex.com Earley Larry RL WRAP (509) 373-9388 larry_d_earley@rl.gov Eddy Doug OAK LLNL (925) 422-3379 doug.eddy@oak.doe.gov Edwards Robert SR NMSD (803) 208-2645 robert-e.edwards@srs.gov

371

1998 Annual Facility Representative Workshop Attendees  

Broader source: Energy.gov (indexed) [DOE]

8 Annual Facility Representative Workshop Attendees 8 Annual Facility Representative Workshop Attendees Last Name First Office Location Phone Fax E-Mail Alvord Bob OAK LLNL (925) 422-0830 (925) 422-0832 robert.alvord@oak.doe.gov Barnes John SR SRTC (803) 208-2628 (803) 208-1123 johnc.barnes@srs.gov Bell Fred AL LAAO (505) 665-4856 (505) 665-9230 fbell@doeal.gov Bell Bill AL LAAO (505) 665-6324 (505) 665-9230 bbell@doeal.gov Bennett Rick RF DOE (303) 966-8155 (303) 966-7447 rick.bennett@rfets.gov Biro Brian RL LABS (509) 376-7660 (509) 376-9837 brian_a_biro@rl.gov Blanco Jose SR DWPF (803) 208-7022 (803) 557-8223 jose.blanco@srs.gov Charboneau Briant RL 324/327 (509) 373-6137 (509) 373-9839 briant_L_charboneau@rl.gov Christensen Debbie AL OMD (505) 845-5239 dschristensen@doeal.gov Clifton Gary OR ORNL (423) 576-6810 (423) 574-9275 g7y@ornl.gov

372

Laboratory or Facility Representative Email Addresses Phone #  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory or Facility Representative Email Addresses Phone # Ames Laboratory Stacy Joiner joiner@ameslab.gov 515-294-5932 Argonne National Laboratory Connie Cleary ccleary@anl.gov 630-252-8111 Brookhaven National Laboratory Walter Copan wcopan@bnl.gov 631-344-3035 Fermi National Acclerator Laboratory Bruce Chrisman chrisman@fnal.gov 630-840-6657 Idaho National Laboratory Steven McMaster steven.mcmaster@inl.gov 208-526-1340 Kansas City Plant Caron O'Dower codower@kcp.com 816-997-2645 Lawrence Berkeley National Laboratory Viviana Wolinsky viwolinsky@lbl.gov 510-486-6463 Lawrence Livermore National Laboratory Roger Werne werne1@llnl.gov 925-423-9353 Los Alamos National Laboratory John Mott jmott@lanl.gov 505-665-0883 National Energy Technology Laboratory Jessica Sosenko jessica.sosenko@netl.doe.gov 412-386-7417

373

Distributed Algorithms Distributed Transactions  

E-Print Network [OSTI]

Algorithms© Gero Mühl 8 Concurrency Control serial RC (ReCoverable) ACA (Avoiding Cascading Aborts) ST (StricDistributed Algorithms Distributed Transactions PD Dr.-Ing. Gero Mühl Kommunikations- und Betriebssysteme Fakultät für Elektrotechnik u. Informatik Technische Universität Berlin #12;Distributed Algorithms

Wichmann, Felix

374

Hardware simulation of diesel generator and microgrid stability  

E-Print Network [OSTI]

Over the last few years, people have begun to depend less on large power plants with extensive distribution systems, and more on local distributed generation sources. A microgrid, a local collection of distributed generators, ...

Zieve, Michael M

2012-01-01T23:59:59.000Z

375

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

376

2Q CY2004, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

Attachment Attachment Facility Representative Program Performance Indicators Quarterly Report September 20, 2004 Distribution: Kyle McSlarrow, S-2 Bruce Carnes, S-2 Les Novitsky, S-2 David Garman, S-3 Linton Brooks, NA-1 Tyler Przybylek, NA-1 Everet Beckner, NA-10 James Mangeno, NA-3.6 Glenn Podonsky, SP-1 Mike Kilpatrick, OA-1 Patricia Worthington, OA-40 Paul Golan, EM-1 Inés Triay, EM-3 Patty Bubar, EM-3.2 Raymond Orbach, SC-1 Milt Johnson, SC-3 William Magwood, NE-1 Manager, Ames Site Office Manager, Argonne Site Office Manager, Brookhaven Site Office Manager, Carlsbad Field Office Manager, Fermi Site Office Manager, Idaho Operations Office Manager, Livermore Site Office Manager, Los Alamos Site Office Manager, Nevada Site Office Manager, Oak Ridge Operations Office Manager, Office of River Protection

377

1. Generation 1 1. Generation  

E-Print Network [OSTI]

1. Generation 1 _________________________________________________________________________ 1. Generation Sound and vibrations or, in more general terms, oscillations of matter (solids or fluids) are generated in many different dynamic processes. The basic mechanisms which underlie these oscillations

Berlin,Technische Universität

378

Department of Defense Representatives Visit Hanford to Benchmark...  

Office of Environmental Management (EM)

Representatives Visit Hanford to Benchmark Safety Department of Defense Representatives Visit Hanford to Benchmark Safety FLUOR News Release RICHLAND, Wash., December 16, 2005,...

379

Distribution Workshop  

Broader source: Energy.gov (indexed) [DOE]

SHERATON CRYSTAL CITY SEPTEMBER 24-26, 2012 Grid Tech Team U.S. Department of Energy DOE Grid Tech Team (GTT)  The Grid Tech Team (GTT), established by the Office of the Undersecretary of Energy, was tasked with coordinating grid-related activities across the Department and accelerating modernization of the electric power system.  Currently, the GTT comprise of representatives from OE, EERE, ARPA-E, Fossil Energy, Science, Policy and International Affairs, CFO, and the Office of the Secretary of Energy. Vision of the Future Grid A seamless, cost-effective electricity system, from generation to end- use, capable of meeting all clean energy demands and capacity requirements, while allowing consumer participation and electricity use as desired:

380

1Q CY2012 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2012 (PDF), Facility Representative Program Performance 1Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January through March 2012. Data for these indicators were gathered by Field elements per Department of Energy (DOE) Technical Standarf 1063-2011, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Facility Representative Program Performance Indicators for January-March 2012 More Documents & Publications 1Q CY2011 (PDF), Facility Representative Program Performance Indicators

