Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

FY 2014 Federal Real Property Reporting Requirement | Department...  

Office of Environmental Management (EM)

Federal Real Property Reporting Requirement FY 2014 Federal Real Property Reporting Requirement FIMS FRPP FY 2014 Reporting Instructions Signed Sep 18 2014 .pdf More Documents &...

2

FY 2009 Summary Report  

Broader source: Energy.gov (indexed) [DOE]

of Performance and financial information FY 2009 DOE/CF-0045 The Reports Consolidation Act of 2000 authorizes Federal agencies, with the Office of Management and Budget's (OMB) concurrence, to consolidate various reports in order to provide performance, financial and related information in a more meaningful and useful format. In accordance with the Act, the Department of Energy (Department or DOE), has produced a consolidated Performance and Accountability Report (PAR) in previous years. For fiscal year (FY) 2009, the Department has chosen to produce an alternative report to the consolidated PAR and will produce an Agency Financial Report, an Annual Performance Report and a Summary of Performance and Financial

3

FY2012 LBNL LDRD Annual Report (PUB)  

E-Print Network [OSTI]

8450, p36. LDRD FY2012 Annual Report [Publications List] 119Light LDRD FY2012 Annual Report [Publications List] 95List] LDRD FY2012 Annual Report depletion of branched and

Ho, Darren

2014-01-01T23:59:59.000Z

4

FY 2014 LDRD Report  

Broader source: Energy.gov [DOE]

The total FY 2014 LDRD Program cost at the national laboratories was $527 million in 1,662 projects.

5

FY 2012 LDRD Report  

Broader source: Energy.gov [DOE]

The total FY 2012 LDRD Program cost at the national laboratories was $578.9 million in 1,738 projects.

6

FY 2013 LDRD Report  

Broader source: Energy.gov [DOE]

The total FY 2013 LDRD Program cost at the national laboratories was $568.6 million in 1,742 projects.

7

Annual Performance Report FY 2011 Annual Performance Plan FY 2012  

Broader source: Energy.gov (indexed) [DOE]

Annual Performance Report FY 2011 Annual Performance Plan FY 2012 2 FY 2011 OIG Performance Results The OIG measures its performance against long-term and annual goals set forth in OIG planning documents. During this reporting period, the OIG successfully achieved its FY 2011 performance goals. The following are the specific results: Goal 1 Promote Presidential Reform Initiatives, Secretarial Mission Priorities, and Congress Objective 1: Conduct reviews seeking positive change in the Department relating to the implementation of Presidential Reform Initiatives, the Secretary's Mission Priorities, and the OIG-identified Management Challenges. Performance Measures: Accomplishments

8

FY 2008 & FY 2009 Annual Uncosted Balances Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Uncosted Balances Reports » FY 2008 & FY 2009 Uncosted Balances Reports » FY 2008 & FY 2009 Annual Uncosted Balances Report FY 2008 & FY 2009 Annual Uncosted Balances Report This report presents a combined presentation and analysis of the Department's uncosted balances for FY 2008 and FY 2009. In FY 2009, the American Recovery and Reinvestment Act of 2009 (Recovery Act) provided the Department an additional $36.7 billion of funding. The FY 2009 uncosted balances associated with Recovery Act funding are separately presented but are not included in the additional analysis of uncosted balances in this report. FY 2008-2009 Report on Uncosted Balances More Documents & Publications FY 2010 Annual Uncosted Balances Report FY 2011 Annual Uncosted Balances Report FY 2012 Annual Uncosted Balances

9

OPT Annual Report, FY 2012  

Broader source: Energy.gov (indexed) [DOE]

OPT Annual Report, FY 2012 OPT Annual Report, FY 2012 i Executive Summary The Office of Environmental Management (EM) was established to mitigate the risks and hazards posed by the legacy of nuclear weapons production and research. The most ambitious and far ranging of these missions is dealing with the environmental legacy of the Cold War. Many problems posed by its operations are unique, and include the transportation of unprecedented amounts of contaminated waste, water, and soil, and a vast number of contaminated structures during remediation of the contaminated sites. Since Fiscal Year (FY) 2004, EM has completed over 150,000 shipments of radioactive material and waste. The mission of the Department of Energy (DOE) Office of Packaging and Transportation (OPT) positioned

10

FY 2007 Annual Performance Report  

Broader source: Energy.gov [DOE]

Focuses on detailed performance information including performance targets associated with the Departments budget activities. The report discusses individual and summary performance measure results through narrative descriptions with references to supporting documentation, a concise statement on highlevel program challenges and benefits, and the status of all FY 2006 unmet measures.

11

Risk-Informed Safety Requirements for H2 Codes and Standards Development - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Aaron Harris (Primary Contact), Jeffrey LaChance, Katrina Groth Sandia National Laboratories P.O. Box 969 Livermore, CA 94551-0969 Phone: (925) 294-4530 Email: apharri@sandia.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: October 1, 2003 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Present results of indoor refueling risk assessment to the * National Fire Protection Association (NFPA) 2 Fueling Working Group. Perform and document required risk assessment (with * input from NFPA 2 and others) for developing science- based risk-informed codes and standards for indoor

12

FY 2012 Agency Financial Report  

Broader source: Energy.gov (indexed) [DOE]

in order to provide performance, financial in order to provide performance, financial and related information in a more meaningful and useful format. The Department of Energy (Department or DOE), has chosen an alternative reporting to the consolidated Performance and Accountability Report and instead, produces an Agency Financial Report, an Annual Performance Report and a Summary of Performance and Financial Information, pursuant to the OMB Circular A-136. This reporting approach simplifies and streamlines the performance presentations while utilizing the Internet for providing and leveraging additional performance information. The Department's fiscal year (FY) 2012 reporting includes the following three components and will be available at the website below, as each component

13

FY 2009 LDRD Report to Congress  

Broader source: Energy.gov (indexed) [DOE]

LDRD Report to Congress LDRD Report to Congress Department of Energy Department of Energy FY 2009 Laboratory Directed Research and Development at the DOE National Laboratories Report to Congress April 2010 FY 2009 LDRD Report to Congress Department of Energy Table of Contents Executive Summary 1 Table 1. LDRD, PDRD and SDRD Breakdown 1 1. Introduction 2 1.1 Background 2 1.2 Purpose of the Report 2 2. FY 2009 LDRD Program 3 2.1 Financial Information 3 2.1.1 LDRD Funding Mechanism 3 2.1.2 FY 2009 Expenditures 3 Table 2. Laboratory Costs and LDRD Costs 4

14

FY 2009 Progress Report for Lightweighting Materials  

Broader source: Energy.gov [DOE]

The FY 2009 Progress Report for Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies, to significantly reduce automotive vehicle...

15

FY 2008 LDRD Report  

Broader source: Energy.gov [DOE]

The national laboratories included in this report devoted approximately $513 million to LDRD, addressing topics that span the entire range of DOEs broad scientific mandate.

16

FY 2009 LDRD Report  

Broader source: Energy.gov [DOE]

The national laboratories included in this report devoted approximately $515 million to LDRD, addressing topics that span the entire range of DOEs broad scientific mandate.

17

FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program...

18

Fuel Cells for Transportation - FY 2001 Progress Report | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells for Transportation - FY 2001 Progress Report Fuel Cells for Transportation - FY 2001 Progress Report V. PEM STACK COMPONENT COST REDUCTION 159.pdf More Documents &...

19

FY 2005 LDRD Report  

Broader source: Energy.gov [DOE]

The multi-program national laboratories included in this report devoted approximately $384 million to LDRD, funding projects ranging in size from less than $5,000 per year to over $3 million, addressing topics that span the entire range of DOE's broad specific mandate.

20

FY 2006 LDRD Report  

Broader source: Energy.gov [DOE]

The multi-program national laboratories included in this report devoted approximately $476 million to LDRD, funding projects ranging in size from less than $5,000 per year to over $3 million, addressing topics that span the entire range of DOEs broad scientific mandate.

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

FY 2004 LDRD Report  

Broader source: Energy.gov [DOE]

The multi-program National Laboratories included in this report devoted approximately $365 million to LDRD, funding projects ranging in size from less than $5,000 per year to over $3 million, addressing topics that span the entire range of DOEs broad scientific mandate.

22

FY 2007 LDRD Report  

Broader source: Energy.gov [DOE]

The multi-program national laboratories included in this report devoted approximately $499 million to LDRD, funding projects ranging in size from less than $5,000 per year to over $3 million, addressing topics that span the entire range of DOEs broad scientific mandate.

23

FY 2011 SC Laboratory Performance Report Cards | U.S. DOE Office...  

Office of Science (SC) Website

1 SC Laboratory Performance Report Cards Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2013 Report Cards FY 2012 Report Cards FY 2011 Report Cards Report...

24

HSI_Annual_Report_FY2010.pdf | Department of Energy  

Office of Environmental Management (EM)

HSIAnnualReportFY2010.pdf More Documents & Publications TCUReportFY2010.pdf Trade Adjustment Assistance Community College and Career Training Grant Program (TAACCCT)...

25

FY 2006 Executive Order 13101 Report: Department of Energy Affirmative  

Broader source: Energy.gov (indexed) [DOE]

FY 2006 Executive Order 13101 Report: Department of Energy FY 2006 Executive Order 13101 Report: Department of Energy Affirmative Procurement and Recycling Fiscal Year 2006 Report, 3/12/07 FY 2006 Executive Order 13101 Report: Department of Energy Affirmative Procurement and Recycling Fiscal Year 2006 Report, 3/12/07 The Department of Energy (DOE) is pleased to transmit the enclosed report in fulfillment of the annual reporting requirements under Executive Order 13101, Greening the Government through Waste Prevention, Recycling, and Federal Acquisition. The report was prepared in accordance with the survey instructions provided in your letter to Agency Environmental Executives and Senior Procurement Executives, dated November 2, 2006. DOE's report contains the specific purchasing data that you requested on the eight (8)

26

Director's Discretionary Research and Development Program, Annual Report FY 2007  

Office of Energy Efficiency and Renewable Energy (EERE)

Director's Discretionary Research and Development Program, Annual Report FY 2007 May 2007 Final Draft.

27

FY 2010 SC Laboratory Performance Report Cards | U.S. DOE Office...  

Office of Science (SC) Website

Appraisal Process FY 2014 Report Cards FY 2013 Report Cards FY 2012 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and...

28

FY 2007 SC Laboratory Performance Report Cards | U.S. DOE Office...  

Office of Science (SC) Website

Appraisal Process FY 2014 Report Cards FY 2013 Report Cards FY 2012 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and...

29

FY 2009 SC Laboratory Performance Report Cards | U.S. DOE Office...  

Office of Science (SC) Website

Appraisal Process FY 2014 Report Cards FY 2013 Report Cards FY 2012 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and...

30

FY 2008 SC Laboratory Performance Report Cards | U.S. DOE Office...  

Office of Science (SC) Website

Appraisal Process FY 2014 Report Cards FY 2013 Report Cards FY 2012 Report Cards Report Card Archives Laboratory Planning Process Laboratory Directed Research and...

31

FY 2013 FRPC DATA REPORTING INSTRUCTIONS I. Background  

Broader source: Energy.gov (indexed) [DOE]

FY 2013 FRPC DATA REPORTING INSTRUCTIONS I. Background Executive Order 13327, "Federal Real Property Asset Management" was created to promote the efficient and economical use of the Federal Government's real property assets. The E.O. established the interagency Federal Real Property Council (FRPC), established the role of the Senior Real Property Officer, and mandated the creation of a centralized real property database. This document provides instructions for populating the required data in FIMS so that the Department can report in accordance with the FY 2013 FRPC reporting requirements.

32

FY 2008 LDRD Report to Congress  

Broader source: Energy.gov (indexed) [DOE]

8 Report to Congress 8 Report to Congress Laboratory Directed Research and Development (LDRD) at the DOE National Laboratories (Report also available at http://www.mbe.doe.gov/cf1-2/ldrd.htm) March 2009 2 Table of Contents Executive Summary 3 1. Introduction 5 1.1 Background 5 1.2 Purpose of the Report 5 2. FY 2008 LDRD Program 7 2.1 Financial Information 7 2.1.1 LDRD Funding Mechanism 7 2.1.2 FY 2008 Expenditures 7 2.1.3 FY 2008 LDRD Allocation Percentages 8 2.2 Workforce Development 9 2.3 LDRD and the Work for Others (WFO) Program 11 3. FY 2008 PDRD and SDRD Programs 13 3.1 Plant Directed Research and Development Programs 13 3.2 Site Directed Research and Development Program 13

33

FY 2007 LDRD Report to Congress  

Broader source: Energy.gov (indexed) [DOE]

7 Report to Congress 7 Report to Congress Laboratory Directed Research and Development (LDRD) at the DOE National Laboratories (Report also available at http://www.mbe.doe.gov/cf1-2/ldrd.htm) December 2007 2 Table of Contents Executive Summary 3 1. Introduction 4 1.1 Background 4 1.2 Purpose of the Report 4 2. FY 2007 LDRD Program 6 2.1 Financial Information 6 2.1.1 LDRD Funding Mechanism 6 2.1.2 FY 2007 Expenditures 6 2.1.3 FY 2007 LDRD Allocation Percentages 7 2.2 Workforce Development 8 2.3 LDRD and the Work for Others (WFO) Program 10 3. FY 2007 PDRD and SDRD Programs 12 3.1 Plant Directed Research and Development Programs 12 3.2 Site Directed Research and Development Program 12

34

Annual Report FY2013 URI Foundation Awards  

E-Print Network [OSTI]

Annual Report FY2013 Chapter 7 URI Foundation Awards #12;Principal Inves.gator Donor COLLEGE-Ending June 30, 2013 7.1 #12;Principal Inves.gator Donor COLLEGE Project/Research AMOUNT Nedra

Rhode Island, University of

35

Vehicle Technologies Office: FY 2005 Progress Report for Advanced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Progress Report 5 Progress Report for Advanced Combustion Engine Technologies to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on

36

Vehicle Technologies Office: FY 2006 Progress Report for Advanced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Progress Report 6 Progress Report for Advanced Combustion Engine Technologies to someone by E-mail Share Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Facebook Tweet about Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Twitter Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Google Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Delicious Rank Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Digg Find More places to share Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on

37

Vehicle Technologies Office: FY 2003 Progress Report for Automotive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Progress Report 3 Progress Report for Automotive Lightweighting Materials to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on AddThis.com...

38

Vehicle Technologies Office: FY 2006 Progress Report for Automotive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Progress Report 6 Progress Report for Automotive Lightweighting Materials to someone by E-mail Share Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Facebook Tweet about Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Twitter Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Google Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Delicious Rank Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Digg Find More places to share Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on AddThis.com...

39

Vehicle Technologies Office: FY 2005 Progress Report for Automotive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Progress Report 5 Progress Report for Automotive Lightweighting Materials to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on AddThis.com...

40

ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 | Department of  

Broader source: Energy.gov (indexed) [DOE]

ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 October 1, 2013 - 2:09pm Addthis ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 In 2013 the program operated above the 6 year average and 6 year high, and participation increased by adding 13 new program locations. Southeastern Power Administration and its partners conducted 32 training events which directly impacted 855 trainees, and our outreach efforts promoted energy efficiency and renewable energy to an estimated 3505

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 | Department of  

Broader source: Energy.gov (indexed) [DOE]

ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 October 1, 2013 - 2:09pm Addthis ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 In 2013 the program operated above the 6 year average and 6 year high, and participation increased by adding 13 new program locations. Southeastern Power Administration and its partners conducted 32 training events which directly impacted 855 trainees, and our outreach efforts promoted energy efficiency and renewable energy to an estimated 3505

42

FY 2011 Annual Performance Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Performance Reports » FY 2011 Annual Performance Performance Reports » FY 2011 Annual Performance Report FY 2011 Annual Performance Report DOE's FY 2011 Annual Performance Report (APR) presents the performance results for fiscal year 2011 that contributed to the achievement of goals identified in the President's fiscal year 2011 budget. The performance measures in this report were initially outlined in the Department's FY 2011 Congressional Budget Request. After final congressional budget negotiations, some performance targets were revised to reflect changes in funding levels in enacted appropriations. DOE's FY 2011 Summary Report provides highlights of key financial and performance information that demonstrates DOE's accountability to ensure America's security and prosperity by addressing its energy,

43

FY 2008 Annual Performance Report  

Broader source: Energy.gov (indexed) [DOE]

Hyd Hyd rog en Tan k Res earc h, LLN L PH EN IX Ex pe rim en t, BN L Fu el Ce ll Re sea rch , AN L Ca rb on Se qu es tra tio n Re se ar ch , PN NL Hi gh Ex pl os iv es Ap pl ic at io ns Fa ci lit y, LL NL Com put er Sim ulat ion The ater , LAN L Al ga e Re se ar ch , NR EL Ad va nc ed Bio fue ls Re se arc h, LB NL T ra in in g Nuc lear Mat eria ls Sto rag e, SRS C o a l G a s if ic a ti o n R e s e a rc h , P N N L Cli ma te Mo de lin g, OR NL AnnuAl PerformAnce rePort fY 2008 Table of Contents Introduction....................................................................................................................................1 Performance Summary Scorecard..................................................................................................2 Department Performance ...............................................................................................................4

44

FY 2011 LDRD Report to Congress  

Broader source: Energy.gov (indexed) [DOE]

FY 2011 Report to Congress FY 2011 Report to Congress Laboratory Directed Research and Development (LDRD) at the DOE National Laboratories For additional information on the Department's Laboratory Directed Research and Development program, please see the Office of Science website: http://science.energy.gov/lpe/laboratory-directed-research-and-development/ or the National Nuclear Security Administration website: http://tri-lab.lanl.gov/ Formally, this Report responds to the Conference Report (H.R. Rep. No. 106-988 (Conf. Rep.)) accompanying the Fiscal Year (FY) 2001 Energy and Water Development Appropriations Act, which requested the DOE Chief Financial Officer "develop and execute a financial accounting report of LDRD expenditures by laboratory and weapons production plant." It also responds to the National Defense

45

FY 2004 LDRD Report to Congress  

Broader source: Energy.gov (indexed) [DOE]

4 Report to Congress 4 Report to Congress Laboratory Directed Research and Development (LDRD) at the DOE National Laboratories December 2004 Table of Contents Executive Summary 1 1. Introduction....................................................................................................... 2 1.1 Background............................................................................................ 2 1.2 Purpose of the Report............................................................................. 2 2. FY 2004 LDRD Program ............................................................. 4 2.1 Financial Information ........................................................ 4 2.1.1 LDRD Funding Mechanism ................................................. 4

46

FY 2014 Annual Progress Report- Electric Drive Technologies Program  

Broader source: Energy.gov [DOE]

FY 2014 Annual Progress Report for the Electric Drive Technologies Program of the Vehicle Technologies Office, DOE/EE-1163

47

Transmutation Fuels Campaign FY-09 Accomplishments Report  

SciTech Connect (OSTI)

This report summarizes the fiscal year 2009 (FY-08) accomplishments for the Transmutation Fuels Campaign (TFC). The emphasis is on the accomplishments and relevance of the work. Detailed description of the methods used to achieve the highlighted results and the associated support tasks are not included in this report.

