Powered by Deep Web Technologies
Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fundamentals of horizontal well completions  

Science Conference Proceedings (OSTI)

Oil and gas wells are drilled horizontally for a variety of reasons, chiefly to improve production without drilling multiple vertical wells and to prevent water or gas coning. Benefits of horizontal drilling are well documented. This article addresses the fundamentals of completing a horizontal well, discussing completion by (1) open hole, (2) casing packers, (3) slotted or perforated liner, and (4) cemented casing/liner. Completion methods 1 through 3 are generally known as ''drain hole'' completions, and method 4 is commonly called the ''case hole'' or ''stimulated'' completion.

Austin, C.; Zimmerman, C.; Sullaway, B.; Sabins, F.

1988-05-01T23:59:59.000Z

2

STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS  

SciTech Connect

The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

Stephen Wolhart

2003-06-01T23:59:59.000Z

3

Representative well models for eight geothermal-resource areas  

DOE Green Energy (OSTI)

Representative well models have been constructed for eight major geothermal-resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. The models were made for and have been used to evaluate the impacts of potential new technologies. The nature, construction, and validation of the models are presented.

Carson, C.C.; Lin, Y.T.; Livesay, B.J.

1983-02-01T23:59:59.000Z

4

Geothermal Well Completion Tests | Open Energy Information  

Open Energy Info (EERE)

Geothermal Well Completion Tests Geothermal Well Completion Tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Well Completion Tests Abstract This paper reviews the measurements that are typically made in a well immediately after drilling is completed - the Completion Tests. The objective of these tests is to determine the properties of the reservoir, and of the reservoir fluid near the well. A significant amount of information that will add to the characterisation of the reservoir and the well, can only be obtained in the period during and immediately after drilling activities are completed. Author Hagen Hole Conference Petroleum Engineering Summer School; Dubrovnik, Croatia; 2008/06/09 Published N/A, 2008 DOI Not Provided Check for DOI availability: http://crossref.org

5

Underbalanced completions improve well safety and productivity  

Science Conference Proceedings (OSTI)

Recent advances in completion technology, especially the use of and advances in coiled tubing technology, have presented the petroleum industry with methods that were previously unknown or considered too risky. Specifically, coiled tubing drilling and underbalanced drilling have both proven to be effective and acceptable methods in industry today. Several methods have been presented that will allow for the well to be completed underbalanced. By utilizing these methods, the completion process can be carried out while experiencing the same benefits offered by underbalanced drilling. the well can be completed with minimal fluid loss, which will result in reduced formation damage and improved well productivity. This new approach to the completion process provides additional opportunities both for completing new wells and for reentering existing wells.

Walker, T.; Hopmann, M. [Baker Oil Tools, Houston, TX (United States)

1995-11-01T23:59:59.000Z

6

Foolproof completions for high rate production wells  

E-Print Network (OSTI)

Operators, especially those managing production from deepwater reservoirs, are striving to produce hydrocarbons at higher and higher rates without exposing the wells to completion failure risk. To avoid screen failures, recent studies have favored gravel pack (GP) and high rate water pack (HRWP) completions over high-permeability fracturing (HPF), known in the vernacular as a frac&pack (FP) for very high rate wells. While a properly designed GP completion may prevent sand production, it does not stop formation fines migration, and, over time, fines accumulation in the GP will lead to increasing completion skin. Although, and not always, the skin can be removed by acidizing, it is not practical to perform repeated acid treatments on deepwater wells, particularly those with subsea wellheads, and the alternative has been to subject the completion to increasingly high drawdown, accepting a high skin effect. A far better solution is to use a HPF completion. Of course the execution of a successful HPF is not a trivial exercise, and frequently, there is a steep learning curve for such a practice. This work explains the importance to HPF completions of the well trajectory through the interval to be hydraulically fractured, for production, not execution, reasons. A new model quantifies the effect of the well inclination on the connectivity between the fracture and the well via perforations. Guidelines based on the maximum target production rate, including forecasts of multiphase flow, are provided to size the HPF completion to avoid common completion failures that may result from high fluid rate and/or fines movement. Skin model will be developed for both vertical and deviated wells. Once the HPF is properly designed and executed, the operators should end up with a long term low skin good completion quality well. The well will be safely produced at the maximum flow rates, with no need for well surveillance and monitoring.

Tosic, Slavko

2007-12-01T23:59:59.000Z

7

Gravel packing feasible in horizontal well completions  

SciTech Connect

Successful completion of horizontal wells in unconsolidated formations depends on proper equipment selection and installation method balanced with reservoir objectives, formation parameters, and costs. The guidelines for designing these completions are based on generalized field experience, including horizontal cases where applicable.

Zaleski, T.E. Jr.; Ashton, J.P. (Baker Sand Control, Houston, TX (US))

1990-06-11T23:59:59.000Z

8

Stimulation Technologies for Deep Well Completions  

SciTech Connect

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a study to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. An assessment of historical deep gas well drilling activity and forecast of future trends was completed during the first six months of the project; this segment of the project was covered in Technical Project Report No. 1. The second progress report covers the next six months of the project during which efforts were primarily split between summarizing rock mechanics and fracture growth in deep reservoirs and contacting operators about case studies of deep gas well stimulation.

None

2003-09-30T23:59:59.000Z

9

Stimulation Technologies for Deep Well Completions  

SciTech Connect

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

Stephen Wolhart

2005-06-30T23:59:59.000Z

10

Stimulation Technologies for Deep Well Completions  

SciTech Connect

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a study to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. An assessment of historical deep gas well drilling activity and forecast of future trends was completed during the first six months of the project; this segment of the project was covered in Technical Progress Report No. 1. During the next six months, efforts were primarily split between summarizing rock mechanics and fracture growth in deep reservoirs and contacting operators about case studies of deep gas well stimulation as documented in Technical Progress Report No. 2. This report details work done with Anadarko and ChevronTexaco in the Table Rock Field in Wyoming.

None

2004-03-31T23:59:59.000Z

11

Entiat 4Mile WELLs Completion Report, 2006.  

DOE Green Energy (OSTI)

The Entiat 4-mile Wells (Entiat 4-mile) project is located in the Entiat subbasin and will benefit Upper Columbia steelhead, spring Chinook and bull trout. The goal of this project is to prevent juvenile fish from being diverted into an out-of-stream irrigation system and to eliminate impacts due to the annual maintenance of an instream pushup dam. The objectives include eliminating a surface irrigation diversion and replacing it with two wells, which will provide Bonneville Power Administration (BPA) and the Bureau of Reclamation (Reclamation) with a Federal Columbia River Power System (FCRPS) BiOp metric credit of one. Wells were chosen over a new fish screen based on biological benefits and costs. Long-term biological benefits are provided by completely eliminating the surface diversion and the potential for fish entrainment in a fish screen. Construction costs for a new fish screen were estimated at $150,000, which does not include other costs associated with implementing and maintaining a fish screening project. Construction costs for a well were estimated at $20,000 each. The diversion consisted of a pushup dam that diverted water into an off-channel pond. Water was then pumped into a pressurized system for irrigation. There are 3 different irrigators who used water from this surface diversion, and each has multiple water right claims totaling approximately 5 cfs. Current use was estimated at 300 gallons per minute (approximately 0.641 cfs). Some irrigated acreage was taken out of orchard production less than 5 years ago. Therefore, approximately 6.8 acre-feet will be put into the State of Washington Trust Water Right program. No water will be set aside for conservation savings. The construction of the two irrigation wells for three landowners was completed in September 2006. The Lower Well (Tippen/Wick) will produce up to 175 gpm while the Upper Well (Griffith) will produce up to 275 gpm during the irrigation season. The eight inch diameter wells were developed to a depth of 75 feet and 85 feet, respectively, and will be pumped with Submersible Turbine pumps. The irrigation wells have been fitted with new electric boxes and Siemens flowmeters (MAG8000).

Malinowksi, Richard

2007-01-01T23:59:59.000Z

12

Completion techniques for geothermal-geopressured wells. Final report  

DOE Green Energy (OSTI)

The following are covered: oil well completions, water well completions, sand control techniques, geopressured oil and gas wells, and geopressured water well completion. The conclusions for a geothermal-geopressured water well completion and needed research are included. (MHR)

Boyd, W.E.

1974-01-01T23:59:59.000Z

13

PSA_Well_Completion_Report.book  

Office of Legacy Management (LM)

Restoration Restoration Project U.S. Department of Energy National Nuclear Security Administration Nevada Site Office Environmental Restoration Project U.S. Department of Energy National Nuclear Security Administration Nevada Site Office Nevada Environmental Restoration Project Well Completion Report for Corrective Action Unit 447, Project Shoal Area Churchill County, Nevada Revision No.: 0 September 2006 Approved for public release; further dissemination unlimited. DOE/NV--1166 Available for public sale, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis.gov Online ordering: http://www.ntis.gov/ordering.htm Available electronically at http://www.osti.gov/bridge

14

How to Fill Out a Well Completion Report Instruction Pamphlet  

E-Print Network (OSTI)

For assistance in preparing the Well Completion Report form, contact the nearest Department of Water Resources District Office according to the county in which the well is located (see below). Well Completion Report forms which do not have sufficient well location information will be returned to the sender and considered incomplete until the required information is received. Send completed Well Completion Report forms to the appropriate District Office listed below. To request copies of this instruction pamphlet contact DWR’s Publications and Paperwork Management Office at (916) 653-1097 or

El Dorado; North Mono

2007-01-01T23:59:59.000Z

15

Mobil completes deep, tight, horizontal gas well in Germany  

Science Conference Proceedings (OSTI)

A completion and fracturing program for stimulating a horizontal well in the ultra-tight Rotliegendes sand onshore Germany included casing design, completion fluid selection, overbalanced perforation, analysis of the stimulation treatment, design modification, zone and fracture isolation, well testing and acid stimulation. This paper reviews the field geology, the well design, casing design, describes the completion fluids, perforation techniques, fracture treatment, and methods for zone isolation.

Abou-Sayed, I.S.; Chambers, M.R. [Mobil E and P Technical Center, Dallas, TX (United States); Mueller, M.W. [Mobil Erdgas-Erdoel GmbH, Celle (Germany)

1996-08-01T23:59:59.000Z

16

U.S. Geothermal Announces Successful Completion of First Well...  

Open Energy Info (EERE)

Number NA DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for U.S. Geothermal Announces Successful Completion of First Well at Neal Hot...

17

Completion report: Raft River Geothermal Production Well Four (RRGP-4)  

DOE Green Energy (OSTI)

The fourth Raft River well was originally drilled to 866 m (2840 ft), for use as a test injection well. This well allowed the injection of geothermal fluids into the intermediate zone--above the geothermal production zone and below the shallow groundwater aquifers. After this testing, the well was deepened and cased for use as a production well. The well's designation was changed from RRGI-4 to RRGP-4. This report describes the drilling and completion of both drilling projects. Results of well tests are also included.

Miller, L.G.; Prestwich, S.M.

1979-02-01T23:59:59.000Z

18

Dry Gas-Well Capacity per New Gas-Well Completions  

U.S. Energy Information Administration (EIA)

Appendix C Dry Gas-Well Capacity per New Gas-Well Completion Dry gas-well gas productive capacity of about one billion cubic feet per day is added per 1,000 new gas ...

19

Well completions in the Beta Field, Offshore California  

SciTech Connect

The heavy oil reservoir in the Beta Field, Offshore California is thick (up to 1200 feet gross), unconsolidated, consists of nine distinct sand intervals, and lies at a shallow depth. In order to economically develop the field from two platforms and be able to waterflood, the development wells must be highly deviated with an 'S' shaped profile, have isolated multi-zone completions designed with the capability to selectively inject or produce any combination of zones, and produce virtually sand-free because of the use of electric submersible pumps for artificial lift. To meet these requirements, new completion techniques were developed. This paper reviews the overall completion sequence starting with primary cementing and zonal isolation, through perforating and perforation cleanup, and finishing with the inside casing gravel packing and gravel pack logging. The new techniques have proved expedient and successful, with 40 producing wells containing a total of 152 individual zones completed as of December, 1982.

Bruist, E.H.; Botts, T.M.; Jefferis, R.G.

1983-03-01T23:59:59.000Z

20

Development of geothermal-well-completion systems. Final report  

DOE Green Energy (OSTI)

Results of a three year study concerning the completion of geothermal wells, specifically cementing, are reported. The research involved some specific tasks: (1) determination of properties an adequate geothermal well cement must possess; (2) thorough evaluation of current high temperature oilwell cementing technology in a geothermal context; (3) basic research concerning the chemical and physical behavior of cements in a geothermal environment; (4) recommendation of specific cement systems suitable for use in a geothermal well.

Nelson, E.B.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Drilling and Completion of the Urach III HDR Test Well  

DOE Green Energy (OSTI)

The hot dry rock (HDR) test well, urach III, was drilled and completed in 1979. The borehole is located in Southwest Germany in the geothermal anomaly of Urach. The purpose of project Urach was to study drilling and completion problems of HDR wells and to provide a test site for a HDR research program. The Urach III borehole was drilled to a total depth of 3,334 meters (10,939 feet), penetrating 1,700 meters (5,578 feet) into the granitic basement. Extensive coring was required to provide samples for geophysical and geochemical studies. Positive displacement downhole motors were used for coring and normal drilling operations. It was found that these motors in combination with the proper bits gave better results than conventional rotary drilling. Loss of circulation was encountered not only in sedimentary rocks but also in the granite. After drilling and completion of the borehole, a number of hydraulic fracturing experiments were performed in the open hole as well as in the cased section of Urach III. A circulation loop was established by using the single-borehole concept. It is not yet clear whether new fractures have actually been generated or preexisting joints and fissures have been reactivated. Evaluation of the results of this first step is almost completed and the planning of Phase II of the Urach project is under way.

Meier, U.; Ernst, P. L.

1981-01-01T23:59:59.000Z

22

Completion report for Well Cluster ER-20-5  

SciTech Connect

The Well Cluster ER-20-5 drilling and completion project was conducted for the US Department of Energy, Nevada Operations Office (DOE/NV), in support of the Nevada Environmental Restoration Project at the Nevada Test Site (NTS) in Nye County, Nevada. Its primary tasks include collecting geological, geophysical, hydrological, and water chemistry data from new and existing wells to define groundwater quality in addition to pathways and rates of groundwater migration. A program of drilling wells near the sites of selected underground nuclear tests (near-field drilling) was implemented to obtain site-specific data about the nature and extent of migration of radionuclides that might have been produced by an underground nuclear explosion. Well Cluster ER-20-5 is the first near-field drilling project initiated at the NTS. This document presents construction data and summarizes the scientific data gathered during the drilling and well-installation phases for all three holes drilled at Well Cluster ER-20-5. Some of this information is preliminary and unprocessed, but was released so that drilling, geotechnical, well design, and completion data could be rapidly disseminated. Additional information about water levels, aquifer testing, and groundwater sampling will be reported after any of this work is performed. Any additional geologic and/or geophysical investigations conducted for this project is described in one or more analysis and interpretation reports. The lithologic and stratigraphic logs, however, are provided in final form.

NONE

1997-03-01T23:59:59.000Z

23

Geopressured-geothermal well report. Volume I. Drilling and completion  

DOE Green Energy (OSTI)

Gladys McCall site activities are covered through the completion of the test well and salt water disposal well. The test well was drilled to a total depth of 16,510 feet, then plugged back to 15,831 feet. Three 4'' diameter diamond cores were taken for analysis. An existing well on site, the Getty-Butts Gladys McCall No. 1, was reentered and completed to a depth of 3514 feet as a salt water disposal well. The geologic interpretation of the Gladys McCall site indicated target sands for testing at 15,080 feet through 15, 831 feet. Reservoir fluid temperature at this depth is estimated to be approximately 313/sup 0/F and pressure is estimated to be +-12,800 psi. The preliminary reservoir volume estimate is 3.6 billion barrels of brine. The design wells program includes environmental monitoring of the Gladys McCall site by Louisiana State University. Field stations are set up to monitor surface and ground water quality, subsidence, land loss and shoreline erosion, and seismicity. As of December 31, 1981 the study shows no significant impact on the environment by site operations.

Not Available

1982-01-01T23:59:59.000Z

24

Appendix A Lithologic and Monitor Well Completion Logs  

Office of Legacy Management (LM)

A A Lithologic and Monitor Well Completion Logs This page intentionally left blank WELL INSTALLATION BLANK CASING: 1.25 in. Stainless Steel 0.0 to 0.35 METHOD WELL SCREEN: 1.25 in. Stainless Steel 0.35 to 3.27 DATE DEVELOPED SUMPIEND CAP: 1.25 in. Stainless Steel 3.27 to 3.58 WATER LEVEL (FT BGS) SURFACE SEAL: LOGGED BY P. McKenzie REMARKS Drillers hit water at 5 fl: well point removed. LITHOLOGIC DESCRIPTION LOCATION SHIPROCK, NM SURFACE ELEV. ( FT NGVD) 4890.00 SITE SHIPROCK TOP OF CASING (FT) 4890.00 WELL NUMBER 0602 MEAS. PT. ELEV. (FT) 4890.00 SLOT SIZE (IN) 0.125 WELL INSTALLATION INTERVAL (FT) DRILLING METHOD BLANK CASING: 1.25 in. Stainless Steel 0.0 to 0.35 METHOD WELL SCREEN: 1.25 in. Stainless Steel 0.35 to 3.27 DATE DEVELOPED SUMPIEND CAP: 1.25 in. Stainless Steel 3.27 to 3.58

25

Completion Report for Well ER-EC-1  

SciTech Connect

Well ER-EC-1 was drilled for the U.S. Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the spring of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Test Site. A 44.5-centimeter surface hole was drilled and cased off to the depth 675.1 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 1,524.0 meters. A preliminary composite, static, water level was measured at the depth of approximately 566.3 meters prior to installation of the completion string. One completion string with three isolated, slotted intervals was installed in the well. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters and 31 sidewall samples taken at various depths below 680 meters, supplemented by geophysical log data. Detailed chemical and mineralogical studies of rock samples are in progress. The well penetrated Tertiary-age lava and tuff of the Timber Mountain Group, the Paintbrush Group, the Calico Hills Formation, the Crater Flat Group, and the Volcanics of Quartz Mountain. The preliminary geologic interpretation of data from Well ER-EC-1 indicates the presence of a structural trough or bench filled with a thick section of post-Rainier Mesa lava. These data also suggest that this site is located on a buried structural ridge that may separate the Silent Canyon and Timber Mountain caldera complexes.

Townsend, M.J.

2000-12-01T23:59:59.000Z

26

Completion Report for Well ER-EC-4  

Science Conference Proceedings (OSTI)

Well ER-EC-4 was drilled for the US Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S Department of Energy's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 263.7 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 1,062.8 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static, water level was measured at the depth of 228.3 meters, two months after installation of the completion string. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 35 sidewall samples taken at various depths below 286.5 meters, supplemented by geophysical log data. Detailed chemical and mineralogical studies of rock samples are in progress. The well was collared in basalt and penetrated Tertiary-age lava and tuff of the Thirsty Canyon Group, the Volcanics of Fortymile Canyon, and the Timber Mountain Group. The preliminary geologic interpretation of data from this well helps pinpoint the location of the western margin of the Timber Mountain caldera complex in the southern Nevada volcanic field.

M. J. Townsend

2000-09-01T23:59:59.000Z

27

Completion Report for Well ER-18-2  

SciTech Connect

Well ER-18-2 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well, located on Buckboard Mesa in the western part of the Nevada Test Site, was drilled in the spring of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Test Site. A 44.5-centimeter surface hole was drilled and cased off to the depth 408.1 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 762.0 meters. A preliminary composite, static, water level was measured at the depth of approximately 369.7 meters approximately two months after the completion string was installed. One completion string with three isolated, slotted intervals was installed in the well. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters and 15 sidewall samples taken at various depths below 420 meters, supplemented by geophysical log data and results of detailed chemical and mineralogical studies of rock samples. The upper part of the well penetrated Tertiary-age basalt, underlain by tuffaceous moat-filling sediments interbedded with ash-flow tuff units of the Thirsty Canyon Group and the Beatty Wash Formation. The lower half of the drill hole penetrated ash-flow tuff of the mafic-rich Ammonia Tanks Tuff. The geologic interpretation of data from Well ER-18-2 indicates that this site is located inside the structural margin of the Ammonia Tanks caldera.

Bechtel Nevada

2003-09-01T23:59:59.000Z

28

Completion report for Well ER-EC-6  

SciTech Connect

Well ER-EC-6 was drilled for the U.S. Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the spring of 1999 as part of the DOE's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 66-centimeter surface hole was drilled and cased off to the depth of 485.1 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 1,524.0 meters. A preliminary composite, static, water level was measured at the depth of approximately 434.6 meters prior to installation of the completion string. One completion string with four isolated, slotted intervals was installed in the well. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters and 33 sidewall samples taken at various depths below 504.4 meters, supplemented by geophysical log data. Detailed chemical and mineralogical studies of rock samples are in progress. The well penetrated Tertiary-age lava and tuff of the Timber Mountain Group, the Paintbrush Group, the Calico Hills Formation, and the Volcanics of Quartz Mountain. Intense hydrothermal alteration was observed below the depth of 640 m. The preliminary geologic interpretation indicates that this site may be located on a buried structural ridge that separates the Silent Canyon and Timber Mountain caldera complexes.

M. J. Townsend

2000-05-01T23:59:59.000Z

29

Drilling, Completing, and Maintaining Geothermal Wells in Baca, New Mexico  

DOE Green Energy (OSTI)

A 55-MWe power plant is planned for development in the Baca location in the Jemez Mountains of New Mexico. Union Geothermal has contracted to provide the steam for the power plant. This paper uses Baca Well No. 13 as a case history to describe the drilling methods, casing program, cementing program, and completion methods used by Union. The discussion includes aerated-water drilling and the methods of solving corrosion problems in aerated water. lost circulation control in mud drilling and its effect on the subsequent casing cementing program are discussed. The paper also includes a case history of scale removal methods used in Baca Well No. 11, including drilling the scale out with a turbo-drill and attempts at chemical inhibition.

Pye, S.

1981-01-01T23:59:59.000Z

30

COMPLETION REPORT FOR WELL CLUSTER ER-5-3  

SciTech Connect

Well Cluster ER-5-3 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This cluster of 3 wells was drilled in 2000 and 2001 as part of a hydrogeologic investigation program in Frenchman Flat. The first borehole in the cluster, Well ER-5-3, was drilled in February and March 2000. A 47.0-centimeter surface hole was drilled and cased off to the depth of 374.8 meters. The hole diameter was decreased to 31.1 centimeters for drilling to a total depth of 794.3 meters within welded ash-flow tuff. A piezometer string with 1 slotted interval was installed in the annulus of the surface casing, open to the saturated alluvium. A completion string with 2 slotted intervals was installed in the main hole, open to saturated alluvium and to the welded tuff aquifer. A second piezometer string with 1 slotted interval open to the welded-tuff aquifer was installed outside the completion string. Well ER-5-3 No.2 was drilled about 30 meters west of the first borehole in March 2000, and was recompleted in March 2001. A 66.0-centimeter hole was drilled and cased off to the depth of 613.8 meters. The hole diameter was decreased to 44.5 centimeters and the borehole was drilled and cased off to the depth of 849.0 meters. The hole diameter was decreased once more to 31.1 centimeters for drilling to a total depth of 1,732.2 meters in dolomite. A completion string open to the dolomite (lower carbonate aquifer) was installed. Well ER-5-3 No.3 was drilled approximately 30 meters north of the first 2 boreholes in February 2001. A 66.0-centimeter hole was drilled and cased off to the depth of 36.6 meters, then the main 25.1-centimeter-diameter hole was drilled to a total depth of 548.6 meters in alluvium. A slotted stainless-steel tubing string was installed in the saturated alluvium. A preliminary composite, static water level was measured at the depth of 282.6 meters, prior to development and hydrologic testing. Detailed lithologic descriptions and stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 120 sidewall samples taken at various depths below 91 meters in Wells ER-5-3 and ER-5-3 No.2, supplemented by geophysical log data. The wells penetrated Quaternary/Tertiary alluvium to the depth of 622.4 meters, and an 8.5-meter-thick basalt flow was encountered within the alluvium. Tertiary tuff was penetrated to the depth of approximately 1,425.9 meters, where the top of the lower carbonate aquifer was tagged in Well ER-5-3 No.2.

BECHTEL NEVADA

2005-12-01T23:59:59.000Z

31

Site selection, drilling, and completion of two horizontal wells in the Devonian Shales of West Virginia  

Science Conference Proceedings (OSTI)

This report presents a summary of the geologic site selection studies, planning, drilling, completing, stimulating, and testing of two horizontal wells drilled in the Devonian Shales of the Appalachian Basin in West Virginia. Each horizontal well was designed and managed by BDM as the prime contractor to the Department of Energy. The first well was drilled with industry partner Cabot Oil and Gas Corporation in Putnam County, West Virginia. The second well was drilled with Consolidated Natural Gas Company in Calhoun County, West Virginia. This report summarizes four reports prepared by BDM which detail the site selection rationale and the drilling and completion operations of each well. Each horizontal well is currently producing commercial quantities of hydrocarbons. The successful application of horizontal well technology represent continued development of the technology for application to tight and unconventional natural gas resources of the United States. Continued technology development is expected to ultimately result in commercial horizontal well drilling activity by industry in the Appalachian Basin.

Overbey, W.K. Jr.; Carden, R.S.; Locke, C.D.; Salamy, S.P.; Reeves, T.K.; Johnson, H.R.

1992-03-01T23:59:59.000Z

32

Impact of common completion and workover activities on the effective costs of geothermal wells  

DOE Green Energy (OSTI)

The impacts of completion practices on production and maintenance costs are considered. To evaluate alternative completion and workover technologies, a simple model has been developed that compares total well cost to total production or injection. The model is discussed briefly and results from its application to different completion and workover strategies are emphasized. The model development project had three aspects: (1) the establishment of a data base for the cost and effectiveness of various geothermal completion and workover activities; (2) the development of a computer model to specific cases. The data collected include geothermal production characteristics; initial costs and completion practices for representatives wells; estimated costs and effectiveness of common workover equipment and operations; the frequencies of and times required to perform workovers; etc. The model facilitates comparisons of completion and workover alternatives. The results discussed include an analysis of the impact of variations in well lifetime. A comparison of mechanical descaling of geothermal wells to chemical scale inhibition indicates that for certain conditions chemical inhibition is more cost effective. Results of an analysis of injectivity decline are also presented, as are studies of original well cost, initial flow, and productivity decline for production wells. Other results involving underreaming, changing casing profiles, perforating, and hydraulic fracturing are also discussed.

Carson, C.C.; Mansure, A.J.

1982-01-01T23:59:59.000Z

33

Well completion process for formations with unconsolidated sands  

DOE Patents (OSTI)

A method for consolidating sand around a well, involving injecting hot water or steam through well casing perforations in to create a cement-like area around the perforation of sufficient rigidity to prevent sand from flowing into and obstructing the well. The cement area has several wormholes that provide fluid passageways between the well and the formation, while still inhibiting sand inflow.

Davies, David K. (Kingwood, TX); Mondragon, III, Julius J. (Redondo Beach, CA); Hara, Philip Scott (Monterey Park, CA)

2003-04-29T23:59:59.000Z

34

Completion report: Raft River Geothermal Production Well Five (RRGP-5)  

DOE Green Energy (OSTI)

The Raft River Geothermal Production Well Five (RRGP-5) is a production well in the Raft River KGRA (Known Geothermal Resource Area). The plan for this well included three barefoot legs. Due to technical and funding problems, two legs were drilled; only one leg is a producing leg. This report describes the entire drilling operation and includes daily drilling reports, drill bit records, casing records, and descriptions of cementing, logging, coring, and containment techniques.

Miller, L.G.; Prestwich, S.M.

1979-02-01T23:59:59.000Z

35

Completion report: Raft River Geothermal Injection Well Six (RRGI-6)  

DOE Green Energy (OSTI)

Raft River Geothermal Injection Well Six (RRGI-6) is an intermediate-depth injection well designed to accept injection water in the 600 to 1000 m (2000 to 3500 ft) depth range. It has one barefoot leg, and it was drilled so that additional legs can be added later; if there are problems with intermediate-depth injection, one or more additional legs could be directionally drilled from the current well bore. Included are the reports of daily drilling records of drill bits, casings, and loggings, and descriptions of cementing, coring, and containment.

Miller, L.G.; Prestwich, S.M.

1979-02-01T23:59:59.000Z

36

Polymer-cement geothermal-well-completion materials. Final report  

DOE Green Energy (OSTI)

A program to develop high-temperature polymer cements was performed. Several formulations based on organic and semi-inorganic binders were evaluated on the basis of mechanical and thermal stability, and thickening time. Two optimized systems exhibited properties exceeding those required for use in geothermal wells. Both systems were selected for continued evaluation at the National Bureau of Standards and contingent upon the results, for field testing in geothermal wells.

Zeldin, A.N.; Kukacka, L.E.

1980-07-01T23:59:59.000Z

37

Completion Report for Well Cluster ER-6-1  

SciTech Connect

Well Cluster ER-6-1 was constructed for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Division at the Nevada Test Site, Nye County, Nevada. This work was initiated as part of the Groundwater Characterization Project, now known as the Underground Test Area Project. The well cluster is located in southeastern Yucca Flat. Detailed lithologic descriptions with stratigraphic assignments for Well Cluster ER-6-1 are included in this report. These are based on composite drill cuttings collected every 3 meters and conventional core samples taken below 639 meters, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies of rock samples were conducted on 11 samples to resolve complex interrelationships between several of the Tertiary tuff units. Additionally, paleontological analyses by the U.S. Geological Survey confirmed the stratigraphic assignments below 539 meters within the Paleozoic sedimentary section. All three wells in the Well ER-6-1 cluster were drilled within the Quaternary and Tertiary alluvium section, the Tertiary volcanic section, and into the Paleozoic sedimentary section.

Bechtel Nevada

2004-10-01T23:59:59.000Z

38

Completion Report for Well Cluster ER-5-4  

Science Conference Proceedings (OSTI)

Well Cluster ER-5-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The cluster consists of two wells, positioned about 30 meters apart on the same drill pad, constructed as part of a hydrogeologic investigation program for Frenchman Flat at the Nevada Test Site. Detailed lithologic descriptions with preliminary stratigraphic assignments for the well cluster are included in this report. These are based on composite drill cuttings collected every 3 meters, and 156 sidewall samples taken at various depths below 192 meters in both boreholes, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies of rock samples were conducted on 122 samples. Well ER-5-4 penetrated approximately 1,120 meters of Quaternary and Tertiary alluvium before reaching total depth in Tertiary volcanic rocks at 1,137.5 meters. The deeper Well ER-5-4 No.2 penetrated 1,120.4 meters of alluvial sediments, and was terminated within Tertiary volcanic rocks at a depth of 2,133.6 meters, indicating that Paleozoic rocks are deeper than expected at this site.

U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office; Bechtel Nevada

2005-02-01T23:59:59.000Z

39

Completion Report for Well ER-12-2  

Science Conference Proceedings (OSTI)

Well ER-12-2 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled from November 2002 to January 2003 as part of a hydrogeologic investigation program for the Yucca Flat Corrective Action Unit. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology in the northwestern portion of Yucca Flat. The well was drilled to total measured depth of 2,097.9 meters. The 131.1-centimeter-diameter borehole was left open (i.e., uncased) below the base of the intermediate casing at 901.6 meters. A piezometer string was installed outside the surface casing to a depth of 176.4 meters to monitor a zone of perched water. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters, sidewall core samples from 7 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated, in descending order, 137.5 meters of Quaternary and Tertiary alluvium, 48.8 meters of Tertiary volcanic rocks, 289.6 meters of Mississippian Chainman Shale, and 1,622.5 meters of Mississippian and Upper Devonian Eleana Formation consisting of shale, argillite, sandstone, quartzite, and limestone. Forty-seven days after the well was drilled the water level inside the main hole was tagged at the depth of 65.43 meters, and the water level inside the piezometer string was tagged at 127.14 meters.

Bechtel Nevada

2004-11-01T23:59:59.000Z

40

Completion Report for Well ER-8-1  

SciTech Connect

Well ER-8-1 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in October and November of 2002 as part of a Hydrogeologic investigation program for the Yucca Flat/Climax Mine Corrective Action Unit in the northeastern portion of the Nevada Test Site. Well ER-8-1 is located at the north end of Yucca Flat approximately 580 meters south-southeast of the surface exposure of the Climax granitic intrusive. Detailed lithologic descriptions with stratigraphic assignments are included in this report. These are based on composite drill cuttings samples collected every 3 meters, and 21 sidewall samples taken at various depths between 351.1 and 573.0 meters, supplemented by incomplete geophysical log data. Detailed petrographic, geochemical, and mineralogical studies of rock samples were conducted on 22 samples of drill cuttings. Drilling began in tuffaceous alluvium, and the borehole penetrated Tertiary age bedded tuffs of the Volcanics of Oak Spring Butte and carbonate sediments of Paleozoic age, which were encountered at a depth of 334 meters. The borehole unexpectedly penetrated granite at the depth of 538.9 meters in which drilling was stopped. Contact metamorphic rocks and intrusive dikes associated with the Cretaceous-age granitic intrusive and at least one significant fault zone were encountered.

Bechtel Nevada

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Well completion and operations for MHF of Fenton Hill HDR Well EE-2  

DOE Green Energy (OSTI)

Previous attempts to connect Fenton Hill Hot Dry Rock Geothermal Site Wells EE-2 and EE-3 by pumping 150 thousand to 1.3 million gallons of water had not achieved a detectable hydraulic fracture connection. Therefore, preparations were made to conduct, in December 1983, a 4 to 6 million gallon, 50 BPM water injection in EE-2. The objective was to enlarge the previously created reservoir in EE-2 using massive hydraulic facturing (MHF). The planning, preparations, operations and results of the MHF are presented here. 4 refs., 7 figs.

Dreesen, D.S.; Nicholson, R.W.

1985-01-01T23:59:59.000Z

42

U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes  

Open Energy Info (EERE)

Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells Needed for Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells Needed for Project Abstract N/A Author U.S. Geothermal Inc. Published Publisher Not Provided, 2010 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells Needed for Project Citation U.S. Geothermal Inc.. 2010. U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells Needed for Project. Boise Idaho: (!) . Report No.: N/A.

43

U.S. Geothermal Announces Successful Completion of First Well at Neal Hot  

Open Energy Info (EERE)

U.S. Geothermal Announces Successful Completion of First Well at Neal Hot U.S. Geothermal Announces Successful Completion of First Well at Neal Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Announces Successful Completion of First Well at Neal Hot Springs Abstract N/A Author U.S. Geothermal Inc. Published Publisher Not Provided, 2008 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for U.S. Geothermal Announces Successful Completion of First Well at Neal Hot Springs Citation U.S. Geothermal Inc.. 2008. U.S. Geothermal Announces Successful Completion of First Well at Neal Hot Springs. Boise Idaho: (!) . Report No.: N/A. Retrieved from "http://en.openei.org/w/index.php?title=U.S._Geothermal_Announces_Successful_Completion_of_First_Well_at_Neal_Hot_Springs&oldid=682770"

44

Geothermal-well completions: a survey and technical evaluation of existing equipment and needs  

DOE Green Energy (OSTI)

The geothermal environment and associated well completion problems are reviewed. Existing well completion equipment is surveyed and limitations are identified. A technical evaluation of selected completion equipment is presented. The technical evaluation concentrates on well cementing equipment and identifies potential failure mechanisms which limit the effectiveness of these tools. Equipment employed in sand control, perforating, and corrosion control are identified as potential subjects for future technical evaluation.

Nicholson, J.E.; Snyder, R.E.

1982-07-01T23:59:59.000Z

45

Modeling studies to evaluate performance of the horizontal wells completed in shale.  

E-Print Network (OSTI)

??The results of the modeling studies to determine the production performance of multiple fractured horizontal wells completed in shale formation has been summarized in this… (more)

Belyadi, Abbas.

2011-01-01T23:59:59.000Z

46

Production optimization of a tight sandstone gas reservoir with well completions: A numerical simulation study.  

E-Print Network (OSTI)

??Tight gas sands have significant gas reserves, which requires cost-effective well completion technology and reservoir development plans for viable commercial exploitation. In this study, a… (more)

Defeu, Cyrille W.