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

3Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2011 (PDF), Facility Representative Program Performance 3Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the Period July through September 2011. Data for these indicators were gathered by Field Elements per Department of Energy's (DOE) Technical Standard (STD) 1063-2011, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Facility Representative Program Performance Indicators for July - September 2011 More Documents & Publications 3Q CY2010 (PDF), Facility Representative Program Performance Indicators

382

Facility Representative Program ID Selects FR of the Year  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative Program ID Selects Facility Representative Program ID Selects FR of the Year John Martin DOE-ID Facility Representative John Martin DOE-ID Facility Representative of the Year. John Martin was selected as DOE-ID's Facility Representative of the Year and the office's nominee for the 2007 DOE Facility Representative of the Year Award. John was selected from an exceptional field of candidates to represent DOE-ID at the Facility Representative Annual Workshop in Las Vegas this May. Each year the Department of Energy recognizes the Facility Representative whose achievements during the calendar year are most exemplary. A panel of senior personnel representing the Office of Health, Safety and Security (HSS) National Nuclear Security Administration (NNSA), Environmental Management (EM), Science (SC), Nuclear Energy (NE) and at least five

383

Constructing Reliable Distributed Communication Systems with CORBA  

E-Print Network [OSTI]

Constructing Reliable Distributed Communication Systems with CORBA Silvano Maffeis Douglas C Communication software and distributed services for next- generation applications must be reliable, efficient model to support reliable data- and process- oriented distributed systems that communicate through syn

Schmidt, Douglas C.

384

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

Ernest Orlando Lawrence Berkeley National Laboratory is anErnest Orlando Lawrence Berkeley National Laboratory,Ernest Orlando Lawrence Berkeley National Laboratory,

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

385

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

in floor tiles for thermal energy storage, working paper,D. R. (2000). Thermal energy storage for space cooling,A simple model of thermal energy storage is developed as a

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

386

DISTRIBUTED GENERATION USE AND CONTROL IN BUILDINGS  

E-Print Network [OSTI]

.g., fuel cells), energy conversion devices (e.g., absorption chillers), and energy storage devices (e were analyzed: 1. 1-250kW HTFC with 25TR Absorption Chiller 2. 4-60kW MTGs with 100TR Absorption Chiller 3. 1-125kW HTFC and 2-60kW MTGs with 63TR Absorption Chiller · Heating not considered

Mease, Kenneth D.

387

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

Energy; Grid systems; Optimization; Heat flow; Financialof grid power and by utilizing combined heat and power (CHP)

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

388

Distributed Generation Financial Incentives and Programs Resources  

Broader source: Energy.gov [DOE]

There are various programs in place that offer financial incentives to the residential, commercial, industrial, utility, education, and/or government sectors for renewable energy. Programs include...

389

Distributed Generation Lead-by-Example Resources  

Broader source: Energy.gov [DOE]

State governments can lead by example by promoting renewable energy programs and policies. Efforts to lead by example include using renewable energy resources (including alternative fuel for...

390

3Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2003 (PDF), Facility Representative Program Performance 3Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from July to September 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. 3Q CY2003, Facility Representative Program Performance Indicators More Documents & Publications 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2005 (PDF), Facility Representative Program Performance Indicators

391

Generation Planning (pbl/generation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Generation Planning Thumbnail image of BPA White Book BPA White Book (1998 - 2011) Draft Dry...

392

FAQS Qualification Card - Facility Representative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Representative Representative FAQS Qualification Card - Facility Representative A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-FacilityRepresentative.docx Description Facility Representative Qualification Card More Documents & Publications FAQS Gap Analysis Qualification Card - Facility Representative

393

Greening the U.S. House of Representatives  

SciTech Connect (OSTI)

The Greening the Capitol initiative was launched in March, 2007 with the threefold goals of making the U.S. House of Representatives: 1) carbon neutral within 18 months, 2) reducing energy use by 50percent in ten years, and 3) becoming a model of sustainable operations. We report on the recommendations to meet these goals, looking at the targets of opportunity at the Capitol Power Plant, the existing buildings, and the overall operations of the complex. Our findings have shown that these goals are achievable, and that through an integrated approach the savings in carbon and energy can be met. Specific examples include the lighting retrofits in the House offices, parking areas, and the Capitol dome; the retrofits to the HVAC systems and controls, including duct sealing, improving the efficiency of the energy and water use in the food service areas; and improved operations of the steam and chilled water distribution system. A key aspect has been better tracking and feedback to the building operators of the actual energy consumption. We report on the technical opportunities presented by these historic and symbolic buildings in becoming models of sustainability.

Diamond, Rick; Diamond, Rick; Payne, Christopher

2008-03-01T23:59:59.000Z

394

2Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2003 (PDF), Facility Representative Program Performance 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from April to June 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. A total of 13 Facility Representatives transferred to other positions during the quarter. Five of these accepted Facility Representative positions at other sites. Of the 8 that left the Program. 1 recieved a promotion and 7 accepted lateral positions. All of

395

2Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2006 (PDF), Facility Representative Program Performance 2Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. 2Q CY2006, Facility Representative Program Performance Indicators More Documents & Publications 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2004 (PDF), Facility Representative Program Performance Indicators

396

4Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2003 (PDF), Facility Representative Program Performance 4Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from October to December 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. As of December 31,2003, 93% of all Facility Representatives were fully qualified, exceeding the DOE goal of 80%. Currently, 23 of 27 sites meet the goal of 80%. Currently, 23 of 27 sites meet the goal for Facility Representative

397

1999 FACILITY REPRESENTATIVE CONFERENCE June 21 25, 1999  

Broader source: Energy.gov [DOE]

The Department of Energy will host the Facility Representative Annual Meeting on June 21-25, 1999 at the Alexis Park Hotel in Las Vegas, Nevada. The meeting will give Facility Representatives and...

398

Clostridium ljungdahlii represents a microbial production platform based on syngas  

Science Journals Connector (OSTI)

...represents a microbial production platform based on syngas 10.1073/pnas...novel biotechnological production platform based on syngas and CO 2 /H 2 . Results and Discussion...represents a microbial production platform based on syngas. | Clostridium...