Lori Braase

2009-09-01T23:59:59.000Z

48

NANOTECHNOLOGY INITIATIVE Annual Report FY 20092010  

E-Print Network [OSTI]

NC STATE NANOTECHNOLOGY INITIATIVE Annual Report FY 20092010 In This Report: · Raleigh named top AS AN EMERGING LEADER IN THE FIELD OF NANOTECHNOLOGY." Dr. Gregory Parsons, NC State Nanotechnology Initiative was a period of tremendous growth for nanotechnology activitiesThis past year was a period of tremendous growth

49

FY 2007 Report on Uncosted Balances  

Broader source: Energy.gov (indexed) [DOE]

Report on Uncosted Balances Report on Uncosted Balances For Fiscal Year Ended September 30,2007 August 2008 Prepared by: Office of the Chief Financial Officer TABLE OF CONTENTS Purpose.. . . . : . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . .. . .. . . . . . . . , . . , . , , . . . . , Executive Summary ... . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . .... .. .... .... .. Threshold Analysis - Approach and Background ................... . .... .. Composition of FY 2007 Year-End Uncosted Obligations ..... .. . . . . . Explanation of Significant Threshold Variances ... ... .. . . . . . .. . .. .. . . . . . List of Acronyms.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

Microsoft Word - FY07AnnualReport.doc  

Broader source: Energy.gov (indexed) [DOE]

7 Annual Report (revised) - 1 - Created on 01/11/2008 7 Annual Report (revised) - 1 - Created on 01/11/2008 PROCUREMENT AND ASSISTANCE DATA SYSTEM (PADS) FISCAL YEAR 2007 ANNUAL REPORTS FY 2007 Obligations to Facilities Management Contracts......................................................................................................................... 2 FY 2007 Non-Facilities Management Awards and Obligations................................................................................................................. 4 FY 2007 Obligations to Non-Facilities Management Awards by Organization Type ............................................................................... 5 Geographic Distribution of FY 2007 Obligations to Non-Facilities Management Awards .......................................................................

51

FY2006SmallBusinessReport.doc  

Broader source: Energy.gov (indexed) [DOE]

DEPARTMENT OF ENERGY DEPARTMENT OF ENERGY ANNUAL REPORT TO THE SECRETARY SMALL BUSINESS PROGRAMS FISCAL YEAR (FY) 2006 Table of Contents I. INTRODUCTION Page 3 II. DEPARTMENT OF ENERGY (DOE) MISSION Page 3 III. OFFICE of SMALL and DISADVANTAGED BUSINESS UTILIZATION (OSDBU) Page 3 IV. LAWS & REGULATIONS Page 3 V. DEPARTMENT OF ENERGY BUSINESS MODEL Page 4 A. Facility Management Contractors (FMC) B. Non-FMCs VI. SMALL BUSINESS GOALS Page 5 A. Government Statutory Goals B. FY 2006 DOE Negotiated Goals VII. PRIME CONTRACT SMALL BUSINESS ACHIEVEMENTS Page 7 A. 8(a) and Small & Disadvantaged Business (SDB) B. Women-Owned Small Business (WOSB) C. HUBZone Small Business

52

Microsoft Word - FY08AnnualReport.doc  

Broader source: Energy.gov (indexed) [DOE]

8 8 Annual Procurement and Financial Assistance Report for FY 2008 Page 2 of 40 TABLE OF CONTENTS Introduction................................................................................................................................................................................................. 3 Summary..................................................................................................................................................................................................... 4 Highlights of Fiscal Year 2008 ................................................................................................................................................................... 5 FY 2008 Obligations to Facilities Management Contracts.........................................................................................................................

53

245NASA FY 2011 Performance and Accountability Report Other Accompanying  

E-Print Network [OSTI]

245NASA FY 2011 Performance and Accountability Report Other Accompanying Information Office of Inspector General Letter on NASA's Top Management and Performance Challenges 247 FY 2011 Inspector General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267 NASA's Audit Follow-up Program

54

NREL Energy Storage Projects: FY2013 Annual Report  

SciTech Connect (OSTI)

In FY13, DOE funded NREL to make technical contributions to various R&D activities. This report summarizes NREL's R&D projects in FY13 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY13 projects under NREL's Energy Storage R&D program are discussed in depth in this report.

Pesaran, A.; Ban, C.; Brooker, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Long, D.; Neubauer, J.; Santhanagopalan, S.; Smith, K.; Tenent, R.; Wood, E.; Han, T.; Hartridge, S.; Shaffer, C. E.

2014-07-01T23:59:59.000Z

55

Technology Transfer Office FY2011 Annual Report  

E-Print Network [OSTI]

Technology Transfer Office FY2011 Annual Report #12;TECHNOLOGY TRANSFER ADVISORY COMMITTEES The UC San Diego Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the university? s technology transfer program. This standing committee is appointed by the chancellor

Hasty, Jeff

56

Dartmouth Biomedical Libraries FY06 Annual Report  

E-Print Network [OSTI]

Dartmouth Biomedical Libraries FY06 Annual Report September 24, 2006 Dartmouth Biomedical Libraries Usage · D: July 1, 2006, Organization Chart Introduction The mission of the Dartmouth Biomedical (DHMC), and Dartmouth College. There are two Biomedical Libraries: the Dana Biomedical Library

Myers, Lawrence C.

57

PADS FY 2010 Annual Reports  

Broader source: Energy.gov (indexed) [DOE]

A00 - SMALL BUSINESS 1,890 1,921,241,548 A00 - SMALL BUSINESS 1,890 1,921,241,548 B22 - LARGE BUSINESS 979 2,388,060,659 C0F - FEDERAL GOVERNMENT 478 388,669,688 C0L - LOCAL GOVT/MUNICIPALITY 2 125,000 C3N - NON-PROFIT ORGANIZATION 24 282,357,286 C4N - SHELTERED WORKSHOP 1 831,263 E1N - FOREIGN CONTRACTOR 1 -16,921,324 I0E - EDUCATIONAL INSTITUTION 9 4,970,555 8 UNIQUE VALUES 3,384 4,969,334,675 Geographic Distribution of FY 2010 Obligations to Non-Facilities Management Awards STATE NUMBER OF AWARDS FY 2010 OBLIGATIONS ALABAMA (AL) 12 2,445,191 ALASKA (AK) 5 3,073,629 ARIZONA (AZ) 96 8,732,671 ARKANSAS (AR) 17 3,142,515 CALIFORNIA (CA) 174 102,574,020 COLORADO (CO) 233 155,184,318 CONNECTICUT (CT) 24 3,663,352 DELAWARE (DE) 3 136,752 DISTRICT OF COLUMBIA (DC) 770 524,559,400

58

FY 2005 Progress Report for Fuels Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Annual Progress Report Progress rePort for fuels technologies Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle F r e e d o m C A r A n d V e h i C l e T e C h n o l o g i e s P r o g r A m U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2005 Progress Report for Fuels Technologies Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Stephen Goguen January 2006 Fuels Technologies FY 2005 Progress Report Contents I Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 II Fuels and Lubricants to Enable High Efficiency Engine Operation while Meeting 2007 - 2010 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

59

Photovoltaic Program Branch annual report, FY 1989  

SciTech Connect (OSTI)

This report summarizes the progress of the Photovoltaic (PV) Program Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30, 1989. The branch is responsible for managing the subcontracted portion of SERI's PV Advanced Research and Development Project. In fiscal year (FY) 1989, this included nearly 50 subcontracts, with a total annualized funding of approximately $13.1 million. Approximately two-thirds of the subcontracts were with universities, at a total funding of nearly $4 million. The six technical sections of the report cover the main areas of the subcontracted program: Amorphous Silicon Research, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, New Ideas, and University Participation. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1989, and future research directions. Each report will be cataloged individually.

Summers, K A [ed.

1990-03-01T23:59:59.000Z

60

Vehicle Technologies Office: FY 2004 Progress Report for High Strength  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Progress Report 4 Progress Report for High Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Progress Report 4 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on

62

Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Progress Report 3 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on

63

Vehicle Technologies Office: FY 2005 Progress Report for High Strength  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Progress Report 5 Progress Report for High Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on

64

Vehicle Technologies Office: FY 2004 Progress Report for Advanced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Progress Report 4 Progress Report for Advanced Combustion Engine Research and Development to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Digg Find More places to share Vehicle Technologies Office: FY 2004

65

FY 2011 Annual Performance Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Annual Performance Reports » FY 2011 Annual Performance Annual Performance Reports » FY 2011 Annual Performance Report FY 2011 Annual Performance Report DOE's FY 2011 Annual Performance Report (APR) presents the performance results for fiscal year 2011 that contributed to the achievement of goals identified in the President's fiscal year 2011 budget. The performance measures in this report were initially outlined in the Department's FY 2011 Congressional Budget Request. After final congressional budget negotiations, some performance targets were revised to reflect changes in funding levels in enacted appropriations. DOE's FY 2011 Summary Report provides highlights of key financial and performance information that demonstrates DOE's accountability to ensure America's security and prosperity by addressing its energy,

66

FY 2011 Annual Progress Report for Energy Storage R&D | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Progress Report for Lightweighting Materials FY 2009 Progress Report for Lightweighting Materials - disclaimer and back cover FY 2012 Annual Progress Report for Energy Storage R&D...

67

FY 2011 Agency Financial Report  

Broader source: Energy.gov (indexed) [DOE]

Foreword Foreword he Reports Consolidation Act of 2000 authorizes Federal agencies, with the Office of Management and Budget's (OMB) concurrence, to consolidate various reports in order to provide performance, financial and related information in a more meaningful and useful format. The Department of Energy (Department or DOE) has chosen an alternative reporting to the consolidated Performance and Accountability Report and instead, produces an Agency Financial Report, an Annual Performance Report and a Summary of Performance and Financial Information, pursuant to the OMB Circular A-136. This reporting approach simplifies and streamlines the performance presentations while utilizing the Internet for providing and leveraging additional performance

68

NREL photovoltaic program FY 1997 annual report  

SciTech Connect (OSTI)

This report summarizes the in-house and subcontracted research and development (R and D) activities under the NREL PV Program from October 1, 1996, through September 30, 1997 (FY 1997). The NREL PV Program is part of the US Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996--2000. The FY 1997 budget authority for carrying out the NREL PV Program was $39.3 million in operating funds and $0.4 million in capital equipment funds. Subcontract activities represent a major part of the NREL PV Program, with $21.8 million (55% of PV funds) going to some 84 subcontractors. Cost sharing by industry added almost $8.8 million to the subcontract R and D activities with industry.

McConnell, R.D.; Hansen, A.; Smoller, S.

1998-06-01T23:59:59.000Z

69

FY 2006 Executive Order 13101 Report: Department of Energy Affirmative...  

Broader source: Energy.gov (indexed) [DOE]

to the Department's FY 2006 RCRA standard report, affirmative procurement management review protocol, and green purchasing plan. U.S. Department of Energy Affirmative Procurement...

70

FY 2013 Summary Report: Post-Irradiation Examination of Zircaloy...  

Broader source: Energy.gov (indexed) [DOE]

Examination of Zircaloy-4 Samples in Target Capsules and Initiation of Bending Fatigue Testing for Used Nuclear Fuel Vibration Integrity Investigations FY 2013 Summary Report:...

71

FY 2012 Annual Progress Report for Energy Storage R&D | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

FY 2012 Annual Progress Report for Energy Storage R&D FY 2012 Annual Progress Report for Energy Storage R&D FY 2012 annual report of the energy storage research and development...

72

FY 2011 Annual Progress Report for Energy Storage R&D | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

FY 2011 Annual Progress Report for Energy Storage R&D FY 2011 Annual Progress Report for Energy Storage R&D FY 2011 annual report of the energy storage research and development...

73

FY 2012 Annual Progress Report for Energy Storage R&D | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2arra.pdf More Documents & Publications FY 2011 Annual Progress Report for Energy Storage R&D FY 2011 Annual Progress Report for Energy Storage R&D FY 2012 Annual Progress Report...

74

Office Inspector General DOE Annual Performance Report FY 2008, Annual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inspector General DOE Annual Performance Report FY 2008, Inspector General DOE Annual Performance Report FY 2008, Annual Performance Plan FY 2009 Office Inspector General DOE Annual Performance Report FY 2008, Annual Performance Plan FY 2009 During Fiscal Year (FY) 2008, we reviewed a variety of critical areas relevant to the Department's mission priorities. One of our goals, for example, was to examine possible programmatic improvements in Department operations relating to cyber security and contract management. Overall, our efforts resulted in the issuance of over 70 audit and inspection reports containing recommendations for enhancing Departmental operations, with likely savings of over $7 million. Further as a result of our investigative efforts, we obtained 20 criminal convictions, recovered $22.8 million in

75

Idaho National Laboratorys FY09 & FY10 Greenhouse Gas Report  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2009 and 2010 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL's GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries, but are a consequence of INL's activities). This inventory found that INL generated 103,590 and 102,413 MT of CO2-equivalent emissions during FY09 and FY10, respectively. The following conclusions were made from looking at the results of the individual contributors to INL's FY09 and FY10 GHG inventories: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

76

FY 2009 Annual Performance Report  

Broader source: Energy.gov (indexed) [DOE]

AnnuAl PerformAnce rePort Working to Save the Planet DOE/CF-0044 CONTENTS Introduction ....................................................................................................................................1 Mission ...........................................................................................................................................2 Message from the Secretary ...........................................................................................................3 Performance Background...............................................................................................................5 High Priority Performance Goals ...................................................................................................7

77

FY 2012 Reports - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Reports Official Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements AR-PIR CERCLA Five-Year Review Hanford Site Safety Standards NEPA - Categorical...

78

FY 2011 Reports - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Reports Official Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements AR-PIR CERCLA Five-Year Review Hanford Site Safety Standards NEPA - Categorical...

79

FY 2014 Reports - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Reports Official Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements AR-PIR CERCLA Five-Year Review Hanford Site Safety Standards NEPA - Categorical...

80

FY 2013 Reports - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Reports Official Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements AR-PIR CERCLA Five-Year Review Hanford Site Safety Standards NEPA - Categorical...

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

FY 2010 Reports - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Reports Official Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements AR-PIR CERCLA Five-Year Review Hanford Site Safety Standards NEPA - Categorical...

82

FY 2012 DOE Agency Financial Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reports » Agency Financial Reports » FY 2012 DOE Agency Financial Reports » Agency Financial Reports » FY 2012 DOE Agency Financial Report FY 2012 DOE Agency Financial Report Notable accomplishments in FY 2012 include: the first electric grid-connected tidal energy project off the coast of Maine a new approach to sea water desalination that could lower the costs of water purification new insights into the molecular structure of a hydrogen fuel cell that could aid in achieving the goal of producing electricity for transportation new advances in engineering inedible plant biomass into biofuels In the national security area, we met a major milestone of eliminating 450 metric tons of highly enriched Russian uranium taken from nuclear weapons and the dismantlement of the last remaining B53 nuclear bomb. FY 2012 Agency Financial Report

83

Advanced evaporator technology progress report FY 1992  

SciTech Connect (OSTI)

This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

1995-01-01T23:59:59.000Z

84

FY 2011 Annual Progress Report for Energy Storage R&D | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2arra.pdf More Documents & Publications FY 2012 Annual Progress Report for Energy Storage R&D FY 2011 Annual Progress Report for Energy Storage R&D FY 2012...

85

FY07 Final Report for Calibration Systems  

SciTech Connect (OSTI)

Remote infrared (IR) sensing provides a valuable method for detection and identification of materials associated with nuclear proliferation. Current challenges for remote sensors include minimizing the size, mass, and power requirements for cheaper, smaller, and more deployable instruments without affecting the measurement performance. One area that is often overlooked is sensor calibration design that is optimized to minimize the cost, size, weight, and power of the payload. Yet, an on-board calibration system is essential to account for changes in the detector response once the instrument has been removed from the laboratory. The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact quantum cascade (QC) laser-based calibration systems for infrared sensor systems in order to provide both a spectral and radiometric calibration while minimizing the impact on the instrument payload. In FY05, PNNL demonstrated a multi-level radiance scheme that provides six radiance levels for an enhanced linearity check compared to the currently accepted two-point scheme. PNNL began testing the repeatability of this scheme using a cryogenically cooled, single-mode quantum cascade laser (QCL). A cyclic variation in the power was observed that was attributed to the thermal cycling of the laser's dewar. In FY06, PNNL continued testing this scheme and installed an auxiliary liquid nitrogen reservoir to limit the thermal cycling effects. Although better repeatability was achieved over a longer time period, power fluctuations were still observed due to the thermal cycling. Due to the limitations with the cryogenic system, PNNL began testing Fabry-Perot QCLs that operate continuous-wave (cw) or quasi-cw at room temperature (RT) in FY06. PNNL demonstrated a multi-level scheme that provides five radiance levels in 105 seconds with excellent repeatability. We have continued testing this repeatability in FY07. A burn-in effect appears in which the power increases over a certain time period. Repeatability better than 1%, however, is demonstrated for most of the radiance levels after this initial burn-in. In FY06, PNNL also began investigating a fiber-coupled RT QCL for a compact IR calibration source. PNNL demonstrated a uniform beam profile by measuring a time-averaged response and modulating the fiber optic with a motor to minimize the effects of speckle. In FY07, PNNL examined the power stability of fiber-coupled QCLs. Feedback appears to degrade the stability so that anti-reflective coatings for fibers may be essential. In FY07, PNNL continued to investigate the stability of room temperature QCLs as well as the measurement technique to provide a quantitative estimate for the measurement uncertainty. We designed and built a custom environmental enclosure to reduce the measurement uncertainty. After an initial burn-in, we have achieved uncertainties better than 0.1% for data collected over almost 100 hours of operation. We also built a bench-top system to demonstrate how the QC laser can be used to calibrate a microbolometer array and illustrated the importance of a multi-point calibration.