2010-01-01T23:59:59.000Z

47

Site selection, drilling, and completion of two horizontal wells in the Devonian Shales of West Virginia. Final report  

Science Conference Proceedings (OSTI)

This report presents a summary of the geologic site selection studies, planning, drilling, completing, stimulating, and testing of two horizontal wells drilled in the Devonian Shales of the Appalachian Basin in West Virginia. Each horizontal well was designed and managed by BDM as the prime contractor to the Department of Energy. The first well was drilled with industry partner Cabot Oil and Gas Corporation in Putnam County, West Virginia. The second well was drilled with Consolidated Natural Gas Company in Calhoun County, West Virginia. This report summarizes four reports prepared by BDM which detail the site selection rationale and the drilling and completion operations of each well. Each horizontal well is currently producing commercial quantities of hydrocarbons. The successful application of horizontal well technology represent continued development of the technology for application to tight and unconventional natural gas resources of the United States. Continued technology development is expected to ultimately result in commercial horizontal well drilling activity by industry in the Appalachian Basin.

Overbey, W.K. Jr.; Carden, R.S.; Locke, C.D.; Salamy, S.P.; Reeves, T.K.; Johnson, H.R.

1992-03-01T23:59:59.000Z

48

Geothermal Well Costs and their Sensitivities to Changes in Drilling and Completion Operations  

SciTech Connect

This paper presents a detailed analysis of the costs of drilling and completing geothermal wells. The basis for much of the analysis is a computer-simulation-based model which calculates and accrues operational costs involved in drilling and completing a well. Geothermal well costs are discussed in general, with special emphasis on variations among different geothermal areas in the United States, effects of escalation and inflation over the past few years, and comparisons of geothermal drilling costs with those for oil and gas wells. Cost differences between wells for direct use of geothermal energy and those for electric generation, are also indicated. In addition, a breakdown of total well cost into its components is presented. This provides an understanding of the relative contributions of different operations in drilling and completions. A major portion of the cost in many geothermal wells is from encountered troubles, such as lost circulation, cementing difficulties, and fishing. These trouble costs are considered through both specific examples and statistical treatment of drilling and completions problems. The sensitivities of well costs to variations in several drilling and completion parameters are presented. The mode1 makes it possible to easily vary parameters such as rates of penetration; bit lifetimes; bit rental, or rig costs; delay times; number of cement plugs; etc. are compared.

Carson, C. C.; Lin, Y.T.

1981-01-01T23:59:59.000Z

49

Testing geopressured geothermal reservoirs in existing wells: Detailed completions prognosis for geopressured-geothermal well of opportunity, prospect #1  

SciTech Connect

This prospective well of opportunity was originally drilled and completed as a gas producer by Wrightsman Investment Company in early 1973. The original and present producing interval was from 15,216 to 15,238 feet. IMC Exploration Company, Inc. acquired the property from Wrightsman and is the present owner operator. The well is presently shut in s a non-economic producer and IMC proposed to perform plug and abandonment operations in April, 1980. This well has a good geopressured-geothermal water sand behind the 5-1/2 inch casing that has 94 feet of net sand thickness. Pursuant to DOE/NVO authorization of March 11,1980, Eaton negotiated an option agreement with IMC whereby IMC would delay their abandonment operations for a period of 90 days to permit DOE to evaluate the well for geopressure-geothermal testing. The IMC-Eaton option agreements provide that IMG will delay plugging the well until June 15, 1980. If Eaton exercises its option to acquire the well, IMC will sell the well bore, and an adjacent salt water disposal well, to Eaton for the sole consideration of Eaton assuming the obligation to plug and abandon the wells in accordance with lease and regulatory requirements. If Eaton does not exercise its option, then Eaton will pay IMC $95,000 cash and IMC will proceed with plugging and abandonment at the termination of the option period.

Kennedy, Clovis A.

1980-04-03T23:59:59.000Z

50

Geothermal well completions: an overview of existing methods in four types of developments  

DOE Green Energy (OSTI)

Existing practices and capabilities for completing producing and injection wells for geothermal application in each of four categories of geothermal environments are discussed. Included are steam wells in hard, fractured rocks (The Geysers, California), hot water wells in sedimentary formations (Imperial Valley, California), hot, dry impermeable rocks with circulating water systems (Valles Caldera, New Mexico), and geopressured, geothermal water wells with associated hydrocarbon production on the U.S. Gulf Coast.

Snyder, R.E.

1978-01-01T23:59:59.000Z

51

Testing geopressured geothermal reservoirs in existing wells: Detailed completion prognosis for geopressured-geothermal well of opportunity, prospect #2  

DOE Green Energy (OSTI)

A geopressured-geothermal test of Martin Exploration Company's Crown Zellerbach Well No. 2 will be conducted in the Tuscaloosa Trend. The Crown Zellerbach Well No. 1 will be converted to a saltwater disposal well for disposal of produced brine. The well is located in the Satsuma Area, Livingston parish, Louisiana. Eaton proposes to test the Tuscaloosa by perforating the 7 inch casing from 16,718 feet to 16,754 feet. The reservoir pressure at an intermediate formation depth of 16,736 feet is anticipated to be 12,010 psi and the temperature is anticipated to be 297 F. Calculated water salinity is 16,000 ppm. The well is expected to produce a maximum of 16,000 barrels of water a day with a gas content of 51 SCF/bbl. Eaton will re-enter the test well, clean out to 17,000 feet, run production casing and complete the well. The disposal well will be re-entered and completed in the 9-5/8 inch casing for disposal of produced brine. Testing will be conducted similar to previous Eaton annular flow WOO tests. An optional test from 16,462 feet to 16,490 feet may be performed after the original test and will require a workover with a rig on location to perform the plugback. The surface production equipment utilized on previous tests will be utilized on this test. The equipment has worked satisfactorily and all parties involved in the testing are familiar with its operation. Weatherly Engineering will operate the test equipment. The Institute of Gas Technology (IGT) and Mr. Don Clark will handle sampling, testing and reservoir engineering evaluation, respectively. wireline work required will be awarded on basis of bid evaluation. At the conclusion of the test period, the D.O.E. owned test equipment will be removed from the test site, the test and disposal wells plugged and abandoned and the sites restored to the satisfaction of all parties.

None

1981-03-01T23:59:59.000Z

52

Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Seam Well Completion Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production U.S. Department of Energy Office of Fossil Energy and National Energy Technology Laboratory Strategic Center for Natural Gas September 2003 DOE/NETL-2003/1193 Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production U.S. Department of Energy National Energy Technology Laboratory (NETL) (Strategic Center for Natural Gas) DOE/NETL-2003/1193 September 2003 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

53

Construction of MV-6 Well Pad at the Central Nevada Test Area Completed |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction of MV-6 Well Pad at the Central Nevada Test Area Construction of MV-6 Well Pad at the Central Nevada Test Area Completed Construction of MV-6 Well Pad at the Central Nevada Test Area Completed October 22, 2013 - 6:10pm Addthis What does this project do? Goal 1. Protect human health and the environment A new groundwater monitoring/validation (MV) well was installed at the Central Nevada Test Area (CNTA) in September 2013. LM proposed this well to the Nevada Division of Environmental Protection (NDEP) to enhance the existing monitoring network and to expedite the Federal Facility Agreement and Consent Order (FFACO) closure process for the CNTA Subsurface Corrective Action Unit. CNTA is located in Hot Creek Valley in Nye County, Nevada, adjacent to U.S. Highway 6, about 30 miles north of Warm Springs, Nevada. CNTA was the site of "Project Faultless," a test site where a

54

Construction of MV-6 Well Pad at the Central Nevada Test Area Completed |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction of MV-6 Well Pad at the Central Nevada Test Area Construction of MV-6 Well Pad at the Central Nevada Test Area Completed Construction of MV-6 Well Pad at the Central Nevada Test Area Completed October 22, 2013 - 6:10pm Addthis What does this project do? Goal 1. Protect human health and the environment A new groundwater monitoring/validation (MV) well was installed at the Central Nevada Test Area (CNTA) in September 2013. LM proposed this well to the Nevada Division of Environmental Protection (NDEP) to enhance the existing monitoring network and to expedite the Federal Facility Agreement and Consent Order (FFACO) closure process for the CNTA Subsurface Corrective Action Unit. CNTA is located in Hot Creek Valley in Nye County, Nevada, adjacent to U.S. Highway 6, about 30 miles north of Warm Springs, Nevada. CNTA was the site of "Project Faultless," a test site where a

55

G. M. Koelemay well No. 1, Jefferson County, Texas. Volume I. Completion and testing: testing geopressured geothermal reservoirs in existing wells. Final report  

DOE Green Energy (OSTI)

The acquisition, completion, and testing of a geopressured-geothermal well are described. The following are covered: geology; petrophysics; re-entry and completion operations - test well; drilling and completion operations - disposal well; test objectives; surface testing facilities; pre-test operations; test sequence; test results and analysis; and return of wells and location to operator. (MHR)

Not Available

1980-01-01T23:59:59.000Z

56

Testing geopressured geothermal reservoirs in existing wells: Detailed completion prognosis for geopressured-geothermal well of opportunity, prospect #7  

DOE Green Energy (OSTI)

This book is a detailed prognosis covering the acquisition, completion, drilling, testing and abandonment of the Frank A. Godchaux, III, Well No. 1 under the Wells of Opportunity Program. The well is located approximately 12 miles southeast of the city of Abbeville, Louisiana. Eaton Operating Company proposes to test a section of the Planulina sand at a depth ranging from 15,584 to 15,692 feet. The reservoir pressure is estimated to be 14,480 psi and the temperature of the formation water is expected to be 298 F. The water salinity is calculated to be 75,000 ppm. The well is expected to produce 20,000 barrels of water per day with a gas content of 44 standard cubic feet pre barrel. The well was acquired from C and K Petroleu, Inc. on March 20, 1981. C and K abandoned the well at a total depth of 16,000 feet. The well has a 7-5/8 inches liner set at 13,387 feet. Eaton proposes to set 5-1/2 inch casing at 16,000 feet and produce the well through the casing using a 2-3/8 inch tubing string for wireline protection and for pressure control. A 4,600 foot saltwater disposal well will be drilled on the site and testing will be conducted similar to previous Eaton tests. The total estimated cost to perform the work is $2,959,000. An optional test from 14,905 to 15,006 feet may be performed after the original test and will require a workover with a rig on location to perform the plugback. The surface production equipment utilized on previous Eaton WOO tests will be utilized on this test. This equipment has worked satisfactorily and all parties involved in the testing are familiar with its operation. The Institute of Gas Technology and Mr. Don Clark will handle the sampling and testing and reservoir evaluation, respectively, as on the previous Eaton tests.

Godchaux, Frank A.

1981-06-01T23:59:59.000Z

57

How well do time-integrated K{sub {alpha}} images represent hot electron spatial distributions?  

SciTech Connect

A computational study is described, which addresses how well spatially resolved time-integrated K{sub {alpha}} images recorded in intense laser-plasma experiments correlate with the distribution of ''hot'' (>1 MeV) electrons as they propagate through the target. The hot electron angular distribution leaving the laser-plasma region is critically important for many applications such as Fast Ignition or laser based x-ray sources; and K{sub {alpha}} images are commonly used as a diagnostic. It is found that K{sub {alpha}} images can easily mislead due to refluxing and other effects. Using the particle-in-cell code LSP, it is shown that a K{sub {alpha}} image is not solely determined by the initial population of forward directed hot electrons, but rather also depends upon ''delayed'' hot electrons, and in fact continues to evolve long after the end of the laser interaction. Of particular note, there is a population of hot electrons created during the laser-plasma interaction that acquire a velocity direction opposite that of the laser and subsequently reflux off the front surface of the target, deflect when they encounter magnetic fields in the laser-plasma region, and then traverse the target in a wide spatial distribution. These delayed fast electrons create significant features in the K{sub {alpha}} time-integrated images. Electrons refluxing from the sides and the back of the target are also found to play a significant role in forming the final K{alpha} image. The relative contribution of these processes is found to vary depending on depth within target. These effects make efforts to find simple correlations between K{alpha} images and, for example, Fast Ignition relevant parameters prone to error. Suggestions for future target design are provided.

Ovchinnikov, V. M.; Kemp, G. E.; Schumacher, D. W.; Freeman, R. R.; Van Woerkom, L. D. [Physics Department, Ohio State University, Columbus, Ohio 43210 (United States)

2011-07-15T23:59:59.000Z

58

Well Completion Report for Well ER-20-11, Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

Science Conference Proceedings (OSTI)

Well ER-20-11 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Management Operations Underground Test Area (UGTA) Activity at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September 2012 as part of the Central and Western Pahute Mesa Corrective Action Unit Phase II drilling program. Well ER-20-11 was constructed to further investigate the nature and extent of radionuclidecontaminated groundwater encountered in two nearby UGTA wells, to help define hydraulic and transport parameters for the contaminated Benham aquifer, and to provide data for the UGTA hydrostratigraphic framework model. The 44.5-centimeter (cm) surface hole was drilled to a depth of 520.0 meters (m) and cased with 34.0-cm casing to 511.5 m. The hole diameter was then decreased to 31.1 cm, and the borehole was drilled to a total depth of 915.6 m. The hole was completed to allow access for hydrologic testing and sampling in the target aquifer, which is a lava-flow aquifer known as the Benham aquifer. The completion casing string, set to the depth of 904.3 m, consists of a string of 6?-inch (in.) stainless-steel casing hanging from a string of 7?-in. carbon-steel casing. The stainless-steel casing has one slotted interval at 796.3 to 903.6 m. One piezometer string was installed, which consists of 2?-in. stainless-steel tubing that hangs from 2?-in. carbon-steel tubing via a crossover sub. This string was landed at 903.8 m and is slotted in the interval 795.3 to 903.1 m. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, fluid samples (for groundwater chemistry analysis and tritium measurements), and water-level measurements. The well penetrated 915.6 m of Tertiary volcanic rock, including one saturated lava flow aquifer. Measurements on samples taken from the undeveloped well indicated elevated tritium levels within the Benham aquifer. The maximum tritium level measured with field equipment was 146,131 picocuries per liter from a sample obtained at the depth of 912.0 m. The fluid level was measured in the piezometer string at a depth of 504.5 m on September 26, 2012. All Fluid Management Plan (FMP) requirements for Well ER-20-11 were met. Analysis of monitoring samples and FMP confirmatory samples indicated that fluids generated during drilling at Well ER-20-11 met the FMP criteria for discharge to an unlined sump or designated infiltration area. Well development, hydrologic testing, and sampling will be conducted at a later date.

NSTec Environmental Management

2013-02-27T23:59:59.000Z

59

Damage tolerance of well-completion and stimulation techniques in coalbed methane reservoirs  

SciTech Connect

Coalbed methane (CBM) reservoirs are characterized as naturally fractured, dual porosity, low permeability, and water saturated gas reservoirs. Initially, the gas, water and coal are at thermodynamic equilibrium under prevailing reservoir conditions. Dewatering is essential to promote gas production. This can be accomplished by suitable completion and stimulation techniques. This paper investigates the efficiency and performance of the openhole cavity, hydraulic fractures, frack and packs, and horizontal wells as potential completion methods which may reduce formation damage and increase the productivity in coalbed methane reservoirs. Considering the dual porosity nature of CBM reservoirs, numerical simulations have been carried out to determine the formation damage tolerance of each completion and, stimulation approach. A new comparison parameter named as the normalized productivity index is defined as the ratio of the productivity index of a stimulated well to that of a nondamaged vertical well as a function of time. Typical scenarios have been considered to evaluate the CBM properties, including reservoir heterogeneity, anisotropy, and formation damage, for their effects on this index over the production time. The results for each stimulation technique show that the value of the index declines over the time of production with a rate which depends upon the applied technique and the prevailing reservoir conditions. The results also show that horizontal wells have the best performance if drilled orthogonal to the butt cleats. Open-hole cavity completions outperform vertical fractures if the fracture conductivity is reduced by any damage process. When vertical permeability is much lower than horizontal permeability, production of vertical wells will improve while productivity of horizontal wells will decrease.

Jahediesfanjani, H.; Civan, F. [University of Oklahoma, Norman, OK (United States)

2005-09-01T23:59:59.000Z

60

Lightweight CO{sub 2}-resistant cements for geothermal well completions  

DOE Green Energy (OSTI)

Materials formed by acid-base reactions between calcium aluminate compounds and phosphate-containing solutions yield high strength, low permeability and CO{sub 2}-resistant cements when cured in hydrothermal environments. The cementing formulations are pumpable at temperatures up to 150{degrees}C. thereby making their use for well completions technically feasible. When this cementing matrix was exposed in an autoclave containing Na{sub 2}CO{sub 3},-saturated brine for 120 days. <0.4 wt% CaCO{sub 3} was produced. A conventional portland cement-based well completion material will form {approximately}10 wt% CACO, after only 7 days exposure. The addition of hollow aluminosilicate microspheres to the uncured matrix constituents yields slurries with densities as low as {approximately} 1.2 g/cc which cure to produce materials with properties meeting die criteria for well cementing. These formulations also exhibit low rates of carbonation. Laboratory characterization is nearing completion. engineering scale-up is underway, and plans for field testing in a variety of geothermal fluids are being made.

Kukacka, L.E.; Sugama, T.

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Unique aspects of drilling and completing hot-dry-rock geothermal wells  

DOE Green Energy (OSTI)

Drilling operations at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site have led to numerous developments needed to solve the problems caused by a very harsh downhole environment. A pair of deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures were in excess of 600/sup 0/F (300/sup 0/C). The wells were directionally drilled, inclined at 35/sup 0/, one above the other, in a direction orthogonal to the least principal stress field. The well site is near the flank of a young silicic composite volcano in the Jemez Mountains of northern New Mexico. The completion of this pair of wells is unique in reservoir development. The lower well was planned as a cold water injector which will be cooled by the introduced water from the static geothermal gradient to about 80/sup 0/F (25/sup 0/C). The upper well will be heated during production to over 500/sup 0/F (250/sup 0/C). The well pair is designed to perform as a closed loop heat-extraction system connected by hydraulic fractures with a vertical spacing of 1200 ft between the wells. These conditions strongly constrain the drilling technique, casing design, cement formulation, and cementing operations.

Carden, R.S.; Nicholson, R.W.; Pettitt, R.A.; Rowley, J.C.

1983-01-01T23:59:59.000Z

62

New Bridge Plug and Retrieving Tool that Aids Completion of Geothermal Steam Wells  

DOE Green Energy (OSTI)

A typical completion procedure requires placement of a bridge plug near the liner top of a producing steam well so the well can be loaded to permit cementing of the tieback casing string by conventional cementing techniques. A drillable bridge plug has been used in the past so that it could be removed with a conventional toothed, cone-type drill bit. All components could not be drilled out because the bridge plug would separate from the casing when drilling through its top slips. This created a hazardous situation because heavy components remaining in the well could blowout after placing the well into production and damage or destroy surface equipment. A bridge plug and its companion milling-type retrieving tool were developed to perform the bridging operation and accomplish removal in a producing geothermal steam well environment. The bridge plug features an internal briding plug that is designed to permit the release of differential pressure buildup from below before releasing the bridge plug by milling away the top slips. The millinog-type retrieving tool has a catcher mechanism designed to function in the high-velocity steam flow of a producing well to catch the released bridge plug. After the released bridge plug components are caught, they may be returned to the surface in a controlled manner. This removes the massive components so that they will not be blown out by the steam of a producing well. Field use has demonstrated that this equipment is a practical completion aid, and it is currently being used in The Geysers field of northern California. Examples of field usage are discussed in the paper.

Harris, A.; Thompson, P.; Ash, D.

1981-01-01T23:59:59.000Z

63

Completion Report for Well ER-12-3 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain  

Science Conference Proceedings (OSTI)

Well ER-12-3 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in March and April 2005 as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology of central Rainier Mesa, especially in the older Tertiary volcanic rocks and Paleozoic sedimentary rocks. The main 47.0-centimeter hole was drilled to a depth of 799.2 meters and cased with 33.97-centimeter casing to 743.1 meters. The hole diameter was then decreased to 31.1 centimeters, and the well was drilled to a total depth of 1,496.0 meters. The completion string consisted of 13.97-centimeter stainless steel casing, with two slotted intervals open to the lower carbonate aquifer, suspended from 19.37-centimeter carbon steel casing. A piezometer string was installed outside the 33.97-centimeter casing to a depth of 467.1 meters to monitor a zone of perched water within the Tertiary volcanic section. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters (extra cuttings samples were collected from the Paleozoic rocks for paleontological analyses), sidewall core samples from 35 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated 674.2 meters of Tertiary volcanic rocks and 821.7 meters of Paleozoic dolomite and limestone. Forty-nine days after the well was completed, but prior to well development and testing, the water level inside the main hole was tagged at the depth of 949.1 meters, and the water level inside the piezometer string was tagged at 379.9 meters.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada Corporation

2006-05-01T23:59:59.000Z

64

Completion Report for Model Evaluation Well ER-5-5: Corrective Action Unit 98: Frenchman Flat  

Science Conference Proceedings (OSTI)

Model Evaluation Well ER-5-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of Nevada Environmental Management Operations at the Nevada National Security Site (formerly known as the Nevada Test Site). The well was drilled in July and August 2012 as part of a model evaluation well program in the Frenchman Flat area of Nye County, Nevada. The primary purpose of the well was to provide detailed geologic, hydrogeologic, chemical, and radiological data that can be used to test and build confidence in the applicability of the Frenchman Flat Corrective Action Unit flow and transport models for their intended purpose. In particular, this well was designed to obtain data to evaluate the uncertainty in model forecasts of contaminant migration from the upgradient underground nuclear test MILK SHAKE, conducted in Emplacement Hole U-5k in 1968, which were considered to be uncertain due to the unknown extent of a basalt lava-flow aquifer present in this area. Well ER-5-5 is expected to provide information to refine the Phase II Frenchman Flat hydrostratigraphic framework model, if necessary, as well as to support future groundwater flow and transport modeling. The 31.1-centimeter (cm) diameter hole was drilled to a total depth of 331.3 meters (m). The completion string, set at the depth of 317.2 m, consists of 16.8-cm stainless-steel casing hanging from 19.4-cm carbon-steel casing. The 16.8-cm stainless-steel casing has one slotted interval open to the basalt lava-flow aquifer and limited intervals of the overlying and underlying alluvial aquifer. A piezometer string was also installed in the annulus between the completion string and the borehole wall. The piezometer is composed of 7.3-cm stainless-steel tubing suspended from 6.0-cm carbon-steel tubing. The piezometer string was landed at 319.2 m, to monitor the basalt lava-flow aquifer. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, preliminary water quality measurements, and water-level measurements. The well penetrated 331.3 m of Quaternary–Tertiary alluvium, including an intercalated layer of saturated basalt lava rubble. No well development or hydrologic testing was conducted in this well immediately after completion; however, a preliminary water level was measured in the piezometer string at the depth of 283.4 m on September 25, 2012. No tritium above the minimum detection limit of the field instruments was detected in this hole. Future well development, sampling, and hydrologic testing planned for this well will provide more accurate hydrologic information for this site. The stratigraphy, general lithology, and water level were as expected, though the expected basalt lava-flow aquifer is basalt rubble and not the dense, fractured lava as modeled. The lack of tritium transport is likely due to the difference in hydraulic properties of the basalt lava-flow rubble encountered in the well, compared to those of the fractured aquifer used in the flow and transport models.

NSTec Underground Test Area and Boreholes Programs and Operations

2013-01-18T23:59:59.000Z

65

Evaluation of polymer free drill-in fluids for use in high productivity, horizontal well completions  

E-Print Network (OSTI)

Advancements in deepwater drilling have necessitated the use of more specialized reservoir drill-in fluids (RDIF). These RDIFs must exhibit unique rheological properties while minimizing formation damage. Xanthan gum biopolymer is generally used as a primary viscosifier in RDIFs. In high salinity brines the high shear rate viscosity that xanthan gum provides can approach levels that could exceed the fracture gradient of the well. Therefore, it is important to maintain a xanthan gum concentration that keeps the equivalent circulating density at a modest level. Reducing the xanthan gum level, however, compromises the hole cleaning properties that the low- shear-rate viscosity provides. Xanthan gum biopolymers are also associated with formation damage, which inhibits the flow of oil and gas during production. A new RDIF, which utilizes no xanthan gum biopolymer, has been recently developed. The new product uses a starch instead of polymer to develop rheological properties. This fluid will primarily be targeted for production zone drilling in highly deviated and horizontal wells. This research focused on filtercake cleanup and the reduced formation damage associated with this biopolymer-free fluid. The behavior of the polymer free fluid was analyzed developing tests at different temperatures, at different drill solids content, and with different treatment fluids. The laboratory methods used were a ceramic disc cell and a linear flow cell. The former will permit an analysis of the time that a certain cleaning treatment takes to flow through a filter cake. The latter simulates well completions in unconsolidated horizontal well reservoirs permitting the estimation of formation damage produced by drilling and completion fluids and the effectiveness of the cleaning treatment applied. Multivariate statistical analysis was performed with the experimental results obtained. Comparison with conventional RDIF data from polymer carbonate and sized salt fluids provided informative contrasts in performance.

Falla Ramirez, Jorge H

2001-01-01T23:59:59.000Z

66

NETL: News Release - Regional Partnership Completes 8,000-foot Well for  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2007 4, 2007 Regional Partnership Completes 8,000-foot Well for Critical Carbon Sequestration Assessment Midwest Regional Carbon Sequestration Partnership Prepares for Test of Geologic Carbon Sequestration in Appalachian Basin WASHINGTON, DC - The Midwest Regional Carbon Sequestration Partnership (MRCSP) has completed an 8,000-foot well at FirstEnergy's R. E. Burger Plant near Shadyside, Ohio, in preparation for a geologic sequestration field test. Sponsored by the Office of Fossil Energy's National Energy Technology Laboratory, the field test will determine the feasibility of storing CO2 in deep saline formations in the Appalachian Basin. "The carbon sequestration field test in the Appalachian Basin is an important step in turning the promise of carbon sequestration into a reality," said Acting Assistant Secretary for Fossil Energy Tom Shope. "By assessing carbon storage in an area of the country that produces 20 percent of the nation's electricity, the test helps pave the way toward a future in which America's abundant fossil resources can be used to produce energy without contributing to global climate change."

67

Completion Report for Model Evaluation Well ER-11-2: Corrective Action Unit 98: Frenchman Flat  

Science Conference Proceedings (OSTI)

Model Evaluation Well ER-11-2 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of Nevada Environmental Management Operations at the Nevada National Security Site (formerly known as the Nevada Test Site). The well was drilled in August 2012 as part of a model evaluation program in the Frenchman Flat area of Nye County, Nevada. The primary purpose of the well was to provide detailed geologic, hydrogeologic, chemical, and radionuclide data that can be used to test and build confidence in the applicability of the Frenchman Flat Corrective Action Unit flow and transport models for their intended purpose. In particular, this well was designed to provide data to evaluate the uncertainty in model forecasts of contaminant migration from the upgradient underground nuclear test PIN STRIPE, conducted in borehole U-11b in 1966. Well ER-11-2 will provide information that can be used to refine the Phase II Frenchman Flat hydrostratigraphic framework model if necessary, as well as to support future groundwater flow and transport modeling. The main 31.1-centimeter (cm) hole was drilled to a total depth of 399.6 meters (m). A completion casing string was not set in Well ER-11-2. However, a piezometer string was installed in the 31.1-cm open hole. The piezometer is composed of 7.3-cm stainless-steel tubing hung on 6.0-cm carbon-steel tubing via a crossover sub. The piezometer string was landed at 394.5 m, for monitoring the lower tuff confining unit. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, water quality (including tritium and other test-related radionuclides) measurements, and water level measurements. The well penetrated 42.7 m of Quaternary and Tertiary alluvium and 356.9 m of Tertiary volcanic rock. The water-level measured in the piezometer string on September 25, 2012, was 353.8 m below ground surface. No tritium above levels detectable by field methods were encountered in this hole. No well development or hydrologic testing was conducted in this well immediately after completion, and future well development, sampling, and hydrologic testing planned for this well will be limited due to the diameter of the piezometer string. The stratigraphy, general lithology, and the water level are as expected, but the section of geology encountered is higher than expected due to faulting. No tritium above the minimum detection limit of the field equipment was detected because the target aquifer (the Topopah Spring aquifer) at Well ER-11-2 is structurally higher than expected and thus unsaturated.

NSTec Underground Test Area and Boreholes Programs and Operations

2013-01-22T23:59:59.000Z

68

Completion Report for Well ER-16-1 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain  

Science Conference Proceedings (OSTI)

Well ER-16-1 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in June and July 2005 as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit, Number 99. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology of the Shoshone Mountain area, especially in the older Tertiary and pre-Tertiary strata. The main 46.99-centimeter hole was drilled to a depth of 702.9 meters and cased with 33.97-centimeter casing to 663.7 meters. The hole diameter was then decreased to 31.1 centimeters, and the well was drilled to total depth of 1,220.7 meters. A completion string set at the depth of 1,162.4 meters consisted of 13.97-centimeter stainless-steel casing, with one continuous slotted interval open to the lower carbonate aquifer. The fluid level in the borehole soon dropped, so the borehole was deepened in July 2006. To deepen the borehole, the slotted section was cemented and a 12.1-centimeter hole was drilled through the bottom of the completion string to the new total depth of 1,391.7 meters, which is 171.0 meters deeper than the original borehole. A string of 6.03-centimeter carbon-steel tubing with one continuous slotted interval at 1,361.8 to 1,381.4 meters, and open to the lower carbonate aquifer, was installed in the well with no gravel packing or cement, to serve as a monitoring string. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters (extra cuttings samples were collected from the Paleozoic rocks for paleontological analyses), sidewall core samples from 37 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated 646.8 meters of Tertiary volcanic rocks and 744.9 meters of Paleozoic dolomite, quartzite, shale, and limestone. Three weeks after the monitoring string was installed, the water level was tagged at the drill hole depth of 1,271.9 meters, which equates to an estimated elevation of 761.7 meters, accounting for the borehole angle.

NSTec Geology Services

2006-12-01T23:59:59.000Z

69

StarWars Laser Technology Applied to Drilling and Completing Gas Wells  

NLE Websites -- All DOE Office Websites (Extended Search)

u' m .,. . Society of Petroleum Engineers u I SPE 49259 StarWars Laser Technology Applied to Drilling and Completing Gas Wells R.M. Graves, SPE, Colorado School of Mines; and D.G. O'Brien, PE, SPE, Solutions Engineering Copyr@ht 1998, Scdety of Petroleum Engineers, Inc. This paper was prapared for presentation at the 1998 SPE Annual Technicar Conference and Exhibition bald in New Orteans, Lcuisiana, 27-30 September 1998, This paper waa selected for presentation by en SPE Program Commiftee folrowing review of information contained in an abstract submitted by the author(a). Contents of the paper, as prasented, have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The materiar, as presented, does not necessarily reflect any position of the .%ciety of Petroleum Engineers, its officers, or members. Papers prasented at SPE meetings

70

Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate the potential benefits of applying multiseam [well] completion (MSC) technology to the massive stack of low-rank coals in the Powder River Basin. As part of this, the study objectives are: Estimate how much additional CBM resource would become accessible and technically recoverable--compared to the current practice of drilling one well to drain a single coal seam; Determine whether there are economic benefits associated with MSC technology utilization (assuming its widespread, successful application) and if so, quantify the gains; Briefly examine why past attempts by Powder River Basin CBM operators to use MSC technology have been relatively unsuccessful; Provide the underpinnings to a decision whether a MSC technology development and/or demonstration effort is warranted by DOE. To a great extent, this assessment builds on the previously published study (DOE, 2002), which contains many of the key references that underlie this analysis. It is available on the U.S. Department of Energy, National Energy technology Laboratory, Strategic Center for Natural Gas website (www.netl.doe.gov/scng). It is suggested that readers obtain a copy of the original study to complement the current report.

Office of Fossil Energy; National Energy Technology Laboratory

2003-09-01T23:59:59.000Z

71

Godchaux Well No. 1, Vermilion Parish, Louisiana: completion and testing. Final report  

DOE Green Energy (OSTI)

The Godchaux Well No. 1 was originally drilled too a total depth of 16,000 feet in January, 1981 by C and K Petroleum, Inc. and was temporarily abandoned. The well was re-entered by Eaton on 6 August 1981 in an effort to clean out the original open hole below the 7-5/8 inch liner and test a section of the Planulina sand at a depth ranging from 15,584 to 15,692 feet. The reservoir pressure was estimated to be 14,480 psi, and the temperature of the formation water was expected to be 298/sup 0/F. The water salinity was predicted to be 70,000 ppM. The well was expected to produce up to 20,000 BWPD, was a gas content of 44 SCF per barrel. An optional test of a zone from 14,905 to 15,006 feet was also proposed in the detailed completion prognosis, which preceded the attempted test. In the process of drilling the cement plug set by the original operators, the drill string became side-tracked from the original hole. While drilling at 14,510 feet a severe loss of circulation of drilling fluid occurred through a hole in the intermediate casing. The reduction in hydrostatic head resulting from lost circulation caused the open hole to close around and stick the drill string. Efforts to repair the intermediate casing and return to normal operations were estimated to be prohibitively expensive in view of the expected poor probability of success; accordingly, the decision to plug and abandon was carried out on September 12, 1981.

Not Available

1981-01-01T23:59:59.000Z

72

Device for temporarily closing duct-formers in well completion apparatus  

SciTech Connect

A duct-forming device is disclosed for use in a well completion apparatus of the kind, wherein a bore hole casing is positioned in a bore hole and duct-forming devices of alkali- and acid resistant metal-such as steel-are secured at spaced levels to the casing in alignment with holes machined in the casing wall. In accordance with the invention, a closure device is arranged within the duct-forming device which permits flow of predetermined amounts of liquid, such as acid, from the interior of the casing through the duct-forming device and into the producing formation, while gradually being moved by the liquid into a position in which such fluid flow is prevented. After the fluid flow has been stopped by the closure device and when the formation pressure exceeds the pressure within the duct-forming device and the casing, fluid from the formation then forces the closure device toward and into the casing space to permit thereafter free flow of formation fluid into the duct-forming device and the casing or of pressurized treatment liquid from the casing into the formation. The inventive arrangement permits inter alia the establishment of a sufficient and substantially uniform feeding rate of treatment liquid, such as acid, from the casing into the producing formation through all the duct-formers in preparation for subsequent acidification or other treatments, such as sand fracking.

Zandmer, H.M.; Zandmer, S.M.

1981-08-25T23:59:59.000Z

73

New Mexico State University geothermal production well. Technical completion report, January 1, 1978-December 31, 1979  

DOE Green Energy (OSTI)

The detailed technical specifications for the production well, the lithologic sample analysis, and a suite of geophysical logs, consisting of electrical resistivity, spontaneous potential, gamma ray and neutron, are presented. (MHR)

Chaturvedi, L.

1981-01-01T23:59:59.000Z

74

Borehole Completion and Conceptual Hydrogeologic Model for the IFRC Well Field, 300 Area, Hanford Site  

SciTech Connect

A tight cluster of 35 new wells was installed over a former waste site, the South Process Pond (316-1 waste site), in the Hanford Site 300 Area in summer 2008. This report documents the details of the drilling, sampling, and well construction for the new array and presents a summary of the site hydrogeology based on the results of drilling and preliminary geophysical logging.

Bjornstad, Bruce N.; Horner, Jacob A.; Vermeul, Vincent R.; Lanigan, David C.; Thorne, Paul D.

2009-04-20T23:59:59.000Z

75

Reverse trade mission on the drilling and completion of geothermal wells  

DOE Green Energy (OSTI)

This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. DE-FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

Not Available

1989-09-09T23:59:59.000Z

76

Crown Zellerbach Well No. 2, Livingston Parish, Louisiana. Volume I. Completion and testing. Final report  

DOE Green Energy (OSTI)

The Crown Zellerbach Well No. 2, approximately 23 miles east of Baton Rouge, Louisiana, is the eighth successful test of a geopressured-geothermal aquifer under the DOE Wells of Opportunity program. The well was tested through the annulus between 7-inch casing and 2-3/8 inch tubing. Two flow tests and one reservoir pressure buildup test were conducted on the lower zone during a 13-day period. A total of 12,489 barrels of water was produced. The highest flow rate achieved was about 3887 BWPD. One flow test followed by a buildup period was conducted on the combined upper and lower zones during a 3-day period. A total of 4739 barrels of water was produced. The highest flow rate achieved was about 3000 BWPD. The gas/water ratio measured during testing was about 32.0 SCF/BBL for the lower zone. The extrapolated latoratory data indicates that the solubility of the gas is 55.7 SCF/BBL. It appears that the reservoir brine is considerably undersaturated. The methane content of the flare line gas averaged 71.0 mole percent. Crown Zellerbach Company carefully studied the commercial feasibility of using the well to produce energy for a wood-drying facility and decided against the project.