Michael Kpke; Claudia Held; Sandra Hujer; Heiko Liesegang; Arnim Wiezer; Antje Wollherr; Armin Ehrenreich; Wolfgang Liebl; Gerhard Gottschalk; Peter Drre

2010-01-01T23:59:59.000Z

399

Analysis of Random Number Generators Parijat Naik  

E-Print Network [OSTI]

1 Analysis of Random Number Generators Parijat Naik Department of Computer Science Oregon State generation used in practice and a comparison of their efficiency. The paper focuses on the techniques used Random number generators are used for generating an array of numbers that have a random distribution

400

3Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2006 (PDF), Facility Representative Program Performance 3Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. A summary of this quarters data concluded: 76% fully qualified 41% staffing level

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

2Q CY2007 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2007 (PDF), Facility Representative Program Performance 2Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2007. Data for these indicators are gathered by field elements quarterly per DOE-STD-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to impove the FR Program. A summary of this quarter's data concluded: 74% Fully Qualified 94% Staffing Level ( last quarter was

402

4Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2006 (PDF), Facility Representative Program Performance 4Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. A summary of this quarters data concluded: 72% Fully Qualified ( last Quarter was

403

2Q CY2008 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2008 (PDF), Facility Representative Program Performance 2Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2008. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 87% Fully Qualifed ( last quarter was 85%) 86% Staffing Level ( last quarter was 88%)

404

1Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2010 (PDF), Facility Representative Program Performance 1Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March2010. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report are presented below." 1Q CY2010, Facility Representative Program Performance Indicators More Documents & Publications 1Q CY2011 (PDF), Facility Representative Program Performance Indicators

405

3Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2010 (PDF), Facility Representative Program Performance 3Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period of July through September 2010. Data for these indicators are gathered by Field elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representative and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Facility Representative Program Performance Indicators for July - September 2010 More Documents & Publications 3Q CY2011 (PDF), Facility Representative Program Performance Indicators

406

1Q CY2000 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2000 (PDF), Facility Representative Program Performance 1Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report "The Facility Representative Program Performance Indicators (PIs) Quarterly Report is attached, covering the period from January 2000 to March 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, DOE-STD-1 063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definitions of the PIs from the Standard are also attached for your use in evaluating the data." 1Q CY2000, Facility Representative Program Performance Indicators

407

4Q CY2002 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2 (PDF), Facility Representative Program Performance 2 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (Pis) Quarterly Report Covering the Period from October to December 2002. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. The format of the report is changed from past reports. Information will now be provided according to the major offices having field or site office Facility Representative programs: National Nuclear Security Administration (NNSSA), the Office of

408

3Q CY2007 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2007 (PDF), Facility Representative Program Performance 3Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2007. Data for these indicators are gathered by Field elements quarterly per Department of Energy (DOE-STD-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR program. A summary of this quarter 's data concluded: 3Q CY2007, Facility Representative Program Performance Indicators More Documents & Publications 2Q CY2009 (PDF), Facility Representative Program Performance Indicators

409

1Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2003 (PDF), Facility Representative Program Performance 1Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from January to March 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. The percentage of Facility Representatives who are fully qualified reached 91% across DOE. In EM the percenage of 97%, in Sc the percentage is 95% and in NNSA the percentage is 78%. The DOE goal is 75%. Staffing levels for the three organizations continue to be below

410

Student Committee Representatives Guidelines Congratulations on being selected as a student representative to a GSLIS committee! We are  

E-Print Network [OSTI]

Student Committee Representatives Guidelines Congratulations on being selected as a student to your resume or CV. Your job is to represent students to committees and committees to students. You represent the student body to the committee. Your job is to advocate for your fellow students by bringing

Gilbert, Matthew

411

On-Site Generation Simulation with EnergyPlus for Commercial Buildings  

E-Print Network [OSTI]

L ABORATORY On-Site Generation Simulation with EnergyPlusemployer. On-Site Generation Simulation with EnergyPlus forin modeling distributed generation (DG), including DG with

Stadler, Michael; Firestone, Ryan; Curtil, Dimitri; Marnay, Chris

2006-01-01T23:59:59.000Z

412

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A master file, this information has been documented in an ancillary spreadsheet in the EIA

413

Integrated Transmission and Distribution Control  

SciTech Connect (OSTI)

Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: Develop a simulation environment for integrating transmission and distribution control, Construct reduced-order controllable models for smart grid assets at the distribution level, Design and validate closed-loop control strategies for distributed smart grid assets, and Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.

Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

2013-01-16T23:59:59.000Z

414

Thermoelectric Generators 1. Thermoelectric generator  

E-Print Network [OSTI]

. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 on the direction of current and material [3]. This is called the Thomson effect (or Thomson heat). These three

Lee, Ho Sung

415

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

416

Quasiseparable Generators  

Science Journals Connector (OSTI)

It is clear from the preceding chapter that any matrix has quasiseparable representations. By padding given quasiseparable generators with zero matrices of large sizes one ... large orders. However, one is lookin...

Yuli Eidelman; Israel Gohberg

2014-01-01T23:59:59.000Z

417

Facility Representative of the Year Award | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facility Representative of the Year Award Facility Representative of the Year Award Facility Representative of the Year Award Departmental Award Program administered by the Office of Chief Information Officer The Facility Representative Award Program is a special award designed to recognize superior or exemplary service by a Facility Representative over a period of one year. This special award program has been established in accordance with the requirements of Department of Energy (DOE) Order 331.1C, Employee Performance Management and Recognition Program. Facility Representative of the Year Award Responsible Contacts Lorrenda Buckner HUMAN RESOURCES SPECIALIST (PERFORMANCE MANAGEMENT) E-mail lorrenda.buckner@hq.doe.gov Phone 202-586-8451 More Documents & Publications Safety System Oversight Annual Award

418

1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 | Department  

Broader source: Energy.gov (indexed) [DOE]

1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 The Department of Energy will host the Facility Representative Annual Meeting on June 21-25, 1999 at the Alexis Park Hotel in Las Vegas, Nevada. The meeting will give Facility Representatives and line management the opportunity to share lessons learned, and to discuss upcoming program improvements. There is no cost for the meeting, however, rooms reserved at the government rate are limited so if you are planning on attending, please make reservations as soon as possible. The hotel phone number is 1-800-453-8000. For more information, please contact Joe Hassenfeldt, Facility Representative Program Manager, FM-10, at 202-586-1643." Microsoft Word - Document1

419

2Q CY2002 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2002 (PDF), Facility Representative Program Performance 2Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from April to June 2002. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standards , DOE-STD-1063-2000, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definition of the PIs from the Standard are also attached for your use in evaluating the data. Overall, the percentage of fully qualified Facility Representatives increased to 80% last quarter, from 78% the previous quarter , and

