Powered by Deep Web Technologies
Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Analysis of Field Development Strategies of CO2 EOR/Capture Projects Using a Reservoir Simulation Economic Model  

E-Print Network (OSTI)

A model for the evaluation of CO2-EOR projects has been developed. This model includes both reservoir simulation to handle reservoir properties, fluid flow and injection and production schedules, and a numerical economic model that generates a monthly cash flow stream from the outputs of the reservoir model. This model is general enough to be used with any project and provide a solid common basis to all of them. This model was used to evaluate CO2-EOR injection and production strategies and develop an optimization workflow. Producer constraints (maximum oil and gas production rates) should be optimized first to generate a reference case. Further improvements can then be obtained by optimizing the injection starting date and the injection plateau rate. Investigation of sensitivity of CO2-EOR to the presence of an aquifer showed that CO2 injection can limit water influx in the reservoir and is beneficial to recovery, even with a strong water drive. The influence of some key parameters was evaluated: the producer should be completed in the top part of the reservoir, while the injector should be completed over the entire thickness; it is recommended but not mandatory that the injection should start as early as possible to allow for lower water cut limit. Finally, the sensitivity of the economics of the projects to some key parameters was evaluated. The most influent parameter is by far the oil price, but other parameters such as the CO2 source to field distance, the pipeline cost scenario, the CO2 source type or the CO2 market price have roughly the same influence. It is therefore possible to offset an increase of one of them by reducing another.

Saint-Felix, Martin

2013-05-01T23:59:59.000Z

2

Well Models for Mimetic Finite Difference Methods and Improved Representation of Wells inMultiscale Methods.  

E-Print Network (OSTI)

??In reservoir simulation, the modeling and the representation of wells are critical factors. The standard approach for well modeling is to couple the well to… (more)

Ligaarden, Ingeborg Skjelkvåle

2008-01-01T23:59:59.000Z

3

Reservoir management using streamline simulation  

E-Print Network (OSTI)

Geostatistical techniques can generate fine-scale description of reservoir properties that honor a variety of available data. The differences among multiple geostatistical realizations indicate the presence of uncertainty due to the lack of information and sparsity of data. Quantifying this uncertainty in terms of reservoir performance forecast poses a major reservoir management challenge. One solution to this problem is flow simulation of a large number of these plausible reservoir descriptions. However, this approach is not feasible in practice because of the computational costs associated with multiple detailed flow simulations. Other major reservoir management challenges include the determination of the swept and unswept areas at a particular time of interest in the life of a reservoir. Until now, sweep efficiency correlations have generally been limited to homogeneous 2-D cases. Calculating volumetric sweep efficiency in a 3-D heterogeneous reservoir is difficult due to the inherent complexity of multiple layers and arbitrary well configurations. Identifying the swept and unswept areas is primarily important for making a decision on the infill locations. Most of the mature reservoirs all over the world are under waterflood. Managing a waterflood requires an understanding of how injection wells displace oil to producing wells. By quantifying the fluid movements, the displacement process can be actively managed. Areas that are not being swept can be developed, and inefficiencies, such as water cycling, can be removed. Conventional simulation provides general answers to almost all of these problems, however time constraint prohibits using a detailed model to capture complexities for each well. Three dimensional streamline simulation can meet most of these reservoir management challenges. Moreover use of fast streamline-based simulation technique offers significant potential in terms of computational efficiency. Its high performance simulation speed makes it well suited for describing flow characteristics for high resolution reservoir models and can be used on a routine basis to make effective and efficient reservoir management decisions. In this research, we extend the capability of streamline simulation as an efficient tool for reservoir management purposes. We show its application in terms of swept volume calculations, ranking of stochastic reservoir models, pattern rate allocation and reservoir performance forecasting under uncertainty.

Choudhary, Manoj Kumar

2000-01-01T23:59:59.000Z

4

Data Capture Form Data capture form  

E-Print Network (OSTI)

Data Capture Form Data capture form Please make use of the data capture form relevant not on the common lists. The data capture form must be printed and used in the field during the census to capture all the data during the BCW. All data captured onto this form must please be submitted by the team

de Villiers, Marienne

5

The lifetime of carbon capture and storage as a climate-change mitigation technology  

E-Print Network (OSTI)

In carbon capture and storage (CCS), CO[subscript 2] is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued ...

Szulczewski, Michael Lawrence

6

EPACT Representation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2005 June 2005 EPACT REPRESENTATION FOR COVERED AWARDS OVER $100,000 Section 2306 of the Energy Policy Act of 1992, as implemented in 10 CFR, Subpart F, establishes eligibility requirements for companies to participate in certain financial assistance programs covered under Titles XX through XXIII of the EPACT. For this purpose, "company" means any business entity other than an organization of the type described in section 501(c)(3) of the Internal Revenue Code of 1954 [26 U.S.C. Section 501(c)(3)]. In order for the Department of Energy (DOE) to make an award to a company under a covered program, DOE must determine that the company's participation will be in the economic interest of the United States and, if the company is not a United States-owned

7

Improved energy recovery from geothermal reservoirs  

DOE Green Energy (OSTI)

Numerical simulation methods are used to study how the exploitation of different horizons affects the behavior of a liquid-dominated geothermal reservoir. The reservoir model is a schematic representation of the Olkaria field in Kenya. The model consists of a two-phase vapor-dominated zone overlying the main liquid dominated reservoir. Four different cases were studied, with fluid produced from: 1) the vapor zone only, 2) the liquid zone only, 3) both zones and 4) both zones, but assuming lower values for vertical permeability and porosity. The results indicate that production from the shallow two-phase zone, although resulting in higher enthalpy fluids, may not be advantageous in the long run. Shallow production gives rise to a rather localized depletion of the reservoir, whereas production from deeper horizons may yield a more uniform depletion proces, if vertical permeability is sufficiently large.

Boedvarsson, G.S.; Pruess, K.; Lippmann, M.; Bjoernsson, S.

1981-06-01T23:59:59.000Z

8

A structurally complex and dynamic reservoir description for reservoir simulation, Kuparuk River Field, Alaska  

SciTech Connect

The Kupanuk River Field is a structurally complex giant oil field adjacent to the Prudhoe Bay Field on Alaska`s North Slope. Oil is reservoired within two Early Cretaceous shallow marine sandstone formations, separated stratigraphically by an erosionally truncated marine silt/shale. Subjected to several phases of tectonism, this highly compartmentalized reservoir has been developed on regular 160 acre direct line drive patterns. An integrated team of geoscientists and engineers from BP Exploration (Alaska) Inc. and ARCO Alaska Inc. is presently quantifying the benefits of infill drilling at Kuparuk, and identifying the best locations for well placement. The two primary reservoir characteristics believed to impact the effectiveness of infill drilling are large-scale reservoir heterogeneity, and reservoir comparmentation due to faulting. Multiple thin pay zones within the two reservoir intervals are isolated laterally by faults with magnitudes greater than pay zone thickness. A process and tools designed to construct and maintain a structurally complex reservoir description, shared by the geoscientists and reservoir engineers, are described. Cross-discipline integration is aided by the use of Tech*Logic`s IREX 3-D reservoir modeling and visualization application. The unique architecture of the IREX model allows for representation of very complex structural geometries, and facilitates iteration between reservoir description and simulation, along the seismic to simulation continuum. Modifications to the reservoir description are guided by well-level history matching within the constraints of all available geoscience information. The techniques described will be of particular interest to those working on reservoir description and simulation of structurally complex fields.

Walsh, T.P. [Alaska Petrotechnical Services Inc., Anchorage, AK (United States); Leander, M.H.; Wilcox, T.C. [BP Exploration (Alaska) Inc., Anchorage, AK (United States)] [and others

1995-08-01T23:59:59.000Z

9

Applications and misapplications of the channel-capture formalism of direct neutron capture  

Science Conference Proceedings (OSTI)

We discuss the channel-capture approximation of slow neutron direct-capture theory. We show that this approximation gives a generally good representation of the neutron capture cross sections for several electric dipole transitions in a broad range of nuclides from A = 9 to A = 136; these are mostly near-spherical nuclei. Despite this body of agreement, we examine the accuracy we can expect from the simple channel-capture theory. Comparison with calculations of the potential-capture cross section from physically more realistic optical model calculations show that, in general, the channel-capture cross section can be up to approx. =40% in error. In cases where the expected channel-capture cross section is much smaller than the ''hard-sphere'' capture cross-section estimate, the disagreement with potential capture can be much worse than this. Also, in these cases, compound-nucleus capture can be of comparable or greater magnitude. These effects have been shown to completely undermine recent attempts to determine nuclear interaction radii for targets, such as /sup 12/C and /sup 9/Be, by application of the channel-capture formula to capture cross-section data. 20 refs.

Raman, S.; Lynn, J.E.

1985-01-01T23:59:59.000Z

10

Feasibility of air capture  

E-Print Network (OSTI)

Capturing CO2 from air, referred to as Air Capture, is being proposed as a viable climate change mitigation technology. The two major benefits of air capture, reported in literature, are that it allows us to reduce the ...

Ranjan, Manya

2010-01-01T23:59:59.000Z

11

Carbon Capture & Sequestration  

Energy.gov (U.S. Department of Energy (DOE))

Learn about the Energy Department's work to capture and transport CO2 into underground geologic formations, also known as carbon capture and sequestration.

12

Status of Norris Reservoir  

DOE Green Energy (OSTI)

This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Norris Reservoir summarizes reservoir and watershed characteristics, reservoir uses, conditions that impair reservoir uses, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most up-to-date publications and data available, and from interviews with water resource professionals in various federal, state, and local agencies, and in public and private water supply and wastewater treatment facilities. 14 refs., 3 figs.

Not Available

1990-09-01T23:59:59.000Z

13

Status of Wheeler Reservoir  

DOE Green Energy (OSTI)

This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

Not Available

1990-09-01T23:59:59.000Z

14

Status of Cherokee Reservoir  

DOE Green Energy (OSTI)

This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

Not Available

1990-08-01T23:59:59.000Z

15

Hydrothermal Reservoirs | Open Energy Information  

Open Energy Info (EERE)

Hydrothermal Reservoirs Hydrothermal Reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hydrothermal Reservoirs Dictionary.png Hydrothermal Reservoir: Hydrothermal Reservoirs are underground zones of porous rock containing hot water and steam, and can be naturally occurring or human-made. Other definitions:Wikipedia Reegle Natural, shallow hydrothermal reservoirs naturally occurring hot water reservoirs, typically found at depths of less than 5 km below the Earth's surface where there is heat, water and a permeable material (permeability in rock formations results from fractures, joints, pores, etc.). Often, hydrothermal reservoirs have an overlying layer that bounds the reservoir and also serves as a thermal insulator, allowing greater heat retention. If hydrothermal reservoirs

16

Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project  

Science Conference Proceedings (OSTI)

The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

Deanna Gilliland; Matthew Usher

2011-12-31T23:59:59.000Z

17

Geothermal reservoir technology  

DOE Green Energy (OSTI)

A status report on Lawrence Berkeley Laboratory's Reservoir Technology projects under DOE's Hydrothermal Research Subprogram is presented. During FY 1985 significant accomplishments were made in developing and evaluating methods for (1) describing geothermal systems and processes; (2) predicting reservoir changes; (3) mapping faults and fractures; and (4) field data analysis. In addition, LBL assisted DOE in establishing the research needs of the geothermal industry in the area of Reservoir Technology. 15 refs., 5 figs.

Lippmann, M.J.

1985-09-01T23:59:59.000Z

18

Geothermal Reservoir Dynamics - TOUGHREACT  

E-Print Network (OSTI)

Swelling in a Fractured Geothermal Reservoir, presented atTHC) Modeling Based on Geothermal Field Data, Geothermics,and Silica Scaling in Geothermal Production-Injection Wells

2005-01-01T23:59:59.000Z

19

NETL: Carbon Capture FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

How is CO2 captured? How is CO2 captured? Chilled Ammonia CO2 Capture Process Facility at American Electric Power's (AEP) Mountaineer Plant Chilled Ammonia CO2 Capture Process Facility at American Electric Power's (AEP) Mountaineer Plant Carbon dioxide (CO2) capture involves separating CO2 from other gases generated by industrial processes or burning fossil fuels. CO2 capture can remove as much as 95% of the CO2 from these processes. There are two major types of anthropogenic CO2 sources: mobile and stationary. Mobile sources include things like cars, trucks, trains, boats, and aircrafts that burn fossil fuels and generate CO2. Capturing CO2 from mobile sources is currently impractical. Stationary sources include power plants and industrial facilities that burn fossil fuels, as

20

Cryogenic Carbon Capture  

SciTech Connect

IMPACCT Project: SES is developing a process to capture CO2 from the exhaust gas of coal-fired power plants by desublimation - the conversion of a gas to a solid. Capturing CO2 as a solid and delivering it as a liquid avoids the large energy cost of CO2 gas compression. SES’ capture technology facilitates the prudent use of available energy resources. Coal is our most abundant energy resource and is an excellent fuel for baseline power production. SES capture technology can capture 99% of the CO2 emissions in addition to a wide range of other pollutants more efficiently and at lower costs than existing capture technologies. SES’ capture technology can be readily added to our existing energy infrastructure.

None

2010-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Third workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The Third Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 14, 1977, with 104 attendees from six nations. In keeping with the recommendations expressed by the participants at the Second Workshop, the format of the Workshop was retained, with three days of technical sessions devoted to reservoir physics, well and reservoir testing, field development, and mathematical modeling of geothermal reservoirs. The program presented 33 technical papers, summaries of which are included in these Proceedings. Although the format of the Workshop has remained constant, it is clear from a perusal of the Table of Contents that considerable advances have occurred in all phases of geothermal reservoir engineering over the past three years. Greater understanding of reservoir physics and mathematical representations of vapor-dominated and liquid-dominated reservoirs are evident; new techniques for their analysis are being developed, and significant field data from a number of newer reservoirs are analyzed. The objectives of these workshops have been to bring together researchers active in the various physical and mathematical disciplines comprising the field of geothermal reservoir engineering, to give the participants a forum for review of progress and exchange of new ideas in this rapidly developing field, and to summarize the effective state of the art of geothermal reservoir engineering in a form readily useful to the many government and private agencies involved in the development of geothermal energy. To these objectives, the Third Workshop and these Proceedings have been successfully directed. Several important events in this field have occurred since the Second Workshop in December 1976. The first among these was the incorporation of the Energy Research and Development Administration (ERDA) into the newly formed Department of Energy (DOE) which continues as the leading Federal agency in geothermal reservoir engineering research. The Third Workshop under the Stanford Geothermal Program was supported by a grant from DOE through a subcontract with the Lawrence Berkeley Laboratory of the University of California. A second significant event was the first conference under the ERDA (DOE)-ENEL cooperative program where many of the results of well testing in both nations were discussed. The Proceedings of that conference should be an important contribution to the literature. These Proceedings of the Third Workshop should also make an important contribution to the literature on geothermal reservoir engineering. Much of the data presented at the Workshop were given for the first time, and full technical papers on these subjects will appear in the professional journals. The results of these studies will assist markedly in developing the research programs to be supported by the Federal agencies, and in reducing the costs of research for individual developers and utilities. It is expected that future workshops of the Stanford Geothermal Program will be as successful as this third one. Planning and execution of the Workshop... [see file; ljd, 10/3/2005] The Program Committee recommended two novel sessions for the Third Workshop, both of which were included in the program. The first was the three overviews given at the Workshop by George Pinder (Princeton) on the Academic aspect, James Bresee (DOE-DGE) on the Government aspect, and Charles Morris (Phillips Petroleum) on the Industry aspect. These constituted the invited slate of presentations from the several sectors of the geothermal community. The Program Committee acknowledges their contributions with gratitude. Recognition of the importance of reservoir assurance in opting for geothermal resources as an alternate energy source for electric energy generation resulted in a Panel Session on Various Definitions of Geothermal Reservoirs. Special acknowledgments are offered to Jack Howard and Werner Schwarz (LBL) and to Jack Howard as moderator; to the panelists: James Leigh (Lloyd's Bank of California), Stephen Lipman (Union Oil), Mark Mathisen (PG&E), Patrick M

Ramey, H.J. Jr.; Kruger, P. (eds.)

1977-12-15T23:59:59.000Z

22

Geysers reservoir studies  

DOE Green Energy (OSTI)

LBL is conducting several research projects related to issues of interest to The Geysers operators, including those that deal with understanding the nature of vapor-dominated systems, measuring or inferring reservoir processes and parameters, and studying the effects of liquid injection. All of these topics are directly or indirectly relevant to the development of reservoir strategies aimed at stabilizing or increasing production rates of non-corrosive steam, low in non-condensable gases. Only reservoir engineering studies will be described here, since microearthquake and geochemical projects carried out by LBL or its contractors are discussed in accompanying papers. Three reservoir engineering studies will be described in some detail, that is: (a) Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs; (b) Numerical modeling studies of Geysers injection experiments; and (c) Development of a dual-porosity model to calculate mass flow between rock matrix blocks and neighboring fractures.

Bodvarsson, G.S.; Lippmann, M.J.; Pruess, K.

1993-04-01T23:59:59.000Z

23

Glossary Term - Electron Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Electron Previous Term (Electron) Glossary Main Index Next Term (Electron Volt (eV)) Electron Volt (eV) Electron Capture After electron capture, an atom contains one less proton and one more neutron. Electron capture is one process that unstable atoms can use to become more stable. During electron capture, an electron in an atom's inner shell is drawn into the nucleus where it combines with a proton, forming a neutron and a neutrino. The neutrino is ejected from the atom's nucleus. Since an atom loses a proton during electron capture, it changes from one element to another. For example, after undergoing electron capture, an atom of carbon (with 6 protons) becomes an atom of boron (with 5 protons). Although the numbers of protons and neutrons in an atom's nucleus change

24

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage News Carbon Capture and Storage News FE Carbon Capture and Storage News RSS June 9, 2010 Award-Winning DOE Technology Scores Success in Carbon Storage Project The ability to detect and track the movement of carbon dioxide in underground geologic storage reservoirs -- an important component of carbon capture and storage technology -- has been successfully demonstrated at a U.S. Department of Energy New Mexico test site. April 20, 2010 Research Experience in Carbon Sequestration 2010 Now Accepting Applications Students and early career professionals can gain hands-on experience in areas related to carbon capture and storage by participating in the Research Experience in Carbon Sequestration program. March 15, 2010 Illinois CO2 Injection Project Moves Another Step Forward

25

Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report  

SciTech Connect

This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

Kelkar, M.

1995-02-01T23:59:59.000Z

26

Rationality without representation  

E-Print Network (OSTI)

This dissertation is about whether and how non-representational attitudes could play a role in our theories of rationality. In Chapter 1 ('Negation, expressivism, and intentionality') I argue that the best explanation for ...

Pérez Carballo, Alejandro

2011-01-01T23:59:59.000Z

27

Reservoir Protection (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

The Oklahoma Water Resource Board has the authority to make rules for the control of sanitation on all property located within any reservoir or drainage basin. The Board works with the Department...

28

Geology and Reservoir Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Service: 1-800-553-7681 Geology and Reservoir Simulation Background Natural gas from shale is becoming ever more recognized as an abundant and economically viable fuel in the...

29

Session: Reservoir Technology  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

1992-01-01T23:59:59.000Z

30

Full-field simulation for development planning and reservoir management at Kuparuk River field  

SciTech Connect

The Kuparuk River oil field on the Alaskan North Slope produces from two stratigraphically independent sands of the Kuparuk River formation. A full-field reservoir model was constructed to support field management and development planning. The model captures essential aspects of two independent producing horizons, hydraulically coupled at the wellbores, and simulates dynamic interactions between the reservoir stands and surface facilities. This paper reports that the field model is used to plan field development on the basis of performance ranking of drillsite expansions, to assess depletion performance effects of reservoir management strategies, and to evaluate alternative depletion processes and associated reservoir and facility interactions of field projects.

Starley, G.P.; Masino, W.H. Jr.; Weiss, J.L.; Bolling, J.D. (Arco Alaska Inc. (US))

1991-08-01T23:59:59.000Z

31

IMPACCT: Carbon Capture Technology  

Science Conference Proceedings (OSTI)

IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

None

2012-01-01T23:59:59.000Z

32

Capture.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Barriers for Carbon Capture, Storage and Sequestration Barriers for Carbon Capture, Storage and Sequestration Sarah M. Forbes, National Energy Technology Laboratory November, 2002 The success of carbon capture, storage and sequestration as a greenhouse gas mitigation strategy will be, in part, dependent on the regulatory framework used to govern its implementation. Creating a science-based regulatory framework that is designed with enough flexibility to encourage greenhouse gas offset activity, effective means of measuring the costs of taking action to reduce greenhouse gas emissions, and ample protection for human and ecosystem health may prove challenging. For the purposes of this paper we will assume that there is an existing incentive to capture, store and sequester carbon and focus on how to regulate the process. Accounting practices and

33

NETL: Carbon Capture FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

(table below). These include four natural gas processing operations and a synthesis gas (syngas) production facility in which more than 1 million tons of CO2 are captured per...

34

Capturing Undocumented Expert Knowledge  

Science Conference Proceedings (OSTI)

Public Service Electric and Gas Company (PSEG) faces the retirements of skilled, productive experts in the areas of asset management system protection engineering and pipe-type cable design and operations. The project team used the Electric Power Research Institute (EPRI) guidelines and methods, described in the EPRI report Capturing and Using High-Value Undocumented Knowledge in the Nuclear Industry: Guidelines and Methods (1002896) to capture and retain the tacit knowledge held by these key experts. Th...

2005-08-31T23:59:59.000Z

35

Umbra's system representation.  

SciTech Connect

This document describes the Umbra System representation. Umbra System representation, initially developed in the spring of 2003, is implemented in Incr/Tcl using concepts borrowed from Carnegie Mellon University's Architecture Description Language (ADL) called Acme. In the spring of 2004 through January 2005, System was converted to Umbra 4, extended slightly, and adopted as the underlying software system for a variety of Umbra applications that support Complex Systems Engineering (CSE) and Complex Adaptive Systems Engineering (CASE). System is now a standard part Of Umbra 4. While Umbra 4 also includes an XML parser for System, the XML parser and Schema are not described in this document.

McDonald, Michael James

2005-07-01T23:59:59.000Z

36

GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79  

E-Print Network (OSTI)

that well blocks must geothermal reservoir s·tudies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

Pruess, Karsten

2012-01-01T23:59:59.000Z

37

Carbon Capture Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Lawrence Berkeley National Laboratory Research Institute of Innovative Energy Carbon Capture Research and Development Carbon capture and storage from fossil-based power...

38

Real natural gas reservoir data Vs. natural gas reservoir models  

Science Conference Proceedings (OSTI)

The gas reservoir per se model is an exceedingly simple model of a natural gas reservoir designed to develop the physical relationship between ultimate recovery and rate(s) of withdrawal for production regulation policy assessment. To be responsive, ...

Ellis A. Monash; John Lohrenz

1979-03-01T23:59:59.000Z

39

Understanding reservoir mechanisms using phase and component streamline tracing  

E-Print Network (OSTI)

Conventionally streamlines are traced using total flux across the grid cell faces. The visualization of total flux streamlines shows the movement of flood, injector-producer relationship, swept area and movement of tracer. But they fail to capture some important signatures of reservoir dynamics, such as dominant phase in flow, appearance and disappearance of phases (e.g. gas), and flow of components like CO2. In the work being presented, we demonstrate the benefits of visualizing phase and component streamlines which are traced using phase and component fluxes respectively. Although the phase and component streamlines are not appropriate for simulation, as they might be discontinuous, they definitely have a lot of useful information about the reservoir processes and recovery mechanisms. In this research, phase and component streamline tracing has been successfully implemented in three-phase and compositional simulation and the additional information obtained using these streamlines have been explored. The power and utility of the phase and component streamlines have been demonstrated using synthetic examples and two field cases. The new formulation of streamline tracing provides additional information about the reservoir drive mechanisms. The phase streamlines capture the dominant phase in flow in different parts of the reservoir and the area swept corresponding to different phases can be identified. Based on these streamlines the appearance and disappearance of phases can be identified. Also these streamlines can be used for optimizing the field recovery processes like water injection and location of infill wells. Using component streamlines the movement of components like CO2 can be traced, so they can be used for optimizing tertiary recovery mechanisms and tracking of tracers. They can also be used to trace CO2 in CO2 sequestration project where the CO2 injection is for long term storage in aquifers or reservoirs. They have also other potential uses towards study of reservoir processes and behavior such as drainage area mapping for different phases, phase rate allocations to reservoir layers, etc.

Kumar, Sarwesh

2008-08-01T23:59:59.000Z

40

Comparative Evaluation of Generalized River/Reservoir System Models  

E-Print Network (OSTI)

This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer modeling systems that simulate the storage, flow, and diversion of water in a system of reservoirs and river reaches. Generalized means that a computer modeling system is designed for application to a range of concerns dealing with river basin systems of various configurations and locations, rather than being site-specific customized to a particular system. User-oriented implies the modeling system is designed for use by professional practitioners (model-users) other than the original model developers and is thoroughly tested and well documented. User-oriented generalized modeling systems should be convenient to obtain, understand, and use and should work correctly, completely, and efficiently. Modeling applications often involve a system of several simulation models, utility software products, and databases used in combination. A reservoir/river system model is itself a modeling system, which often serves as a component of a larger modeling system that may include watershed hydrology and river hydraulics models, water quality models, databases and various software tools for managing time series, spatial, and other types of data. Reservoir/river system models are based on volume-balance accounting procedures for tracking the movement of water through a system of reservoirs and river reaches. The model computes reservoir storage contents, evaporation, water supply withdrawals, hydroelectric energy generation, and river flows for specified system operating rules and input sequences of stream inflows and net evaporation rates. The hydrologic period-of-analysis and computational time step may vary greatly depending on the application. Storage and flow hydrograph ordinates for a flood event occurring over a few days may be determined at intervals of an hour or less. Water supply capabilities may be modeled with a monthly time step and several decade long period-of-analysis capturing the full range of fluctuating wet and dry periods including extended drought. Stream inflows are usually generated outside of the reservoir/river system model and provided as input to the model. However, reservoir/river system models may also include capabilities for modeling watershed precipitation-runoff processes to generate inflows to the river/reservoir system. Some reservoir/river system models simulate water quality constituents along with water quantities. Some models include features for economic evaluation of system performance based on cost and benefit functions expressed as a function of flow and storage.

Wurbs, Ralph A.

2005-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Challenge of carbon capture  

SciTech Connect

Finding more-effective, less-expensive ways to capture the CO{sub 2} produced by coal-fired power plants could significantly lower the cost of reducing emissions while preserving coal as a vital energy resource. Several technological approaches have been proposed, but all options currently available would, indeed, impose substantial costs and impact plant efficiencies. Ongoing research promises to provide a suite of improved technologies that will give plant owners viable options to meet their specific needs. The article discusses the options for CO{sub 2} capture by precombustion based on IGCC systems, post combustion, or oxyfuel combustion. EPRI's work to develop a process to capture CO{sub 2} using chilled ammonia (rather than the more usual MEA) as a solvent is described. A 5 MW pilot plant is to be built at the We Energies Pleasant Prairie Power Plant. Other research programs (in Europe and Australia) are also mentioned. Deployment of a new generation of ultrasuperciritcal pulverized coal power plants designed to have greater efficiency and hence lower CO{sub 2} emissions is under development. Efforts to improve precombustion capture are reported in the article. Also noted are two recent studies (one by the IEA Greenhouse Gas R & D Programme and another by CPS Energy) comparing the performance of IGCC and supercritical PC plants incorporating CO{sub 2} capture. 3 figs., 3 photos.

Douglas, J.

2007-04-01T23:59:59.000Z

42

CAPTURE DOCUMENT ORAUTEAM  

Office of Legacy Management (LM)

DATA DATA CAPTURE DOCUMENT ORAUTEAM ---- Dose Reconstruction ~v~:7 DISCOVERY AND REVIEW dA'~ Project for NIOSH The attached document may contain Privacy Act data. This information is protected by the Privacy Act, 5 U.S.C. §552a; disclosure to any third party without written consent of the individual to whom the information pertains is strictly prohibited. Data Capture Team or Other ORAU Team Member Capturing Data: Complete all information that applies to the data/document being submitted lor uploading to the Site Research Database (SRDB), attach this lonm to the lront olthe document, and send to: ORAU Team, Attention: SRDB Uploading, 4850 Smith Rd., Suite 200, Cincinnati, Ohio 45212. I ~ -!-R"e"guestor and Reviewer 1. Data Requestor: RSET Group 2. Reviewer Name (if different from Requestor): Don Morris 3. Target Data: Document Specified by Requestor Any relevant

43

Reinjection into geothermal reservoirs  

DOE Green Energy (OSTI)

Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

Bodvarsson, G.S.; Stefansson, V.

1987-08-01T23:59:59.000Z

44

Adiabatic capture and debunching  

Science Conference Proceedings (OSTI)

In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of {approx} {+-}22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than {approx} 3.46 eVs. The incoming booster bunches have total emittance {approx} 8.4 eVs, or each one with an emittance {approx} 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.

Ng, K.Y.; /Fermilab

2012-03-01T23:59:59.000Z

45

Semantic knowledge representation and analysis  

E-Print Network (OSTI)

Natural language is the means through which humans convey meaning to each other - each word or phrase is a label, or name, for an internal representation of a concept. This internal representation is built up from repeated ...

Kachintseva, Dina (Dina D.)

2011-01-01T23:59:59.000Z

46

Gauge theory and group representations  

SciTech Connect

The mathematical foundations of gauge theories based on indecomposable representations of space-time symmetry groups are investigated. In particular, twistors and singletons are given a uniform treatment as gauge theories of this type. This is a step toward geometrically unifying all representation based gauge theories. In addition, some implications with respect to the geometric construction of group representations are noted.

Nakashima, M.M.

1988-01-01T23:59:59.000Z

47

Carbon Capture and Transport  

E-Print Network (OSTI)

of careers in the Energy sector including positions within power generation companies, CO2 captureÃ?FluidÃ?Dynamics The module introduces Computational Fluid Dynamics techniques for modelling, simulating and analysing satisfies approximately 88% of the global commercial primary energy demand and in spite of the significant

48

Status of Blue Ridge Reservoir  

DOE Green Energy (OSTI)

This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Blue Ridge Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports and data available, as well as interview with water resource professionals in various federal, state, and local agencies. Blue Ridge Reservoir is a single-purpose hydropower generating project. When consistent with this primary objective, the reservoir is also operated to benefit secondary objectives including water quality, recreation, fish and aquatic habitat, development of shoreline, aesthetic quality, and other public and private uses that support overall regional economic growth and development. 8 refs., 1 fig.