Not Available

1981-01-01T23:59:59.000Z

77

Hydrothermal cements for use in the completion of geothermal wells. Final report  

DOE Green Energy (OSTI)

A research program to develop an improved cement for use in high-temperature geothermal wells was carried out. The work involved in the selection and evaluation of an aluminum hydroxide-cured cement from the SwRI family of hydrothermal cements for this use are described. The physical testing program is described; the topics discussed include placement ability, compressive and bond strengths, permeability to water, compatibility to drilling muds, corrosion properties, and thermal properties.

Not Available

1979-09-01T23:59:59.000Z

78

Prairie Canal Well No. 1, Calcasieu Parish, Louisiana. Volume 1. Completion and testing. Final report  

DOE Green Energy (OSTI)

The Prairie Canal Company, Inc. Well No. 1, approximately 8 miles south of the city of Lake Charles, Louisiana, was tested through the annulus between 5-1/2 inch casing and 2-3/8 inch tubing. The interval tested was from 14,782 to 14,820 feet. The geological section was the Hackberry Sand, a member of the Oligocene Frio formation. Produced water was injected into a disposal well which was perforated in several Miocene Sands from 3070 to 4600 feet. Original plans were to test a section of the Hackberry sand from 14,976 to 15,024 feet. This primary zone, however, produced a large amount of sand, shale, gravel, and rocks during early flow periods and was abandoned in favor of the secondary zone. Four pressure drawdown flow tests and three pressure buildup tests were conducted during a 12-day period. A total of 36,505 barrels of water was produced. The highest sustained flow rate was approximately 7100 BWPD. The gas-to-water ratio, measured during testing, ranged from 41 to 50 SCF/BBL. There is disagreement as to the saturation value of the reservoir brine, which may be between 43.3 and 49.7 SCF/BBL. The methane content of the flare line gas averaged 88.4 mole percent. The CO/sub 2/ content averaged 8.4 mole percent. Measured values of H/sub 2/S in the gas were between 12 and 24 ppM.

Not Available

1981-01-01T23:59:59.000Z

79

Coal gas openhole completion well effectiveness in the Piceance Basin, Colorado: Preliminary results, South Shale Ridge [number sign]11-15 well  

SciTech Connect

Since 1983, the Deep Coal Seam Project (DCSP) and the Western Cretaceous Coal Seam Project (WCCSP) of the Gas Research institute has funded research efforts in the Piceance and San Juan basins of Colorado and New Mexico to further the knowledge of all facets of commercial coalbed natural gas reservoir development. Because of WCCSP research into openhole completion well effectiveness in the Fruitland play, and the need to complete a successful Cameo coal openhole well, the South Shale Ridge [number sign]11-15 well was deemed to be an excellent chance for technology transfer and evaluation. Because of implementation of carefully designed air mist drilling and controlled openhole completion techniques, along with a sufficient magnitude of cleat permeability, it appears that the [number sign]11-15 well is commercial. The cavity was installed without major problems. The initial gas production test rate of roughly 280 MCFGPD is one of the best in South Shale Ridge. The [number sign]11-15 well case study is quite important in that it may serve to emphasize the point that the conservative attitude towards commercialization of previously untapped petroleum resources is often not correct. It is now an open question as to whether the conventional wisdom that most of the Cameo coal gas play is too tight to enable commercial production is indeed true, or if by analogy with Fruitland openhole wells, Cameo coal wells that have been hydraulic fracture stimulated are commonly very poorly connected to the cleat permeability of the reservoir. There is no significant reason to believe that the South Shale Ridge area is geologically unique, and thus there is a distinct possibility that more widespread Cameo coal production than has been previously recorded can be achieved.

Close, J.C. (Resource Enterprises, Salt Lake City, UT (United States)); Dowden, D. (Conquest Oil Co., Greeley, CO (United States))

1992-01-01T23:59:59.000Z

80

Advanced high-temperature lightweight foamed cements for geothermal well completions  

DOE Green Energy (OSTI)

Foamed cement slurries that were prepared by mixing a cementitious material having a Class H cement-to-silica flour ratio of 1.0 in conjunction with a alpha-olefin sulfate foam surfactant and a coconut diethanolamide foam stabilizer were exposed in an autoclave at a temperature of 300/sup 0/C and a hydrostatic pressure of 2000 psi (13.79 MPa). One lightweight slurry having a density of 9.61 lb/gal (1.15 g/cc) yielded a cellular cement having a compressive strength at 24 hr of >1000 psi (6.9 MPa) and a water permeability of approx.10/sup -3/ darcys. The factors responsible for the attainment of these mechanical and physical properties were identified to be well-crystallized truscottite phases and a uniform distribution of discrete fine bubbles. The addition of graphite fiber reinforcement for the cement matrix significantly suppressed any segregation of foam caused by thermal expansion of the air bubbles and further improved the mechanical characteristics of the cured cements.

Sugama, T.; Kukacka, L.E.; Galen, B.G.

1986-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Investigation and evaluation of geopressured-geothermal wells. Final report: Beulah Simon No. 2 Well, Vermilion Parish, Louisiana. Volume I. Completion and testing  

DOE Green Energy (OSTI)

Geopressured-geothermal (Geo{sup 2}) test operations were conducted at the Beulah Simon No. 2 well site during the period from September through December 1979. The well provided the second geopressured-geothermal test to be completed under the DOE-Gruy Well of Opportunity program. The completion in a geopressured aquifer of Oligocene age at approximately 14,700 feet and the testing of hot salt water from this zone were accomplished without significant difficulty. Some problems were encountered with the wireline and wireline high-pressure lubricator associated with the running of bottomhole instruments. The objectives of the project were all accomplished, and good test data were obtained on the flow rates of gas and water. The gas content was 24 standard cubic feet per stock tank barrel of water. The disposal well accepted the full wellhead stream at temperatures as high as 255{sup 0}F (124{sup 0}C). Over the 10-day flow period the hot brine did not appear to adversely affect the clay minerals in the disposal aquifer. A conclusion from this operation is that presently available wirelines and pressure lubricators are not adaptable for use with uninhibited well fluids under flowing conditions. In addition, this test demonstrated that injection of scale inhibitor down the annulus eliminated scale buildup within the flow string and surface facilities. (MHR)

Dobson, R.J.; Hartsock, J.H.; McCoy, R.L.; Rodgers, J.A.

1980-07-01T23:59:59.000Z

82

Drilling, completion, stimulation, and testing of BDM/CNGD Well 3997, Lee District, Calhoun County, West Virginia  

SciTech Connect

This report discusses the detailed field operations in drilling, casing, completing, and stimulating the Hunter Bennett No. 3997 well located in Lee District, Calhoun County West Virginia. The project was designed and managed by BDM in cooperation with CNG Development Company. The well was spudded on November 9, 1990, and drilling was completed on December 14, 1990. The well was drilled on an average asmuth of 312 degrees with a total horizontal displacement of 2459 feet. The well was turned to a 90 degree inclination from the vertical over a measured course length of 1216 feet. Approximately 1381 feet of the well had an inclination higher than 86 degrees, while 2179 feet had an inclination greater than 62 degrees. The well was partitioned into five zones for stimulation purposes. Each zone is a little more than 300 feet long. The well was stimulated with nitrogen gas in zones one and two. Early production results are encouraging. The BDM/CNGD horizontal well averaged 147 mcfd of gas over the first week of production and, in week five, began to produce oil at a rate of about 2 bbl/day.

Overbey, W.K. Jr.; Carden, R.S.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.

1992-03-01T23:59:59.000Z

83

Drilling, completion, stimulation, and testing of BDM/CNGD Well 3997, Lee District, Calhoun County, West Virginia. Final report  

SciTech Connect

This report discusses the detailed field operations in drilling, casing, completing, and stimulating the Hunter Bennett No. 3997 well located in Lee District, Calhoun County West Virginia. The project was designed and managed by BDM in cooperation with CNG Development Company. The well was spudded on November 9, 1990, and drilling was completed on December 14, 1990. The well was drilled on an average asmuth of 312 degrees with a total horizontal displacement of 2459 feet. The well was turned to a 90 degree inclination from the vertical over a measured course length of 1216 feet. Approximately 1381 feet of the well had an inclination higher than 86 degrees, while 2179 feet had an inclination greater than 62 degrees. The well was partitioned into five zones for stimulation purposes. Each zone is a little more than 300 feet long. The well was stimulated with nitrogen gas in zones one and two. Early production results are encouraging. The BDM/CNGD horizontal well averaged 147 mcfd of gas over the first week of production and, in week five, began to produce oil at a rate of about 2 bbl/day.

Overbey, W.K. Jr.; Carden, R.S.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.

1992-03-01T23:59:59.000Z

84

Testing geopressured geothermal reservoirs in existing wells. Final report P. R. Girouard Well No. 1, Lafayette Parish, Louisiana. Volume I. Completion and testing  

DOE Green Energy (OSTI)

The P.R. Girouard No. 1 Well, located approximately 10 miles southeast of Lafayette, Louisiana, was the fourth successful test of a geopressured-geothermal aquifer under the Wells of Opportunity program. The well was tested through 3-1/2 inch tubing set on a packer at 14,570 feet without major problems. The geological section tested was the Oligocene Marginulina Texana No. 1 sand of upper Frio age. The interval tested was from 14,744 to 14,819 feet. Produced water was piped down a disposal well perforated from 2870 to 3000 feet in a Miocene saltwater sand. Four flow tests were conducted for sustained production rates of approximately 4000 BWPD to approximately 15,000 BWPD. The highest achieved, during a fifth short test, was 18,460 BWPD. The test equipment was capable of handling higher rates. The gas-to-water ratio was relatively uniform at approximately 40 SCF/bbl. The heating value of the gas is 970 Btu/SCF. The reservoir tests show that is is doubtful that this well would sustain production rates over 10,000 BWPD for any lengthy period from the sand zone in which it was completed. This limited flow capacity is due to the well's poor location in the reservoir and is not a result of any production deficiencies of the Marginulina Texana sand.

Not Available

1981-01-01T23:59:59.000Z

85

Well Completion Report for Corrective Action Unit 447, Project Shoal Area, Churchill County, Nevada, Rev. No.: 0  

SciTech Connect

This Well Completion Report is being provided as part of the implementation of the Corrective Action Decision Document (CADD)/Corrective Action Plan (CAP) for Corrective Action Unit (CAU) 447 (NNSA/NSO, 2006a). The CADD/CAP is part of an ongoing U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) funded project for the investigation of CAU 447 at the Project Shoal Area (PSA). All work performed on this project was conducted in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996), and all applicable Nevada Division of Environmental Protection (NDEP) policies and regulations. Investigation activities included the drilling, construction, and development of three monitoring/validation (MV) wells at the PSA. This report summarizes the field activities and data collected during the investigation.

Rick Findlay

2006-09-01T23:59:59.000Z

86

Completion Report for Well ER-EC-14, Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

Science Conference Proceedings (OSTI)

Well ER-EC-14 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Management Operations Underground Test Area (UGTA) Activity at the Nevada National Security Site (NNSS; formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September and October 2012, as part of the Central and Western Pahute Mesa Corrective Action Unit Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information for the Fortymile Canyon composite hydrostratigraphic unit in the Timber Mountain moat area, within the Timber Mountain caldera complex, that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic framework model. The main 55.9-centimeter (cm) hole was drilled to a total depth of 325.5 meters (m) and cased with 40.6-cm casing to 308.1 m. The hole diameter was then decreased to 37.5 cm, and drilling continued to a total depth of 724.8 m. The completion casing string, set to the depth of 690.9 m, consists of 16.8-cm stainless-steel casing hanging from 19.4-cm carbon-steel casing. The stainless-steel casing has two slotted intervals open to the Rainier Mesa Tuff. Two piezometer strings were installed in Well ER-EC-14. Both piezometer strings, each with one slotted interval, consist of 6.0-cm carbon-steel tubing at the surface, then cross over to 7.3-cm stainless-steel tubing just above the water table. The shallow piezometer string was landed at 507.8 m, and the deep piezometer string was landed at 688.6 m. Both piezometer strings are set to monitor groundwater within moderately to densely welded Rainier Mesa Tuff. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, water quality (including tritium and other radionuclides) measurements, and water level measurements. The well penetrated 15.2 m of alluvium and 709.6 m of Tertiary volcanic rocks. The stratigraphy and general lithology were not as expected due to the position of Well ER-EC-14 relative to the buried caldera margins of the Timber Mountain caldera complex. The well is located inside the Rainier Mesa caldera, but outside the younger Ammonia Tanks caldera. On November 5, 2012, a preliminary fluid level in the shallow piezometer string was measured at the depth of 311.8 m. This water level depth was taken before installation of the bridge plug (to be placed within the main completion casing to separate the two slotted zones). Well development, hydrologic testing, and sampling, will be conducted at a later date. No tritium above levels detectable by field methods were encountered in this hole. All Fluid Management Plan (FMP) requirements for Well ER-EC-14 were met. Analysis of monitoring samples and FMP confirmatory samples indicated that fluids generated during drilling at Well ER-EC-14 met the FMP criteria for discharge to an unlined sump or designated infiltration area. All sanitary and hydrocarbon waste generated was properly handled and disposed of.

None

2013-03-05T23:59:59.000Z

87

Completion Report for the Well ER-6-2 Site Corrective Action Unit 97: Yucca Flat - Climax Mine  

SciTech Connect

Well ER-6-2 and its satellite hole, Well ER-6-2 No.1, were drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. Well ER-6-2 was drilled in two stages in 1993 and 1994; the satellite hole, Well ER-6-2 No.1 was drilled nearby in 1993 but was abandoned. The wells were drilled as part of a hydrogeologic investigation program for the Yucca Flat-Climax Mine Corrective Action Unit Number 97, in the northeastern portion of the Nevada Test Site. The wells are located in Yucca Flat, within Area 6 of the Nevada Test Site. The wells provided information regarding the radiological and hydrogeological environment in a potentially down-gradient position from tests conducted in northern and central Yucca Flat. Construction of Well ER-6-2 began with a 1.2-meter-diameter surface conductor hole, which was drilled and cased off to a depth of 30.8 meters below the surface. A 50.8-centimeter diameter surface hole was then rotary drilled to the depth of 578.5 meters and cased off to the depth of 530.4 meters. The hole diameter was then reduced to 27.0 centimeters, and the borehole was advanced to a temporary depth of 611.4 meters. The borehole was conventionally cored to a total depth of 1,045 meters with a diameter of 14.0 centimeters. Borehole sloughing required cementing and re-drilling of several zones. The open-hole completion accesses the lower carbonate aquifer, the CP thrust fault, and the upper clastic confining unit. A fluid level depth of 543.2 meters was most recently measured in the open borehole in September 2007. No radionuclides were encountered during drilling. The satellite hole Well ER-6-2 No.1 was drilled approximately 15.2 meters north of Well ER-6-2 on the same drill pad. This was planned to be used as an observation well during future hydrologic testing at Well ER-6-2; however, the satellite hole was abandoned at the depth of 399 meters due to stuck drill pipe, and was subsequently cemented to the surface. Detailed lithologic descriptions with stratigraphic assignments in this report are based on composite drill cuttings samples collected every 3 meters, cores taken between the depths of 619.3 and 1,042.4 meters, and geophysical log data. Stratigraphic assignments within the Paleozoic section are based on paleontological analyses. The well was collared in alluvium and at 30.8 meters penetrated Paleozoic carbonate rocks. These consisted of dolostone with minor shale and limestone of the Bonanza King Formation, and limestone with minor quartzite, sandstone, and dolostone assigned to the Guilmette Formation. The borehole reached total depth in a shale unit assigned to the Chainman Shale. The units below the Bonanza King Formation are overturned due to faulting and folding and, therefore, are stratigraphically upside-down.

NSTec Environmental Management

2008-03-01T23:59:59.000Z

88

Completion Report for Well ER-EC-11 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

Science Conference Proceedings (OSTI)

Well ER-EC-11 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September and October 2009 as part of the Pahute Mesa Phase II drilling program. A main objective was to investigate radionuclide migration down-gradient from Well Cluster ER-20-5 and Well ER-20-7 and across the northern Timber Mountain moat structural zone into the area referred to as the Bench, between Pahute Mesa and the Timber Mountain caldera complex. A secondary purpose of the well was to provide detailed hydrogeologic information for the shallow- to intermediate-depth Tertiary volcanic section in the Bench area. This well also provided detailed hydrogeologic information in the Tertiary volcanic section to reduce uncertainties within the Pahute Mesa-Oasis Valley hydrostratigraphic framework model (Bechtel Nevada, 2002). The main 52.1-centimeter hole was drilled to a depth of 507.5 meters and then opened to a diameter of 66.0 centimeters. It was cased with 50.8-centimeter casing to 504.9 meters. The hole diameter was then decreased to 47.0 centimeters, and drilling continued to a total depth of 979.3 meters. It was then cased with 34.0-centimeter casing set at 965.5 meters. The hole diameter was then decreased to 31.1 centimeters and the borehole was drilled to a total depth of 1,264.3 meters. The completion casing string, set to the depth of 1,262.5 meters, consists of 19.4-centimeter stainless-steel casing hanging from 19.4-centimeter carbon-steel casing. The stainless-steel casing has two slotted intervals open to the Tiva Canyon and Topopah Spring aquifers. Four piezometer strings were installed in Well ER-EC-11. A string of carbon-steel 6.0-centimeter tubing with one slotted interval was inserted outside the 50.8-centimeter casing, within the 66.0-centimeter borehole for access to the Timber Mountain aquifer, and landed at 475.3 meters. A second string of 6.0-centimeter tubing with one slotted interval was inserted outside the 34.0-centimeter casing, within the 47.0-centimeter borehole for access to the Benham aquifer, and landed at 911.7 meters. A third piezometer string consists of 7.3-centimeter stainless-steel tubing that hangs from 6.0-centimeter carbon-steel tubing via a crossover sub. This string was landed at 1,029.5 meters to monitor the Tiva Canyon aquifer. The deepest string of 7.3-centimeter tubing was landed at 1,247.8 meters to monitor the Topopah Spring aquifer. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 meters, 67 percussion gun and rotary sidewall core samples, various geophysical logs, fluid samples (for groundwater chemistry analysis and tritium measurements), and water-level measurements. The well penetrated 1,264.3 meters of Tertiary volcanic rock, including three saturated welded-tuff aquifers and one saturated lava-flow aquifer. A water level was measured in the Timber Mountain aquifer at 449.6 meters, during open-hole geophysical logging on September 20, 2009. The fluid level measured after the total depth was reached and the upper aquifer was cased off was 450.0 meters when measured in the open borehole on October 17, 2009. Measurements on samples taken from the undeveloped well indicated that tritium levels averaging approximately 12,430 picocuries per liter (less than Safe Drinking Water Act levels) were encountered within the Benham aquifer. Tritium was below the minimum detectable activity concentration for samples collected from the Tiva Canyon aquifer and the Topopah Spring aquifer.

NSTec Environmental Management

2010-12-01T23:59:59.000Z

89

Testing geopressured geothermal reservoirs in existing wells. Saldana well No. 2, Zapata County, Texas. Volume I. Completion and testing. Final report  

DOE Green Energy (OSTI)

The Saldana Well No. 2, approximately 35 miles Southeast of the city of Laredo, Texas, was the sixth successful test of a geopressured-geothermal aquifer under the DOE Wells of Opportunity Program. The well was tested through the annulus between 7-inch casing and 2-3/8 inch tubing. The interval tested was from 9745 to 9820 feet. The geological section was the 1st Hinnant Sand, an upper member of the Wilcox Group. Produced water was injected into the Saldana Well No. 1, which was also acquired from Riddle Oil Company and converted to a disposal well. A Miocene salt water sand was perforated from 3005 to 3100 feet for disposal. One pressure drawdown flow test and one pressure buildup test were conducted during a 10-day period. A total of 9328 barrels of water was produced. The highest sustained flow rate was 1950 BWPD.

Not Available

1981-10-07T23:59:59.000Z

90

Hanford wells  

SciTech Connect

The Site Characterization and Assessment Section of the Geosciences Department at Pacific Northwest Laboratory (PNL) has compiled a list of wells located on or near the Hanford Site. Information has been updated on wells existing from the days before construction of the Hanford Works to the present. This work was funded by the US Department of Energy (DOE). The list of wells will be used by DOE contractors who need condensed, tabular information on well location, construction, and completion dates. This report does not include data on lithologic logs and ground-water contamination. Moreover, the completeness of this list is limited because of new well construction and existing well modifications, which are continually under way. Despite these limitations, this list represents the most complete description possible of data pertaining to wells on or adjacent to the Hanford Site. 7 refs., 1 fig., 2 tabs.

McGhan, V.L.

1989-06-01T23:59:59.000Z

91

Investigation and evaluation of geopressured-geothermal wells. Fairfax Foster Sutter No. 2 well, St. Mary Parish, Louisiana. Volume I. Completion and testing. Final report  

DOE Green Energy (OSTI)

The Fairfax Foster Sutter No. 2 well, located in the East Franklin area of St. Mary Parish, Louisiana, is the first successful test of a geopressured-geothermal aquifer under the Well-of-Opportunity program. The section tested was the MA-6 sand of lower Miocene age which has produced large quantities of gas from the adjacent but structurally separated Garden City field. In the subject well the observed temperature was 270{sup 0}F (132{sup 0}C) and the measured gradient was 0.77 psi/ft. The gross sand thickness was 270 feet, the net sand thickness 190 feet, and the tested interval 58 net feet. The temperatures and pressures encountered approached the limits of the surface-recording bottomhole pressure gauge and particularly the single-conductor cables on which the gauges were run. The objectives of the tests were all accomplished, and data were obtained which will contribute to the overall assessment of the geopressured-geothermal resource of the Upper Gulf of Mexico basin. In general, the gas solubility (22.8 scf/bbl) was as expected for the temperature, pressure, and salinity of the brine. The produced water was more saline than expected (160,000 mg/l). The high concentrations of dissolved solids, coupled with the evolution of CO{sub 2} from these waters during production, created a scaling problem in the tubular goods and surface equipment that will have to be addressed in future tests.

Willits, M.H.; McCoy, R.L.; Dobson, R.J.; Hartsock, J.H.

1979-12-01T23:59:59.000Z

92

Completion Report for Well ER-20-4 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

SciTech Connect

Well ER-20-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site, Nye County, Nevada. The well was drilled in August and September 2010 as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to investigate the possibility of radionuclide transport from up-gradient underground nuclear tests conducted in central Pahute Mesa. This well also provided detailed hydrogeologic information in the Tertiary volcanic section that will help reduce uncertainties within the Pahute Mesa-Oasis Valley hydrostratigraphic framework model.

NSTec Environmental Management

2011-04-30T23:59:59.000Z

93

Completion Report for Well ER-EC-15 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

SciTech Connect

Well ER-EC-15 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly known as the Nevada Test Site), Nye County, Nevada. The well was drilled in October and November 2010, as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information in the Tertiary volcanic section in the area between Pahute Mesa and the Timber Mountain caldera complex that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic model. In particular, the well was intended to help define the structural position and hydraulic parameters of volcanic aquifers potentially down-gradient from underground nuclear tests on Pahute Mesa. It may also be used as a long-term monitoring well.

NSTec Environmental Management

2011-05-31T23:59:59.000Z

94

Completion Report for Well ER-EC-12 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

Science Conference Proceedings (OSTI)

Well ER-EC-12 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly known as the Nevada Test Site), Nye County, Nevada. The well was drilled in June and July 2010 as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information in the Tertiary volcanic section in the area between Pahute Mesa and the Timber Mountain caldera complex that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic model. In particular, the well was intended to help define the structural position and hydraulic parameters for volcanic aquifers potentially down-gradient from historic underground nuclear tests on Pahute Mesa. It may also be used as a long-term monitoring well.

NSTec Environmental Management

2011-04-30T23:59:59.000Z

95

Completion Report for Well ER-EC-13 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

SciTech Connect

Well ER-EC-13 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in October 2010 as part of the Pahute Mesa Phase II drilling program. A main objective was to provide detailed hydrogeologic information for the Fortymile Canyon composite unit hydrostratigraphic unit in the Timber Mountain moat area, within the Timber Mountain caldera complex, that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic framework model. This well may also be used as a long-term monitoring well.

NSTec Environmental Management

2011-05-31T23:59:59.000Z

96

Completion Report for Well ER-12-4, Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain (includes Errata Sheet)  

Science Conference Proceedings (OSTI)

Well ER-12-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in May 2005, as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit in the north-central portion of the Nevada Test Site. The well is located on Rainier/Aqueduct Mesa, northwest of Yucca Flat, within Area 12 of the Nevada Test Site. The well provided information regarding the radiological and physical environment near underground nuclear tests conducted in U12t Tunnel, information on the pre-Tertiary rocks in the area, and depth to the regional water table.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2006-05-01T23:59:59.000Z

97

Horizontal well construction/completion process in a Gulf of Mexico unconsolidated sand: development of baseline correlations for improved drill-in fluid cleanup practices  

E-Print Network (OSTI)

This thesis examines, in detail, the procedures and practices undertaken in the drilling and completion phases of a Gulf of Mexico horizontal well in an unconsolidated sand. In particular, this thesis presents a detailed case history analysis of well planning, completion and cleanup operations. Our objectives are to present a complete examination of the openhole horizontal well construction/completion process using a new drill-in fluid (DIF). Further, we will establish data critical to development of new cleanup correlation techniques (the continuing goal of the CEA-73 industry consortium). Project results are intended to advance the technology progression of cleanup in horizontal welts by using a "Best Completion Practices'' well to establish a baseline analysis for development of rigsite DIF cleanup correlations. Presented in this thesis are: * Completion specifics of subject well * Audit of horizontal well design/well construction process * Documentation (on-location) of lignite practices * Laboratory analyses of DO cleanup * Well performance analysis Well audit results show that prudent DIF selection requires a thorough understanding of formation and reservoir specifics, along with completion and cleanup operations. Adequate pre-planning by lignite personnel for handling, weather problems, storage/mixing requirements and fluid property maintenance are very important for successful operations using DIF. Proper maintenance of solids control systems is essential for quality control of DIF properties. Detailed well planning by the operator (Vastar Resources), coupled with a conscientious mud service company (TBC-Brinadd, Houston), led to smooth execution of well completion/cleanup operations.aboratory analyses of field DIF samples taken during drilling show that entrained drill solids in DIF can greatly impact mudcaps removal during cleanup. However, well performance was roughly three times original expectations, achieving a stabilized gas flow rate of approximately 34 MMCF/D. Horizontal well decline type curve techniques and a proprietary analysis method developed by Conoco were used to estimate formation properties, using only wellhead production rates and pressures. Using these results, we estimated DIF cupcake removal for various reservoir permeability scenarios. Results suggest that a high percentage of DIF filtercake removal was achieved only if reservoir permeability was less than the permeability range (100-500 md) initially estimated by the operator.

Lacewell, Jason Lawrence

1999-01-01T23:59:59.000Z

98

Laboratory tests to evaluate and study formation damage with low-density drill-in fluids (LDDIF) for horizontal well completions in low pressure and depleted reservoirs  

E-Print Network (OSTI)

The increasing number of open hole horizontal well completions in low-pressure and depleted reservoirs requires the use of non-damaging low-density drill-in fluids (LDDIF) to avoid formation damage and realize optimum well productivity. To address this need we have formulated new LDDIFS with specific density lower than 1.0 sg (8.34 ppg) specifically to drill and complete low pressure and depleted reservoirs with minimum formation damage and maximum production. These materials exhibit typical drilling fluid characteristics, allowing the well to be safely drilled (0 required well depth but also perform as completion fluids, lessening formation damage to a greater extent than fluids with greater density and higher wellbore pressures. The new LDDIF incorporates low-density hollow glass spheres (HGS) to allow near-balanced drilling in low pressure and depleted reservoirs. The LDDIF uses potassium chloride (KCI) brine as the base fluid because of its low density and inhibition of clay hydration and employs low concentrations of the HGS so that fluid rheology is not altered. We have conducted extensive laboratory testing to compare performance of the HGS LDDIF with that of conventional horizontal well DIFs. Experiments consisted of permeability regain tests on unconsolidated sands with sand control screens. Test variables included temperature, concentration of drill solids cleanup technique and HGS concentration. Test results have shown that the new fluids are up to 50% easier to remove from the wellbore formation faces and provide higher productivity than higher density fluids. Such results indicate that higher well productivity from wells with less impairment would offset any added costs of HGS additives in the fluids.

Chen, Guoqiang

2002-01-01T23:59:59.000Z

99

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

100

Facility Representatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1063-2006 April 2006 Superseding DOE-STD-1063-2000 March 2000 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2006 ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-STD-1063-2006 iii FOREWORD 1. This Department of Energy standard is approved for use by all DOE Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Facility Representatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

063-2011 063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is approved for use by all DOE/National Nuclear Security Administration (NNSA) Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations,

102

Completion technology  

SciTech Connect

This article reports that current economic conditions in the oil patch have provided a climate for continuous search for more economical completion designs and tools. Aside from more cost-effective completion tools, there are several ways to reduce related costs. For example, inadequate communication of technical requirements between operator and service company results in a tremendous amount of needless expense. This article explains the concerns of completion tool manufacturers and service companies so operating companies can better understand their required inputs and internal workings. The essence of the article is that well completion and production costs can be improved through better communication.

Longbottom, J.R.

1987-01-01T23:59:59.000Z

103

Completion Report for Wells ER-20-8 and ER-20-8#2 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

SciTech Connect

Wells ER-20-8 and ER-20-8#2 were drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The holes were drilled in July and August 2009, as part of the Pahute Mesa Phase II drilling program. The primary purpose of these wells was to provide detailed hydrogeologic information in the Tertiary volcanic section that will help address uncertainties within the Pahute Mesa–Oasis Valley hydrostratigraphic framework model. They may also be used as long-term monitoring wells.

NSTec Environmental Management

2011-02-28T23:59:59.000Z

104

Sweet lake geopressured-geothermal project, Magma Gulf-Technadril/DOE Amoco Fee. Annual report, December 1, 1979-February 27, 1981. Volume I. Drilling and completion test well and disposal well  

DOE Green Energy (OSTI)

The Sweet lake site is located approximately 15 miles southeast of Lake Charles in Cameron Parish, Louisiana. A geological study showed that the major structure in this area is a graben. The dip of the beds is northwesterly into the basin. A well drilled into the deep basin would find the target sand below 18,000', at high pressures and temperatures. However, since there is no well control in the basin, the specific site was chosen on the 15,000' contour of the target sand in the eastern, more narrow part of the garben. Those key control wells are present within one mile of the test well. The information acquired by drilling the test well confirmed the earlier geologic study. The target sand was reached at 15,065', had a porosity of over 20% and a permeability to water of 300 md. The original reservoir pressure was 12,060 psi and the bottom hole temperature 299{sup 0}F. There are approximately 250 net feet of sand available for the perforation. The disposal well was drilled to a total depth of 7440'.

Rodgers, R.W. (ed.)

1982-06-01T23:59:59.000Z

105

Well descriptions for geothermal drilling  

DOE Green Energy (OSTI)

Generic well models have been constructed for eight major geothermal resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. They were made for and have been used to evaluate the impacts of potential new technologies. Their nature, their construction, and their validation are discussed.

Carson, C.C.; Livesay, B.J.

1981-01-01T23:59:59.000Z

106

Using Decline Map Anlaysis (DMA) to Test Well Completion Influence on Gas Production Decline Curves in Barnett Shale (Denton, Wise, and Tarrant Counties)  

E-Print Network (OSTI)

The increasing interest and focus on unconventional reservoirs is a result of the industry's direction toward exploring alternative energy sources. It is due to the fact that conventional reservoirs are being depleted at a fast pace. Shale gas reservoirs are a very favorable type of energy sources due to their low cost and long-lasting gas supply. In general, according to Ausubel (1996), natural gas serves as a transition stage to move from the current oil-based energy sources to future more stable and environment-friendly ones. By looking through production history in the U.S Historical Production Database, HPDI (2009), we learn that the Barnett Shale reservoir in Newark East Field has been producing since the early 90's and contributing a fraction of the U.S daily gas production. Zhao et al. (2007) estimated the Barnett Shale to be producing 1.97 Bcf/day of gas in 2007. It is considered the most productive unconventional gas shale reservoir in Texas. By 2004 and in terms of annual gas production volume, Pollastro (2007) considered the Barnett Shale as the second largest unconventional gas reservoir in the United States. Many studies have been conducted to understand better the production controls in Barnett Shale. However, this giant shale gas reservoir is still ambiguous. Some parts of this puzzle are still missing. It is not fully clear what makes the Barnett well produce high or low amounts of gas. Barnett operating companies are still trying to answer these questions. This study adds to the Barnett chain of studies. It tests the effects of the following on Barnett gas production in the core area (Denton, Wise, and Tarrant counties): * Barnett gross thickness, including the Forestburg formation that divides Barnett Shale. * Perforation footage. * Perforated zones of Barnett Shale. Instead of testing these parameters on each well production decline curve individually, this study uses a new technique to simplify this process. Decline Map Analysis (DMA) is introduced to measure the effects of these parameters on all production decline curves at the same time. Through this study, Barnett gross thickness and perforation footage are found not to have any definite effects on Barnett gas production. However, zone 3 (Top of Lower Barnett) and zone 1 (Bottom of Lower Barnett) are found to contribute to cumulative production. Zone 2 (Middle of Lower Barnett) and zone 4 (Upper Barnett), on the other hand, did not show any correlation or influence on production through their thicknesses.

Alkassim, Ibrahim

2009-08-01T23:59:59.000Z

107

Facility Representative Program: 2000 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Facility Representative Workshop 0 Facility Representative Workshop May 16-18, 2000 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Tuesday, May 16, 2000 Theme for Day 1: Sustaining the Success of the Facility Representative Program 8:00 a.m. - Opening Remarks - Joe Arango, Facility Representative Program Manager 8:05 a.m. - Welcome - Kenneth Powers, Deputy Manager Nevada Operations Office 8:15 a.m. - Deputy Secretary Remarks - T. J. Glauthier, Deputy Secretary of Energy 8:30 a.m. - Keynote Address - Jerry Lyle, Assistant Manager for Environmental Management, Idaho Operations Office 9:00 a.m. - Facility Representative of the Year Presentation - Mark B. Whitaker, Departmental Representative 9:30 a.m. - Break 9:50 a.m. - Program Results and Goals - Joe Arango, Facility Representative Program Manager

108

Facility Representative Program: 2012 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

18, 2012 Las Vegas, NV Agenda | Presentations | SSO Annual Award | Pictures | Summary Report 2011 Facility Representative of the Year Award 2011 WINNER: Congratulations to Bradley...

109

Method for completing wells in unconsolidated formations  

SciTech Connect

A method is described for producing fluids from a subterranean formation in a formation region of substantially unconsolidated sandlike particles comprising the steps of: penetrating the region to form an uncased wellbore cavity extending within the region; extending within the region; inserting filter means into the cavity, the filter means forming an interior space for gathering fluids from the region for production from the wellbore and the filter means including means for permitting the flow of solids fines into the space with the fluids from the region; causing fluids to flow into the cavity and through the filter means into the space to be produced from the region at a rate which will cause sand particles in the region to flow into and occupy the cavity to form an in situ packing around the filter means; producing fluids from the region through the cavity and into the space and having a limited quantity of solids fines entrained therein smaller than the solid particles retained in the cavity; and controlling the rate of production of fluids to form a cylindrical dilatant zone extending radially outward in the region from the cavity and which is mechanically stable.

Perkins, T.K.