420

4Q CY2001 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2001 (PDF), Facility Representative Program Performance 4Q CY2001 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2001 (PDF), Facility Representative Program Performance Indicators Quarterly Report The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from October to December 2001. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standards , DOE-STD-1063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definition of the PIs from the Standard are also attached for your use in evaluating the data 4Q CY2001, Facility Representative Program Performance Indicators More Documents & Publications

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

2Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2005 (PDF), Facility Representative Program Performance 2Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. As of June 30,2005, 97% of all FRs were fully qualified, down from 88% the previous quarter, but exceeding the DOE goal of 80%. Eighteen of 27 reporting sites meet the goal of FR qualifications. 2Q CY2005, Facility Representative Program Performance Indicators

422

Facility Representative of the Year Award | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facility Representative of the Year Award Facility Representative of the Year Award Facility Representative of the Year Award Departmental Award Program administered by the Office of Chief Information Officer The Facility Representative Award Program is a special award designed to recognize superior or exemplary service by a Facility Representative over a period of one year. This special award program has been established in accordance with the requirements of Department of Energy (DOE) Order 331.1C, Employee Performance Management and Recognition Program. Facility Representative of the Year Award Responsible Contacts Lorrenda Buckner HUMAN RESOURCES SPECIALIST (PERFORMANCE MANAGEMENT) E-mail lorrenda.buckner@hq.doe.gov Phone 202-586-8451 More Documents & Publications Safety System Oversight Annual Award

423

1Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2011 (PDF), Facility Representative Program Performance 1Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the Period January through March 2011. Data for these indicators were gathered by Field Elements per Department of Energy's (DOE) Technical Standard (STD) 1063-2011, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. This report reflects changes in DOE STD 1063-2011 that deleted one indicator and changed the way two others are calculated. The changes are discussed below. Facility Representative Program Performance Indicators for January - March

424

3Q CY2002 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2002 (PDF), Facility Representative Program Performance 3Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from July to September 2002. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standards , DOE-STD-1063-2000, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definition of the PIs from the Standard are also attached for your use in evaluating the data. The percentage of fully qualified Facility Representatives in the DOE complex

425

Distribution System Research Priorities  

Broader source: Energy.gov (indexed) [DOE]

Mark McGranaghan Mark McGranaghan EPRI ELECTRICITY DISTRIBUTION SYSTEM WORKSHOP Crystal City, VA September 24, 2012 Distribution System Research Priorities 2 © 2012 Electric Power Research Institute, Inc. All rights reserved. The Power System Roadmaps start with a Vision Future Power System will require new technologies, infrastructure, and control systems 3 © 2012 Electric Power Research Institute, Inc. All rights reserved. R&D Roadmaps - Coordination is Critical Roadmaps are living documents 4 © 2012 Electric Power Research Institute, Inc. All rights reserved. Developing the next generation grid * Industry needs new technologies, communication protocols, and information management methods - More variable generation sources and controllable loads - Aging infrastructure

426

Electricity Distribution  

Science Journals Connector (OSTI)

High voltage (HV) distribution grids have nominal voltages of up ... the grid that connects distribution to the transmission substations and also supplies large industrial customers requiri...

Toms Gmez

2013-01-01T23:59:59.000Z

427

October 2010, Facility Representative Qualification Standard Reference Guide  

Broader source: Energy.gov (indexed) [DOE]

Facility Facility Representative Qualification Standard Reference Guide OCTOBER 2010 Table of Contents i LIST OF FIGURES ..................................................................................................................... iii LIST OF TABLES ........................................................................................................................ v ACRONYMS ................................................................................................................................ vi PURPOSE ...................................................................................................................................... 1 SCOPE ........................................................................................................................................... 1

428

General Engineer/Physical Scientist (Senior Facility Representative)  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as the Site Managers Senior Facility Representative, and responsible for program management, technical monitoring, advising and evaluating all...

429

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

A Minneapolis, Minnesota Reference Buildings by Climate Zone and Representative City: 6A Minneapolis, Minnesota In addition to the ZIP file for each building type, you can directly...

430

Appointment of Contracting Officers and Contracting Officer Representatives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order established procedures governing the selection, appointment and termination of Department of Energy contracting officers and contracting officer representatives. Cancels DOE O 541.1A.

2004-04-21T23:59:59.000Z

431

December 17, 1998 Memo, Incentives for the Department's Facility Representative Program  

Broader source: Energy.gov (indexed) [DOE]

mE mE F 1325.8 (a89) EFG (U7-W) United States Government Department of Energy memorandum DATE: December 17, 1998 REPLY TO ATTN OF: FM- 10(J. Hassenfeldt, 202 586-1643) SUBJECT Incentives for the Department's Facility Representative Program TO:Distribution The Department's Revised Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 93-3 has once again underscored the Department's commitment to maintaining the technical capability necessary to safely manage and operate our defense nuclear facilities. Attracting and retaining highly qualified employees and placing them in our critical technical positions is vital to fi.dfilling this commitment. You have identified 95'% of your Facility Representative positions as critical technical positions. The Office of Field Management has noted a 12'?40 annual attrition rate of Facility Representatives

432

Truth-telling A Representative Johannes Abeler1  

E-Print Network [OSTI]

Truth-telling ­ A Representative Assessment Johannes Abeler1 Anke Becker2 Armin Falk3 University people do report the payoff-maximizing outcome, some report their private informa- tion truthfully or at least do not lie maximally. We measure truth-telling outside the laboratory by calling a representative

Huber, Bernhard A.

433

Microwave generator  

DOE Patents [OSTI]

A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

Kwan, T.J.T.; Snell, C.M.