Not Available

1990-09-01T23:59:59.000Z

49

Carbon Capture and Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB's SECARB's Mississippi SalineTest Site: A Field Project Update Robert C. Trautz (rtrautz@epri.com) Electric Power Research Institute Senior Project Manager DOE Regional Carbon Sequestration Partnership Annual Review Meeting October 6-8, 2008 Pittsburgh, PA 2 1. Introduction 2. Well Drilling & Completion 3. Reservoir Characterization 4. CO 2 Injection Operations 5. Monitoring and Verification Outline 3 Key Organizations and Acknowledgments SOUTHERN STATES ENERGY BOARD Dr. Gerald (Jerry) R. Hill OTHER FIELD PROJECTS AND SUPPORTING ACTIVITIES * Advanced Resources * Alabama Geological Survey/ SCS * Gulf Coast Carbon Center (TXBEG) * EPRI * Virginia Tech University * Mississippi State University * Others Richard Esposito MISSISSIPPI POWER CO. Rick Berry Richard (Dick) Rhudy Robert (Rob) Trautz

50

Advanced Telemetry Data Capturing  

SciTech Connect

This project developed a new generation or advanced data capturing process specifically designed for use in future telemetry test systems at the Kansas City Plant (KCP). Although similar data capturing processes are performed both commercially and at other DOE weapon facilities, the equipment used is not specifically designed to perform acceptance testing requirements unique to the KCP. Commercially available equipment, despite very high cost (up to $125,000), is deficient in reliability and long-term maintainability necessary in test systems at this facility. There are no commercial sources for some requirements, specifically Terminal Data Analyzer (TDA) data processing. Although other custom processes have been developed to satisfy these test requirements, these designs have become difficult to maintain and upgrade.

Paschke, G.A.

2000-05-16T23:59:59.000Z

51

Computer aided surface representation  

Science Conference Proceedings (OSTI)

The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a surface defined on a surface''. Sometimes properties of an already defined surface are desired, which is geometry processing''. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.

Barnhill, R.E.

1990-02-19T23:59:59.000Z

52

Graphical Representation of Supersymmetry  

E-Print Network (OSTI)

A graphical representation of supersymmetry is presented. It clearly expresses the chiral flow appearing in SUSY quantities, by representing spinors by {\\it directed lines} (arrows). The chiral suffixes are expressed by the directions (up, down, left, right) of the arrows. The SL(2,C) invariants are represented by {\\it wedges}. Both the Weyl spinor and the Majorana spinor are treated. We are free from the complicated symbols of spinor suffixes. The method is applied to the 5D supersymmetry. Many applications are expected. The result is suitable for coding a computer program and is highly expected to be applicable to various SUSY theories (including Supergravity) in various dimensions.

Shoichi Ichinose

2006-03-28T23:59:59.000Z

53

Geothermal reservoir management  

DOE Green Energy (OSTI)

The optimal management of a hot water geothermal reservoir was considered. The physical system investigated includes a three-dimensional aquifer from which hot water is pumped and circulated through a heat exchanger. Heat removed from the geothermal fluid is transferred to a building complex or other facility for space heating. After passing through the heat exchanger, the (now cooled) geothermal fluid is reinjected into the aquifer. This cools the reservoir at a rate predicted by an expression relating pumping rate, time, and production hole temperature. The economic model proposed in the study maximizes discounted value of energy transferred across the heat exchanger minus the discounted cost of wells, equipment, and pumping energy. The real value of energy is assumed to increase at r percent per year. A major decision variable is the production or pumping rate (which is constant over the project life). Other decision variables in this optimization are production timing, reinjection temperature, and the economic life of the reservoir at the selected pumping rate. Results show that waiting time to production and production life increases as r increases and decreases as the discount rate increases. Production rate decreases as r increases and increases as the discount rate increases. The optimal injection temperature is very close to the temperature of the steam produced on the other side of the heat exchanger, and is virtually independent of r and the discount rate. Sensitivity of the decision variables to geohydrological parameters was also investigated. Initial aquifer temperature and permeability have a major influence on these variables, although aquifer porosity is of less importance. A penalty was considered for production delay after the lease is granted.

Scherer, C.R.; Golabi, K.

1978-02-01T23:59:59.000Z

54

The Power of a Question: A Case Study of Two Organizational Knowledge Capture Systems  

E-Print Network (OSTI)

Designers have many options for how to encode knowledge, although most are based on declarative representations. This paper explores the use of questions to represent knowledge. Practioner experiences implementing two knowledge resources using a question-based representation are described. In both resources, the use of "questions" was chosen as both a nonthreatening way of engaging users and for its value in initiating thinking processes. Both systems have succeeded in capturing the interest of users and serve as valuable components of the organization's knowledge capture program. This paper describes the systems, the underlying design approach, and results from system evaluation. Since the goal of any knowledge resource is to facilitate the reuse of knowledge, it is important to understand the impact that different knowledge representations could have on system acceptance. This study raises several research issues based on experiences using the unusual representation of "questions." 1.

Lynne P. Cooper

2003-01-01T23:59:59.000Z

55

Advanced reservoir simulation using soft computing  

Science Conference Proceedings (OSTI)

Reservoir simulation is a challenging problem for the oil and gas industry. A correctly calibrated reservoir simulator provides an effective tool for reservoir evaluation that can be used to obtain essential reservoir information. A long-standing problem ... Keywords: fuzzy control, history matching, parallel processing, reservoir simulation

G. Janoski; F.-S. Li; M. Pietrzyk; A. H. Sung; S.-H. Chang; R. B. Grigg

2000-06-01T23:59:59.000Z

56

Capturing the Daylight Dividend  

Science Conference Proceedings (OSTI)

Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.

Peter Boyce; Claudia Hunter; Owen Howlett

2006-04-30T23:59:59.000Z

57

The polaris inter representation  

SciTech Connect

The Polaris Program Manipulation System is a production quality tool for source-to-source transformations and complex analysis of Fortran code. In this paper, we describe the motivations for and the implementation of Polaris` internal representation (IR). The IR is composed of a basic abstract syntax tree on top of which exist many layers of functionality. This functionality allows complex operations on the data structure. Further, the IR is designed to enforce the consistency of the internal structure in terms of both the correctness of the data structures such as flow information. We describe how the system`s philosophies developed from its predecessor, the Delta prototyping system, and how they were implemented in Polaris` IR. We also provide a number of examples of using the Polaris system.

Faigin, K.A. [Univ. of Illinois, Urbana-Champaign, IL (United States); Weatherford, S.A.; Hoeflinger, J.P. [and others

1994-10-01T23:59:59.000Z

58

Session 4: Geothermal Reservoir Definition  

DOE Green Energy (OSTI)

The study of geothermal reservoir behavior is presently in a state of change brought about by the discovery that reservoir heterogeneity--fractures in particular--is responsible for large scale effects during production. On the other hand, some parts of a reservoir, or some portions of its behavior. may be unaffected by fractures and behave, instead, as if the reservoir were a homogeneous porous medium. Drilling has for many years been guided by geologists prospecting for fractures (which have been recognized as the source of production), but until recently reservoir engineers have not studied the behavior of fractured systems under production. In the last three years research efforts, funded by the Department of Energy and others, have made significant progress in the study of fractures. The investigations into simulation of fracture flow, tracer analysis of fractured systems, and well test analysis of double porosity reservoirs are all advancing. However, presently we are at something of a conceptual impasse in defining a reservoir as fractured or porous. It seems likely that future directions will not continue to attempt to distinguish two separate reservoir types, but will focus instead on defining behavior types. That is, certain aspects of reservoir behavior may be considered to be generally of the porous medium type (for example, field wide decline), while others may be more frequently fracture type (for example, breakthrough of reinjected water). In short, our overall view of geothermal reservoir definition is becoming a little more complex, thereby better accommodating the complexities of the reservoirs themselves. Recent research results already enable us to understand some previously contradictory results, and recognition of the difficulties is encouraging for future progress in the correct direction.

Horne, Roland N.

1983-12-01T23:59:59.000Z

59

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network (OSTI)

.A. Hsieh 1e$ Pressure Buildup Monitoring of the Krafla Geothermal Field, . . . . . . . . 1'1 Xceland - 0 Initial Chemical and Reservoir Conditions at Lo6 Azufres Wellhead Power Plant Startup - P. Kruger, LSGP-TR-92 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

Stanford University

60

Reservoir Modeling for Production Management  

DOE Green Energy (OSTI)

For both petroleum and geothermal resources, many of the reservoirs are fracture dominated--rather than matrix-permeability controlled. For such reservoirs, a knowledge of the pressure-dependent permeability of the interconnected system of natural joints (i.e., pre-existing fractures) is critical to the efficient exploitation of the resource through proper pressure management. Our experience and that reported by others indicates that a reduction in the reservoir pressure sometimes leads to an overall reduction in production rate due to the ''pinching off'' of the joint network, rather than the anticipated increase in production rate. This effect occurs not just in the vicinity of the wellbore, where proppants are sometimes employed, but throughout much of the reservoir region. This follows from the fact that under certain circumstances, the decline in fracture permeability (or conductivity) with decreasing reservoir pressure exceeds the far-field reservoir ''drainage'' flow rate increase due to the increased pressure gradient. Further, a knowledge of the pressure-dependent joint permeability could aid in designing more appropriate secondary recovery strategies in petroleum reservoirs or reinjection procedures for geothermal reservoirs.

Brown, Donald W.

1989-03-21T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Knowledge representation and machine translation  

Science Conference Proceedings (OSTI)

This paper describes a new knowledge representation called "frame knowledge representation-0" (FKR-0), and an experimental machine translation system named ATLAS/I which uses FKR-0.The purpose of FKR-0 is to stored information required for machine translation ...

Susumu Sawai; Hiromichi Fukushima; Masakatsu Sugimoto; Naoya Ukai

1982-07-01T23:59:59.000Z

62

Tertiary carbonate reservoirs in Indonesia  

Science Conference Proceedings (OSTI)

Hydrocarbon production from Tertiary carbonate reservoirs accounted for ca. 10% of daily Indonesian production at the beginning of 1978. Environmentally, the reservoirs appear as parts of reef complexes and high-energy carbonate deposits within basinal areas situated mainly in the back arc of the archipelago. Good porosities of the reservoirs are represented by vugular/moldic and intergranular porosity types. The reservoirs are capable of producing prolific amounts of hydrocarbons: production tests in Salawati-Irian Jaya reaches maximum values of 32,000 bpd, and in Arun-North Sumatra tests recorded 200 MMCF gas/day. Significant hydrocarbon accumulations are related to good reservoir rocks in carbonates deposited as patch reefs, pinnacle reefs, and platform complexes. Exploration efforts expand continuously within carbonate formations which are extensive horizontally as well as vertically in the Tertiary stratigraphic column.

Nayoan, G.A.S.; Arpandi; Siregar, M.

1981-01-01T23:59:59.000Z

63

Water resources review: Ocoee reservoirs, 1990  

DOE Green Energy (OSTI)

Tennessee Valley Authority (TVA) is preparing a series of reports to make technical information on individual TVA reservoirs readily accessible. These reports provide a summary of reservoir purpose and operation; physical characteristics of the reservoir and watershed; water quality conditions; aquatic biological conditions; and designated, actual and potential uses of the reservoir and impairments of those use. This reservoir status report addressed the three Ocoee Reservoirs in Polk County, Tennessee.

Cox, J.P.

1990-08-01T23:59:59.000Z

64

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

Science Conference Proceedings (OSTI)

This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

Maria Cecilia Bravo

2006-06-30T23:59:59.000Z

65

Robust automated knowledge capture.  

SciTech Connect

This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

2011-10-01T23:59:59.000Z

66

NETL: Discrete Fracture Reservoir Simulation Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Discrete Fracture Reservoir Simulation FRACGENNFFLOW Shale Gas Flow Simulation Shale Gas Flow Simulation FRACGENNFFLOW, a fractured reservoir modeling software developed by the...

67

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

Bibliography Definition of Geothermal Reservoir EngineeringDevelopment of Geothermal Reservoir Engineering. * 1.4 DataF i r s t Geopressured Geothermal Energy Conference. Austin,

Sudo!, G.A

2012-01-01T23:59:59.000Z

68

Data requirements and acquisition for reservoir characterization  

Science Conference Proceedings (OSTI)

This report outlines the types of data, data sources and measurement tools required for effective reservoir characterization, the data required for specific enhanced oil recovery (EOR) processes, and a discussion on the determination of the optimum data density for reservoir characterization and reservoir modeling. The two basic sources of data for reservoir characterization are data from the specific reservoir and data from analog reservoirs, outcrops, and modern environments. Reservoir data can be divided into three broad categories: (1) rock properties (the container) and (2) fluid properties (the contents) and (3)interaction between reservoir rock and fluid. Both static and dynamic measurements are required.

Jackson, S.; Chang, Ming Ming; Tham, Min

1993-03-01T23:59:59.000Z

69

Coal bed methane reservoir simulation studies.  

E-Print Network (OSTI)

??The purpose of this study is to perform simulation studies for a specific coal bed methane reservoir. First, the theory and reservoir engineering aspects of… (more)

Karimi, Kaveh

2005-01-01T23:59:59.000Z

70

Greenhouse gas cycling in experimental boreal reservoirs.  

E-Print Network (OSTI)

??Hydroelectric reservoirs account for 59% of the installed electricity generating capacity in Canada and 26% in Ontario. Reservoirs also provide irrigation capacity, drinking water, and… (more)

Venkiteswaran, Jason James

2009-01-01T23:59:59.000Z

71

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

Petroleum Reservoirs. Geothermal Reservoirs IV. DATA1970, Superheating of Geothermal Steam, Proc. of the U.N.the Development & Utilization of Geothermal Resources, Pisa.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

72

Improved Upscaling & Well Placement Strategies for Tight Gas Reservoir Simulation and Management  

E-Print Network (OSTI)

Tight gas reservoirs provide almost one quarter of the current U.S. domestic gas production, with significant projected increases in the next several decades in both the U.S. and abroad. These reservoirs constitute an important play type, with opportunities for improved reservoir simulation & management, such as simulation model design, well placement. Our work develops robust and efficient strategies for improved tight gas reservoir simulation and management. Reservoir simulation models are usually acquired by upscaling the detailed 3D geologic models. Earlier studies of flow simulation have developed layer-based coarse reservoir simulation models, from the more detailed 3D geologic models. However, the layer-based approach cannot capture the essential sand and flow. We introduce and utilize the diffusive time of flight to understand the pressure continuity within the fluvial sands, and develop novel adaptive reservoir simulation grids to preserve the continuity of the reservoir sands. Combined with the high resolution transmissibility based upscaling of flow properties, and well index based upscaling of the well connections, we can build accurate simulation models with at least one order magnitude simulation speed up, but the predicted recoveries are almost indistinguishable from those of the geologic models. General practice of well placement usually requires reservoir simulation to predict the dynamic reservoir response. Numerous well placement scenarios require many reservoir simulation runs, which may have significant CPU demands. We propose a novel simulation-free screening approach to generate a quality map, based on a combination of static and dynamic reservoir properties. The geologic uncertainty is taken into consideration through an uncertainty map form the spatial connectivity analysis and variograms. Combining the quality map and uncertainty map, good infill well locations and drilling sequence can be determined for improved reservoir management. We apply this workflow to design the infill well drilling sequence and explore the impact of subsurface also, for a large-scale tight gas reservoir. Also, we evaluated an improved pressure approximation method, through the comparison with the leading order high frequency term of the asymptotic solution. The proposed pressure solution can better predict the heterogeneous reservoir depletion behavior, thus provide good opportunities for tight gas reservoir management.

Zhou, Yijie

2013-08-01T23:59:59.000Z

73

Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.  

Science Conference Proceedings (OSTI)

The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.

Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

2006-11-01T23:59:59.000Z

74

State-of-the-art review of geothermal reservoir modelling  

DOE Green Energy (OSTI)

The state-of-the-art in geothermal reservoir modelling is summarized and evaluated. Only those models which have been developed exclusively for geothermal simulation are considered. Attention is focused primarily on the two and three dimensional distributed parameter models. The general porous flow theory is formulated. For each model, the governing equations, method of approximation, treatment of the convection term, treatment of the nonlinear coefficients, solution of the resulting algebraic equations, and representation of the well-bore are presented. Example problems that have been treated are discussed briefly. (MHR)

Pinder, G.F.

1979-03-01T23:59:59.000Z

75

Research on oil recovery mechanisms in heavy oil reservoirs  

Science Conference Proceedings (OSTI)

The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties, (2) in-situ combustion, (3) additives to improve mobility control, (4) reservoir definition, and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx.

Kovscek, Anthony R.; Brigham, William E., Castanier, Louis M.

2000-03-16T23:59:59.000Z

76

TEXAS A&M UNIVERSITY Reservoir Geophysics Program  

E-Print Network (OSTI)

includes applications to clastic reservoirs, heavy oil reservoirs, gas/oil shale, gas hydrates. Basic

77

Industrial Carbon Capture Project Selections  

Energy.gov (U.S. Department of Energy (DOE))

Industrial Carbon Capture Project SelectionsSeptember 2, 2010These projects have been selected for negotiation of awards; final award amounts may vary.

78

Resource capture by single leaves  

DOE Green Energy (OSTI)

Leaves show a variety of strategies for maximizing CO{sub 2} and light capture. These are more meaningfully explained if they are considered in the context of maximizing capture relative to the utilization of water, nutrients and carbohydrates reserves. There is considerable variation between crops in their efficiency of CO{sub 2} and light capture at the leaf level. Understanding of these mechanisms indicate some ways in which efficiency of resource capture could be level cannot be meaningfully considered without simultaneous understanding of implications at the canopy level. 36 refs., 5 figs., 1 tab.

Long, S.P.

1992-05-01T23:59:59.000Z

79

A reservoir management strategy for multilayered reservoirs in eastern Venezuela  

E-Print Network (OSTI)

A reservoir management strategy has been developed for a field located in eastern Venezuela. The field contains deep, high pressure, multilayer reservoirs. A thorough formation evaluation was accomplished using the log data, core data, PVT data, geologic data, well completion data and the production data. A reservoir simulation model was built to forecast reservoir performance for a variety of exploitation and well completion strategies. Reserve forecasts have been made using the reservoir model. The methodology applied in this research consists of eight tasks: 1) build a data base with existing data, 2) analyze the log and core data, 3) analyze the pressure and production data, 4) analyze the PVT data, 5) analyze the hydraulic fracture treatments, 6) build the reservoir model, 7) determine the possible reservoir management strategies, and 8) perform economic evaluations for the management strategies. While much of the data for the field studied was supplied by PDVSA, we did not receive all of the data we requested. For example, no pressure buildup data were available. When necessary, we used correlations to determine values for reservoir data that we were not supplied. In this research four formations were studied and characterized, determining porosity and permeability values. Also, fracture treatments were analyzed and a reservoir model was developed. Runs for black oil and volatile oil were performed. The results show that the upper zones are the most prospective areas, but fracture treatments must be performed to reduce the damage on the sand face. Lower formations (Cretaceous) have a lower permeability value, but high OOIP that justify performing fracture treatments and completing this zone. Economics were developed to support this conclusion. Optimum well spacing was calculated showing that 960 acres is the optimum well spacing, but also that 640 acres can be maintained for all the reservoirs and dual completions can be performed, first hydraulic fracturing and completing the Cretaceous formation, and then, completing any upper zone. Reservoir simulation results show that up to 31% of OOIP may be incrementally recovered by hydraulic fracturing the Cretaceous formation and 10 or less from the upper zones.

Espinel Diaz, Arnaldo Leopoldo

1998-01-01T23:59:59.000Z

80

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 19, 2012 December 19, 2012 DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion Metric Tons of U.S. CO2 Storage Resource The United States has at least 2,400 billion metric tons of possible carbon dioxide storage resource in saline formations, oil and gas reservoirs, and unmineable coal seams, according to a new U.S. Department of Energy publication. November 20, 2012 DOE Approves Field Test for Promising Carbon Capture Technology A promising post combustion membrane technology that can separate and capture 90 percent of the carbon dioxide from a pulverized coal plant has been successfully demonstrated and received Department of Energy approval to advance to a larger-scale field test. November 19, 2012 Carbon Storage Partner Completes First Year of CO2 Injection Operations in

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Muon capture on Chlorine-35  

E-Print Network (OSTI)

We report measurements of $\\gamma$--ray spectra from muon capture on $^{35}$Cl. For the allowed Gamow--Teller transitions to the $^{35}$S$(2939, 3/2^+)$ state and the $^{35}$S$(3421, 5/2^+)$ state we obtained their capture rates, hyperfine dependences and $\\gamma$--$\

S. Arole; D. S. Armstrong; T. P. Gorringe; M. D. Hasinoff; M. A. Kovash; V. Kuzmin; B. A. Moftah; R. Sedlar; T. J. Stocki; T. Tetereva

2002-04-30T23:59:59.000Z

82

Alternate Methods in Reservoir Simulation  

Science Conference Proceedings (OSTI)

As time progresses, more and more oil fields and reservoirs are reaching maturity; consequently, secondary and tertiary methods of oil recovery have become increasingly important in the petroleum industry. This significance has added to the industry's ...

Guadalupe I. Janoski; Andrew H. Sung

2001-05-01T23:59:59.000Z

83

Fracture characterization of multilayered reservoirs  

Science Conference Proceedings (OSTI)

Fracture treatment optimization techniques have been developed using Long-Spaced-Digital-Sonic (LSDS) log, pumpin-flowback, mini-frac, and downhole treating pressure data. These analysis techniques have been successfully applied in massive hydraulic fracturing (MHF) of ''tight gas'' wells. Massive hydraulic fracture stimulations have been used to make many tight gas reservoirs commercially attractive. However, studies have shown that short highly conductive fractures are optimum for the successful stimulation of wells in moderate permeability reservoirs. As a result, the ability to design and place optimal fractures in these reservoirs is critical. This paper illustrates the application of fracture analysis techniques to a moderate permeability multi-layered reservoir. These techniques were used to identify large zonal variations in rock properties and pore pressure which result from the complex geology. The inclusion of geologic factors in fracture treatment design allowed the placement of short highly conductive fractures which were used to improve injectivity and vertical sweep, and therefore, ultimate recovery.

Britt, L.K.; Larsen, M.J.

1986-01-01T23:59:59.000Z

84

Geothermal Reservoir Dynamics - TOUGHREACT  

DOE Green Energy (OSTI)

This project has been active for several years and has focused on developing, enhancing and applying mathematical modeling capabilities for fractured geothermal systems. The emphasis of our work has recently shifted towards enhanced geothermal systems (EGS) and hot dry rock (HDR), and FY05 is the first year that the DOE-AOP actually lists this project under Enhanced Geothermal Systems. Our overall purpose is to develop new engineering tools and a better understanding of the coupling between fluid flow, heat transfer, chemical reactions, and rock-mechanical deformation, to demonstrate new EGS technology through field applications, and to make technical information and computer programs available for field applications. The objectives of this project are to: (1) Improve fundamental understanding and engineering methods for geothermal systems, primarily focusing on EGS and HDR systems and on critical issues in geothermal systems that are difficult to produce. (2) Improve techniques for characterizing reservoir conditions and processes through new modeling and monitoring techniques based on ''active'' tracers and coupled processes. (3) Improve techniques for targeting injection towards specific engineering objectives, including maintaining and controlling injectivity, controlling non-condensable and corrosive gases, avoiding scale formation, and optimizing energy recovery. Seek opportunities for field testing and applying new technologies, and work with industrial partners and other research organizations.

Pruess, Karsten; Xu, Tianfu; Shan, Chao; Zhang, Yingqi; Wu,Yu-Shu; Sonnenthal, Eric; Spycher, Nicolas; Rutqvist, Jonny; Zhang,Guoxiang; Kennedy, Mack

2005-03-15T23:59:59.000Z

85

The evolution, challenges, and future of knowledge representation in product design systems  

Science Conference Proceedings (OSTI)

Product design is a highly involved, often ill-defined, complex and iterative process, and the needs and specifications of the required artifact get more refined only as the design process moves toward its goal. An effective computer support tool that ... Keywords: Collaborative engineering, Computational tools, Design rationale, Knowledge capture, Knowledge management, Knowledge representation, Multidisciplinary modeling, Ontology, Product design, Simulation, Systems engineering, Virtual reality

Senthil K. Chandrasegaran; Karthik Ramani; Ram D. Sriram; Imré HorváTh; Alain Bernard; Ramy F. Harik; Wei Gao

2013-02-01T23:59:59.000Z

86

A multi-layer data representation of trajectories in social networks based on points of interest  

Science Conference Proceedings (OSTI)

Social networking, and sophisticated wireless and positioning systems are fast developing and ever increasing technologies. Mobile social applications have the ability to increase the social connectivity by capturing automatically users' daily routines ... Keywords: geographic information system, mobile social application, multi-layer representation

Reinaldo Bezerra Braga; Ali Tahir; Michela Bertolotto; Hervé Martin

2012-11-01T23:59:59.000Z

87

The evolution, challenges, and future of knowledge representation in product design systems  

Science Conference Proceedings (OSTI)

Product design is a highly involved, often ill-defined, complex and iterative process, and the needs and specifications of the required artifact get more refined only as the design process moves toward its goal. An effective computer support tool that ... Keywords: Collaborative engineering, Computational tools, Design rationale, Knowledge capture, Knowledge management, Knowledge representation, Multidisciplinary modeling, Ontology, Product design, Simulation, Systems engineering, Virtual reality

Senthil K. Chandrasegaran; Karthik Ramani; Ram D. Sriram; Imré HorváTh; Alain Bernard; Ramy F. Harik; Wei Gao

88

Capturing Carbon Dioxide From Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Capturing Carbon Dioxide From Air Capturing Carbon Dioxide From Air Klaus S. Lackner (kl2010@columbia.edu; 212-854-0304) Columbia University 500 West 120th Street New York, NY 10027 Patrick Grimes (pgrimes@worldnet.att.net; 908-232-1134) Grimes Associates Scotch Plains, NJ 07076 Hans-J. Ziock (ziock@lanl.gov; 505-667-7265) Los Alamos National Laboratory P.O.Box 1663 Los Alamos, NM 87544 Abstract The goal of carbon sequestration is to take CO 2 that would otherwise accumulate in the atmosphere and put it in safe and permanent storage. Most proposed methods would capture CO 2 from concentrated sources like power plants. Indeed, on-site capture is the most sensible approach for large sources and initially offers the most cost-effective avenue to sequestration. For distributed, mobile sources like cars, on-board capture at affordable cost would not be

89

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Capture & Storage Industrial Capture & Storage Technologies Industrial Capture & Storage The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

90

Chickamauga reservoir embayment study - 1990  

DOE Green Energy (OSTI)

The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

1992-12-01T23:59:59.000Z

91

Modeling well performance in compartmentalized gas reservoirs  

E-Print Network (OSTI)

Predicting the performance of wells in compartmentalized reservoirs can be quite challenging to most conventional reservoir engineering tools. The purpose of this research is to develop a Compartmentalized Gas Depletion Model that applies not only to conventional consolidated reservoirs (with constant formation compressibility) but also to unconsolidated reservoirs (with variable formation compressibility) by including geomechanics, permeability deterioration and compartmentalization to estimate the OGIP and performance characteristics of each compartment in such reservoirs given production data. A geomechanics model was developed using available correlation in the industry to estimate variable pore volume compressibility, reservoir compaction and permeability reduction. The geomechanics calculations were combined with gas material balance equation and pseudo-steady state equation and the model was used to predict well performance. Simulated production data from a conventional gas Simulator was used for consolidated reservoir cases while synthetic data (generated by the model using known parameters) was used for unconsolidated reservoir cases. In both cases, the Compartmentalized Depletion Model was used to analyze data, and estimate the OGIP and Jg of each compartment in a compartmentalized gas reservoir and predict the subsequent reservoir performance. The analysis was done by history-matching gas rate with the model using an optimization technique. The model gave satisfactory results with both consolidated and unconsolidated reservoirs for single and multiple reservoir layers. It was demonstrated that for unconsolidated reservoirs, reduction in permeability and reservoir compaction could be very significant especially for unconsolidated gas reservoirs with large pay thickness and large depletion pressure.

Yusuf, Nurudeen

2007-12-01T23:59:59.000Z

92

Carbon Capture and Storage  

Science Conference Proceedings (OSTI)

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

93

Rock Physics Based Determination of Reservoir Microstructure for Reservoir Characterization  

E-Print Network (OSTI)

One of the most important, but often ignored, factors affecting the transport and the seismic properties of hydrocarbon reservoir is pore shape. Transport properties depend on the dimensions, geometry, and distribution of pores and cracks. Knowledge of pore shape distribution is needed to explain the often-encountered complex interrelationship between seismic parameters (e.g. seismic velocity) and the independent physical properties (e.g. porosity) of hydrocarbon reservoirs. However, our knowledge of reservoir pore shape distribution is very limited. This dissertation employs a pore structure parameter via a rock physics model to characterize mean reservoir pore shape. The parameter was used to develop a new physical concept of critical clay content in the context of pore compressibility as a function of pore aspect ratio for a better understanding of seismic velocity as a function of porosity. This study makes use of well log dataset from offshore Norway and from North Viking Graben in the North Sea. In the studied North Sea reservoir, porosity and measured horizontal permeability was found to increase with increasing pore aspect ratio (PAR). PAR is relatively constant at 0.23 for volumes of clay (V_cl) less than 32% with a significant decrease to 0.04 for V_cl above 32%. The point of inflexion at 32% in the PAR –V_cl plane is defined as the critical clay volume. Much of the scatters in the compressional velocity-porosity cross-plots are observed where V_cl is above this critical value. For clay content higher than the critical value, Hertz-Mindlin (HM) contact theory over-predicts compressional velocity (V_p) by about 69%. This was reduced to 4% when PAR distribution was accounted for in the original HM formulation. The pore structure parameter was also used to study a fractured carbonate reservoir in the Sichuan basin, China. Using the parameter, the reservoir interval can be distinguished from those with no fracture. The former has a pore structure parameter value that is ? 3.8 whereas it was < 3.8 for the latter. This finding was consistent with the result of fracture analysis, which was based on FMI image. The results from this dissertation will find application in reservoir characterization as the industry target more complex, deeper, and unconventional reservoirs.

Adesokan, Hamid 1976-

2013-05-01T23:59:59.000Z

94

Quantum Field Theory and Representation Theory  

E-Print Network (OSTI)

Quantum Field Theory and Representation Theory Peter Woit woit@math.columbia.edu Department of Mathematics Columbia University Quantum Field Theory and Representation Theory ­ p.1 #12;Outline of the talk · Quantum Mechanics and Representation Theory: Some History Quantum Field Theory and Representation Theory

Woit, Peter

95

Is Carbon Capture and Storage Really Needed?  

SciTech Connect

Two of the greatest contemporary global challenges are anthropogenic greenhouse gas emissions and energy sustainability. A popular proposed solution to the former problem is carbon capture and storage (CCS). Unfortunately, CCS has little benefit for energy sustainability and introduces significant long-term costs and risks. Thus, we propose the adoption of 'virtual CCS' by directing the resources that would have been spent on CCS to alternative energy technologies. (The term 'virtual' is used here because the concept described in this work satisfies the Merriam-Webster Dictionary definition of virtual: 'being such in essence or effect though not formally recognized or admitted.') In this example, we consider wind and nuclear power and use the funds that would have been required by CCS to invest in installation and operation of these technologies. Many other options exist in addition to wind and nuclear power including solar, biomass, geothermal, and others. These additional energy technologies can be considered in future studies. While CCS involves spending resources to concentrate CO{sub 2} in sinks, such as underground reservoirs, low-carbon alternative energy produces power, which will displace fossil fuel use while simultaneously generating revenues. Thus, these alternative energy technologies achieve the same objective as that of CCS, namely, the avoidance of atmospheric CO{sub 2} emissions.