1989-05-16T23:59:59.000Z

110

Facility Representative Program: 2001 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Facility Representative Workshop 1 Facility Representative Workshop May 15 - 17, 2001 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 15, 2001 Theme: Program Successes and Challenges 8:00 a.m. - Logistics Announcements & Opening Remarks - Joe Arango, Facility Representative Program Manager 8:15 a.m. - Welcome - Debbie Monette, Assistant Manager for National Security, Nevada Operations Office 8:30 a.m. - Keynote Address - Ralph Erickson, National Nuclear Security Administration 9:00 a.m.- DOE Facility Representative of the Year Presentation - Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board 9:30 a.m. - Break 9:50 a.m. - Program Summary - Joe Arango 10:10 a.m. - Management Panel/Questions and Answers

111

Facility Representative Program: Facility Representative Program Sponsors  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Program Sponsors Facility Representative Program Sponsors There are 29 Facility Representative Program Sponsors Office Name Title E-Mail Phone ASO Larry Pendexter ES&H Div Dir (Argonne) larry.pendexter@ch.doe.gov 630-252-1485 BHSO Bob Desmarais Operations Management Division Director desmarai@bnl.gov 631-344-5434 CBFO Glenn Gamlin Facility Representative Supervisor glenn.gamlin@wipp.ws 575-234-8136 CBFO Casey Gadbury Operations Manager casey.gadbury@wipp.ws 575-234-7372 FSO Mark Bollinger Deputy Manager Mark.Bollinger@ch.doe.gov 630-840-8130 FSO John Scott FR Team Lead john.scott@ch.doe.gov 630-840-2250 HS-30 James O'Brien Director, Office of Nuclear Safety James.O'Brien@hq.doe.gov 301-903-1408 HS-32 Earl Hughes Facility Representative Program Manager Earl.Hughes@hq.doe.gov 202-586-0065

112

Facility Representative Program: 2010 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Facility Representative Workshop 10 Facility Representative Workshop May 12 - 13, 2010 Las Vegas, NV Facility Rep of the Year Award | Attendees | Summary Report Workshop Agenda and Presentations Day 1: Wednesday, May 12, 2010 8:00 a.m. Opening Remarks James Heffner, Facility Representative Program Manager Earl Hughes, Safety System Oversight Program Manager Office of Nuclear Safety Policy and Assistance Office of Health, Safety and Security 8:15 a.m. Welcome from the Nevada Site Office John Mallin, Deputy Assistant Manager for Site Operations Nevada Site Office 8:30 a.m. Workshop Keynote Address Todd Lapointe Chief of Nuclear Safety Central Technical Authority Staff 9:15 a.m. Facility Representative and Safety System Oversight Award Ceremony James Heffner, Facility Representative Program Manager

113

Facility Representative Program: 2007 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Facility Representative Workshop 7 Facility Representative Workshop May 15 - 17, 2007 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 15, 2007 8:00 a.m. Opening Remarks Joanne Lorence, Facility Representative Program Manager 8:15 a.m. Welcome from the Nevada Site Office Gerald Talbot, Manager, Nevada Site Office 8:30 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:45 a.m. Keynote Address - Safety Oversight Perspective and Expectations Glenn Podonsky, Chief Health, Safety and Security Officer, Office of Health, Safety and Security 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board,

114

Facility Representative Program: 2003 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Facility Representative Workshop 3 Facility Representative Workshop May 13 - 15, 2003 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 13, 2003 Theme: Program Successes and Challenges 8:00 a.m. John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathleen Carlson Manager, Nevada Site Office 8:30 a.m. Keynote Address Savannah River Site and Facility Reps - A Shared History and Common Future Jeffrey M. Allison Manager, Savannah River Operations Office 9:00 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board

115

Feasibility of optimizing recovery and reserves from a mature and geological complex multiple turbidite offshore California reservoir through the drilling and completion of a trilateral horizontal well. Annual report, September 1, 1995--December 31, 1996  

Science Conference Proceedings (OSTI)

The main objective of this project is to devise an effective re-development strategy to combat producibility problems related to the Repetto turbidite sequences of the Carpinteria Field. The lack of adequate reservoir characterization, high-water cut production, and scaling problems have in the past contributed to the field`s low productivity. To improve productivity and enhance recoverable reserves, the following specific goals were proposed: develop an integrated database of all existing data from work done by the former ownership group; expand reservoir drainage and reduce sand problems through horizontal well drilling and completion; operate and validate reservoir`s conceptual model by incorporating new data from the proposed trilateral well; and transfer methodologies employed in geologic modeling and drilling multilateral wells to other operators with similar reservoirs. A computer based data retrieval system was developed to convert hard copy documents containing production, well completion and well log data into easily accessible on-line format. To ascertain the geological framework of the reservoir, a thorough geological modeling and subsurface mapping of the Carpinteria field was developed. The model is now used to examine the continuity of the sands, characteristics of the sub-zones, nature of water influx and transition intervals in individual major sands. The geological model was then supplemented with a reservoir engineering study of spatial distribution of voidage in individual layers using the production statistics and pressure surveys. Efforts are continuing in selection of optimal location for drilling and completion of probing wells to obtain new data about reservoir pressure, in-situ saturation and merits of drilling a series of horizontal wells.

Coombs, S.; Edwards, E.; Fleckenstein, W.; Ershaghi, I.; Sobbi, F.; Coombs, S.

1998-07-01T23:59:59.000Z

116

Facility Representative Program: 2000 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Break 10:00 a.m. - Making Your Observations CountLeading Indicators - Mike Weis, Rocky Flats Field Office 10:45 a.m. - Facility Representative PanelQuestions and Answers (Ben...

117

Facility Representative Program: 2004 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Facility Representative Workshop 4 Facility Representative Workshop May 18 - 20, 2004 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 18, 2004 Theme: Program Successes and Challenges 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathy Carlson, Nevada Site Office Manager 8:30 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy Deputy Secretary's Remarks 8:40 a.m. Keynote Address - NNSA Evaluation of Columbia Accident Investigation Board Report Brigadier General Ronald J. Haeckel, Principal Assistant Deputy Administrator for Military Applications, NNSA Other Information: NASAÂ’S Columbia Accident Investigation Board Report

118

Facility Representative Program: 2006 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Facility Representative Workshop 6 Facility Representative Workshop May 16 - 19, 2006 Knoxville, Tennessee Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final To view Pictures, scroll the mouse over the Picture icon To view Presentations, Picture Slideshows and Video, click on the icon Day 1: Tuesday, May 16, 2006 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome from Oak Ridge Office Gerald Boyd, Manager, Oak Ridge Office 8:25 a.m. Welcome from Y-12 Site Office Theodore Sherry, Manager, Y-12 Site Office 8:35 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:40 a.m. Keynote Address - Safety Oversight at Environmental Management Activities Dr. Inés Triay, Chief Operating Officer, Office of Environmental Management

119

Hanford wells  

Science Conference Proceedings (OSTI)

Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

Chamness, M.A.; Merz, J.K.

1993-08-01T23:59:59.000Z

120

Property Representatives Lists- HQ  

Energy.gov (U.S. Department of Energy (DOE))

These are the current lists of Headquarters Property Representatives.  If you have any questions please contact:Ellen Hall, Office of Logistics Operations, (301) 903-2613.

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

COMPLETE LISTING:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMPLETE LISTING: COMPLETE LISTING: DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM MARCH 2008 Listed below are all the disposition authorities which are under the moratorium on the destruction of health related records as of March 2008. All records scheduled under these authorities at Department of Energy (DOE) headquarters and field sites should be preserved past their normal retention periods unless an headquarters organization or a field site has obtained permission to remove records scheduled under the authority from the moratorium. Questions about the moratorium and what records should be preserved under it should be directed to Marsha Lawn on 301-903-3721 or at Marsha.Lawn@hq.doe.gov. ENVIRONMENTAL RECORDS SCHEDULE Item Series Title

122

Completed EISs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completed EISs Completed EISs Number of EISs in report: 294 Number Title Prog Office Ops Office Federal Register Notices Notice Date Citation Agency Areva Eagle Rock Enrichment Facility, Bonneville County, Idaho (Adopted) LP DOE/EIS-0471 5/20/2011 EPA 76 FR 29240 Adopted American Centrifuge Plant in Piketon, Pike County, Ohio (Adopted) LP DOE/EIS-0468 5/20/2011 EPA 76 FR 29240 Adopted Cushman Hydroelectric Project, Mason County, Washington (Adopted) EE DOE/EIS-0456 10/8/2010 EPA 75 FR 62386 NOA FEIS 11/29/2010 DOE 75 FR 73059 ROD Genesis Solar Energy Project, California (also identified as NextEra - Ford Dry Lake Solar Project) (Adopted) LP DOE/EIS-0455 11/23/2009 BLM 74 FR 61167 NOI 4/9/2010 BLM 75 FR 18204 NOA DEIS 8/27/2010 EPA 75 FR 52736 NOA FEIS 8/30/2010 BLM 75 FR 52966 NOA FEIS 12/17/2010 EPA 75 FR 78992

123

Industry Representatives Acknowledgements  

E-Print Network (OSTI)

computer science: Manitoba curriculum framework of outcomes. — Draft Includes bibliographical references. ISBN 0-7711-3122-4 1. Computer science—Curricula. 2. Computer science—Study and teaching (Secondary)—Manitoba. 3. Electronic data processing—Curricula. 4. Electronic data processing—Study and teaching (Secondary)— Manitoba. I. Manitoba. Manitoba Education and Youth. Copyright © 2003, the Crown in Right of Manitoba as represented by the Minister of Education and

Draft September Senior (s; Senior (s; Normand Châtel; Collège Béliveau; Louis Riel; School Division; Geoff Bresch; Scott Greenlay; Bruce Popham; David Tetlock

2003-01-01T23:59:59.000Z

124

Facility Representative Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Facility Representative Office of Nuclear Safety Home Facility Representative Home Annual Facility Rep Workshop › 2012 › 2011 › 2010 › 2009 › 2008 › 2007 › 2006 › 2005 › 2004 › 2003 › 2002 › 2001 › 2000 DOE Safety Links › ORPS Info › Operating Experience › DOE Lessons Learned › Accident Investigation Assessment Tools › FR CRADs › Surveillance Guides › Manager's Guide for Safety and Health Subject Matter Links General Program Information › Program Mission Statement › Program Directives and Guidance › FR of the Year Award Program › FR of the Year Award › FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) FR Quarterly Performance Indicators Training & Qualification Information › Qualification Standards › Energy Online Courses

125

Glossary Balancing Item: Represents  

Gasoline and Diesel Fuel Update (EIA)

Balancing Balancing Item: Represents differences between the sum of the components of natural gas supply and the sum of the components of natural gas disposition. These differences may be due to quantities lost or to the effects of data-report- ing problems. Reporting problems include differences due to the net result of conversions of flow data metered at varying temperature and pressure bases and converted to a standard temperature and pressure base; the effect of vari- ations in company accounting and billing practices; differ- ences between billing cycle and calendar period time frames; and imbalances resulting from the merger of data- reporting systems that vary in scope, format, definitions, and type of respondents. Biomass Gas: A medium Btu gas containing methane and carbon dioxide, resulting from the action of microorganisms on organic materials such as a landfill. British Thermal

126

Facility Representative Program Outstanding at ID  

NLE Websites -- All DOE Office Websites (Extended Search)

protects not only the workers, but the public and the environment as well. Specifically, DOE orders say: "The purpose of the DOE Facility Representative Program is to ensure that...

127

Federal Interagency Chemistry Representatives (FICR) ...  

Science Conference Proceedings (OSTI)

Federal Interagency Chemistry Representatives (FICR) Meeting 2013 - A Federal Green Chemistry Forum. ...

2013-05-31T23:59:59.000Z

128

Feasibility of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore Calif. Reservoir through the Drilling and Completion of a Trilateral Horizontal Well, Class III  

SciTech Connect

The intent of this project was to increase production and extend the economic life of this mature field through the application of advanced reservoir characterization and drilling technology, demonstrating the efficacy of these technologies to other small operators of aging fields. Two study periods were proposed; the first to include data assimilation and reservoir characterization and the second to drill the demonstration well. The initial study period showed that a single tri-lateral well would not be economically efficient in redevelopment of Carpinteria's multiple deep water turbidite sand reservoirs, and the study was amended to include the drilling of a series of horizontal redrills from existing surplus well bores on Pacific Operators' Platform Hogan.

Pacific Operators Offshore, Inc.

2001-04-04T23:59:59.000Z

129

Pseudo 3-D simulator optimizes gravel-packed completions  

SciTech Connect

This paper discusses a three-dimensional computer simulation which allows the consistent use of a gravel pack in oil and gas well completions. The primary thrust of the paper is dealing with horizontal oil and gas wells in unconsolidated reservoir rock. The model's objective is to provide an overall computer-aided design and evaluation tool for circulation and squeeze gravel packing. It is based on equations representing conservation of mass, momentum, and energy.

Ali, S.A.; Sanclemente, L.W. (Chevron USA Production Co., New Orleans, LA (United States)); Tupper, M.A. (Dowell, New Orleans, LA (United States))

1994-03-01T23:59:59.000Z

130

Facility Representative Program: Facility Representative of the Year  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative of the Year Award Facility Representative of the Year Award Annual Facility Representative Workshop Facility Representative of the Year Award Process Facility Representative of the Year Award 2012 WINNER: John C. Barnes, Savannah River Operations Office Letter from DNFSB Chairman Peter S. Winokur, Ph.D 2012 Nominees: Peter W. Kelley, Brookhaven Site Office James E. Garza, Idaho Operations Office (EM) William R. Watson, Idaho Operations Office (NE) Darlene S. Rodriguez, Los Alamos Field Office Robert R. Robb, Livermore Field Office Kenneth W. Wethington, Grand Junction Project Office's Moab site Thomas P. Denny, Nevada Field Office Michael J. Childers, NNSA Production Office Pantex Site Catherine T. Schidel, NNSA Production Office Y12 Site Chelsea D. Hubbard, Oak Ridge Operations Office (EM)

131

Shock Chlorination of Wells  

E-Print Network (OSTI)

Shock chlorination is a method of disinfecting a water well. This publication gives complete instructions for chlorinating with bleach or with dry chlorine. It is also available in Spanish as publication L-5441S

McFarland, Mark L.; Dozier, Monty

2003-06-11T23:59:59.000Z

132

FAQS Reference Guide – Facility Representative  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide addresses the competency statements in the October 2010 edition of DOE-STD-1151-2010, Facility Representative Functional Area Qualification Standard.

133

Yucca Mountain Climate Technical Support Representative  

SciTech Connect

The primary objective of Project Activity ORD-FY04-012, “Yucca Mountain Climate Technical Support Representative,” was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding.

Sharpe, Saxon E

2007-10-23T23:59:59.000Z

134

Wellness Program WELLNESS POINTS BANK  

E-Print Network (OSTI)

Wellness Program WELLNESS POINTS BANK Renew your commitment to health. Start again October 1, 2012 to your family and friends, too. Your health and well-being are also important to the University of Minnesota. As your employer, the University recognizes the value of investing in a comprehensive Wellness

Thomas, David D.

135

Finding minimum representative pattern sets  

Science Conference Proceedings (OSTI)

Frequent pattern mining often produces an enormous number of frequent patterns, which imposes a great challenge on understanding and further analysis of the generated patterns. This calls for finding a small number of representative patterns to best ... Keywords: frequent pattern summarization, representative patterns

Guimei Liu; Haojun Zhang; Limsoon Wong

2012-08-01T23:59:59.000Z

136

Horizontal completions challenge for industry  

SciTech Connect

As the technology to drill horizontal wells continues to evolve, the problem of efficiently and cost-effectively completing such wells grows. The economics of applying horizontal technology in high-productivity reservoirs demands both increased production and lower development costs. Such high productivity reservoirs are typical of the Gulf of Mexico, North Sea, South China basin, and other areas. Lowering development costs is achieved by drilling fewer wells and in the offshore environment by reducing the number of platforms and other well structures. Specifically addressed in this article are the problems of achieving high efficiency, long lasting completions while controlling costs in unconsolidated and poorly consolidated sandstone reservoirs.

Zaleski, T.E. Jr.; Spatz, E.

1988-05-02T23:59:59.000Z

137

Facility Representative Program: Qualification Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Training & Qualification Information Training & Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available Link to National Training Center Basic Courses for Facility Representative Qualification Recommended Courses to Expand Facility Representative's Knowledge Base Qualification Standards General Technical Base Qualification Standard, Qualification Card & Reference Guide -- GTB Qualification Standard (DOE-STD-1146-2007), December 2007 [PDF] -- GTB Qualification Card, December 2007 [DOC] -- GTB "Gap" Qualification Card, December 2007 [DOC] -- GTB Qualification Standard Reference Guide, May 2008 [PDF] Facility Representative Qualification Standard, Qualification Card & Reference Guide

138

Facility Representative Program: Basic Courses For Facility Representative  

NLE Websites -- All DOE Office Websites (Extended Search)

Training & Qualification Information Training & Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available Link to National Training Center Basic Courses for Facility Representative Qualification Recommended Courses to Expand Facility Representative's Knowledge Base Basic Courses For Facility Rep Qualification (These courses may be beneficial during the initial qualification of Facility Representatives.) Course Title FR FAQS CN Point of Contact Comments Applied Engineering Fundamentals 13 days * See below Mike Schoener 803-641-8166 E-mail Course description at http://ntc.doe.gov course catalog Asbestos Awareness 2 hours 2.1 Federal employees register through the CHRIS system For course details see

139

Geothermal Well Technology Program  

DOE Green Energy (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the U.S. Department of Energy has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs by 25% by 1982 and by 50% by 1986. An overview of the program is presented. Program justification which relates well cost to busbar energy cost and to DGE power-on-line goals is presented. Technological deficiencies encountered when current rotary drilling techniques are used for geothermal wells are discussed. A program for correcting these deficiencies is described.

Varnado, S.G.

1978-01-01T23:59:59.000Z

140

Monitoring well  

DOE Patents (OSTI)

A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Monitoring well  

DOE Patents (OSTI)

A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

Hubbell, J.M.; Sisson, J.B.

1999-06-29T23:59:59.000Z

142

Facility Representative Program: Facility Representative of the Year  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Facility Representative Office of Nuclear Safety Home Facility Representative Home Annual Facility Rep Workshop › 2012 › 2011 › 2010 › 2009 › 2008 › 2007 › 2006 › 2005 › 2004 › 2003 › 2002 › 2001 › 2000 DOE Safety Links › ORPS Info › Operating Experience › DOE Lessons Learned › Accident Investigation Assessment Tools › FR CRADs › Surveillance Guides › Manager's Guide for Safety and Health Subject Matter Links General Program Information › Program Mission Statement › Program Directives and Guidance › FR of the Year Award Program › FR of the Year Award › FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) FR Quarterly Performance Indicators Training & Qualification Information › Qualification Standards › Energy Online Courses

143

Regret-minimizing representative databases  

Science Conference Proceedings (OSTI)

We propose the k-representative regret minimization query (k-regret) as an operation to support multi-criteria decision making. Like top-k, the k-regret query assumes that users have some utility or scoring functions; however, ...

Danupon Nanongkai; Atish Das Sarma; Ashwin Lall; Richard J. Lipton; Jun Xu

2010-09-01T23:59:59.000Z

144

Data Visualization Perceiving and Representing  

E-Print Network (OSTI)

Data Visualization Perceiving and Representing Structured Information using Objects #12;Data #12;Data Visualization Image Based vs Structure Theories s Template theories based on 2D image processing s In structural theories we extract the structure of a scene in terms of 3D primitives #12;Data

Chi, Ed Huai-hsin

145

Active code completion  

Science Conference Proceedings (OSTI)

Code completion menus have replaced standalone API browsers for most developers because they are more tightly integrated into the development workflow. Refinements to the code completion menu that incorporate additional sources of information have similarly ...

Cyrus Omar; YoungSeok Yoon; Thomas D. LaToza; Brad A. Myers

2012-06-01T23:59:59.000Z

146

Completed Sites Listing  

Energy.gov (U.S. Department of Energy (DOE))

As of fiscal year 2012, EM (and its predecessor organization UMTRA) completed cleanup and closed 90 sites in 24 states.

147

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a feature class (FC) with the following attributes: Field_name Buffer distance (can be unique for each well to represent reservoirs with different drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output: Polygon feature class in same GDB as the well points FC, with one polygon field record (may be multiple polygon rings) per field_name. Overlapping buffers for the same field name are dissolved and unioned (see figure below). Adds an attribute PCTFEDLAND which can be populated using the VBA

148

Representative job 'building for video analysis completed using the Utah ergonomic analyzer;.  

E-Print Network (OSTI)

??Many ergonomists strive to find links between physical risk factors and injuries in the workplace. To accomplish this, workers are observed in the workplace as… (more)

Skinner, Tyson E

2008-01-01T23:59:59.000Z

149

Ultraviolet Complete Quantum Gravity  

E-Print Network (OSTI)

An ultraviolet complete (UV) quantum gravity theory is formulated in which vertex functions in Feynman graphs are entire functions and the propagating gravitons are described by local, causal propagators. A scalar-tensor action describes classical gravity theory. The cosmological constant problem is investigated in the context of the UV complete quantum gravity.

Moffat, J W

2010-01-01T23:59:59.000Z

150

Complete Safety Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Complete Safety Training Print Complete Safety Training Print All users are required to take safety training before they may begin work at the ALS. It is the responsibility of the Principal Investigator and the Experimental Lead to ensure that all members of the team receive proper safety training before an experiment begins. Special consideration is available for NSLS users who have completed, and are up-to-date with, their safety training, NSLS Safety Module; they may take a brief equivalency course ALS 1010: Site-Specific Safety at the ALS in lieu of the complete safety training in ALS 1001: Safety at the ALS. These users must present documentation upon arrival at the ALS showing that they have completed NSLS Safety Module; see Acceptable NSLS Safety Documentation for examples.

151

Complete Safety Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Complete Safety Training Print Complete Safety Training Print All users are required to take safety training before they may begin work at the ALS. It is the responsibility of the Principal Investigator and the Experimental Lead to ensure that all members of the team receive proper safety training before an experiment begins. Special consideration is available for NSLS users who have completed, and are up-to-date with, their safety training, NSLS Safety Module; they may take a brief equivalency course ALS 1010: Site-Specific Safety at the ALS in lieu of the complete safety training in ALS 1001: Safety at the ALS. These users must present documentation upon arrival at the ALS showing that they have completed NSLS Safety Module; see Acceptable NSLS Safety Documentation for examples.

152

Complete Safety Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Complete Safety Training Print Complete Safety Training Print All users are required to take safety training before they may begin work at the ALS. It is the responsibility of the Principal Investigator and the Experimental Lead to ensure that all members of the team receive proper safety training before an experiment begins. Special consideration is available for NSLS users who have completed, and are up-to-date with, their safety training, NSLS Safety Module; they may take a brief equivalency course ALS 1010: Site-Specific Safety at the ALS in lieu of the complete safety training in ALS 1001: Safety at the ALS. These users must present documentation upon arrival at the ALS showing that they have completed NSLS Safety Module; see Acceptable NSLS Safety Documentation for examples.

153

Complete Urban Surface Temperatures  

Science Conference Proceedings (OSTI)

An observation program using ground and airborne thermal infrared radiometers is used to estimate the surface temperature of urban areas, taking into account the total active surface area. The authors call this the complete urban surface ...

J. A. Voogt; T. R. Oke

1997-09-01T23:59:59.000Z

154

Making abstract interpretations complete  

Science Conference Proceedings (OSTI)

Completeness is an ideal, although uncommon, feature of abstract interpretations, formalizing the intuition that, relatively to the properties encoded by the underlying abstract domains, there is no loss of information accumulated in abstract computations. ...

Roberto Giacobazzi; Francesco Ranzato; Francesca Scozzari

2000-03-01T23:59:59.000Z

155

Completed DOE Technical Standards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completed) Completed) Project Number Title Document ID SLM / ORG Author / Phone / Email Status / Review Date P1020-2002REV National Phenomena hazards Design and Evaluation Criteria for DOE Facilities DOE-STD-1020-2012 James O'Brien (HS-30) P1066-1999REV Fire Protection and Emergency Services Program and Design Criteria (revision to DOE-STD-1066-99) DOE-STD-1066-2012 James O'Brien (HS-30)

156

Facility Representative Program: Program Mission Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

General Program Information Program Mission Statement Program Directives and Guidance Facility Representative of the Year Award Program Facility Representative of the Year Award FR...

157

1Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1Q CY2005 (PDF), Facility Representative Program Performance 1Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives. and reported to Headquarters program offices for evaluation and feedback in order to improve the FR Program. As of March 31st, 2005, 88% of all FRs were fully qualified, up from 86% the previous quarter, and exceeding the DOE goal of 80%. Several of the new FRs hired recently completed qualifications. Eighteen of 27 reporting sites meet the goal of FR qualifications

158

Cementing horizontal wells  

SciTech Connect

Since the introduction of horizontal drilling, most completions have been open hole. Open-hole or slotted-liner completions may be satisfactory in straight, thick formations, if stimulation is not required. But if the wellbore wanders out of the reservoir, whether due to loss of directional control or spotty knowledge of formation dimensions, casing becomes a necessity. In addition, a wellbore that stays in the formation but comes uncomfortably close to the water-oil contact or gas cap requires casing to prevent coning. Further, if stimulation is anticipated, or may become a necessity, it is essential that the hole be cased and cemented. Otherwise, there is no control of the stimulation treatment. Even if the horizontal wellbore itself does not require casing, intermediate casing in the high-angle hole is needed. This is especially critical in open-hole completions below a gas cap, for example. The keys to effective horizontal cementing are fundamentally the same as for cementing vertical wells: proper centralization of casing in the bore-hole to ensure efficient mud removal and well-designed cement slurries.

Baret, F.; Griffin, T.J.

1989-05-01T23:59:59.000Z

159

Geothermal Well Stimulation  

DOE Green Energy (OSTI)

The stimulation of geothermal wells presents some new and challenging problems. Formation temperatures in the 300-600 F range can be expected. The behavior of stimulation fluids, frac proppants, and equipment at these temperatures in a hostile brine environment must be carefully evaluated before performance expectations can be determined. In order to avoid possible damage to the producing horizon of the formation, high temperature chemical compatibility between the in situ materials and the stimulation materials must be verified. Perhaps most significant of all, in geothermal wells the required techniques must be capable of bringing about the production of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional petroleum well stimulation and demands the creation of very high near-wellbore permeability and/or fractures with very high flow conductivity.

Campbell, D. A.; Morris, C. W.; Sinclair, A. R.; Hanold, R. J.; Vetter, O. J.

1981-03-01T23:59:59.000Z

160

Lost Circulation Experience in Geothermal Wells  

DOE Green Energy (OSTI)

Lost circulation during drilling and cementing in geothermal wells is a problem common to most geothermal areas. Material and rig time costs due to lost circulation often represent one fourth or more of the total well cost. Assessment of the general drilling and completion practices commonly used for handling lost circulation have been surveyed and evaluated under a study sponsored by Sandia National Laboratories. Results of this study, including interviews with geothermal production companies and with drilling fluid service companies, are reported in the paper. Conclusions and recommendations are presented for control of lost circulation during geothermal operations. Recent improvements in lost circulation materials and techniques and potential equipment solutions to the lost circulation problem are discussed. Research needs are also identified.

Goodman, M. A.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Detachments of Complete Graphs  

Science Conference Proceedings (OSTI)

A detachment of a graph $G$ is formed by splitting each vertex into one or more subvertices, and sharing the incident edges arbitrarily among the subvertices. In this paper we consider the question of whether a graph $H$ is a detachment of some complete ...

Keith Edwards

2005-05-01T23:59:59.000Z

162

Context-Sensitive Query Auto-Completion ?  

E-Print Network (OSTI)

Query auto completion is known to provide poor predictions of the user’s query when her input prefix is very short (e.g., one or two characters). In this paper we show that context, such as the user’s recent queries, can be used to improve the prediction quality considerably even for such short prefixes. We propose a context-sensitive query auto completion algorithm, NearestCompletion, which outputs the completions of the user’s input that are most similar to the context queries. To measure similarity, we represent queries and contexts as high-dimensional term-weighted vectors and resort to cosine similarity. The mapping from queries to vectors is done through a new query expansion technique that we introduce, which expands a query by traversing the query recommendation tree rooted at the query. In order to evaluate our approach, we performed extensive experimentation over the public AOL query log. We demonstrate that when the recent user’s queries are relevant to the current query she is typing, then after typing a single character, NearestCompletion’s MRR is 48 % higher relative to the MRR of the standard MostPopularCompletion algorithm on average. When the context is irrelevant, however, NearestCompletion’s MRR is essentially zero. To mitigate this problem, we propose HybridCompletion, which is a hybrid of NearestCompletion with MostPopularCompletion. HybridCompletion is shown to dominate both NearestCompletion and MostPopularCompletion, achieving a total improvement of 31.5 % in MRR relative to MostPopular-Completion on average.

Ziv Bar-yossef; Naama Kraus

2011-01-01T23:59:59.000Z

163

BNL | Completed ATF Experiments  

NLE Websites -- All DOE Office Websites (Extended Search)

Completed / Terminated ATF Experiments Completed / Terminated ATF Experiments AE01 - Micro-undulator FEL Experiment. Spokesperson: I. Ben-Zvi, BNL. (1992 - 1997) AE02. - Inverse FEL Accelerator. Spokesperson: A. van Steenbergen, BNL. [Yale, Columbia]. (1992-1997) AE03 - Laser Grating Accelerator Experiment. Spokesperson: R. Fernow, BNL. [Princeton, LANL]. (1992- 1996) AE05 - Nonlinear-Compton Scattering. Spokesperson: K. McDonald, Princeton (1992-) AE06 - Inverse Cherenkov Acceleration. Spokesperson: W. Kimura, STI Optronics. [UCSB,BNL]. (1992-1997) AE08 - Far Infrared Radiation Source. Spokesperson J. Walsh, Dartmouth. [Oxford, BNL]. (1992 - 1994) AE09. - Photocathode R&D. Spokesperson: T. Rao, BNL. (1992 - ) AE10. - High Gain Harmonic Generation FEL. Spokesperson: L.H. Yu, BNL. [ANL] (1992 - 2001)

164

Complete Experiment Safety Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Complete Experiment Safety Documentation Print Complete Experiment Safety Documentation Print User Safety Overview The steps for authorization of your experiment are described below. The ALS Experiment Coordinators are available to support you through this process. Please This e-mail address is being protected from spambots. You need JavaScript enabled to view it at any stage if you have questions or need more information. Prior to Your Arrival at the ALS 1. Complete or Update and Experiment Safety Sheet If you did not submit a General User Proposal, you must submit an ESS one month prior to arrival at the ALS. 2. Biological, Radioactive, Hazardous, and Electrical Materials, and Lasers If your experiment involves the use of any of the above materials-no matter how small the quantities are or how innocuous the sample may be-additional authorization may be required. Please submit your ESS early and clearly identify your materials. Our staff will assess the hazards and contact you about any necessary supplementary documentation.

165

Complete Experiment Safety Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Complete Experiment Safety Documentation Print Complete Experiment Safety Documentation Print User Safety Overview The steps for authorization of your experiment are described below. The ALS Experiment Coordinators are available to support you through this process. Please This e-mail address is being protected from spambots. You need JavaScript enabled to view it at any stage if you have questions or need more information. Prior to Your Arrival at the ALS 1. Complete or Update and Experiment Safety Sheet If you did not submit a General User Proposal, you must submit an ESS one month prior to arrival at the ALS. 2. Biological, Radioactive, Hazardous, and Electrical Materials, and Lasers If your experiment involves the use of any of the above materials-no matter how small the quantities are or how innocuous the sample may be-additional authorization may be required. Please submit your ESS early and clearly identify your materials. Our staff will assess the hazards and contact you about any necessary supplementary documentation.

166

Complete Experiment Safety Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Complete Experiment Safety Documentation Print Complete Experiment Safety Documentation Print User Safety Overview The steps for authorization of your experiment are described below. The ALS Experiment Coordinators are available to support you through this process. Please This e-mail address is being protected from spambots. You need JavaScript enabled to view it at any stage if you have questions or need more information. Prior to Your Arrival at the ALS 1. Complete or Update and Experiment Safety Sheet If you did not submit a General User Proposal, you must submit an ESS one month prior to arrival at the ALS. 2. Biological, Radioactive, Hazardous, and Electrical Materials, and Lasers If your experiment involves the use of any of the above materials-no matter how small the quantities are or how innocuous the sample may be-additional authorization may be required. Please submit your ESS early and clearly identify your materials. Our staff will assess the hazards and contact you about any necessary supplementary documentation.

167

Complete Experiment Safety Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Complete Experiment Safety Documentation Print Complete Experiment Safety Documentation Print User Safety Overview The steps for authorization of your experiment are described below. The ALS Experiment Coordinators are available to support you through this process. Please This e-mail address is being protected from spambots. You need JavaScript enabled to view it at any stage if you have questions or need more information. Prior to Your Arrival at the ALS 1. Complete or Update and Experiment Safety Sheet If you did not submit a General User Proposal, you must submit an ESS one month prior to arrival at the ALS. 2. Biological, Radioactive, Hazardous, and Electrical Materials, and Lasers If your experiment involves the use of any of the above materials-no matter how small the quantities are or how innocuous the sample may be-additional authorization may be required. Please submit your ESS early and clearly identify your materials. Our staff will assess the hazards and contact you about any necessary supplementary documentation.

168

Facility Representative of the Year Award  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REPRESENTATIVE OF THE YEAR AWARD PROGRAM REPRESENTATIVE OF THE YEAR AWARD PROGRAM OBJECTIVE The Facility Representative Award Program is a special award designed to recognize superior or exemplary service by a Facility Representative over a period of one year. This special award program has been established in accordance with the requirements of Department of Energy (DOE) Order 331.1C, Employee Performance Management and Recognition Program. FACILITY REPRESENTATIVE OF THE YEAR AWARD The Facility Representative of the Year Award is determined by a panel representing the Chief Health, Safety and Security Officer and managers from the National Nuclear Security Administration (NNSA), the Office of Environmental Management (EM), the Office of Science (SC), and the Office of Nuclear Energy (NE). The Facility Representative Program Manager in

169

Attention Wells Fargo and Wachovia customers  

E-Print Network (OSTI)

Attention Wells Fargo and Wachovia customers Are you a Wells Fargo or Wachovia mortgage customer Angeles, CA March , & : am to : pm You'll personally meet with a Wells Fargo representative who-inswelcomebutregistrationisrecommended. Wells Fargo Home Mortgage is a division of Wells Fargo Bank, N.A. Wells Fargo Bank, N.A. All rights

Southern California, University of

170

Quantum states representing perfectly secure bits are always distillable  

E-Print Network (OSTI)

It is proven that recently introduced states with perfectly secure bits of cryptographic key (private states representing secure bit) [K. Horodecki et al., Phys. Rev. Lett. 94, 160502 (2005)] as well as its multipartite and higher dimension generalizations always represent distillable entanglement. The corresponding lower bounds on distillable entanglement are provided. We also present a simple alternative proof that for any bipartite quantum state entanglement cost is an upper bound on distillable cryptographic key in bipartite scenario.

Pawel Horodecki; Remigiusz Augusiak

2006-02-21T23:59:59.000Z

171

Facility Representative Program: Program Performance Indicators  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Performance Indicators DOE Corporate Reporting Data (ORPS, CAIRS, Others) Facility Representative Performance Indicator Guidance -- Appendix A in DOE-STD-1063-2011,...

172

Rigs Drilling Gas Wells Are At  

U.S. Energy Information Administration (EIA)

The increasing number of resulting gas well completions have been expanding production in major producing States, such as Texas. For the year 2000, ...

173

Representativeness models of systems: smart grid example  

Science Conference Proceedings (OSTI)

Given the great emphasis being placed on energy efficiency in contemporary society, in which the smart grid plays a prominent role, this is an opportune time to explore methodologies for appropriately representing system attributes. We suggest this is ... Keywords: Smart grid, System representativeness

Norman Schneidewind

2011-03-01T23:59:59.000Z

174

Incentives for the Department's Facility Representative Program,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incentives for the Department's Facility Representative Program, Incentives for the Department's Facility Representative Program, 12/17/1998 Incentives for the Department's Facility Representative Program, 12/17/1998 The Department's Revised Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 93-3 has once again underscored the Department's commitment to maintaining the technical capability necessary to safely manage and operate our defense nuclear facilities. Attracting and retaining highly qualified employees and placing them in our critical technical positions is vital to fi.dfilling this commitment. You have identified 95'% of your Facility Representative positions as critical technical positions. The Office of Field Management has noted a 12'?40annual attrition rate of Facility Representatives from the Facility

175

Geothermal drilling and completion technology development  

SciTech Connect

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the U.S. Department of Energy has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs by 25% by 1982 and by 50% by 1986. Sandia Laboratories has been selected to manage this technology development program, and this paper presents an overview of the program. Program justification which relates well cost to busbar energy cost and to DGE power-on-line goals is presented. Technological deficiencies in current rotary drilling techniques for geothermal wells are discussed. A program for correcting these deficiencies is described.