Myers, Tanya L.; Broocks, Bryan T.; Cannon, Bret D.; Ho, Nicolas

2007-12-01T23:59:59.000Z

86

FY 2010 DOE Agency Financial Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Agency Financial Reports » FY 2010 DOE Agency Financial Agency Financial Reports » FY 2010 DOE Agency Financial Report FY 2010 DOE Agency Financial Report The Department's efforts brought it closer to its goals of: expanding the frontiers of science (science, discovery and innovation) creating clean energy jobs (economic prosperity) curbing the carbon pollution that threatens our planet (clean, secure energy) reducing nuclear dangers (national security) FY 2010 was the second year of implementing the American Recovery and Reinvestment Act (Recovery Act). The Department contributed to the Administration's goal of stimulating the U.S. economy through ramping up its activities in energy-related areas of spending, project performance, and job creation. FY 2010 DOE Agency Financial Report More Documents & Publications

87

Advanced Fuels Campaign FY 2011 Accomplishments Report  

SciTech Connect (OSTI)

One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).

Not Listed

2011-11-01T23:59:59.000Z

88

FY 2005 LDRD Report to Congress  

Broader source: Energy.gov (indexed) [DOE]

United States Department of Energy United States Department of Energy Laboratory, Plant or Site Directed Research and Development Report Project List -- Fiscal Year 2005 ANL - Argonne National Lab Project ID FY Total Project Name Multidisciplinary Theory P/ANL2003-336 $298000 The Use of Synchrotron Radiation Sources for Homeland Security - Terahertz and X-Ray Radiation P/ANL2003-337 $241600 Modeling Near-Field Atmospheric Dispersion and the Potential Health and Economic Impacts from Terrorism Scenarios Involving "Dirty Bombs" or Similar Devices P/ANL2003-338 $218500 Core-Shell Nanocrystal Spring Magnets P/ANL2003-340 $60400 Simulation and Modeling of Reactivity in Nanoporous Materials P/ANL2003-341 $46700 Development of Germanium Double Sided Strip Detectors for Nuclear Imaging Applications

89

FY 2010 LDRD Report to Congress  

Broader source: Energy.gov (indexed) [DOE]

United States Department of Energy United States Department of Energy Washington, DC 20585 FY 2010 LDRD Report to Congress U.S. Department of Energy The images on the front cover represent science and technology at the DOE national laboratories produced under the LDRD Program that support the Department of Energy and Department of Homeland Security's major missions. The images, in order, include: an 1) ultrasonic macro-blade cutting device used for sampling and analyzing the building blocks of the solar system to determine the particles' makeup, 2) a modeling capability from quantum computers that illustrates the electron density in the electrostatic electron-confinement chamber; 3) porous wall hollow glass microspheres used as a solid-state storage medium for storage and release

90

Environmental research program: FY 1987, annual report  

SciTech Connect (OSTI)

This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. The Program's Annual Report contains summaries of research performed during FY 1987 in the areas of atmospheric aerosols, flue gas chemistry, combustion, membrane bioenergetics, and analytical chemistry. The main research interests of the Atmospheric Aerosol Research group concern the chemical and physical processes that occur in haze, clouds, and fogs. For their studies, the group is developing novel analytical and research methods for characterizing aerosol species. Aerosol research is performed in the laboratory and in the field. Studies of smoke emissions from fires and their possible effects on climatic change, especially as related to nuclear winter, are an example of the collaboration between the Atmospheric Aerosol Research and Combustion Research Groups.

Not Available

1988-03-01T23:59:59.000Z

91

FY 2013 DOE Agency Financial Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Agency Financial Reports » FY 2013 DOE Agency Financial Agency Financial Reports » FY 2013 DOE Agency Financial Report FY 2013 DOE Agency Financial Report Notable accomplishments in FY 2013: Investments in energy transformation have resulted in testing of greenhouse gas storage, the first grid-connected offshore wind prototype, cost competitive advances in cellulosic ethanol, the first commercial geothermal system to deliver power to the electric grid, improved efficiency and cyber security for the electric grid, new appliance efficiency standards, the first full-scale nuclear reactor simulation. Basic research in the science field yielded several results, such as: the discovery of a powerful new microbe, major improvements to organic electronics, high-resolution molecular images, 3D printed batteries, improved efficiency in thermoelectric devices.

92

FY 2013 DOE Agency Financial Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Agency Financial Reports » FY 2013 DOE Agency Financial Agency Financial Reports » FY 2013 DOE Agency Financial Report FY 2013 DOE Agency Financial Report Notable accomplishments in FY 2013: Investments in energy transformation have resulted in testing of greenhouse gas storage, the first grid-connected offshore wind prototype, cost competitive advances in cellulosic ethanol, the first commercial geothermal system to deliver power to the electric grid, improved efficiency and cyber security for the electric grid, new appliance efficiency standards, the first full-scale nuclear reactor simulation. Basic research in the science field yielded several results, such as: the discovery of a powerful new microbe, major improvements to organic electronics, high-resolution molecular images, 3D printed batteries, improved efficiency in thermoelectric devices.

93

FY 2008 Progress Report for Lightweighting Materials - Cover...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

U.S. Department of Energy Vehicle Technologies Program 1000 Independence Avenue S.W. Washington, D.C. 20585-0121 FY 2008 Progress Report for Lightweighting Materials Energy...

94

Savannah River Ecology Laboratory FY2006 Annual Technical Progress Report  

SciTech Connect (OSTI)

FY2006 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of the University of Georgia operating on the Savannah River Site in Aiken, County, SC.

Paul M. Bertsch

2006-10-23T23:59:59.000Z

95

Enhanced surveillance program FY97 accomplishments. Progress report  

SciTech Connect (OSTI)

This annual report is one volume of the Enhanced Surveillance Program (ESP) FY97 Accomplishments. The complete accomplishments report consists of 11 volumes. Volume 1 includes an ESP overview and a summary of selected unclassified FY97 program highlights. Volume 1 specifically targets a general audience, reflecting about half of the tasks conducted in FY97 and emphasizing key program accomplishments and contributions. The remaining volumes of the accomplishments report are classified, organized by program focus area, and present in technical detail the progress achieved in each of the 104 FY97 program tasks. Focus areas are as follows: pits; high explosives; organics; dynamics; diagnostics; systems; secondaries; nonnuclear materials; nonnuclear components; and Surveillance Test Program upgrades.

Mauzy, A. [ed.; Laake, B. [comp.

1997-10-01T23:59:59.000Z

96

NEPA Lessons Learned Quarterly Report - 1st Quarter FY 1995  

Broader source: Energy.gov (indexed) [DOE]

. . National Environmental Policy Act N E P . A LESSONS Office of NEPA LEARNED QUARTERLY REPORT 1ST QUARTER FY 1995 Policy and Assistance U.S. Department of Energy March 1,1995 ODU- To foster continuing improvement of the Department's National Environmental Policy Act (NEPA) compliance program, the Secretarial Policy Statement on NEPA, issued June 13, 1994, requires the Office of Environment Safety and Health to solicit comments from the NEPA Document Manager, the NEPA Compliance Officer, and team members after completing each environmental impact statement and environmental assessment on lessons learned in the process, and to distribute a quarterly summary to all,NEPA Compliance Officers and NEPA Document Managers. This second quarterly report summarizes the lessons learned for documents completed between October 1 and December 31, 1994. It is based on responses to the revised

97

NEPA Lessons Learned Quarterly Report - 4th Quarter FY 1994  

Broader source: Energy.gov (indexed) [DOE]

LESSONS LEARNED QUARTERLY REPORT 4TH QUARTER FY1994 Oflicx of NEPA Oversight U.S. Department of Energy December ~ 1994 INTRODUCTION . To fdster continuing improvementof the Department's National Environmental policy Act (NEPA) compliance program, the Secretarial Policy Statement on NEP& issued June 13, 1994, requires the OffIceof Environment StUetyand Health to soiicit comments tkom the NEPA Document Manager, the NEPA Compliance Offker, and team members after completing each environmental impact statement and environmental assessment on lessons learned in the proces~ and to distribute a -Y SUmmW tOall NEpA Gmplf-c Offfcem and NEPA Document Managem On August Q 1994 the Oftice of NEPA Oversight distributed an interhddraft kSSOI.W ]WImed questionnaire to NEPA contacts to be used for reporting on environmental impact statements and environmental assessments approvedbetween

98

Advanced Fuels Campaign FY 2010 Accomplishments Report  

SciTech Connect (OSTI)

The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word fuel is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

Lori Braase

2010-12-01T23:59:59.000Z

99

Buildings Energy Program annual report, FY 1991  

SciTech Connect (OSTI)

The Buildings Energy Program at PNL conducts research and development (R&D) for DOE`s Office of Building Technologies (OBT). The OBT`s mission is to lead a national program supporting private and federal sector efforts to improve the energy efficiency of the nation`s buildings and to increase the use of renewable energy sources. Under an arrangement with DOE, Battelle staff also conduct research and development projects for other federal agencies and private clients. This annual report contains an account of the buildings-related research projects conducted at PNL during fiscal year (FY) 1991. A major focus of PNL`s energy projects is to improve the energy efficiency of commercial and residential buildings. Researchers who are developing solutions to energy-use problems view a building as an energy-using system. From this perspective, a desirable solution is not only one that is cost-effective and responsive to the needs of the occupants, but also one that optimizes the interaction among the energy components and systems that compose the whole.

Secrest, T.J.

1992-05-01T23:59:59.000Z

100

FY04 SWIR CRDS Summary Report  

SciTech Connect (OSTI)

The principal goal of Pacific Northwest National Laboratory's (PNNL's) Infrared Technology for Advanced Sensors Project is to explore and develop the science and technology behind point and stand off infrared (IR) spectroscopic chemical sensors that are needed for detecting weapons proliferation activity. The primary use of the technology is to detect the chemical signatures associated with the production or use of chemical, biological, or nuclear weapons. In FY04 PNNL continued the development of a Shortwave Infrared (SWIR) point sensor based on optical Cavity Ringdown Spectroscopy (CRDS). During the year this instrument participated in 3 field tests, including the indoor UF6 release experiment which took place on the Hanford Site in Aug. 2004. The field tests demonstrated the robustness of CRDS as a fieldable technology for sensitive detection of airborne analytes. The instrument was altered from detecting ammonia with a detection limit of {approx} 1 ppmv to detect hydrogen fluoride with a detection limit of {approx} 3 ppbv. The differences in limits of detection between these two chemicals is accounted for by the relative differences in the absorption strength of the two molecules (with HF having a much larger absorption strength than ammonia). In addition to the field tests, the instrument underwent further refinement to improve long term stability. These enhancements resulted from improvements in both hardware and software. We outline all of these accomplishments in detail in the body of this report.

Williams, Richard M.; Thompson, Jason S.; Stewart, Timothy L.; Tweedy, Brianna J.

2004-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

FY 2009 Annual Progress Report for Advanced Power Electronics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PROGRESS REPORT PROGRESS REPORT FOR ADVANCED POWER ELECTRONICS annual progress report 2009 2009 2009 2009 2009 2009 2009 2009 2009 U.S. Department of Energy FreedomCAR and Vehicle Technologies, EE-2G 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2009 Annual Progress Report for Advanced Power Electronics Prepared by: Susan A. Rogers, Technology Development Manager Submitted to: Energy Efficiency and Renewable Energy Vehicle Technologies Program January 2010 Advanced Power Electronics FY 2009 Progress Report Contents Page Acronyms and Abbreviations ..............................................................................................................v

102

FY 2012 Progress Report for Energy Storage R&D | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Progress Report for Energy Storage R&D FY 2012 Progress Report for Energy Storage R&D The FY 2012 Progress Report for Energy Storage R&D focuses on advancing the development of...

103

FY 2012 Annual Progress Report for Energy Storage R&D | Department...  

Broader source: Energy.gov (indexed) [DOE]

2 Annual Progress Report for Energy Storage R&D FY 2012 Annual Progress Report for Energy Storage R&D FY 2012 annual report of the energy storage research and development effort...

104

FY 2009 Annual Performance Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Annual Performance Reports » FY 2009 Annual Performance Annual Performance Reports » FY 2009 Annual Performance Report FY 2009 Annual Performance Report DOE's Annual Performance Report (APR) outlines the Department's performance in fiscal year 2009 against the goals that were set in the President's fiscal year 2009 budget. The performance measures discussed in this report were outlined in the Department's congressional budget justifications and carried through the actual execution of the budget during the fiscal year. Because these measures were created before final congressional allocations, in some cases the actual appropriation levels did not match the Department's request and may have affected a program's ability to meet its planned performance level. Performance information is also presented for projects funded by the American Recovery and Reinvestment Act of 2009.

105

FY 2010 Annual Performance Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Performance Reports » FY 2010 Annual Performance Performance Reports » FY 2010 Annual Performance Report FY 2010 Annual Performance Report Department of Energy's Annual Performance Report (APR) compares the Department's performance results for fiscal year 2010 with goals set in the President's fiscal year 2010 budget. The performance measures discussed in this report were outlined in the Department's congressional budget justifications and carried through the actual execution of the budget during the fiscal year. Performance information is also presented for projects funded by the American Recovery and Reinvestment Act of 2009. Provides key performance information that demonstrates DOE's accountability to the American people for discovering the solutions to power and secure America's future. Documents for Download

106

FY 2009 Annual Performance Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Annual Performance Reports » FY 2009 Annual Performance Annual Performance Reports » FY 2009 Annual Performance Report FY 2009 Annual Performance Report DOE's Annual Performance Report (APR) outlines the Department's performance in fiscal year 2009 against the goals that were set in the President's fiscal year 2009 budget. The performance measures discussed in this report were outlined in the Department's congressional budget justifications and carried through the actual execution of the budget during the fiscal year. Because these measures were created before final congressional allocations, in some cases the actual appropriation levels did not match the Department's request and may have affected a program's ability to meet its planned performance level. Performance information is also presented for projects funded by the American Recovery and Reinvestment Act of 2009.

107

FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program  

Broader source: Energy.gov [DOE]

This FY 2003 Progress Report presents a description of the fuel cell and hydrogen research conducted by the Hydrogen, Fuel Cells and Infrastructure Technologies Program in fiscal year 2003 (FY 2003), projects to be implemented in FY 2004, and the research priorities for FY 2004.

108

Hangman Restoration Project Year-End Report FY2008.  

SciTech Connect (OSTI)

This report covers the main goals of FY2008 from which the Work Elements were derived. The goals and products are listed by heading and the associated work elements are referenced in the text. A list of the FY2008 Work Elements is included as Appendix A. FY2008 witnessed the completion of the hntkwipn Management Plan and the first substantive efforts to restore the important habitats encompassed by the mitigation properties in the Upper Hangman Watershed. Native grasses were planted and germination was evaluated. Also, drain tiles that greatly altered the hydrologic function of the Sheep and Hangman Creek Flood Plains were removed and/or disrupted. Preparation for future restoration efforts were also made in FY2008. Designs were produced for the realignment of Sheep Creek and the decommissioning of seven drainage ditches within hntkwipn. A prioritization plan was drafted that greatly expands the area of focus for restoring native fish population in Hangman Creek.

Coeur d'Alene Tribe Department of Natural Resources.

2008-11-12T23:59:59.000Z

109

Ferrocyanide Safety Project: FY 1991 annual report  

SciTech Connect (OSTI)

The Hanford Ferrocyanide Task Team is addressing issues involving ferrocyanide precipitates in the single-shell waste storage tanks (SSTs), in particular the risk of explosion. This Task Team, which is composed of researchers from Westinghouse Hanford Company (WHC), Pacific Northwest Laboratory (PNL), an outside consultants, was formed in response to the need for an updated analysis of safety questions on the Hanford SSTSs. The Ferrocyanide Safety Project, discussed in this report, is being conducted by PNL as part of the Waste Tank Safety Program led by WHC. The overall purpose of the WHC program, which is sponsored by the US Department of Energy`s Tank Safety Project Office, is to provide technical information on ferrocyanide chemistry and its interaction and reactive behavior with other tank constituents. Ultimately, this information will be used to maintain the tanks in a safe condition, implement interim stabilization strategies, and identify optimal disposal options. While by itself ferrocyanide is a stable complex of ferrous ion and cyanide, it can be made to explode in the laboratory in the presence of oxidizing materials such as nitrates and/or nitrites temperatures above 280{degree}C or by sufficient electrical spark. The specific goal of the PNL project is so determine the conditions necessary for the ferrocyanide-bearing wastes in Hanford SSTs to represent a hazard, to determine the conditions where these same wastes am not a hazard, or to determine the conditions which are necessary to assure the wastes are safe prior to treatment for permanent disposal. This annual report gives the results of the work conducted by PNL in FY 1991. The activities mainly focused on preparing and characterizing synthetic wastes and alkali nickel ferrocyanides produced using the In-Farm cesium scavenging flowsheet and pure potential nickel ferrocyanides that could be produced by all of the cesium scavenging flowsheets.

Hallen, R.T.; Burger, L.L.; Hockey, R.L.; Lilga, M.A.; Scheele, R.D.; Tingey, J.M.

1992-06-01T23:59:59.000Z

110

Ferrocyanide Safety Project: FY 1991 annual report  

SciTech Connect (OSTI)

The Hanford Ferrocyanide Task Team is addressing issues involving ferrocyanide precipitates in the single-shell waste storage tanks (SSTs), in particular the risk of explosion. This Task Team, which is composed of researchers from Westinghouse Hanford Company (WHC), Pacific Northwest Laboratory (PNL), an outside consultants, was formed in response to the need for an updated analysis of safety questions on the Hanford SSTSs. The Ferrocyanide Safety Project, discussed in this report, is being conducted by PNL as part of the Waste Tank Safety Program led by WHC. The overall purpose of the WHC program, which is sponsored by the US Department of Energy's Tank Safety Project Office, is to provide technical information on ferrocyanide chemistry and its interaction and reactive behavior with other tank constituents. Ultimately, this information will be used to maintain the tanks in a safe condition, implement interim stabilization strategies, and identify optimal disposal options. While by itself ferrocyanide is a stable complex of ferrous ion and cyanide, it can be made to explode in the laboratory in the presence of oxidizing materials such as nitrates and/or nitrites temperatures above 280{degree}C or by sufficient electrical spark. The specific goal of the PNL project is so determine the conditions necessary for the ferrocyanide-bearing wastes in Hanford SSTs to represent a hazard, to determine the conditions where these same wastes am not a hazard, or to determine the conditions which are necessary to assure the wastes are safe prior to treatment for permanent disposal. This annual report gives the results of the work conducted by PNL in FY 1991. The activities mainly focused on preparing and characterizing synthetic wastes and alkali nickel ferrocyanides produced using the In-Farm cesium scavenging flowsheet and pure potential nickel ferrocyanides that could be produced by all of the cesium scavenging flowsheets.