Tsouris, Costas [ORNL; Williams, Kent Alan [ORNL; Aaron, D [Georgia Institute of Technology

2010-01-01T23:59:59.000Z

96

Semantic representation of multimedia content  

Science Conference Proceedings (OSTI)

Multimedia documents constitute extremely rich information resources, whose efficacious management is intertwined with the effective capturing of the underlying semantics. The conveyed meaning may span along multiple levels and relates to search and ...

Kalliopi Dalakleidi; Stamatia Dasiopoulou; Giorgos Stoilos; Vassilis Tzouvaras; Giorgos Stamou; Yiannis Kompatsiaris

2011-01-01T23:59:59.000Z

97

Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling  

Science Conference Proceedings (OSTI)

Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

None

1998-01-01T23:59:59.000Z

98

Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling  

SciTech Connect

Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

P. K. Pande

1998-10-29T23:59:59.000Z

99

Representation of Ideal Magnetohydrodynamic Modes  

SciTech Connect

One of the most fundamental properties of ideal magnetohydrodynamics is the condition that plasma motion cannot change magnetic topology. The conventional representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field through ? ? = ? X (xi X B) ensures that ? B • ? ? = 0 at a resonance, with ? labelling an equilibrium flux surface. Also useful for the analysis of guiding center orbits in a perturbed field is the representation ? ? = ? X ?B. These two representations are equivalent, but the vanishing of ? B • ?? at a resonance is necessary but not sufficient for the preservation of field line topology, and a indiscriminate use of either perturbation in fact destroys the original equilibrium flux topology. It is necessary to find the perturbed field to all orders in xi to conserve the original topology. The effect of using linearized perturbations on stability and growth rate calculations is discussed

Roscoe B. White

2013-01-15T23:59:59.000Z

100

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network (OSTI)

the characteristics of a geothermal reservoir: Items 2, 6,new data important to geothermal reservoir engineering prac-forecast performance of the geothermal reservoir and bore

Howard, J. H.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS  

E-Print Network (OSTI)

FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andFLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andachieve optimal recovery of petroleum from a reservoir, it

Anderson, C.

2011-01-01T23:59:59.000Z

102

Not a One-Way Street: Exploring the Role of Intersectional Representation on African American Male Students  

E-Print Network (OSTI)

Representation is an enduring area of research in Political Science. While there has been an extensive amount of research in the area of minority representation, there is substantially less work considering multiple identities. Using the concept of intersectionality, this dissertation explores the role of multiple identities in representation. I argue that intersectional representation, that is, representation based on multiple identities provides a thorough interpretation of real world phenomena. To test my arguments, I utilize quantitative methods to empirically assess the role of intersectional representation on public policy outcomes. The goal of this dissertation is three-fold. First, I incorporate the concept of intersectionality of race and gender into the public policy and public management literature. Second, I explore intersectionality and representation with gender from a perspective that has not been extensively addressed in the political science literature—namely, a concentration on males, instead of females. Third, I develop a theory of intersectional representation which links to public policy outcomes. In order to test my theory, I explore the role of Black male representation in the bureaucracy and in local political bodies on Black male student outcomes. I find that representation based on both race and gender is associated with both positive and negative public policy outcomes for Black male students. Specifically, in Chapter I, the results indicate that Black male teachers are associated with a decreased presence of Black male students in low tracked courses and upper level honors courses. The following chapter shows that intersectional political representation, that is, Black male school board representation, is also associated with positive outcomes for Black male students. The last empirical chapter indicates that intersectional stability is associated with an increase of Black male students in low track courses. In general, the findings indicate that intersectional representation is consequential for public policy outcomes, both in negative and positive ways. The dissertation challenges the way representation is conceptualized, as to capture the simultaneous effect of both race and gender on public policy outcomes of represented groups.

Walker, Meredith Brooke Loudd

2011-05-01T23:59:59.000Z

103

Carbon Capture and Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and...

104

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area (Redirected from Blackfoot Reservoir Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

105

Modeling of Geothermal Reservoirs: Fundamental Processes, Computer  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Abstract This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir modeling are briefly reviewed, with special emphasis on flow in fractured media. We then examine some applications of numerical simulation to studies of reservoir dynamics, well test design and analysis, and modeling of specific fields. Tangible impacts of reservoir simulation

106

Reservoir technology research at Lawrence Berkeley Laboratory  

DOE Green Energy (OSTI)

The research being carried out at LBL as part of DOE/GTD's Reservoir Technology Program includes field, theoretical and modeling activities. The purpose is to develop, improve and validate methods and instrumentation to: (1) determine geothermal reservoir parameters, (2) detect and characterize reservoir fractures and boundaries, and (3) identify and evaluate the importance of reservoir processes. The ultimate objective of this work is to advance the state-of-the-art for characterizing geothermal reservoirs and evaluating their productive capacity and longevity under commercial exploitation. LBL's FY1986 accomplishments, FY1987 progress to date, and possible future activities under DOE's Reservoir Technology Program are discussed.

Lippmann, M.J.

1987-04-01T23:59:59.000Z

107

Geotechnical studies of geothermal reservoirs  

DOE Green Energy (OSTI)

It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot Springs, Utah, (4) Bacca Ranch, Valle Grande, New Mexico, (5) Jemez Caldera, New Mexico, (6) Raft River, Idaho, and (7) Marysville, Montona. (MHR)

Pratt, H.R.; Simonson, E.R.

1976-01-01T23:59:59.000Z

108

BISICLES Captures Details of Retreating Antarctic Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

BISICLES Captures Details of Retreating Antarctic Ice BISICLES Captures Details of Retreating Antarctic Ice March 30, 2013 | Tags: Climate Research, Hopper, Math & Computer Science...

109

Carbon Capture Pilots (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture Pilots (Kentucky) Carbon Capture Pilots (Kentucky) Eligibility Commercial Fed. Government StateProvincial Govt Utility Program Information Kentucky Program Type...

110

Speeding Up Zeolite Evaluation for Carbon Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Speeding Up Zeolite Evaluation for Carbon Capture Speeding Up Zeolite Evaluation for Carbon Capture Zeolite.png Schematic of an important class of porous materials known as...

111

Better Buildings Neighborhood Program: Massachusetts Captures...  

NLE Websites -- All DOE Office Websites (Extended Search)

Massachusetts Captures Home Energy Waste to someone by E-mail Share Better Buildings Neighborhood Program: Massachusetts Captures Home Energy Waste on Facebook Tweet about Better...

112

Supercomputers Capture Turbulence in the Solar Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercomputers Capture Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space...

113

Shale Oil Production Performance from a Stimulated Reservoir Volume  

E-Print Network (OSTI)

The horizontal well with multiple transverse fractures has proven to be an effective strategy for shale gas reservoir exploitation. Some operators are successfully producing shale oil using the same strategy. Due to its higher viscosity and eventual 2-phase flow conditions when the formation pressure drops below the oil bubble point pressure, shale oil is likely to be limited to lower recovery efficiency than shale gas. However, the recently discovered Eagle Ford shale formations is significantly over pressured, and initial formation pressure is well above the bubble point pressure in the oil window. This, coupled with successful hydraulic fracturing methodologies, is leading to commercial wells. This study evaluates the recovery potential for oil produced both above and below the bubble point pressure from very low permeability unconventional shale oil formations. We explain how the Eagle Ford shale is different from other shales such as the Barnett and others. Although, Eagle Ford shale produces oil, condensate and dry gas in different areas, our study focuses in the oil window of the Eagle Ford shale. We used the logarithmically gridded locally refined gridding scheme to properly model the flow in the hydraulic fracture, the flow from the fracture to the matrix and the flow in the matrix. The steep pressure and saturation changes near the hydraulic fractures are captured using this gridding scheme. We compare the modeled production of shale oil from the very low permeability reservoir to conventional reservoir flow behavior. We show how production behavior and recovery of oil from the low permeability shale formation is a function of the rock properties, formation fluid properties and the fracturing operations. The sensitivity studies illustrate the important parameters affecting shale oil production performance from the stimulated reservoir volume. The parameters studied in our work includes fracture spacing, fracture half-length, rock compressibility, critical gas saturation (for 2 phase flow below the bubble point of oil), flowing bottom-hole pressure, hydraulic fracture conductivity, and matrix permeability. The sensitivity studies show that placing fractures closely, increasing the fracture half-length, making higher conductive fractures leads to higher recovery of oil. Also, the thesis stresses the need to carry out the core analysis and other reservoir studies to capture the important rock and fluid parameters like the rock permeability and the critical gas saturation.

Chaudhary, Anish Singh

2011-08-01T23:59:59.000Z

114

Application of artificial intelligence to reservoir characterization: An interdisciplinary approach. [Quarterly report], January 1--March 31, 1995  

SciTech Connect

This basis search is to apply novel techniques from Artificial Intelligence (AI) and Expert Systems in capturing, integrating and articulating key knowledge from geology, geostatistics, and petroleum engineering to develop accurate descriptions of petroleum reservoirs. The ultimate goal is to design and implement a single powerful expert system for use by small producers and independents to efficiently exploit reservoirs. The overall project plan to design the system to create integrated reservoir description begins by initially developing an AI-based methodology for producing large-scale reservoir descriptions generated interactively from geology and well test data. Parallel to this task is a second task that develops an AI-based methodology that uses facies-biased information to generate small-scale descriptions of reservoir properties such as permeability and porosity. The third task involves consolidation and integration of the large-scale and small-scale methodologies to produce reservoir descriptions honoring all the available data. The final task will be technology transfer. With this plan, we have carefully allocated and sequenced the activities involved in each of the tasks to promote concurrent progress towards the research objectives. The results of the integration are not merely limited to obtaining better characterizations of individual reservoirs. They have the potential to significantly impact and advance the discipline of reservoir characterization itself.

Kelkar, B.G.; Kerr, D.R.; Thompson, L.G.; Shenoi, S.

1995-07-01T23:59:59.000Z

115

Capturing carbon and saving coal  

SciTech Connect

Electric utilities face a tangle of choices when figuring how to pull CO{sub 2} from coal-fired plants. The article explains the three basic approaches to capturing CO{sub 2} - post-combustion, oxyfuel combustion and pre-combustion. Researchers at US DOE labs and utilities are investigating new solvents that capture CO{sub 2} more efficiently than amines and take less energy. Ammonium carbonate has been identified by EPRI as one suitable solvent. Field research projects on this are underway in the USA. Oxyfuel combustion trials are also being planned. Pre-combustion, or gasification is a completely different way of pulling energy from coal and, for electricity generation, this means IGCC systems. AEP, Southern Cinergy and Xcel are considering IGCC plants but none will capture CO{sub 2}. Rio Tinto and BP are planning a 500 MW facility to gasify coke waste from petroleum refining and collect and sequester CO{sub 2}. However, TECO recently dropped a project to build a 789 MW IGCC coal fired plant even though it was to receive a tax credit to encourage advanced coal technologies. The plant would not have captured CO{sub 2}. The company said that 'with uncertainty of carbon capture and sequestration regulations being discussed at the federal and state levels, the timing was not right'. 4 figs.

Johnson, J.

2007-10-15T23:59:59.000Z

116

Reservoir compaction loads on casings and liners  

Science Conference Proceedings (OSTI)

Pressure drawdown due to production from a reservoir causes compaction of the reservoir formation which induces axial and radial loads on the wellbore. Reservoir compaction loads increase during the production life of a well, and are greater for deviated wells. Presented here are casing and liner loads at initial and final pressure drawdowns for a particular reservoir and at well deviation angles of 0 to 45 degrees.

Wooley, G.R.; Prachner, W.

1984-09-01T23:59:59.000Z

117

Optimization Online - Managing Hydroelectric Reservoirs over an ...  

E-Print Network (OSTI)

Jul 7, 2013 ... Managing Hydroelectric Reservoirs over an Extended Planning Horizon using a Benders Decomposition Algorithm Exploiting a Memory Loss ...

118

Prevention of Reservoir Interior Discoloration  

SciTech Connect

Contamination is anathema in reservoir production. Some of the contamination is a result of welding and some appears after welding but existed before. Oxygen was documented to be a major contributor to discoloration in welding. This study demonstrates that it can be controlled and that some of the informal cleaning processes contribute to contamination.

Arnold, K.F.

2001-04-03T23:59:59.000Z

119

HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

Schroeder, R.C.

2009-01-01T23:59:59.000Z

120

Carbon Capture and Storage Research | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture and Storage Research Carbon Capture and Storage Research Clean Coal Carbon Capture and Storage Capture Storage Utilization MVA Regional Partnerships Oil & Gas Atlas...

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Technologies Industrial Capture & Storage Area 1 Large-Scale Industrial CCS Program The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

122

Carbon Capture & Sequestration Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Laboratory Battelle Memorial Institute CARBON CAPTURE & SEQUESTRATION TECHNOLOGIES J. Edmonds, J.J. Dooley, and S.H. Kim Battelle Pacific Northwest National Laboratory Battelle Memorial Institute Pacific Northwest National Laboratory Battelle Memorial Institute THE ROADMAP * Greenhouse gas emissions may not control themselves. * Climate policy may happen.--There are smart and dumb ways to proceed. The smart ways involve getting both the policy and the technology right--the GTSP. * There are no silver bullets--Expanding the set of options to include carbon capture and sequestration can help limit the cost of any ceiling on CO 2 concentrations. * Managing greenhouse emissions means managing carbon. * Carbon can be captured, transported, and sequestered in many ways.

123

Nutrient transport model in CHAHNIMEH manmade reservoirs  

Science Conference Proceedings (OSTI)

A Model for predicting nutrient transport to CHAHNIMEH reservoir is developed in this paper. Nitrogen and phosphorous have been simulated as the important parameters in evaluating water quality in the reservoir. Solar radiation and wind flow are considered ... Keywords: CHAHNIMEH, modeling, nutrient, reservoir, transport, water movement

Seyyed Ahmad Mirbagheri; Seyyed Arman Hashemi Monfared

2008-08-01T23:59:59.000Z

124

Tenth workshop on geothermal reservoir engineering: proceedings  

DOE Green Energy (OSTI)

The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

Not Available

1985-01-22T23:59:59.000Z

125

Eutrophication modelling of reservoirs in Taiwan  

Science Conference Proceedings (OSTI)

Two reservoirs in Taiwan were modeled to simulate the hydrodynamics and water quality in the water column. The modelling effort was supported with data collected in the field for a 2-year period for both reservoirs. Spatial and temporal distributions ... Keywords: CE-QUAL-W2, Reservoir Eutrophication Modelling, Water quality

Jan-Tai Kuo; Wu-Seng Lung; Chou-Ping Yang; Wen-Cheng Liu; Ming-Der Yang; Tai-Shan Tang

2006-06-01T23:59:59.000Z

126

Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III  

SciTech Connect

This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

2001-08-07T23:59:59.000Z

127

Sequence stratigraphic interpretation methods for low-accommodation, alluvial depositional sequences: applications to reservoir characterization of Cut Bank field, Montana  

E-Print Network (OSTI)

In South Central Cut Bank Sand Unit (SCCBSU) of Cut Bank field, primary production and waterflood projects have resulted in recovery of only 29 % of the original oil in place from heterogeneous, fluvial sandstone deposits. Using highresolution sequence stratigraphy and geostatistical analysis, I developed a geologic model that may improve the ultimate recovery of oil from this field. In this study, I assessed sequence stratigraphic concepts for continental settings and extended the techniques to analyze low-accommodation alluvial systems of the Cut Bank and Sunburst members of the lower Kootenai formation (Cretaceous) in Cut Bank field. Identification and delineation of five sequences and their bounding surfaces led to a better understanding of the reservoir distribution and variability. Recognition of stacking patterns allowed for the prediction of reservoir rock quality. Within each systems tract, the best quality reservoir rocks are strongly concentrated in the lowstand systems tract. Erosional events associated with falling baselevel resulted in stacked, communicated (multistory) reservoirs. The lowermost Cut Bank sandstone has the highest reservoir quality and is a braided stream parasequence. Average net-to-gross ratio value (0.6) is greater than in other reservoir intervals. Little additional stratigraphically untapped oil is expected in the lowermost Cut Bank sandstone. Over most of the SCCBSU, the Sunburst and the upper Cut Bank strata are valley-fill complexes with interfluves that may laterally compartmentalize reservoir sands. Basal Sunburst sand (Sunburst 1, average net-to-gross ratio ~0.3) has better reservoir quality than other Sunburst or upper Cut Bank sands, but its reservoir quality is significantly less than that of lower Cut Bank sand. Geostatistical analysis provided equiprobable representations of the heterogeneity of reservoirs. Simulated reservoir geometries resulted in an improved description of reservoir distribution and connectivity, as well as occurrences of flow barriers. The models resulting from this study can be used to improve reservoir management and well placement and to predict reservoir performance in Cut Bank field. The technical approaches and tools from this study can be used to improve descriptions of other oil and gas reservoirs in similar depositional systems.

Ramazanova, Rahila

2006-12-01T23:59:59.000Z

128

Comments on “Breakpoint Representation of Rainfall”  

Science Conference Proceedings (OSTI)

In a recent paper, Sansom presents a new representation of subhour rainfall variations as derived from pluviographs from tilting-siphon raingages. This representation is based on breakpoints where the trace changes slope abruptly. He draws on ...

Lars Bärring

1992-12-01T23:59:59.000Z

129

Quantum Mechanics and Representation Theory Columbia University  

E-Print Network (OSTI)

Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30 #12;Does Anyone Understand Quantum Mechanics? "No One Understands Quantum Mechanics" "I think

Woit, Peter

130

Significant Properties, Authenticity, Provenance, Representation Information and OAIS Information  

E-Print Network (OSTI)

Provenance, Representation Information and OAIS DavidOAIS term Representation Information has been a puzzle. Thisignoring Representation Information, other than structure

2009-01-01T23:59:59.000Z

131

Representation of Limited Rights Data and Restricted Computer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Representation of Limited Rights Data and Restricted Computer Software Representation of Limited Rights Data and Restricted Computer Software Representation of Limited Rights Data...

132

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

133

4. International reservoir characterization technical conference  

Science Conference Proceedings (OSTI)

This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

NONE

1997-04-01T23:59:59.000Z

134

Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Quarterly report, July 1--September 30, 1994  

Science Conference Proceedings (OSTI)

The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be developed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a 3-D representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project.

Allison, M.L. [Utah Geological and Mineral Survey, Salt Lake City, UT (United States)

1994-10-30T23:59:59.000Z

135

Performance evaluation of robotic knowledge representation (PERK)  

Science Conference Proceedings (OSTI)

In this paper, we explore some ways in which symbolic knowledge representations have been evaluated in the past and provide some thoughts on what should be considered when applying and evaluating these types of knowledge representations for real-time ... Keywords: knowledge representation, ontologies, performance metrics, real-time, robotics

Craig Schlenoff; Sebti Foufou; Stephen Balakirsky

2012-03-01T23:59:59.000Z

136

Computational representation of biological systems  

SciTech Connect

Integration of large and diverse biological data sets is a daunting problem facing systems biology researchers. Exploring the complex issues of data validation, integration, and representation, we present a systematic approach for the management and analysis of large biological data sets based on data warehouses. Our system has been implemented in the Bioverse, a framework combining diverse protein information from a variety of knowledge areas such as molecular interactions, pathway localization, protein structure, and protein function.

Frazier, Zach; McDermott, Jason E.; Guerquin, Michal; Samudrala, Ram

2009-04-20T23:59:59.000Z

137

Temporal Representation in Semantic Graphs  

Science Conference Proceedings (OSTI)

A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.

Levandoski, J J; Abdulla, G M

2007-08-07T23:59:59.000Z

138

Image capture system colors transforms  

Science Conference Proceedings (OSTI)

The goal of this paper is to simulate the colors transforms of the reflected light from an illuminated object that passes trough an image capture system. We are interested to see the colors differences at the output of each component from which the light ... Keywords: CIE standards, human eye response, lenses and filters transmittance, spectral images

Toadere Florin

2010-02-01T23:59:59.000Z

139

A Novel Approach For the Simulation of Multiple Flow Mechanisms and Porosities in Shale Gas Reservoirs  

E-Print Network (OSTI)

The state of the art of modeling fluid flow in shale gas reservoirs is dominated by dual porosity models that divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control flow capacity. However, recent extensive microscopic studies reveal that there exist massive micro- and nano- pore systems in shale matrices. Because of this, the actual flow mechanisms in shale reservoirs are considerably more complex than can be simulated by the conventional dual porosity models and Darcy’s Law. Therefore, a model capturing multiple pore scales and flow can provide a better understanding of complex flow mechanisms occurring in these reservoirs. Through the use of a unique simulator, this research work establishes a micro-scale multiple-porosity model for fluid flow in shale reservoirs by capturing the dynamics occurring in three separate porosity systems: organic matter (mainly kerogen); inorganic matter; and natural fractures. Inorganic and organic portions of shale matrix are treated as sub-blocks with different attributes, such as wettability and pore structures. In the organic matter or kerogen, gas desorption and diffusion are the dominant physics. Since the flow regimes are sensitive to pore size, the effects of smaller pores (mainly nanopores and picopores) and larger pores (mainly micropores and nanopores) in kerogen are incorporated in the simulator. The separate inorganic sub-blocks mainly contribute to the ability to better model dynamic water behavior. The multiple porosity model is built upon a unique tool for simulating general multiple porosity systems in which several porosity systems may be tied to each other through arbitrary transfer functions and connectivities. This new model will allow us to better understand complex flow mechanisms and in turn to extend simulation to the reservoir scale including hydraulic fractures through upscaling techniques

Yan, Bicheng

2013-08-01T23:59:59.000Z

140

capture  

E-Print Network (OSTI)

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

Workshop On Gasification; Jared Ciferno; Subcritical Pc; Supercritical Pc; F Cop

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Approach to Nuclear Data Representation  

Science Conference Proceedings (OSTI)

This paper considers an approach for representing nuclear data that is qualitatively different from the approach currently adopted by the nuclear science community. Specifically, they examine a representation in which complicated data is described through collections of distinct and self contained simple data structures. This structure-based representation is compared with the ENDF and ENDL formats, which can be roughly characterized as dictionary-based representations. A pilot data representation for replacing the format currently used at LLNL is presented. Examples are given as is a discussion of promises and shortcomings associated with moving from traditional dictionary-based formats to a structure-rich or class-like representation.

Pruet, J; Brown, D; Beck, B; McNabb, D P

2005-07-27T23:59:59.000Z

142

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

Brown, D.W.

1997-11-11T23:59:59.000Z

143

Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options  

E-Print Network (OSTI)

Capture Ready’ is a design concept enabling fossil fuel plants to be retrofitted more economically with carbon dioxide capture and storage (CCS) technologies, however financing the cost of capture ready can be problematic, especially...

Liang, Xi; Reiner, David; Gibbons, Jon; Li, Jia

144

NETL-Developed Carbon Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

2, Issue 26 2, Issue 26 NETL-Developed Carbon Capture Technology Wins 2012 R&D 100 Award page 2 NETL Scientists Awarded Prestigious Phase Equilibria Research Prize by the American Ceramic Society page 4 Collaborative Stent Research Helps Create Hundreds of High Paying Jobs page 5 the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY 2 NETL-Developed Carbon Capture Technology Wins 2012 R&D 100 Award _____________________________2 Field-proven Meter Rapidly Determines Carbon Dioxide Levels in Groundwater ____________________________3 NETL Scientists Awarded Prestigious Phase Equilibria Research Prize by the American Ceramic Society _______4 Collaborative Stent Research Helps Create Hundreds of High Paying Jobs ______________________________5 NETL Issued Patent for Novel Catalyst Technology ______6

145

HAWC Observatory captures first image  

NLE Websites -- All DOE Office Websites (Extended Search)

April » April » HAWC Observatory captures first image HAWC Observatory captures first image The facility is designed to detect cosmic rays and the highest energy gamma rays ever observed from astrophysical sources. April 30, 2013 The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. HAWC is under construction inside the Parque Nacional Pico de Orizaba, a Mexican national park. An international team of researchers, including scientists from Los Alamos, has taken the first image of the High-Altitude Water Cherenkov Observatory, or HAWC. The facility is designed to detect cosmic rays and the highest energy gamma rays ever observed from astrophysical sources. HAWC is under

146

Natural materials for carbon capture.  

Science Conference Proceedings (OSTI)

Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

Myshakin, Evgeniy M. (National Energy Technology Laboratory, Pittsburgh, PA); Romanov, Vyacheslav N. (National Energy Technology Laboratory, Pittsburgh, PA); Cygan, Randall Timothy

2010-11-01T23:59:59.000Z

147

RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS  

SciTech Connect

The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

Anthony R. Kovscek; William E. Brigham

1999-06-01T23:59:59.000Z

148

Media representation of maternal neonaticide  

E-Print Network (OSTI)

The present research conducted a rich discourse analysis of an episode of the fictional television crime drama, Law & Order: Special Victims Unit, as well as a content analysis of local and national news transcripts focusing on the representation of mothers who commit neonaticide. Both fictional and non-fictional media sources exhibited aspects of the monstrous maternal theme and the strain defense theme. The monstrous maternal theme consists of words and statements that indicate the descriptions of crime committed against the newborn as well as negative responses and reactions by others to the young mother and her crime. The strain defense theme refers to instances that discuss the internal and external strains of the young woman that may have contributed to her committing neonaticide. However, the "monstrous maternal" is the prevailing representation of mothers who commit neonaticide in both fictional and non-fictional media sources. This media representation utilizes "control talk" to separate "us" the good mothers, who abide by the cultural expectations of traditional gender roles and embrace the internal and external strains of motherhood, from "them" the criminal mothers, who fail to adhere to these role expectations of motherhood by committing neonaticide. The present research reveals that cultural stories and scripts of the monstrous maternal still exist. This contemporary folklore may serve as a form of social control to scare women into conforming to these traditional gender roles and bearing the burden of the motherhood strains, in order to avoid being branded a bad mother. Finally, the present research develops the application of General Strain Theory to explain the internal and external strains of a young woman that may contribute to her committing the criminal act of maternal neonaticide. These media representations of maternal neonaticide could impact the criminal justice system and public policy. Questions of accuracy, gendered understandings of crime and gendered understanding of appropriate punishment are areas the present research explores. Most importantly, the present research seeks to investigate the connection between legal culture in both media and professional practice - and what those connections mean for our general cultural understandings of violence and aggression in women.

Lewis, Jocelyn Renee

2008-05-01T23:59:59.000Z

149

N-density representability and the optimal transport limit of the Hohenberg-Kohn functional  

E-Print Network (OSTI)

We derive and analyze a hierarchy of approximations to the strongly correlated limit of the Hohenberg-Kohn functional. These "density representability approximations" are obtained by first noting that in the strongly correlated limit, N-representability of the pair density reduces to the requirement that the pair density must come from a symmetric N-point density. One then relaxes this requirement to the existence of a representing symmetric k-point density with k < N. The approximate energy can be computed by simulating a fictitious k-electron system. We investigate the approximations by deriving analytically exact results for a 2-site model problem, and by incorporating them into a self-consistent Kohn-Sham calculation for small atoms. We find that the low order representability conditions already capture the main part of the correlations.

Friesecke, Gero; Pass, Brendan; Cotar, Codina; Klüppelberg, Claudia

2013-01-01T23:59:59.000Z

150

NETL: Solvents for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvents for CO2 Capture Project No.: R&D 048 The most attractive physical solvents for carbon dioxide (CO2) capture are those having such properties as high thermal stability,...

151

A virtual company concept for reservoir management  

SciTech Connect

This paper describes how reservoir management problems were pursued with a virtual company concept via the Internet and World Wide Web. The focus of the paper is on the implementation of virtual asset management teams that were assembled with small independent oil companies. The paper highlights the mechanics of how the virtual team transferred data and interpretations, evaluated geological models of complex reservoirs, and used results of simulation studies to analyze various reservoir management strategies.

Martin, F.D. [Dave Martin and Associates, Inc. (United States); Kendall, R.P.; Whitney, E.M. [Los Alamos National Lab., NM (United States)

1998-12-31T23:59:59.000Z

152

Slimholes for geothermal reservoir evaluation - An overview  

DOE Green Energy (OSTI)

The topics covered in this session include: slimhole testing and data acquisition, theoretical and numerical models for slimholes, and an overview of the analysis of slimhole data acquired by the Japanese. The fundamental issues discussed are concerned with assessing the efficacy of slimhole testing for the evaluation of geothermal reservoirs. the term reservoir evaluation is here taken to mean the assessment of the potential of the geothermal reservoir for the profitable production of electrical power. As an introduction to the subsequent presentations and discussions, a brief summary of the more important aspects of the use of slimholes in reservoir evaluation is given.

Hickox, C.E.

1996-08-01T23:59:59.000Z

153

Mapping Diffuse Seismicity for Geothermal Reservoir Management...  

Open Energy Info (EERE)

Facebook icon Twitter icon Mapping Diffuse Seismicity for Geothermal Reservoir Management with Matched Field Processing Geothermal Lab Call Project Jump to: navigation,...

154

Nonisothermal injection tests in fractured reservoirs  

DOE Green Energy (OSTI)

The paper extends the analysis of nonisothermal pressure transient data to fractured reservoirs. Two cases are considered: reservoirs with predominantly horzontal fractures and reservoirs with predominantly vertical fractures. Effects of conductive heat transfer between the fractures and the rock matrix are modeled, and the resulting pressure transients evaluated. Thermal conduction tends to retard the movement of the thermal front in the fractures, which significantly affects the pressure transient data. The purpose of the numerical simulation studies is to provide methods for analyzing nonisothermal injection/falloff data for fractured reservoirs.

Cox, B.L.; Bodvarsson, G.S.

1985-01-01T23:59:59.000Z

155

Injecting Carbon Dioxide into Unconventional Storage Reservoirs...  

NLE Websites -- All DOE Office Websites (Extended Search)

will also be investigated with a targeted CO 2 injection test into a depleted shale gas well. Different reservoir models will be used before, during, and after injection...

156

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect

Research continued on methods to detect naturally fractured tight gas reservoirs. This report discusses 3D-3C seismic acquisition and 3D P-wave alternate processing.

NONE

1995-12-31T23:59:59.000Z

157

Safety of Dams and Reservoirs Act (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This act regulates dams and associated reservoirs to protect health and public safety and minimize adverse consequences associated with potential dam failure. The act describes the responsibilities...

158

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

Brown, Donald W. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

159

Realistic costs of carbon capture  

Science Conference Proceedings (OSTI)

There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

2009-07-01T23:59:59.000Z

160

Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?  

Science Conference Proceedings (OSTI)

The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

Clarkson, Christopher R [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Vector Representation of Trade Cumulus Thermodynamic Fluxes  

Science Conference Proceedings (OSTI)

A vector representation of the BOMEX thermodynamic budget data is presented which shows graphically the relationship of the fluxes and the mean layer structure.

Alan K. Betts

1985-12-01T23:59:59.000Z

162

On tolerances representable as $R \\circ R^-$  

E-Print Network (OSTI)

We give examples and counterexamples concerning varieties in which every tolerance is representable as $R \\circ R^-$, for some reflexive and admissible relation $R$.