Varnado, S.G.; Stoller, H.M.

1978-01-01T23:59:59.000Z

176

Representativeness of Wind Observations at Airports  

Science Conference Proceedings (OSTI)

Wind information for use at airports can be called representative if it provides an optimal estimate of wind variations to be expected over the runway. It is shown that a single anemometer at a nonideal but reasonable location will usually ...

J. Wieringa

1980-09-01T23:59:59.000Z

177

A Practical Pyrgeometer Using the Representative Angle  

Science Conference Proceedings (OSTI)

A simple directional pyrgeometer is tested and compared with a conventional standard pyrgeometer. The system presented in this article has a narrow directional response and points to the representative zenith angle of 52.5°. Because of its ...

Satoshi Sakai; Aya Ito; Kazuhiro Umetani; Isao Iizawa; Masanori Onishi

2009-03-01T23:59:59.000Z

178

Finding representative workloads for computer system design  

Science Conference Proceedings (OSTI)

This work explores how improved workload characterization can be used for a better selection of representative workloads within the computer system and processor design process. We find that metrics easily available in modern computer systems provide ...

Jan Lodewijk Bonebakker

2007-03-01T23:59:59.000Z

179

Facility Representative Program: Program Directives and Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative of the Year Award FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) Program Directives and Guidance FR Program Standard, DOE STD 1063-2011,...

180

Representing aggregate works in the digital library  

Science Conference Proceedings (OSTI)

This paper studies the challenge of representing aggregate works such as encyclopedias, collected poems and journals in heterogenous digital library collections. Reflecting on the materials used by humanities academics, we demonstrate the varied range ... Keywords: aggregate documents, architecture, digital libraries

George Buchanan; Jeremy Gow; Ann Blandford; Jon Rimmer; Claire Warwick

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Code Completion From Abbreviated Input  

E-Print Network (OSTI)

Abbreviation Completion is a novel technique to improve the efficiency of code-writing by supporting code completion of multiple keywords based on non-predefined abbreviated input - a different approach from conventional ...

Miller, Robert C.

182

User_CompleteSF182  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completing an External Training Request (SF-182) Completing an External Training Request (SF-182) © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Job Aid: Completing an External Training Request (SF-182) Purpose The purpose of this job aid is to guide users through the step-by-step process of completing an external training request form (SF-182). Complete an External Training Request (SF-182) - 11 Steps Task A Task A. Complete an External Training Request (SF-182) From the Home page, click the External Requests easy link. Click New Request to create a new training request form. Before completing the request form, it is recommended that you review the form to determine the required fields, indicated by red asterisks. This will assist you to determine the information you need to

183

Decontaminating Flooded Wells  

E-Print Network (OSTI)

This publication explains how to decontaminate and disinfect a well, test the well water and check for well damage after a flood.

Boellstorff, Diana; Dozier, Monty; Provin, Tony; Dictson, Nikkoal; McFarland, Mark L.

2005-09-30T23:59:59.000Z

184

Complete  

NLE Websites -- All DOE Office Websites (Extended Search)

2 History File Checklist 11_0613 Page 1 of 5 2 History File Checklist 11_0613 Page 1 of 5 EOTA - Business Form Document Title: ISD History File Checklist Document Number: ISDF-012 Rev. 11_0613 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: ISDP-002, Training Production Process Notify of Changes: ADM, QAM, ISD, MGT Referenced Document(s): ISDF-001 Technical Direction, ISDF-035 Analysis Feasibility Assessment, ISDF-044 Course Feasibility Assessment, ISDF-045 Analysis Project Plan, ISDF-046 Training Design/Development Summary, ISDF-004 Design Document, ISDF-006 Script Template (Web), ISDF-007 Lesson Plan Template (ILT), ISDF-005 WBT Student Feedback Survey, ISDF-008 ILT Student Feedback Survey, ISDF-009 Design-Development Review Checklist, ISDF-010 After Action Report Template, ISDF-011 ISD

185

Wellness Planning Session Report  

E-Print Network (OSTI)

Wellness Planning Session Report September 12, 2008 #12;Wellness Planning Session Report Printed.............................................................................1 Explored what wellness program should look like at NMSU .......................2 Considered for the Wellness committee..................................2 Identified the next meeting date and meeting agenda

Castillo, Steven P.

186

Technical, economic and risk analysis of multilateral wells  

E-Print Network (OSTI)

The oil and gas industry, more than at any time in the past, is highly affected by technological advancements, new products, drilling and completion techniques, capital expenditures (CAPEX), operating expenditures (OPEX), risk/uncertainty, and geopolitics. Therefore, to make a decision in the upstream business, projects require a thorough understanding of the factors and conditions affecting them in order to systematically analyze, evaluate and select the best choice among all possible alternatives. The objective of this study is to develop a methodology to assist engineers in the decision making process of maximizing access to reserves. The process encompasses technical, economic and risk analysis of various alternatives in the completion of a well (vertical, horizontal or multilateral) by using a well performance model for technical evaluation and a deterministic analysis for economic and risk assessment. In the technical analysis of the decision making process, the flow rate for a defined reservoir is estimated by using a pseudo-steady state flow regime assumption. The economic analysis departs from the utilization of the flow rate data which assumes a certain pressure decline. The financial cash flow (FCF) is generated for the purpose of measuring the economic worth of investment proposals. A deterministic decision tree is then used to represent the risks inherent due to geological uncertainty, reservoir engineering, drilling, and completion for a particular well. The net present value (NPV) is utilized as the base economic indicator. By selecting a type of well that maximizes the expected monetary value (EMV) in a decision tree, we can make the best decision based on a thorough understanding of the prospect. The method introduced in this study emphasizes the importance of a multi-discipline concept in drilling, completion and operation of multilateral wells.

Arcos Rueda, Dulce Maria

2008-12-01T23:59:59.000Z

187

Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative, 12/03 Electrical Safety Assessment Plan--NNSA/NSO IOD Facility Representative, 12/03 An assessment of the Electrical Safety (ES) program at XXXX was conducted during the week of December XX-XX, 2003. The assessment team evaluated the program using the programmatic areas and specific Lines of Inquiry (LOI) contained in the approved Assessment plan provided. The team consisted of the Facility Representative from National Nuclear Security Administration, as well as ES, Subject Matter Expert support. The assessment plan identified 5 areas of review for Electrical Safety. An integrated process has been established to ensure electrical safety hazards are identified and that adequate controls are defined and

188

DEACTIVATION COMPLETION AND TURNOVER Deactivation Completion and Turnover  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMPLETION AND TURNOVER COMPLETION AND TURNOVER Deactivation Completion and Turnover Overview of Turnover Turnover Checklists End-Points Closeout Method End-Point Files Description Examples of End-Point Closeout Methods Closeout Method Subjects of This Chapter Achieving consensus that deactivation is complete can involve several parties including the deactivation contractor, the Field Office, DOE Headquarters, the post-deactivation contractor, regulators, and stakeholders.  Overview of Turnover  Turnover Checklists and Documents  End-Points Closeout and Verification Overview of Turnover When facility deactivation activities are complete, some of the possibilities for the subsequent receiving organization include:  In cases of facilities that are contaminated, turnover to a remediation organization for managing

189

Property:CompletionNotes | Open Energy Information  

Open Energy Info (EERE)

CompletionNotes CompletionNotes Jump to: navigation, search Property Name CompletionNotes Property Type Text Description List of data that still needs to be researched and entered for the NEPA document Subproperties This property has the following 2 subproperties: C CA-96062042 D DOI-BLM-CA-ES-2013-002+1793-EIS Pages using the property "CompletionNotes" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + 8/2: Data reviewed for completion C CA-017-05-051 + 8/9 Data entry complete. Attached FONSI does not seem to be fully related to the attached EA. The FONSI is for a geothermal well and slimhole exploration project and the EA is for a pipeline project. Need to add Public Health and Safety as a resource 8/22/13 - The 'FONSI/DR is actually for EA CA-170-02-15 Bassalt Canyon..dated Jan 2002 KW 8/26/13 - I deleted the FONSI from this page. Filename is incorrect for the file and stands as "CA-017-05-51-EA-DR -FONSI.pdf," Andrew Gentile. Unable to find Final EA or FONSI online. When RMP added, add "Inyo National Forest "Land and Resource Management Plan" (LRMP) 1988"

190

Ad Building demolition, recycling completed  

NLE Websites -- All DOE Office Websites (Extended Search)

Ad Building demolition, recycling completed Ad Building demolition, recycling completed Ad Building demolition, recycling completed Demolition of the Administration Building helps Los Alamos meet an NNSA directive to reduce its structural footprint, modernize its infrastructure, and provide workers with safe, energy-efficient facilities. October 11, 2011 Demolition of the administration building Demolition of the Administration Building Contact Steve Sandoval Communications Office (505) 665-9206 Email Project finished under budget, ahead of schedule LOS ALAMOS, New Mexico, October 11, 2011-Los Alamos National Laboratory has completed demolition of its former Administration Building. Demolition of the 316,500-square-foot building that was home to seven Laboratory directors was completed five months ahead of the original schedule and

191

Site Transition Process Upon Cleanup Completion | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion More...

192

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a...

193

Groundwater and Wells (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section describes regulations relating to groundwater protection, water wells, and water withdrawals, and requires the registration of all water wells in the state.

194

Optimal Location of Vertical Wells: Decomposition Approach  

E-Print Network (OSTI)

Optimal Location of Vertical Wells: Decomposition Approach M. G. Ierapetritou and C. A. Floudas®elopment plan with well locations, gi®en a reser®oir property map and a set of infrastructure constraints, represents a ®ery challenging prob- lem. The problem of selecting the optimal ®ertical well locations

195

Well Flix Program Details  

E-Print Network (OSTI)

Well Flix's in the Well-U library. These DVD's have been made available so employees may learn about a variety of fitness for a one-week basis at no cost. Contact Well U at well-u-info@rochester.edu for DVD rental. Click the link

Portman, Douglas

196

Cerro Prieto cold water injection: effects on nearby production wells  

E-Print Network (OSTI)

reservoir wells close to injection well E-6 along with theMeeting. Most of the injection wells are open to the Alphaand completing new injection wells is lower than in the East

Truesdell, A.H.

2010-01-01T23:59:59.000Z

197

1997 Annual Facility Representative Workshop Attendees  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Facility Representative Workshop Attendees Annual Facility Representative Workshop Attendees Last Name First Office Location Phone E-Mail Anderson Mike ID CFATAN (208) 526-7418 andersmr@id.doe.gov Bell Bill AL LAAO (505) 665-6324 bbell@doeal.gov Biro Brian RL LABS (509) 376-7660 brian_a_biro@rl.gov Brown Mark RL TANKS (509) 373-9150 mark_c_brown@rl.gov Charboneau Briant RL 324/327 (509) 373-6137 briant_L_charboneau@rl.gov Daniels Rick OR HFIR (423) 574-9143 e29@ornl.gov Dennis Jack AL AAO (806) 477-3176 jdennis@pantex.com Dikeakos Maria CH BHG (516) 344-3950 dikeako@bnl.gov Duey Don AL AAO (806) 477-6987 dduey@pantex.com Earley Larry RL WRAP (509) 373-9388 larry_d_earley@rl.gov Eddy Doug OAK LLNL (925) 422-3379 doug.eddy@oak.doe.gov Edwards Robert SR NMSD (803) 208-2645 robert-e.edwards@srs.gov

198

1998 Annual Facility Representative Workshop Attendees  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Annual Facility Representative Workshop Attendees 8 Annual Facility Representative Workshop Attendees Last Name First Office Location Phone Fax E-Mail Alvord Bob OAK LLNL (925) 422-0830 (925) 422-0832 robert.alvord@oak.doe.gov Barnes John SR SRTC (803) 208-2628 (803) 208-1123 johnc.barnes@srs.gov Bell Fred AL LAAO (505) 665-4856 (505) 665-9230 fbell@doeal.gov Bell Bill AL LAAO (505) 665-6324 (505) 665-9230 bbell@doeal.gov Bennett Rick RF DOE (303) 966-8155 (303) 966-7447 rick.bennett@rfets.gov Biro Brian RL LABS (509) 376-7660 (509) 376-9837 brian_a_biro@rl.gov Blanco Jose SR DWPF (803) 208-7022 (803) 557-8223 jose.blanco@srs.gov Charboneau Briant RL 324/327 (509) 373-6137 (509) 373-9839 briant_L_charboneau@rl.gov Christensen Debbie AL OMD (505) 845-5239 dschristensen@doeal.gov Clifton Gary OR ORNL (423) 576-6810 (423) 574-9275 g7y@ornl.gov

199

Laboratory or Facility Representative Email Addresses Phone #  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory or Facility Representative Email Addresses Phone # Ames Laboratory Stacy Joiner joiner@ameslab.gov 515-294-5932 Argonne National Laboratory Connie Cleary ccleary@anl.gov 630-252-8111 Brookhaven National Laboratory Walter Copan wcopan@bnl.gov 631-344-3035 Fermi National Acclerator Laboratory Bruce Chrisman chrisman@fnal.gov 630-840-6657 Idaho National Laboratory Steven McMaster steven.mcmaster@inl.gov 208-526-1340 Kansas City Plant Caron O'Dower codower@kcp.com 816-997-2645 Lawrence Berkeley National Laboratory Viviana Wolinsky viwolinsky@lbl.gov 510-486-6463 Lawrence Livermore National Laboratory Roger Werne werne1@llnl.gov 925-423-9353 Los Alamos National Laboratory John Mott jmott@lanl.gov 505-665-0883 National Energy Technology Laboratory Jessica Sosenko jessica.sosenko@netl.doe.gov 412-386-7417

200

Facility Representative Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1151-2010 October 2010 DOE STANDARD FACILITY REPRESENTATIVE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1151-2010 ii This document is available on the Department of Energy Office of Health, Safety and Security Approved DOE Technical Standards Web Site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/standard/standard.html DOE-STD-1151-2010 iii APPROVAL The Federal Technical Capability Panel consists of senior U.S. Department of Energy (DOE) managers responsible for overseeing the Federal Technical Capability Program. This Panel is

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Underground Wells (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

Class I, III, IV and V injection wells require a permit issued by the Executive Director of the Department of Environmental Quality; Class V injection wells utilized in the remediation of...

202

Well-centered meshing.  

E-Print Network (OSTI)

??A well-centered simplex is a simplex whose circumcenter lies in its interior, and a well-centered mesh is a simplicial mesh in which every simplex is… (more)

Vanderzee, Evan B.

2010-01-01T23:59:59.000Z

203

Geothermal well stimulation treatments  

DOE Green Energy (OSTI)

The behavior of proppants in geothermal environments and two field experiments in well stimulation are discussed. (MHR)

Hanold, R.J.

1980-01-01T23:59:59.000Z

204

Wellness, Health & Counseling Services  

E-Print Network (OSTI)

Wellness, Health & Counseling Services Dr. Marcelle Holmes Assistant Vice Chancellor CARE Career Student Health Center #12;The mission of the Wellness, Health & Counseling Services cluster is to support · Dedicated to promoting principles of wellness, prevention and healthy life-style choices for students

Stanford, Kyle

205

The underground electromagnetic pulse: Four representative models  

Science Conference Proceedings (OSTI)

I describe four phenomenological models by which an underground nuclear explosion may generate electromagnetic pulses: Compton current asymmetry (or ''Compton dipole''); Uphole conductor currents (or ''casing currents''); Diamagnetic cavity plasma (or ''magnetic bubble''); and Large-scale ground motion (or ''magneto-acoustic wave''). I outline the corresponding analytic exercises and summarize the principal results of the computations. I used a 10-kt contained explosion as the fiducial case. Each analytic sequence developed an equivalent source dipole and calculated signal waveforms at representative ground-surface locations. As a comparative summary, the Compton dipole generates a peak source current moment of about 12,000 A/center dot/m in the submicrosecond time domain. The casing-current source model obtains an equivalent peak moment of about 2 /times/ 10/sup 5/ A/center dot/m in the 10- to 30-/mu/s domain. The magnetic bubble produces a magnetic dipole moment of about 7 /times/ 10/sup 6/ A/center dot/m/sup 2/, characterized by a 30-ms time structure. Finally, the magneto-acoustic wave corresponds to a magnetic dipole moment of about 600 A/center dot/m/sup 2/, with a waveform showing 0.5-s periodicities. 8 refs., 35 figs., 7 tabs.

Wouters, L.F.

1989-06-01T23:59:59.000Z

206

CONTENTS Japan Completes First Offshore  

NLE Websites -- All DOE Office Websites (Extended Search)

Japan Completes First Offshore Japan Completes First Offshore Production Test .............................1 New Seismic Data Over Known Hydrate Occurrences in the Deepwater Gulf of Mexico .........3 Gas Hydrate Reservoirs in the Offshore Caribbean Region of Colombia ..........................................7 CSEM Survey of a Methane Vent Site, Offshore West Svalbard...12 Pressure Core Analysis Tools Used to Characterize Hydrate- Bearing Sediments from The Nankai Trough ..............................19 Using Noble Gas Signatures to Fingerprint Gas Streams Derived from Dissociating Methane Hydrate .......................................... 23 Announcements ...................... 27 * North Slope Oil and Gas Lands Set Aside for Methane Hydrate Research * 2014 Offshore Technology Conference to Have Sessions on

207

Class I Disposal Well Plugging and Abandonment Cost Estimate  

E-Print Network (OSTI)

Per your request, Petrotek Engineering Corporation (Petrotek) has prepared a plugging and abandonment cost estimate for the proposed COGEMA DW No. 4 and No. 5 wells. Because the well design and completion for both wells are very similar, one cost is provided that is representative for each of the wells. The procedures included herein are based on COGEMA's permit modification application to Wyoming Department of Environmental Quality (WDEQ) UIC Permit 00-340 which applies to both wells, and WDEQ regulations and guidance. A time and materials cost estimate for plugging either of the wells follows. The cost is based on information provided by COGEMA, WDEQ requirements, our field experience, and recent quotes from applicable vendors. The costs are based on the following assumptions:> A falloff test and Radioactive Tracer log (RAT) may be required. Based on historical WDEQ requirements, (1) a falloff test would be required if more than six months has elapsed since the last falloff test, and (2) a Part II mechanical integrity test (e.g., a RAT log) would be required if more than 2 years had elapsed since the last RAT log.> Materials disposal (e.g., tubing, packer, wellhead and other debris) will be

Christensen Ranch; Disposal Wellfield; Donna Wichers

2007-01-01T23:59:59.000Z

208

well | OpenEI  

Open Energy Info (EERE)

43 43 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142280543 Varnish cache server well Dataset Summary Description The California Division of Oil, Gas, and Geothermal Resources contains oil, gas, and geothermal data for the state of California. Source California Division of Oil, Gas, and Geothermal Resources Date Released February 01st, 2011 (3 years ago) Date Updated Unknown Keywords California data gas geothermal oil well Data application/vnd.ms-excel icon California district 1 wells (xls, 10.1 MiB) application/vnd.ms-excel icon California district 2 wells (xls, 4 MiB) application/vnd.ms-excel icon California district 3 wells (xls, 3.8 MiB) application/zip icon California district 4 wells (zip, 11.2 MiB)

209

Numerical Simulation Study to Investigate Expected Productivity Improvement Using the "Slot-Drill" Completion  

E-Print Network (OSTI)

The "slot-drill" completion method, which utilizes a mechanically cut high-conductivity "slot" in the target formation created using a tensioned abrasive cable, has been proposed as an alternative stimulation technique for shale-gas and other low/ultra-low permeability formations. This thesis provides a comprehensive numerical simulation study on the "slot drill" completion technique. Using a Voronoi gridding scheme, I created representative grid systems for the slot-drill completion, as well as for the case of a vertical well with a single fracture, the case of a horizontal well with multiple hydraulic fractures, and various combinations of these completions. I also created a rectangular slot configuration, which is a simplified approximation of the actual "slot-drill" geometry, and investigated the ability of this rectangular approximation to model flow from the more complicated (actual) slot-drill configuration(s). To obtain the maximum possible diagnostic and analytical value, I simulated up to 3,000 years of production, allowing the assessment of production up to the point of depletion (or boundary-dominated flow). These scenarios provided insights into all the various flow regimes, as well as provided a quantitative evaluation of all completion schemes considered in the study. The results of my study illustrated that the "slot-drill" completion technique was not, in general, competitive in terms of reservoir performance and recovery compared to the more traditional completion techniques presently in use. Based on my modeling, it appears that the larger surface area to flow that multistage hydraulic fracturing provides is much more significant than the higher conductivity achieved using the slot-drill technique. This work provides quantitative results and diagnostic interpretations of productivity and flow behavior for low and ultra-low permeability formations completed using the slot-drill method. The results of this study can be used to (a) help evaluate the possible application of the "slot-drill" technique from the perspective of performance and recovery, and (b) to establish aggregated economic factors for comparing the slot-drill technique to more conventional completion and stimulation techniques applied to low and ultra-low permeability reservoirs.

Odunowo, Tioluwanimi Oluwagbemiga

2012-05-01T23:59:59.000Z

210

Petroleum well costs.  

E-Print Network (OSTI)

??This is the first academic study of well costs and drilling times for Australia?s petroleum producing basins, both onshore and offshore. I analyse a substantial… (more)

Leamon, Gregory Robert

2006-01-01T23:59:59.000Z

211

Lyme Carditis with Transient Complete Heart Block  

E-Print Network (OSTI)

demonstrating complete heart block Volume XI, no . 2 : Maywith Transient Complete Heart Block Katherine W. D. Dolbecsecond-degree to first-degree heart block before complete

Dolbec, Katherine W D; Higgins, George L; Saucier, John R

2010-01-01T23:59:59.000Z

212

Site Transition Process Upon Cleanup Completion | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup...

213

Helicopter magnetic survey conducted to locate wells  

Science Conference Proceedings (OSTI)

A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

2008-07-01T23:59:59.000Z

214

Investigation and evaluation of geopressured-geothermal wells. Final report, Tenneco Fee N No. 1 Well Terrebonne Paris, Louisiana  

DOE Green Energy (OSTI)

The reservoir conditions that led to the choice of this well as the fifth well of opportunity are described as well as the attempts to complete the well for high-volume brine production. Individual opinions concerning underlying and conributing causes for the liner failure which aborted the completion attempt are included. (MHR)

Dobson, R.J.; Hartsock, J.H.; McCoy, R.L.; Rodgers, J.A.

1980-09-01T23:59:59.000Z

215

Sand-control alternatives for horizontal wells  

SciTech Connect

This paper reports that it has been well documented that horizontal completions increase production rates, as much as two to five times those of conventional techniques, because more of the producing formation is exposed to the wellbore. Although productivity improvements are highly sensitive to reservoir parameters, it is becoming generally accepted that optimum horizontal lengths will be 2,000 to 4,000 ft. The length of these completions generally causes the velocity of the fluid at the sandface to be an order of magnitude less than that observed in conventional completions. Because drag forces contributed to sand production, horizontal wells can produce at higher sand-free flow rates than conventional completions in the same reservoir. While it is frequently argued that horizontal wells do not need sand control, the potential for sand production increases significantly as reserves deplete and rock stresses increase. This is becoming more evident today in several major North Sea oil fields with conventional completions. Also, many unconsolidated formations produce sand for the first time with the onset of water production, a typical problem in such areas as the Gulf of Mexico. Operators must decide whether to implement sand control in the original horizontal-completion program because of an immediate concern or because the potential exists for a problem to arise as the well matures.

Zaleski, T.E. Jr. (Baker Sand Control (US))

1991-05-01T23:59:59.000Z

216

Geothermal well stimulation  

DOE Green Energy (OSTI)

All available data on proppants and fluids were examined to determine areas in technology that need development for 300 to 500/sup 0/F (150/sup 0/ to 265/sup 0/C) hydrothermal wells. While fluid properties have been examined well into the 450/sup 0/F range, proppants have not been previously tested at elevated temperatures except in a few instances. The latest test data at geothermal temperatures is presented and some possible proppants and fluid systems that can be used are shown. Also discussed are alternative stimulation techniques for geothermal wells.

Sinclair, A.R.; Pittard, F.J.; Hanold, R.J.

1980-01-01T23:59:59.000Z

217

Performance Profiles Table Browser: T-25. U.S. Net Wells Completed ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas. Exploration and reserves, storage, ...

218

Economic evaluation of smart well technology  

E-Print Network (OSTI)

The demand of oil and gas resources is high and the forecasts show a trend for higher requirements in the future. More unconventional resource exploitation along with an increase in the total recovery in current producing fields is required. At this pivotal time the role of emerging technologies is of at most importance. Smart or intelligent well technology is one of the up and coming technologies that have been developed to assist improvements in field development outcome. In this paper a comprehensive review of this technology has been discussed. The possible reservoir environments in which smart well technology could be used and also, the possible benefits that could be realized by utilizing smart well technology has been discussed. The economic impact of smart well technology has been studied thoroughly. Five field cases were used to evaluate the economics of smart well technology in various production environments. Real field data along with best estimate of smart well technology pricings were used in this research. I have used different comparisons between smart well cases and conventional completion to illustrate the economic differences between the different completion scenarios. Based on the research, I have realized that all the smart well cases showed a better economic return than conventional completions. The offshore cases showed a good economic environment for smart well technology. Large onshore developments with smart well technology can also provide a lucrative economic return. These situations can increase the overall economic return and ultimate recovery which will assist in meeting some of the oil demand around the globe.

Al Omair, Abdullatif A.

2003-05-01T23:59:59.000Z

219

HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY  

SciTech Connect

Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the Parties on October 26,2010, and are now in the process of being implemented.

BERGMAN TB

2011-01-14T23:59:59.000Z

220

Isobaric groundwater well  

DOE Patents (OSTI)

A method of measuring a parameter in a well, under isobaric conditions, including such parameters as hydraulic gradient, pressure, water level, soil moisture content and/or aquifer properties the method as presented comprising providing a casing having first and second opposite ends, and a length between the ends, the casing supporting a transducer having a reference port; placing the casing lengthwise into the well, second end first, with the reference port vented above the water table in the well; and sealing the first end. A system is presented for measuring a parameter in a well, the system comprising a casing having first and second opposite ends, and a length between the ends and being configured to be placed lengthwise into a well second end first; a transducer, the transducer having a reference port, the reference port being vented in the well above the water table, the casing being screened across and above the water table; and a sealing member sealing the first end. In one embodiment, the transducer is a tensiometer transducer and in other described embodiments, another type transducer is used in addition to a tensiometer.

Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fossil Energy Techline, “DOE Completes Large-Scale Carbon  

E-Print Network (OSTI)

and represents a summary of carbon sequestration news covering the past month. Readers are referred to the actual article(s) for complete information. It is produced by the National Energy Technology Laboratory to provide information on recent activities and publications related to carbon sequestration. It covers domestic, international, public sector, and private sector news.

unknown authors

2008-01-01T23:59:59.000Z

222

CAVITY LIKE COMPLETIONS IN WEAK SANDS PREFERRED UPSTREAM MANAGEMENT PRACTICES  

SciTech Connect

The technology referred to as Cavity Like Completions (CLC) offers a new technique to complete wells in friable and unconsolidated sands. A successfully designed CLC provides significant increases in well PI (performance index) at lower costs than alternative completion techniques. CLC technology is being developed and documented by a partnership of major oil and gas companies through a GPRI (Global Petroleum Research Institute) joint venture. Through the DOE-funded PUMP program, the experiences of the members of the joint venture will be described for other oil and gas producing companies. To date six examples of CLC completions have been investigated by the JV. The project was performed to introduce a new type of completion (or recompletion) technique to the industry that, in many cases, offers a more cost effective method to produce oil and gas from friable reservoirs. The project's scope of work included: (1) Further develop theory, laboratory and field data into a unified model to predict performance of cavity completion; (2) Perform at least one well test for cavity completion (well provided by one of the sponsor companies); (3) Provide summary of geo-mechanical models for PI increase; and (4) Develop guidelines to evaluate success of potential cavity completion. The project tracks the experiences of a joint industry consortium (GPRI No. 17) over a three year period and compiles results of the activities of this group.

Ian Palmer; John McLennan

2004-04-30T23:59:59.000Z

223

Thermal indicator for wells  

DOE Patents (OSTI)

Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

1983-01-01T23:59:59.000Z

224

NGPL Louisiana station nears completion  

Science Conference Proceedings (OSTI)

Construction on a 3,600-hp compressor station on the Louisiana line of Natural Gas Pipeline Co. of America near Henry, La., was scheduled for completion later this month. The Louisiana line extends some 205 miles along the Gulf Coast between New Caney, Tex., and the Henry hub area. The new compressor station will be located about 44 miles west of the Henry hub. Work began on the $5.1 million expansion project in Cameron Parish, La., in May following Federal Energy Regulatory Commission (FERC) certification. By mid-September, the compressor building, service building, and meter house has been erected, final compressor inspections were under way, and gas piping tie-ins had been completed, according to NGPL. Powered by three 1,200-hp Solar Saturn gas-fired centrifugal engines, the station is designed to increase the capacity of the Louisiana line east of the Stingray pipeline system by up to 220 MMcfd. Current capacity for east bound flows is approximately 900 MMcfd.

Not Available

1990-10-22T23:59:59.000Z

225

ER-12-1 completion report  

SciTech Connect

The objective of drillhole ER-12-1 was to determine the hydrogeology of paleozoic carbonate rocks and of the Eleana Formation, a regional aquitard, in an area potentially downgradient from underground nuclear testing conducted in nearby Rainier Mesa. This objective was addressed through the drilling of well ER-12-1 at N886,640.26 E640,538.85 Nevada Central Coordinates. Drilling of the 1094 m (3588 ft) well began on July 19, 1991 and was completed on October 17, 1991. Drilling problems included hole deviation and hole instability that prevented the timely completion of this borehole. Drilling methods used include rotary tri-cone and rotary hammer drilling with conventional and reverse circulation using air/water, air/foam (Davis mix), and bentonite mud. Geologic cuttings and geophysical logs were obtained from the well. The rocks penetrated by the ER-12-1 drillhole are a complex assemblage of Silurian, Devonian, and Mississippian sedimentary rocks that are bounded by numerous faults that show substantial stratigraphic offset. The final 7.3 m (24 ft) of this hole penetrated an unusual intrusive rock of Cretaceous age. The geology of this borehole was substantially different from that expected, with the Tongue Wash Fault encountered at a much shallower depth, paleozoic rocks shuffled out of stratigraphic sequence, and the presence of an altered biotite-rich microporphyritic igneous rock at the bottom of the borehole. Conodont CAI analyses and rock pyrolysis analyses indicate that the carbonate rocks in ER-12-1, as well as the intervening sheets of Eleana siltstone, have been thermally overprinted following movement on the faults that separate them. The probable source of heat for this thermal disturbance is the microporphyritic intrusion encountered at the bottom of the hole, and its age establishes that the major fault activity must have occurred prior to 102.3+0.5 Ma (middle Cretaceous).

Russell, C.E.; Gillespie, D.; Cole, J.C.; Drellack, S.L. [and others

1996-12-01T23:59:59.000Z

226

Carbon Nanotube Arrays: Synthesis of Dense Arrays of Well ...  

Carbon Nanotube Arrays: Synthesis of Dense Arrays of Well-Aligned Carbon Nanotubes Completely Filled with Titanium Carbide on Titanium Substrates

227

Rigs Drilling Gas Wells Are At - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The increasing number of resulting gas well completions have been expanding production in major producing States, such as Texas. For the year 2000, ...

228

3Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2011 (PDF), Facility Representative Program Performance 3Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the Period July through September 2011. Data for these indicators were gathered by Field Elements per Department of Energy's (DOE) Technical Standard (STD) 1063-2011, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Facility Representative Program Performance Indicators for July - September 2011 More Documents & Publications 3Q CY2010 (PDF), Facility Representative Program Performance Indicators

229

1Q CY2012 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1Q CY2012 (PDF), Facility Representative Program Performance 1Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January through March 2012. Data for these indicators were gathered by Field elements per Department of Energy (DOE) Technical Standarf 1063-2011, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Facility Representative Program Performance Indicators for January-March 2012 More Documents & Publications 1Q CY2011 (PDF), Facility Representative Program Performance Indicators

230

Facility Representative Program ID Selects FR of the Year  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Program ID Selects Facility Representative Program ID Selects FR of the Year John Martin DOE-ID Facility Representative John Martin DOE-ID Facility Representative of the Year. John Martin was selected as DOE-ID's Facility Representative of the Year and the office's nominee for the 2007 DOE Facility Representative of the Year Award. John was selected from an exceptional field of candidates to represent DOE-ID at the Facility Representative Annual Workshop in Las Vegas this May. Each year the Department of Energy recognizes the Facility Representative whose achievements during the calendar year are most exemplary. A panel of senior personnel representing the Office of Health, Safety and Security (HSS) National Nuclear Security Administration (NNSA), Environmental Management (EM), Science (SC), Nuclear Energy (NE) and at least five

231

Well test analysis in fractured media  

DOE Green Energy (OSTI)

The behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. These models are based on the assumption that a fracture system under well test conditions may be represented by two concentric regions, one representing a small number of fractures that dominates flow near the well, and the other representing average conditions farther away from the well. Type curves are presented that can be used to find the flow parameters of these two regions and the extent of the inner concentric region. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented.

Karasaki, K.

1987-04-01T23:59:59.000Z

232

Facility Representative Program Assessment Criteria, Review, and Approach Document (CRAD)  

NLE Websites -- All DOE Office Websites (Extended Search)

STD-1063-2011 STD-1063-2011 Appendix B B-1 FACILITY REPRESENTATIVE PROGRAM ASSESSMENT GUIDE The DOE has implemented its FR Program, and is looking to continuously improve the program's effectiveness DOE-wide. An effective FR Program has many elements, as described in this Standard. These elements are intended to yield a program that provides DOE facilities with well-trained FRs who spend appropriate amounts of time in their facilities and can work effectively with their contractor management counterparts. The program, to be effective, needs the functional support of management. To maintain the continued support of DOE management, the FR program needs to demonstrate its continued performance and effectiveness, which is to be assessed periodically using

233

A BRIEF REVIEW OF MODELS REPRESENTING CREEP OF ALLOY 617  

SciTech Connect

Alloy 617 is being considered for the construction of components to operate in the Next Generation Nuclear Plant (NGNP). Service temperatures will range from 650 to 1000 C. To meet the needs of the conceptual designers of this plant, a materials handbook is being developed that will provide information on alloy 617, as well as other materials of interest. The database for alloy 617 to be incorporated into the handbook was produced in the 1970s and 1980s, while creep and damage models were developed from the database for use in the design of high-temperature gas-cooled reactors. In the work reported here, the US database and creep models are briefly reviewed. The work reported represents progress toward a useful model of the behavior of this material in the temperature range of 650 to 1000 C.

Swindeman, Robert W [ORNL; Swindeman, Michael [University of Dayton Research Institute; Ren, Weiju [ORNL

2005-01-01T23:59:59.000Z

234

Data Evaluation, Completion and Manipulation  

E-Print Network (OSTI)

of the Maui Electric Company (MECO) grid is an essential first step of the work needed to investigate grid in the development of the MAPS (production cost) and PSLF (transient dynamic system) models, as well as establish This folder contains 2-second KWP data for 2007 and 2008-present. LoadFlow & Transmission Planning ­ Matsuura

235

Report of the workshop on advanced geothermal drilling and completion systems  

DOE Green Energy (OSTI)

The discussions, conclusions, and recommendations of the Workshop on Advanced Geothermal Drilling and Completion Systems are summarized. The purpose of the workshop was to identify new drilling and completion systems that have the potential for significantly reducing the cost of geothermal wells, and to provide recommendations as to the research and development tasks that are required to develop these advanced systems. Participants in the workshop included representatives from private industry, universities, and government who were organized into four working groups as follows: Rock Drilling Technology, Surface Technology, Borehole Technology, and Directional Drilling Technology. The Panel on Rock Drilling Technology was charged with identifying advanced concepts for breaking rock that could result in instantaneous penetration rates three to five times higher than those of conventional rotary drilling. The Panel on Surface Technology discussed improvements in surface equipment and operating procedures that could contribute to reduced well costs. The Panel on Borehole Technology discussed problems associated with establishing and maintaining a stable borehole for the long-term production of geothermal wells. The Panel on Directional Drilling Technology addressed problems encountered in drilling deviated wells in geothermal reservoirs.