1987-03-31T23:59:59.000Z

434

4Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2011 (PDF), Facility Representative Program Performance 4Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October through December 2011. Data for these indicators were gathered by field elements per Department of Energy (DOE) Technical Standard 1063-2011 , Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report include: FR Staffing/Qualification/Oversight Data: * DOE was staffed at 179 FR Full Time Equivalents (FTE), which is 92 percent of the full staffing level (DOE goal is 100 percent). Four FRs left due to transfer,

435

4Q CY2007 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2007 (PDF), Facility Representative Program Performance 4Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2007. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 83% Fully Qualified (last Quarter was 82%) 85% Staffing Level (last Quarter was 93%) 45% Time Spent in the Field (DOE goal is >40%) 73% Time Spent in Oversight Activities (DOE Goal is> 65%)"

436

1Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

6 (PDF), Facility Representative Program Performance 6 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. As of March 31,2006 81% of all FRs were fully qualified,up from 78% the previous quarter, and just above the DOE goal of 80%. To assist site offices in continuing to meet the qualification goal, there will be two focused training sessions for FR candidates in the coming months. These

437

2Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2011 (PDF), Facility Representative Program Performance 2Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period April through June 20 1 1. Data for these indicators were gathered by Field Elements per Department of Energy (DOE) Technical Standard (STD) 1063-20 1 1, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report: FR Staffing/Qualification/Oversight data DOE was staffed at 180 FR Full Time Equivalents (FTEs), which is 9 1 percent of the full staffing level (DOE goal is 100 percent).

438

2Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

Q CY2010 (PDF), Facility Representative Program Performance Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the highlight of, and announces the availablity on-line of, the Facility Representative (FR) Program Performance Indicators are gathered by Field elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. This memorandum also announces that Mr. James Heffner has turned over FR Program Manager duties to Mr. Earl Huges. Mr. Heffner is assuming expanded team leader duties over several additional programs within the

439

4Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2005 (PDF), Facility Representative Program Performance 4Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. As of December 31, 2005 78% of all FRs were fully qualified , down from the 84% the previous quarter, and below the DOE goal of 80%. Site offices hired 11 new FRs in the quarter and several sites moved FRs to new facilities, thus requiring new qualifications.

440

1Q CY2009 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2009 (PDF), Facility Representative Program Performance 1Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2009. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 78% Fully Qualified ( last Quarter was 76%) 90% Staffing Level ( last Quarter was 89%) 47% Time Spent in the Field (DOE goal is>40%) 74% Time Spent in Oversight Activites (DOE Goal is>65%)"

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Reference Buildings by Climate Zone and Representative City: 8 Fairbanks,  

Broader source: Energy.gov (indexed) [DOE]

Climate Zone and Representative City: 8 Climate Zone and Representative City: 8 Fairbanks, Alaska Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_8a_usa_ak_fairbanks_post1980_v1.3_5.0.zip refbldg_8a_usa_ak_fairbanks_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 3A Atlanta, Georgia Reference Buildings by Climate Zone and Representative City: 6B Helena, Montana Reference Buildings by Building Type: Secondary school

442

2Q CY2012 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2012 (PDF), Facility Representative Program Performance 2Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April through June 2012. Data for these indicators were gathered by field elements per Department of Energy (DOE) Technical Standard 1063-2011, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report include: FR Staffing/Qualification/Oversight Data * DOE was staffed at 176 FR Full Time Equivalents (FTE), which is 95 percent of the full staffing level (DOE goal is 100 percent). This staff reflects a

443

1Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

1Q CY2005 (PDF), Facility Representative Program Performance 1Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives. and reported to Headquarters program offices for evaluation and feedback in order to improve the FR Program. As of March 31st, 2005, 88% of all FRs were fully qualified, up from 86% the previous quarter, and exceeding the DOE goal of 80%. Several of the new FRs hired recently completed qualifications. Eighteen of 27 reporting sites meet the goal of FR qualifications

444

4Q CY2004 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4 (PDF), Facility Representative Program Performance 4 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from October to December 2004. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the FR program. As of December 31, 2004, 86% of all FRs were fully qualified,down from 89% the previous quarter, and exceeding the DOE goal of 80%. Several sites added new FRs or switched FRs from their exisiting facilities to new facilities, reducing the overall qualification rate.

445

2Q CY2004 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2004 (PDF), Facility Representative Program Performance 2Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from April to June 2004. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the FR program. As of June 30, 2004, 89% of all FRs were fully qualified , exceeding the DOE goal of 80%, but down slightly from the previous quarter. Twenty of 28 reporting sites meet the goal for FR qualifications. Overall FR staffing is at 85% of the levels needed per the staffing

446

3Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2005 (PDF), Facility Representative Program Performance 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. As of September 30,2005, 84% of all FRs were fully qualified , down from 87% the previous quarter, but exceeding the DOE goal of 80%. Several sites shifted fully-qualifed FRs to new facilities, thus requiring new qualifications. Although the overall percentage of fully qualified FRS

447

3Q CY2004 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

3Q CY2004 (PDF), Facility Representative Program Performance 3Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from July to September 2004. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the FR program. As of September 30, 2004, 89% of all FRs were fully qualified, the same as last quarter, and exceeding the DOE goal of 80%. Twenty of 28 reporting sites meet the goal for FR qualifications. Overall FR stadding is at 85% of the levels needed per the staffing analysis methodology in

448

2Q CY2009 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

2Q CY2009 (PDF), Facility Representative Program Performance 2Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2009. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 77% Fully Qualified (last quarter was 78%) 90% Staffing Level ( last Quarter was 90%); 45% Time Spent in the Field (DOE goal is>40%); and 73% Time Spent in Oversight Activites (DOE Goal is > 65%)"

449

4Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2010 (PDF), Facility Representative Program Performance 4Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period October through December 2010. Data for these indicators were gathered by Field Elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report are presented below: FR Staffing/Qualification/Oversight Data * DOE was staffed at 184 FR Full Time Equivalents (FTEs) which is 92

450

4Q CY2008 (PDF), Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

4Q CY2008 (PDF), Facility Representative Program Performance 4Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2008. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 76% Fully Qualified ( last Quarter was 80%) 89% Staffing Level (last Quarter was 89%) 44% Time Spent in the Field ( Department of Energy)(DOE) goal is > 40%) 73% Time Spent in Oversight Activites (DOE Goal is> 65%)"

451

Cascading Closed Loop Cycle Power Generation  

E-Print Network [OSTI]

marketed as WOWGen. The WOW Energies patents represent the production of efficient power from low, medium and high temperature heat generated from the combustion of fuels; heat from renewable energy sources such as solar and geothermal heat; or waste heat...

Romero, M.