Paolo Lipparini

2006-10-02T23:59:59.000Z

163

INTEGRATED OUTCROP AND SUBSURFACE STUDIES OF THE INTERWELL ENVIRONMENT OF CARBONATE RESERVOIRS: CLEAR FORK (LEONARADIAN AGE) RESERVOIRS, WEST TEXAS AND NEW MEXICO  

SciTech Connect

Petrophysical heterogeneity in the South Wasson Clear Fork (SWCF) reservoir and other shallow-water platform carbonates in the Permian Basin and elsewhere is composed of a large-scale stratigraphically controlled component and a small-scale poorly correlated component. The large-scale variability exists as a flow-unit scale petrophysical layering that is laterally persistent at interwell scales and produces highly stratified reservoir behavior. Capturing the rate-enhancing effect of the small-scale variability requires carefully controlled averaging procedures at four levels of scaleup. Porosity can be easily scaled using arithmetic averaging procedures. Permeability, however, requires carefully controlled power-averaging procedures. Effective permeability is increased at every scaleup level.

James W. Jennings, Jr.; F. Jerry Lucia

2001-10-01T23:59:59.000Z

164

Capturing Carbon Dioxide from Power Plants  

Science Conference Proceedings (OSTI)

The purpose of this report is to review the current state of CO2 capture technologies in order to provide input into the design of a CO2 capture and storage test facility. First, an overview of the three major approaches to CO2 capture is provided, noting that only one of these options, post-combustion capture, is compatible with the design criteria for the test facility. Second, current research efforts for post-combustion capture are reviewed, giving examples of technologies that may be appropriate for...

2004-12-16T23:59:59.000Z

165

Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management  

Science Conference Proceedings (OSTI)

The objectives of this quarterly report was to summarize the work conducted under each task during the reporting period April - June 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

Koerner, Roy; Clarke, Don; Walker, Scott

1999-11-09T23:59:59.000Z

166

Exact c-number Representation of Non-Markovian Quantum Dissipation  

E-Print Network (OSTI)

The reduced dynamics of a quantum system interacting with a linear heat bath finds an exact representation in terms of a stochastic Schr{\\"o}dinger equation. All memory effects of the reservoir are transformed into noise correlations and mean-field friction. The classical limit of the resulting stochastic dynamics is shown to be a generalized Langevin equation, and conventional quantum state diffusion is recovered in the Born--Markov approximation. The non-Markovian exact dynamics, valid at arbitrary temperature and damping strength, is exemplified by an application to the dissipative two-state system.

J. Stockburger; H. Grabert

2002-03-08T23:59:59.000Z

167

Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management  

SciTech Connect

This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

1997-04-10T23:59:59.000Z

168

River Flow Forecasting for Reservoir management through Neural Networks  

Science Conference Proceedings (OSTI)

In utilities using a mixture of hydroelectric and nonhydroelectric power, the economics of the hydroelectric plants depend upon the reservoir height and the inflow into the reservoir for several months into the future. Accurate forecasts of reservoir ...

Meuser Valenca; Teresa Ludermir; Anelle Valenca

2005-12-01T23:59:59.000Z

169

Unsteady Flow Model for Fractured Gas Reservoirs  

Science Conference Proceedings (OSTI)

Developing low permeability reservoirs is currently a big challenge to the industry. Because low permeability reservoirs are of low quality and are easily damaged, production from a single well is low, and there is unlikely to be any primary recovery. ... Keywords: Low permeability, Fractured well, Orthogonal transformation, Unsteady, Productivity

Li Yongming; Zhao Jinzhou; Gong Yang; Yao Fengsheng; Jiang Youshi

2010-12-01T23:59:59.000Z

170

Water resources review: Wheeler Reservoir, 1990  

DOE Green Energy (OSTI)

Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

Wallus, R.; Cox, J.P.

1990-09-01T23:59:59.000Z

171

Geothermal reservoir insurance study. Final report  

DOE Green Energy (OSTI)

The principal goal of this study was to provide analysis of and recommendations on the need for and feasibility of a geothermal reservoir insurance program. Five major tasks are reported: perception of risk by major market sectors, status of private sector insurance programs, analysis of reservoir risks, alternative government roles, and recommendations.

Not Available

1981-10-09T23:59:59.000Z

172

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect

The ultimate oojective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization--determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis--source rock identification; and the study of asphaltene precipitation for Alaskan crude oils. This report presents a summary of technical progress of the well log analysis of Kuparuk Field, Northslope, Alaska.

Sharma, G.D.

1992-01-01T23:59:59.000Z

173

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect

The ultimate objective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization -- determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis -- source rock identification; and the study of asphaltene precipitation for Alaskan crude oils.

Sharma, G.D.

1991-01-01T23:59:59.000Z

174

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect

The ultimate objective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization-determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis-source rock identification; and the study of asphaltene precipitation for Alaskan crude oils. Results are discussed.

Sharma, G.D.

1992-01-01T23:59:59.000Z

175

On the representation by linear superpositions  

Science Conference Proceedings (OSTI)

In a number of papers, Y. Sternfeld investigated the problems of representation of continuous and bounded functions by linear superpositions. In particular, he proved that if such representation holds for continuous functions, then it holds for bounded ... Keywords: 26B40, 41A05, 41A63, Closed path, Linear superposition, Ridge function

Vugar E. Ismailov

2008-04-01T23:59:59.000Z

176

State space representation of routing flexibility  

Science Conference Proceedings (OSTI)

This paper describes a state space representation for sequencing and routing flexibility in manufacturing systems. Routing flexibility is represented using five different stages as follows: (i) Precedence Graph of Operations; (ii) State Transition Graph ... Keywords: Flexible manufacturing systems, Routing flexibility, Sequencing flexibility, State space representation

Leonardo Rosa Rohde; Denis Borenstein

2005-12-01T23:59:59.000Z

177

Multivariate lag-windows and group representations  

Science Conference Proceedings (OSTI)

Symmetries of the auto-cumulant function (a generalization of the auto-covariance function) of a kth-order stationary time series are derived through a connection with the symmetric group of degree k. Using the theory of group representations, symmetries ... Keywords: 20C30, 37M10, Group representations, Higher-order spectra, Multivariate lag-windows, Symmetry group

Arthur Berg

2008-11-01T23:59:59.000Z

178

External and mental referencing of multiple representations  

Science Conference Proceedings (OSTI)

This article reports on two experimental studies that investigate the impact of integration and external activity on an instructional support method that encourages learners to systematically and interactively integrate multiple representations in the ... Keywords: Cognitive load, Coherence formation, Multimedia, Multiple representations, Structure mapping, Visualizations

Daniel Bodemer; Uwe Faust

2006-01-01T23:59:59.000Z

179

Embedding Defaults into Terminological Knowledge Representation Formalisms  

E-Print Network (OSTI)

; Contents 1 Introduction 3 2 The Representation Formalisms 5 2.1 The terminological language ALCF. 2 The Representation Formalisms First we shall briefly review the terminological language ALCF [11 logic to ALCF . Finally an example will illustrate why Reiter uses Skolemization in his semantics

Baader, Franz

180

MAICE: a tool for knowledge representation  

Science Conference Proceedings (OSTI)

In the present work the software MAICE is shown as a solution for knowledge representation. This software is a visual modeling tool which allows to represent the rules that define a given knowledge universe, independently of specific application area ... Keywords: electrical systems management, electrical transformer diagnosis, fuzzy logic, knowledge modeling, knowledge representation

Fabricio M. Oliveira; Leizer Schnitman; Herman A. Lepkison; J. F. Corrêa; Almir L. Néri, Jr.; J. A. M. Felippe de Souza

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Utah Natural Gas, Wet After Lease Separation New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

182

Utah Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

183

Utah Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Utah Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0 Year-1...

184

A New Method for Treating Wells in Reservoir Simulation.  

E-Print Network (OSTI)

??A new method for formulating finite difference equations for reservoir simulation has been developed. It can be applied throughout the entire simulated reservoir or to… (more)

Gessel, Gregory M 1980-

2007-01-01T23:59:59.000Z

185

Louisiana--North Crude Oil Reserves in Nonproducing Reservoirs...  

Annual Energy Outlook 2012 (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--North Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

186

The Influence of Reservoir Heterogeneity on Geothermal Fluid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alliance for Sustainable Energy, LLC. THE INFLUENCE OF RESERVOIR HETEROGENEITY ON GEOTHERMAL FLUID AND METHANE RECOVERY FROM A GEOPRESSURED GEOTHERMAL RESERVOIR Ariel Esposito...

187

EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc....

188

Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

189

Illinois Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Illinois Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

190

Arkansas Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Arkansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

191

Florida Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Florida Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

192

Montana Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Montana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

193

Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

194

Michigan Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Michigan Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

195

Pennsylvania Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Pennsylvania Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

196

Oklahoma Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Oklahoma Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

197

Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

198

Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2...

199

Effect of matrix shrinkage on permeability of coalbed methane reservoirs .  

E-Print Network (OSTI)

??The dynamic nature of coalbed methane reservoir permeability makes the continuous modeling of the flow process difficult. Knowledge of conventional reservoir modeling is of little… (more)

Tandon, Rohit, 1966-

1991-01-01T23:59:59.000Z

200

Borehole geophysics evaluation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details...

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

California Federal Offshore Dry Natural Gas New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) California Federal Offshore Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

202

Statistical study of seismicity associated with geothermal reservoirs...  

Open Energy Info (EERE)

reservoirs in California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Statistical study of seismicity associated with geothermal reservoirs in California...

203

Lower 48 States Crude Oil Reserves in Nonproducing Reservoirs...  

Gasoline and Diesel Fuel Update (EIA)

Reserves in Nonproducing Reservoirs (Million Barrels) Lower 48 States Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

204

Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs...  

Annual Energy Outlook 2012 (EIA)

Reserves in Nonproducing Reservoirs (Million Barrels) Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

205

New Mexico - East Dry Natural Gas New Reservoir Discoveries in...  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Mexico - East Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade...

206

New Mexico - West Dry Natural Gas New Reservoir Discoveries in...  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Mexico - West Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade...

207

Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

Annual Energy Outlook 2012 (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2...

208

Workshop on neutron capture therapy  

SciTech Connect

Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

Fairchild, R.G.; Bond, V.P. (eds.)

1986-01-01T23:59:59.000Z

209

Ecology of large piscivorous fishes in Guri Reservoir, Venezuela, with notes on fish community structure  

E-Print Network (OSTI)

Venezuela's growing human population is accompanied by a growing need for electricity which has largely been met with hydroelectric power, and yet the full effects of river impoundment on river ecosystems are not known. Venezuela currently has the second largest hydroelectric facility in the world, the Raul Leoni Dam (Guri Reservoir). Formed by the blackwater Caroni River, Guri is characterized by low pH, low nutrients, and high dissolved organic matter. Water level fluctuations associated with hydroelectric facility operations may have large effects on tropical fish spawning, feeding, and survival. The primary sportfishes in the reservoir are the peacock basses (Cichla spp.), that exhibited heightened fish production immediately after inundation. However, during the 1990's, sportfishermen at Guri began complaining about decreased catches. To investigate claims of declining Cichla populations and to compare current fish community structure with a previous survey, the four large piscivorous fishes of Guri Reservoir were sampled. Samples from the northern area of the reservoir had 50 species representing 18 different families. The dominant species in seine samples was the characid Hemigrammus micropterus. In these samples, Cichla temensis, Cichla cf orinocensis, Plagioscion squamosissimus and Hydrolycus scomberoides had greater body condition compared with values for conspecifics from a previous study. Conversely, catch per unit effort for Cichla in gillnets decreased in the current study. Prochilodus rubrotaeniatus, a detritivorous characiform, was the dominant species captured in gillnets. Cichla spp. appear to breed throughout the year with a peak before the rainy season. Hydrolycus scomberoides and Plagioscion squamosissimus partitioned resources, with the former consuming the largest prey and the smallest prey consumed by the latter. Cichla temensis and Plagioscion squamosissimus had high diet overlap among prey types but consumed prey of different sizes. Niche breadths for all species were low. Claims of declining Cichla populations in Guri appear to have some foundation. Blackwater physicochemistry, the reservoir "boombust" cycle, and fishing pressure all influence fish ecology in Guri Reservoir.

Williams, John David

1995-01-01T23:59:59.000Z

210

Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands  

SciTech Connect

The first twelve months of the project focused on collecting data for characterization and modeling. In addition, data from Coalinga Field was analyzed to define the fractal structure present in the data set. The following sections of the report parallel the first four subtasks of the investigation were: (1) Collect and Load Property Data from Temblor Outcrops in California, (2) Collect and Load Property Data from Temblor Reservoir Sands, West Coalinga Field, California, (3) Collect and Load Property Data from Continuous Upper Cretaceous Outcrops in Utah, and (4) Define Fractal Structure in the Data Sets and Apply to Generating Property Representations.

Castle, James W.; Molz, Fred J.

2001-11-29T23:59:59.000Z

211

FE Carbon Capture and Storage News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

carbon-capture-storage-news Office of Fossil Energy carbon-capture-storage-news Office of Fossil Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585202-586-6503 en Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution http://energy.gov/articles/energy-department-invests-drive-down-costs-carbon-capture-support-reductions-greenhouse-gas capture-support-reductions-greenhouse-gas" class="title-link">Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution

212

Integrated reservoir characterization for the Mazari oil field, Pakistan  

E-Print Network (OSTI)

This thesis describes a field study performed on the Mazari oil field located in Sind province, Pakistan. We used an integrated reservoir characterization technique to incorporate the geological, petrophysical, and reservoir performance data to interpret historical reservoir performance, to assess and refine reservoir management activities, and to make plans for future reservoir developments. We used a modified approach to characterize within the mappable geological facies. Our approach is based on the Kozeny-Carmen equation and uses the concept of mean hydraulic radius. As part of our objective to characterize the reservoir, we tabulated reservoir characteristics for each hydraulic flow unit, and we presented estimates of in-place reserves. We evaluated reservoir performance potential using the production history, well tests and cased-hole well log surveys. Suggestions for reservoir management activities in conjunction with the evaluation of the reservoir performance are discussed in detail. Finally, we give recommendations for activities in reservoir development particularly infill drilling considerations and secondary recovery efforts.

Ashraf, Ejaz

1994-01-01T23:59:59.000Z

213

Optimizing reservoir management through fracture modeling  

DOE Green Energy (OSTI)

Fracture flow will become increasingly important to optimal reservoir management as exploration of geothermal reservoirs continues and as injection of spent fluid increases. The Department of Energy conducts research focused on locating and characterizing fractures, modeling the effects of fractures on movement of fluid, solutes, and heat throughout a reservoir, and determining the effects of injection on long-term reservoir production characteristics in order to increase the ability to predict with greater certainty the long-term performance of geothermal reservoirs. Improvements in interpreting and modeling geophysical techniques such as gravity, self potential, and aeromagnetics are yielding new information for the delineation of active major conduits for fluid flow. Vertical seismic profiling and cross-borehole electromagnetic techniques also show promise for delineating fracture zones. DOE funds several efforts for simulating geothermal reservoirs. Lawrence Berkeley Laboratory has adopted a continuum treatment for reservoirs with a fracture component. Idaho National Engineering Laboratory has developed simulation techniques which utilize discrete fractures and interchange of fluid between permeable matrix and fractures. Results of these research projects will be presented to industry through publications and appropriate public meetings. 9 refs.

Renner, J.L.

1988-01-01T23:59:59.000Z

214

IGCC Design Considerations for CO2 Capture  

Science Conference Proceedings (OSTI)

This report contains technical design, plant performance, cost estimates, and economic analysis of IGCC power plants designed with future retrofit for full CO2 capture in mind. The gasification technologies supplied by General Electric, Shell, and Siemens studied in the report were designed to initially produce power without CO2 capture; but their designs included moderate pre-investment to economically accommodate retrofit of full CO2 capture at a later date. The base plant designs include deep sulfur r...

2009-03-31T23:59:59.000Z

215

New Materials Make Methane Capture Possible  

Science Conference Proceedings (OSTI)

May 8, 2013... SBN, captured enough medium source methane to turn it to high purity methane, which in turn could be used to generate efficient electricity.

216

Capturing Latino Students in the Academic Pipeline  

E-Print Network (OSTI)

The Latino Educational Pipeline Why Latino Students are atSTUDENTS IN THE ACADEMIC PIPELINE CAPTURING LATINO STUDENTSIN THE ACADEMIC PIPELINE Patricia Gcindara, Editor Katherine

Gándara, Patricia; Larson, Katherine; Mehan, Hugh; Rumberger, Russell

1998-01-01T23:59:59.000Z

217

NETL: 2011 - Carbon Capture Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture Peer Review During July 18 - 21, 2011, a total of 16 projects from NETL's Innovations for Existing Plants and Carbon Sequestration Programs were peer reviewed....

218

NETL: 2013 - Carbon Capture Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

3 - Independent Peer Reviews of NETL Technology Programs NETL: 2013 - Carbon Capture Peer Review Carbon Storage Peer Review During October 22 - 26, 2012, a total of 16 projects...

219

More Efficient Carbon Capture Material Developed  

Science Conference Proceedings (OSTI)

Mar 11, 2013 ... The previously underused material—known as SIFSIX-1-Cu—has been found to offer a highly efficient mechanism for carbon capture.

220

Supercomputers Capture Turbulence in the Solar Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Provide Web Site Feedback: info@es.net Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space...

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Adsorption of water vapor on reservoir rocks  

DOE Green Energy (OSTI)

Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

Not Available

1993-07-01T23:59:59.000Z

222

Dispersivity as an oil reservoir rock characteristic  

Science Conference Proceedings (OSTI)

The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

Menzie, D.E.; Dutta, S.

1989-12-01T23:59:59.000Z

223

GRADED LIE ALGEBRAS DEFINED BY JORDAN ALGEBRAS AND THEIR REPRESENTATIONS  

E-Print Network (OSTI)

Abstract. In this talk we introduce the notion of a generalized representation of a Jordan algebra with unit which has the following properties: 1) Usual representations and Jacobson representations correspond to special cases of generalized representations. 2) Every simple Jordan algebra has infinitely many nonequivalent generalized representations. 3) There is a one-to-one correspondence between irreducible generalized representations of a Jordan algebra A and irreducible representations of a graded Lie algebra L(A) = U?1?U0?U1 corresponding to A (the Lie algebra L(A) coincides with the TKK construction when A has a unit). The latter correspondence allows to use the theory of representations of Lie algebras to study generalized representations of Jordan algebras. In particular, one can classify irreducible generalized representations of semisimple Jordan algebras and also obtain classical results about usual representations and Jacobson representations in a simple way.

Issai Kantor; Gregory Shpiz

2004-01-01T23:59:59.000Z

224

Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements  

SciTech Connect

In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

Locke, C.D.; Salamy, S.P.

1991-09-01T23:59:59.000Z

225

Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements. Final report  

SciTech Connect

In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

Locke, C.D.; Salamy, S.P.

1991-09-01T23:59:59.000Z

226

Representation of Limited Rights Data and Restricted Computer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Representation of Limited Rights Data and Restricted Computer Software Representation of Limited Rights Data and Restricted Computer Software Any data delivered under an award...

227

Low-to-moderate-temperature hydrothermal reservoir engineering handbook  

DOE Green Energy (OSTI)

Guidelines are provided for evaluating reservoir characteristics containing setions on reservoir classification, conceptual modeling, testing during drilling, current theory of testing, test planning and methodology, instrumentation, and a sample computer program. Sections on test planning and methodology, geochemistry, reservoir monitoring, and the appendixes, containing technical detail, are included. Background information needed to monitor the program of reservoir evaluation is provided.

Not Available

1982-06-01T23:59:59.000Z

228

Definition: Hydrothermal Reservoir | Open Energy Information  

Open Energy Info (EERE)

Hydrothermal Reservoirs are underground zones of porous rock containing hot water and steam, and can be naturally occurring or human-made.1 References x Ret LikeLike...

229

Heat deliverability of homogeneous geothermal reservoirs  

DOE Green Energy (OSTI)

For the last two decades, the petroleum industry has been successfully using simple inflow performance relationships (IPR's) to predict oil deliverability. In contrast, the geothermal industry lacked a simple and reliable method to estimate geothermal wells' heat deliverability. To address this gap in the standard geothermal-reservoir-assessment arsenal, we developed generalized dimensionless geothermal inflow performance relationships (GIPR's). These ''reference curves'' may be regarded as an approximate general solution of the equations describing the practically important case of radial 2-phase inflow. Based on this approximate solution, we outline a straightforward approach to estimate the reservoir contribution to geothermal wells heat and mass deliverability for 2-phase reservoirs. This approach is far less costly and in most cases as reliable as numerically modeling the reservoir, which is the alternative for 2-phase inflow.

Iglesias, Eduardo R.; Moya, Sara L.

1991-01-01T23:59:59.000Z

230

Reservoir response to tidal and barometric effects  

DOE Green Energy (OSTI)

Solid earth tidal strain and surface loading due to fluctuations in barometric pressure have the effect, although extremely minute, of dilating or contracting the effective pore volume in a porous reservoir. If a well intersects the formation, the change in pore pressure can be measured with sensitive quartz pressure gauges. Mathematical models of the relevant fluid dynamics of the well-reservoir system have been generated and tested against conventional well pumping results or core data at the Salton Sea Geothermal Field (SSGF), California and at the Raft River, Geothermal Field (RRGF), Idaho. Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters.

Hanson, J.M.

1980-05-29T23:59:59.000Z

231

Heat deliverability of homogeneous geothermal reservoirs  

SciTech Connect

For the last two decades, the petroleum industry has been successfully using simple inflow performance relationships (IPR's) to predict oil deliverability. In contrast, the geothermal industry lacked a simple and reliable method to estimate geothermal wells' heat deliverability. To address this gap in the standard geothermal-reservoir-assessment arsenal, we developed generalized dimensionless geothermal inflow performance relationships (GIPR's). These ''reference curves'' may be regarded as an approximate general solution of the equations describing the practically important case of radial 2-phase inflow. Based on this approximate solution, we outline a straightforward approach to estimate the reservoir contribution to geothermal wells heat and mass deliverability for 2-phase reservoirs. This approach is far less costly and in most cases as reliable as numerically modeling the reservoir, which is the alternative for 2-phase inflow.

Iglesias, Eduardo R.; Moya, Sara L.

1991-01-01T23:59:59.000Z

232

Reservoir performance characterized in mature steam pattern  

Science Conference Proceedings (OSTI)

A detailed reservoir description provided new insight in an investigation of a ten-year-old steam flood. Mobil Oil Corporation conducted this study of the Pleistocene upper Tulare sands in South Belridge field, located in the San Joaquin basin, Kern County, California. The study area is on the gently dipping (6/degrees/) southwestern flank of the South Belridge anticline. Wireline logs from 19 wells in a 10-ac (660 ft x 660 ft) pattern were correlated in detail. Seven post-steam conventional cores (1523 ft) aided (1) the evaluation of vertical and lateral steam-sweep efficiency, (2) evaluation of reservoir and fluid changes due to steam, (3) influence of lithofacies in reservoir quality, and (4) provided insight to the three-dimensional reservoir flow-unit geometries.

Miller, D.D.; McPherson, J.G.; Covington, T.E.

1989-04-01T23:59:59.000Z

233

PROCEEDINGS TWENTIETH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING  

NLE Websites -- All DOE Office Websites (Extended Search)

a global reservoir value of the amount of adsorbed liquid water per kg of rock (called ADS in the present paper). We simulated the natural state with different values of ADS,...

234

Characterization of geothermal reservoir crack patterns using...  

Open Energy Info (EERE)

the time delays of the split waves they determined tomographically the 3-D fracture density distribution in the reservoir. Author(s): Lou, M.; Rial, J.A. Published: Geophysics,...

235

Reservoir screening criteria for underbalanced drilling  

Science Conference Proceedings (OSTI)

Properly designed and executed underbalanced drilling operations can eliminate or significantly reduce formation damage, mud or drill solids invasion, lost circulation, fluid entrainment and trapping effects, and potential adverse reactions of drilling fluids with the reservoir matrix or in-situ reservoir fluids. The key to selecting appropriate reservoir candidates is achieving a balance of technical, safety and economic factors. Not every reservoir is an ideal candidate for an underbalanced drilling operation and in some cases distinct disadvantages may exist in trying to execute an underbalanced drilling operation in comparison to a simpler more conventional overbalanced application. Extensive field experience has played an important role in determining the following key criteria and design considerations that should be examined when evaluating a well. Screening criteria are also provided to help operators ascertain if a given formation is, in fact, a viable underbalanced drilling candidate.

Bennion, D.B. [Hycal Energy Research Labs. Ltd., Calgary, Alberta (Canada)

1997-02-01T23:59:59.000Z

236

Optimizing injected solvent fraction in stratified reservoirs  

E-Print Network (OSTI)

Waterflooding has become standard practice for extending the productive life of many solution gas drive reservoirs, but has the disadvantage of leaving a substantial residual oil volume in the reservoir. Solvent flooding has been offered as a method whereby oil may be completely displaced from the reservoir, leaving no residual volume. Field results have demonstrated that solvent floods suffer from early solvent breakthrough and considerable oil by-passing owing to high solvent mobility. The injection of both water and solvent has been demonstrated to offer advantages. Water partially mitigates both the adverse mobility and high cost of solvent floods, while solvent mobilizes oil which would be left in the reservoir by water alone. The process is equally applicable to reservoirs currently at residual oil saturation (tertiary floods) and to reservoirs at maximum oil saturation (secondary floods). In stratified reservoirs high permeability layers may be preferentially swept by solvent floods, while low permeability layers may be scarcely swept at all. Presence or absence of transverse communication between layers can modify overall sweep efficiency. This work is a study of water-solvent injection in stratified reservoirs based on computer simulation results. Fractional oil recovery as a function of injected solvent fraction, permeability contrast between layers, initial oil saturation, and presence or absence of transverse communication between strata has been determined. Results are presented as a series of optimization curves. Permeability contrast between layers is shown to be the dominant control on fractional oil recovery. Transverse communicating reservoirs are shown to require a higher solvent-water ratio in order to attain recoveries comparable to transverse noncommunicating reservoirs. In actual field projects, water and solvent are injected alternately as discrete slugs. This process is known as "WAG" for "water-alternating-gas". In the simulations used in this study, continuous water-solvent injection at a fixed fraction rather than true WAG was employed. It is demonstrated that the two methods give equivalent results. In summary, this work is the first comprehensive study of the behavior of stratified reservoirs undergoing water-solvent injection.

Moon, Gary Michael

1993-01-01T23:59:59.000Z

237

Citronelle Oil Field north of Mobile, Alabama. The project will capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Citronelle Oil Field north of Mobile, Alabama. The project will capture Citronelle Oil Field north of Mobile, Alabama. The project will capture approximately 150,000 tons of CO 2 per year from Alabama Power's Plant Barry (a total equivalent to the emissions from 25 megawatts of the plant's generating capacity) and inject the CO 2 into a deep saline reservoir 9,000 feet beneath the surface. Under the plan, the CO 2 will be transported by pipeline and injected into the saline formation, which has oil-bearing formations both above and below its location. A monitoring, verification, and accounting (MVA) program will be conducted to track the movement of the injected CO 2 and ensure that it is safely and permanently stored. The project will commence in 2011 and is expected to last up to four years. This test site was selected by

238

Quantization and erasures in frame representations  

E-Print Network (OSTI)

Frame representations, which correspond to overcomplete generalizations to basis expansions, are often used in signal processing to provide robustness to errors. In this thesis robustness is provided through the use of ...

Boufounos, Petros T., 1977-

2006-01-01T23:59:59.000Z

239

Mental Representations Formed From Educational Website Formats  

Science Conference Proceedings (OSTI)

The increasing popularity of web-based distance education places high demand on distance educators to format web pages to facilitate learning. However, limited guidelines exist regarding appropriate writing styles for web-based distance education. This study investigated the effect of four different writing styles on reader’s mental representation of hypertext. Participants studied hypertext written in one of four web-writing styles (e.g., concise, scannable, objective, and combined) and were then administered a cued association task intended to measure their mental representations of the hypertext. It is hypothesized that the scannable and combined styles will bias readers to scan rather than elaborately read, which may result in less dense mental representations (as identified through Pathfinder analysis) relative to the objective and concise writing styles. Further, the use of more descriptors in the objective writing style will lead to better integration of ideas and more dense mental representations than the concise writing style.

Elizabeth T. Cady; Kimberly R. Raddatz; Tuan Q. Tran; Bernardo de la Garza; Peter D. Elgin

2006-10-01T23:59:59.000Z

240

The LBL geothermal reservoir technology program  

DOE Green Energy (OSTI)

The main objective of the DOE/GD-funded Geothermal Reservoir Technology Program at Lawrence Berkeley Laboratory is the development and testing of new and improved methods and tools needed by industry in its effort to delineate, characterize, evaluate, and exploit hydrothermal systems for geothermal energy. This paper summarizes the recent and ongoing field, laboratory, and theoretical research activities being conducted as part of the Geothermal Reservoir Technology Program. 28 refs., 4 figs.

Lippmann, M.J.

1991-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Stanford Geothermal Program, reservoir and injection technology  

DOE Green Energy (OSTI)

This annual report of the Stanford Geothermal Program presents major projects in reservoir and injection technology. The four include: (1) an application of the boundary element method to front tracking and pressure transient testing; (2) determination of fracture aperture, a multi-tracer approach; (3) an analysis of tracer and thermal transients during reinjection; and, (4) pressure transient modeling of a non-uniformly fractured reservoir. (BN)

Horne, R.; Ramey, H.J. Jr.; Miller, F.G.; Brigham, W.E.; Kruger, P.

1988-12-01T23:59:59.000Z

242

Capture Effect of Randomly Addressed Polling Protocol  

Science Conference Proceedings (OSTI)

The capture effect, discussed in this paper, is generally considered to enhance the system‘s performance in a wireless network. This paper also considers the Randomly Addressed Polling (RAP) protocol in the presence of a fading mobile radio ... Keywords: capture effect, noiseless, randomly addressed polling protocol

Jiang-Whai Dai

1999-06-01T23:59:59.000Z

243

Neutron capture in the r-process  

Science Conference Proceedings (OSTI)

Recently we have shown that neutron capture rates on nuclei near stability significantly influence the r-process abundance pattern. We discuss the different mechanisms by which the abundance pattern is sensitive to the capture rates and identify key nuclei whose rates are of particular im- portance. Here we consider nuclei in the A = 130 and A = 80 regions.

Surman, Rebecca [Union College; Mclaughlin, Gail C [North Carolina State University; Mumpower, Matthew [North Carolina State University; Hix, William Raphael [ORNL; Jones, K. L. [University of Tennessee, Knoxville (UTK)

2010-01-01T23:59:59.000Z

244

Converting Boundary Representation Solid Models to Half-Space Representation Models for Monte Carlo Analysis  

SciTech Connect

Solid modeling computer software systems provide for the design of three-dimensional solid models used in the design and analysis of physical components. The current state-of-the-art in solid modeling representation uses a boundary representation format in which geometry and topology are used to form three-dimensional boundaries of the solid. The geometry representation used in these systems is cubic B-spline curves and surfaces--a network of cubic B-spline functions in three-dimensional Cartesian coordinate space. Many Monte Carlo codes, however, use a geometry representation in which geometry units are specified by intersections and unions of half-spaces. This paper describes an algorithm for converting from a boundary representation to a half-space representation.