Varnado, S.G. (ed.)

1979-06-01T23:59:59.000Z

236

Idaho Site Completes Cleanup Milestone Ahead of Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

News Media Contact: News Media Contact: Erik Simpson (208) 360-0426 For Immediate Release Date: June 23, 2010 Idaho Site Completes Cleanup Milestone Ahead of Schedule Idaho Falls, ID � The Department of Energy�s Idaho Operations Office, through the efforts of its cleanup contractor, CH2M-WG Idaho (CWI), recently reached a key cleanup milestone three weeks ahead of schedule by completing the transfer of nearly 6.6 metric tons of spent nuclear fuel from wet to dry storage. �The transfer of spent nuclear fuel from wet to dry storage represents a major contract milestone completion by CWI, a five year endeavor,� said Jim Cooper, DOE-ID Acting Deputy Manager for the Idaho Cleanup Project. �Completion of this campaign places the spent fuel in a safer configuration for the environment, complies with DOE�s commitment to the

237

Geothermal wells: a forecast of drilling activity  

DOE Green Energy (OSTI)

Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

Brown, G.L.; Mansure, A.J.; Miewald, J.N.

1981-07-01T23:59:59.000Z

238

3Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2003 (PDF), Facility Representative Program Performance 3Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from July to September 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. 3Q CY2003, Facility Representative Program Performance Indicators More Documents & Publications 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2005 (PDF), Facility Representative Program Performance Indicators

239

Mechanical well jar  

Science Conference Proceedings (OSTI)

This patent describes a mechanical well jar having inner and outer tubular members movable longitudinally relative to each other a limited distance. Means for connecting one of the members to a pipe string extends above the jar. Means connect the other member to the pipe string below the jar. Annular shoulders on the members engage to limit the relative longitudinal movement of the members. The improvement comprises: laterally spaced, arcuate cam plates each attached to the inner surface of the outer member by threaded members that extend through the wall of the outer member and that can be removed from outside the outer member to allow the cam plates to be removed and repaired or replaced.

Burton, C.A.

1987-05-19T23:59:59.000Z

240

PrimeEnergy/DOE/GRI slant well  

SciTech Connect

This report presents final results of the Sterling Boggs 1240 slant well. Objectives of the project were (1) to test the potential for improved recovery efficiency in a fractured Devonian Shale reservoir from a directionally drilled well, (2) to perform detailed tests of reservoir properties and completion methods, and (3) to provide technology to industry which may ultimately improve the economics of drilling in the Devonian Shale and thereby stimulate development of its resources.

Drimal, C.E.; Muncey, G.; Carden, R.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

GRR/Section 19-WA-e - Water Well Notice of Intent for New Well | Open  

Open Energy Info (EERE)

GRR/Section 19-WA-e - Water Well Notice of Intent for New Well GRR/Section 19-WA-e - Water Well Notice of Intent for New Well < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-e - Water Well Notice of Intent for New Well 19-WA-e - Water Well Notice of Intent for New Well.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington 18.104.048 Washington Administrative Code 173-160-151 Triggers None specified A developer seeking to use ground water for an activity may need to drill a new well to access the ground water. When a developer needs to drill a new well, the developer must complete the Notice of Intent (NOI) to Drill a Well form and submit the form to the Washington State Department of Ecology

242

FAQS Qualification Card - Facility Representative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Representative Representative FAQS Qualification Card - Facility Representative A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-FacilityRepresentative.docx Description Facility Representative Qualification Card More Documents & Publications FAQS Gap Analysis Qualification Card - Facility Representative

243

Monitoring well systems in geothermal areas  

DOE Green Energy (OSTI)

The ability to monitor the injection of spent geothermal fluids at reasonable cost might be greatly improved by use of multiple-completion techniques. Several such techniques, identified through contact with a broad range of experts from the groundwater and petroleum industries, are evaluated relative to application in the typical geologic and hydrologic conditions of the Basin and Range Province of the Western United States. Three basic monitor well designs are suggested for collection of pressure and temperature data: Single standpipe, multiple standpipe, and closed-system piezometers. A fourth design, monitor well/injection well dual completions, is determined to be inadvisable. Also, while it is recognized that water quality data is equally important, designs to allow water sampling greatly increase costs of construction, and so such designs are not included in this review. The single standpipe piezometer is recommended for use at depths less than 152 m (500 ft); several can be clustered in one area to provide information on vertical flow conditions. At depths greater than 152 m (500 ft), the multiple-completion standpipe and closed-system piezometers are likely to be more cost effective. Unique conditions at each monitor well site may necessitate consideration of the single standpipe piezometer even for deeper completions.

Lofgren, B.E.; O'Rourke, J.; Sterrett, R.; Thackston, J.; Fain, D.

1982-03-01T23:59:59.000Z

244

Wellness Peer Program Volunteer Job Description Wellness Peer Programs  

E-Print Network (OSTI)

Wellness Peer Program Volunteer Job Description Wellness Peer Programs: Leave The Pack Behind & Wellness Centre, UTSC Mental Wellness ­ mental health awareness program focusing on mental health, coping on healthy relationships, sexually transmitted infections and birth control Health & Wellness Centre

Kronzucker, Herbert J.

245

Oil well jar  

SciTech Connect

A jar for use in imparting jarring blows to an object lodged in the bore of a well. The jar includes a mandrel member and outer telescopically related tubular member, the mandrel member and said tubular member being telescopically movable between an extended and a collapsed position of the jar. One of the members is connected to a drill string while the other of the members is connected to the object to be jarred. Telescopically overlapping portions of the members provide an annular chamber for confining an operating fluid. A sleeve and a cylinder extend into the chamber and into an essentially fluid tight fit with each other for a selected portion of the telescopic travel between the extended and collapsed positions. An operating fluid bypass is provided in the first one of the members, the bypass being in fluid communication with the operating fluid above and below the sleeve, the bypass including a channel. An orifice is disposed in the channel. A filter, distinct from said orifice, is provided by controlling the clearences between the sleeve and the first one of the members.

Sutliff, W. N.

1985-06-25T23:59:59.000Z

246

Sandia/DOE geothermal drilling and completion technology development program  

DOE Green Energy (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the US Department of Energy (DOE) has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs 25% by 1982 and 50% by 1986. Sandia Laboratories has managed this technology development program since October 1977, and this paper presents an overview of the program. A statement of program goals and structure is given. The content of the FY-79 program is presented and recent results of R and D projects are given. Plans for development of an advanced drilling and completion system are discussed.

Barnette, J.H.

1979-01-01T23:59:59.000Z

247

4Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2003 (PDF), Facility Representative Program Performance 4Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from October to December 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. As of December 31,2003, 93% of all Facility Representatives were fully qualified, exceeding the DOE goal of 80%. Currently, 23 of 27 sites meet the goal of 80%. Currently, 23 of 27 sites meet the goal for Facility Representative

248

2Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2003 (PDF), Facility Representative Program Performance 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from April to June 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. A total of 13 Facility Representatives transferred to other positions during the quarter. Five of these accepted Facility Representative positions at other sites. Of the 8 that left the Program. 1 recieved a promotion and 7 accepted lateral positions. All of

249

2Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2006 (PDF), Facility Representative Program Performance 2Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. 2Q CY2006, Facility Representative Program Performance Indicators More Documents & Publications 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2004 (PDF), Facility Representative Program Performance Indicators

250

Greening the U.S. House of Representatives  

NLE Websites -- All DOE Office Websites (Extended Search)

Greening the U.S. House of Representatives Title Greening the U.S. House of Representatives Publication Type Report LBNL Report Number LBNL-322E Year of Publication 2008 Authors...

251

Case Study 11 - A Collection of Homes Representing US ...  

Science Conference Proceedings (OSTI)

... A Collection of Homes Representing US Housing Stock. [Persily AK, Musser A., Leber D. (2006)]. In order to allow nationwide ...

252

Retrievable exploration guide base/completion guide base system  

SciTech Connect

A system is described for converting a subsea exploratory well into a production well. The well includes a temporary guide base located subsea with guide lines extending to the water surface and a central opening through which drilling operations are conducted. A method of converting a subsea exploratory well into a production well is described comprising the steps of: locating a temporary guide base on a subsea mud line, providing a permanent guide base in two parts latched together, providing a wellhead housing with an external latching profile and assembling the two parts of the permanent guide base and the wellhead housing together and lowering the assembly onto the temporary guide base, releasing part of the permanent guide base leaving the second part of the permanent guide base and the wellhead housing subsea, providing a completion guide base with equipment for producing from the well and lowering the completion guide base on to the temporary guide base.

Hed, J.E.; Draper, R.B.

1986-09-16T23:59:59.000Z

253

Development Wells At Salt Wells Area (Nevada Bureau of Mines...  

Open Energy Info (EERE)

Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells...

254

Natural completions - overcoming the damage caused by drilling and perforations  

SciTech Connect

Natural completions are suggested as a way to avoid or overcome damage to the formation caused by drilling and perforating. Formation damage may take the form of plugged passageways which remain closed because formation pressure does not exceed that of the plug material. Natural completions refer to using maximum differential pressure toward the wellbore, so that such obstructions in passageways can less easily exist. The method allows the formation pressure to backsurge perforation tunnels immediately following detonation of the guns, with the objectives of obtaining deep, clean perforations with the crushed zone and debris completely removed from the perforations. Procedures for natural completions are described and illustrated. A case history is given where the natural completion method restores productivity of a well.

Perry, G.; Smith, G.

1980-04-01T23:59:59.000Z

255

2Q CY2008 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2008 (PDF), Facility Representative Program Performance 2Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2008. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 87% Fully Qualifed ( last quarter was 85%) 86% Staffing Level ( last quarter was 88%)

256

3Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2006 (PDF), Facility Representative Program Performance 3Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. A summary of this quarters data concluded: 76% fully qualified 41% staffing level

257

2Q CY2007 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2007 (PDF), Facility Representative Program Performance 2Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2007. Data for these indicators are gathered by field elements quarterly per DOE-STD-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to impove the FR Program. A summary of this quarter's data concluded: 74% Fully Qualified 94% Staffing Level ( last quarter was

258

4Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2006 (PDF), Facility Representative Program Performance 4Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. A summary of this quarters data concluded: 72% Fully Qualified ( last Quarter was

259

1Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1Q CY2003 (PDF), Facility Representative Program Performance 1Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from January to March 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. The percentage of Facility Representatives who are fully qualified reached 91% across DOE. In EM the percenage of 97%, in Sc the percentage is 95% and in NNSA the percentage is 78%. The DOE goal is 75%. Staffing levels for the three organizations continue to be below

260

1Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1Q CY2010 (PDF), Facility Representative Program Performance 1Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March2010. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report are presented below." 1Q CY2010, Facility Representative Program Performance Indicators More Documents & Publications 1Q CY2011 (PDF), Facility Representative Program Performance Indicators

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

3Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2010 (PDF), Facility Representative Program Performance 3Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period of July through September 2010. Data for these indicators are gathered by Field elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representative and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Facility Representative Program Performance Indicators for July - September 2010 More Documents & Publications 3Q CY2011 (PDF), Facility Representative Program Performance Indicators

262

1Q CY2000 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1Q CY2000 (PDF), Facility Representative Program Performance 1Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report "The Facility Representative Program Performance Indicators (PIs) Quarterly Report is attached, covering the period from January 2000 to March 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, DOE-STD-1 063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definitions of the PIs from the Standard are also attached for your use in evaluating the data." 1Q CY2000, Facility Representative Program Performance Indicators

263

4Q CY2002 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 (PDF), Facility Representative Program Performance 2 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (Pis) Quarterly Report Covering the Period from October to December 2002. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. The format of the report is changed from past reports. Information will now be provided according to the major offices having field or site office Facility Representative programs: National Nuclear Security Administration (NNSSA), the Office of

264

3Q CY2007 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2007 (PDF), Facility Representative Program Performance 3Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2007. Data for these indicators are gathered by Field elements quarterly per Department of Energy (DOE-STD-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR program. A summary of this quarter 's data concluded: 3Q CY2007, Facility Representative Program Performance Indicators More Documents & Publications 2Q CY2009 (PDF), Facility Representative Program Performance Indicators

265

Oil-Well Fire Fighting  

Science Conference Proceedings (OSTI)

... Oil Well Fire Fighting. NIST fire Research NIST Fire Research 2 Oil Well Fire Fighting RoboCrane Model Oil Well Fire Fighting Working Model.

2011-08-25T23:59:59.000Z

266

Simulating a Nationally Representative Housing Sample Using EnergyPlus  

SciTech Connect

This report presents a new simulation tool under development at Lawrence Berkeley National Laboratory (LBNL). This tool uses EnergyPlus to simulate each single-family home in the Residential Energy Consumption Survey (RECS), and generates a calibrated, nationally representative set of simulated homes whose energy use is statistically indistinguishable from the energy use of the single-family homes in the RECS sample. This research builds upon earlier work by Ritchard et al. for the Gas Research Institute and Huang et al. for LBNL. A representative national sample allows us to evaluate the variance in energy use between individual homes, regions, or other subsamples; using this tool, we can also evaluate how that variance affects the impacts of potential policies. The RECS contains information regarding the construction and location of each sampled home, as well as its appliances and other energy-using equipment. We combined this data with the home simulation prototypes developed by Huang et al. to simulate homes that match the RECS sample wherever possible. Where data was not available, we used distributions, calibrated using the RECS energy use data. Each home was assigned a best-fit location for the purposes of weather and some construction characteristics. RECS provides some detail on the type and age of heating, ventilation, and air-conditioning (HVAC) equipment in each home; we developed EnergyPlus models capable of reproducing the variety of technologies and efficiencies represented in the national sample. This includes electric, gas, and oil furnaces, central and window air conditioners, central heat pumps, and baseboard heaters. We also developed a model of duct system performance, based on in-home measurements, and integrated this with fan performance to capture the energy use of single- and variable-speed furnace fans, as well as the interaction of duct and fan performance with the efficiency of heating and cooling equipment. Comparison with RECS revealed that EnergyPlus did not capture the heating-side behavior of heat pumps particularly accurately, and that our simple oil furnace and boiler models needed significant recalibration to fit with RECS. Simulating the full RECS sample on a single computer would take many hours, so we used the 'cloud computing' services provided by Amazon.com to simulate dozens of homes at once. This enabled us to simulate the full RECS sample, including multiple versions of each home to evaluate the impact of marginal changes, in less than 3 hours. Once the tool was calibrated, we were able to address several policy questions. We made a simple measurement of the heat replacement effect and showed that the net effect of heat replacement on primary energy use is likely to be less than 5%, relative to appliance-only measures of energy savings. Fuel switching could be significant, however. We also evaluated the national and regional impacts of a variety of 'overnight' changes in building characteristics or occupant behavior, including lighting, home insulation and sealing, HVAC system efficiency, and thermostat settings. For example, our model shows that the combination of increased home insulation and better sealed building shells could reduce residential natural gas use by 34.5% and electricity use by 6.5%, and a 1 degree rise in summer thermostat settings could save 2.1% of home electricity use. These results vary by region, and we present results for each U.S. Census division. We conclude by offering proposals for future work to improve the tool. Some proposed future work includes: comparing the simulated energy use data with the monthly RECS bill data; better capturing the variation in behavior between households, especially as it relates to occupancy and schedules; improving the characterization of recent construction and its regional variation; and extending the general framework of this simulation tool to capture multifamily housing units, such as apartment buildings.

Hopkins, Asa S.; Lekov, Alex; Lutz, James; Rosenquist, Gregory; Gu, Lixing

2011-03-04T23:59:59.000Z

267

Facility Representative of the Year Award | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Representative of the Year Award Facility Representative of the Year Award Facility Representative of the Year Award Departmental Award Program administered by the Office of Chief Information Officer The Facility Representative Award Program is a special award designed to recognize superior or exemplary service by a Facility Representative over a period of one year. This special award program has been established in accordance with the requirements of Department of Energy (DOE) Order 331.1C, Employee Performance Management and Recognition Program. Facility Representative of the Year Award Responsible Contacts Lorrenda Buckner HUMAN RESOURCES SPECIALIST (PERFORMANCE MANAGEMENT) E-mail lorrenda.buckner@hq.doe.gov Phone 202-586-8451 More Documents & Publications Safety System Oversight Annual Award

268

Facility Representative of the Year Award | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Representative of the Year Award Facility Representative of the Year Award Facility Representative of the Year Award Departmental Award Program administered by the Office of Chief Information Officer The Facility Representative Award Program is a special award designed to recognize superior or exemplary service by a Facility Representative over a period of one year. This special award program has been established in accordance with the requirements of Department of Energy (DOE) Order 331.1C, Employee Performance Management and Recognition Program. Facility Representative of the Year Award Responsible Contacts Lorrenda Buckner HUMAN RESOURCES SPECIALIST (PERFORMANCE MANAGEMENT) E-mail lorrenda.buckner@hq.doe.gov Phone 202-586-8451 More Documents & Publications Safety System Oversight Annual Award

269

1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 1999 FACILITY REPRESENTATIVE CONFERENCE June 21 - 25, 1999 The Department of Energy will host the Facility Representative Annual Meeting on June 21-25, 1999 at the Alexis Park Hotel in Las Vegas, Nevada. The meeting will give Facility Representatives and line management the opportunity to share lessons learned, and to discuss upcoming program improvements. There is no cost for the meeting, however, rooms reserved at the government rate are limited so if you are planning on attending, please make reservations as soon as possible. The hotel phone number is 1-800-453-8000. For more information, please contact Joe Hassenfeldt, Facility Representative Program Manager, FM-10, at 202-586-1643." Microsoft Word - Document1

270

2Q CY2002 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2002 (PDF), Facility Representative Program Performance 2Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from April to June 2002. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standards , DOE-STD-1063-2000, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definition of the PIs from the Standard are also attached for your use in evaluating the data. Overall, the percentage of fully qualified Facility Representatives increased to 80% last quarter, from 78% the previous quarter , and

271

1Q CY2000, Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May May 9,2000 MEMORANDUM FOR DISTRIBUTION FROM: .yc,..,%$'! L.W.T oseph Arango, Facl ity Representative Program Manager (S-3.1) SUBJECT: Facility Representative Program Performance Indicators Quarterly Report The Facility Representative Program Performance Indicators (PIs) Quarterly Report is attached, covering the period from January 2000 to March 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, DOE-STD-1 063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definitions of the PIs from the Standard are also attached for your use in evaluating the data. You will note that the indicators show the attrition of five Facility Representatives from the program during this reporting period. Of those five, two were promoted

272

4Q CY2001 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2001 (PDF), Facility Representative Program Performance 4Q CY2001 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2001 (PDF), Facility Representative Program Performance Indicators Quarterly Report The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from October to December 2001. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standards , DOE-STD-1063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definition of the PIs from the Standard are also attached for your use in evaluating the data 4Q CY2001, Facility Representative Program Performance Indicators More Documents & Publications

273

2Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2005 (PDF), Facility Representative Program Performance 2Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. As of June 30,2005, 97% of all FRs were fully qualified, down from 88% the previous quarter, but exceeding the DOE goal of 80%. Eighteen of 27 reporting sites meet the goal of FR qualifications. 2Q CY2005, Facility Representative Program Performance Indicators

274

1Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1Q CY2011 (PDF), Facility Representative Program Performance 1Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the Period January through March 2011. Data for these indicators were gathered by Field Elements per Department of Energy's (DOE) Technical Standard (STD) 1063-2011, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. This report reflects changes in DOE STD 1063-2011 that deleted one indicator and changed the way two others are calculated. The changes are discussed below. Facility Representative Program Performance Indicators for January - March

275

3Q CY2002 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2002 (PDF), Facility Representative Program Performance 3Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from July to September 2002. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standards , DOE-STD-1063-2000, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definition of the PIs from the Standard are also attached for your use in evaluating the data. The percentage of fully qualified Facility Representatives in the DOE complex

276

October 2010, Facility Representative Qualification Standard Reference Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Facility Representative Qualification Standard Reference Guide OCTOBER 2010 Table of Contents i LIST OF FIGURES ..................................................................................................................... iii LIST OF TABLES ........................................................................................................................ v ACRONYMS ................................................................................................................................ vi PURPOSE ...................................................................................................................................... 1 SCOPE ........................................................................................................................................... 1

277

Herbert Richardson: Before The U.S. House of Representatives...  

NLE Websites -- All DOE Office Websites (Extended Search)

Richardson: Before The U.S. House of Representatives Committee on Energy and Commerce Subcommittee on Oversight and Investigations Herbert Richardson: Before The U.S. House of...

278

Statement of Patricia Hoffman Before the US House of Representatives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Energy and Power (May 9, 2012) Statement of Patricia Hoffman Before the US House of Representatives Energy and Commerce Subcommittee on Energy and Power (May 9, 2012)...

279

Statement of Patricia Hoffman Before the US House of Representatives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Water Development (March 27, 2012) Statement of Patricia Hoffman Before the US House of Representatives Appropriations Subcommittee on Energy and Water Development (March...

280

Microsoft Word - 2.24 Safety Advisory Committee Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

The SAC Representative is expected to: * Possess an understanding of Integrated Safety Management. * Communicate regularly with senior division management and other division...

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Economic Analysis of a Representative Deep-Water Gas Production ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration Natural Gas 1998: Issues and Trends 181 Appendix C Economic Analysis of a Representative Deep-Water Gas Production Project

282

Reference Buildings by Climate Zone and Representative City:...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications Reference Buildings by Climate Zone and Representative City: 2A Houston, Texas Reference Buildings by Building Type: Small Hotel Reference Buildings by Climate Zone...

283

Wellness counseling appointments: To schedule an appointment with a wellness  

E-Print Network (OSTI)

Wellness counseling appointments: To schedule an appointment with a wellness counselor you may call, email, or simply stop by the Center for Student Wellness to leave a note for a wellness counselor-304-5564 (p) 212-304-5560 (p) 212-544-1967 (f) Email: studentwellness@columbia.edu Wellness information

Grishok, Alla

284

Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology,  

Open Energy Info (EERE)

Salt Wells Area (Nevada Bureau of Mines and Geology, Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Development Drilling Activity Date 2005 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis AMP Resources, LLC drilled one of the first operating wells, Industrial Production Well PW-2, in the spring of 2005 under geothermal project area permit #568. Notes The well was completed to a depth of 143.6 m and a peak temperature of 145°C, as indicated by static temperature surveys. Wellhead temperatures at PW-2 were 140°C at a flow rate of 157.7 liters per minute, and no

285

Complete genome sequence of Tolumonas auensis type strain (TA 4T)  

Science Conference Proceedings (OSTI)

Tolumonas auensis Fischer-Romero et al. 1996 is currently the only validly named species of the genus Tolumonas in the family Aeromonadaceae. The strain is of interest because of its ability to produce toluene from phenylalanine and other phenyl precursors, as well as phenol from tyrosine. This is of interest because toluene is normally considered to be a tracer of anthropogenic pollution in lakes, but T. auensis represents a biogenic source of toluene. Oth- er than Aeromonas hydrophila subsp. hydrophila, T. auensis strain TA 4T is the only other member in the family Aeromonadaceae with a completely sequenced type-strain genome. The 3,471,292 bp chromosome with a total of 3,288 protein-coding and 116 RNA genes was sequenced as part of the DOE Joint Genome Institute Program JBEI 2008.

Chertkov, Olga [Los Alamos National Laboratory (LANL); Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Berry, Alison M [California Institute of Technology, University of California, Davis; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Schmutz, Jeremy [Stanford University; Brettin, Thomas S [ORNL; Larimer, Frank W [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Beller, Harry R. [Lawrence Berkeley National Laboratory (LBNL); Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

2011-01-01T23:59:59.000Z

286

Complete genome sequence of Tolumonas auensis type strain (TA 4T)  

Science Conference Proceedings (OSTI)

Tolumonas auensis (Fischer-Romero et al. 1996) is currently the only validly named species of the genus Tolumonas in the family Aeromonadaceae. The strain is of interest because of its ability to produce toluene from phenylalanine and other phenyl precursors, as well as phenol from tyrosine. This is of interest because toluene is normally considered to be a tracer of anthropogenic pollution in lakes, but T. auensis represents a biogenic source of toluene. Other than Aeromonas hydrophila subsp. hydrophila, T. auensis strain TA 4T is the only other member in the family Aeromonadaceae with a completely sequenced type-strain genome. The 3,471,292-bp chromosome with a total of 3,288 protein-coding and 116 RNA genes was sequenced as part of the DOE Joint Genome Institute Program JBEI 2008.

Chertkov, Olga; Copeland, Alex; Lucas1, Susa; Lapidus, Alla; Berry, KerrieW.; Detter, JohnC.; Glavina Del Rio, Tijana; Hammon, Nancy; Dalin, Eileen; Tice, Hope; Pitluck, Sam; Richardson, Paul; Bruce, David; Goodwin, Lynne; Han, Cliff; Tapia, Roxanne; Saunders, Elizabeth; Schmutz, Jeremy; Brettin, Thomas; Larimer, Frank; Land, Miriam; Hauser, Loren; Spring, Stefan; Rohde, Manfred; Kyrpides, NikosC.; Ivanova, Natalia; Göker, Markus; Beller, HarryR.; Klenk, Hans-Peter; Woyke, Tanja

2011-10-04T23:59:59.000Z

287

Ultra Thin Quantum Well Materials  

Science Conference Proceedings (OSTI)

This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

Dr Saeid Ghamaty

2012-08-16T23:59:59.000Z

288

Ultra Thin Quantum Well Materials  

DOE Green Energy (OSTI)

This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

Dr Saeid Ghamaty

2012-08-16T23:59:59.000Z

289

Perforating devices for use in wells  

DOE Patents (OSTI)

The perforating device for use in completing a well includes a case, an explosive charge contained in the case, and a generally bowl-shaped liner. The liner is positioned adjacent the explosive charge and has non-uniforrn thickness along its length. The liner further includes a protruding portion near its tip. In another configuration, the liner includes a hole near its tip to expose a portion of the explosive charge.

Jacoby, Jerome J. (Grass Valley, CA); Brooks, James E. (Manvel, TX); Aseltine, Clifford L. (late of Houston, TX)

2002-01-01T23:59:59.000Z

290

DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS  

SciTech Connect

The development work during this quarter was focused in the test of the wireless gauge in a well. The tool was sent to Halliburton for a test. The company indicated that the test well was not available for 4 months and the company was not able to schedule a test of the wireless gauge in its test well. The tool was returned to Tubel Tech's facility in The Woodlands. Tubel Tech is looking for a new test well to deploy the wireless gauge to complete the requirements for the DOE.

Paul Tubel

2005-05-08T23:59:59.000Z

291

Representing a robotic domain using temporal description logics  

Science Conference Proceedings (OSTI)

A temporal logic for representing and reasoning on a robotic domain is presented. Actions are represented by describing what is true while the action itself is occurring, and plans are constructed by temporally relating actions and world states. The ... Keywords: Action Representation, Description Logic, Robotics, Temporal Logic

Alessandro Artale; Enrico Franconi

1999-04-01T23:59:59.000Z

292

4Q CY2004 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 (PDF), Facility Representative Program Performance 4 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from October to December 2004. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the FR program. As of December 31, 2004, 86% of all FRs were fully qualified,down from 89% the previous quarter, and exceeding the DOE goal of 80%. Several sites added new FRs or switched FRs from their exisiting facilities to new facilities, reducing the overall qualification rate.

293

2Q CY2004 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2004 (PDF), Facility Representative Program Performance 2Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from April to June 2004. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the FR program. As of June 30, 2004, 89% of all FRs were fully qualified , exceeding the DOE goal of 80%, but down slightly from the previous quarter. Twenty of 28 reporting sites meet the goal for FR qualifications. Overall FR staffing is at 85% of the levels needed per the staffing

294

3Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2005 (PDF), Facility Representative Program Performance 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. As of September 30,2005, 84% of all FRs were fully qualified , down from 87% the previous quarter, but exceeding the DOE goal of 80%. Several sites shifted fully-qualifed FRs to new facilities, thus requiring new qualifications. Although the overall percentage of fully qualified FRS

295

3Q CY2004 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2004 (PDF), Facility Representative Program Performance 3Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from July to September 2004. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the FR program. As of September 30, 2004, 89% of all FRs were fully qualified, the same as last quarter, and exceeding the DOE goal of 80%. Twenty of 28 reporting sites meet the goal for FR qualifications. Overall FR stadding is at 85% of the levels needed per the staffing analysis methodology in

296

2Q CY2009 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2009 (PDF), Facility Representative Program Performance 2Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2009. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 77% Fully Qualified (last quarter was 78%) 90% Staffing Level ( last Quarter was 90%); 45% Time Spent in the Field (DOE goal is>40%); and 73% Time Spent in Oversight Activites (DOE Goal is > 65%)"

297

4Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2011 (PDF), Facility Representative Program Performance 4Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October through December 2011. Data for these indicators were gathered by field elements per Department of Energy (DOE) Technical Standard 1063-2011 , Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report include: FR Staffing/Qualification/Oversight Data: * DOE was staffed at 179 FR Full Time Equivalents (FTE), which is 92 percent of the full staffing level (DOE goal is 100 percent). Four FRs left due to transfer,

298

4Q CY2007 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2007 (PDF), Facility Representative Program Performance 4Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2007. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 83% Fully Qualified (last Quarter was 82%) 85% Staffing Level (last Quarter was 93%) 45% Time Spent in the Field (DOE goal is >40%) 73% Time Spent in Oversight Activities (DOE Goal is> 65%)"

299

1Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 (PDF), Facility Representative Program Performance 6 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. As of March 31,2006 81% of all FRs were fully qualified,up from 78% the previous quarter, and just above the DOE goal of 80%. To assist site offices in continuing to meet the qualification goal, there will be two focused training sessions for FR candidates in the coming months. These

300

2Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2011 (PDF), Facility Representative Program Performance 2Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period April through June 20 1 1. Data for these indicators were gathered by Field Elements per Department of Energy (DOE) Technical Standard (STD) 1063-20 1 1, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report: FR Staffing/Qualification/Oversight data DOE was staffed at 180 FR Full Time Equivalents (FTEs), which is 9 1 percent of the full staffing level (DOE goal is 100 percent).

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

2Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Q CY2010 (PDF), Facility Representative Program Performance Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the highlight of, and announces the availablity on-line of, the Facility Representative (FR) Program Performance Indicators are gathered by Field elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. This memorandum also announces that Mr. James Heffner has turned over FR Program Manager duties to Mr. Earl Huges. Mr. Heffner is assuming expanded team leader duties over several additional programs within the

302

4Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2005 (PDF), Facility Representative Program Performance 4Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. As of December 31, 2005 78% of all FRs were fully qualified , down from the 84% the previous quarter, and below the DOE goal of 80%. Site offices hired 11 new FRs in the quarter and several sites moved FRs to new facilities, thus requiring new qualifications.

303

1Q CY2009 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1Q CY2009 (PDF), Facility Representative Program Performance 1Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2009. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 78% Fully Qualified ( last Quarter was 76%) 90% Staffing Level ( last Quarter was 89%) 47% Time Spent in the Field (DOE goal is>40%) 74% Time Spent in Oversight Activites (DOE Goal is>65%)"

304

Fluid Flow Model Development for Representative Geologic Media | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Fluid Flow Model Development for Representative Geologic Media Clay and granitic geologic rock units are potential host media for future repositories for used nuclear fuel and high level waste. This report addresses the representation of flow in these two media within numerical process models. Discrete fracture network (DFNs) models are an approach to representing flow in fractured granite that explicitly represents the geometry and flow properties of individual fractures. New DFN generation and computational grid generation methods have been developed and tested. Mesh generation and the generation of flow streamlines within the DFN are also included. Traditional form of Darcy's law is not adequate

305

Reference Buildings by Climate Zone and Representative City: 8 Fairbanks,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Zone and Representative City: 8 Climate Zone and Representative City: 8 Fairbanks, Alaska Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_8a_usa_ak_fairbanks_post1980_v1.3_5.0.zip refbldg_8a_usa_ak_fairbanks_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 3A Atlanta, Georgia Reference Buildings by Climate Zone and Representative City: 6B Helena, Montana Reference Buildings by Building Type: Secondary school

306

2Q CY2012 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2012 (PDF), Facility Representative Program Performance 2Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April through June 2012. Data for these indicators were gathered by field elements per Department of Energy (DOE) Technical Standard 1063-2011, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report include: FR Staffing/Qualification/Oversight Data * DOE was staffed at 176 FR Full Time Equivalents (FTE), which is 95 percent of the full staffing level (DOE goal is 100 percent). This staff reflects a

307

4Q CY2000, Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Department of Energy Washington, DC 20585 February 26,2001 MEMORANDUM FOR DISTRIBUTION FROM: seph Arango, Facility Representative Program Manager (S-3.1) SUBJECT: Facility Representative Program Performance Indicators Quarterly Report The Facility Representative Program Performance Indicators Quarterly Report is attached, covering the period from October to December 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, 063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definitions of the PIs from the Standard are also attached for your use in evaluating the data. I intend to continue to provide this summary information to you quarterly. These provide

308

4Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2010 (PDF), Facility Representative Program Performance 4Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period October through December 2010. Data for these indicators were gathered by Field Elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report are presented below: FR Staffing/Qualification/Oversight Data * DOE was staffed at 184 FR Full Time Equivalents (FTEs) which is 92

309

4Q CY2008 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2008 (PDF), Facility Representative Program Performance 4Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2008. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 76% Fully Qualified ( last Quarter was 80%) 89% Staffing Level (last Quarter was 89%) 44% Time Spent in the Field ( Department of Energy)(DOE) goal is > 40%) 73% Time Spent in Oversight Activites (DOE Goal is> 65%)"

310

Well-pump alignment system  

DOE Patents (OSTI)

An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

Drumheller, Douglas S. (Cedar Crest, NM)

1998-01-01T23:59:59.000Z

311

Downhole Power Generation and Wireless Communications for Intelligent Completions Applications  

SciTech Connect

Tubel Tech has been working with the DoE Rocky Mountain test center to create a CRADA which will allow Tubel Tech to test its wireless gauge in a well at the test center. The CRADA agreement should be completed by the next quarter and Tubel Tech expects to perform the final test on this project during the next quarter as well. The wireless gauge has not been modified or upgraded during this report period.

Paul Tubel

2005-11-07T23:59:59.000Z

312

Wellness Offerings September 17, 2009  

E-Print Network (OSTI)

Wellness Offerings September 17, 2009 Vendor Health Risk Assessment Online Content and Decision (Wellness Partners: American Specialty Health) !" !" !" !" !" !" !" !" Blue Shield of CA !" !" !" !" !" !" !" !" CIGNA (Wellness and DM Partner: Healthways) !" !" !" ! HealthNet !" !" !" ! Kaiser

Kay, Mark A.

313

RMOTC - Testing - Openhole Logging Well  

NLE Websites -- All DOE Office Websites (Extended Search)

Openhole Logging Well RMOTC Openhole Logging Well RMOTC has drilled a vertical well that is specifically designated for openhole logging tests. It was drilled to 5,450 feet and has...

314

Well Permits (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

Well permits are required for the installation of wells in private and public space. Wells are defined as any trest hole, shaft, or soil excavation created by any means including, but not limited...

315

Tight gas sands study breaks down drilling and completion costs  

Science Conference Proceedings (OSTI)

Given the high cost to drill and complete tight gas sand wells, advances in drilling and completion technology that result in even modest cost savings to the producer have the potential to generate tremendous savings for the natural gas industry. The Gas Research Institute sponsored a study to evaluate drilling and completion costs in selected tight gas sands. The objective of the study was to identify major expenditures associated with tight gas sand development and determine their relative significance. A substantial sample of well cost data was collected for the study. Individual well cost data were collected from nearly 300 wells in three major tight gas sand formations: the Cotton Valley sand in East Texas, the Frontier sand in Wyoming, and the Wilcox sand in South Texas. The data were collected and organized by cost category for each formation. After the information was input into a data base, a simple statistical analysis was performed. The statistical analysis identified data discrepancies that were then resolved, and it helped allow conclusions to be drawn regarding drilling and completion costs in these tight sand formations. Results are presented.

Brunsman, B. (Gas Research Inst., Chicago, IL (United States)); Saunders, B. (S.A. Holditch Associates Inc., College Station, TX (United States))

1994-06-06T23:59:59.000Z

316

Productivity index of multilateral wells.  