Hallen, R.T.; Burger, L.L.; Hockey, R.L.; Lilga, M.A.; Scheele, R.D.; Tingey, J.M.

1992-06-01T23:59:59.000Z

111

FY2002 Annual Progress Report for the Light Vehicle Propulsioin & Ancillary Subsystems Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Vehicle Technologies & Vehicle Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2002 Annual Progress Report for the Light Vehicle Propulsion & Ancillary Subsystems Program Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy Office of FreedomCAR & Vehicle Technologies Vehicle Systems Team Robert Kost, Team Leader January 2003 Light Vehicle Propulsion & Ancillary Subsystems Program FY 2002 Annual Progress Report CONTENTS I. INTRODUCTION ............................................................................................... 1 II. TECHNOLOGY REQUIREMENTS DEFINITION....................................... 3 A. Simulation Model Development ..................................................................... 3 1. Improvement, Validation and Application of Advanced

112

FY 2006 SC Laboratory Performance Report Cards | U.S. DOE Office of Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 SC Laboratory Performance Report Cards 6 SC Laboratory Performance Report Cards Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards FY 2007 SC Laboratory Performance Report Cards FY 2006 SC Laboratory Performance Report Cards Ames: Oct 1, 2005 - Sept 30, 2006 Argonne: Oct 1, 2005 - Sept 30, 2006 BNL: Oct 1, 2005 - Sept 30, 2006 Fermilab: Oct 1, 2005 - Sept 30, 2006 LBNL: Oct 1, 2005 - Sept 30, 2006 ORNL: Oct 1, 2005 - Sept 30, 2006 PNNL: Oct 1, 2005 - Sept 30, 2006 PPPL: Oct 1, 2005 - Sept 30, 2006

113

Nevada Test Site-Directed Research, Development, and Demonstration. FY2005 report  

SciTech Connect (OSTI)

The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R&D projects, as presented in this report.

Will Lewis, Compiler

2006-09-01T23:59:59.000Z

114

FY 2005 Infrared Photonics Final Report  

SciTech Connect (OSTI)

Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrologyall specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. QCLs provide a viable infrared laser source for a new class of laser transmitters capable of meeting the performance requirements for a variety of national security sensing applications. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions. During FY 2005, PNNLs Infrared Photonics research team made measurable progress exploiting the extraordinary optical and material properties of chalcogenide glass to develop miniaturized integrated optics for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. We investigated sulfur purification methods that will eventually lead to routine production of optical quality chalcogenide glass. We also discovered a glass degradation phenomenon and our investigation uncovered the underlying surface chemistry mechanism and developed mitigation actions. Key research was performed to understand and control the photomodification properties. This research was then used to demonstrate several essential infrared photonic devices, including LWIR single-mode waveguide devices and waveguide couplers. Optical metrology tools were also developed to characterize optical waveguide structures and LWIR optical components.

Anheier, Norman C.; Allen, Paul J.; Ho, Nicolas; Krishnaswami, Kannan; Johnson, Bradley R.; Sundaram, S. K.; Riley, Bradley M.; Martinez, James E.; Qiao, Hong (Amy); Schultz, John F.

2005-12-01T23:59:59.000Z

115

Yucca Mountain biological resources monitoring program; Annual report FY92  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

NONE

1993-02-01T23:59:59.000Z

116

Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

NONE

1992-01-01T23:59:59.000Z

117

Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FY 2012 Progress Report FY 2012 Progress Report for Energy Storage R&D to someone by E-mail Share Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Facebook Tweet about Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Twitter Bookmark Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Google Bookmark Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Delicious Rank Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Digg Find More places to share Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports

118

FY 2009 DOE Agency Financial Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

09 DOE Agency Financial 09 DOE Agency Financial Report FY 2009 DOE Agency Financial Report The American Recovery and Reinvestment Act of 2009, which was signed into law by President Obama on February 17, 2009. It is an unprecedented effort to jumpstart our economy and create or save millions of jobs. The Recovery Act also made a down payment on our clean energy future. DOE received nearly $37 billion through the Recovery Act to complement the base appropriation of $34 billion. The base appropriation increased by over $9 billion from the FY 2008 level due to additional funding of the Advanced Technology Vehicles Manufacturing Loan program and numerous science, energy, and national security initiatives. FY 2009 DOE Agency Financial Report More Documents & Publications Audit Report: OAS-FS-12-03

119

FY 2007 Annual Uncosted Balances Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Annual Uncosted Balances Reports » FY 2007 Annual Annual Uncosted Balances Reports » FY 2007 Annual Uncosted Balances Report FY 2007 Annual Uncosted Balances Report The Department faced significant challenges due to the unusually long Continuing Resolution (CR), which extended until April 2007. Under the CR the Department must act conservatively to ensure that obligations and costs are restrained in order to mitigate any negative impacts should actual appropriations differ significantly from planned and budgeted amounts. In addition, the Department is prohibited from engaging in any "new starts" for contracts or projects, which means that these activities are deferred until later in the year, thereby increasing the amount of uncosted balances at year-end since the costing cycle is, in essence, no longer on a fiscal

120

Natural System Evaluation and Tool Development FY11 Progress Report |  

Broader source: Energy.gov (indexed) [DOE]

Natural System Evaluation and Tool Development FY11 Progress Report Natural System Evaluation and Tool Development FY11 Progress Report Natural System Evaluation and Tool Development FY11 Progress Report The report describes selected aspects of progress for four major tasks: (1) development of a detailed R&D plan for natural system evaluation and tool development; (2) in-depth analsis of key attributes and new concepts identified in the R&D plan; (3) preliminary demonstration of new modeling and experimental tools; and (4) conceptual design of a databse for natural system evaluation. This includes discussions related to: 1) discrete fracture network simulation; 2) spatial heterogeneity in Kd; 3) literature review of radionuclide interactions with clay/clay minerals; 4) behavior of aqueous Pu(IV) and intrinsic Pu(IV) nanocolloids; 5) mechanical response of clay,

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

FY 2011 Progress Report for Energy Storage R&D | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage R&D FY 2011 Progress Report for Energy Storage R&D The FY 2011 Progress Report for Energy Storage R&D focuses on advancing the development of batteries to enable a...

122

Chief Freedom of Information Act (FOIA) Officer Report for FY2009...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chief Freedom of Information Act (FOIA) Officer Report for FY2009 Chief Freedom of Information Act (FOIA) Officer Report for FY2009 The Secretary of Energy issued a message to all...

123

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Photoelectrochemical Hydrogen Production  

E-Print Network [OSTI]

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 1 addresses the following technical barriers from the Hydrogen Production section of the Hydrogen, Fuel Cells Photoelectrodes ." #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 2

124

Energy Task Force FY11 Report  

E-Print Network [OSTI]

sulfur B20 (to date approximately 87% transition). In FY 11, these alternative fuel initiatives resulted inventory was updated with data from fiscal years 2008-2009. This continues a series of updates going back to 2001 (for continuous data back to 1990), allowing the University to monitor and assess

New Hampshire, University of

125

Analytical Chemistry Laboratory progress report for FY 1999  

SciTech Connect (OSTI)

This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

2000-06-15T23:59:59.000Z

126

Analytical Chemistry Laboratory progress report for FY 1998.  

SciTech Connect (OSTI)

This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

1999-03-29T23:59:59.000Z

127

FY 2004 Annual Progress Report for Heavy Vehicle Systems Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HEAVY HEAVY VEHICLE SYSTEMS OPTIMIZATION FreedomCAR and Vehicle Technologies Program U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2004 Annual Progress Report for Heavy Vehicle Systems Optimization Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Approved by Dr. Sidney Diamond Technology Area Development Specialist February 2005 Heavy Vehicle Systems Optimization Program FY 2004 Annual Report iii Contents Foreword by Dr. Sidney Diamond, FreedomCAR and Vehicle Technologies Program, Energy Efficiency and Renewable Energy, U.S. Department of Energy ................................. 1 I. Aerodynamic Drag Reduction......................................................................................................

128

FY2003 Progress Report for Automotive Propulsion Materials Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FreedomCAR and Vehicle Technologies FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 CONTENTS 1. INTRODUCTION ........................................................................................................... 1

129

FY06 High Strength Weight Reduction Materials Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HigH StrengtH HigH StrengtH WeigHt reduction MaterialS U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2006 Progress Report for High Strength Weight Reduction Materials Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Advanced Materials Technologies Edward Wall Program Manager, OFCVT Rogelio Sullivan Advanced Materials Technologies Team Leader James Eberhardt Chief Scientist March 2006 High Strength Weight Reduction Materials FY 2006 Progress Report CONTENTS 1. INTRODUCTION................................................................................................................................... 1 2. MATERIALS DEVELOPMENT .......................................................................................................... 3

130

Lead Slowing Down Spectrometer FY2013 Annual Report  

SciTech Connect (OSTI)

Executive Summary The Lead Slowing Down Spectrometry (LSDS) project, funded by the Materials Protection And Control Technology campaign, has been evaluating the feasibility of using LSDS techniques to assay fissile isotopes in used nuclear fuel assemblies. The approach has the potential to provide considerable improvement in the assay of fissile isotopic masses in fuel assemblies compared to other non-destructive techniques in a direct and independent manner. This report is a high level summary of the progress completed in FY2013. This progress included: Fabrication of a 4He scintillator detector to detect fast neutrons in the LSDS operating environment. Testing of the detector will be conducted in FY2014. Design of a large area 232Th fission chamber. Analysis using the Los Alamos National Laboratory perturbation model estimated the required number of neutrons for an LSDS measurement to be 10 to the 16th source neutrons. Application of the algorithms developed at Pacific Northwest National Laboratory to LSDS measurement data of various fissile samples conducted in 2012. The results concluded that the 235U could be measured to 2.7% and the 239Pu could be measured to 6.3%. Significant effort is yet needed to demonstrate the applicability of these algorithms for used-fuel assemblies, but the results reported here are encouraging in demonstrating that we are making progress toward that goal. Development and cost-analysis of a research plan for the next critical demonstration measurements. The plan suggests measurements on fresh fuel sub assemblies as a means to experimentally test self-attenuation and the use of fresh mixed-oxide fuel as a means to test simultaneous measurement of 235U and 239Pu.

Warren, Glen A.; Kulisek, Jonathan A.; Gavron, Victor A.; Danon, Yaron; Weltz, Adam; Harris, Jason; Stewart, T.

2013-10-29T23:59:59.000Z

131

ACE Merit Review Report FY2004  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Merit Review and Peer Evaluation Merit Review and Peer Evaluation of FY 2004 DOE Advanced Combustion Engine R&D Argonne National Laboratory, Argonne, IL May 18-20, 2004 Office of Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program December 2004 Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Department of Energy Washington, DC 20585 December 13, 2004 Dear Colleague: This document summarizes the comments provided by the Review Panel for the FY 2004 Department of Energy (DOE) Advanced Combustion Engine R&D Merit Review and Peer Evaluation Meeting, the "ACE Review," held on May 18-20, 2004 at Argonne National Laboratory (ANL). The raw evaluations and comments of the panel were

132

Federal Comprehensive Annual Reporting Requirements | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to draft DOE's Annual Report to Congress on Federal Government Energy Management. Annual GHG and Sustainability Data Report for FY 2014 Reporting The Federal Energy Management...

133

Combined Fiscal Year (FY) 2002 Annual Performance Report and FY 2003 Annual Performance Plan  

Broader source: Energy.gov [DOE]

Subject: Office of Inspector Generals combined Fiscal Year (FY) 2002 Annual Performance Results and FY 2003 Annual Performance Plan

134

Environmental management compliance reengineering project, FY 1997 report  

SciTech Connect (OSTI)

Through an integrated reengineering effort, the Idaho National Engineering and Environmental Laboratory (INEEL) is successfully implementing process improvements that will permit safe and compliant operations to continue during the next 5 years, even though $80 million was removed from the Environmental Management (EM) program budget. A 2-year analysis, design, and implementation project will reengineer compliance-related activities and reduce operating costs by approximately $17 million per year from Fiscal Year (FY) 1998 through 2002, while continuing to meet the INEEL`s environment, safety, and health requirements and milestone commitments. Compliance reengineer`s focus is improving processes, not avoiding full compliance with environmental, safety, and health laws. In FY 1997, compliance reengineering used a three-phase approach to analyze, design, and implement the changes that would decrease operating costs. Implementation for seven specific improvement projects was completed in FY 1997, while five projects will complete implementation in FY 1998. During FY 1998, the three-phase process will be repeated to continue reengineering the INEEL.

VanVliet, J.A.; Davis, J.N.

1997-09-01T23:59:59.000Z

135

Component Standard Research and Development - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Robert Burgess (Primary Contact), William Buttner, Matthew Post, Carl Rivkin, Chad Blake National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3823 Email: robert.burgess@nrel.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Subcontractor: SAE International, Troy, MI Project Start Date: Fiscal Year (FY) 2008 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Support development of new codes and standards * required for commercialization of hydrogen technologies. Create code language that is based on the latest scientific *

136

Integral Fast Reactor Program annual progress report, FY 1991  

SciTech Connect (OSTI)

This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

Not Available

1992-06-01T23:59:59.000Z

137

Integral Fast Reactor Program annual progress report, FY 1991  

SciTech Connect (OSTI)

This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R D.

Not Available

1992-06-01T23:59:59.000Z

138

FY05 FM Dial Summary Report  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory's Infrared Sensors team is focused on developing methods for standoff detection of nuclear proliferation. In FY05, PNNL continued the development of the FM DIAL (frequency-modulated differential absorption LIDAR) experiment. Additional improvements to the FM DIAL trailer provided greater stability during field campaigns which made it easier to explore new locations for field campaigns. In addition to the Hanford Townsite, successful experiments were conducted at the Marine Science Laboratory in Sequim, WA and the Nevada Test Site located outside Las Vegas, NV. The range of chemicals that can be detected by FM DIAL has also increased. Prior to FY05, distributed feedback quantum cascade lasers (DFB-QCL) were used in the FM DIAL experiments. With these lasers, only simple chemicals with narrow (1-2 cm-1) absorption spectra, such as CO2 and N2O, could be detected. Fabry-Perot (FP) QC lasers have much broader spectra (20-40 cm-1) which allows for the detection of larger chemicals and a wider array of chemicals that can be detected. A FP-QCL has been characterized and used during initial studies detecting DMMP (dimethyl methylphosphonate).

Harper, Warren W.; Strasburg, Jana D.; Golovich, Elizabeth C.; Thompson, Jason S.; Stewart, Timothy L.; Batdorf, Michael T.

2005-12-01T23:59:59.000Z

139

Geothermal Materials Development, Annual Report FY 1991  

SciTech Connect (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level I and II Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY 1991, utility company sponsored full cost'' recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY 1991 the DOE/GD-sponsored R D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO{sub 2}- resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

Kukacka, L.E.

1991-12-01T23:59:59.000Z

140

Geothermal Materials Development. Annual report FY 1991  

SciTech Connect (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level I and II Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY 1991, utility company sponsored ``full cost`` recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY 1991 the DOE/GD-sponsored R&D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO{sub 2}- resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

Kukacka, L.E.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

FY10 Engineering Innovations, Research and Technology Report  

SciTech Connect (OSTI)

This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

2011-01-11T23:59:59.000Z

142

Analytical Chemistry Laboratory, progress report for FY 1993  

SciTech Connect (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

Not Available

1993-12-01T23:59:59.000Z

143

Decontamination and decommissioning surveillance and maintenance report for FY 1991  

SciTech Connect (OSTI)

The Decontamination and Decommissioning (D D) Program has three distinct phases: (1) surveillance and maintenance (S M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D D is devoted to S M at each of the sites. Our S M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

Not Available

1991-12-01T23:59:59.000Z

144

FY 2008 Progress Report for Advanced Combustion Engine Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COMBUSTION COMBUSTION ENGINE TECHNOLOGIES annual progress report 2008 V e h i c l e T e c h n o l o g i e s P r o g r a m U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2008 Progress rePort For AdvAnced combustion engine technologies Energy Efficiency

145

Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1  

SciTech Connect (OSTI)

This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

Valero, O.J.; Templeton, K.J.; Morgan, J.

1997-01-07T23:59:59.000Z

146

Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11 Progress Report 11 Progress Report for Energy Storage R&D to someone by E-mail Share Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Facebook Tweet about Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Twitter Bookmark Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Google Bookmark Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Delicious Rank Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Digg Find More places to share Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports

147

Herbaceous Energy Corps Program: Annual progress report for FY 1986  

SciTech Connect (OSTI)

This report describes the activities and accomplishments of the Herbaceous Energy Crops Program (HECP) for the year ending September 30, 1986. HECP is devoted to research on the development of terrestrial, nonwoody plant species for use as energy feedstocks. HECP emphasizes lignocellulosic forage crops. In FY 1986 screening and selection trials continued on 25 species of perennial and annual grasses and legumes in five projects in the Southeast and the Midwest-Lake States regions. Research also continued on the development of winter rapeseed as a diesel-fuel substitute. Activities in FY 1986 included genetic crosses and selections to incorporate atrazine resistance, development of Canola-quality winter rapeseed for the Southeast, and development of dwarf varieties. Production practices for double-cropped winter rapeseed in the Southeast were also examined. Exploratory research efforts in FY 1986 included the physiology and biochemistry of hydrocarbon production in latex-bearing plants, the productivity of cattail stands under sustained harvesting, the development of tissue culture techniques for hard-to-culture sorghum genotypes, and the start of a study to measure sustained productivity of old-field successional vegetation. Environmental and economic analyses in FY 1986 included studies on the uses of wetlands and wet soils, the use of lignocellulosic crops as an alcohol feedstock, the potential of direct combustion of lignocellulosic crops, and existing oilseed extraction facilities. 6 refs., 12 figs., 15 tabs.

Cushman, J.H.; Turhollow, A.F.; Johnston, J.W.

1987-05-01T23:59:59.000Z

148

FY 1992 work plan and technical progress reports  

SciTech Connect (OSTI)

The Desert Research Institute (DRI) is a division of the University of Nevada System devoted to multidisciplinary scientific research. For more than 25 years, DRI has conducted research for the US Department of Energy`s Nevada Field Office (DOE/NV) in support of operations at the Nevada Test Site (NTS). During that time, the research program has grown from an early focus on hydrologic studies to include the areas of geology, archaeology, environmental compliance and monitoring, statistics, database management, public education, and community relations. The range of DRI`s activities has also expanded to include a considerable amount of management and administrative support in addition to scientific investigations. DRI`s work plan for FY 1992 reflects a changing emphasis in DOE/NV activities from nuclear weapons testing to environmental restoration and monitoring. Most of the environmental projects from FY 1991 are continuing, and several new projects have been added to the Environmental Compliance Program. The Office of Technology Development Program, created during FY 1991, also includes a number of environmental projects. This document contains the FY 1992 work plan and quarterly technical progress reports for each DRI project.