Davis JE, Eddy MJ, Sutton TM, Altomari TJ

2007-03-01T23:59:59.000Z

245

Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options  

E-Print Network (OSTI)

Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options Xi Liang, Jia Li, Jon Gibbons and David Reiner December 2007 EPRG 0728 & CWPE 0761 #12;FINANCING CAPTURE READY COAL supercritical pulverized coal power plant in China, using a cash flow model with Monte-Carlo simulations

Aickelin, Uwe

246

Reservoir assessment of The Geysers Geothermal field  

DOE Green Energy (OSTI)

Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

Thomas, R.P.; Chapman, R.H.; Dykstra, H.

1981-01-01T23:59:59.000Z

247

Carbon Capture Technology | Open Energy Information  

Open Energy Info (EERE)

Technology Technology Jump to: navigation, search This information is taken from DOE's information on Carbon Capture Carbon Capture Research Before carbon dioxide (CO2) gas can be sequestered from power plants and other point sources, it must be captured as a relatively pure gas. On a mass basis, CO2 is the 19th largest commodity chemical in the United States, and CO2 is routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H2 production, and limestone calcination. Existing capture technologies, however, are not cost-effective when considered in the context of sequestering CO2 from power plants. Most power plants and other large point sources use air-fired combustors, a process that exhausts CO2 diluted with nitrogen. Flue gas from coal-fired power

248

Integrated reservoir study of the 8 reservoir of the Green Canyon 18 field  

E-Print Network (OSTI)

The move into deeper waters in the Gulf of Mexico has produced new opportunities for petroleum production, but it also has produced new challenges as different reservoir problems are encountered. This integrated reservoir characterization effort has provided useful information about the behavior and characteristics of a typical unconsolidated, overpressured, fine-grained, turbidite reservoir, which constitutes the majority of the reservoirs present in the Outer Continental Shelf of the Gulf of Mexico. Reservoirs in the Green Canyon 18 (GC 18) field constitute part of a turbidite package with reservoir quality typically increasing with depth. Characterization of the relatively shallow 8 reservoir had hitherto been hindered by the difficulty in resolving its complex architecture and stratigraphy. Furthermore, the combination of its unconsolidated rock matrix and abnormal pore pressure has resulted in severe production-induced compaction. The reservoir's complex geology had previously obfuscated the delineation of its hydrocarbon accumulation and determination of its different resource volumes. Geological and architectural alterations caused by post-accumulation salt tectonic activities had previously undermined the determination of the reservoir's active drive mechanisms and their chronology. Seismic interpretation has provided the reservoir geometry and topography. The reservoir stratigraphy has been defined using log, core and seismic data. With well data as pilot points, the spatial distribution of the reservoir properties has been defined using geostatistics. The resulting geological model was used to construct a dynamic flow model that matched historical production and pressure data.. The reservoir's pressure and production behavior indicates a dominant compaction drive mechanism. The results of this work show that the reservoir performance is influenced not only by the available drive energy, but also by the spatial distribution of the different facies relative to well locations. The study has delineated the hydrocarbon bearing reservoir, quantified the different resource categories as STOIIP/GIIP = 19.8/26.2 mmstb/Bscf, ultimate recovery = 9.92/16.01 mmstb/Bscf, and reserves (as of 9/2001) = 1.74/5.99 mmstb/Bscf of oil and gas, respectively. There does not appear to be significant benefit to infill drilling or enhanced recovery operations.

Aniekwena, Anthony Udegbunam

2003-08-01T23:59:59.000Z

249

Toward a Common Method of Cost Estimation for CO2 Capture and Storage at Fossil Fuel Power Plants  

Science Conference Proceedings (OSTI)

There are significant differences in the methods employed by various organizations to estimate the cost of carbon capture and storage (CCS) systems for fossil fuel power plants. Such differences often are not readily apparent in publicly reported CCS cost estimates. As a consequence, there is a significant degree of misunderstanding, confusion, and mis-representation of CCS cost information, especially among audiences not familiar with the details of CCS costing. Given the international importance ...

2013-03-18T23:59:59.000Z

250

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

Stevens, C.G.

1978-08-29T23:59:59.000Z

251

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

Stevens, Charles G. (Pleasanton, CA)

1978-01-01T23:59:59.000Z

252

Application of integrated reservoir management and reservoir characterization to optimize infill drilling, Class II  

SciTech Connect

The major purpose of this project was to demonstrate the use of cost effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability carbonate reservoirs such as the North Robertson (Clearfork) Unit.

Bergeron, Jack; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill; Bezant, Bryce

2000-03-16T23:59:59.000Z

253

Retrofitting CO{sub 2} capture  

SciTech Connect

Retrofitting existing fossil-fueled plants with the first available carbon dioxide capture technologies could play an important role in paving the way for development of lower-cost, reliable carbon capture and storage systems. EPRI research is helping utilities better understand the engineering challenges and economic consequences. Studies are being conducted on retrofitting five different plants with advanced amine PCC technologies. Other studies include: process optimization studies; valuing operating flexibility; CO{sub 2} capture for CTCC plants; and assessing the impact of climate policy on retrofitting investment.

Weisel, J.

2009-07-01T23:59:59.000Z

254

Benchmarking a surrogate reaction for neutron capture  

Science Conference Proceedings (OSTI)

{sup 171,173}Yb(d,p{gamma}) reactions are measured, with the goal of extracting the neutron capture cross-section ratio as a function of the neutron energy using the external surrogate ratio method. The cross-section ratios obtained are compared to the known neutron capture cross sections. Although the Weisskopf-Ewing limit is demonstrated not to apply for these low neutron energies, a prescription for deducing surrogate cross sections is presented. The surrogate cross-section ratios deduced from the {sup 171,173}Yb(d,p{gamma}) measurements agree with the neutron capture results within 15%.

Hatarik, R.; Cizewski, J. A.; Hatarik, A. M.; O'Malley, P. D. [Rutgers University, New Brunswick, New Jersey 08903 (United States); Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Escher, J. E.; Lesher, S. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Gibelin, J.; Phair, L.; Rodriguez-Vieitez, E. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Goldblum, B. L. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Nuclear Engineering Department, University of California, Berkeley, California 94720 (United States); Swan, T. [Rutgers University, New Brunswick, New Jersey 08903 (United States); University of Surrey, Guildford GU2 7XH, Surrey (United Kingdom); Wiedeking, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2010-01-15T23:59:59.000Z

255

Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States  

Science Conference Proceedings (OSTI)

The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

1999-04-28T23:59:59.000Z

256

Seismic imaging of reservoir flow properties: Resolving waterinflux and reservoir permeability  

SciTech Connect

Methods for geophysical model assessment, in particuale thecomputation of model parameter resolution, indicate the value and thelimitations of time-lapse data in estimating reservoir flow properties. Atrajectory-based method for computing sensitivities provides an effectivemeans to compute model parameter resolutions. We examine the commonsituation in which water encroaches into a resrvoir from below, as due tothe upward movement of an oil-water contact. Using straight-forwardtechniques we find that, by inclusing reflections off the top and bottomof a reservoir tens of meters thick, we can infer reservoir permeabilitybased upon time-lapse data. We find that, for the caseof water influxfrom below, using multiple time-lapse 'snapshots' does not necessarilyimprove the resolution of reservoir permeability. An application totime-lapse data from the Norne field illustrates that we can resolve thepermeability near a producing well using reflections from threeinterfaces associated with the reservoir.

Vasco, D.W.; Keers, Henk

2006-11-27T23:59:59.000Z

257

An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir  

Open Energy Info (EERE)

Humeros Geothermal Reservoir Humeros Geothermal Reservoir (Mexico) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir (Mexico) Details Activities (0) Areas (0) Regions (0) Abstract: An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed obtaining the pressure and temperature profiles for the unperturbed reservoir fluids and developing 1-D and 2-D models for the reservoir. Results showed the existence of at least two reservoirs in the system: a relatively shallow liquid-dominant reservoir located between 1025 and 1600 m above sea level (a.s.l.) the pressure profile of which corresponds to a 300-330°C boiling water column and a deeper low-liquid-saturation reservoir located between

258

Annual Report: Carbon Capture Simulation Initiative (CCSI) (30 September 2012)  

SciTech Connect

The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that is developing and deploying state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models, with uncertainty quantification (UQ), optimization, risk analysis and decision making capabilities. The CCSI Toolset incorporates commercial and open-source software currently in use by industry and is also developing new software tools as necessary to fill technology gaps identified during execution of the project. Ultimately, the CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. CCSI is organized into 8 technical elements that fall under two focus areas. The first focus area (Physicochemical Models and Data) addresses the steps necessary to model and simulate the various technologies and processes needed to bring a new Carbon Capture and Storage (CCS) technology into production. The second focus area (Analysis & Software) is developing the software infrastructure to integrate the various components and implement the tools that are needed to make quantifiable decisions regarding the viability of new CCS technologies. CCSI also has an Industry Advisory Board (IAB). By working closely with industry from the inception of the project to identify industrial challenge problems, CCSI ensures that the simulation tools are developed for the carbon capture technologies of most relevance to industry. CCSI is led by the National Energy Technology Laboratory (NETL) and leverages the Department of Energy (DOE) national laboratories? core strengths in modeling and simulation, bringing together the best capabilities at NETL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL). The CCSI?s industrial partners provide representation from the power generation industry, equipment manufacturers, technology providers and engineering and construction firms. The CCSI?s academic participants (Carnegie Mellon University, Princeton University, West Virginia University, and Boston University) bring unparalleled expertise in multiphase flow reactors, combustion, process synthesis and optimization, planning and scheduling, and process control techniques for energy processes. During Fiscal Year (FY) 12, CCSI released its first set of computational tools and models. This pre-release, a year ahead of the originally planned first release, is the result of intense industry interest in getting early access to the tools and the phenomenal progress of the CCSI technical team. These initial components of the CCSI Toolset provide new models and computational capabilities that will accelerate the commercial development of carbon capture technologies as well as related technologies, such as those found in the power, refining, chemicals, and gas production industries. The release consists of new tools for process synthesis and optimization to help identify promising concepts more quickly, new physics-based models of potential capture equipment and processes that will reduce the time to design and troubleshoot new systems, a framework to quantify the uncertainty of model predictions, and various enabling tools that provide new capabilities such as creating reduced order models (ROMs) from reacting multiphase flow

Miller, David C; Syamlal, Madhava; Cottrell, Roger; Kress, Joel D; Sun, Xin; Sundaresan, S; Sahinidis, Nikolaos V; Zitney, Stephen E; Bhattacharyya, D; Agarwal, Deb; Tong, Charles; Lin, Guang; Dale, Crystal; Engel, Dave; Calafiura, Paolo; Beattie, Keith

2012-09-30T23:59:59.000Z

259

Comparing Single and Multiple Turbine Representations in a Wind Farm Simulation: Preprint  

SciTech Connect

This paper compares single turbine representation versus multiple turbine representation in a wind farm simulation.

Muljadi, E.; Parsons, B.

2006-03-01T23:59:59.000Z

260

Fractured shale reservoirs: Towards a realistic model  

Science Conference Proceedings (OSTI)

Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

Hamilton-Smith, T. [Applied Earth Science, Lexington, KY (United States)

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Gas network model allows full reservoir coupling  

Science Conference Proceedings (OSTI)

The gas-network flow model (Gasnet) developed for and added to an existing Qatar General Petroleum Corp. (OGPC) in-house reservoir simulator, allows improved modeling of the interaction among the reservoir, wells, and pipeline networks. Gasnet is a three-phase model that is modified to handle gas-condensate systems. The numerical solution is based on a control volume scheme that uses the concept of cells and junctions, whereby pressure and phase densities are defined in cells, while phase flows are defined at junction links. The model features common numerical equations for the reservoir, the well, and the pipeline components and an efficient state-variable solution method in which all primary variables including phase flows are solved directly. Both steady-state and transient flow events can be simulated with the same tool. Three test cases show how the model runs. One case simulates flow redistribution in a simple two-branch gas network. The second simulates a horizontal gas well in a waterflooded gas reservoir. The third involves an export gas pipeline coupled to a producing reservoir.

Methnani, M.M. [Qatar General Petroleum Corp., Doha (Qatar)

1998-02-23T23:59:59.000Z

262

Determination of thermal neutron capture gamma yields.  

E-Print Network (OSTI)

A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

Harper, Thomas Lawrence

1969-01-01T23:59:59.000Z

263

Shock Capturing with Discontinuous Galerkin Method  

E-Print Network (OSTI)

Shock capturing has been a challenge for computational fluid dynamicists over the years. This article deals with discontinuous Galerkin method to solve the hyperbolic equations in which solutions may develop discontinuities ...

Nguyen, Vinh Tan

264

Economic assessment of CO? capture and disposal  

E-Print Network (OSTI)

A multi-sector multi-region general equilibrium model of economic growth and emissions is used to explore the conditions that will determine the market penetration of CO2 capture and disposal technology.

Eckaus, Richard S.; Jacoby, Henry D.; Ellerman, A. Denny.; Leung, Wing-Chi.; Yang, Zili.

265

Computer simulation of neutron capture therapy.  

E-Print Network (OSTI)

Analytical methods are developed to simulate on a large digital computer the production and use of reactor neutron beams f or boron capture therapy of brain tumors. The simulation accounts for radiation dose distributions ...

Olson, Arne Peter

1967-01-01T23:59:59.000Z

266

Regulating carbon dioxide capture and storage  

E-Print Network (OSTI)

This essay examines several legal, regulatory and organizational issues that need to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal, regulatory, and organizational ...

De Figueiredo, Mark A.

2007-01-01T23:59:59.000Z

267

Converting Captured CO2 into Useful Materials  

Science Conference Proceedings (OSTI)

Aug 2, 2010... algae production technology that can capture at least 60 percent of flue gas CO2 from an industrial coal-fired source to produce biofuel and ...

268

Producing Gas-Oil Ratio Performance of Conventional and Unconventional Reservoirs.  

E-Print Network (OSTI)

?? This study presents a detailed analysis of producing gas-oil ratio performance characteristics from conventional reservoir to unconventional reservoir. Numerical simulations of various reservoir fluid… (more)

Lei, Guowen

2012-01-01T23:59:59.000Z

269

Novel Solvent System for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvent System for CO Solvent System for CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental

270

National Carbon Capture Center: 2010 Report  

Science Conference Proceedings (OSTI)

The Power Systems Development Facility (PSDF), a large-scale test facility located in Wilsonville, Alabama, was established in 1994 to develop coal-based power generation technologies that are reliable, environmentally acceptable, and cost effective. In 2009, the PSDF became the National Carbon Capture Center (NCCC) with the mission of supporting the development of cost-effective, commercially viable CO2 capture technologies for both coal-derived syngas and flue gas. The project continues to be funded pr...

2010-12-31T23:59:59.000Z

271

Numerical investigations into the formation of a high temperature reservoir''  

DOE Green Energy (OSTI)

This paper summarizes an ongoing numerical modeling effort aimed at describing some of the thermodynamic conditions observed in vapor- dominated reservoirs, including the formation of a high temperature reservoir (HTR) beneath the typical'' reservoir. The modeled system begins as a hot water geothermal reservoir, and evolves through time into a vapor-dominated reservoir with a HTR at depth. This approach taken here to develop a vapor-dominated system is similar to that of Pruess (1985), and involves induced boiling through venting. The reservoir description is intentionally generic, but serves to describe a means of evolution of conditions observed (in particular) The Geysers.

Shook, M.

1993-01-01T23:59:59.000Z

272

Numerical investigations into the formation of a ``high temperature reservoir``  

DOE Green Energy (OSTI)

This paper summarizes an ongoing numerical modeling effort aimed at describing some of the thermodynamic conditions observed in vapor- dominated reservoirs, including the formation of a high temperature reservoir (HTR) beneath the ``typical`` reservoir. The modeled system begins as a hot water geothermal reservoir, and evolves through time into a vapor-dominated reservoir with a HTR at depth. This approach taken here to develop a vapor-dominated system is similar to that of Pruess (1985), and involves induced boiling through venting. The reservoir description is intentionally generic, but serves to describe a means of evolution of conditions observed (in particular) The Geysers.

Shook, M.

1993-04-01T23:59:59.000Z

273

Magic Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Magic Reservoir Geothermal Area Magic Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Magic Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.32833333,"lon":-114.3983333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

Prediction of reservoir compaction and surface subsidence  

SciTech Connect

A new loading-rate-dependent compaction model for unconsolidated clastic reservoirs is presented that considerably improves the accuracy of predicting reservoir rock compaction and surface subsidence resulting from pressure depletion in oil and gas fields. The model has been developed on the basis of extensive laboratory studies and can be derived from a theory relating compaction to time-dependent intergranular friction. The procedure for calculating reservoir compaction from laboratory measurements with the new model is outlined. Both field and laboratory compaction behaviors appear to be described by one single normalized, nonlinear compaction curve. With the new model, the large discrepancies usually observed between predictions based on linear compaction models and actual (nonlinear) field behavior can be explained.

De Waal, J.A.; Smits, R.M.M.

1988-06-01T23:59:59.000Z

275

Shale Reservoir Characterization | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil & Gas » Shale Gas » Shale Reservoir Oil & Gas » Shale Gas » Shale Reservoir Characterization Shale Reservoir Characterization Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Gas-producing shales are predominantly composed of consolidated clay-sized particles with a high organic content. High subsurface pressures and temperatures convert the organic matter to oil and gas, which may migrate to conventional petroleum traps and also remains within the shale. However, the clay content severely limits gas and fluid flow within the shales. It is, therefore, necessary to understand the mineral and organic content, occurrence of natural fractures, thermal maturity, shale volumes, porosity

276

Second workshop geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The Arab oil embargo of 1973 focused national attention on energy problems. A national focus on development of energy sources alternative to consumption of hydrocarbons led to the initiation of research studies of reservoir engineering of geothermal systems, funded by the National Science Foundation. At that time it appeared that only two significant reservoir engineering studies of geothermal reservoirs had been completed. Many meetings concerning development of geothermal resources were held from 1973 through the date of the first Stanford Geothermal Reservoir Engineering workshop December 15-17, 1975. These meetings were similar in that many reports dealt with the objectives of planned research projects rather than with results. The first reservoir engineering workshop held under the Stanford Geothermal Program was singular in that for the first time most participants were reporting on progress inactive research programs rather than on work planned. This was true for both laboratory experimental studies and for field experiments in producing geothermal systems. The Proceedings of the December 1975 workshop (SGP-TR-12) is a remarkable document in that results of both field operations and laboratory studies were freely presented and exchanged by all participants. With this in mind the second reservoir engineering workshop was planned for December 1976. The objectives were again two-fold. First, the workshop was designed as a forum to bring together researchers active in various physical and mathematical branches of the developing field of geothermal reservoir engineering, to give participants a current and updated view of progress being made in the field. The second purpose was to prepare this Proceedings of Summaries documenting the state of the art as of December 1976. The proceedings will be distributed to all interested members of the geothermal community involved in the development and utilization of the geothermal resources in the world. Many notable occurrences took place between the first workshop in December 1975 and this present workshop in December 1976. For one thing, the newly formed Energy Research and Development Administration (ERDA) has assumed the lead role in geothermal reservoir engineering research. The second workshop under the Stanford Geothermal Program was supported by a grant from ERDA. In addition, two significant meetings on geothermal energy were held in Rotarua, New Zealand and Taupo, New Zealand. These meetings concerned geothermal reservoir engineering, and the reinjection of cooled geothermal fluids back into a geothermal system. It was clear to attendees of both the New Zealand and the December workshop meetings that a great deal of new information had been developed between August and December 1976. Another exciting report made at the meeting was a successful completion of a new geothermal well on the big island of Hawaii which produces a geothermal fluid that is mainly steam at a temperature in excess of 600 degrees F. Although the total developed electrical power generating capacity due to all geothermal field developments in 1976 is on the order of 1200 megawatts, it was reported that rapid development in geothermal field expansion is taking place in many parts of the world. Approximately 400 megawatts of geothermal power were being developed in the Philippine Islands, and planning for expansion in production in Cerro Prieto, Mexico was also announced. The Geysers in the United States continued the planned expansion toward the level of more than 1000 megawatts. The Second Workshop on Geothermal Reservoir Engineering convened at Stanford December 1976 with 93 attendees from 4 nations, and resulted in the presentation of 44 technical papers, summaries of which are included in these Proceedings. The major areas included in the program consisted of reservoir physics, well testing, field development, well stimulation, and mathematical modeling of geothermal reservoirs. The planning forth is year's workshop and the preparation of the proceedings was carried out mainly by my associate Paul

Kruger, P.; Ramey, H.J. Jr. (eds.)

1976-12-03T23:59:59.000Z

277

NETL: 2013 Conference Proceedings - 2013 NETL CO2 Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 NETL CO2 Capture Technology Meeting 2013 NETL CO2 Capture Technology Meeting July 8-11, 2013 Previous Proceedings 2012: NETL CO2 Capture Technology Meeting 2011: NETL CO2 Capture Technology Meeting 2010: NETL CO2 Capture Technology Meeting 2009: Annual NETL CO2 Capture Technology for Existing Plants R&D Meeting Proceedings of the 2013 NETL CO2 Capture Technology Meeting Table of Contents Presentations Monday, July 8 Opening/Overview Post-Combustion Sorbent-Based Capture Tuesday, July 9 Post-Combustion Solvent-Based Capture CO2 Compression Wednesday, July 10 Post-Combustion Membrane-Based Capture Pre-Combustion Capture Projects Thursday, July 11 ARPA-E Capture Projects System Studies and Modeling Oxy-Combustion and Chemical Looping Posters PRESENTATIONS Monday, July 8, 2013 Opening/Overview Introduction [PDF-MB]

278

Carbon Capture and Storage (CCS) Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage (CCS) Studies Carbon Capture and Storage (CCS) Studies Fossil Energy Studies for the next 6 months,December 2008-June 2009, Carbon Capture and Storage...

279

Noise-optimal capture for high dynamic range photography  

E-Print Network (OSTI)

Taking multiple exposures is a well-established approach both for capturing high dynamic range (HDR) scenes and for noise reduction. But what is the optimal set of photos to capture? The typical approach to HDR capture ...

Hasinoff, Samuel William

280

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect

Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Quantification of Libby Reservoir Water Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983 Final Report.  

DOE Green Energy (OSTI)

The first six months of the fishery investigations in Libby Reservoir were aimed at developing suitable methodology for sampling physical-chemical limnology, fish food availability, fish food habits, and seasonal distribution and abundance of fish populations. Appropriate methods have been developed for all aspects with minor modification of original proposed methodologies. Purse seining has yet to be tested. Physical-chemical limnologic sampling could be reduced or subcontracted with the U.S. Geologic Survey to allow for more intensive sampling of fish food or fish distribution portions of the investigation. Final sample design will be determined during 1983-84. Future directions of the study revolve around two central issues, the potential for flexibility in reservoir operation and determination of how reservoir operation affects fish populations. Simulated maximum drawdown levels during a 40-year period were controlled by power in seven out of eight years. Drawdowns were generally within 10 feet of the flood control rule curve, however. There may be more flexibility with regards to timing of refill and evacuation. This aspect needs to be evaluated further. Production and availability of fish food, suitability of reservoir habitat, and accessibility of off-reservoir spawning and rearing habitat were identified as components of fish ecology which reservoir operation could potentially impact. Two models based on trophic dynamics and habitat suitabilities were suggested as a framework for exploring the relationship of reservoir operation on the fish community.

Shepard, Bradley B.

1984-07-01T23:59:59.000Z

282

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect

The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

Not Available

1991-01-01T23:59:59.000Z

283

Geothermal reservoir engineering code: comparison and validation  

DOE Green Energy (OSTI)

INTERCOMP has simulated six geothermal reservoir problems. INTERCOMP's geothermal reservoir model was used for all problems. No modifications were made to this model except to provide tabular output of the simulation results in the units used in RFP No. DE-RP03-80SF-10844. No difficulty was encountered in performing the problems described herein, although setting up the boundary and grid conditions exactly as specified were sometimes awkward, and minor modifications to the grid system were necessitated. The results of each problem are presented in tabular and (for many) graphical form.

Not Available

1981-02-27T23:59:59.000Z

284

INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT  

Science Conference Proceedings (OSTI)

This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

2002-02-28T23:59:59.000Z

285

Geothermal reservoir engineering computer code comparison and validation calculations using MUSHRM and CHARGR geothermal reservoir simulators  

DOE Green Energy (OSTI)

The essential features of the reservoir codes CHARGR and MUSHRM are described. Solutions obtained for the problem set posed by DOE are presented. CHARGR was used for all six problems; MUSHRM was used for one. These problems are: the 1-D Avdonin solution, the 1-D well test analysis, 2-D flow to a well in fracture/block media, expanding two-phase system with drainage, flow in a 2-D areal reservoir, and flow in a 3-D reservoir. Results for the last problem using both codes are compared. (MHR)

Pritchett, J.W.

1980-11-01T23:59:59.000Z

286

SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY; APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS  

SciTech Connect

The objective of the project is to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study is performed at West Coalinga Field in California. We continued our investigation on the nature of seismic reactions from heterogeneous reservoirs. We began testing our algorithm to infer parameters of object-based reservoir models from seismic data. We began integration of seismic and geologic data to determine the deterministic limits of conventional seismic data interpretation. Lastly, we began integration of seismic and geologic heterogeneity using stochastic models conditioned both on wireline and seismic data.

Matthias G. Imhof; James W. Castle

2003-11-01T23:59:59.000Z

287

A petrophysics and reservoir performance-based reservoir characterization of Womack Hill (Upper Smackover) Field (Alabama)  

E-Print Network (OSTI)

Womack Hill is one of the 57 Smackover fields throughout the Gulf Coast region. Since its discovery in 1970, Womack Hill Field has produced 30 million STB from the Upper Smackover sequence of carbonate reservoirs. Since production reached its peak in 1977, oil and gas rates have declined substantially. During the last ten years, the production decline has accelerated despite an increase in the water injection rate. This production decline along with the increase in the operating costs has caused a considerable drop in profitability of the field. The field currently produces 640 STB/D of oil and 330 MSCF/D of gas, along with 6,700 STB/D of water, which implies a water cut of over 90 percent. In order to optimize the reservoir management strategies for Womack Hill Field, we need to develop an integrated reservoir study. This thesis addresses the creation of an integrated reservoir study and specifically provides a detailed reservoir description that represents the high level of heterogeneity that exists within this field. Such levels of heterogeneity are characteristic of carbonate reservoirs. This research should serve as a guide for future work in reservoir simulation and can be used to evaluate various scenarios for additional development as well as to optimize the operating practices in the field. We used a non-parametric regression algorithm (ACE) to develop correlations between the core and well log data. These correlations allow us to estimate reservoir permeability at the "flow unit" scale. We note that our efforts to reach an overall correlation were unsuccessful. We generated distributions of porosity and permeability throughout the reservoir area using statistically derived estimates of porosity and permeability. The resulting reservoir description indicates a clear contrast in reservoir permeability between the western and eastern areas - and in particular, significant variability in the reservoir. We do note that we observed an essentially homogenous porosity distribution. We provided analysis of the production and injection data using various techniques (history plots, EUR plots, and decline type curve analysis) and we note this effort yielded a remaining recoverable oil of 1.9 MMSTB (under the current operating conditions). This analysis suggests a moderate flow separation between the western and eastern areas and raised some questions regarding the suitability of the hydraulic "jet pumps" (the water rate increased coincidentally with the installation of the jet pumps).

Avila Urbaneja, Juan Carlos

2002-01-01T23:59:59.000Z

288

Water Challenges for Geologic Carbon Capture and Sequestration  

E-Print Network (OSTI)

and HB 90:Carbon capture and sequestration, http://legisweb.conference on carbon capture and sequestration, Pittsburgh,The DOE’s Regional Carbon Sequestration Partnerships are

Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

2010-01-01T23:59:59.000Z

289

Secretary Chu Announces $3 Billion Investment for Carbon Capture...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Billion Investment for Carbon Capture and Sequestration Secretary Chu Announces 3 Billion Investment for Carbon Capture and Sequestration December 4, 2009 - 12:00am Addthis...

290

EFRC Carbon Capture and Sequestration Activities at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be...

291

Better Buildings Neighborhood Program: Step 10: Capture Lessons...  

NLE Websites -- All DOE Office Websites (Extended Search)

10: Capture Lessons Learned to someone by E-mail Share Better Buildings Neighborhood Program: Step 10: Capture Lessons Learned on Facebook Tweet about Better Buildings Neighborhood...

292

Ohio State Develops Breakthrough Membranes for Carbon Capture...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage...

293

New Recovery Act Funding Boosts Industrial Carbon Capture and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and...

294

Changes related to "Cost and Performance of Carbon Dioxide Capture...  

Open Energy Info (EERE)

icon Changes related to "Cost and Performance of Carbon Dioxide Capture from Power Generation" Cost and Performance of Carbon Dioxide Capture from Power Generation...

295

Post-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Post-Combustion Carbon Capture Research Post-Combustion Carbon Capture Research Fossil fuel fired electric generating plants are the cornerstone of America's central power system....

296

Pre-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Combustion Carbon Capture Research Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification processes a...

297

Energy Department Invests to Drive Down Costs of Carbon Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in...

298

2013 NETL CO2 Capture Technology Meeting Sheraton Station Square...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA July 8 - 11, 2013 ION Novel Solvent System for CO 2 Capture FE0005799 Nathan Brown ION Engineering...

299

Spatially-explicit impacts of carbon capture and sequestration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Spatially-explicit impacts of carbon capture and sequestration on water supply and demand Title Spatially-explicit impacts of carbon capture and sequestration on water supply and...

300

CO2 Capture Poject CCP | Open Energy Information  

Open Energy Info (EERE)

companies and government organisations that are undertaking research and development of carbon capture and storage technologies. References CO2 Capture Poject (CCP)1 LinkedIn...

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas) ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide CaptureSequestration Tax Deduction (Kansas) Carbon Dioxide CaptureSequestration Tax Deduction (Kansas) Eligibility Commercial Industrial Utility Program...

302

Capture, Separation and Triggered Release of CO2 with Metal ...  

Science Conference Proceedings (OSTI)

Presentation Title, Capture, Separation and Triggered Release of CO2 with Metal ... pores can be tailored to act as high capacity sites for carbon dioxide capture.

303

Grangemouth Advanced CO2 Capture Project GRACE | Open Energy...  

Open Energy Info (EERE)

GRACE is a project consortium that aims to develop cost improving technologies for carbon capture and separation. References Grangemouth Advanced CO2 Capture Project...

304

NETL: News Release - Worldwide Carbon Capture and Storage Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2009 Worldwide Carbon Capture and Storage Projects on the Increase International Efforts to Reduce Greenhouse Gas Emissions Through Carbon Capture and Storage Showcased with DOE...

305

Membrane Materials for Carbon Capture from Power Processes  

Science Conference Proceedings (OSTI)

Symposium, Materials for CO2 Capture and Conversion. Presentation Title, Membrane Materials for Carbon Capture from Power Processes. Author(s), Tim ...

306

Lab captures five Society for Technical Communication awards  

NLE Websites -- All DOE Office Websites (Extended Search)

captures five Society for Technical Communication awards Lab captures five Society for Technical Communication awards Reducing Global Threats through Innovative Science and...