2008-01-01T23:59:59.000Z

452

Radionuclide Interaction and Transport in Representative Geologic Media |  

Broader source: Energy.gov (indexed) [DOE]

Radionuclide Interaction and Transport in Representative Geologic Radionuclide Interaction and Transport in Representative Geologic Media Radionuclide Interaction and Transport in Representative Geologic Media The report presents information related to the development of a fundamental understanding of disposal-system performance in a range of environments for potential wastes that could arise from future nuclear fuel cycle alternatives. It addresses selected aspects of the development of computational modeling capability for the performance of storage and disposal options. Topics include radionuclide interaction with geomedia, colloid-facilitated radionuclide transport (Pu colloids), interaction between iodide (accumulate in the interlayer regions of clay minerals) and a suite of clay minerals, adsorption of uranium onto granite and bentonite,

453

Distributed Rural Electrification in Brazil  

Science Journals Connector (OSTI)

DG technologies ranging from diesel generators to solar home systems already have a long history ... electrification in Brazil is dominated by the centralized utilities installing and operating distributed techno...

Hisham Zerriffi

2011-01-01T23:59:59.000Z

454

Distributed Energy Fuel Cells Electricity Users  

E-Print Network [OSTI]

& Barriers Distributed Energy OBJECTIVES · Develop a distributed generation PEM fuel cell system operating of Stationary PEM Fuel Cell Power System Development of Back-up Fuel Cell Power System Development of Materials of PEM Fuel Cell Systems #12;

455

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Origin State, Origin State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

456

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State, Destination State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

457

Reference Buildings by Climate Zone and Representative City: 7 Duluth,  

Broader source: Energy.gov (indexed) [DOE]

7 7 Duluth, Minnesota Reference Buildings by Climate Zone and Representative City: 7 Duluth, Minnesota In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_7a_usa_mn_duluth_pre1980_v1.3_5.0.zip refbldg_7a_usa_mn_duluth_pre1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 3B Los Angeles, California Reference Buildings by Climate Zone and Representative City: 3C San Francisco, California Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois

458

WIPP Representative Selected For National Environmental Justice Advisory  

Broader source: Energy.gov (indexed) [DOE]

WIPP Representative Selected For National Environmental Justice WIPP Representative Selected For National Environmental Justice Advisory Board WIPP Representative Selected For National Environmental Justice Advisory Board March 1, 2012 - 12:00pm Addthis Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. CARLSBAD, N.M. - Organizers say no similar opportunity or conference exists in America. In April, representatives from federal and state

459

Reference Buildings by Climate Zone and Representative City: 6A  

Broader source: Energy.gov (indexed) [DOE]

A A Minneapolis, Minnesota Reference Buildings by Climate Zone and Representative City: 6A Minneapolis, Minnesota In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_6a_usa_mn_minneapolis_post1980_v1.3_5.0.zip refbldg_6a_usa_mn_minneapolis_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 7 Duluth, Minnesota Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois Reference Buildings by Climate Zone and Representative City: 5B Boulder,

460

WIPP Representative Selected For National Environmental Justice Advisory  

Broader source: Energy.gov (indexed) [DOE]

Representative Selected For National Environmental Justice Representative Selected For National Environmental Justice Advisory Board WIPP Representative Selected For National Environmental Justice Advisory Board March 1, 2012 - 12:00pm Addthis Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. CARLSBAD, N.M. - Organizers say no similar opportunity or conference exists in America. In April, representatives from federal and state

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

WIPP Representative for Cutting Travel Costs, Greenhouse WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 1, 2012 - 12:00pm Addthis Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. WASHINGTON, D.C. - A representative of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., on Tuesday received the Secretary of Energy's Appreciation Award for her efforts to improve sustainability and reduce travel costs and the number of fleet vehicles. Judy A. McLemore, who works for URS Regulatory and Environmental Services, based in Carlsbad, was honored for helping advance DOE's management and

462

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

1A Miami, Florida Reference Buildings by Climate Zone and Representative City: 1A Miami, Florida In addition to the ZIP file for each building type, you can directly view the...

463

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

B Boulder, Colorado Reference Buildings by Climate Zone and Representative City: 5B Boulder, Colorado In addition to the ZIP file for each building type, you can directly view the...

464

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

A Chicago, Illinois Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois In addition to the ZIP file for each building type, you can directly view the...

465

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

B Phoenix, Arizona Reference Buildings by Climate Zone and Representative City: 2B Phoenix, Arizona In addition to the ZIP file for each building type, you can directly view the...

466

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

7 Duluth, Minnesota Reference Buildings by Climate Zone and Representative City: 7 Duluth, Minnesota In addition to the ZIP file for each building type, you can directly view the...

467

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

A Baltimore, Maryland Reference Buildings by Climate Zone and Representative City: 4A Baltimore, Maryland In addition to the ZIP file for each building type, you can directly view...

468

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

C Seattle, Washington Reference Buildings by Climate Zone and Representative City: 4C Seattle, Washington In addition to the ZIP file for each building type, you can directly view...

469

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

A Atlanta, Georgia Reference Buildings by Climate Zone and Representative City: 3A Atlanta, Georgia In addition to the ZIP file for each building type, you can directly view the...

470

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

8 Fairbanks, Alaska Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska In addition to the ZIP file for each building type, you can directly view the...

471

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

B Las Vegas, Nevada Reference Buildings by Climate Zone and Representative City: 3B Las Vegas, Nevada In addition to the ZIP file for each building type, you can directly view the...

472

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

A Houston, Texas Reference Buildings by Climate Zone and Representative City: 2A Houston, Texas In addition to the ZIP file for each building type, you can directly view the...

473

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

B Helena, Montana Reference Buildings by Climate Zone and Representative City: 6B Helena, Montana In addition to the ZIP file for each building type, you can directly view the...

474

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

C San Francisco, California Reference Buildings by Climate Zone and Representative City: 3C San Francisco, California In addition to the ZIP file for each building type, you can...

475

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

B Los Angeles, California Reference Buildings by Climate Zone and Representative City: 3B Los Angeles, California In addition to the ZIP file for each building type, you can...

476

DOE/Advisory Board Recognize Service of Student Representatives...  

Energy Savers [EERE]

Board Recognize Service of Student Representatives April 16, 2014 - 12:58pm Addthis The Oak Ridge Site Specific Advisory Board (ORSSAB) and the U.S. Department of Energy's (DOE)...

477

August 20, 2014 meeting with DOE representatives regarding the...  

Energy Savers [EERE]

August 20, 2014 meeting with DOE representatives regarding the remand of the DOE Direct Final Rule as it relates to efficiency standards for non-weatherized gas furnaces August 20,...