NONE

1992-11-01T23:59:59.000Z

149

Sustainable NREL, Biennial Report | FY 2010-2011 (Management Report), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sustainable NREL Sustainable NREL B I E N N I A L R E P O R T | F Y 2010 - 2011 B I E N N I A L R E P O R T | F Y 2010 - 2011 ACKNOWLEDGMENTS NREL reports on the laboratory's sustainability performance goals, objectives, and strategies. The Sustainable NREL Program has been rigorous in its pursuit to create the biennial report for FY 2010 and FY 2011 by expanding the reporting parameters to include the standardized sustainability framework of the Global Reporting Initiative (GRI). The GRI framework is considered the most credible in the world, and is the most used today by national and global corporations. Many managers and staff members assisted with the production of the Sustainable NREL Biennial Report FY 2010-FY 2011- providing technical content and data collection and communication support. They include: the Sustainable NREL staff

150

FY 2013 SC Laboratory Performance Report Cards | U.S. DOE Office of Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 SC Laboratory Performance Report Cards 3 SC Laboratory Performance Report Cards Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards Ames: Oct 1, 2012 - Sept 30, 2013 Argonne: Oct 1, 2012 - Sept 30, 2013 BNL: Oct 1, 2012 - Sept 30, 2013 Fermilab: Oct 1, 2012 - Sept 30, 2013 LBNL: Oct 1, 2012 - Sept 30, 2013 ORNL: Oct 1, 2012 - Sept 30, 2013 PNNL: Oct 1, 2012 - Sept 30, 2013 PPPL: Oct 1, 2012 - Sept 30, 2013 SLAC: Oct 1, 2012 - Sept 30, 2013 JLab: Oct 1, 2012 - Sept 30, 2013 FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards

151

FY 2012 SC Laboratory Performance Report Cards | U.S. DOE Office of Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 SC Laboratory Performance Report Cards 2 SC Laboratory Performance Report Cards Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards Ames: Oct 1, 2011 - Sept 30, 2012 Argonne: Oct 1, 2011 - Sept 30, 2012 BNL: Oct 1, 2011 - Sept 30, 2012 Fermilab: Oct 1, 2011 - Sept 30, 2012 LBNL: Oct 1, 2011 - Sept 30, 2012 ORNL: Oct 1, 2011 - Sept 30, 2012 PNNL: Oct 1, 2011 - Sept 30, 2012 PPPL: Oct 1, 2011 - Sept 30, 2012 SLAC: Oct 1, 2011 - Sept 30, 2012 JLab: Oct 1, 2011 - Sept 30, 2012 FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards

152

FY 2010 SC Laboratory Performance Report Cards | U.S. DOE Office of Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 SC Laboratory Performance Report Cards 10 SC Laboratory Performance Report Cards Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards Ames: Oct 1, 2009 - Sept 30, 2010 Argonne: Oct 1, 2009 - Sept 30, 2010 BNL: Oct 1, 2009 - Sept 30, 2010 Fermilab: Oct 1, 2009 - Sept 30, 2010 LBNL: Oct 1, 2009 - Sept 30, 2010 ORNL: Oct 1, 2009 - Sept 30, 2010 PNNL: Oct 1, 2009 - Sept 30, 2010 PPPL: October 1, 2009 - September 30, 2010 SLAC: Oct 1, 2009 - Sept 30, 2010 JLab: Oct 1, 2009 - Sept 30, 2010 FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards

153

Vehicle Technologies Office: FY 2003 Progress Report for High-Strength  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Progress Report 3 Progress Report for High-Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on

154

FY 2011 SC Laboratory Performance Report Cards | U.S. DOE Office of Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 SC Laboratory Performance Report Cards 1 SC Laboratory Performance Report Cards Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards Ames: Oct 1, 2010 - Sept 30, 2011 Argonne: Oct 1, 2010 - Sept 30, 2011 BNL: Oct 1, 2010 - Sept 30, 2011 Fermilab: Oct 1, 2010 - Sept 30, 2011 LBNL: Oct 1, 2010 - Sept 30, 2011 ORNL: Oct 1, 2010 - Sept 30, 2011 PNNL: Oct 1, 2010 - Sept 30, 2011 PPPL: October 1, 2010 - September 30, 2011 SLAC: Oct 1, 2010 - Sept 30, 2011 JLab: Oct 1, 2010 - Sept 30, 2011 FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards

155

Resource Analysis for Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Marc W. Melaina (Primary Contact), Michael Penev and Donna Heimiller National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3836 Email: Marc.Melaina@nrel.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Project Start Date: October 1, 2009 Project End Date: September 28, 2012 Fiscal Year (FY) 2012 Objectives Understand the hydrogen production requirements for a * future demand scenario Estimate low-carbon energy resources required to meet * the future scenario demand Compare resource requirements to current consumption * and projected future consumption Determine resource availability geographically and on a *

156

FY 2010 NNSA DVAAP Report - November 17, 2010 13  

National Nuclear Security Administration (NNSA)

FY 2010 NNSA DVAAP Report - November 17, 2010 13 FY 2010 NNSA DVAAP Report - November 17, 2010 13 members will also spend a portion of their summers at these two labs contributing to ongoing research programs. As the MAC Program continues to develop, NNSA anticipates additional benefits for program participants, including: providing several- month long appointments at NNSA sites to recent graduates, ROTC internships, ROTC Days throughout the country, enabling experts at NNSA sites to take sabbaticals to teach at a service academy, and providing reciprocal opportunities to service academy faculty, guest lectures at NNSA and academy staff visiting lectures, collaboration between the academies and NNSA sites on pilot initiatives, and strengthening existing collaborations. This program is also a part of our overall effort

157

NEPA Lessons Learned Quarterly Report, Fourth Quarter FY 2006  

Broader source: Energy.gov (indexed) [DOE]

6 1 6 1 Fourth Quarter FY 2006 December 1, 2006; Issue No. 49 National Environmental Policy Act U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT LESSONS LEARNED LEARNED LESSONS N E P A (continued on page 6) Scoping Process Underway for Two Yucca Mountain EISs The Department of Energy (DOE) recently initiated public scoping for two EISs related to Yucca Mountain, the Nation's proposed repository for disposal of commercial

158

NEPA Lessons Learned Quarterly Report, Second Quarter FY 2007  

Broader source: Energy.gov (indexed) [DOE]

7 1 7 1 Second Quarter FY 2007 June 1, 2007; Issue No. 51 National Environmental Policy Act U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT LESSONS LEARNED LEARNED LESSONS N E P A We have all been told to "work together" to accomplish a particular goal. Together Everyone Achieves More illustrates the benefi ts of "teamwork." Federal agencies, including the Council on Environmental Quality

159

FY 2007 Miniature Spherical Retroreflectors Final Report  

SciTech Connect (OSTI)

Miniature spherical retroreflectors, less than 8 millimeters in diameter, are currently being developed to enhance remote optical detection of nuclear proliferation activities. These retroreflecting spheres resemble small, sand-colored marbles that have the unique optical property of providing a strong reflection directly back to the source (i.e., retroreflecting) when illuminated with a laser. The addition of specific coatings, sensitive to specific chemicals or radioactive decay in the environment, can be applied to the surface of these retroreflectors to provide remote detection of nuclear proliferation activities. The presence of radioactive decay (e.g., alpha, gamma, neutron) or specific chemicals in the environment (e.g., TBP, acids) will change the optical properties of the spheres in a predictable fashion, thus indicating the presence or absence of the target materials. One possible scenario might employ an airborne infrared laser system (e.g., quantum-cascade lasers) to illuminate a section of ground littered with these retroreflective spheres. Depending on the coating and the presence of a specific chemical or radioisotope in the environment, the return signal would be modified in some predictable fashion because of fluorescence, frequency shifting, intensity attenuation/enhancement, or change in polarization. Research conducted in FY 2007 focused on developing novel optical fabrication processes and exploiting the unique material properties of chalcogenide infrared-transparent glass (germanium-arsenic-sulfur-tellurium compounds) to produce highly efficient retroreflectors. Pacific Northwest National Laboratorys approach provides comparable performance to the ideal graded index sphere concept, developed by R. K. Luneburg in 1944 (Luneburg 1944), while greatly reducing the complexity in fabrication by utilizing chalcogenide glass materials and compression-molding processes.

Anheier, Norman C.; Bernacki, Bruce E.; Krishnaswami, Kannan

2008-02-20T23:59:59.000Z

160

FY 2012 Progress Report for Fuel & Lubricant Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

911 911 Fuels & Lubricant Technologies VEHICLE TECHNOLOGIES OFFICE 2012 annual progress report U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2012 PROGRESS REPORT FOR FUEL & LUBRICANT TECHNOLOGIES Energy Efficiency and Renewable Energy Vehicle Technologies Office Approved by Kevin Stork Team Leader, Fuel & Lubricant Technologies Vehicle Technologies Office June 2013 DOE/EE-0911 Acknowledgement We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report.

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

FY 2012 Annual Workforce Analysis and Staffing Plan Report - NNSA NSO  

Broader source: Energy.gov (indexed) [DOE]

93-8518 93-8518 JAN 162m3 Karen L. Boardman, Chairperson, Federal Technical Capability Panel, DOE National Training Center, (HS-50) Albuquerque, NM NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE (NNSAINSO}ANNUAL WORKFORCE ANALYSIS AND STAFFING PLAN REPORT Please find enclosed the NNSA/NSO Fiscal Year (FY) 2013 Annual Workforce Analysis and Staffing Plan Report. It conforms to your guidance dated October 24, 2012. In summary, the current shortages at NNSA/NSO are: High Priority None Medium Priority None Other Positions 0.25 Civil/Structural Engineering FTE 0.25 Construction Management FTE The enclosed plan outlines our strategy to meet these requirements in FY 2013. If you have any questions regarding this plan, please contact Barry Mellor at (702) 295-1456.

162

ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report  

SciTech Connect (OSTI)

The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, Laboratory Directed Research and Development (April 19, 2006), which establishes DOEs requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the programs management process.

NA, NA [ORNL

2014-03-01T23:59:59.000Z

163

ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report  

SciTech Connect (OSTI)

The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, Laboratory Directed Research and Development (April 19, 2006), which establishes DOEs requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the programs management process.

NA, NA [ORNL

2011-03-01T23:59:59.000Z

164

ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report  

SciTech Connect (OSTI)

The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, Laboratory Directed Research and Development (April 19, 2006), which establishes DOEs requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the programs management process.

NA, NA [ORNL

2012-03-01T23:59:59.000Z

165

ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report  

SciTech Connect (OSTI)

The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, Laboratory Directed Research and Development (April 19, 2006), which establishes DOEs requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the programs management process.

NA, NA [ORNL

2010-03-01T23:59:59.000Z

166

ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report  

SciTech Connect (OSTI)

The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, Laboratory Directed Research and Development (April 19, 2006), which establishes DOEs requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the programs management process.

NA, NA [ORNL

2013-03-01T23:59:59.000Z

167

Analytical Chemistry Laboratory Progress Report for FY 1994  

SciTech Connect (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

1994-12-01T23:59:59.000Z

168

FY 2012 Annual Progress Report for Energy Storage R&D | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

isclaimerbackcover.pdf More Documents & Publications FY 2011 Annual Progress Report for Energy Storage R&D EV Everywhere Grand Challenge Blueprint EV Everywhere Grand Challenge...

169

Light Water Reactor Sustainability Constellation Pilot Project FY13 Summary Report  

SciTech Connect (OSTI)

Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY13.

R. Johansen

2013-09-01T23:59:59.000Z

170

Light Water Reactor Sustainability Constellation Pilot Project FY12 Summary Report  

SciTech Connect (OSTI)

Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY12.

R. Johansen

2012-09-01T23:59:59.000Z

171

Environmental Systems Research and Analysis FY 2000 Annual Report  

SciTech Connect (OSTI)

The Environmental Systems Research (ESR) Program, a part of the Environmental Systems Research and Analysis (ESRA) Program, was implemented to enhance and augment the technical capabilities of the INEEL. Strengthening the Technical capabilities of the INEEL will provide the technical base to serve effectively as the Environmental Management Laboratory for the Office of Environmental Management (EM). This is a progress report for the third year of the ESR Program (FY 2000). A report of activities is presented for the five ESR research investment areas: (1) Transport Aspects of Selective Mass Transport Agents, (2) Chemistry of Environmental Surfaces, (3) Materials Dynamics, (4) Characterization Science, and (5) Computational Simulation of Mechanical and Chemical Systems. In addition to the five technical areas, the report describes activities in the Science and Technology Foundations element of the program, e.g., interfaces between ESR and the EM Science Program (EMSP) and the EM Focus Areas. The five research areas are subdivided into 18 research projects. FY 2000 research in these 18 projects has resulted in more than 50 technical papers that are in print, in press, in review, or in preparation. Additionally, more than 100 presentations were made at professional society meetings nationally and internationally. Work supported by this program was in part responsible for one of our researchers, Dr. Mason Harrup, receiving the Department of Energys Bright Light and Energy at 23 awards. Significant accomplishments were achieved. Non-Destructive Assay hardware and software was deployed at the INEEL, enhancing the quality and efficiency of TRU waste characterization for shipment. The advanced tensiometer has been employed at numerous sites around the complex to determine hydrologic gradients in variably saturated vadose zones. An ion trap, secondary ion mass spectrometer (IT-SIMS) was designed and fabricated to deploy at the INEEL site to measure the chemical speciation of radionuclides and toxic metals on the surfaces of environmentally significant minerals. The FY 2001 program will have a significantly different structure and research content. This report presents the final summary of projects coming to an end in FY 2000 and is a bridge to the FY 2001 program.

David L. Miller; Castle, Peter Myer; Steven J. Piet

2001-01-01T23:59:59.000Z

172

FY 2010 DOE Agency Financial Report  

Broader source: Energy.gov (indexed) [DOE]

Foreword Foreword „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ T he Reports Consolidation Act of 2000 authorizes Fed- eral agencies, with the Office of Management and Bud- get's (OMB) concurrence, to consolidate various reports in order to provide performance, financial and related informa- tion in a more meaningful and useful format. The Department of Energy (Department or DOE), has chosen an alternative reporting to the consolidated Performance and Accountability Report and instead, produces an Agency Financial Report, an Annual Performance Report and a Summary of Performance and Financial Information, pursuant to the OMB Circular A-136. This reporting approach simplifies and streamlines the performance presentations while utilizing the Internet for providing and leveraging additional performance information.

173

Hydrologic resources management program, FY 1998 progress report  

SciTech Connect (OSTI)

This report presents the results from FY 1998 technical studies conducted by Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) project. The HRMP is sponsored by Defense Programs (DP) of the U.S. Department of Energy, Nevada Operations Office (DOE/NV), and supports DP operations at the Nevada Test Site (NTS) through studies of radiochemistry and resource management related to the defense programs mission. Other participating organizations include the Los Alamos National Laboratory (LANL), the United States Geological Survey (USGS), the Desert Research Institute (DRI) of the University of Nevada, the United States Environmental Protection Agency (EPA), and Bechtel-Nevada (BN). The UGTA project is an Environmental Management (EM) activity of DOE/NV that supports a Federal Facilities Agreement and Consent Order between the Department of Energy, the Department of Defense, and the State of Nevada. UGTA's primary function is to address the legacy release of hazardous constituents at the Nevada Test Site, the Tonopah Test Range, and off-Nevada Test Site underground nuclear testing areas. Participating contractors include LLNL (Earth and Environmental Sciences Directorate, Analytical and Nuclear Chemistry Division), LANL, DRI, USGS, BN, HSI-GeoTrans, and IT Corporation. The FY 1998 HRMP and UGTA annual progress report follows the organization and contents of our FY 1997 report (Smith et al., 1998), and includes our results from CY 1997-1998 technical studies of radionuclide migration and isotope hydrology at the Nevada Test Site. During FY 1998, LLNL continued its efforts under the HRMP to pursue a technical agenda relevant to the science-based stockpile stewardship program at DOE/NV. Support to UGTA in FY 1998 included efforts to quantitatively define the radionuclide source term residual from underground nuclear weapons testing and the derivative solution, or hydrologic source term, from radionuclides dissolved in or transported by groundwater. The hydrologic source term is a component of a predicted dose assessment for the five principal NTS testing areas.

Benedict, F.C.; Criss, R.E.; Davisson, M.L.; Eaton, G.F.; Hudson, G.B.; Kenneally, J.M.; Rose, T.P.; Smith, D.

1999-07-26T23:59:59.000Z

174

Building America Systems Integration Research Annual Report: FY 2012  

SciTech Connect (OSTI)

This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

Gestwick, M.

2013-05-01T23:59:59.000Z

175

Biological and chemical technologies research. FY 1995 annual summary report  

SciTech Connect (OSTI)

The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

None

1996-03-01T23:59:59.000Z

176

Draft FY 2012 Agency Financial Report  

Broader source: Energy.gov (indexed) [DOE]

to provide performance, financial and to provide performance, financial and related information in a more meaningful and useful format. For Fiscal Year 2013, the Department of Energy (Department or DOE), has produced an Agency Financial Report, and will provide an Annual Performance Report and a Summary of Performance and Financial Information, pursuant to OMB Circular A-136. They will be available at the website below, as each report is completed. This reporting approach simplifies and streamlines the performance presentations. T Agency Financial Report (AFR) - The AFR is organized by three major sections.  Management's Discussion and Analysis provides executive-level information on the Department's history, mission, organization, Secretarial priorities, analysis of financial statements, systems, controls and legal

177

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network [OSTI]

is required for Cd in shale and oil and for Cd, As, Se, Sb,derived fuels, and shale oil have nitrogen concentrations inany serious discussion of shale oil as a replacement for

Authors, Various

2010-01-01T23:59:59.000Z

178

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network [OSTI]

Offshore Requirements Platform sites Gas treatment plantplants New technologies OTEC Tanker traffic lanes Barge traffic lanes OffshoreOffshore oil/gas production (tanker) Platform site Tanker loading bouy site On-site oil storage Gas treatment plant

Authors, Various

2010-01-01T23:59:59.000Z

179

Development of gridded mobile source emission estimates for Nueces County FY93, FY96, FY99, and FY07 in support of the Coast project. Interim research report, April 1992-August 1996  

SciTech Connect (OSTI)

The report documents the procedures used by the Texas Transportation Institute in developing Neuces County Mobile Source Emissions Inventories for FY93, FY96, FY99, and FY07. The emissions inventories are submitted in support of the Coastal Oxidant Assessment for Southeast Texas (COAST) Project. COAST is a large-scale study conducted by the Texas Natural Resource Conservation Commission to model the formation of ozone in the Houston-Galveston and Beaumont-Port Arthur air quality nonattainment areas. The software used for these procedures is described in Research Report 1279-9, `Texas Mobile Source Emissions Software Version 2.0: User`s Manual.` No further implementation of the materials in this report is needed.