307

HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS  

Science Conference Proceedings (OSTI)

Gas injection in oil reservoirs offers huge potential for improved oil recovery. However, successful design of a gas injection process requires a detailed understanding of a variety of different significant processes, including the phase behavior of multicomponent mixtures and the approach to multi-contact miscibility in the reservoir, the flow of oil, water and gas underground, and the interaction of phase behavior reservoir heterogeneity and gravity on overall performance at the field scale. This project attempts to tackle all these issues using a combination of theoretical, numerical and laboratory studies of gas injection. The aim of this work is to develop a set of ultra-fast compositional simulation tools that can be used to make field-scale predictions of the performance of gas injection processes. To achieve the necessary accuracy, these tools must satisfy the fundamental physics and chemistry of the displacement from the pore to the reservoir scales. Thus this project focuses on four main research areas: (1) determination of the most appropriate methods of mapping multicomponent solutions to streamlines and streamtubes in 3D; (2) development of techniques for automatic generation of analytical solutions for one-dimensional flow along a streamline; (3) experimental investigations to improve the representation of physical mechanisms that govern displacement efficiency along a streamline; and (4) Theoretical and experimental investigations to establish the limitations of the streamline/streamtube approach. In this report they briefly review the status of the research effort in each area. They then give a more in depth discussion of the development of a CT scanning technique which can measure compositions in a two-phase, three-component system in-situ.

Thomas A. Hewett; Franklin M. Orr Jr.

2000-12-31T23:59:59.000Z

308

Strategies for demonstration and early deployment of carbon capture and storage : a technical and economic assessment of capture percentage  

E-Print Network (OSTI)

Carbon capture and storage (CCS) is a critical technology for reducing greenhouse gas emissions from electricity production by coal-fired power plants. However, full capture (capture of nominally 90% of emissions) has ...

Hildebrand, Ashleigh Nicole

2009-01-01T23:59:59.000Z

309

Utah Dry Natural Gas New Reservoir Discoveries in Old Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

310

Evaluating human fecal contamination sources in Kranji Reservoir Catchment, Singapore  

E-Print Network (OSTI)

Singapore government through its Public Utilities Board is interested in opening Kranji Reservoir to recreational use. However, water courses within the Kranji Reservoir catchment contain human fecal indicator bacteria ...

Nshimyimana, Jean Pierre

2010-01-01T23:59:59.000Z

311

California Dry Natural Gas New Reservoir Discoveries in Old Fields...  

Annual Energy Outlook 2012 (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) California Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

312

Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields...  

Annual Energy Outlook 2012 (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Ohio Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

313

Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

314

New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

315

Ohio Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Ohio Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

316

Kansas Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) Kansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

317

Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Michigan Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

318

U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

Annual Energy Outlook 2012 (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

319

Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields...  

Gasoline and Diesel Fuel Update (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

320

New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

West Virginia Crude Oil Reserves in Nonproducing Reservoirs ...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) West Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

322

North Dakota Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) North Dakota Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

323

Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...  

Gasoline and Diesel Fuel Update (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

324

Declarative representation of programming access to ontologies  

Science Conference Proceedings (OSTI)

Using ontologies in software applications is a challenging task due to the chasm between the logics-based world of ontologies and the object-oriented world of software applications. The logics-based representation emphasizes the meaning of concepts and ...

Stefan Scheglmann; Ansgar Scherp; Steffen Staab

2012-05-01T23:59:59.000Z

325

From irreducible representations to locally decodable codes  

Science Conference Proceedings (OSTI)

A q-query Locally Decodable Code (LDC) is an error-correcting code that allows to read any particular symbol of the message by reading only q symbols of the codeword even if the codeword is adversary corrupted. In this paper we present a new approach ... Keywords: locally decodable codes, representation theory

Klim Efremenko

2012-05-01T23:59:59.000Z

326

Multimedia event recounting with concept based representation  

Science Conference Proceedings (OSTI)

Multimedia event detection has drawn a lot of attention in recent years. Given a recognized event, in this paper, we conduct a pilot study of the multimedia event recounting problem, which answers the question why this video is recognized as this event, ... Keywords: multimedia event recounting, multimedia event representation, textual descriptions of video content

Qian Yu; Jingen Liu; Hui Cheng; Ajay Divakaran; Harpreet Sawhney

2012-10-01T23:59:59.000Z

327

Next generation typeface representations: revisiting parametric fonts  

Science Conference Proceedings (OSTI)

Outline font technology has long been established as the standard way to represent typefaces, allowing characters to be represented independently of print size and resolution. Although outline font technologies are mature and produce results of sufficient ... Keywords: digital typography, font representation, font synthesis, parameterized fonts, parametric fonts, re-typesetting

Tamir Hassan; Changyuan Hu; Roger D. Hersch

2010-09-01T23:59:59.000Z

328

DNA Motif Representation with Nucleotide Dependency  

Science Conference Proceedings (OSTI)

The problem of discovering novel motifs of binding sites is important to theunderstanding of gene regulatory networks. Motifs are generally represented by matrices (PWM orPSSM) or strings. However, these representations cannot model biological binding ... Keywords: Computing Methodologies, Pattern Recognition, Design Methodology, Pattern analysis

Francis Chin; Henry C. M. Leung

2008-01-01T23:59:59.000Z

329

Implementing the eODL graphical representation  

Science Conference Proceedings (OSTI)

eODL is the ITU component description language. Its current status is that it is defined textually and there are several transformations into other languages. There are also ideas about a graphical representation for eODL. In this article we present ...

Joachim Fischer; Andreas Prinz; Markus Scheidgen; Merete S. Tveit

2006-05-01T23:59:59.000Z

330

Graphical representation of generalized quantum measurements  

E-Print Network (OSTI)

We present graphical representation for genaralized quantum measurements (POVM). We represent POVM elements as Bloch vectors and find the conditions these vectors should satisfy in order to describe realizable physical measurements. We show how to find probability of measurement outcome in a graphical way. The whole formalism is applied to unambigous discrimination of nonorthogonal quantum states.

Pawel Kurzynski; Andrzej Grudka

2006-04-26T23:59:59.000Z

331

Geolocation of man-made reservoirs across terrains of varying complexity using GIS  

Science Conference Proceedings (OSTI)

The Reservoir Sedimentation Survey Information System (RESIS) is one of the world's most comprehensive databases of reservoir sedimentation rates, comprising nearly 6000 surveys for 1819 reservoirs across the continental United States. Sediment surveys ... Keywords: DEM, GIS, Reservoir sedimentation, Terrain complexity

David M. Mixon; David A. Kinner; Robert F. Stallard; James P. M. Syvitski

2008-10-01T23:59:59.000Z

332

Fractured reservoir characterization through injection, falloff, and flowback tests  

SciTech Connect

This paper presents the development of a multiphase pressure-transient-analysis technique for naturally fractured reservoirs and the analysis of a series of field tests performed to evaluate the water injection potential and the reservoir characteristics of a naturally fractured reservoir. These included step-rate, water-injectivity, pressure-falloff, and flowback tests. Through these tests, a description of the reservoir was obtained.

Peng, C.P.; Singh, P.K. (Amoco Production Co., Tulsa, OK (United States)); Halvorsen, H. (Amoco Norway Oil Co., Stavanger (NO)); York, S.D. (Amoco Production Co., Houston, TX (United States))

1992-09-01T23:59:59.000Z

333

Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Blackfoot Reservoir Area (Hutsinpiller & Parry, 1985) Exploration Activity...

334

NETL: 2011 Conference Proceedings - 2011 NETL CO2 Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 NETL CO2 Capture Technology Meeting 2011 NETL CO2 Capture Technology Meeting August 22 - 26, 2011 Previous Proceedings 2009: Annual NETL CO2 Capture Technology for Existing Plants R&D Meeting 2010: 2010 NETL CO2 Capture Technology Meeting Proceedings of the 2011 NETL CO2 Capture Technology Meeting Table of Contents Presentations Monday, August 22 Opening/Overview Post-combustion Sorbent-Based Capture Post-combustion Membrane-Based Capture Tuesday, August 23 Post-combustion Solvent-Based Capture ARPA-E Capture Projects Wednesday, August 24 Oxy-Combustion and Oxygen Production Chemical Looping Process CO2 Compression Thursday, August 25 FutureGen 2.0, CCPI and ICCS Demonstration Projects System Studies and Modeling Pre-Combustion Capture Projects Friday, August 26 Pre-combustion Capture Projects Posters

335

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

336

Fourteenth workshop geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

1989-01-01T23:59:59.000Z

337

Fourteenth workshop geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

1989-12-31T23:59:59.000Z

338

Intake Operation for Deep Cooling Reservoirs  

Science Conference Proceedings (OSTI)

Use of a submerged intake, rather than a conventional surface intake, would improve the thermal performance of most cooling reservoirs in the United States. Projected operating cost savings at a typical plant would range from $1 million to $10 million because of decreased intake temperatures during the summer.

1987-04-21T23:59:59.000Z

339

Hydroelectric reservoir optimization in a pool market  

Science Conference Proceedings (OSTI)

For a price-taking generator operating a hydro-electric reservoir in a pool electricity market, the optimal stack to offer in each trading period over a planning horizon can be computed using dynamic programming. However, the market trading period (usually ...

G. Pritchard; A. B. Philpott; P. J. Neame

2005-07-01T23:59:59.000Z

340

Physical processes of subsidence in geothermal reservoirs  

DOE Green Energy (OSTI)

The objectives of this project were to acquire core and fluid from producing geothermal reservoirs (East Mesa, United States, and Cerro Prieto, Mexico); to test specimens of this core for their short-term and long-term (creep) compaction response; and to develop a compaction constitutive model that would allow future analysis of reservoir compaction and a surface subsidence. A total of approximately two hundred feet of core was obtained from eleven wells in the two geothermal fields. Depths and porosities ranged from 3500 to 11,000 feet and 15 to 40 percent, respectively. Several samples of geothermal fluids were also obtained. After geologically and geochemically describing the materials obtained, selected specimens were tested for their response to the pressures and temperatures of the geothermal environment and to simulated changes in those conditions that would be caused by production. Short-term tests (for example, tests for compressibility extending over a time interval of an hour or less in the laboratory) indicated that these sedimentary materials behaved normally with respect to the expected behavior of reservoir sandstones of these depths and porosities. Compressibilities were of the order 1 x 10/sup 6/ psi. Long-term tests, extending up to several weeks in duration, indicated that pore pressure reduction, simulating reservoir production, tended to cause creep compaction at an initial rate of about 1 x 10/sup -7/ percent porosity reduction per second.

Schatz, J.F.

1982-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents  

Science Conference Proceedings (OSTI)

This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

2003-02-11T23:59:59.000Z

342

Waterflood surveillance techniques; A reservoir management approach  

SciTech Connect

The reservoir management aspects of waterflooding span the time before the start of waterflood to the time when the secondary recovery either is uneconomic or is changed to an enhanced recovery. This paper reviews waterflood techniques and reports on surveillance techniques in the management of waterflooding of oil wells.

Thakur, G.C. (Chevron USA Inc. (US))

1991-10-01T23:59:59.000Z

343

Seismic Determination of Reservoir Heterogeneity: Application to the Characterization of Heavy Oil Reservoirs  

Science Conference Proceedings (OSTI)

The objective of the project was to examine how seismic and geologic data could be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study was performed at West Coalinga Field in California.

Imhof, Matthias G.; Castle, James W.

2003-03-12T23:59:59.000Z

344

Automatic history matching in petroleum reservoirs using the TSVD method  

Science Conference Proceedings (OSTI)

History matching is an important inverse problem extensively used to estimate petrophysical properties of an oil reservoir by matching a numerical simulation to the reservoir's history of oil production. In this work, we present a method for the ... Keywords: TSVD, adjoint formulation, history matching, optimization, reservoir simulation

Elisa Portes dos Santos Amorim; Paulo Goldfeld; Flavio Dickstein; Rodrigo Weber dos Santos; Carolina Ribeiro Xavier

2010-03-01T23:59:59.000Z

345

Intelligent seismic inversion workflow for high-resolution reservoir characterization  

Science Conference Proceedings (OSTI)

Developing a geological model is the first and a very important step during the reservoir simulation and modeling process. The geological model usually represents our best interpretation of the reservoir characteristics that extends beyond the well where ... Keywords: Buffalo Valley Field, Neural networks, Reservoir characterization, Seismic inversion

E. Artun; S. Mohaghegh

2011-02-01T23:59:59.000Z

346

Radon as an In Situ Tracer in Geothermal Reservoirs  

Science Conference Proceedings (OSTI)

By measuring trace amounts of radon in geothermal steam, utilities can estimate changes in the properties of the fluid produced from a reservoir. These measurements provide a method to monitor the transition from a liquid-dominated reservoir to a boiling reservoir.

1987-08-26T23:59:59.000Z

347

EOR (enhanced oil recovery): the reservoir and its contents  

SciTech Connect

Factors in commitment to enhanced oil recovery of any type are discussed with relation to reservoir characteristics. Core analysis, well logging, reservoir engineering studies, well transient testing, and chemical tracer testing are recommended in order to ascertain the dimensions and conditions of the potentially hydrocarbon bearing reservoir. The calculated risk that is necessary even after conducting the recommended practices is emphasized.

Frederick, R.O.

1982-08-01T23:59:59.000Z

348

Advanced Reservoir Characterization and Evaluation of CO(2) Gravity Drainage in the Naturally Fractured Spraberry Reservoir  

SciTech Connect

Progress has been made in the area of laboratory analysis of Spraberry oil/brine/rock interactions during this quarter. Water imbibition experiments were conducted under ambient conditions, using cleaned Spraberry cores, synthetic Spraberry reservoir brine, and Spraberry oil. It has been concluded that the Spraberry reservoir cores are weakly water-wet. The average Amott wettability index to water is about 0.55. The average oil recovery due to spontaneous water imbibition is about 50% of original oil in place.

Schechter, David

1996-12-01T23:59:59.000Z

349

Increasing Waterflood Reserves in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management  

Science Conference Proceedings (OSTI)

This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate.

Clarke, D.; Koerner, R.; Moos D.; Nguyen, J.; Phillips, C.; Tagbor, K.; Walker, S.

1999-04-05T23:59:59.000Z

350

Improved recovery from Gulf of Mexico reservoirs  

Science Conference Proceedings (OSTI)

The Gulf of Mexico Basin offers the greatest near-term potential for reducing the future decline in domestic oil and gas production. The Basin is less mature than productive on-shore areas, large unexplored areas remain, and there is great potential for reducing bypassed oil in known fields. Much of the remaining oil in the offshore is trapped in formations that are extremely complex due to intrusions Of salt domes. Recently, however, significant innovations have been made in seismic processing and reservoir simulation. In addition, significant advances have been made in deviated and horizontal drilling technologies. Effective application of these technologies along with improved integrated resource management methods offer opportunities to significantly increase Gulf of Mexico production, delay platform abandonments, and preserve access to a substantial remaining oil target for both exploratory drilling and advanced recovery processes. On February 18, 1992, Louisiana State University (the Prime Contractor) with two technical subcontractors, BDNL Inc. and ICF, Inc., began a research program to estimate the potential oil and gas reserve additions that could result from the application of advanced secondary and enhanced oil recovery technologies and the exploitation of undeveloped and attic oil zones in the Gulf of Mexico oil fields that are related to piercement salt dornes. This project is a one year continuation of this research and will continue work in reservoir description, extraction processes, and technology transfer. Detailed data will be collected for two previously studied reservoirs: a South Marsh Island reservoir operated by Taylor Energy and a South Pelto reservoir operated by Mobil. This data will include reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. Geologic data is being compiled; extraction research has not begun.

Schenewerk, P.

1995-07-30T23:59:59.000Z

351

The Necessary and Sufficient Conditions for Transformation from Dirac Representation to Foldy-Wouthuysen Representation  

E-Print Network (OSTI)

The paper describes conditions for transformation from the Dirac representation to the Foldy-Wouthuysen representation. The necessary condition is the block-diagonal transformation of Hamiltonian relative to the upper and lower components of the wave function. The sufficient condition is the wave function transformation law described by relation (6). It has been demonstrated that the unitary transformations offered by the authors of the papers [14], [15], [16], [17] do not satisfy the sufficiency condition (6) and, hence, they are not the Foldy-Wouthuysen transformations. In applications, the matrix elements of any operator in the FW representation can be calculated, according to (6), using the normalized two-component wave functions in the Dirac representation known for the given problem.

V. P. Neznamov

2008-04-02T23:59:59.000Z

352

NETL: Industrial Capture & Storage Area 2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Technologies Industrial Capture & Storage Area 2 Innovative Concepts for Beneficial CO2 Use The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

353

Supercomputers Capture Turbulence in the Solar Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercomputers Capture Supercomputers Capture Turbulence in the Solar Wind News & Publications ESnet in the News ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space weather December 16, 2013 | Tags: ESnet News, National Energy Research Scientific Computing Linda Vu, +1 510 495 2402, lvu@lbl.gov eddies1.jpg This visualization zooms in on current sheets revealing the "cascade of turbulence" in the solar wind occurring down to electron scales. This is

354

Speeding Up Zeolite Evaluation for Carbon Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Speeding Up Speeding Up Zeolite Evaluation for Carbon Capture Speeding Up Zeolite Evaluation for Carbon Capture Zeolite.png Schematic of an important class of porous materials known as zeolites. The large red structure in the center of this periodic structure is a cavity that might be a good candidate for adsorption of a gas such as carbon dioxide. The seven small red areas at the corners (plus the one hidden by the yellow ball) are not suitable and need to be eliminated from studies that attempt to predict guest-related properties using molecular simulation techniques. A new method developed at NERSC uses software to differentiate between suitable and unsuitable pockets, thereby speeding up discovery of new materials. Why it Matters: Capturing and sequestering waste carbon dioxide (CO2) is a

355

Carbon Capture Corporation | Open Energy Information  

Open Energy Info (EERE)

Carbon Capture Corporation Carbon Capture Corporation Jump to: navigation, search Name Carbon Capture Corporation Address 7825 Fay Avenue Place La Jolla, California Zip 92037 Sector Carbon Product Developing ways to use algae to absorb CO2 emitted from gas- and coal-fired power plants Website http://www.carbcc.com/ Coordinates 32.845391°, -117.275033° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.845391,"lon":-117.275033,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

356

Carbon Capture and Sequestration Newsletter, Issue #2  

Science Conference Proceedings (OSTI)

This issue of the Carbon Capture and Sequestration (CC&S) Newsletter consists of updates on ongoing work in the CC&S target. The feature article covers the status of the ongoing economics work. Two parallel efforts proceeded during 2001 in this area: (1) an update of the previous work on Innovative Fossil Cycles Incorporating CO2 Removal, which developed costs associated with new plants; and (2) a study of the costs of capturing carbon dioxide from existing plants. Also covered are two meetings held in C...

2002-01-16T23:59:59.000Z

357

Horizontal Well Placement Optimization in Gas Reservoirs Using Genetic Algorithms  

E-Print Network (OSTI)

Horizontal well placement determination within a reservoir is a significant and difficult step in the reservoir development process. Determining the optimal well location is a complex problem involving many factors including geological considerations, reservoir and fluid properties, economic costs, lateral direction, and technical ability. The most thorough approach to this problem is that of an exhaustive search, in which a simulation is run for every conceivable well position in the reservoir. Although thorough and accurate, this approach is typically not used in real world applications due to the time constraints from the excessive number of simulations. This project suggests the use of a genetic algorithm applied to the horizontal well placement problem in a gas reservoir to reduce the required number of simulations. This research aims to first determine if well placement optimization is even necessary in a gas reservoir, and if so, to determine the benefit of optimization. Performance of the genetic algorithm was analyzed through five different case scenarios, one involving a vertical well and four involving horizontal wells. The genetic algorithm approach is used to evaluate the effect of well placement in heterogeneous and anisotropic reservoirs on reservoir recovery. The wells are constrained by surface gas rate and bottom-hole pressure for each case. This project's main new contribution is its application of using genetic algorithms to study the effect of well placement optimization in gas reservoirs. Two fundamental questions have been answered in this research. First, does well placement in a gas reservoir affect the reservoir performance? If so, what is an efficient method to find the optimal well location based on reservoir performance? The research provides evidence that well placement optimization is an important criterion during the reservoir development phase of a horizontal-well project in gas reservoirs, but it is less significant to vertical wells in a homogeneous reservoir. It is also shown that genetic algorithms are an extremely efficient and robust tool to find the optimal location.

Gibbs, Trevor Howard

2010-05-01T23:59:59.000Z

358

Model Calibration, Drainage Volume Calculation and Optimization in Heterogeneous Fractured Reservoirs  

E-Print Network (OSTI)

We propose a rigorous approach for well drainage volume calculations in gas reservoirs based on the flux field derived from dual porosity finite-difference simulation and demonstrate its application to optimize well placement. Our approach relies on a high frequency asymptotic solution of the diffusivity equation and emulates the propagation of a 'pressure front' in the reservoir along gas streamlines. The proposed approach is a generalization of the radius of drainage concept in well test analysis (Lee 1982), which allows us not only to compute rigorously the well drainage volumes as a function of time but also to examine the potential impact of infill wells on the drainage volumes of existing producers. Using these results, we present a systematic approach to optimize well placement to maximize the Estimated Ultimate Recovery. A history matching algorithm is proposed that sequentially calibrates reservoir parameters from the global-to-local scale considering parameter uncertainty and the resolution of the data. Parameter updates are constrained to the prior geologic heterogeneity and performed parsimoniously to the smallest spatial scales at which they can be resolved by the available data. In the first step of the workflow, Genetic Algorithm is used to assess the uncertainty in global parameters that influence field-scale flow behavior, specifically reservoir energy. To identify the reservoir volume over which each regional multiplier is applied, we have developed a novel approach to heterogeneity segmentation from spectral clustering theory. The proposed clustering can capture main feature of prior model by using second eigenvector of graph affinity matrix. In the second stage of the workflow, we parameterize the high-resolution heterogeneity in the spectral domain using the Grid Connectivity based Transform to severely compress the dimension of the calibration parameter set. The GCT implicitly imposes geological continuity and promotes minimal changes to each prior model in the ensemble during the calibration process. The field scale utility of the workflow is then demonstrated with the calibration of a model characterizing a structurally complex and highly fractured reservoir.

Kang, Suk Sang 1975-

2012-12-01T23:59:59.000Z

359

Thermo-Poroelastic Modeling of Reservoir Stimulation and Microseismicity Using Finite Element Method with Damage Mechanics  

E-Print Network (OSTI)

Stress and permeability variations around a wellbore and in the reservoir are of much interest in petroleum and geothermal reservoir development. Water injection causes significant changes in pore pressure, temperature, and stress in hot reservoirs, changing rock permeability. In this work, two- and three-dimensional finite element methods were developed to simulate coupled reservoirs with damage mechanics and stress-dependent permeability. The model considers the influence of fluid flow, temperature, and solute transport in rock deformation and models nonlinear behavior with continuum damage mechanics and stress-dependent permeability. Numerical modeling was applied to analyze wellbore stability in swelling shale with two- and three-dimensional damage/fracture propagation around a wellbore and injection-induced microseismic events. The finite element method (FEM) was used to solve the displacement, pore pressure, temperature, and solute concentration problems. Solute mass transport between drilling fluid and shale formation was considered to study salinity effects. Results show that shear and tensile failure can occur around a wellbore in certain drilling conditions where the mud pressure lies between the reservoir pore pressure and fracture gradient. The fully coupled thermo-poro-mechanical FEM simulation was used to model damage/fracture propagation and microseismic events caused by fluid injection. These studies considered wellbore geometry in small-scale modeling and point-source injection, assuming singularity fluid flux for large-scale simulation. Damage mechanics was applied to capture the effects of crack initiation, microvoid growth, and fracture propagation. The induced microseismic events were modeled in heterogeneous geological media, assuming the Weibull distribution functions for modulus and permeability. The results of this study indicate that fluid injection causes the effective stress to relax in the damage phase and to concentrate at the interface between the damage phase and the intact rock. Furthermore, induced-stress and far-field stress influence damage propagation. Cold water injection causes the tensile stress and affects the initial fracture and fracture propagation, but fracture initiation pressure and far-field stress are critical to create a damage/fracture plane, which is normal to the minimum far-field stress direction following well stimulation. Microseismic events propagate at both well scale and reservoir-scale simulation; the cloud shape of a microseismic event is affected by permeability anisotropy and far-field stress, and deviatoric horizontal far-field stress especially contributes to the localization of the microseismic cloud.

Lee, Sang Hoon

2011-12-01T23:59:59.000Z

360

A Comparative Analysis of Two Land Surface Heterogeneity Representations  

Science Conference Proceedings (OSTI)

Two contrasting representations of land surface variability used in general circulation models (GCMS) are compared through an analysis of their corresponding surface energy balance equations. In one representation (the “mixture” approach), ...

Randal D. Koster; Max J. Suarez

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

String Approach to QCD Quarks in Fundamental Representations  

E-Print Network (OSTI)

Straightforward use of AdS/CFT correspondence can give QCD with quarks in adjoint representations. Using an asymmetric orbifold approach we obtain nonsupersymmetric QCD with four quark flavors in fundamental representations of color.

Paul H. Frampton

2004-07-12T23:59:59.000Z

362

Phasor representation for narrowband active noise control systems  

Science Conference Proceedings (OSTI)

The phasor representation is introduced to identify the characteristic of the active noise control (ANC) systems. The conventional representation, transfer function, cannot explain the fact that the performance will be degraded at some frequency for ...

Fu-Kun Chen; Ding-Horng Chen; Yue-Dar Jou

2008-01-01T23:59:59.000Z

363

Architectural representation ; spatial comprehension and assessment through visualization technique  

E-Print Network (OSTI)

There are two distinguishable parts to this thesis. Part I is a discourse on architectural representation. It defines the theoretical boundary for Part II, research on a particular spatial representation system, physical ...

Alberto, Donald

1982-01-01T23:59:59.000Z

364

Modeling CO2 Sequestration in a Saline Reservoir and Depleted Oil Reservoir to Evaluate The Regional CO2 Sequestration Potential of The Ozark Plateau Aquifer System, South-Central Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Sequestration in a Saline Reservoir and Depleted Oil Reservoir to Evaluate The Regional CO 2 Sequestration Potential of The Ozark Plateau Aquifer System, South-Central Kansas Background Carbon capture, utilization and storage (CCUS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial,

365

Geotechnical studies of geothermal reservoirs | Open Energy Information  

Open Energy Info (EERE)

Geotechnical studies of geothermal reservoirs Geotechnical studies of geothermal reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geotechnical studies of geothermal reservoirs Details Activities (7) Areas (7) Regions (0) Abstract: It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot

366

Method of extracting heat from dry geothermal reservoirs  

DOE Patents (OSTI)

Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

Potter, R.M.; Robinson, E.S.; Smith, M.C.

1974-01-22T23:59:59.000Z

367

Reservoir technology research at the Idaho National Engineering Laboratory  

DOE Green Energy (OSTI)

The Idaho National Engineering Laboratory (INEL) has been conducting geothermal reservoir research and testing sponsored by the US Department of Energy (DOE) since 1983. The INEL research program is primarily aimed at the development of reservoir engineering techniques for fractured geothermal reservoirs. Numerical methods have been developed which allow the simulation of fluid flow and heat transfer in complex fractured reservoirs. Sensitivity studies have illustrated the importance of incorporating the influence of fractures in reservoir simulations. Related efforts include fracture characterization, geochemical reaction kinetics and field testing.

Stiger, S.G.; Renner, J.L.

1987-01-01T23:59:59.000Z

368

NETL: 2010 Conference Proceedings - 2010 NETL CO2 Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 NETL CO2 Capture Technology Meeting 2010 NETL CO2 Capture Technology Meeting September 13-17, 2010 Table of Contents Presentations Monday, September 13 Opening/Overview Post-combustion Sorbent Based Capture Post-combustion Solvent Based Capture Tuesday, September 14 Post-combustion Membrane Based Capture Pulverized Coal Oxy-combustion ARPA-E Projects Wednesday, September 15 National Carbon Capture Center Chemical Looping Processes Systems Studies and Modeling Efforts CO2 Compression New CO2 Capture Projects Thursday, September 16 New CO2 Capture Projects - Cont'd CCPI and ICCS Demonstration Projects Pre-combustion Capture Projects Friday, September 17 Pre-combustion Capture Projects - Cont'd Posters Advanced Research Projects Agency - Energy (ARPA-E) NETL Office of Research and Development Research Projects

369

Bionic Inspired Information Representation for Autonomous Agents  

E-Print Network (OSTI)

In AI, different bionic inspired theories on memory have gained ground. On the one hand neuronal networks are often used to realize learning systems. On the other hand psychology influences engineers by introducing the models of implicit and explicit memory. While neurology leaves out the question how mental functions emerge out of the brain structure, psychology classifies information but does not make a statement on its structure. This article presents a psychoanalytic inspired approach on information representation introduced within the ARS project. A short overview on the ARS model is given and the psychoanalytic theory behind information representation is presented. The developed technical concept is introduced and a use case for testing the model is defined.

H. Zeilinger; R. Lang; B. Müller

2009-01-01T23:59:59.000Z

370

Representations of some quantum tori Lie subalgebras  

SciTech Connect

In this paper, we define the q-analog Virasoro-like Lie subalgebras in x{sub {infinity}}=a{sub {infinity}}(b{sub {infinity}}, c{sub {infinity}}, d{sub {infinity}}). The embedding formulas into x{sub {infinity}} are introduced. Irreducible highest weight representations of A(tilde sign){sub q}, B(tilde sign){sub q}, and C(tilde sign){sub q}-series of the q-analog Virasoro-like Lie algebras in terms of vertex operators are constructed. We also construct the polynomial representations of the A(tilde sign){sub q}, B(tilde sign){sub q}, C(tilde sign){sub q}, and D(tilde sign){sub q}-series of the q-analog Virasoro-like Lie algebras.

Jiang, Jingjing [College of Science, Civil Aviation University of China, Tianjin 300300 (China)] [College of Science, Civil Aviation University of China, Tianjin 300300 (China); Wang, Song [Department of Mathematics, Tongji University, Shanghai 200092 (China)] [Department of Mathematics, Tongji University, Shanghai 200092 (China)

2013-03-15T23:59:59.000Z

371

Biominetic Membrane for Co2 Capture from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Membrane for CO Biomimetic Membrane for CO 2 Capture from Flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport, and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post

372

A verifiable SSA program representation for aggressive compiler optimization  

Science Conference Proceedings (OSTI)

We present a verifiable low-level program representation to embed, propagate, and preserve safety information in high perfor-mance compilers for safe languages such as Java and C#. Our representation precisely encodes safety information via static single-assignment ... Keywords: SSA formalization, check elimination, intermediate representations, proof variables, safety dependences, type systems, typeability preservation, typed intermediate languages

Vijay S. Menon; Neal Glew; Brian R. Murphy; Andrew McCreight; Tatiana Shpeisman; Ali-Reza Adl-Tabatabai; Leaf Petersen

2006-01-01T23:59:59.000Z

373

A knowledge representation model for the nuclear power generation domain  

Science Conference Proceedings (OSTI)

A knowledge representation model for the nuclear power field is proposed. The model is a generalized production rule function inspired by a neural network approach that enables the representation of physical systems of nuclear power plants. The article ... Keywords: Knowledge representation, Nuclear power plant, Physical systems, Production rules

Thiago Tinoco Pires

2007-11-01T23:59:59.000Z

374

A model of computation and representation in the brain  

Science Conference Proceedings (OSTI)

The brain is first and foremost a control system that is capable of building an internal representation of the external world, and using this representation to make decisions, set goals and priorities, formulate plans, and control behavior with intent ... Keywords: Brain modeling, Cognitive modeling, Human neocortex, Image processing, Knowledge representation, Perception, Reverse engineering the brain, Segmentation, Signals to symbols

James S. Albus

2010-05-01T23:59:59.000Z

375

Heavy oil reservoirs recoverable by thermal technology. Annual report  

SciTech Connect

This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

Kujawa, P.