478

*Official Academic Senate Representative Dean of UC Davis Extension  

E-Print Network [OSTI]

*Official Academic Senate Representative Dean of UC Davis Extension Recruitment Advisory Committee, Health Sciences, Public Policy & Business Programs, UC Davis Extension Chloe Fox Undergraduate Student, International Agricultural Development; Outreach Coordinator, Program for International Energy Technologies

Schladow, S. Geoffrey

479

Appointment of Contracting Officers and Contracting Officer Representatives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish procedures governing the selection, appointment, and termination of contracting officers and for the appointment of contracting officer representatives. Cancels DOE Order 4200.4A. Canceled by DOE O 541.1A.

1996-04-30T23:59:59.000Z

480

W&M Student Elected to Represent American Physical Society's...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W&M Student Elected to Represent American Physical Society's Graduate Student Forum V Gray Valerie Gray, a graduate student at The College of William and Mary and a researcher at...

Note: This page contains sample records for the topic "representative distributed generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A representative individual from Arrovian aggregation of parametric individual utilities  

E-Print Network [OSTI]

A representative individual from Arrovian aggregation of parametric individual utilities social choice theory Assumptions Assumption on decisive coalitions Assumptions on individual utility functions Assumptions on the social welfare function Results The socially acceptable utility function

482

2Q CY2007, Facility Representative Program Performance Indicators  

Broader source: Energy.gov (indexed) [DOE]

0,2007 0,2007 M E M 0 R A N D ; p s ' X Z FROM: M RK B. WHI DEPARTMENTAL REPRESENTATIVE TO THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD OFFICE OF HEALTH, SAFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, April - June (2nd Quarter CY2007) Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2007. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 74% Fully Qualified (last Quarter was 72%) 94% Staffing Level (last Quarter was 9 1 %)

483

Magnetocumulative generator  

DOE Patents [OSTI]

An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

Pettibone, J.S.; Wheeler, P.C.

1981-06-08T23:59:59.000Z

484

Monthly Generation System Peak (pbl/generation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Monthly Generation System Peak (GSP) This site is no longer maintained. Page last...

485

Photon generator  

DOE Patents [OSTI]

A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

Srinivasan-Rao, Triveni (Shoreham, NY)

2002-01-01T23:59:59.000Z

486

Plug and Play Distributed Power Systems for Smart-Grid Connected Building |  

Broader source: Energy.gov (indexed) [DOE]

Emerging Technologies » Plug and Play Distributed Power Systems Emerging Technologies » Plug and Play Distributed Power Systems for Smart-Grid Connected Building Plug and Play Distributed Power Systems for Smart-Grid Connected Building The U.S. Department of Energy (DOE) is currently conducting research into plug-and-play distributed power systems for smart- grid connected buildings. Project Description This project seeks to advance and demonstrate a plug-and-play building energy micro-grid concept for integrating energy storage, loads, and sources at the building level with the external utility grid. The micro-grid demonstration is expected to include the following: Diesel synchronous generator Energy storage device Otis regenerative elevator system representing building critical loads Smart interface with the utility grid

487

Generation Technologies  

E-Print Network [OSTI]

Many local governments are using green power in their facilities and providing assistance to local businesses and residents to do the same. Green power is a subset of renewable energy that is produced with no GHG emissions, typically from solar, wind, geothermal, biogas, biomass, or low-impact small hydroelectric sources, includes three types of products: utility products (i.e., green power purchased from the utility through the electricity grid), renewable energy certificates (RECs), and on-site generation. Opportunities to purchase these products are increasing significantly, with annual green power market growth rates

Green Power

2005-01-01T23:59:59.000Z

488

Examination of Hydrate Formation Methods: Trying to Create Representative Samples  

SciTech Connect (OSTI)

Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlled conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas is placed in a sample, then the sample is flooded with water and cooled [Priest et al., 2009]. We have performed a number of tests in which hydrate was formed and the uniformity of the hydrate formation was examined. These tests have primarily used a variety of modifications of the excess gas method to make the hydrate, although we have also used a version of the excess water technique. Early on, we found difficulties in creating uniform samples with a particular sand/ initial water saturation combination (F-110 Sand, {approx} 35% initial water saturation). In many of our tests we selected this combination intentionally to determine whether we could use a method to make the samples uniform. The following methods were examined: Excess gas, Freeze/thaw/form, Freeze/pressurize/thaw, Excess gas followed by water saturation, Excess water, Sand and kaolinite, Use of a nucleation enhancer (SnoMax), and Use of salt in the water. Below, each method, the underlying hypothesis, and our results are briefly presented, followed by a brief conclusion. Many of the hypotheses investigated are not our own, but were presented to us. Much of the data presented is from x-ray CT scanning our samples. The x-ray CT scanner provides a three-dimensional density map of our samples. From this map and the physics that is occurring in our samples, we are able to gain an understanding of the spatial nature of the processes that occur, and attribute them to the locations where they occur.

Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.; Kwon, T.-H.

2011-04-01T23:59:59.000Z

489

Handbook of LHC Higgs Cross Sections: 2. Differential Distributions  

E-Print Network [OSTI]

This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) focuses on predictions (central values and errors) for total Higgs production cross sections and Higgs branching ratios in the Standard Model and its minimal supersymmetric extension, covering also related issues such as Monte Carlo generators, parton distribution functions, and pseudo-observables. This second Report represents the next natural step towards realistic predictions upon providing results on cross sections with benchmark cuts, differential distributions, details of specific decay channels, and further recent developments.