Knowles, W.E.; Dresser, G.B.

1995-08-01T23:59:59.000Z

180

Hydrogen Embrittlement of Structural Steels - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Daniel Dedrick (Primary Contact), Brian Somerday Sandia National Laboratories P.O. Box 969 Livermore, CA 94550 Phone: (925) 294-1552 Email: dededri@sandia.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Project Start Date: January, 2007 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Determine the threshold level of oxygen impurity * concentration required to mitigate accelerated fatigue crack growth of X52 steel in hydrogen at gas pressures up to 3,000 psi (21 MPa) Measure the fatigue crack growth (da/dN vs. * ∆K) relationship at constant H 2 gas pressure in X65 pipeline

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Basic Sciences Branch annual report, FY 1990  

SciTech Connect (OSTI)

This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1989, through September 30, 1990. Six technical sections of the report cover these main areas of NREL`s in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Solid-State Spectroscopy. Each section of the report was written by the group leader principally in charge of the work. The task in each case was to explain the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

Not Available

1991-12-01T23:59:59.000Z

182

Annual report, Basic Sciences Branch, FY 1991  

SciTech Connect (OSTI)

This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL's in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy's National Photovoltaic Research Program plans.

Not Available

1993-04-01T23:59:59.000Z

183

Annual report, Basic Sciences Branch, FY 1991  

SciTech Connect (OSTI)

This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL`s in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

Not Available

1993-04-01T23:59:59.000Z

184

Electron Microscopy Characterization of Tc-Bearing Metallic Waste Forms- Final Report FY10  

SciTech Connect (OSTI)

The DOE Fuel Cycle Research & Development (FCR&D) Program is developing aqueous and electrochemical approaches to the processing of used nuclear fuel that will generate technetium-bearing waste streams. This final report presents Pacific Northwest National Laboratory (PNNL) research in FY10 to evaluate an iron-based alloy waste form for Tc that provides high waste loading within waste form processing limitations, meets waste form performance requirements for durability and the long-term retention of radionuclides and can be produced with consistent physical, chemical, and radiological properties that meet regulatory acceptance requirements for disposal.

Buck, Edgar C.; Neiner, Doinita

2010-09-30T23:59:59.000Z

185

Annual report to Congress, FY 1992  

SciTech Connect (OSTI)

The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for disposing of the Nation`s spent nuclear fuel from civilian nuclear power reactors and high-level radioactive waste from its defense activities in a cost-effective manner that protects the health and safety of the public and workers and the quality of the environment. To accomplish this mission OCRWM is developing a waste management system consisting of a geologic repository, a facility for monitored retrievable storage, and a system for transporting the waste. This is the ninth annual report submitted by the OCRWM to Congress. The OCRWM submits this report to inform Congress of its activities and expenditures during fiscal year 1992 (October 1, 1991 through September 30, 1992).

NONE

1993-07-01T23:59:59.000Z

186

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FY 2012 Annual Progress Report FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1 II. Hydrogen Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II-1 II.0 Hydrogen Production Sub-Program Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II-3 II.A Distributed Biomass-Derived Liquids Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-11 II.A.1 Pacific Northwest National Laboratory: Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

187

Climate Fund Source Project Reports FY13 Page 1 of 95  

E-Print Network [OSTI]

Climate Fund Source Project Reports FY13 Page 1 of 95 Program AK Project Title Sea Grant Climate. This project will benefit other coastal communities facing risks from climate change in two primary ways. First Grant); #12;Climate Fund Source Project Reports FY13 Page 2 of 95 Partner Alaska Native Tribal Health

188

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section IV. Fuel Cells  

E-Print Network [OSTI]

W advanced PEM power plant. Approach Figure 1 provides a schematic of the gasoline fuel cell power plantHydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 265 Section IV. Fuel Cells #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 266 #12;Hydrogen

189

Cementitious Barriers Partnership FY2013 End-Year Report  

SciTech Connect (OSTI)

In FY2013, the Cementitious Barriers Partnership (CBP) demonstrated continued tangible progress toward fulfilling the objective of developing a set of software tools to improve understanding and prediction of the long?term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. In November 2012, the CBP released Version 1.0 of the CBP Software Toolbox, a suite of software for simulating reactive transport in cementitious materials and important degradation phenomena. In addition, the CBP completed development of new software for the Version 2.0 Toolbox to be released in early FY2014 and demonstrated use of the Version 1.0 Toolbox on DOE applications. The current primary software components in both Versions 1.0 and 2.0 are LeachXS/ORCHESTRA, STADIUM, and a GoldSim interface for probabilistic analysis of selected degradation scenarios. The CBP Software Toolbox Version 1.0 supports analysis of external sulfate attack (including damage mechanics), carbonation, and primary constituent leaching. Version 2.0 includes the additional analysis of chloride attack and dual regime flow and contaminant migration in fractured and non?fractured cementitious material. The LeachXS component embodies an extensive material property measurements database along with chemical speciation and reactive mass transport simulation cases with emphasis on leaching of major, trace and radionuclide constituents from cementitious materials used in DOE facilities, such as Saltstone (Savannah River) and Cast Stone (Hanford), tank closure grouts, and barrier concretes. STADIUM focuses on the physical and structural service life of materials and components based on chemical speciation and reactive mass transport of major cement constituents and aggressive species (e.g., chloride, sulfate, etc.). THAMES is a planned future CBP Toolbox component focused on simulation of the microstructure of cementitious materials and calculation of resultant hydraulic and constituent mass transfer parameters needed in modeling. Two CBP software demonstrations were conducted in FY2013, one to support the Saltstone Disposal Facility (SDF) at SRS and the other on a representative Hanford high?level waste tank. The CBP Toolbox demonstration on the SDF provided analysis on the most probable degradation mechanisms to the cementitious vault enclosure caused by sulfate and carbonation ingress. This analysis was documented and resulted in the issuance of a SDF Performance Assessment Special Analysis by Liquid Waste Operations this fiscal year. The two new software tools supporting chloride attack and dual?regime flow will provide additional degradation tools to better evaluate performance of DOE and commercial cementitious barriers. The CBP SRNL experimental program produced two patent applications and field data that will be used in the development and calibration of CBP software tools being developed in FY2014. The CBP software and simulation tools varies from other efforts in that all the tools are based upon specific and relevant experimental research of cementitious materials utilized in DOE applications. The CBP FY2013 program involved continuing research to improve and enhance the simulation tools as well as developing new tools that model other key degradation phenomena not addressed in Version 1.0. Also efforts to continue to verify the various simulation tools through laboratory experiments and analysis of field specimens are ongoing and will continue into FY2014 to quantify and reduce the uncertainty associated with performance assessments. This end?year report summarizes FY2013 software development efforts and the various experimental programs that are providing data for calibration and validation of the CBP developed software.

Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States); Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States); Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States); Smith, F. G. [Savannah River Site (SRS), Aiken, SC (United States); Kosson, D. S. [Vanderbilt University, School of Engineering, Nashville, TN (United States); Brown, K. G. [Vanderbilt University, School of Engineering, Nashville, TN (United States); Samson, E. [SIMCO Technologies, Inc., Quebec (Canada); Meeussen, J. C.L. [Nuclear Research and Consultancy Group (NRG), Petten (The Netherlands); van der Sloot, H. A. [Hans van der Sloot Consultancy, Langedijk (The Netherlands); Garboczi, E. J. [Materials & Construction Research Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

2013-11-01T23:59:59.000Z

190

Tanks Focus Area annual report FY2000  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

None

2000-12-01T23:59:59.000Z

191

Safety, Codes & Standards Sub-Program Overview - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program IntroductIon The Safety, Codes and Standards sub-program supports research and development (R&D) to provide an experimentally validated fundamental understanding of the relevant physics, critical data, and safety information needed to define the requirements for technically sound and defensible codes and standards. This information is used to help facilitate and enable the widespread deployment and commercialization of hydrogen and fuel cell technologies. In Fiscal Year (FY) 2012, the sub-program continued to identify and evaluate safety

192

FY1993 annual report to Congress  

SciTech Connect (OSTI)

As established by the Nuclear Waste Policy Act of 1982, as amended, the United States Department of Energy`s Office of Civilian Radioactive Waste Management is responsible for managing and disposing of the Nation`s spent nuclear fuel from civilian nuclear power reactors and high-level radioactive waste from defense activities. The program will provide leadership in developing and implementing strategies that assure the health and safety of the public and workers, protect the environment, and merit public confidence, in an economically viable manner. To accomplish the program`s mission, we are developing a waste management system culminating in a geologic repository for permanent disposal deep beneath the surface of the earth. Our goals include: (1) determining whether Yucca Mountain, Nevada, designated by the Nuclear Waste Policy Amendments Act of 1987 as the only site currently to be evaluated, is suitable for a geologic repository; (2) resolving the issue of acceptance of spent fuel from nuclear utilities in 1998; (3) developing more effective working relationships with external parties who have an interest in the waste disposal mission; and (4) establishing a new funding mechanism that will permit efficient and effective execution of our mission and achievement of our goals. This report contains details of the program`s accomplishments and activities over the past fiscal year and the audited financial statements for the Nuclear Waste Fund.

NONE

1994-09-01T23:59:59.000Z

193

Industrial Waste Reduction Program annual report, FY 1993  

SciTech Connect (OSTI)

The Department of Energy`s Industrial Waste Reduction Program (IWRP) sponsors the development, demonstration, and deployment of technologies that offer a significant opportunity to reduce waste generation, improve productivity, and enhance environmental performance in US industry. The program emphasizes technology-driven solutions that are economically beneficial and environmentally sound. Its goal is to improve the energy efficiency and competitiveness of private industry by cost-effectively reducing waste. Industry, universities, national laboratories and other government agencies are working cooperatively to meet this goal. The IWRP emphasizes the timely commercialization of new technologies that can produce measurable energy, environmental, and economic benefits. All projects are substantially cost-shared with private companies to foster the commercialization process. The program is proud to claim four successfully commercialized technologies that have begun generating benefits. The current IWRP portfolio boasts 32 projects in progress. Funding for the IWRP has grown from $1.7 million in 1990 to $13 million in 1994. New companies join the program each year, reaping the benefits of working cooperatively with government. New technologies are expected to reach commercial success in fiscal year (FY) 1994, further increasing the benefits already accrued. Future Annual Reports will also include projects from the Waste Utilization and Conversion Program. Descriptions of the program`s 32 active projects are organized in this report according these elements. Each project description provides a brief background and the major accomplishments during FY 1993.

Not Available

1994-01-01T23:59:59.000Z

194

Tank Vapor Characterization Project: Annual status report for FY 1996  

SciTech Connect (OSTI)

In Fiscal Year 1996, staff at the Vapor Analytical Laboratory at Pacific Northwest National Laboratory performed work in support of characterizing the vapor composition of the headspaces of radioactive waste tanks at the Hanford Site. Work performed included support for technical issues and sampling methodologies, upgrades for analytical equipment, analytical method development, preparation of unexposed samples, analyses of tank headspaces samples, preparation of data reports, and operation of the tank vapor database. Progress made in FY 1996 included completion and issuance of 50 analytical data reports. A sampling system comparison study was initiated and completed during the fiscal year. The comparison study involved the vapor sampling system (VSS), a truck-based system, and the in situ vapor sampling system (ISVS), a cart-based system. Samples collected during the study were characterized for inorganic, permanent gases, total non-methane organic compounds and organic speciation by SUMMA{trademark} and TST methods. The study showed comparable sampling results between the systems resulting in the program switching from the VSS to the less expensive ISVS methodology in late May 1996. A temporal study was initiated in January 1996 in order to understand the influences seasonal temperatures changes have on the vapors in the headspace of Hanford waste tanks. A holding time study was initiated in the fourth quarter of FY 1996. Samples were collected from tank S-102 and rushed to the laboratory for time zero analysis. Additional samples will be analyzed at 1, 2, 4, 8, 16, and 32 weeks.

Silvers, K.L.; Fruchter, J.S.; Huckaby, J.L.; Almeida, T.L.; Evans, J.C. Jr.; Pool, K.H.; Simonen, C.A.; Thornton, B.M.

1997-01-01T23:59:59.000Z

195

FY2001 Progress Report for Automotive Propulsion Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AUTOMOTIVE PROPULSION AUTOMOTIVE PROPULSION MATERIALS 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory, Computer Systems Management, Inc., and Oak Ridge National Laboratory, for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Propulsion Materials

196

EMSL Quarterly Highlights Report 2nd Quarter FY08  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quarterly Highlights Report: 2 Quarterly Highlights Report: 2 nd Quarter, FY08 1 The W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL) is a U.S. Department of Energy (DOE) national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. EMSL is operated by PNNL for the DOE Office of Biological and Environmental Research. At one location, EMSL offers a comprehensive array of leading-edge resources and expertise. Access to the instrumentation and expertise is obtained on a peer-reviewed proposal basis. Users are participants on accepted proposals. Staff members work with users to expedite access. The EMSL Quarterly Highlights Report documents research and activities of EMSL staff and users. Research Highlights Atmospheric Aerosol Chemistry

197

Technical Direction and Laboratories FY 1999 Annual Report  

SciTech Connect (OSTI)

This annual report summarize achievements and list reports issued by members of TD&L, NHC group during Fiscal Year (FY) 1999, (October 1, 1998 through September 30, 1999). This report, issued by this organization, describes work in support of the Hanford Site and other U S . Department of Energy, Richland Operations Office (DOE-RL) programs. It includes information on the organization make-up, interfaces, and mission of the group. The TD&L is a group of highly qualified personnel with diverse disciplines (primarily chemistry specialties) that provide process, analytical, and in-situ chemistry services to engineering customers. This year of operation and interfaces with other contract organizations consumed considerable administrative efforts. Attention was directed to the technical challenges presented by the changing roles, responsibilities, and priorities of Hanford programs.

CRAWFORD, B.A.

2000-09-07T23:59:59.000Z

198

HYBRID SULFUR ELECTROLYZER DEVELOPMENT FY09 SECOND QUARTER REPORT  

SciTech Connect (OSTI)

The primary objective of the DOE-NE Nuclear Hydrogen Initiative (NHI) is to develop the nuclear hydrogen production technologies necessary to produce hydrogen at a cost competitive with other alternative transportation fuels. The focus of the NHI is on thermochemical cycles and high temperature electrolysis that can be powered by heat from high temperature gas reactors. The Savannah River National Laboratory (SRNL) has been tasked with the primary responsibility to perform research and development in order to characterize, evaluate and develop the Hybrid Sulfur (HyS) thermochemical process. This report documents work during the first quarter of Fiscal Year 2009, for the period between January 1, 2009 and March 31, 2009. The HyS Process is a two-step hybrid thermochemical cycle that is part of the 'Sulfur Family' of cycles. As a sulfur cycle, it uses high temperature thermal decomposition of sulfuric acid to produce oxygen and to regenerate the sulfur dioxide reactant. The second step of the process uses a sulfur dioxide depolarized electrolyzer (SDE) to split water and produce hydrogen by electrochemically reacting sulfur dioxide with H{sub 2}O. The SDE produces sulfuric acid, which is then sent to the acid decomposer to complete the cycle. The DOE NHI program is developing the acid decomposer at Sandia National Laboratory for application to both the HyS Process and the Sulfur Iodine Cycle. The SDE is being developed at SRNL. During FY05 and FY06, SRNL designed and conducted proof-of-concept testing for a SDE using a low temperature, PEM fuel cell-type design concept. The advantages of this design concept include high electrochemical efficiency, small footprint and potential for low capital cost, characteristics that are crucial for successful implementation on a commercial scale. During FY07, SRNL extended the range of testing of the SDE to higher temperature and pressure, conducted a 100-hour longevity test with a 60-cm{sup 2} single cell electrolyzer, and designed and built a larger, multi-cell stack electrolyzer. During FY08, SRNL continued SDE development, including development and successful testing of a three-cell electrolyzer stack with a rated capacity of 100 liters per hour. The HyS program for FY09 program will address improving SDE performance by focusing on preventing or minimizing sulfur deposition inside the cell caused by SO{sub 2} crossover, reduction of cell voltage for improved efficiency, an extension of cell operating lifetime. During FY09 a baseline technology development program is being conducted to address each of these issues. Button-cell (2-cm{sup 2}) and single cell (60-cm{sup 2}) SDEs will be fabricated and tested. A pressurized button-cell test facility will be designed and constructed to facilitate addition testing. The single cell test facility will be upgraded for unattended operation, and later for operation at higher temperature and pressure. Work will continue on development of the Gas Diffusion Electrode (GDE), or Gap Cell, as an alternative electrolyzer design approach that is being developed under subcontract with industry partner Giner Electrochemical Systems. If successful, it could provide an alternative means of preventing sulfur crossover through the proton exchange membrane, as well as the possibility for higher current density operation based on more rapid mass transfer in a gas-phase anode. Promising cell components will be assembled into membrane electrode assemblies (MEAs) and tested in the single cell test facility. Upon modification for unattended operation, test will be conducted for 200 hours or more. Both the button-cell and modified single cell facility will be utilized to demonstrate electrolyzer operation without sulfur build-up limitations, which is a Level 1 Milestone.

Herman, D; David Hobbs, D; Hector Colon-Mercado, H; Timothy Steeper, T; John Steimke, J; Mark Elvington, M

2009-04-15T23:59:59.000Z

199

In-situ containment and stabilization of buried waste. Annual report FY 1993  

SciTech Connect (OSTI)

In FY 1993 research continued on development and testing of grout materials for in-situ containment and stabilization of buried waste. Specifically, the work was aimed at remediation of the Chemical Waste Landfill (CWL) at Sandia National Laboratories (SNL) in Albuquerque, New Mexico as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). The work on grouting materials was initiated in FY 1992 and the accomplishments for that year are documented in the previous annual report (Allan, Kukacka and Heiser, 1992). The remediation plan involves stabilization of the chromium plume, placement of impermeable vertical and horizontal barriers to isolate the landfill and installation of a surface cap. The required depth of subsurface barriers is approximately 33 m (100 ft). The work concentrated on optimization of grout formulations for use as grout and soil cement barriers and caps. The durability of such materials was investigated, in addition to shrinkage cracking resistance, compressive and flexural strength and permeability. The potential for using fibers in grouts to control cracking was studied. Small scale field trials were conducted to test the practicality of using the identified formulations and to measure the long term performance. Large scale trials were conducted at Sandia as part of the Subsurface Barrier Emplacement Technology Program. Since it was already determined in FY 1992 that cementitious grouts could effectively stabilize the chromium plume at the CWL after pre-treatment is performed, the majority of the work was devoted to the containment aspect.