1981-02-01T23:59:59.000Z

376

PART IV Â… REPRESENTATIONS AND INSTRUCTIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

JAN 2011) ......................................................................................................................... 1 JAN 2011) ......................................................................................................................... 1 K-2 FAR 52.209-2 PROHIBITION ON CONTRACTING WITH INVERTED DOMESTIC CORPORATIONS--REPRESENTATION (JUL 2009) ......................... 5 K-3 FAR 52.209-7 INFORMATION REGARDING RESPONSIBILITY MATTERS (JAN 2011) ......................................................................................................................... 5 K-4 FAR 52.225-25 PROHIBITION ON ENGAGING IN SANCTIONED ACTIVITIES RELATING TO IRAN-CERTIFICATION (SEP 2010) .................... 7 K-5 FAR 52.230-1 COST ACCOUNTING STANDARDS NOTICES AND CERTIFICATION (OCT 2008)....................................................................................... 7

377

PART IV Â… REPRESENTATIONS AND INSTRUCTIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

MAY 2011) ....................................................................................................................... 1 MAY 2011) ....................................................................................................................... 1 K-2 FAR 52.209-2 PROHIBITION ON CONTRACTING WITH INVERTED DOMESTIC CORPORATIONS--REPRESENTATION (MAY 2011) ....................... 5 K-3 FAR 52.209-7 INFORMATION REGARDING RESPONSIBILITY MATTERS (JAN 2011) ......................................................................................................................... 5 K-4 FAR 52.225-25 PROHIBITION ON ENGAGING IN SANCTIONED ACTIVITIES RELATING TO IRAN-CERTIFICATION (SEP 2010) .................... 7 K-5 FAR 52.230-1 COST ACCOUNTING STANDARDS NOTICES AND CERTIFICATION (OCT 2008)....................................................................................... 7

378

Thermodynamic representations of ammonia and isobutane  

DOE Green Energy (OSTI)

Tables of the thermodynamic properties of ammonia and isobutane are presented for the superheated vapor and the saturated liquid and vapor states. The properties were calculated using appropriate analytical pressure-volume-temperature (P-V-T) representations for the fluids in the regions described. The tables cover the approximate range of values of reduced temperatures up to 1.5 and reduced pressure up to 5.

Milora, S. L.; Combs, S. K.

1977-05-01T23:59:59.000Z

379

Linear Representations and Isospectrality with Boundary Conditions  

E-Print Network (OSTI)

We present a method for constructing families of isospectral systems, using linear representations of finite groups. We focus on quantum graphs, for which we give a complete treatment. However, the method presented can be applied to other systems such as manifolds and two-dimensional drums. This is demonstrated by reproducing some known isospectral drums, and new examples are obtained as well. In particular, Sunada's method is a special case of the one presented.

Ori Parzanchevski; Ram Band

2008-06-05T23:59:59.000Z

380

Magnetic monopole in the loop representation  

Science Conference Proceedings (OSTI)

We quantize, within the Loop Representation formalism, the electromagnetic field in the presence of a static magnetic pole. It is found that the loop-dependent physical wave functionals of the quantum Maxwell theory become multivalued, through a topological phase factor depending on the solid angle subtended at the monopole by a surface bounded by the loop. It is discussed how this fact generalizes what occurs in ordinary quantum mechanics in multiply connected spaces.

Leal, Lorenzo; Lopez, Alexander [Grupo de Campos y Particulas, Departamento de Fisica, Facultad de Ciencias, Universidad Central de Venezuela, AP 47270, Caracas 1041-A (Venezuela); Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas, AP 21827, Caracas 1020-A, Venezuela, and Grupo de Campos y Particulas, Departamento de Fisica, Facultad de Ciencias, Universidad Central de Venezuela (Venezuela)

2006-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Carbon Capture and Storage at Scale  

Science Conference Proceedings (OSTI)

This report examines different scenarios for how the nascent carbon capture and sequestration (CCS) industry might evolve through an examination of the emergence and growth of three analog industries: liquefied natural gas (LNG), SO2 controls for power plants, and nuclear power.

2010-01-28T23:59:59.000Z

382

Carbon Dioxide Capture from Coal-Fired  

E-Print Network (OSTI)

Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologies environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

383

Mobile device protection from loss and capture  

Science Conference Proceedings (OSTI)

Mobile devices play a critical role in assistive environments. How to authenticate and secure communications among them has become more important especially against loss and capture of the devices. In this paper, we present an approach to protect signing ... Keywords: assistive environment, authentication, digital signature, forward security, mobile device

Zhengyi Le; Yi Ouyang; Yurong Xu; Fillia Makedon

2008-07-01T23:59:59.000Z

384

Constraint capture and maintenance in engineering design  

Science Conference Proceedings (OSTI)

The Designers' Workbench is a system developed by the Advanced Knowledge Technologies Consortium to support designers in large organizations, such as Rolls-Royce, to ensure that the design is consistent with the specification for the particular design ... Keywords: Application Conditions, Capture, Constraints, Design, Maintenance, Rationales

Suraj Ajit; Derek Sleeman; David w. Fowler; David Knott

2008-11-01T23:59:59.000Z

385

Direct neutron capture and related mechanisms  

Science Conference Proceedings (OSTI)

We consider the evidence for the role of direct and related mechanisms in neutron capture at low and medium energies. Firstly, we compare the experimental data on the thermal neutron cross sections for El transitions in light nuclei with careful estimates of direct capture. Over the full range of light nuclei with small cross sections direct capture is found to be the predominant mechanism, in some cases being remarkable accurate, but in a few showing evidence for collective effects. When resonance effects become substantial there is evidence for an important contribution from the closely related valence mechanism, but full agreement with the data in such cases appears to require the introduction of a more generalised valence model. The possibility of direct and valence mechanisms playing a role in M1 capture is studied, and it is concluded that in light nuclei at relatively low gamma ray energies, it does indeed play some role. In heavier nuclei it appears that the evidence, especially from the correlations between E1 and M1 transitions to the same final states, favours the hypothesis that the main transition strength is governed by the M1 giant resonance. 31 refs., 2 tabs.

Lynn, J.E. (Los Alamos National Lab., NM (USA)); Raman, S. (Oak Ridge National Lab., TN (USA))

1990-01-01T23:59:59.000Z

386

Capture and Utilisation of Landfill Gas  

E-Print Network (OSTI)

Biomass Capture and Utilisation of Landfill Gas What is the potential for additional utilisation of landfill gas in the USA and around the world? By Nickolas Themelis and Priscilla Ulloa, Columbia University. In his 2003 review of energy recovery from landfill gas, Willumsen1 reported that as of 2001, there were

Columbia University

387

Capturing conflict and confusion in CSP  

Science Conference Proceedings (OSTI)

Traditionally, developers of concurrent systems have adopted two distinct approaches: those with truly concurrent semantics and those with interleaving semantics. In the coarser interleaving interpretation parallelism can be captured in terms of non-determinism ... Keywords: CSP, Petri nets, automatic verification, conflict, confusion, interleaving concurrency, true concurrency

Christie Marrne Bolton

2007-07-01T23:59:59.000Z

388

Synthesis of optimal adsorptive carbon capture processes.  

SciTech Connect

Solid sorbent carbon capture systems have the potential to require significantly lower regeneration energy compared to aqueous monoethanol amine (MEA) systems. To date, the majority of work on solid sorbents has focused on developing the sorbent materials themselves. In order to advance these technologies, it is necessary to design systems that can exploit the full potential and unique characteristics of these materials. The Department of Energy (DOE) recently initiated the Carbon Capture Simulation Initiative (CCSI) to develop computational tools to accelerate the commercialization of carbon capture technology. Solid sorbents is the first Industry Challenge Problem considered under this initiative. An early goal of the initiative is to demonstrate a superstructure-based framework to synthesize an optimal solid sorbent carbon capture process. For a given solid sorbent, there are a number of potential reactors and reactor configurations consisting of various fluidized bed reactors, moving bed reactors, and fixed bed reactors. Detailed process models for these reactors have been modeled using Aspen Custom Modeler; however, such models are computationally intractable for large optimization-based process synthesis. Thus, in order to facilitate the use of these models for process synthesis, we have developed an approach for generating simple algebraic surrogate models that can be used in an optimization formulation. This presentation will describe the superstructure formulation which uses these surrogate models to choose among various process alternatives and will describe the resulting optimal process configuration.

chang, Y.; Cozad, A.; Kim, H.; Lee, A.; Vouzis, P.; Konda, M.; Simon, A.; Sahinidis, N.; Miller, D.

2011-01-01T23:59:59.000Z

389

Aerial Scene Recognition using Efficient Sparse Representation  

SciTech Connect

Advanced scene recognition systems for processing large volumes of high-resolution aerial image data are in great demand today. However, automated scene recognition remains a challenging problem. Efficient encoding and representation of spatial and structural patterns in the imagery are key in developing automated scene recognition algorithms. We describe an image representation approach that uses simple and computationally efficient sparse code computation to generate accurate features capable of producing excellent classification performance using linear SVM kernels. Our method exploits unlabeled low-level image feature measurements to learn a set of basis vectors. We project the low-level features onto the basis vectors and use simple soft threshold activation function to derive the sparse features. The proposed technique generates sparse features at a significantly lower computational cost than other methods~\\cite{Yang10, newsam11}, yet it produces comparable or better classification accuracy. We apply our technique to high-resolution aerial image datasets to quantify the aerial scene classification performance. We demonstrate that the dense feature extraction and representation methods are highly effective for automatic large-facility detection on wide area high-resolution aerial imagery.

Cheriyadat, Anil M [ORNL

2012-01-01T23:59:59.000Z

390

ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD  

Science Conference Proceedings (OSTI)

Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

Malcolm Pitts; Ron Damm; Bev Seyler

2003-03-01T23:59:59.000Z

391

ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD  

Science Conference Proceedings (OSTI)

Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

Malcolm Pitts; Ron Damm; Bev Seyler

2003-04-01T23:59:59.000Z

392

Reducing long-term reservoir performance uncertainty  

DOE Green Energy (OSTI)

Reservoir performance is one of the key issues that have to be addressed before going ahead with the development of a geothermal field. In order to select the type and size of the power plant and design other surface installations, it is necessary to know the characteristics of the production wells and of the produced fluids, and to predict the changes over a 10--30 year period. This is not a straightforward task, as in most cases the calculations have to be made on the basis of data collected before significant fluid volumes have been extracted from the reservoir. The paper describes the methodology used in predicting the long-term performance of hydrothermal systems, as well as DOE/GTD-sponsored research aimed at reducing the uncertainties associated with these predictions. 27 refs., 1 fig.

Lippmann, M.J.

1988-04-01T23:59:59.000Z

393

Thermodynamic behaviour of simplified geothermal reservoirs  

DOE Green Energy (OSTI)

Starting from the basic laws of conservation of mass and energy, the differential equations that represent the thermodynamic behavior of a simplified geothermal reservoir are derived. Its application is limited to a reservoir of high permeability as it usually occurs in the central zone of a geothermal field. A very practical method to solve numerically the equations is presented, based on the direct use of the steam tables. The method, based in one general equation, is extended and illustrated with a numerical example to the case of segregated mass extraction, variable influx and heat exchange between rock and fluid. As it is explained, the method can be easily coupled to several influx models already developed somewhere else. The proposed model can become an important tool to solve practical problems, where like in Los Azufres Mexico, the geothermal field can be divided in an inner part where flashing occurs and an exterior field where storage of water plays the main role.

Hiriart, G.; Sanchez, E.

1985-01-22T23:59:59.000Z

394

Enhancing Reservoir Management in the Appalach  

NLE Websites -- All DOE Office Websites (Extended Search)

Reservoir Management in the Appalachian Basin by Identifying Technical Reservoir Management in the Appalachian Basin by Identifying Technical Barrier and Preferred Practices Final Report Reporting Period Start Date: September 1, 2001 Reporting Period End Date: September 15, 2003 Principal Author(s): Ronald R. McDowell Khashayar Aminian Katharine L. Avary John M. Bocan Michael Ed. Hohn Douglas G. Patchen September 2003 DE-FC26-01BC15273 West Virginia University Research Corporation West Virginia Geological and Economic Survey (subcontractor) ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

395

Injection into a fractured geothermal reservoir  

DOE Green Energy (OSTI)

A detailed study is made on the movement of the thermal fronts in the fracture and in the porous medium when 100{sup 0}C water is injected into a 300{sup 0}C geothermal reservoir with equally spaced horizontal fractures. Numerical modeling calculations were made for a number of thermal conductivity values, as well as different values of the ratio of fracture and rock medium permeabilities. One important result is an indication that although initially, the thermal front in the fracture moves very fast relative to the front in the porous medium as commonly expected, its speed rapidly decreases. At some distance from the injection well the thermal fronts in the fracture and the porous medium coincide, and from that point they advance together. The implication of this result on the effects of fractures on reinjection into geothermal reservoirs is discussed.

Bodvarsson, G.S.; Tsang, C.F.

1980-05-01T23:59:59.000Z

396

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents  

Science Conference Proceedings (OSTI)

This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters with cultures and conditions representative of oil reservoirs. Field pilot studies are underway.

D. O. Hitzman; A. K. Stepp; D. M. Dennis; L. R. Graumann

2003-03-31T23:59:59.000Z

397

Application of stress corrosion to geothermal reservoirs  

DOE Green Energy (OSTI)

There are several alternative equations which describe slow crack growth by stress corrosion. Presently available data suggest that an alternative form may be preferable to the form which is most often used, but the issue cannot be clearly decided. Presently available stress corrosion data on glasses and ceramics suggest that rocks in a proposed geothermal reservoir will crack readily over long time periods, thus seriously limiting the operation of this type of power source. However, in situ hydrofracturing measurements together with a theoretical treatment suggest that such a reservoir will contain a relatively high pressure over a long period of time without further cracking. Further experimentation is desirable to measure directly the critical stresses for crack growth rates on the order of 10/sup -7/ m/sec.

Demarest, H.H. Jr.

1975-10-01T23:59:59.000Z

398

Hot dry rock Phase II reservoir engineering  

DOE Green Energy (OSTI)

Early attempts to hydraulically fracture and connect two wells drilled at the Hot Dry Rock site at Fenton Hill in New Mexico failed. Microearthquakes triggered by hydraulic fracturing indicated that the fracture zones grew in unexpected directions. Consequently one of the wells was sidetracked at a depth of 2.9 km; was redrilled into the zones of most intense microseismic activity; and a flow connection was achieved. Hydraulic communication was improved by supplemental fracturing using recently developed high temperature and high pressure open hole packers. Preliminary testing indicates a reservoir with stimulated joint volume which already surpasses that attained in the earlier phase I reservoir after several years of development. 12 refs., 6 figs.

Murphy, H.D.

1985-01-01T23:59:59.000Z

399

Pressure transient analysis for naturally fractured reservoirs  

Science Conference Proceedings (OSTI)

New ideas are presented for the interpretation of pressure transient tests for wells in naturally fractured reservoirs. This work is based on the transient matrix flow model formulated by de Swaan. The differences between this model and the Warren and Root model occur during the transition flow period. It is demonstrated that the behavior of a naturally fractured reservoir can be correlated by using three dimensionless parameters. It is established that regardless of matrix geometry the transition period might exhibit a straight line whose slope is equal to half the slope of the classical parallel semilog straight lines, provided the transient matrix linear flow is present. In addition, information is provided on the estimation of fracture area per unit matrix volume or matrix parameters from the transition period semilog straight line. It is shown that matrix geometry might be identified when pressure data are smooth. Field examples are included to illustrate the application and the validity of the theoretical results of this study.

Cinco-ley, H.; Samaniego, F.V.

1982-09-01T23:59:59.000Z

400

Innovative MIOR Process Utilizing Indigenous Reservoir Constituents  

SciTech Connect

This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.; Graumann, L.R.

2003-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1987 Methods and Data Summary.  

DOE Green Energy (OSTI)

Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin. The authorized purpose of the dam is to provide power, flood control, and navigation and other benefits. Research began in May 1983 to determine how operations of Libby dam impact the reservoir fishery and to suggest ways to lessen these impacts. This study is unique in that it was designed to accomplish its goal through detailed information gathering on every trophic level in the reservoir system and integration of this information into a quantitative computer model. The specific study objectives are to: quantify available reservoir habitat, determine abundance, growth and distribution of fish within the reservoir and potential recruitment of salmonids from Libby Reservoir tributaries within the United States, determine abundance and availability of food organisms for fish in the reservoir, quantify fish use of available food items, develop relationships between reservoir drawdown and reservoir habitat for fish and fish food organisms, and estimate impacts of reservoir operation on the reservoir fishery. 115 refs., 22 figs., 51 tabs.

Chisholm, Ian

1989-12-01T23:59:59.000Z

402

A better understanding of a Uinta Basin channelized analog reservoir through geostatistics and reservoir simulation  

E-Print Network (OSTI)

The Green River Formation is located in the Uinta basin of northeastern Utah. It contains several reservoirs that can be classified as lacustrine such as the Altamont-Bluebell and Red Wash. Lacustrine reservoirs are abundant in other provinces in the world such as China, Southeast Asia, Brazil, West Africa, and the Caspian Sea. Even though they can contain important accumulations of hydrocarbons, our understanding of the primary controls on fluid flow within these systems is still not clear. This ambiguity leads in some cases to inefficient recovery of hydrocarbons in such reservoirs. This study is aimed at clarifying the effects of heterogeneities in channelized reservoirs on fluid flow. It uses a multidisciplinary approach combining geologic knowledge with reservoir engineering. It involves the geologic modeling and fluid flow simulation of a channelized outcrop of the Green River formation. The study of this outcrop provides insights for modeling, understanding, and possibly predicting the behavior of channelized oil and gas reservoirs. Results show that the number of channels in the model can have a significant effect on performance. The rock properties in these channels and the channel paths are also important factors that determine the recovery efficiency. Other findings include the effect on performance of vertical anisotropy in a channelized reservoir. We discovered that an isotropic reservoir performs better than an anisotropic one and that the well perforation interval is extremely important when comparing the performance of several anisotropic cases. Finally, we investigated the effects of the recovery strategy on performance in a channelized setting. We found that waterflooding yields better results than any of the other recovery techniques analyzed. Sensitivity runs with different waterflood patterns indicated that a staggered line drive results in the best performance in the analog channelized reservoir we modeled, as it allows for the best recovery factor in the least amount of time. The results of this work can be used qualitatively to predict performance in a channelized setting but their use is limited quantitatively because of the issue of scale, i.e. the outcrop width is much less than typical interwell scale.

Robbana, Enis

2002-01-01T23:59:59.000Z

403

History match simulation of Serrazzano geothermal reservoir  

DOE Green Energy (OSTI)

The simulator SHAFT79 of Lawrence Berkeley Laboratory has been applied to field-wide distributed parameter simulation of the vapor-dominated geothermal reservoir at Serrazzano, Italy. Using a three-dimensional geologically accurate mesh and detailed flow rate data from 19 producing wells, a period of 15.5 years (from 1959 to 1975) has been simulated. The reservoir model used is based on field measurements of temperatures and pressures, laboratory data for core samples, and available geological and hydrological information. The main parameters determined (adjusted) during development of the simulation are permeabilities and much of the initial conditions. Simulated patterns of pressure decline show semi-quantitative agreement with field observations. The simulation suggests that there is cold water recharge and/or incomplete heat transfer from he rock due to fractures in the margins of the reservoir, and some steam flowing to the main well field originates from deep fractures rather than from boiling in the two-phase zones modeled. Simulation methodology and ambiguity of parameter determination is discussed.

Pruess, K.; Weres, O.; Schroeder, R.; Marconcini, R.; Neri, G.

1980-08-01T23:59:59.000Z

404

Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of Carbon Dioxide  

Science Conference Proceedings (OSTI)

In this final report, we describe research results from Phase 2 of a technical/economic study of fossil hydrogen energy systems with carbon dioxide (CO{sub 2}) capture and storage (CCS). CO{sub 2} capture and storage, or alternatively, CO{sub 2} capture and sequestration, involves capturing CO{sub 2} from large point sources and then injecting it into deep underground reservoirs for long-term storage. By preventing CO{sub 2} emissions into the atmosphere, this technology has significant potential to reduce greenhouse gas (GHG) emissions from fossil-based facilities in the power and industrial sectors. Furthermore, the application of CCS to power plants and hydrogen production facilities can reduce CO{sub 2} emissions associated with electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs) and, thus, can also improve GHG emissions in the transportation sector. This research specifically examines strategies for transitioning to large-scale coal-derived energy systems with CCS for both hydrogen fuel production and electricity generation. A particular emphasis is on the development of spatially-explicit modeling tools for examining how these energy systems might develop in real geographic regions. We employ an integrated modeling approach that addresses all infrastructure components involved in the transition to these energy systems. The overall objective is to better understand the system design issues and economics associated with the widespread deployment of hydrogen and CCS infrastructure in real regions. Specific objectives of this research are to: Develop improved techno-economic models for all components required for the deployment of both hydrogen and CCS infrastructure, Develop novel modeling methods that combine detailed spatial data with optimization tools to explore spatially-explicit transition strategies, Conduct regional case studies to explore how these energy systems might develop in different regions of the United States, and Examine how the design and cost of coal-based H{sub 2} and CCS infrastructure depend on geography and location.

Nils Johnson; Joan Ogden

2010-12-31T23:59:59.000Z

405

Carbon Capture R&D | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capture R&D Capture R&D Carbon Capture R&D DOE's Carbon Capture Program, administered by the Office of Fossil Energy and the National Energy Technology Laboratory, is conducting research and development activities on Second Generation and Transformational carbon capture technologies that have the potential to provide step-change reductions in both cost and energy penalty as compared to currently available First Generation technologies. The Carbon Capture Program consists of two core research Technology Areas: (1) Post-Combustion Capture; and (2) Pre-Combustion Capture. Post-combustion capture is primarily applicable to fossil fuel based systems such as conventional pulverized coal (PC)-fired power plants, where the fuel is burned with air in a boiler to produce steam that drives

406

Determining the 3-D fracture structure in the Geysers geothermal reservoir  

DOE Green Energy (OSTI)

The bulk of the steam at the Geysers geothermal field is produced from fractures in a relatively impermeable graywacke massif which has been heated by an underlying felsite intrusion. The largest of these fractures are steeply dipping right lateral strike-slip faults which are subparallel to the NW striking Collayomi and Mercuryville faults which form the NE and SW boundaries of the known reservoir. Where the graywacke source rock outcrops at the surface it is highly sheared and fractured over a wide range of scale lengths. Boreholes drilled into the reservoir rock encounter distinct ''steam entries'' at which the well head pressure jumps from a few to more than one hundred psi. This observation that steam is produced from a relatively small number of major fractures has persuaded some analysts to use the Warren and Root (1963) dual porosity model for reservoir simulation purposes. The largest fractures in this model are arranged in a regular 3-D array which partitions the reservoir into cubic ''matrix'' blocks. The net storage and transport contribution of all the smaller fractures in the reservoir are lumped into average values for the porosity and permeability of these matrix blocks which then feed the large fractures. Recent improvements of this model largely focus on a more accurate representation of the transport from matrix to fractures (e.g. Pruess et al., 1983; Ziminerman et al., 1992), but the basic geometry is rarely questioned. However, it has long been recognized that steam entries often occur in clusters separated by large intervals of unproductive rock (Thomas et al., 1981). Such clustering of fixtures at all scale lengths is one characteristic of self-similar distributions in which the fracture distribution is scale-independent. Recent studies of the geometry of fracture networks both in the laboratory and in the field are finding that such patterns are self-similar and can be best described using fractal geometry. Theoretical simulations of fracture development in heterogeneous media also produce fractal patterns. However, a physical interpretation of the mechanics which produce the observed fractal geometry remains an active area of current research. Two hypotheses for the physical cause of self-similarity are the Laplacian growth of fractures in a self-organized critical stress field, and the evolution of percolation clusters in a random medium. Each predicts a different, fractal dimension. The more important questions from a reservoir engineering point of view are: (1) is the network of fractures in the Geysers reservoir fractal and if so over what range of fracture sizes is the self-similarity observed and what is its fractal dimension, and (2) do the conventional dual porosity numerical simulation schemes provide an adequate description of flow and heat mining at the Geysers? Other papers in this volume by Acuna, Ershaghi, and Yortsos (1992) and Mukhopodhyoy and Sahimi (1992) address the second question. The primary objective of this paper is to try to answer the first. Toward this goal we have mapped fracture patterns in surface exposures of the graywacke source rock at the outcrop scale (meters), at the road-cut scale (tens of meters) and at the regional scale (kilometers). We have also examined cores collected at depth from the graywacke reservoir rocks, and analyzed drilling logs making use of the pattern of steam entries as well as the fluctuations in drilling rate.

Sammis, Charles G.; Linji An; Iraj Ershaghi

1992-01-01T23:59:59.000Z

407

QUANTITATIVE METHODS FOR RESERVOIR CHARACTERIZATION AND IMPROVED RECOVERY: APPLICATION TO HEAVY OIL SANDS  

SciTech Connect

Improved prediction of interwell reservoir heterogeneity has the potential to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involves application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation, particularly in heavy oil sands. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field. Observations of lateral variability and vertical sequences observed in Temblor Formation outcrops has led to a better understanding of reservoir geology in West Coalinga Field. Based on the characteristics of stratigraphic bounding surfaces in the outcrops, these surfaces were identified in the subsurface using cores and logs. The bounding surfaces were mapped and then used as reference horizons in the reservoir modeling. Facies groups and facies tracts were recognized from outcrops and cores of the Temblor Formation and were applied to defining the stratigraphic framework and facies architecture for building 3D geological models. The following facies tracts were recognized: incised valley, estuarine, tide- to wave-dominated shoreline, diatomite, and subtidal. A new minipermeameter probe, which has important advantages over previous methods of measuring outcrop permeability, was developed during this project. The device, which measures permeability at the distal end of a small drillhole, avoids surface weathering effects and provides a superior seal compared with previous methods for measuring outcrop permeability. The new probe was used successfully for obtaining a high-quality permeability data set from an outcrop in southern Utah. Results obtained from analyzing the fractal structure of permeability data collected from the southern Utah outcrop and from core permeability data provided by Chevron from West Coalinga Field were used in distributing permeability values in 3D reservoir models. Spectral analyses and the Double Trace Moment method (Lavallee et al., 1991) were used to analyze the scaling and multifractality of permeability data from cores from West Coalinga Field. T2VOC, which is a numerical flow simulator capable of modeling multiphase, multi-component, nonisothermal flow, was used to model steam injection and oil production for a portion of section 36D in West Coalinga Field. The layer structure and permeability distributions of different models, including facies group, facies tract, and fractal permeability models, were incorporated into the numerical flow simulator. The injection and production histories of wells in the study area were modeled, including shutdowns and the occasional conversion of production wells to steam injection wells. The framework provided by facies groups provides a more realistic representation of the reservoir conditions than facies tracts, which is revealed by a comparison of the history-matching for the oil production. Permeability distributions obtained using the fractal results predict the high degree of heterogeneity within the reservoir sands of West Coalinga Field. The modeling results indicate that predictions of oil production are strongly influenced by the geologic framework and by the boundary conditions. The permeability data collected from the southern Utah outcrop, support a new concept for representing natural heterogeneity, which is called the fractal/facies concept. This hypothesis is one of the few potentially simplifying concepts to emerge from recent studies of geological heterogeneity. Further investigation of this concept should be done to more fully apply fractal analysis to reservoir modeling and simulation. Additional outcrop permeability data sets and further analysis of the data from distinct facies will be needed in order to fully develop

James W. Castle; Fred J. Molz; Ronald W. Falta; Cynthia L. Dinwiddie; Scott E. Brame; Robert A. Bridges

2002-10-30T23:59:59.000Z

408

SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY: APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS  

SciTech Connect

The objective of the project was to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study focused on West Coalinga Field in California. The project initially attempted to build reservoir models based on different geologic and geophysical data independently using different tools, then to compare the results, and ultimately to integrate them all. We learned, however, that this strategy was impractical. The different data and tools need to be integrated from the beginning because they are all interrelated. This report describes a new approach to geostatistical modeling and presents an integration of geology and geophysics to explain the formation of the complex Coalinga reservoir.

Matthias G. Imhof; James W. Castle

2005-02-01T23:59:59.000Z

409

SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY: APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS  

SciTech Connect

The objective of the project was to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study focused on West Coalinga Field in California. The project initially attempted to build reservoir models based on different geologic and geophysical data independently using different tools, then to compare the results, and ultimately to integrate them all. Throughout the project, however, we learned that this strategy was impractical because the different data and model are complementary instead of competitive. For the complex Coalinga field, we found that a thorough understanding of the reservoir evolution through geologic times provides the necessary framework which ultimately allows integration of the different data and techniques.

Matthias G. Imhof; James W. Castle

2005-02-01T23:59:59.000Z

410

HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS  

Science Conference Proceedings (OSTI)

This report outlines progress in the second 3 months of the first year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs.'' The development of an automatic technique for analytical solution of one-dimensional gas flow problems with volume change on mixing is described. The aim of this work is to develop a set of ultra-fast compositional simulation tools that can be used to make field-scale predictions of the performance of gas injection processes. To achieve the necessary accuracy, these tools must satisfy the fundamental physics and chemistry of the displacement from the pore to the reservoir scales. Thus this project focuses on four main research areas: (1) determination of the most appropriate methods of mapping multicomponent solutions to streamlines and streamtubes in 3D; (2) development of techniques for automatic generation of analytical solutions for one-dimensional flow along a streamline; (3) experimental investigations to improve the representation of physical mechanisms that govern displacement efficiency along a streamline; and (4) theoretical and experimental investigations to establish the limitations of the streamline/streamtube approach. In this report they briefly review the status of the research effort in each area. They then give a more in depth discussion of their development of techniques for analytic solutions along a streamline including volume change on mixing for arbitrary numbers of components.

Franklin M. Orr, Jr.

2001-03-31T23:59:59.000Z

411

Alternate Representations for Numerical Modeling of Multi-Stage Hydraulically Fractured Horizontal Wells in Shale Gas Reservoirs.  

E-Print Network (OSTI)

??Increasing demand of oil and natural gas and depletion of production from conventional resources accelerate the advancement of technology to economically produce oil and natural… (more)

Siripatrachai, Nithiwat

2011-01-01T23:59:59.000Z

412

Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1985 Annual Report.  