E-Print Network (OSTI)

??In the history of petroleum science there are a vast variety of productivity solutions for different well types, well configurations and flow regimes. The main… (more)

Nunsavathu, Upender Naik.

2006-01-01T23:59:59.000Z

317

Connecticut Wells | Open Energy Information  

Open Energy Info (EERE)

Connecticut Wells Jump to: navigation, search Name Connecticut Wells Place Bethlehem, Connecticut Zip 6751 Sector Geothermal energy Product A Connecticut-based geothermal heat pump...

318

Wellness Program | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Wellness Program Workers spend 200 hours per month at work, and keeping a healthy work-life balance is essential. The Headquarters Wellness Program provides support and...

319

Statistical Analysis of Geothermal Wells in the United States  

Science Conference Proceedings (OSTI)

This study represents the first attempt to characterize the U.S. geothermal-hydrothermal resource from well data. The report contains field test data on more than 500 geothermal wells and includes statistical analyses of key well parameters. Utilities can use the information in planning and engineering analysis.

1987-07-24T23:59:59.000Z

320

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land  

Open Energy Info (EERE)

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Single-Well And Cross-Well Seismic Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Facility Representative Program Performance Indicators for October - December 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR DISTRIBUTION FOR DISTRIBUTION FROM: ANDREW C. LAWRENCE DIRECTOR OFFICE OF NUCLEAR SAFETY, QUALITY ASSURANCE AND ENVIRONMENT OFFICE OF HEALTH, SAFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, October-December (Fourth Quarter Calendar Year 2010) This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period October through December 2010. Data for these indicators were gathered by Field Elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report are presented below:

322

Radionuclide Interaction and Transport in Representative Geologic Media |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radionuclide Interaction and Transport in Representative Geologic Radionuclide Interaction and Transport in Representative Geologic Media Radionuclide Interaction and Transport in Representative Geologic Media The report presents information related to the development of a fundamental understanding of disposal-system performance in a range of environments for potential wastes that could arise from future nuclear fuel cycle alternatives. It addresses selected aspects of the development of computational modeling capability for the performance of storage and disposal options. Topics include radionuclide interaction with geomedia, colloid-facilitated radionuclide transport (Pu colloids), interaction between iodide (accumulate in the interlayer regions of clay minerals) and a suite of clay minerals, adsorption of uranium onto granite and bentonite,

323

NNSA Completes Successful Facilities and Infrastructure Recapitalization  

National Nuclear Security Administration (NNSA)

Completes Successful Facilities and Infrastructure Recapitalization Completes Successful Facilities and Infrastructure Recapitalization Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA Completes Successful Facilities and Infrastructure Recapitalization Program Press Release NNSA Completes Successful Facilities and Infrastructure Recapitalization

324

NIST Complete hemispherical infrared laser-based ...  

Science Conference Proceedings (OSTI)

... A custom instrument, the Complete Hemispherical infrared Laser-based Reflectometer ... using light input from a selection of lasers covering the ...

2010-10-05T23:59:59.000Z

325

Environmental Management Completed Projects 2005-Present  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Management Completed Projects 2005-Present December 7, 2012 U.S. Department of Energy Before, during, and after pictures of the K-33 building decontamination,...

326

Natural Gas Pipeline Projects Completed in 2003  

U.S. Energy Information Administration (EIA)

Table 2. Natural Gas Pipeline Projects Completed in 2003; Ending Region & State: Begins in State - Region: Pipeline/Project Name: FERC Docket ...

327

JOBAID-LAUNCHING AND COMPLETING ASSIGNED SURVEY  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this job aid is to guide users through the step-by-step process of launching and completing assigned surverys.

328

China National Machinery Industry Complete Engineering Corporation...  

Open Energy Info (EERE)

construction project, trading, military equipment manufacturing, real estate and waste-to-energy project development. References China National Machinery Industry Complete...

329

WELLNESS LIFESTYLE AGREEMENT COMMITMENT FORM  

E-Print Network (OSTI)

WELLNESS LIFESTYLE AGREEMENT COMMITMENT FORM The Wellness Lifestyle Program is located in Reynolds will actively participate in the wellness program to make Reynolds Hall a healthy and supportive place or more consequences: conduct referral; administrative removal from the Wellness Program and

Weston, Ken

330

WIPP Representative Selected For National Environmental Justice Advisory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Representative Selected For National Environmental Justice Representative Selected For National Environmental Justice Advisory Board WIPP Representative Selected For National Environmental Justice Advisory Board March 1, 2012 - 12:00pm Addthis Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. CARLSBAD, N.M. - Organizers say no similar opportunity or conference exists in America. In April, representatives from federal and state

331

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WIPP Representative for Cutting Travel Costs, Greenhouse WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 1, 2012 - 12:00pm Addthis Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. Secretary Chu presents the Secretary of Energy's Appreciation Award to Judy A. McLemore. WASHINGTON, D.C. - A representative of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., on Tuesday received the Secretary of Energy's Appreciation Award for her efforts to improve sustainability and reduce travel costs and the number of fleet vehicles. Judy A. McLemore, who works for URS Regulatory and Environmental Services, based in Carlsbad, was honored for helping advance DOE's management and

332

Reference Buildings by Climate Zone and Representative City: 7 Duluth,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Duluth, Minnesota Reference Buildings by Climate Zone and Representative City: 7 Duluth, Minnesota In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_7a_usa_mn_duluth_pre1980_v1.3_5.0.zip refbldg_7a_usa_mn_duluth_pre1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 3B Los Angeles, California Reference Buildings by Climate Zone and Representative City: 3C San Francisco, California Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois

333

WIPP Representative Selected For National Environmental Justice Advisory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WIPP Representative Selected For National Environmental Justice WIPP Representative Selected For National Environmental Justice Advisory Board WIPP Representative Selected For National Environmental Justice Advisory Board March 1, 2012 - 12:00pm Addthis Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. Rose Scott, a governmental affairs specialist with URS Washington TRU Solutions LLC, the DOE Waste Isolation Pilot Plant management and operating contractor, was selected for the National Environmental Justice Advisory Board. CARLSBAD, N.M. - Organizers say no similar opportunity or conference exists in America. In April, representatives from federal and state

334

Reference Buildings by Climate Zone and Representative City: 6A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A Minneapolis, Minnesota Reference Buildings by Climate Zone and Representative City: 6A Minneapolis, Minnesota In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_6a_usa_mn_minneapolis_post1980_v1.3_5.0.zip refbldg_6a_usa_mn_minneapolis_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 7 Duluth, Minnesota Reference Buildings by Climate Zone and Representative City: 5A Chicago, Illinois Reference Buildings by Climate Zone and Representative City: 5B Boulder,

335

Representing Drag on Unresolved Terrain as a Distributed Momentum Sink  

Science Conference Proceedings (OSTI)

In numerical weather prediction models, drag on unresolved terrain is usually represented by augmenting the boundary drag on the model atmosphere, in terms of an effective surface roughness length. But as is shown here, if a terrain-following ...

John D. Wilson

2002-05-01T23:59:59.000Z

336

Reference Buildings by Climate Zone and Representative City:...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Houston, Texas Reference Buildings by Climate Zone and Representative City: 2A Houston, Texas In addition to the ZIP file for each building type, you can directly view the...

337

Secretary Chu: China's Clean Energy Successes Represent a New...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at the National Press Club, U.S Energy Secretary Steven Chu said that the success of China and other countries in clean energy industries represents a new "Sputnik Moment" for...

338

2Q CY2007, Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0,2007 0,2007 M E M 0 R A N D ; p s ' X Z FROM: M RK B. WHI DEPARTMENTAL REPRESENTATIVE TO THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD OFFICE OF HEALTH, SAFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, April - June (2nd Quarter CY2007) Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2007. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 74% Fully Qualified (last Quarter was 72%) 94% Staffing Level (last Quarter was 9 1 %)

339

Well-pump alignment system  

DOE Patents (OSTI)

An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

Drumheller, D.S.

1998-10-20T23:59:59.000Z

340

All Complete Intersection Calabi-Yau Four-Folds  

E-Print Network (OSTI)

We present an exhaustive, constructive, classification of the Calabi-Yau four-folds which can be described as complete intersections in products of projective spaces. A comprehensive list of 921,497 configuration matrices which represent all topologically distinct types of complete intersection Calabi-Yau four-folds is provided and can be downloaded at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/Cicy4folds/index.html . The manifolds have non-negative Euler characteristics in the range 0 - 2610. This data set will be of use in a wide range of physical and mathematical applications. Nearly all of these four-folds are elliptically fibered and are thus of interest for F-theory model building.

James Gray; Alexander S. Haupt; Andre Lukas

2013-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Property:NEPA Completion Notes | Open Energy Information  

Open Energy Info (EERE)

Completion Notes Completion Notes Jump to: navigation, search Property Name NEPA Completion Notes Property Type Text Pages using the property "NEPA Completion Notes" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + 8/2: Data reviewed for completion C CA-017-05-051 + 8/9 Data entry complete. Attached FONSI does not seem to be fully related to the attached EA. The FONSI is for a geothermal well and slimhole exploration project and the EA is for a pipeline project. Need to add Public Health and Safety as a resource 8/22/13 - The 'FONSI/DR is actually for EA CA-170-02-15 Bassalt Canyon..dated Jan 2002 KW 8/26/13 - I deleted the FONSI from this page. Filename is incorrect for the file and stands as "CA-017-05-51-EA-DR -FONSI.pdf," Andrew Gentile. Unable to find Final EA or FONSI online. When RMP added, add "Inyo National Forest "Land and Resource Management Plan" (LRMP) 1988"

342

Raft River well stimulation experiments: geothermal reservoir well stimulation program  

DOE Green Energy (OSTI)

The Geothermal Reservoir Well Stimulation Program (GRWSP) performed two field experiments at the Raft River KGRA in 1979. Wells RRGP-4 and RRGP-5 were selected for the hydraulic fracture stimulation treatments. The well selection process, fracture treatment design, field execution, stimulation results, and pre- and post-job evaluations are presented.

Not Available

1980-08-01T23:59:59.000Z

343

Context-sensitive query auto-completion  

Science Conference Proceedings (OSTI)

Query auto completion is known to provide poor predictions of the user's query when her input prefix is very short (e.g., one or two characters). In this paper we show that context, such as the user's recent queries, can be used to improve the prediction ... Keywords: context-awareness, query auto-completion, query expansion

Ziv Bar-Yossef; Naama Kraus

2011-03-01T23:59:59.000Z

344

Introducing complete graphs in molecular connectivity studies  

Science Conference Proceedings (OSTI)

The mathematical model of the molecular polarizability of fifty-four organic compounds, of the lattice enthalpy of twenty metal halides, and of the partition coefficient of twenty-five organic compounds has been used to test four different complete graph, ... Keywords: Mathematical model, algorithms, chemical graphs, complete graphs, core electrons, molecular connectivity, polarizability

Lionello Pogliani

2005-01-01T23:59:59.000Z

345

Downhole Temperature Prediction for Drilling Geothermal Wells  

DOE Green Energy (OSTI)

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

346

Extreme overbalance perforating improves well performance  

Science Conference Proceedings (OSTI)

The application of extreme overbalance perforating, by Oryx Energy Co., is consistently outperforming the unpredictable, tubing-conveyed, underbalance perforating method which is generally accepted as the industry standard. Successful results reported from more than 60 Oryx Energy wells, applying this technology, support this claim. Oryx began this project in 1990 to address the less-than-predictable performance of underbalanced perforating. The goal was to improve the initial completion efficiency, translating it into higher profits resulting from earlier product sales. This article presents the concept, mechanics, procedures, potential applications and results of perforating using overpressured well bores. The procedure can also be used in wells with existing perforations if an overpressured surge is used. This article highlights some of the case histories that have used these techniques.

Dees, J.M.; Handren, P.J. [Oryx Energy Co., Dallas, TX (United States)

1994-01-01T23:59:59.000Z

347

Census Bureau. Field Experiences 2 Field Representative Experiences with the Current Population Survey  

E-Print Network (OSTI)

In September 2007, U.S. Census Bureau researchers completed a third pilot study on factors that contribute to gaining cooperation and successfully completing survey interviews. This pilot study was part of a larger effort to systematically study interview dynamics and how they affect respondent cooperation with Census Bureau surveys. The results of this study will add to extant data on two previous pilot studies on gaining cooperation behavior (Beck, Wright, & Petkunas, 2007). In 2006, we collected data from Program Coordinators, Program Supervisors, and Senior Field Representatives (SFRs) working on (Beck, Wright, & Petkunas, 2007). The current pilot study involved collecting information from a sample of Census Bureau survey interviewers, called Field Representatives (FRs), throughout the United States. Like these other “field ” employees, FRs work from one of the twelve Census Bureau Regional Offices, which are responsible for the management of field data collection. The FRs filled out a brief questionnaire asking them to list practices, techniques, and recommendations they felt were either successful or unsuccessful at gaining respondent cooperation with Current Population Survey (CPS) interviews. The CPS is a panel survey involving eight monthly interviews with each sampled household. Respondents complete four consecutive monthly interviews, rotate out

Jennifer Beck; Jennifer Beck

2008-01-01T23:59:59.000Z

348

Exploratory Well | Open Energy Information  

Open Energy Info (EERE)

Exploratory Well Exploratory Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploratory Well Details Activities (8) Areas (3) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Can provide core or cuttings Stratigraphic/Structural: Identify stratigraphy and structural features within a well Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole -Information about the heat source Dictionary.png Exploratory Well: An exploratory well is drilled for the purpose of identifying the

349

Optimization of fractured well performance of horizontal gas wells  

E-Print Network (OSTI)

In low-permeability gas reservoirs, horizontal wells have been used to increase the reservoir contact area, and hydraulic fracturing has been further extending the contact between wellbores and reservoirs. This thesis presents an approach to evaluate horizontal well performance for fractured or unfractured gas wells and a sensitivity study of gas well performance in a low permeability formation. A newly developed Distributed Volumetric Sources (DVS) method was used to calculate dimensionless productivity index for a defined source in a box-shaped domain. The unique features of the DVS method are that it can be applied to transient flow and pseudo-steady state flow with a smooth transition between the boundary conditions. In this study, I conducted well performance studies by applying the DVS method to typical tight sandstone gas wells in the US basins. The objective is to determine the best practice to produce horizontal gas wells. For fractured wells, well performance of a single fracture and multiple fractures are compared, and the effect of the number of fractures on productivity of the well is presented based on the well productivity. The results from this study show that every basin has a unique ideal set of fracture number and fracture length. Permeability plays an important role on dictating the location and the dimension of the fractures. This study indicated that in order to achieve optimum production, the lower the permeability of the formation, the higher the number of fractures.

Magalhaes, Fellipe Vieira

2007-08-01T23:59:59.000Z

350

Assessment of Injection Well Construction and Operation for Water Injection Wells and Salt Water Disposal Wells  

E-Print Network (OSTI)

Assessment of Injection Well Construction and Operation for Water Injection Wells and Salt Water Disposal Wells in the Nine Township Area ­ 2009 September 2009 Prepared by Delaware Basin Drilling from EPA to DOE dated 7/16/2009) 1 Solution Mining Practices 1 Recent Well Failures 2 The Mechanism

351

Estimating Well Costs for Enhanced Geothermal System Applications  

SciTech Connect

The objective of the work reported was to investigate the costs of drilling and completing wells and to relate those costs to the economic viability of enhanced geothermal systems (EGS). This is part of a larger parametric study of major cost components in an EGS. The possibility of improving the economics of EGS can be determined by analyzing the major cost components of the system, which include well drilling and completion. Determining what costs in developing an EGS are most sensitive will determine the areas of research to reduce those costs. The results of the well cost analysis will help determine the cost of a well for EGS development.

K. K. Bloomfield; P. T. Laney

2005-08-01T23:59:59.000Z

352

Uncertainty analysis of well test data  

E-Print Network (OSTI)

During a well test a transient pressure response is created by a temporary change in production rate. The well response is usually monitored during a relatively short period of time, depending upon the test objectives. Reservoir properties are determined from well test data via an inverse problem approach. Uncertainty is inherent in any nonlinear inverse problem. Unfortunately, well test interpretation suffers particularly from a variety of uncertainties that, when combined, reduce the confidence that can be associated with the estimated reservoir properties. The specific factors that have been analyzed in this work are: 1. Pressure noise (random noise) 2. Pressure drift (systematic variation) 3. Rate history effects Our work is based on the analysis of the effects of random pressure noise, the drift error, and the rate history on the estimation of typical reservoir parameters for two common reservoir models: A vertical well with a constant wellbore storage and skin in a homogeneous reservoir. A vertical well with a finite conductivity vertical fracture including wellbore effects in a homogeneous reservoir. This work represents a sensitivity study of the impact of pressure and rate uncertainty on parameter estimation and the confidence intervals associated with these results. In this work we statistically analyze the calculated reservoir parameters to quantify the impact of pressure and rate uncertainty on them.

Merad, Mohamed Belgacem

2002-01-01T23:59:59.000Z

353

Thermal well-test method  

DOE Patents (OSTI)

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, Chin-Fu (Albany, CA); Doughty, Christine A. (Berkeley, CA)

1985-01-01T23:59:59.000Z

354

Simulating a Nationally Representative Housing Sample Using EnergyPlus  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulating a Nationally Representative Housing Sample Using EnergyPlus Simulating a Nationally Representative Housing Sample Using EnergyPlus Title Simulating a Nationally Representative Housing Sample Using EnergyPlus Publication Type Report LBNL Report Number LBNL-4420E Year of Publication 2011 Authors Hopkins, Asa S., Alexander B. Lekov, James D. Lutz, and Gregory J. Rosenquist Subsidiary Authors Energy Analysis Department Pagination 55 Date Published March 1 Publisher Lawrence Berkeley National Laboratory City Berkeley ISBN Number LBNL-4420E Abstract This report presents a new simulation tool under development at Lawrence Berkeley National Laboratory (LBNL). This tool uses EnergyPlus to simulate each single-family home in the Residential Energy Consumption Survey (RECS), and generates a calibrated, nationally representative set of simulated homes whose energy use is statistically indistinguishable from the energy use of the single-family homes in the RECS sample. This research builds upon earlier work by Ritchard et al. for the Gas Research Institute and Huang et al. for LBNL. A representative national sample allows us to evaluate the variance in energy use between individual homes, regions, or other subsamples; using this tool, we can also evaluate how that variance affects the impacts of potential policies.

355

Indiana Memorial Union Wells Library  

E-Print Network (OSTI)

Franklin Hall Bryan Hall Law Indiana Memorial Union Jordan Hall Morrison Hall Wells Library Loop (0.5 miles) IMU to Greenhouse (0.3 miles) Business to Law School (0.75 miles) Wells Library to Morrison Hall (0.5 miles) Wells Library to Muisc Library (0.4 miles) #12;

Indiana University

356

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 - 12:19pm Addthis Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE’s vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were reduced by greater than 60 percent. Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE's vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were

357

Facility Representative Program Performance Indicators for April - June 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 , 2011 MEMORANDUM FOR DISTRIBUTION FROM: JAMES B. O'BRIEN SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, April - June 20 1 I This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period April through June 20 1 1. Data for these indicators were gathered by Field Elements per Department of Energy (DOE) Technical Standard (STD) 1063-20 1 1, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report: FR Staffin~/Qualification/Oversi~ht Data DOE was staffed at 180 FR Full Time Equivalents (FTEs), which is 9 1 percent of the full staffing level (DOE goal is 100 percent).

358

4Q CY2007, Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2008 6, 2008 MEMORANDUM FROM: DEPARTMENTAL REPRESENTATNE TO THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD OFFICE OF HEALTH, SAFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, October - December (4th Quarter CY2007) Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2007. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 83% Fully Qualified (last Quarter was 82%) 85% Staffing Level (last Quarter was 93%) 45% Time Spent in the Field (DOE goal is >40%)

359

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions June 29, 2012 - 12:19pm Addthis Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE’s vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were reduced by greater than 60 percent. Judy McLemore from the Waste Isolation Pilot Plant led efforts to reduce the DOE's vehicle fleet by 20 percent, improving sustainability and saving money. Under her leadership, greenhouse gas emissions associated with business travel were reduced by 63 percent and travel costs were

360

DOE Order Self Study Modules - DOE STD 1063, Facility Representatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

63-2011 63-2011 FACILITY REPRESENTATIVES DOE-STD-1063-2011 Familiar Level August 2011 1 DOE-STD-1063-2011 FACILITY REPRESENTATIVES FAMILIAR LEVEL OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to answer the following questions: 1. What are the purpose and scope of DOE-STD-1063-2011? 2. What are the definitions of the terms listed in section 3 of DOE-STD-1063-2011? 3. What are the duties, responsibilities, and authorities of facility representatives (FRs) and other key personnel? 4. What are the requirements of the FR program? 5. What are the Department of Energy (DOE)-wide FR performance indicators (PIs)? 6. How are DOE-wide FR PIs calculated? 7. What are the FR program objectives that should be measured by an FR program

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

SUBJECT: Guidance on Retention of Facility Representative Technical  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUBJECT: Guidance on Retention of Facility Representative Technical SUBJECT: Guidance on Retention of Facility Representative Technical Competence during Reductions in Force, 4/21/1998 SUBJECT: Guidance on Retention of Facility Representative Technical Competence during Reductions in Force, 4/21/1998 The Department's Revised Implementation Plan (IP) for Defense Nuclear Facilities Safety Board Recommendation 93-3 renews the Department's commitment to maintaining the technical capability necessary to safely manage and operate defense nuclear facilities. Retaining highly qualified employees in critical technical skills areas is vital to the maintenance of these technical capabilities. The Department has therefore committed in the revised R? to the development of a model that offices can use to proactively manage and preserve critical technical capabilities. During the

362

Facility Representative Program Performance Indicators for October-December 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 2012 MEMORANDUM FOR DISTRIBUTION FROM: JAMES B. O'BRIEN DIRECTOR ~ OFFICE OF :-IDC~AR AFETY OFFICE OF HEAL 'l;H, AFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, October- December 20 ll This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October through December 2011. Data for these indicators were gathered by field elements per Department of Energy (DOE) Technical Standard 1063-2011 , Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report include: FR Staffing/Qualification/Oversight Data * DOE was staffed at 179 FR Full Time Equivalents (FTE), which is 92 percent of the full

363

June 21, 1999 Memo, Facility Representative Program Status  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June June 21, 1999 MEMORANDUM FOR: Assistant Secretary for Defense Programs Assistant Secretary for Environmental Management Director, Office of Science Director, Office of Nuclear Energy, Science and Technology FROM: John Wilcynski, Director, Office of Field Integration SUBJECT: FACILITY REPRESENTATIVE PROGRAM STATUS Since September, 1993, the Office of Field Management has served as the Department's corporate advocate for the Facility Representative Program. The Facility Representative (FR) is a critical technical position serving as line management's "eyes and ears" for operational safety in our contractor-operated facilities. I recognize the importance of the FR Program, and commit the Office of Field Integration (FI) to its continued crosscutting support. The FI staff continues to work with your staff members and with the Defense Nuclear Facilities

364

Geopressured geothermal drilling and completions technology development needs  

DOE Green Energy (OSTI)

Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

Maish, A.B.

1981-03-01T23:59:59.000Z

365

Well Deepening | Open Energy Information  

Open Energy Info (EERE)

Well Deepening Well Deepening Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Deepening Details Activities (5) Areas (3) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Well Deepening:

366

Observation Wells | Open Energy Information  

Open Energy Info (EERE)

Observation Wells Observation Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Observation Wells Details Activities (7) Areas (7) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Total dissolved solids, fluid pressure, flow rates, and flow direction Thermal: Monitors temperature of circulating fluids Dictionary.png Observation Wells: An observation well is used to monitor important hydrologic parameters in a geothermal system that can indicate performance, longevity, and transient processes. Other definitions:Wikipedia Reegle

367

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells (Redirected from Development Wells) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir

368

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Production Wells:

369

Wellness Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program Wellness Program Workers spend 200 hours per month at work, and keeping a healthy work-life balance is essential. The Headquarters Wellness Program provides support and assistance to DOE employees through a variety of programs and resources geared toward enhancing their mental and physical well-being. Wellness programs include: Accommodations, the Child Development Centers, the Employee Assistance Program (EAP), the Forrestal (FOHO) and Germantown (GOHO) Fitness Centers, the Occupational Health Clinics and the DOE WorkLife4You Program. Programs Disability Services Child Development Centers Headquarters Employee Assistance Program (EAP) Headquarters Occupational Health Clinics Headquarters Accommodation Program DOE Worklife4You Program Health Foreign Travel Health & Wellness Tips

370

Tubular well tool receiving conduit  

SciTech Connect

In combination, a well packer and a tubular well tool receiving conduit are described which consists of: a well packer having an expandable and retractable anchoring teeth and an expandable and retractable seal spaced from the anchoring teeth, a tubular well conduit including, a first plurality of circularly extending grooves on the inside of the conduit for coacting with the anchoring teeth for supporting the well tool in the conduit, a second plurality of circularly extending grooves on the inside of the conduit and positioned for coacting with the expandable seal for providing multiple seal points with the seal.

Durst, D.G.; Morris, A.J.

1986-07-15T23:59:59.000Z

371

well records | OpenEI  

Open Energy Info (EERE)

well records well records Dataset Summary Description The Alabama State Oil and Gas Board publishes well record permits to the public as they are approved. This dataset is comprised of 50 recent well record permits from 2/9/11 - 3/18/11. The dataset lists the well name, county, operator, field, and date approved, among other fields. State's make oil and gas data publicly available for a range of topics. Source Geological Survey of Alabama Date Released February 09th, 2011 (3 years ago) Date Updated March 18th, 2011 (3 years ago) Keywords Alabama board gas oil state well records Data application/vnd.ms-excel icon Well records 2/9/11 - 3/18/11 (xls, 28.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License

372

Registering for DAU Online Course CLC 222, Contracting Officer's Representative Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Registering for DAU Online Course CLC 222, Contracting Officer's Representative Training Registering for DAU Online Course CLC 222, Contracting Officer's Representative Training To register for this, and any other DAU online course, you must first register in the Federal Acquisition Institute's Training Application System (FAITAS). Steps to register in FAITAS and to register for the course are below. Please note, you are required to provide your Social Security Number (SSN) to complete registration. This is the only time the SSN is required; this information is restricted and not available to unauthorized personnel. Please contact Linda Ott (linda.ott@hq.doe.gov, 202-287-5310) if you have any questions or concerns. If you encounter problems with

373

WHAT THE SMART GRID MEANS TO YOU AND THE PEOPLE YOU REPRESENT.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REPRESENT. REPRESENT. regulators consumer advocates environmental groups technology providers policymakers ONE of SIX SMART GRID STAKEHOLDER BOOKS A smarter grid can work harder and more efficiently to respond to the needs of all consumers, contain costs and enable clean-energy solutions at scale. regulators utilities 2 DISCLAIMER PRINTED IN THE UNITED STATES OF AMERICA. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Litos Strategic Communication, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information apparatus, product,

374

Fuel options from microalgae with representative chemical compositions  

DOE Green Energy (OSTI)

Representative species of microalgae are examined with respect to their reported chemical compositions. Each species is analyzed under a variety of culture conditions, with the objective being to characterize an optimum mixture of fuel products (e.g., methane, ethanol, methylester) which should be produced by the particular species. Historically the emphasis has been on the entire algal cell mass. Using the reported chemical composition for the representative species under specific sets of growth conditions, some conclusions can be drawn about the preferred fuel product conversion routes that could be employed. 10 references, 7 figures, 12 tables.

Feinberg, D. A.

1984-07-01T23:59:59.000Z

375

Success of openhole completions in the northeast Butterly Field, Southern Oklahoma  

SciTech Connect

Unconsolidated heavy oil sandstone reservoirs under active water drive typically involve production problems with produced sand and water channeling. Through case histories, this paper illustrates how openhole completions, in comparison to perforations, have resulted in a significant reduction in sand and water production while increasing oil production from the Basal Oil Creek sandstone. The performance of recently completed wells with openhole completions is examined and compared to several older wells which have been perforated.

Phillips, F.L.; Whitt, S.R.

1983-02-01T23:59:59.000Z

376

Results of acid treatments in hydrothermal direct heat experiment wells  

SciTech Connect

Matrix acid treatments have been employed in two low-to-moderate temperature hydrothermal wells with successful results. These two wells showed flow rate increases of 40% and 50%. The increased flow reduced the payback periods for the heating systems to nearly one-half of what they were before acidization. It is recommended that well designs in certain areas consider accommodating such acid stimulation techniques, if testing suggests they are warranted as a well completion tool.

Strawn, J.A.

1980-01-01T23:59:59.000Z

377

Completion methods in thick, multilayered tight gas sands  

E-Print Network (OSTI)

Tight gas sands, coal-bed methane, and gas shales are commonly called unconventional reservoirs. Tight gas sands (TGS) are often described as formations with an expected average permeability of 0.1mD or less. Gas production rates from TGS reservoirs are usually low due to poor permeability. As such, state-of-the-art technology must be used to economically develop the resource. TGS formations need to be hydraulically fractured in order to enhance the gas production rates. A majority of these reservoirs can be described as thick, multilayered gas systems. Many reservoirs are hundreds of feet thick and some are thousands of feet thick. The technology used to complete and stimulate thick, tight gas reservoirs is quite complex. It is often difficult to determine the optimum completion and stimulating techniques in thick reservoirs. The optimum methods are functions of many parameters, such as depth, pressure, temperature, in-situ stress and the number of layers. In multilayered reservoirs, it is important to include several sand layers in a single completion. The petroleum literature contains information on the various diversion techniques involved in the completion of these multilayered reservoirs. In this research, we have deduced and evaluated eight possible techniques that have been used in the oil and gas industry to divert multilayered fracture treatments in layered reservoirs. We have developed decision charts, economic analyses and computer programs that will assist completion engineers in determining which of the diversion methods are feasible for a given well stimulation. Our computer programs have been tested using case histories from the petroleum literature with results expressed in this thesis. A limited entry design program has also being developed from this research to calculate the fluid distribution into different layers when fracture treating multilayered tight gas reservoirs using the limited entry technique. The research is aimed at providing decision tools which will eventually be input into an expert advisor for well completions in tight gas reservoirs worldwide.

Ogueri, Obinna Stavely

2007-12-01T23:59:59.000Z

378

Environmental Management Completed Projects 2005-Present  

Energy.gov (U.S. Department of Energy (DOE))

This document provides the list of completed EM cleanup projects from various sites across the country from 2005 to present, along with the each project’s performance related to cost, schedule, and...

379

Princeton Plasma Physics Laboratory achieves milestone, completing...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the upgrade that will make the device the most advanced fusion facility of its kind on earth. Completion of the first quadrant entailed some anxious moments. Riding on the...

380

Querying partially sound and complete data sources  

Science Conference Proceedings (OSTI)

When gathering data from multiple data sources, users need uniform, transparent access to data. Also, when extracting data from several independent, often only partially sound and complete data sources, it is useful to present users with meta-information ...

Alberto O. Mendelzon; George A. Mihaila

2001-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Water Well Data Elements Well Header Tab Page  

E-Print Network (OSTI)

Water producing from Lithologic formation from which water is produced. at depth Top of water producing formation (ft) to Base of water producing formation (ft) Static water level Static water level below casingWater Well Data Elements Well Header Tab Page: This list contains location and identification

Frank, Thomas D.

382

Complete Reducibility in Euclidean Twin Buildings  

E-Print Network (OSTI)

Completely reducible subcomplexes of spherical buildings was defined by J.P. Serre and are used in studying subgroups of reductive algebraic groups. We begin the study of completely reducible subcomplexes of twin buildings and how they may be used to study subgroups of algebraic groups over a ring of Laurent polynomials and Kac-Moody groups by looking at the Euclidean twin building case.

Dawson, Denise K

2011-01-01T23:59:59.000Z

383

Foothills pipeline project prebuild being completed  

Science Conference Proceedings (OSTI)

September 1982 marked the completion of the 395-mile eastern leg of the Alaska Highway Gas Pipeline project; the western leg went into service in October 1981. The design capacities are, respectively, 1.075 billion and 240 million CF/day. Phase 11 of the project will consist of installing the northern, large-diameter sections in Alberta, British Columbia, the Yukon, and Alaska, along with additional facilities on the two completed legs.

Stewart, M.E.

1982-06-01T23:59:59.000Z

384

On the construction of generalized Grassmann representatives of state vectors  

E-Print Network (OSTI)

Generalized $Z_k$-graded Grassmann variables are used to label coherent states related to the nilpotent representation of the q-oscillator of Biedenharn and Macfarlane when the deformation parameter is a root of unity. These states are then used to construct generalized Grassmann representatives of state vectors.

M. El Baz; Y. Hassouni

2004-09-17T23:59:59.000Z

385

Can Regional Climate Models Represent the Indian Monsoon?  

Science Conference Proceedings (OSTI)

The ability of four regional climate models (RCMs) to represent the Indian monsoon was verified in a consistent framework for the period 1981–2000 using the 45-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) as ...

Philippe Lucas-Picher; Jens H. Christensen; Fahad Saeed; Pankaj Kumar; Shakeel Asharaf; Bodo Ahrens; Andrew J. Wiltshire; Daniela Jacob; Stefan Hagemann

2011-10-01T23:59:59.000Z

386

Identifying and representing elements of local contexts in namibia  

Science Conference Proceedings (OSTI)

In an attempt to represent local context in a 3D visualisation for rural elders in Namibia we have found major differences in the conceptualization of this context between external and local partners in the co-creation process. Through the evaluation ... Keywords: context, context-aware, indigenous knowledge, participatory design, re-contextualization

Kasper Rodil, Kasper Løvborg Jensen, Matthias Rehm, Heike Winschiers-Theophilus

2013-07-01T23:59:59.000Z

387

Representing digital assets usingMPEG-21 Digital Item Declaration  

Science Conference Proceedings (OSTI)

Various XML-based approaches aimed at representing compound digital assets have emerged over the last several years. Approaches that are of specific relevance to the digital library community include the Metadata Encoding and Transmission Standard (METS), ... Keywords: Digital Item, Digital asset, MPEG-21 DID, OAI-PMH, OpenURL

Jeroen Bekaert; Emiel De Kooning; Herbert de Sompel

2006-04-01T23:59:59.000Z

388

Responses to Questions from the Texas House of Representatives  

E-Print Network (OSTI)

to Texas. However, several specific factors place the future of transportation in the state at risk. Given1 Responses to Questions from the Texas House of Representatives Select Committee on Transportation Funding Prepared for The Honorable Eddie Rodriguez Vice Chair Select Committee on Transportation Funding

389

Session: Long Valley Exploratory Well  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Long Valley Exploratory Well - Summary'' by George P. Tennyson, Jr.; ''The Long Valley Well - Phase II Operations'' by John T. Finger; ''Geologic results from the Long Valley Exploratory Well'' by John C. Eichelberger; and ''A Model for Large-Scale Thermal Convection in the Long Valley Geothermal Region'' by Charles E. Hickox.

Tennyson, George P. Jr.; Finger, John T.; Eichelberger, John C.; Hickox, Charles E.

1992-01-01T23:59:59.000Z

390

Enhance the well stimulation learning curve  

Science Conference Proceedings (OSTI)

This article explains that well a well is stimulated to either overcome formation damage or compensate for naturally poor permeability. Regardless of the motivation, it's a complicated process that requires considerable advanced planning and organization if mishaps are to be avoided. Well stimulation should be divided into three distinctly separate states, each with its own set of requirements. Perhaps the most important and difficult of the three stages, particularly during this economically depressed period, is justification. Does the well's expected increase in productivity warrant stimulation costs. How reliable is the production increase estimate. The second state is the actual execution of the stimulation. Quality control-quality assurance programs should be intact and, again, accountability assigned. The third stage of the stimulation process is evaluation after completion. Systems should be examined for efficiency breakdowns. If so, they should be corrected to prevent future problems. It is often necessary to keep a close watch on the well's performance for a considerable length of time before the stimulation's impact can be accurately judged.

Not Available

1987-07-01T23:59:59.000Z

391

Boise geothermal injection well: Final environmental assessment  

DOE Green Energy (OSTI)

The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

NONE

1997-12-31T23:59:59.000Z

392

Thermal well-test method  

DOE Patents (OSTI)

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, C.F.; Doughty, C.A.