Allan, M.L.; Kukacka, L.E.

1993-10-01T23:59:59.000Z

200

Northeast Waste Management Alliance (NEWMA). Annual report FY 1993  

SciTech Connect (OSTI)

Funding was provided to Brookhaven National Laboratory in the fourth quarter of FY93 to establish a regional alliance as defined by Dr. Clyde Frank during his visit to BNL on March 7, 1993. In collaboration with the Long Island Research Institute (LIRI), BNL developed a business plan for the Northeast Waste Management Alliance (NEWMA). Concurrently, informal discussions were initiated with representatives of the waste management industry, and meetings were held with local and state regulatory and governmental personnel to obtain their enthusiasm and involvement. A subcontract to LIRI was written to enable it to formalize interactions with companies offering new waste management technologies selected for their dual value to the DOE and local governments in the Northeast. LIRI was founded to develop and coordinate economic growth via introduction of new technologies. As a not-for-profit institution it is in an ideal position to manage the development of NEWMA through ready access to venture capital and strong interactions with the business community, universities, and BNL. Another subcontract was written with a professor at SUNY/Stony Brook to perform an evaluation of new pyrolitic processes, some of which may be appropriate for development by NEWMA. Independent endorsement of the business plan recently by another organization, GETF, with broad knowledge of DOE/EM-50 objectives, provides a further incentive for moving rapidly to implement the NEWMA strategy. This report describes progress made during the last quarter of FY93.

Goland, A.N.; Kaplan, E.

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008  

SciTech Connect (OSTI)

This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

Brenda R. Pace

2009-01-01T23:59:59.000Z

202

Materials Corrosion and Mitigation Strategies for APT: End of Year Report, FY '96  

E-Print Network [OSTI]

Materials Corrosion and Mitigation Strategies for APT: End of Year Report, FY '96 R. Scott Lillard, Darryl P. Butt Materials Corrosion and Environmental Effects Laboratory MST-6, Metallurgy Los Alamos accomplishment in FY '96 was the design and fabrication of the corrosion probes to be used "In Beam" during

203

ENERGY AND WATER DEVELOPMENT APPROPRIATIONS BILL, FY 2011 Senate Bill 3635, Report 111-228  

E-Print Network [OSTI]

ENERGY AND WATER DEVELOPMENT APPROPRIATIONS BILL, FY 2011 Senate Bill 3635, Report 111. Fusion Energy Sciences (FES) would be funded at $384.0 million, a decrease of $42.0 million below the FY10 enacted level and $4.0 million above the budget request. FUSION ENERGY SCIENCES The Committee

204

NEPA Lessons Learned Quarterly Report - 3rd Quarter FY 1998  

Broader source: Energy.gov (indexed) [DOE]

SEPTEMBER 1998 1 SEPTEMBER 1998 1 LESSONS LEARNED LEARNED LESSONS National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT DOE NEPA Community to Meet in October For Third Quarter FY 1998 September 1, 1998, Issue No. 16 On October 14 and 15, 1998, the DOE NEPA Community will meet in North Las Vegas, hosted by the Nevada Operations Office at its new Support Facility. The Office of NEPA Policy and Assistance is sponsoring this meeting to improve DOE NEPA performance through sharing of lessons learned and discussion of current issues. Managing the NEPA Process Managing the NEPA Process Managing the NEPA Process Managing the NEPA Process Managing the NEPA Process The meeting will focus on issues that NEPA Document Managers face daily: What tools and techniques can help

205

NEPA Lessions Learned Quarterly Report - 4th Quarter FY 1998  

Broader source: Energy.gov (indexed) [DOE]

DECEMBER 1998 DECEMBER 1998 1 LESSONS LEARNED LEARNED LESSONS National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT For Fourth Quarter FY 1998 December 1, 1998, Issue No. 17 New and Improved NEPA Compliance Guide Issued in 2 Volumes A new and improved DOE NEPA Compliance Guide, issued by the Office of Environment, Safety and Health, has been distributed to about 750 members of the DOE NEPA Community. Intended to foster sound and efficient NEPA compliance, the Compliance Guide is a collection of resources and references to aid in NEPA document preparation and other aspects of the NEPA process. Volume I, General NEPA References, contains the statute, and regulations and guidance from the Council on Environmental Quality, the Department of State, and the

206

FY2000 Progress Report for the Advanced Technology Development Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Advanced Automotive Technologies 1000 Independence Avenue S.W. Washington, D.C. 20585-0121 FY 2000 Progress Report for the Advanced Technology Development Program Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Advanced Automotive Technologies Energy Management Team Raymond A. Sutula Energy Management Team Leader December 2000 This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency, thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

207

NEPA Lessons Learned Quarterly Report - 1st Quarter FY 1999  

Broader source: Energy.gov (indexed) [DOE]

9 9 1 LESSONS LEARNED LEARNED LESSONS National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT For First Quarter FY 1999 March 1, 1999; Issue No. 18 continued on page 3 Dr. David Michaels, new Assistant Secretary for Environment, Safety and Health, enthusiastically supports the Lessons Learned approach. Dr. David Michaels — DOE’s New Leader for Environment, Safety and Health The new Assistant Secretary for Environment, Safety and Health, Dr. David Michaels, recognizes the value of NEPA in supporting good decisions. “I understand the importance of examining options carefully before we make decisions that will affect our workers, the public, and the environment in lasting and profound ways,” he said. “We must be fully informed of the environmental

208

NEPA Lessons Learned Quarterly Report - 3rd Quarter FY 1999  

Broader source: Energy.gov (indexed) [DOE]

September 1999 September 1999 1 LESSONS LEARNED LEARNED LESSONS National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT For Third Quarter FY 1999 September 1, 1999; Issue No. 20 Proposed Arizona-Mexico Transmission Project Presents Challenges to NEPA Process and Analysis By: Ellen Russell, NEPA Document Manager, Fossil Energy with Carolyn Osborne, Office of NEPA Policy and Assistance continued on page 3 Fossil Energy (FE) is preparing an environmental impact statement (EIS) for what would be the first cross-border high-voltage transmission project to connect the main power delivery systems of the United States and Mexico (DOE/EIS-0307). EIS scoping has been complex. Through the scoping process, FE has identified and worked with many stakeholders to define a broad range

209

NEPA Lessons Learned Quarterly Report - 1st Quarter FY2000  

Broader source: Energy.gov (indexed) [DOE]

2000 2000 1 LESSONS LEARNED LEARNED LESSONS National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT For First Quarter FY 2000 March 1, 2000; Issue No. 22 Hanford Comprehensive Land-Use Plan EIS Helps DOE Preserve Unique Resources continued on page 4 By: Thomas W. Ferns, NEPA Document Manager, Richland Operations Office, and Yardena Mansoor, Office of NEPA Policy and Assistance A 50-year land-use plan for the Hanford Site? Some said it couldn't be done. Too many factions, they said, with irreconcilably different visions for the future. Would NEPA be a help or a hindrance in developing such a land-use plan? It turns out that the Hanford Comprehensive Land-Use Plan EIS Record of Decision (ROD) (64 FR 61615; November 12, 1999) marks the end of a successful, albeit

210

NEPA Lessons Learned Quarterly Report - 4th Quarter FY 1999  

Broader source: Energy.gov (indexed) [DOE]

December 1999 December 1999 1 continued on page 3 LESSONS LEARNED LEARNED LESSONS National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT For Fourth Quarter FY 1999 December 1, 1999; Issue No. 21 Good Information, Good Government Using Technology to Improve NEPA Decisionmaking provides a comprehensive guide to Federal environmental information resources available electronically and to useful Web sites provided by nongovernmental groups and professional organizations. “One of the foundations of good government is good information,” President Clinton observed. NEPA is “at its core, a mandate for informed, democratic decisionmaking. And its contribution to environmental protection is incalculable.” Managing a National Public Participation

211

NEPA Lessons Learned Quarterly Report - 1st Quarter FY 1997  

Broader source: Energy.gov (indexed) [DOE]

Decisionmakers Decisionmakers States/Local Governm ents Agencies Academ icians Congress Framers of NEPA Drafters of CEQ Regs Native Am erican Tribes La wyers NGOs/ Citizen Groups Businesses Council on Environmental Quality NEPA Effectiveness Study Partners continued next page -- Improved Implementation Needed -- -- DOE Leadership Highlighted -- CEQ Study: NEPA a "Success" Overall National Environmental Policy Act N E P A U.S. Department of Energy Quarterly Report LESSONS LEARNED LESSONS LEARNED For First Quarter FY 1997 March 3, 1997 The President's Council on Environmental Quality (CEQ) issued in January the results of its extensive study on the effectiveness of the National Environmental Policy Act during the statute's 25-year history. From the cover letter by CEQ Chair Kathleen McGinty to its four short appendices, the 50-page booklet entitled The National Environmental

212

NEPA Lessons Learned Quarterly Report - 1st Quarter FY 1998  

Broader source: Energy.gov (indexed) [DOE]

March 1998 1 March 1998 1 continued on page 2 For First Quarter FY 1998 March 2, 1998, Issue No. 14 National Environmental Policy Act N E P A LESSONS LEARNED LESSONS LEARNED U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT Managing Progress on the Repository EIS How to Move a Mountain Tour members approach the entry to the Yucca Mountain Exploratory Studies Facility. The EIS Management Council, along with members and technical advisors of the EIS Preparation Team, visited the site in January while participating in briefings on technical, legal, and policy issues. How do you manage preparation of a major EIS that is important to five Program Offices, four Field Offices, and other Federal agencies, not to mention a wide array of stakeholders? How do you address extremely complex and

213

NEPA Lessons Learned Quarterly Report - 2nd Quarter FY 1999  

Broader source: Energy.gov (indexed) [DOE]

June 1999 June 1999 1 LESSONS LEARNED LEARNED LESSONS National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT For Second Quarter FY 1999 June 1, 1999; Issue No. 19 continued on page 6 NEPA and Habitat Management Plan: Environmental Synergy By: Elizabeth Withers, NEPA Compliance Officer, Los Alamos Area Office, with John Stetson, Pacific Western Technologies, Ltd. On the day DOE issued the Draft EIS for the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility at Los Alamos National Laboratory (LANL), LANL biologists discovered a nesting pair of Mexican spotted owls (Strix occidentalis lucida) – which had only recently been listed as threatened – in the canyons directly below the proposed site. Today, this nest site, at the edge

214

Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries  

SciTech Connect (OSTI)

The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INLs technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INLit provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program proves its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.

Dena Tomchak

2014-03-01T23:59:59.000Z

215

Hydrogen separation membranes annual report for FY 2010.  

SciTech Connect (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. These membranes will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2010.

Balachandran, U.; Dorris, S. E; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

216

Appliance Standards Program - The FY 2003 Priority Setting Report...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

potential warranting further analysis. It also describes the derivation of energy consumption and saving estimates for those products fy03prioritysettingappa.pdf More...

217

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FY 2010 Annual Report FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program I. IntroductIon 2 Office of Fossil Energy Fuel Cell Program FY 2010 Annual Report 3 FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program Competitive Innovation: Accelerating Technology Development The U.S. Department of Energy (DOE) Office of Fossil Energy, through the National Energy Technology Laboratory (NETL) and in collaboration with private industry, universities and national laboratories, has forged Government-industry partnerships under the Solid State Energy Conversion Alliance (SECA) to reduce the cost of solid oxide fuel cells (SOFCs). This fuel cell technology shall form the basis for integrated gasification fuel cell (IGFC) systems utilizing coal for clean and efficient

218

DOD Facilities Energy: FY 2009 Annual Energy Report Overview and Status on NDAA 2010 Studies  

Broader source: Energy.gov [DOE]

Presentation covers the FY 2009 Annual Energy Report Overview and Status on NDAA 2010 Studies, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

219

FY 2012 Annual Progress Report for Energy Storage R&D  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

lxxvii Energy Storage R&D FY 2012 Annual Progress Report 81 Energy Storage R&D III Advanced Battery Development, Systems Analysis, and Testing One of the primary objectives of the...

220

Pollution prevention opportunity assessment approach, training, and technical assistance for DOE contractors. FY 1995 report  

SciTech Connect (OSTI)

The Department of Energy and its contractors are faced with environmental concerns and large waste management costs. Federal legislation and DOE Orders require sites to develop waste minimization/pollution prevention programs. In response to these requirements, the Kansas City Plant developed a pollution prevention tool called a pollution prevention opportunity assessment (PPOA). Pilot assessments resulted in the development of a graded approach to reduce the amount of effort required for activities that utilized nonhazardous and/or low-volume waste streams. The project`s objectives in FY95 were to validate DOE`s PPOA Graded Approach methodology, provide PPOA training and technical assistance to interested DOE personnel and DOE contractors, enhance the methodology with energy analysis and tools for environmental restoration activities, implement a DOE-wide PPOA database, and provide support to DOE EM-334 in the completion of a report which estimates the future potential for pollution prevention and waste minimization in the DOE complex.

Pemberton, S.

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FY2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines Energy Efficiency and Renewable Energy Office of Transportation Technologies Approved by Steven Chalk November 2000 Combustion and Emission Control for Advanced CIDI Engines FY 2000 Progress Report CONTENTS Page iii I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 II. EMISSION CONTROL SUBSYSTEM DEVELOPMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . .9 A. Emission Control Subsystem Evaluation for Light-Duty CIDI Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

222

Soil Water Balance and Recharge Monitoring at the Hanford Site FY 2010 Status Report  

SciTech Connect (OSTI)

This report summarizes the recharge data collected in FY 2010 at five locations on the Hanford Site in southeastern Washington State. Average monthly precipitation and temperature conditions in FY 2010 were near normal and did not present an opportunity for increased recharge. The recharge monitoring data confirmed those conditions, showing normal behavior in water content, matric head, and recharge rates. Also provided in this report is a strategy for recharge estimation for the next 5 years.

Fayer, Michael J.; Saunders, Danielle L.; Herrington, Ricky S.; Felmy, Diana

2010-10-27T23:59:59.000Z

223

Idaho National Laboratory's FY13 Greenhouse Gas Report  

SciTech Connect (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2013 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. This report details the methods behind quantifying INLs GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Kimberly Frerichs

2014-03-01T23:59:59.000Z

224

Uranium from seawater research : final progress report, FY 1982  

E-Print Network [OSTI]

During the FY '82 campaign 14 new ion exchange resin formulations, prepared by the Rohm & Haas Company, were tested by MIT at the Woods Hole Oceanographic Institution. The best of these chelating resins was again of the ...

Borzekowski, J.

1982-01-01T23:59:59.000Z

225

Petroleum Displacement Program Annual Report FY 2010-2011  

E-Print Network [OSTI]

efficiency 0.2% of displacement was lost through decreased use of CNG (natural gas) and LPG (propane..................................................................... 12 General Trends in FY10-11 PDP .............................................. 15 Fuel Pricing, Trends, and Cost Savings

226

O:\A76\647b Report\647B Report FY 2006\647bLetter.pdf.prn.pdf  

Broader source: Energy.gov (indexed) [DOE]

Richard B. Cheney Richard B. Cheney President of the Senate United States Senate Washington, DC 20510 Dear Mr. President: This letter is in response to the annual Competitive Sourcing reporting requirement contained in section 647(b) of Division F of the Consolidated Appropriations Act, for FY 2004, P.L. 108-199. The enclosed report on the Department of Energy's (DOE) Competitive Sourcing program complies with the agency reporting elements outlined in P.L. 108-199 for submitting the annual Congressiona l Competitive Sourcing Activity Report. In summary, DOE's Fiscal Year (FY) 2006 Competitive Sourcing Activity Report includes data on costs, savings, Federal full-time equivalent employees (FTEs), and other information on the Department's completed, ongoing, and planned competitive sourcing studies.

227

Nuclear Fuel Cycle Reasoner: PNNL FY13 Report  

SciTech Connect (OSTI)

In Fiscal Year 2012 (FY12) PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In Fiscal Year 2013 (FY13) the SNAP demonstration was enhanced with respect to query and navigation usability issues.

Hohimer, Ryan E.; Strasburg, Jana D.

2013-09-30T23:59:59.000Z

228

FY 2000 Annual Report to the Office of Management and Budget  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Department of Energy memorandum DATE: REPLY TO ATTN OF: Office of Nuclear and Facility Safety Policy:R. Serbu:301-903-2856 SUBJECT: FY 2000 Annual Report to the Office of Management and Budget TO: David Michaels, PhD, MPH Assistant Secretary Environment, Safety and Health As Standards Executive for the Department of Energy, I am providing our input for the Fiscal Year 2000 Annual Report to the Office of Management and Budget (OMB) on the Status of Agency Interaction with Voluntary Standards Bodies as required by OMB Circular No. A-119. Included with our input is supplementary information regarding Department of Energy standards and conformity assessment activities related to the principles and objectives of Public Law 104-113 and OMB

229

Microsoft Word - Transmittal Memo - FY 2009 D&D Fund Report  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Memorandum DATE: April 21, 2010 REPLY TO ATTN OF: IG-34 (A09FN003) SUBJECT: Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2009 Financial Statement Audit - Report No.: OAS-FS-10-06 TO: Assistant Secretary for Environmental Management, EM-1 Deputy Assistant Secretary for Program Planning and Budget, Environmental Management, EM-60 The attached report presents the results of the independent certified public accountants' audit of the United States Department of Energy's Uranium Enrichment Decontamination and Decommissioning Fund's (D&D Fund) Fiscal Year (FY) 2009 balance sheet and the related statements of net cost, changes in net position, and budgetary resources. Pursuant to requirements established by the Government Management Reform Act of

230

Federal Facility Consolidated Annual Reporting Requirements | Department of  

Broader source: Energy.gov (indexed) [DOE]

Facility Reporting » Federal Facility Facility Reporting » Federal Facility Consolidated Annual Reporting Requirements Federal Facility Consolidated Annual Reporting Requirements October 8, 2013 - 2:07pm Addthis Section 548(a) of National Energy Conservation Policy Act (NEPCA, 42 U.S.C. 8258(a)) requires each Federal agency to submit to the U.S. Department of Energy an annual report describing activities to meet the energy management requirements of Section 543 of NECPA (42 U.S.C. 8253). Information and data collected from the agencies will be used to develop DOE's Annual Report to Congress on Federal Government Energy Management. Annual GHG and Sustainability Data Report for FY 2013 Reporting The Federal Energy Management Program's (FEMP) Annual GHG and Sustainability Data Report, Version 4.2 is to be used by top-tier Federal

231

Sustainable NREL Biennial Report, FY 2012 - 2013 (Management Report)  

SciTech Connect (OSTI)

NREL's Sustainability Program plays a vital role bridging research and operations - integrating energy efficiency, water and material resource conservation and cultural change - adding depth in the fulfillment of NREL's mission. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called "The Voice of NREL" gives an inside perspective of how to become more sustainable while at the same time addressing climate change.