DOE Green Energy (OSTI)

The goal was to quantify seasonal water levels needed to maintain or enhance the reservoir fishery in Libby. This report summarizes data collected from July 1984 through July 1985, and, where appropriate, presents data collected since 1983. The Canada, Rexford, and Tenmile areas of the reservoir are differentially affected by drawdown. Relative changes in water volume and surface area are greatest in the Canada area and smallest in the Tenmile area. Reservoir morphology and hydraulics probably play a major role in fish distribution through their influence on water temperature. Greatest areas of habitat with optimum water temperature for Salmo spp. and kokanee occurred during the spring and fall months. Dissolved oxygen, pH and conductivity levels were not limiting during any sampling period. Habitat enhancement work was largely unsuccessful. Littoral zone vegetation plantings did not survive well, primarily the result of extreme water level fluctuations. Relative abundances of fish species varied seasonally within and between the three areas. Water temperature is thought to be the major influence in fish distribution patterns. Other factors, such as food availability and turbidity, may mitigate its influence. Sampling since 1975 illustrates a continued increase in kokanee numbers and a dramatic decline in redside shiners. Salmo spp., bull trout, and burbot abundances are relatively low while peamouth and coarsescale sucker numbers remain high. A thermal dynamics model and a trophic level components model will be used to quantify the impact of reservoir operation on the reservoir habitat, primary production, secondary production and fish populations. Particulate carbon will be used to track energy flow through trophic levels. A growth-driven population dynamics simulation model that will estimate the impacts of reservoir operation on fish population dynamics is also being considered.

Chisholm, Ian

1985-01-01T23:59:59.000Z

413

Carbon Dioxide Capture Process with Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Dioxide Capture Process with Regenerable Sorbents Dioxide Capture Process with Regenerable Sorbents sorbent material. Additionally, the design of the system incorporates a cross- flow moving-bed reactor where the gas flows horizontally through a "panel" of solid sorbent that is slowly moving down-wards under gravity flow. With the expanded use of fossil fuels expected throughout the world, the increase in CO 2 emissions may prove to contribute even more significantly to global climate change. To address this problem, carbon sequestration scientists and engineers have proposed a number of methods to remove CO 2 from gas streams, such as chemical absorption with a solvent, membrane separation, and cryogenic fractionation. However, all of these methods are expensive and possibly cost-prohibitive for a specific application.

414

Supercomputers Capture Turbulence in the Solar Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercomputers Supercomputers Capture Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space weather December 16, 2013 Linda Vu, +1 510 495 2402, lvu@lbl.gov eddies1.jpg This visualization zooms in on current sheets revealing the "cascade of turbulence" in the solar wind occurring down to electron scales. This is a phenomenon common in fluid dynamics-turbulent energy injected at large eddies is transported to successively smaller scales until it is dissipated as heat. (Image by Burlen Loring, Berkeley Lab) As inhabitants of Earth, our lives are dominated by weather. Not just in the form of rain and snow from atmospheric clouds, but also a sea of charged particles and magnetic fields generated by a star sitting 93

415

Polarized photons in radiative muon capture  

E-Print Network (OSTI)

We discuss the measurement of polarized photons arising from radiative muon capture. The spectrum of left circularly polarized photons or equivalently the circular polarization of the photons emitted in radiative muon capture on hydrogen is quite sensitive to the strength of the induced pseudoscalar coupling constant $g_P$. A measurement of either of these quantities, although very difficult, might be sufficient to resolve the present puzzle resulting from the disagreement between the theoretical prediction for $g_P$ and the results of a recent experiment. This sensitivity results from the absence of left-handed radiation from the muon line and from the fact that the leading parts of the radiation from the hadronic lines, as determined from the chiral power counting rules of heavy-baryon chiral perturbation theory, all contain pion poles.

Shung-ichi Ando; Harold W. Fearing; Dong-Pil Min

2001-04-25T23:59:59.000Z

416

Ordinary Muon Capture in Hydrogen Reexamined  

E-Print Network (OSTI)

The rate of muon capture in a muonic hydrogen atom is calculated in heavy-nucleon chiral perturbation theory up to next-to-next-to leading order. To this order, we present the systematic evaluation of all the corrections due to the QED and electroweak radiative corrections and the proton-size effect. Since the low-energy constants involved can be determined from other independent sources of information, the theory has predictive power. For the hyperfine-singlet $\\mu p$ capture rate $\\Gamma_0$, our calculation gives $\\Gamma_0=710 \\,\\pm 5\\,s^{-1}$, which is in excellent agreement with the experimental value obtained in a recent high-precision measurement by the MuCap Collaboration.

U. Raha; F. Myhrer; K. Kubodera

2013-03-25T23:59:59.000Z

417

Reservoir and injection technology: Geothermal reservoir engineering research at Stanford: Third annual report for the period October 1, 1986 through September 30, 1987: (Final report)  

DOE Green Energy (OSTI)

This paper discusses different aspects of geothermal reservoir engineering. General topics covered are: reinjection technology, reservoir technology, and heat extraction. (LSP)

Ramey, H.J. Jr.; Horne, R.N.; Miller, F.G.; Brigham, W.E.

1988-02-01T23:59:59.000Z

418

Carbon Capture and Sequestration Newsletter, Issue #1  

Science Conference Proceedings (OSTI)

This is the inaugural edition of the EPRI Carbon Capture and Sequestration (CC&S) newsletter. The newsletter will provide periodic updates on research conducted through EPRI's CC&S target, and on related issues. Coverage will include: o summaries of, and EPRI perspectives on, significant issues (such as the likelihood of success and the applicability of the various technical concepts under development), perspectives on governmental research and development (R&D) policy, and important research findings; o...

2001-07-19T23:59:59.000Z

419

Graphical Representation of Supersymmetry and Computer Calculation  

E-Print Network (OSTI)

A graphical representation of supersymmetry is presented. It clearly expresses the chiral flow appearing in SUSY quantities, by representing spinors by {\\it directed lines} (arrows). The chiral suffixes are expressed by the directions (up, down, left, right) of the arrows. The SL(2,C) invariants are represented by {\\it wedges}. We are free from the messy symbols of spinor suffixes. The method is applied to the 5D supersymmetry. Many applications are expected. The result is suitable for coding a computer program and is highly expected to be applicable to various SUSY theories (including Supergravity) in various dimensions.

Shoichi Ichinose

2004-10-04T23:59:59.000Z

420

Immersive Representation of Building Information Model  

E-Print Network (OSTI)

Building Information Modeling (BIM) is an emerging technology that utilizes 3D graphical representations to improve communication, collaboration, and data exchange. Immersive Visualization Environment (IVE) is another promising technology that enhances the 3D graphical representation to achieve a higher level of a sense of presence. The connection between the BIM technology that utilizes the 3D graphical representation and the IVE technology that enhances the 3D graphical representation has led many professionals to visualize BIM in immersive environments. This study is an attempt to overcome a systematic issue presented by available immersive visualization systems. The problem is that in order to visualize an information-rich BIM model from a commercial BIM application in an immersive visualization environment, the BIM model needs to pass through a tough conversion process and loss a large amount of its information. This research study utilizes the Application Programming Interface (API) of a commercially available BIM application to develop an immersive visualization environment. This approach was applied on Autodesk Navisworks software by developing a software program that utilizes Navisworks' API to control Navisworks' camera angle and generate an immersive visualization environment. A prototype of the approach was built in the Department of Construction Science at Texas A & M University and named BIM CAVE Prototype. The overall goal of this research was to prove that it is possible to transform a commercial BIM application into an immersive visualization system. A phenomenological study was utilized by interviewing subject matter experts from the construction industry. The intent of this effort was to explore and develop a phenomenological understanding of how research participants perceived the BIM CAVE system. The results show that the BIM CAVE can be considered an immersive visualization environment because it contains a majority of the immersive visualization environment features. However, a variety of technical limitations must be overcome before it can be called a fully immersive and functional visualization environment. Moreover, even though this investigation was to some extent successful, this research approach needs to be tested on other commercially available BIM applications before generalizations are made.

Nseir, Hussam

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Borehole geophysics evaluation of the Raft River geothermal reservoir |  

Open Energy Info (EERE)

reservoir reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Borehole geophysics evaluation of the Raft River geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water (145/sup 0/C) reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. It was believed that the long term contact with the hot water would cause alteration producing these effects. With this model in mind, cross-plots of the above parameters were made to attempt to delineate the reservoir. It appears that the most meaningful data include smoothed and

422

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR | Open Energy  

Open Energy Info (EERE)

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Details Activities (1) Areas (1) Regions (0) Abstract: A fluid model for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Models are created using cross-sections and fence diagrams. A thick condensate and boiling zone is indicated across the western portion

423

Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir |  

Open Energy Info (EERE)

Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: A fence-diagram for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Permeable zones are indicated by a large change in

424

Norm continuous unitary representations of Lie algebras of smooth sections  

E-Print Network (OSTI)

We give a complete description of the bounded (i.e. norm continuous) unitary representations of the Fr\\'echet-Lie algebra of all smooth sections, as well as of the LF-Lie algebra of compactly supported smooth sections, of a smooth Lie algebra bundle whose typical fiber is a compact Lie algebra. For the Lie algebra of all sections, bounded unitary irreducible representations are finite tensor products of so-called evaluation representations, hence in particular finite-dimensional. For the Lie algebra of compactly supported sections, bounded unitary irreducible (factor) representations are possibly infinite tensor products of evaluation representations, which reduces the classification problem to results of Glimm and Powers on irreducible (factor) representations of UHF C*-algebras. The key part in our proof is the classification of irreducible bounded unitary representations of Lie algebras that are the tensor product of a compact Lie algebra and a unital real continuous inverse algebra: every such representation is a finite product of evaluation representations. On the group level, our results cover in particular the bounded unitary representations of the identity component of the group of smooth gauge transformations of a principal fiber bundle with compact base and structure group, and the connected component of the group of special unitary n times n matrices with values in an involutive commutative continuous inverse algebra.

Bas Janssens; Karl-Hermann Neeb

2013-02-11T23:59:59.000Z

425

Geothermal Reservoir Technology Research Program: Abstracts of selected research projects  

DOE Green Energy (OSTI)

Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

Reed, M.J. (ed.)

1993-03-01T23:59:59.000Z

426

Seventeenth workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program) [Stanford Geothermal Program

1992-01-31T23:59:59.000Z

427

Readout of Secretary Chu Meetings on Carbon Capture and Sequestration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu Meetings on Carbon Capture and Sequestration and State Grid Readout of Secretary Chu Meetings on Carbon Capture and Sequestration and State Grid July 16, 2009 - 12:00am Addthis...

428

New Funding from DOE Boosts Carbon Capture and Storage Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from DOE Boosts Carbon Capture and Storage Research and Development New Funding from DOE Boosts Carbon Capture and Storage Research and Development September 16, 2009 - 12:00am...

429

Carbon Pollution Being Captured, Stored and Used to Produce More...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Pollution Being Captured, Stored and Used to Produce More Domestic Oil Carbon Pollution Being Captured, Stored and Used to Produce More Domestic Oil May 10, 2013 - 11:38am...

430

CO2 Capture and Storage Project, Education and Training Center...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

storage. It's the process of capturing and storing or re-using carbon dioxide (CO2) from coal-fired power plants and industrial sources. In Decatur, Illinois, a new carbon capture...

431

Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Carbon Dioxide Capture/Sequestration Tax Deduction allows a taxpayer a deduction to adjusted gross income with respect to the amortization of the amortizable costs of carbon dioxide capture,...

432

Dictionary Optimization for Block-Sparse Representations  

E-Print Network (OSTI)

Recent work has demonstrated that using a carefully designed dictionary instead of a predefined one, can improve the sparsity in jointly representing a class of signals. This has motivated the derivation of learning methods for designing a dictionary which leads to the sparsest representation for a given set of signals. In some applications, the signals of interest can have further structure, so that they can be well approximated by a union of a small number of subspaces (e.g., face recognition and motion segmentation). This implies the existence of a dictionary which enables block-sparse representations of the input signals once its atoms are properly sorted into blocks. In this paper, we propose an algorithm for learning a block-sparsifying dictionary of a given set of signals. We do not require prior knowledge on the association of signals into groups (subspaces). Instead, we develop a method that automatically detects the underlying block structure. This is achieved by iteratively alternating between upda...

Rosenblum, Kevin; Eldar, Yonina C

2010-01-01T23:59:59.000Z

433

Fractured geothermal reservoir growth induced by heat extraction  

DOE Green Energy (OSTI)

Field testing of a hydraulically-stimulated, hot dry rock geothermal system at the Fenton Hill site in northern New Mexico has indicated that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for documenting the increases in accessible reservoir volume and fractured rock surface area that were observed during energy extraction operations which caused substantial thermal drawdown in portions of the reservoir. These temporal increases suggest that augmentation of reservoir heat production capacity in hot dry rock systems may be possible.

Tester, J.W.; Murphy, H.D.; Grigsby, C.O.; Robinson, B.A.; Potter, R.M.

1986-01-01T23:59:59.000Z

434

Hot dry rock geothermal reservoir testing: 1978 to 1980  

DOE Green Energy (OSTI)

Experimental results and re-evaluation of the Phase I Hot Dry Rock Geothermal Energy reservoirs at the Fenton Hill field site are summarized. This report traces reservoir growth as demonstrated during Run Segments 2 through 5 (January 1978 to December 1980). Reservoir growth was caused not only by pressurization and hydraulic fracturing, but also by heat extraction and thermal contraction effects. Reservoir heat-transfer area grew from 8000 to 50,000 m/sup 2/ and reservoir fracture volume grew from 11 to 266 m/sup 3/. Despite this reservoir growth, the water loss rate increased only 30%, under similar pressure environments. For comparable temperature and pressure conditions, the flow impedance (a measure of the resistance to circulation of water through the reservoir) remained essentially unchanged, and if reproduced in the Phase II reservoir under development, could result in self pumping. Geochemical and seismic hazards have been nonexistent in the Phase I reservoirs. The produced water is relatively low in total dissolved solids and shows little tendency for corrosion or scaling. The largest microearthquake associated with heat extraction measures less than -1 on the extrapolated Richter scale.

Dash, Z.V.; Murphy, H.D.; Cremer, G.M. (eds.)

1981-11-01T23:59:59.000Z

435

Scales of geologic reservoir description for engineering applications  

SciTech Connect

A consequence of the increased interaction between geologists and engineers in resolving reservoir problems has been an awareness on the part of geologists of the need to vary the scale of their geologic description according to particular engineering applications. Conventional geological descriptions are normally too detailed for reservoir engineering simulations and often are not in an appropriate form for relating to reservoir performance. An example is presented of two scales of description of a North Sea oil field for two different applications. The field is a Tertiary submarine slope-fan deposit consisting of thick unconsolidated channel sand facies, a lobe sand facies, and a slope claystone facies, all arranged into 12 stratigraphic units and several subunits. Permeability of the channel sands is about twice that of lobe sands, demonstrating a facies control on reservoir quality. For the purpose of calculating reservoir volumetrics, it was possible to scale up the stratigraphy, by combining similar stratigraphic units, into a simple four-layer reservoir model. Average porosity and permeability vary among the layers in this geologically based model. For the purpose of improving understanding of the reservoir, a more complex flow unit model was developed according to geological and petrophysical properties that would influence the flow of fluids in the reservoir. This model is partly based upon sedimentary facies distribution, but differs from a geologic facies model and is in a more suitable form for relating to reservoir performance.

Slatt, R.M.; Hopkins, G.L.

1988-01-01T23:59:59.000Z

436

Numerical simulation of water injection into vapor-dominated reservoirs  

DOE Green Energy (OSTI)

Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

Pruess, K.

1995-01-01T23:59:59.000Z

437

,"Shale Natural Gas New Reservoir Discoveries in Old Fields ...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Shale Natural Gas New Reservoir Discoveries in Old Fields ",36,"Annual",2011,"6302009"...

438

Miscellaneous States Shale Gas Proved Reserves New Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Shale Natural Gas New Reservoir Discoveries in Old Fields...

439

INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

and Pruess, K. , Analysis of injection testing of geothermalreservoirs: Geothermal Resoures Council, Vol. 4. , (into a fractured geothermal reservoir: Transactions, Vol. 4,

Bodvarsson, Gudmundur S.

2012-01-01T23:59:59.000Z

440

,"West Virginia Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2011 ,"Release...

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

,"North Dakota Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2011 ,"Release...

442

,"New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2011 ,"Release...

443

,"New York Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

444

,"Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2011 ,"Release...

445

FRACSTIM/I: An Integrated Fracture Stimulation and Reservoir...  

Open Energy Info (EERE)

An Integrated Fracture Stimulation and Reservoir Flow and Transport Simulator Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

446

An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs In Marine Areas Jump to:...

447

Field Algae Measurements Using Empirical Correlations at Deer Creek Reservoir.  

E-Print Network (OSTI)

??Deer Creek Reservoir in Utah has a history of high algae concentrations. Despite recent nutrient reduction efforts, seasonal algae continue to present problems. Cost effective,… (more)

Stephens, Ryan A

2011-01-01T23:59:59.000Z

448

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...  

Open Energy Info (EERE)

Technologies Project Type Topic 2 Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Project Description Supercritical CO2 is currently becoming a more...

449

Modeling Of Hydraulic Fracture Network Propagation In Shale Gas Reservoirs.  

E-Print Network (OSTI)

??The most effective method for stimulating shale gas reservoirs is massive hydraulic fracture treatments. Recent fracture diagnostic technologies such as microseismic technology have shown that… (more)

Ahn, Chong

2012-01-01T23:59:59.000Z

450

Optimizing Development Strategies to Increase Reserves in Unconventional Gas Reservoirs  

E-Print Network (OSTI)

The ever increasing energy demand brings about widespread interest to rapidly, profitably and efficiently develop unconventional resources, among which tight gas sands hold a significant portion. However, optimization of development strategies in tight gas fields is challenging, not only because of the wide range of depositional environments and large variability in reservoir properties, but also because the evaluation often has to deal with a multitude of wells, limited reservoir information, and time and budget constraints. Unfortunately, classical full-scale reservoir evaluation cannot be routinely employed by small- to medium-sized operators, given its timeconsuming and expensive nature. In addition, the full-scale evaluation is generally built on deterministic principles and produces a single realization of the reservoir, despite the significant uncertainty faced by operators. This work addresses the need for rapid and cost-efficient technologies to help operators determine optimal well spacing in highly uncertain and risky unconventional gas reservoirs. To achieve the research objectives, an integrated reservoir and decision modeling tool that fully incorporates uncertainty was developed. Monte Carlo simulation was used with a fast, approximate reservoir simulation model to match and predict production performance in unconventional gas reservoirs. Simulation results were then fit with decline curves to enable direct integration of the reservoir model into a Bayesian decision model. These integrated tools were applied to the tight gas assets of Unconventional Gas Resources Inc. in the Berland River area, Alberta, Canada.

Turkarslan, Gulcan

2010-08-01T23:59:59.000Z

451

Synchrotron X-ray Studies of Supercritical Carbon Dioxide/ Reservoir...  

Open Energy Info (EERE)

Edit with form History Facebook icon Twitter icon Synchrotron X-ray Studies of Supercritical Carbon Dioxide Reservoir Rock Interfaces Geothermal Lab Call Project Jump to:...

452

Application of thermal depletion model to geothermal reservoirs...  

Open Energy Info (EERE)

of thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings:...

453

Collection and Analysis of Reservoir Data from Testing and Operation...  

Open Energy Info (EERE)

and Analysis of Reservoir Data from Testing and Operation of the Raft River 5 MW Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

454

Geothermal Reservoir Assessment Case Study, Northern Basin and...  

Open Energy Info (EERE)

GLO2386 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range...

455

FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...  

Open Energy Info (EERE)

NA, 2002 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling Citation...

456

Numerical Modeling of Gas Recovery from Methane Hydrate Reservoirs.  

E-Print Network (OSTI)

??ABSTRACTClass 1 hydrate deposits are characterized by a hydrate bearing layer underlain by a two phase, free-gas and water, zone. A Class 1 hydrate reservoir… (more)

Silpngarmlert, Suntichai

2007-01-01T23:59:59.000Z

457

AN ADVISORY SYSTEM FOR THE DEVELOPMENT OF UNCONVENTIONAL GAS RESERVOIRS.  

E-Print Network (OSTI)

??With the rapidly increasing demand for energy and the increasing prices for oil and gas, the role of unconventional gas reservoirs (UGRs) as energy sources… (more)

Wei, Yunan

2010-01-01T23:59:59.000Z

458

Evaluation of testing and reservoir parameters in geothermal...  

Open Energy Info (EERE)

testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Evaluation...

459

,"U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic...

460

Evaluation of Fluid Transport Properties of Coal Bed Methane Reservoirs.  

E-Print Network (OSTI)

??Determination of petro-physical properties of coal bed methane (CBM) reservoirs is essential in evaluating a potential prospect for commercial exploitation. In particular, permeability is the… (more)

Alexis, Dennis Arun

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Use Of Electrical Surveys For Geothermal Reservoir Characterization...  

Open Energy Info (EERE)

Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Use Of...

462

Steamflooding as an alternative EOR process for light oil reservoirs  

Science Conference Proceedings (OSTI)

This paper seeks to stimulate consideration of steamflooding as a viable alternative to chemical enhanced oil recovery (EOR) techniques in shallow, light-oil reservoirs. A highly implicit steamflood reservoir simulator was used to predict steamflood performance of a typical shallow oil reservoir. For this study, non-uniform oil saturations were created by simulating a waterflood prior to initiating each steam injection case. The effects of final waterflood water-oil ratio, reservoir thickness, and amount of distillable component in the crude were examined. 10 refs.

Hanzlik, E.J.

1981-01-01T23:59:59.000Z

463

,"California Dry Natural Gas New Reservoir Discoveries in Old...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

464

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

465

Two-dimensional simulation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

and wells. (SINDA-3G program) Details Activities (1) Areas (1) Regions (0) Abstract: Computer models describing both the transient reservoir pressure behavior and the time...

466

EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...  

Annual Energy Outlook 2012 (EIA)

Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground...

467

EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...  

Annual Energy Outlook 2012 (EIA)

Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production...

468

,"Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

469

The Optimization of Well Spacing in a Coalbed Methane Reservoir  

E-Print Network (OSTI)

Numerical reservoir simulation has been used to describe mechanism of methane gas desorption process, diffusion process, and fluid flow in a coalbed methane reservoir. The reservoir simulation model reflects the response of a reservoir system and the relationship among coalbed methane reservoir properties, operation procedures, and gas production. This work presents a procedure to select the optimum well spacing scenario by using a reservoir simulation. This work uses a two-phase compositional simulator with a dual porosity model to investigate well-spacing effects on coalbed methane production performance and methane recovery. Because of reservoir parameters uncertainty, a sensitivity and parametric study are required to investigate the effects of parameter variability on coalbed methane reservoir production performance and methane recovery. This thesis includes a reservoir parameter screening procedures based on a sensitivity and parametric study. Considering the tremendous amounts of simulation runs required, this work uses a regression analysis to replace the numerical simulation model for each wellspacing scenario. A Monte Carlo simulation has been applied to present the probability function. Incorporated with the Monte Carlo simulation approach, this thesis proposes a well-spacing study procedure to determine the optimum coalbed methane development scenario. The study workflow is applied in a North America basin resulting in distinct Net Present Value predictions between each well-spacing design and an optimum range of well-spacing for a particular basin area.

Sinurat, Pahala Dominicus

2010-12-01T23:59:59.000Z

470

,"New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

471

,"New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

472

,"New Mexico Dry Natural Gas New Reservoir Discoveries in Old...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

473

,"Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million...

474

Transient pressure analysis in composite reservoirs  

Science Conference Proceedings (OSTI)

The problem of fluid flow in a radially composite reservoir is discussed. Recently published was the most general analytic solution available thus far. That analytic solution is analyzed, and the results are presented. The solution is dependent upon the following dimensionless parameters (if well-bore storage and skin effect are neglected): (1) dimensionless time based on the discontinuity radius, (2) the dimensionless discontinuity radius, (3) the mobility ratio, and (4) the diffusivity ratio. The range of parameters used in generating the results include dimensionless radius time of 0.01 t

Tang, R.W.K.; Brigham, W.E.

1982-08-01T23:59:59.000Z

475

Geothermal Reservoir Well Stimulation Program: technology transfer  

DOE Green Energy (OSTI)

A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

Not Available

1980-05-01T23:59:59.000Z

476

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SANANDRES RESERVOIR  

Science Conference Proceedings (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; (7) Mobility control agents.

Unknown

2003-01-15T23:59:59.000Z

477

Seismic Determination of Reservoir Heterogeneity: Application to the Characterization of Heavy Oil Reservoirs  

SciTech Connect

The objective of the project was to examine how seismic and geologic data could be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. Performed a theoretical and numerical study to examine which subsurface features the surface seismic method actually resolves.

Imhof, Matthias G.; Castle, James W.

2003-03-12T23:59:59.000Z

478

FACT SHEET: CARBON CAPTURE USE AND STORAGE ACTION GROUP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CARBON CAPTURE USE AND STORAGE ACTION GROUP CARBON CAPTURE USE AND STORAGE ACTION GROUP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers pledged to establish a Carbon Capture Use and Storage Action Group to be led by the United Kingdom and Australia to facilitate political and business leadership and develop a Global Strategic Implementation Plan to examine how to overcome key barriers to the deployment of Carbon Capture Use and Storage (CCUS).

479

Effect of nuclear deformation on direct capture reactions  

E-Print Network (OSTI)

The direct radiative capture process is well described by the spherical potential model. In order for the model to explain direct captures more accurately, the effect of the nuclear deformation has been added and analyzed in this work, since most nucleuses are not spherical. The results imply that the nuclear deformation largely affects the direct capture and should be taken into account during discussing direct capture reactions.

G. W. Fan; X. L. Cai; M. Fukuda; Zhongzhou Ren; W. Xu

2013-05-01T23:59:59.000Z

480

Modelling the propagation of turbid density inflows into a stratified lake: Daecheong Reservoir, Korea  

Science Conference Proceedings (OSTI)

Many reservoirs and associated downstream ecosystems located in the Asian monsoon climate region are under increased pressure from the long-term negative effects of turbid flood runoff. Despite the ubiquitous use of turbidity (C"T) as a barometer of ... Keywords: Daecheong Reservoir, ELCOM-CAEDYM, Real-time reservoir management, Reservoir density flow, Stratified reservoir, Turbidity modelling

S. W. Chung; M. R. Hipsey; J. Imberger

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "representations capturing reservoir" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The effect of reservoir heterogeneity on gas production from hydrate accumulations in the permafrost  

SciTech Connect

The quantity of hydrocarbon gases trapped in natural hydrate accumulations is enormous, leading to significant interest in the evaluation of their potential as an energy source. Large volumes of gas can be readily produced at high rates for long times from methane hydrate accumulations in the permafrost by means of depressurization-induced dissociation combined with conventional technologies and horizontal or vertical well configurations. Initial studies on the possibility of natural gas production from permafrost hydrates assumed homogeneity in intrinsic reservoir properties and in the initial condition of the hydrate-bearing layers (either due to the coarseness of the model or due to simplifications in the definition of the system). These results showed great promise for gas recovery from Class 1, 2, and 3 systems in the permafrost. This work examines the consequences of inevitable heterogeneity in intrinsic properties, such as in the porosity of the hydrate-bearing formation, or heterogeneity in the initial state of hydrate saturation. Heterogeneous configurations are generated through multiple methods: (1) through defining heterogeneous layers via existing well-log data, (2) through randomized initialization of reservoir properties and initial conditions, and (3) through the use of geostatistical methods to create heterogeneous fields that extrapolate from the limited data available from cores and well-log data. These extrapolations use available information and established geophysical methods to capture a range of deposit properties and hydrate configurations. The results show that some forms of heterogeneity, such as horizontal stratification, can assist in production of hydrate-derived gas. However, more heterogeneous structures can lead to complex physical behavior within the deposit and near the wellbore that may obstruct the flow of fluids to the well, necessitating revised production strategies. The need for fine discretization is crucial in all cases to capture dynamic behavior during production.

Reagan, M. T.; Kowalsky, M B.; Moridis, G. J.; Silpngarmlert, S.

2010-05-01T23:59:59.000Z

482

Use of TOUGHREACT to Simulate Effects of Fluid Chemistry on Injectivity in Fractured Geothermal Reservoirs with High Ionic Strength Fluids  

E-Print Network (OSTI)

be close to the produced reservoir water without surfaceof directly using the produced reservoir water, the Pitzerusing the produced reservoir and the mixing waters for each

Xu, Tianfu; Zhang, Guoxiang; Pruess, Karsten

2005-01-01T23:59:59.000Z

483

DESCRIPTION OF THE THREE-DIMENSIONAL TWO-PHASE SIMULATOR SHAFT78 FOR USE IN GEOTHERMAL RESERVOIR STUDIES  

E-Print Network (OSTI)

i n Vapor-Dominated Geothermal Reservoirs, I' Report No. 76-G. : Three- . Dimensional Geothermal Reservoir Simulation,f1161. Coats, K. H. : "Geothermal Reservoir Modeling," paper

Pruess, K.

2011-01-01T23:59:59.000Z

484

Post-Combustion CO2 Capture 11 -13 July 2010  

E-Print Network (OSTI)

Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Tufts European Center Talloires, France Institute | | Clean Air Task Force | | Asia Clean Energy Innovation Initiative | #12;Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Talloires, France PROCEEDINGS: Post-Combustion CO2 Capture Workshop

485

Capture-ready power plants : options, technologies and economics  

E-Print Network (OSTI)

A plant can be considered to be capture-ready if, at some point in the future it can be retrofitted for carbon capture and sequestration and still be economical to operate. The concept of capture-ready is not a specific ...

Bohm, Mark (Mark C.)

2006-01-01T23:59:59.000Z

486

Extraction of Typographic Elements from Outline Representations of Fonts  

E-Print Network (OSTI)

Digital typefaces for computer graphics and multimedia applications must be capable of supporting operations such as font variations, transformations, deformations and blending. A powerful implementation of such operations must rely on the inherent typographic attributes of the typeface. However, even today's most advanced typeface representations support only geometric outline representations and basic font variations. In this paper we discuss high-level typeface representations which we term Parametric Typographic Representations (PTRs). We present an algorithm for automatically extracting typographic elements of typefaces from their outline representation, which is an essential initial step in converting typefaces from outline representations to PTRs. The extracted typographic elements include serifs, bars, stems, slants, bows, arcs, curve stems and curve bars. Most notable is the treatment of serifs, which are represented by finite-automata. The algorithm only needs to learn a ser...

Ariel Shamir; Ari Rappoport

1996-01-01T23:59:59.000Z

487

Reservoir technology - geothermal reservoir engineering research at Stanford. Fifth annual report, October 1, 1984-September 30, 1985  

DOE Green Energy (OSTI)

The objective is to carry out research on geothermal reservoir engineering techniques useful to the geothermal industry. A parallel objective is the training of geothermal engineers and scientists. The research is focused toward accelerated development of hydrothermal resources through the evaluation of fluid reserves, and the forecasting of field behavior with time. Injection technology is a research area receiving special attention. The program is divided into reservoir definition research, modeling of heat extraction from fractured reservoirs, application and testing of new and proven reservoir engineering technology, and technology transfer. (ACR)

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.

1985-09-01T23:59:59.000Z