1984-02-24T23:59:59.000Z

393

OpenEI - well records  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm4320 en Alabama State Oil and Gas Board: Oil Well Records (2911 - 31811) http:en.openei.orgdatasetsnode469

The Alabama...

394

DOE Solar Decathlon: Wells Fargo  

NLE Websites -- All DOE Office Websites (Extended Search)

greenhouse gas emissions and building sustainably, Wells Fargo serves one in three households in the United States and has been widely recognized for sustainability leadership in...

395

Well drilling apparatus and method  

DOE Patents (OSTI)

Well drilling rates may be increased by impelling projectiles to fracture rock formations and drilling with rock drill bits through the projectile fractured rock.

Alvis, Robert L. (Albuquerque, NM); Newsom, Melvin M. (Albuquerque, NM)

1977-01-01T23:59:59.000Z

396

Characterization Well R-7 Geochemistry Report  

Science Conference Proceedings (OSTI)

This report provides analytical results for four groundwater-sampling rounds conducted at characterization well R-7. The goal of the characterization efforts was to assess the hydrochemistry and to determine if contaminants from Technical Area (TA)-2 and TA-21 of the Los Alamos National Laboratory (LANL or the Laboratory) are present in the regional aquifer in the vicinity of the well. Figure 1.0-1 shows the well's location in the narrow upper part of Los Alamos Canyon, between the inactive Omega West reactor and the mouth of DP Canyon. Well R-7 is in an excellent location to characterize the hydrology and groundwater chemistry in both perched groundwater and the regional aquifer near sites of known Laboratory effluent release, including radionuclides and inorganic chemicals (Stone et al. 2002, 72717). The Risk Reduction and Environmental Stewardship-Remediation (RRES-R) Program (formerly the Environmental Restoration [ER] Project) installed well R-7 as part of groundwater investigations to satisfy requirements of the ''Hydrogeologic Workplan'' (LANL 1998, 59599) and to support the Laboratory's ''Groundwater Protection Management Program Plan'' (LANL 1996, 70215). Well R-7 was designed primarily to provide geochemical or water quality and hydrogeologic data for the regional aquifer within the Puye Formation. This report also presents a geochemical evaluation of the analytical results for well R-7 and provides hydrogeochemical interpretations using analytical results for groundwater samples collected at the well. Discussion of other hydrogeochemical data collected within the east-central portion of the Laboratory, however, is deferred until they can be evaluated in the context of sitewide information collected from other RRES and Hydrogeologic Workplan characterization wells (R-8A, R-9, and R-9i). Once all deep groundwater investigations in the east-central portion of the Laboratory are completed, geochemical and hydrogeologic conceptual models for the Los Alamos Canyon watershed may be included in a groundwater risk analysis. These models will include an evaluation of potential contaminant transport pathways. Well R-7 was completed on March 9, 2001, with three screens (363.2 to 379.2 ft, 730.4 to 746.4 ft, and 895.5 to 937.4 ft). Screen No.2 was dry during characterization sampling. Four rounds of groundwater characterization samples, collected from a perched zone and the regional aquifer from depths of 378.0 ft (screen No.1) and 915.0 ft (screen No.3), were chemically characterized for radionuclides, metals and trace elements, major ions, high-explosive (HE) compounds, total organic carbon, dissolved organic carbon, organic compounds, and stable isotopes (H, N, and O). Although well R-7 is primarily a characterization well, its design and construction also meet the requirements of a Resource Conservation and Recovery Act (RCRA)-compliant monitoring well as described in the US Environmental Protection Agency (EPA) document ''RCRA Groundwater Monitoring: Draft Technical Guidance,'' November 1992, EPA 530-R-93- 001. Incorporation of this well into a Laboratory-wide groundwater-monitoring program will be considered, and more specifically evaluated (e.g., sampling frequency, analytes, etc.), when the results of the well R-7 characterization activities are comprehensively evaluated in conjunction with other groundwater investigations in the ''Hydrogeologic Workplan'' (LANL 1998, 59599).

P.Longmire; F.Goff

2002-12-01T23:59:59.000Z

397

Well production casing Brady No. 5 well, Geothermal Food Processors, Inc. , Fernley, Nevada. Falure analysis report  

DOE Green Energy (OSTI)

Failure of the casing of the Brady No. 5 resulted from severe external corrosion. The well is located in a mineral flat and it is proposed that during wet periods the exterior of the casing was exposed to aerated saturated chloride and/or sulfate salt solutions. These solutions appear to have completely destroyed the surface conductor and upper string casing and associated cements. The production casing then corroded until mechanical failure occurred.

Ellis, P.F.

1979-12-01T23:59:59.000Z

398

Rotating preventers; Technology for better well control  

Science Conference Proceedings (OSTI)

This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs.

Tangedahl, M.J.; Stone, C.R. (Signa Engineering Corp. (United States))

1992-10-01T23:59:59.000Z

399

Coiled tubing enables rapid CO{sub 2} completions  

Science Conference Proceedings (OSTI)

In the Bravo Dome field of northeastern New Mexico, Amoco has doubled their expected carbon dioxide (CO{sub 2}) production and reduced completion costs by 7.5% using coiled tubing in conjunction with other technologies. Amoco initially expected to produce an average 2.6 MMcfd per well. Instead, six months after completing the 31-well package, the company is producing an average 5.1 MMcfd. Important elements contributing cost and time savings on the project were: Log analysis to select perforations and help prevent water production, and lost circulation; the mobility and flexibility of coiled tubing; using cement for low-cost lost circulation control; using thermoplastic film to prevent proppant flowback; fracture designs optimized for each well; and forming an alliance between Amoco and vendors and developing of mutual trust. Amoco and other producing companies use about 95% of the CO{sub 2} produced at Amoco`s Bravo Dome field for enhanced oil recovery (EOR) projects in the Permian Basin area. Amoco sells 5% of the purest product to companies in the US food industry. While the low price of CO{sub 2}, about one-fourth that of methane, furnished part of the impetus for Amoco to implement the cost-cutting methods at Bravo Dome, the methods can be applied in many completion applications and are discussed in this paper.

Payton, R.; Baker, R.; Turner, D.; Bertrand, B.

1996-08-01T23:59:59.000Z

400

What's new in well control  

Science Conference Proceedings (OSTI)

Drillers know that the most important tools used in well control are preparation and knowledge. That fact is reinforced by government agency requirements for certification of responsible people on the rig, particularly in sensitive public areas like offshore waters. And existing problems like shallow gas blowouts and kick control in conventional wells have been complicated by industry's move to horizontal wells and underbalanced drilling. The International Association of Drilling Contractors (IADC) in the US and Europe is devoting a major effort to well control technology. It sponsored a comprehensive conference in Houston in November 1993, plus a well control trainer's Roundtable meeting in Houston in March. The IADC Well Control Conference for Europe is scheduled for June 8--10, 1994, in Stavanger, Norway, with an important 22-paper program. In this article, World Oil has selected several presentations from the two US IADC conferences noted above. These selections are noted by the authors as being of wide and current interest to the industry, they include: (1) horizontal well considerations, (2) a proposed new well killing method, (3) underbalanced drilling, (4) a new onsite simulator, and (5) IADC's school accreditation program. Summaries shown here cover only major topics. Original papers should be consulted for important details.

Snyder, R.E.

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Method for drilling directional wells  

Science Conference Proceedings (OSTI)

A method is described of locating a substantially horizontal bed of interest in a formation and maintaining a drill string therein during the drilling operation, said drill string including a measurement-while-drilling (MWD) electromagnetic propagation resistivity sensor, comprising the steps of: drilling a substantially vertical offset well in a formation having at least one selected substantially horizontal bed therein; measuring resistivity in the formation at the offset well to provide a first resistivity log as a function of depth; modeling the substantially horizontal bed to provide a modeled resistivity log indicative of the resistivity taken along the substantially horizontal bed, said modeling being based on said first resistivity log; drilling a directional well in said formation near said offset well, a portion of said directional well being disposed in said substantially horizontal bed; measuring resistivity in said directional well using the MWD electromagnetic propagation resistivity sensor to provide a second log of resistivity taken substantially horizontally; comparing said second log to said modeled log to determine the location of said directional well; and adjusting the directional drilling operation so as to maintain said drill string within said substantially horizontal bed during the drilling of said directional well in response to said comparing step.

Wu, Jianwu; Wisler, M.M.

1993-07-27T23:59:59.000Z

402

Square wells, quantum wells and ultra-thin metallic films  

E-Print Network (OSTI)

The eigenvalue equations for the energy of bound states of a particle in a square well are solved, and the exact solutions are obtained, as power series. Accurate analytical approximate solutions are also given. The application of these results in the physics of quantum wells are discussed,especially for ultra-thin metallic films, but also in the case of resonant cavities, heterojunction lasers, revivals and super-revivals.

Victor Barsan

2013-07-09T23:59:59.000Z

403

Livermore Site Office Facility Representative Program Self-Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPT-LSO-2011-001 ARPT-LSO-2011-001 Site: Livermore Site Office Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Livermore Site Office Facility Representative Program Self-Assessment Dates of Activity 01/24/2011 - 01/28/2011 Report Preparer Robert Freeman Activity Description/Purpose: This activity report documents the results of the Office of Health, Safety and Security's (HSS) review of and participation in the Livermore Site Office Self-Assessment of the Facility Representative (FR) Program. This self-assessment was led by the U.S. Department of Energy (DOE) Livermore Site Office (LSO) and conducted by LSO staff, HSS staff, National Nuclear Security Administration (NNSA) Office of the Chief of Defense Nuclear Safety (CDNS) staff, a peer from Los Alamos Site

404

Processes, data structures, and apparatuses for representing knowledge  

SciTech Connect

Processes, data structures, and apparatuses to represent knowledge are disclosed. The processes can comprise labeling elements in a knowledge signature according to concepts in an ontology and populating the elements with confidence values. The data structures can comprise knowledge signatures stored on computer-readable media. The knowledge signatures comprise a matrix structure having elements labeled according to concepts in an ontology, wherein the value of the element represents a confidence that the concept is present in an information space. The apparatus can comprise a knowledge representation unit having at least one ontology stored on a computer-readable medium, at least one data-receiving device, and a processor configured to generate knowledge signatures by comparing datasets obtained by the data-receiving devices to the ontologies.

Hohimer, Ryan E. (West Richland, WA); Thomson, Judi R. (Guelph, CA); Harvey, William J. (Richland, WA); Paulson, Patrick R. (Pasco, WA); Whiting, Mark A. (Richland, WA); Tratz, Stephen C. (Richland, WA); Chappell, Alan R. (Seattle, WA); Butner, R. Scott (Richland, WA)

2011-09-20T23:59:59.000Z

405

Lab completes Recovery Act-funded demolition  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act-funded demolition completed Recovery Act-funded demolition completed Lab completes Recovery Act-funded demolition The building was the largest of the 24 demolished at LANL's historic Technical Area 21. January 19, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Fred deSousa Communications Office (505) 665-3430

406

DOE | Office of Health, Safety and Security | 2012 Facility Representative,  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Facility Representative Office of Nuclear Safety Home Facility Representative Home Annual Facility Rep Workshop › 2012 › 2011 › 2010 › 2009 › 2008 › 2007 › 2006 › 2005 › 2004 › 2003 › 2002 › 2001 › 2000 DOE Safety Links › ORPS Info › Operating Experience › DOE Lessons Learned › Accident Investigation Assessment Tools › FR CRADs › Surveillance Guides › Manager's Guide for Safety and Health Subject Matter Links General Program Information › Program Mission Statement › Program Directives and Guidance › FR of the Year Award Program › FR of the Year Award › FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) FR Quarterly Performance Indicators Training & Qualification Information › Qualification Standards › Energy Online Courses

407

Domain assignments for FSSP representative set using DomainParser  

NLE Websites -- All DOE Office Websites (Extended Search)

Domain assignments for the FSSP representative set Domain assignments for the FSSP representative set The following are the domain assignments for the FSSP representative set (released on January 31, 2000, 1987 chains in total) using DomainParser. Each line shows a PDB entry (with a chain identifier if any), total number of residues, number of domains, and domain assignments. The result is obtained fully automatically without manual editing. 12asa 327 2 (33-86; 271-288) (4-32; 87-270; 289-330) 153l 185 1 16pk 415 2 (5-205; 409-419) (206-408) 16vpa 311 2 (47-130; 164-233; 324-349) (131-163; 234-323; 395-402) 1914 171 1 19hca 292 2 (45-107) (1-44; 108-292) 1a02f 53 1 1a02j 52 1 1a02n 280 2 (399-569) (570-678) 1a04a 205 2 (5-126) (127-216) 1a0aa 63 1 1a0ca 437 1 1a0fa 201 2 (1-81) (82-201) 1a0ha 159 1 1a0i 332 2 (2-239) (240-349)

408

Representative element modeling of fracture systems based on stochastic analysis  

DOE Green Energy (OSTI)

An important task associated with reservoir simulation is the development of a technique to model a large number of fractures with a single description. Representative elements must be developed before reservoir scale simulations can adequately address the effects of intersecting fracture systems on fluid migration. An effective element model will sharply reduce the cost and complexity of large scale simulations to bring these to manageable levels. Stochastic analysis is a powerful tool which can determine the hydraulic and transport characteristics of intersecting sets of statistically defined fractures. Hydraulic and transport characteristics are required to develop representative elements. Given an assumption of fully developed laminar flow, the net fracture conductivities and hence flow velocities can be determined from descriptive statistics of fracture spacing, orientation, aperture, and extent. The distribution of physical characteristics about their mean leads to a distribution of the associated conductivities. The variance of hydraulic conductivity induces dispersion into the transport process. The simplest of fracture systems, a single set of parallel fractures, is treated to demonstrate the usefulness of stochastic analysis. Explicit equations for conductivity of an element are developed and the dispersion characteristics are shown. The analysis reveals the dependence of the representative element properties on the various parameters used to describe the fracture system. 10 refs., 3 figs.

Clemo, T.M.

1986-01-01T23:59:59.000Z

409

Geothermal-well design handbook  

DOE Green Energy (OSTI)

A simplified process is presented for estimating the performance of geothermal wells which are produced by natural, flashing flows. The well diameter and depth, and reservoir conditions must be known; then it is possible to determine the total pressure drop in a flowing well, and therefore to find the fluid pressure, temperature, and steam quality at the wellhead. By applying the handbook process to several input data sets, the user can compile sufficient information to determine the interdependence of input and output parameters. (MHR)

Not Available

1982-02-01T23:59:59.000Z

410

Geothermal Well Site Restoration and Plug and Abandonment of Wells  

DOE Green Energy (OSTI)

A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana-the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete, utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports and procedures, daily workover and current conditions report, and cost and salvage reports. Site locations, grid maps, and photographs are provided.

Rinehart, Ben N.

1994-08-01T23:59:59.000Z

411

NP-complete Problems and Physical Reality  

E-Print Network (OSTI)

Can NP-complete problems be solved efficiently in the physical universe? I survey proposals including soap bubbles, protein folding, quantum computing, quantum advice, quantum adiabatic algorithms, quantum-mechanical nonlinearities, hidden variables, relativistic time dilation, analog computing, Malament-Hogarth spacetimes, quantum gravity, closed timelike curves, and "anthropic computing." The section on soap bubbles even includes some "experimental" results. While I do not believe that any of the proposals will let us solve NP-complete problems efficiently, I argue that by studying them, we can learn something not only about computation but also about physics.

Scott Aaronson

2005-02-12T23:59:59.000Z

412

Completion fluids: a generic overview. Part 2  

SciTech Connect

This work defines how clean completion fluids should be obtained onsite by implementing cleaner operational practices and using progressive solids removal steps, so that final fine filtration can be effective. Several current final filtration techniques are discussed and evaluated. Due to the variability in solids loading during completion operations, a number of solids removal steps are recommended to enhance the filtration process toward a solids-free system. In order of descending particle size removal, the equipment needed includes a shale shaker, settling tank, desilter, centrifugal separator, and final polishing filters. 25 references.

Ammerer, N.H.; Hashemi, R.; Jewell, J.E.

1983-06-01T23:59:59.000Z

413

Economic Recovery of Oil Trapped at Fan Margins Using Hig Angle Wells Multiple Hydraulic Fractures  

Science Conference Proceedings (OSTI)

The Yowlumne field is a giant field in the southern San Joaquin basin, Kern County, California. It is a deep (13,000 ft) waterflood operation that produces from the Miocene- aged Stevens Sand. The reservoir is interpreted as a layered, fan-shaped, prograding turbidite complex containing several lobe-shaped sand bodies that represent distinct flow units. A high ultimate recovery factor is expected, yet significant quantities of undrained oil remain at the fan margins. The fan margins are not economic to develop using vertical wells because of thinning pay, deteriorating rock quality, and depth. This project attempts to demonstrate the effectiveness of exploiting the northeast distal fan margin through the use of a high- angle well completed with multiple hydraulic- fracture treatments. A high-angle well offers greater pay exposure than can be achieved with a vertical well. Hydraulic-fracture treatments will establish vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at a cost of approximately two vertical wells. The near-horizontal well penetrated the Yowlumne sand; a Stevens sand equivalent, in the distal fan margin in the northeast area of the field. The well was drilled in a predominately westerly direction towards the interior of the field, in the direction of improving rock quality. Drilling and completion operations proved to be very challenging, leading to a number of adjustments to original plans. Hole conditions resulted in obtaining less core material than desired and setting intermediate casing 1200 ft too high. The 7 in. production liner stuck 1000 ft off bottom, requiring a 5 in. liner to be run the rest of the way. The cement job on the 5 in. liner resulted in a very poor bond, which precluded one of three hydraulic fracture treatments originally planned for the well. Openhole logs confirmed most expectations going into the project about basic rock properties: the formation was shaly with low porosities, and water saturations were in line with expectations, including the presence of some intervals swept out by the waterflood. High water saturations at the bottom of the well eliminated one of the originally planned hydraulic fracture treatments. Although porosities proved to be low, they were more uniform across the formation than expected. Permeabilities of the various intervals continue to be evaluated, but appear to be better than expected from the porosity log model derived in Budget Period One. The well was perforated in all pay sections behind the 5 in. liner. Production rates and phases agree nicely with log calculations, fractional flow calculations, and an analytical technique used to predict the rate performance of the well.

Laue, M.L.

1997-11-21T23:59:59.000Z

414

Comparison of Emperical Decline Curve Analysis for Shale Wells  

E-Print Network (OSTI)

This study compares four recently developed decline curve methods and the traditional Arps or Fetkovich approach. The four methods which are empirically formulated for shale and tight gas wells are: 1. Power Law Exponential Decline (PLE). 2. Stretched Exponential Decline (SEPD). 3. Duong Method. 4. Logistic Growth Model (LGM). Each method has different tuning parameters and equation forms. The main objective of this work is to determine the best method(s) in terms of Estimated Ultimate Recovery (EUR) accuracy, goodness of fit, and ease of matching. In addition, these methods are compared against each other at different production times in order to understand the effect of production time on forecasts. As a part of validation process, all methods are benchmarked against simulation. This study compares the decline methods to four simulation cases which represent the common shale declines observed in the field. Shale wells, which are completed with horizontal wells and multiple traverse highly-conductive hydraulic fractures, exhibit long transient linear flow. Based on certain models, linear flow is preceded by bilinear flow if natural fractures are present. In addition to this, linear flow is succeeded by Boundary Dominated Flow (BDF) decline when pressure wave reaches boundary. This means four declines are possible, hence four simulation cases are required for comparison. To facilitate automatic data fitting, a non-linear regression program was developed using excel VBA. The program optimizes the Least-Square (LS) objective function to find the best fit. The used optimization algorithm is the Levenberg-Marquardt Algorithm (LMA) and it is used because of its robustness and ease of use. This work shows that all methods forecast different EURs and some fit certain simulation cases better than others. In addition, no method can forecast EUR accurately without reaching BDF. Using this work, engineers can choose the best method to forecast EUR after identifying the simulation case that is most analogous to their field wells. The VBA program and the matching procedure presented here can help engineers automate these methods into their forecasting sheets.

Kanfar, Mohammed Sami

2013-08-01T23:59:59.000Z

415

Hydraulic-fracture stimulation treatments at East Mesa, Well 58-30. Geothermal-reservoir well-stimulation program  

DOE Green Energy (OSTI)

East Mesa Well 58-30 was selected for two stimulation treatments: a conventional hydraulic fracture in a deep, low permeability interval, and a dendritic fracture in a shallow, high permeability interval of completion. The well selection, pre-stimulation evaluation, fracture treatment design, and post-stimulation evaluation are presented.

Not Available

1981-02-01T23:59:59.000Z

416

Comprehensive study of LASL Well C/T-2 Roosevelt Hot Springs KGRA, Utah, and applications to geothermal well logging  

DOE Green Energy (OSTI)

Utah State Geothermal Well 9-1 in the Roosevelt Hot Springs KGRA, Beaver County, Utah, has been donated by Phillips Petroleum Company for calibration and testing of well-logging equipment in the hot, corrosive, geothermal environment. It is the second Calibration/Test Well (C/T-2) in the Geothermal Log Interpretation Program. A study of cuttings and well logs from Well C/T-2 was completed. This synthesis and data presentation contains most of the subsurface geologic information needed to effect the total evaluation of geophysical logs acquired in this geothermal calibration/test well, C/T-2.

Glenn, W.E.; Hulen, J.B.; Nielson, D.L.

1981-02-01T23:59:59.000Z

417

H. R. 4564: a bill to amend the Internal Revenue Code of 1954 to provide a deduction and special net operating loss rules with respect to certain losses on domestic crude oil, to increase tariffs on petroleum and petroleum products, to require the Strategic Petroleum Reserve to be filled with stripper well oil, and to eliminate certain restrictions on the sale of natural gas and on the use of natural gas and oil. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, April 10, 1986  

SciTech Connect

The Secure Energy Supply Act of 1986 amends the Internal Revenue Code of 1954. Title I provides a deduction and special net operating loss treatment for certain losses on crude oil. Title II increases tariffs on petroleum and petroleum products, the revenues of which will cover authorized refunds. Title III provides that only stripper well oil or oil exchanged for stripper well oil will be used to fill the Strategic Petroleum Reserve. Title IV removes wellhead price controls and repeals Natural Gas Act jurisdiction over certain first sales of natural gas. Later titles repeal certain restrictions on the use of natural gas and petroleum, repeal incremental pricing requirements, and promote flexibility in rescheduling or marking down troubled loans. The bill was referred to the House Committees on Ways and Means, Energy and Commerce, and Banking, Finance, and Urban Affairs.

Not Available

1986-01-01T23:59:59.000Z

418

Well servicing rig market report  

Science Conference Proceedings (OSTI)

This article profiles the well servicing industry, focusing on the problems facing the industry under currently depressed market conditions. The problems of rising operating costs, oil price uncertainty, and aging equipment are addressed specifically.

Killalea, M

1989-01-01T23:59:59.000Z

419

ADVANCED CEMENTS FOR GEOTHERMAL WELLS  

Science Conference Proceedings (OSTI)

Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further their deterioration was a major impediment in expediting the development of geothermal energy resources.

SUGAMA,T.

2007-01-01T23:59:59.000Z

420

Geothermal energy well casing seal  

SciTech Connect

A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water. The super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop steam generator-turbine-alternator combination for the beneficial generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water regenerated at the surface-located system is returned to the deep well pumping system also for lubrication of a fluid bearing arrangement supporting the turbine-driven pump system. The deep well pump system is supported within the well casing pipe from the earth's surface by the turbine exhaust steam conduit. In view of differential expansion effects on the relative lengths of the casing pipe and the exhaust steam conduit, a novel flexible seal is provided between the suspended turbine-pump system and the well pipe casing. 9 claims, 2 drawing figures.

Matthews, H.B.

1976-07-06T23:59:59.000Z

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Quantum well multijunction photovoltaic cell  

DOE Patents (OSTI)

A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

Chaffin, R.J.; Osbourn, G.C.

1983-07-08T23:59:59.000Z

422

Quantum well multijunction photovoltaic cell  

DOE Patents (OSTI)

A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

Chaffin, Roger J. (Albuquerque, NM); Osbourn, Gordon C. (Albuquerque, NM)

1987-01-01T23:59:59.000Z

423

Retrofitting Urban Arterials Into Complete Streets  

E-Print Network (OSTI)

speeds reduce mobility and increase costs for all vehicles Required to design to Level of Service C with Federal highway standards and guidelines Slower speeds reduce mobility and increase costs for all in Complete Streets Conflicts with National Guidelines #12;ITE New Recommended Practice Designing Walkable

Bertini, Robert L.

424

Complete Orders, Categories and Lattices of Approximations  

Science Conference Proceedings (OSTI)

The present article deals with the problem whether and how the bilattice orderings of knowledge ⩽$_k$ and truth ⩽$_t$ might enrich the theory of rough sets. Passing to the chief idea of the paper, we develop a bilattice-theoretic generalisation ... Keywords: *-autonomous category, Chu construction, Nelson lattice, approximation, bilattice, complete partial order, rough set

Marcin Wolski

2006-09-01T23:59:59.000Z

425

NNSA Completes B61 Warhead Refurbishment | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

B61 Warhead Refurbishment NNSA Completes B61 Warhead Refurbishment June 30, 2006 Washington, DC NNSA Completes B61 Warhead Refurbishment NNSA completed a six-year effort...

426

Investigation and evaluation of geopressured-geothermal wells  

DOE Green Energy (OSTI)

Over the life of the project, 1143 wildcat wells were screened for possible use. Although many did not meet the program's requirement for sand development, a surprisingly large number were abandoned because of downhole mechanical problems. Only 94 of these wells were completed as commercial hydrocarbon producers. Five wells of opportunity were funded for testing. Of these, two were evaluated for their hydraulic energy, thermal energy, and recoverable methane, and three were abandoned because of mechanical problems. (MHR)

Hartsock, J.H.; Rodgers, J.A.

1980-09-01T23:59:59.000Z

427

Consumption Externalities: A Representative Consumer Model when Agents are Heterogeneous *  

E-Print Network (OSTI)

Abstract: We examine a growth model with consumption externalities where agents differ in their initial capital endowment and their reference group. We show under which conditions the aggregate equilibrium with heterogeneous agents replicates that obtained with a representative consumer, despite the fact that different individuals have different consumption levels. Next we consider the implications of the presence of consumption externalities for the long-run distributions of income and wealth. We find that, in a growing economy, “keeping up with the Joneses ” results in less inequality than would prevail in an economy with no consumption externalities.

Cecilia García-peñalosa; Stephen J. Turnovsky

2007-01-01T23:59:59.000Z

428

Facility Representative Program: Criteria Review and Approach Document  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment Tools Assessment Tools Surveillance Guides Manager's Guide for Safety and Health Walkthroughs Criteria Review and Approach Document This page provides Criteria Review and Approach Documents (CRADS) to assist Facility Representatives. Please submit your CRADS for posting by sending them to the HQ FR Program Manager. Please include the subject, date, and a contact person. Communications NASA Benchmarks Communications Assessment Plan Configuration Management Configuration Management Assessment Plan Confined Space Confined Spaces Assessment Plan Conduct of Operations Conduct of Operations Assessment Plan Electrical Assessment Electrical Safety Assessment Plan Facility Procedures Verification and Validation of Facility Procedures Assessment Plan Hoisting and Rigging

429

M.: An Ontology-Based Framework for Representing Organizational Knowledge  

E-Print Network (OSTI)

Abstract: This paper describes an ontology-based organizational knowledge representation framework focused on the specification of a two kinds of ontologies: the top level ontology containing concepts characterizing the typical organizational background and COKE ontologies representing so called core organizational knowledge entities. The framework constitutes an abstract representation of organizational knowledge providing a semantic support for designing knowledge management infrastructure able to interoperate with systems already existing in an organization. Moreover, the annotation of COKE w.r.t. the top level ontology allowed by the framework facilitates their semi-automatic handling, retrieval and evolution monitoring.

Andrea Gualtieri; Massimo Ruffolo

2005-01-01T23:59:59.000Z

430

Representative Consumer's Risk Aversion and Efficient Risk-Sharing Rules  

E-Print Network (OSTI)

consumer as the sum of two components. The first one is a weighted sum of the derivatives of the individual consumers’ absolute cautiousness, and the second is a positive multiple of the weighted vari- 1We refer to some of these contributions in the rest... , and complete. Denote its strict part by Âi and symmetric part by ?i, then ?i Âi ?i for every ?i ? Z?i and every ?i 6? Z?i , and ?i ?i ?i for every ?i 6? Z?i and every ?i 6? Z?i . Thus the random variables ?i for which ui (?i) is not integrable are the least...

Hara, Chiaki; Kuzmics, Christoph

2006-03-14T23:59:59.000Z

431

Well record | OpenEI  

Open Energy Info (EERE)

Well record Well record Dataset Summary Description This dataset contains oil and gas drilling and permit records for February 2011. State oil and gas boards and commissions make oil and gas data and information open to the public. To view the full range of data contained at the Alaska Oil and Gas Conservation Commission, visit http://doa.alaska.gov/ogc/ Source Alaska Oil and Gas Conservation Commission Date Released February 28th, 2011 (3 years ago) Date Updated Unknown Keywords Alaska Commission gas oil Well record Data application/vnd.ms-excel icon http://doa.alaska.gov/ogc/drilling/dindex.html (xls, 34.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Monthly Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

432

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau...  

Open Energy Info (EERE)

temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and...

433

ADVANCED CEMENTS FOR GEOTHERMAL WELLS  

DOE Green Energy (OSTI)

Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further their deterioration was a major impediment in expediting the development of geothermal energy resources.

SUGAMA,T.

2007-01-01T23:59:59.000Z

434

Simulating a Nationally Representative Housing Sample Using EnergyPlus  

E-Print Network (OSTI)

measures on national energy consumption that take regionalnational estimates of the building loads and energy consumption,national electricity and fuel consumption, as well as the combined primary energy consumption. (

Hopkins, Asa S.

2011-01-01T23:59:59.000Z

435

BP-5 Remedial Investigation Slug-Test Characterization Results for Well 699-52-55A  

SciTech Connect

Pacific Northwest National Laboratory conducted slug-test characterization at the final, completed BP-5 Remedial Investigation well 699-52-55A near the 200-East Area at the Hanford Site on April 22, 2008. The slug-test characterization was in support of the BP-5 Remedial Investigation. The portion of the unconfined aquifer tested is composed of sediments of the lower Ringold Formation and the underlying Elephant Mountain basalt flowtop. The basalt flowtop unit was included as part of the effective test-interval length for the slug-test analysis because the flowtop unit is hydraulically communicative with the unconfined aquifer. Estimates of hydraulic conductivity for the effective test-interval length represent composite values for the lower Ringold Formation and the underlying Elephant Mountain basalt flow top.

Newcomer, Darrell R.

2008-07-21T23:59:59.000Z

436

Lithology and hydrothermal alteration determination from well logs for the Cerro Prieto Wells, Mexico  

DOE Green Energy (OSTI)

The purpose of this study is to examine the characteristics of geophysical well logs against the sand-shale series of the sedimentary column of the Cerro Prieto Geothermal Field, Mexico. The study shows that the changes in mineralogy of the rocks because of hydrothermal alteration are not easily detectable on the existing logs. However, if the behavior of clay minerals alone is monitored, the onset of the hydrothermally altered zones may be estimated from the well logs. The effective concentration of clay-exchange cations, Q/sub v/, is computed using the data available from conventional well logs. Zones indicating the disappearance of low-temperature clays are considered hydrothermally altered formations with moderate to high-permeability and temperature, and suitable for completion purposes.

Ershaghi, I.; Ghaemian, S.; Abdassah, D.

1981-10-01T23:59:59.000Z

437

4Q CY2008, Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Http//www.hss.energy.gov/deprep/facrep/ Http//www.hss.energy.gov/deprep/facrep/ ENVIRONMENTAL MANAGEMENT SITES Facility Representative Program Performance Indicators (4QCY2008) Field or Ops Office Staffing Analysis FTEs Actual Staffing % Staffing Attrition % Core Qualified % Fully Qualified % Field Time * % Oversight Time ** CBFO 1 3 1 100 1 100 100 70 86 ID (EM) 13 12 11 85 0 82 82 43 84 OR (EM) 19 18 18 95 0 72 72 44 66 ORP 15 15 14 93 0 79 64 43 72 PPPO 6 5 5 83 0 80 80 44 70 RL 19 18 18 95 1 84 84 45 70 SPRU 1 1 1 100 0 100 0 30 80 SR 32 24 24 75 2 71 67 45 74 WVDP 2 2 2 100 0 50 50 42 70 EM Totals 108 98 94 87 4 77 72 44 72 DOE GOALS - - - 100 - - >80 >40 >65 * % Field Time is defined as the number of hours spent in the plant/field divided by the number of available work hours in the quarter. The number of available work hours is the actual number of hours a Facility Representative works in a calendar quarter, including overtime hours. It does not include

438

Application of High Powered Lasers to Perforated Completions  

NLE Websites -- All DOE Office Websites (Extended Search)

Congress on Applications of Laser & Electro-Optics Congress on Applications of Laser & Electro-Optics October 13 - 16, 2003, Jacksonville, Florida Application of High Powered Lasers to Perforated Completions Zhiyue Xu, Claude B. Reed and Keng H. Leong Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 R. A. Parker Parker Geoscience Consulting, LLC, 6346 Secrest Street, Arvada, CO 80403 R. M. Graves, Petroleum Engineering Department, Colorado School of Mines, Golden, CO 80401 ABSTRACT As part of the process of drilling an oil or gas well, a steel production casing is often inserted to the bottom of the well and sealed with cement against the productive formation. Openings must be made through the steel casing wall and cement and into the rock formation to allow formation fluid to enter the well. Conventionally, a perforator is

439

Distribution and Production of Oil and Gas Wells by State  

Gasoline and Diesel Fuel Update (EIA)

Distribution and Production of Oil and Gas Wells by State Distribution and Production of Oil and Gas Wells by State Distribution and Production of Oil and Gas Wells by State Release date: January 7, 2011 | Next Release Date: To be determined Distribution tables of oil and gas wells by production rate for all wells, including marginal wells, are now available for most states for the years 1995 to 2009. Graphs displaying historical behavior of well production rate are also available. To download data for all states and all years, including years prior to 1995, in an Excel spreadsheet XLS (4,000 KB). The quality and completeness of data is dependent on update lag times and the quality of individual state and commercial source databases. Undercounting of the number of wells occurs in states where data is sometimes not available at the well level but only at the lease level. States not listed below will be added later as data becomes available.

440

Submitted to The Stripper Well Consortium  

E-Print Network (OSTI)

report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warrant, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Page 2 Management and disposal of produced water is one of the most challenging problems associated with the oil and gas industry. Very large volumes of produced water, or brine, are produced along with the oil and gas resources. At the same time (and many times in

Principal Investigator; David B. Burnett

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "represent wells completed" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A combined perforating and well testing system  

Science Conference Proceedings (OSTI)

Underbalanced perforating is widely used in well completions and is considered by many operators to be an effective method of obtaining improved well productivity. A measurement of downhole pressure before, during and after perforating can be made by installing a pressure gauge on the gun-string. By using a wireline, the added capability of real-time read-out on surface allows the entire operation to be monitored 'live.' Correct underbalance can be accurately established prior to shooting, there is an unambiguous shot indication, and a pressure transient analysis can be made during the initial flow or fill-up period. From this we can obtain an estimate of permeability, skin damage and, possibly, static reservoir pressure, which is a useful supplement to the shut-in buildup analysis which usually follows if flow reaches surface. Any subsequent conventional well-test can of course be planned without the need to retrieve or run in additional equipment since the pressure gauge is already in place.

Westaway, P.J.; El Shafie, I.; Wittman, M.J.

1985-01-01T23:59:59.000Z

442

Process for cementing geothermal wells  

DOE Patents (OSTI)

A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

Eilers, Louis H. (Inola, OK)

1985-01-01T23:59:59.000Z

443

Lab completes record year for environmental cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Record year for environmental cleanup Record year for environmental cleanup Lab completes record year for environmental cleanup Personnel conducted more field investigations and cleanup campaigns than ever and completed a record number of Lab shipments to WIPP. December 16, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

444

Parametric and predictive analysis of horizontal well configurations for coalbed methane reservoirs in Appalachian Basin.  

E-Print Network (OSTI)

??It has been a well-established fact that the Appalachian Basin represents a high potential region for the Coalbed Methane (CBM) production. The thin coal beds… (more)

Maricic, Nikola.

2004-01-01T23:59:59.000Z

445