Dittmaier, S; Passarino, G; Tanaka, R; Alekhin, S; Alwall, J; Bagnaschi, E A; Banfi, A; Blumlein, J; Bolognesi, S; Chanon, N; Cheng, T; Cieri, L; Cooper-Sarkar, A M; Cutajar, M; Dawson, S; Davies, G; De Filippis, N; Degrassi, G; Denner, A; D'Enterria, D; Diglio, S; Di Micco, B; Di Nardo, R; Ellis, R K; Farilla, A; Farrington, S; Felcini, M; Ferrera, G; Flechl, M; de Florian, D; Forte, S; Ganjour, S; Garzelli, M V; Gascon-Shotkin, S; Glazov, S; Goria, S; Grazzini, M; Guillet, J -Ph; Hackstein, C; Hamilton, K; Harlander, R; Hauru, M; Heinemeyer, S; Hoche, S; Huston, J; Jackson, C; Jimenez-Delgado, P; Jorgensen, M D; Kado, M; Kallweit, S; Kardos, A; Kauer, N; Kim, H; Kovac, M; Kramer, M; Krauss, F; Kuo, C -M; Lehti, S; Li, Q; Lorenzo, N; Maltoni, F; Mellado, B; Moch, S O; Muck, A; Muhlleitner, M; Nadolsky, P; Nason, P; Neu, C; Nikitenko, A; Oleari, C; Olsen, J; Palmer, S; Paganis, S; Papadopoulos, C G; Petersen, T C; Petriello, F; Petrucci, F; Piacquadio, G; Pilon, E; Potter, C T; Price, J; Puljak, I; Quayle, W; Radescu, V; Rebuzzi, D; Reina, L; Rojo, J; Rosco, D; Salam, G P; Sapronov, A; Schaarschmidt, J; Schonherr, M; Schumacher, M; Siegert, F; Slavich, P; Spira, M; Stewart, I W; Stirling, W J; Stockli, F; Sturm, C; Tackmann, F J; Thorne, R S; Tommasini, D; Torrielli, P; Tramontano, F; Trocsanyi, Z; Ubiali, M; Uccirati, S; Acosta, M Vazquez; Vickey, T; Vicini, A; Waalewijn, W J; Wackeroth, D; Warsinsky, M; Weber, M; Wiesemann, M; Weiglein, G; Yu, J; Zanderighi, G

2012-01-01T23:59:59.000Z

490

Handbook of LHC Higgs Cross Sections: 2. Differential Distributions  

E-Print Network [OSTI]

This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) focuses on predictions (central values and errors) for total Higgs production cross sections and Higgs branching ratios in the Standard Model and its minimal supersymmetric extension, covering also related issues such as Monte Carlo generators, parton distribution functions, and pseudo-observables. This second Report represents the next natural step towards realistic predictions upon providing results on cross sections with benchmark cuts, differential distributions, details of specific decay channels, and further recent developments.

LHC Higgs Cross Section Working Group; S. Dittmaier; C. Mariotti; G. Passarino; R. Tanaka; S. Alekhin; J. Alwall; E. A. Bagnaschi; A. Banfi; J. Blumlein; S. Bolognesi; N. Chanon; T. Cheng; L. Cieri; A. M. Cooper-Sarkar; M. Cutajar; S. Dawson; G. Davies; N. De Filippis; G. Degrassi; A. Denner; D. D'Enterria; S. Diglio; B. Di Micco; R. Di Nardo; R. K. Ellis; A. Farilla; S. Farrington; M. Felcini; G. Ferrera; M. Flechl; D. de Florian; S. Forte; S. Ganjour; M. V. Garzelli; S. Gascon-Shotkin; S. Glazov; S. Goria; M. Grazzini; J. -Ph. Guillet; C. Hackstein; K. Hamilton; R. Harlander; M. Hauru; S. Heinemeyer; S. Hoche; J. Huston; C. Jackson; P. Jimenez-Delgado; M. D. Jorgensen; M. Kado; S. Kallweit; A. Kardos; N. Kauer; H. Kim; M. Kovac; M. Kramer; F. Krauss; C. -M. Kuo; S. Lehti; Q. Li; N. Lorenzo; F. Maltoni; B. Mellado; S. O. Moch; A. Muck; M. Muhlleitner; P. Nadolsky; P. Nason; C. Neu; A. Nikitenko; C. Oleari; J. Olsen; S. Palmer; S. Paganis; C. G. Papadopoulos; T . C. Petersen; F. Petriello; F. Petrucci; G. Piacquadio; E. Pilon; C. T. Potter; J. Price; I. Puljak; W. Quayle; V. Radescu; D. Rebuzzi; L. Reina; J. Rojo; D. Rosco; G. P. Salam; A. Sapronov; J. Schaarschmidt; M. Schonherr; M. Schumacher; F. Siegert; P. Slavich; M. Spira; I. W. Stewart; W. J. Stirling; F. Stockli; C. Sturm; F. J. Tackmann; R. S. Thorne; D. Tommasini; P. Torrielli; F. Tramontano; Z. Trocsanyi; M. Ubiali; S. Uccirati; M. Vazquez Acosta; T. Vickey; A. Vicini; W. J. Waalewijn; D. Wackeroth; M. Warsinsky; M. Weber; M. Wiesemann; G. Weiglein; J. Yu; G. Zanderighi

2012-01-15T23:59:59.000Z

491

distribution | OpenEI  

Open Energy Info (EERE)

distribution distribution Dataset Summary Description This dataset represents a historical repository of all the numerical data from the smartgrid.gov website condensed into spreadsheets to enable analysis of the data. Below are a couple of things worth noting: Source Smartgrid.gov Date Released March 04th, 2013 (11 months ago) Date Updated March 04th, 2013 (11 months ago) Keywords AMI costs distribution smart grid transmission Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 4Q12 (xlsx, 112.1 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 3Q12 (xlsx, 107.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 2Q12 (xlsx, 111.9 KiB)

492

Magnetocumulative generator  

DOE Patents [OSTI]

An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

Pettibone, Joseph S. (Livermore, CA); Wheeler, Paul C. (Livermore, CA)

1983-01-01T23:59:59.000Z

493

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Broader source: Energy.gov (indexed) [DOE]

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 - 12:19pm Addthis Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE’s vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were reduced by greater than 60 percent. Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE's vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were

494

DOE Order Self Study Modules - DOE STD 1063, Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

63-2011 63-2011 FACILITY REPRESENTATIVES DOE-STD-1063-2011 Familiar Level August 2011 1 DOE-STD-1063-2011 FACILITY REPRESENTATIVES FAMILIAR LEVEL OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to answer the following questions: 1. What are the purpose and scope of DOE-STD-1063-2011? 2. What are the definitions of the terms listed in section 3 of DOE-STD-1063-2011? 3. What are the duties, responsibilities, and authorities of facility representatives (FRs) and other key personnel? 4. What are the requirements of the FR program? 5. What are the Department of Energy (DOE)-wide FR performance indicators (PIs)? 6. How are DOE-wide FR PIs calculated? 7. What are the FR program objectives that should be measured by an FR program