Slovensky, M.

2014-03-01T23:59:59.000Z

232

Thermally conductive cementitious grouts for geothermal heat pumps. Progress report FY 1998  

SciTech Connect (OSTI)

Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98. The developed thermally conductive grout consists of cement, water, a particular grade of silica sand, superplasticizer and a small amount of bentonite. While the primary function of the grout is to facilitate heat transfer between the U-loop and surrounding formation, it is also essential that the grout act as an effective borehole sealant. Two types of permeability (hydraulic conductivity) tests was conducted to evaluate the sealing performance of the cement-sand grout. Additional properties of the proposed grout that were investigated include bleeding, shrinkage, bond strength, freeze-thaw durability, compressive, flexural and tensile strengths, elastic modulus, Poisson`s ratio and ultrasonic pulse velocity.

Allan, M.L.; Philippacopoulos, A.J.

1998-11-01T23:59:59.000Z

233

FY13 Annual Progress Report for SECA Core Technology Program  

SciTech Connect (OSTI)

This progress report covers technical work performed during fiscal year 2013 at PNNL under Field Work Proposal (FWP) 40552. The report highlights and documents technical progress in tasks related to advanced cell and stack component materials development and computational design and simulation. Primary areas of emphasis for the materials development work were metallic interconnects and coatings, cathode and anode stability/degradation, glass seals, and advanced testing under realistic stack conditions: Metallic interconnects and coatings Effects of surface modifications to AISI 441 (prior to application of protective spinel coatings) on oxide scale growth and adhesion were evaluated as a function of temperature and time. Cathode stability/degradation Effects of cathode air humidity on performance and stability of SOFC cathodes were investigated by testing anode-supported cells as a function of time and temperature. In-situ high temperature XRD measurements were used to correlate changes in cathode lattice structure and composition with performance of anode-supported button cells. Anode stability/degradation Effects of high fuel steam content on Ni/YSZ anodes were investigated over a range of time and temperature. Vapor infiltration and particulate additions were evaluated as a potential means of improving tolerance of Ni/YSZ anodes to sulfur-bearing fuel species. Glass seals A candidate compliant glass-based seal materials were evaluated in terms of microstructural evolution and seal performance as a function of time and temperature. Stack fixture testing The SECA CTP stack test fixture was used for intermediate and long-term evaluation of candidate materials and processes. Primary areas of emphasis for the computational modeling work were coarse methodology, degradation of stack components, and electrochemical modeling: Coarse methodology Improvements were made to both the SOFC-MP and SOFC ROM simulation tools. Degradation of stack components Thermo-mechanical modeling and validation experiments were performed to understand/mitigate degradation of interconnects and seals during long-term stack operation. Electrochemical modeling 4 Modeling tools were developed to improve understanding of electrochemical performance degradation of SOFCs related to changes in electrode microstructure and chemical interactions with contaminants. During FY13, PNNL continued to work with NETL to increase the extent of interaction between the SECA Core Technology Program and the SECA Industry Teams. In addition to using established mechanisms of communication, such as the annual SECA Workshop, representatives from PNNL and NETL participated in telecons and/or face-to-face meetings with all three industry teams during FY13. During these meetings, PNNLs Core Technology Program work was presented in detail, after which feedback was solicited regarding current and future research topics. Results of PNNLs SECA CTP work were also distributed via topical reports for the industry teams, DOE reports, technical society presentations, and papers in peer-reviewed technical journals. 5

Stevenson, Jeffry W.; Koeppel, Brian J.

2014-01-31T23:59:59.000Z

234

Tethys and Annex IV Progress Report for FY 2012  

SciTech Connect (OSTI)

The marine and hydrokinetic (MHK) environmental Impacts Knowledge Management System, dubbed Tethys after the mythical Greek titaness of the seas, is being developed by the Pacific Northwest National Laboratory (PNNL) to support the U.S. Department of Energys Wind and Water Power Program (WWPP). Functioning as a smart database, Tethys enables its users to identify key words or terms to help gather, organize and make available information and data pertaining to the environmental effects of MHK and offshore wind (OSW) energy development. By providing and categorizing relevant publications within a simple and searchable database, Tethys acts as a dissemination channel for information and data which can be utilized by regulators, project developers and researchers to minimize the environmental risks associated with offshore renewable energy developments and attempt to streamline the permitting process. Tethys also houses a separate content-related Annex IV data base with identical functionality to the Tethys knowledge base. Annex IV is a collaborative project among member nations of the International Energy Agency (IEA) Ocean Energy Systems Implementing Agreement (OES-IA) that examines the environmental effects of ocean energy devices and projects. The U.S. Department of Energy leads the Annex IV working with federal partners such as the Federal Energy Regulatory Commission (FERC), the Bureau of Ocean Energy Management (BOEM), and the National Oceanic Atmospheric Administration (NOAA). While the Annex IV database contains technical reports and journal articles, it is primarily focused on the collection of project site and research study metadata forms (completed by MHK researchers and developers around the world, and collected by PNNL) which provide information on environmental studies and the current progress of the various international MHK developments in the Annex IV member nations. The purpose of this report is to provide a summary of the content, accessibility and functionality enhancements made to the Annex IV and Tethys knowledge bases in FY12.

Hanna, Luke A.; Butner, R. Scott; Whiting, Jonathan M.; Copping, Andrea E.

2013-09-01T23:59:59.000Z

235

FY 1991 environmental research programs for the DOE Field Office, Nevada: Work plan and quarterly reports, fourth quarter report  

SciTech Connect (OSTI)

This research includes a wide range of research and support activities associated with the Weapons Testing Program conducted at the Nevada Test Site (NTS). Ongoing and new environmental research programs to be conducted by DRI over the period of this contract include archaeological studies, site mitigation plans, compliance activities, and historical research; offsite community radiation monitoring support; environmental compliance activities related to state and federal regulations; hydrologic assessment of containment of underground nuclear detonations; hydrology/radionuclide investigations designed to better understand and predict the possible subsurface movement of radionuclides at the NTS; and support of various statistical and data management and design, laboratory, field, and administrative activities. In addition to these, archaeological site characterization, flood hazards for rail transportation, and paleofaunal investigations will be carried out in support of the Yucca Mountain Project. Other areas of the overall program which required DRI support are classified security activities, radiation safety and training, quality assurance and control, computer protection and historical data management, review and classification of DRI documents, and preparation of any special reports, e.g., quarterly reports, not included in the requirements of the individual projects. A new set of programs funded by the Office of Technology Development will be in place by the third quarter of FY 1991. These projects will address environmental restoration and waste management concerns, among other related topics. In accordance with specific contract requirements for each activity, DRI will produce summary, status and final reports and, in some cases, journal articles which will present the results of specific research efforts. This document contains the work plan, including project descriptions, tasks, deliverables and quarterly progress reports on each project for FY 1991.

NONE

1991-10-01T23:59:59.000Z

236

FY 93 thermal loading systems study final report: Volume 1. Revision 1  

SciTech Connect (OSTI)

The ability to meet the overall performance requirements for the proposed Mined Geology Disposal System at Yucca Mountain, Nevada requires the two major subsystem (natural barriers and engineered barriers) to positively contribute to containment and radionuclide isolation. In addition to the postclosure performance the proposed repository must meet preclosure requirements of safety, retrievability, and operability. Cost and schedule were also considered. The thermal loading strategy chosen may significantly affect both the postclosure and preclosure performance of the proposed repository. Although the current Site Characterization Plan reference case is 57 kilowatts (kW)/acre, other thermal loading strategies (different areal mass loadings) have been proposed which possess both advantages and disadvantages. The objectives of the FY 1993 Thermal Loading Study were to (1) place bounds on the thermal loading which would establish the loading regime that is ``too hot`` and the loading regime that is ``too cold``, to (2) ``grade`` or evaluate the performance, as a function of thermal loading, of the repository to contain high level wastes against performance criteria and to (3) evaluate the performance of the various options with respect to cost, safety, and operability. Additionally, the effort was to (4) identify important uncertainties that need to be resolved by tests and/or analyses in order to complete a performance assessment on the effects of thermal loading. The FY 1993 Thermal Loading Study was conducted from December 1, 1992 to December 30, 1993 and this final report provides the findings of the study. Volume 1 contains the Introduction; Performance requirements; Input and assumptions; Near-field thermal analysis; Far-field thermal analysis; Cost analysis; Other considerations; System analysis; Additional thermal analysis; and Conclusions and recommendations. 71 refs., 54 figs.

Saterlie, S.F.; Thomson, B.H.

1994-08-29T23:59:59.000Z

237

Annual Report - FY 2001, Radioactive Waste Shipments To and From the Nevada Test Site, February 2002  

SciTech Connect (OSTI)

In February 1997, the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV) issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). NNSA/NV committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMSs) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY 2001).

U.S. Department of Energy, National Nuclear Security Administration, Nevada Operations Office

2002-02-01T23:59:59.000Z

238

HyPEP FY06 Report: Models and Methods  

SciTech Connect (OSTI)

The Department of Energy envisions the next generation very high-temperature gas-cooled reactor (VHTR) as a single-purpose or dual-purpose facility that produces hydrogen and electricity. The Ministry of Science and Technology (MOST) of the Republic of Korea also selected VHTR for the Nuclear Hydrogen Development and Demonstration (NHDD) Project. This research project aims at developing a user-friendly program for evaluating and optimizing cycle efficiencies of producing hydrogen and electricity in a Very-High-Temperature Reactor (VHTR). Systems for producing electricity and hydrogen are complex and the calculations associated with optimizing these systems are intensive, involving a large number of operating parameter variations and many different system configurations. This research project will produce the HyPEP computer model, which is specifically designed to be an easy-to-use and fast running tool for evaluating nuclear hydrogen and electricity production facilities. The model accommodates flexible system layouts and its cost models will enable HyPEP to be well-suited for system optimization. Specific activities of this research are designed to develop the HyPEP model into a working tool, including (a) identifying major systems and components for modeling, (b) establishing system operating parameters and calculation scope, (c) establishing the overall calculation scheme, (d) developing component models, (e) developing cost and optimization models, and (f) verifying and validating the program. Once the HyPEP model is fully developed and validated, it will be used to execute calculations on candidate system configurations. FY-06 report includes a description of reference designs, methods used in this study, models and computational strategies developed for the first year effort. Results from computer codes such as HYSYS and GASS/PASS-H used by Idaho National Laboratory and Argonne National Laboratory, respectively will be benchmarked with HyPEP results in the following years.

DOE report

2006-09-01T23:59:59.000Z

239

Ferrocyanide safety project ferrocyanide aging studies FY 1995 annual report  

SciTech Connect (OSTI)

This annual report gives the results of the work conducted by the Pacific Northwest Laboratory in FY 1995 on Task 3 of the Ferrocyanide Safety Project, Ferrocyanide Aging Studies. Aging refers to the dissolution and hydrolysis of simulated Hanford ferrocyanide waste in alkaline aqueous solutions by radiolytic and chemical means. The ferrocyanide simulant primarily used in these studies was dried In-Farm-1B, Rev. 7, prepared by Westinghouse Hanford Company to simulate the waste generated when the In-Farm flowsheet was used to remove radiocesium from waste supernates in single-shell tanks at the Hanford Site. In the In-Farm flowsheet, nickel ion and ferrocyanide anion were added to waste supernates to precipitate sodium nickel ferrocyanide, Na{sub 2}NiFe(CN){sub 6}, and co-precipitate radiocesium. Once the radiocesium was removed, supernates were pumped from the tanks, and new wastes from cladding removal processes or from evaporators were added. These new wastes were typically highly caustic, having hydroxide ion concentrations of over 1 M and as high as 4 M. The Aging Studies task is investigating reactions this caustic waste may have had with the precipitated ferrocyanide waste in a radiation field. In previous Aging Studies research, Na{sub 2}NiFe(CN){sub 6} in simulants was shown to dissolve in basic solutions, forming insoluble Ni(OH){sub 2} and soluble Na{sub 4}Fe(CN){sub 6}. The influence on solubility of base strength, sodium ion concentration, anions, and temperature was previously investigated. The results may indicate that even ferrocyanide sludge that did not come into direct contact with highly basic wastes may also have aged significantly.

Lilga, M.A.; Alderson, E.V.; Hallen, R.T. [and others

1995-09-01T23:59:59.000Z

240

NEPA Lessons Learned Quarterly Report - 4th Quarter FY 1997  

Broader source: Energy.gov (indexed) [DOE]

December 1997 December 1997 1 National Environmental Policy Act N E P A LESSONS LEARNED LESSONS LEARNED For Fourth Quarter FY 1997 December 1, 1997, Issue No. 13 U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT continued on page 2 I@Q6£Sr‰vr£6qq†£ I@Q6£Sr‰vr£6qq†£ I@Q6£Sr‰vr£6qq†£ I@Q6£Sr‰vr£6qq†£ I@Q6£Sr‰vr£6qq†£W W W W Whyˆr£‡‚£Q…‚ƒ‚†rq hyˆr£‡‚£Q…‚ƒ‚†rq hyˆr£‡‚£Q…‚ƒ‚†rq hyˆr£‡‚£Q…‚ƒ‚†rq hyˆr£‡‚£Q…‚ƒ‚†rq Thyr£‚s£Ih‰hy£Qr‡…‚yrˆ€£Sr†r…‰r Thyr£‚s£Ih‰hy£Qr‡…‚yrˆ€£Sr†r…‰r Thyr£‚s£Ih‰hy£Qr‡…‚yrˆ€£Sr†r…‰r Thyr£‚s£Ih‰hy£Qr‡…‚yrˆ€£Sr†r…‰r Thyr£‚s£Ih‰hy£Qr‡…‚yrˆ€£Sr†r…‰r The endangered San Joaquin Kit Fox would continue to be protected after sale of NPR-1. (Photo courtesy of

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hydrologic resources management program. FY 1995 progress report  

SciTech Connect (OSTI)

This report presents the results of FY 1995 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP), a multi-agency program sponsored by the U.S. Department of Energy, Nevada Operations Office (DOE/NV), to address the environmental consequences of nuclear weapons testing at the Nevada Test Site (NTS). A priority is to better characterize the complex near-field environment in order to assess and predict the movement of radionuclides in groundwater. Other participating organizations include the Los Alamos National Laboratory (LANL), the U.S. Geological Survey (USGS) and the Desert Research Institute (DRI) of the University of Nevada. A radiologic source term in excess of 10{sup 8} curies of tritium, fission products, activation products and actinides is residual from more than three decades of underground nuclear weapons testing at the Nevada Test Site (NTS). Burial depths to insure containment of these explosions necessitated firing approximately one third of the more than 800 underground nuclear tests within one cavity radius or below the static water table. Work at LLNL has focused on studies of radionuclide transport under saturated, partially saturated or unsaturated conditions as well as investigations of the stable, radiogenic and cosmogenic isotope systematics of NTS groundwaters. LLNL has prioritized these studies because of the significance for potential radionuclide migration at the Nevada Test Site. LLNL utilizes expertise in nuclear weapons testing, radiochemical diagnostics, nuclear test phenomenology, mass spectrometry, aqueous geochemistry and field and laboratory studies of radionuclide migration to bring a unique measurement and interpretative capability to this research.

Smith, D.K. [comp.] [comp.; Esser, B.K.; Kenneally, J.M. [and others] [and others

1996-03-01T23:59:59.000Z

242

PADS FY 2010 Annual Reports FY 2010 Obligations to Facilities Management Contracts  

Broader source: Energy.gov (indexed) [DOE]

C4N - SHELTERED WORKSHOP 1 831,263 C4N - SHELTERED WORKSHOP 1 831,263 C0L - LOCAL GOVT/MUNICIPALITY 2 125,000 B22 - LARGE BUSINESS 979 2,388,060,659 C3N - NON-PROFIT ORGANIZATION 24 282,357,286 I0E - EDUCATIONAL INSTITUTION 9 4,970,555 A00 - SMALL BUSINESS 1,890 1,921,241,548 C0F - FEDERAL GOVERNMENT 478 388,669,688 E1N - FOREIGN CONTRACTOR 1 -16,921,324 8 UNIQUE VALUES 3,384 4,969,334,675 Geographic Distribution of FY 2010 Obligations to Non-Facilities Management Awards STATE NUMBER OF AWARDS FY 2010 OBLIGATIONS NORTH DAKOTA (ND) 28 2,832,957 ILLINOIS (IL) 68 25,598,750 ARIZONA (AZ) 96 8,732,671 WISCONSIN (WI) 6 831,049 GEORGIA (GA) 34 5,300,948 NORTH CAROLINA (NC) 17 10,995,700 RHODE ISLAND (RI) 2 660,000 DISTRICT OF COLUMBIA (DC) 770 524,559,400 PENNSYLVANIA (PA) 132 84,970,982

243

Lifecycle Verification of Polymeric Storage Tank Liners - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Barton Smith (Primary Contact) and Lawrence M. Anovitz Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831 Phone: (865) 574-2196 Email: smithdb@ornl.gov DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Start Date: June 2008 Projected End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Continue temperature cycling and permeation * measurements on tank liner polymers, and use permeation data to assess ability of tank liners to retain a steady-state hydrogen discharge rate that does not exceed 110% of the 75 normal cubic centimeters per minute (Ncc)/min permeation requirement of SAE International

244

Endangered species and cultural resources program, Naval Petroleum Reserves in California: Annual report FY95  

SciTech Connect (OSTI)

In FY95, EG and G Energy Measurements, Inc. (EG and G/EM) continued to support efforts to protect endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on Federal properties. Population monitoring activities are conducted annually for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly-star. To mitigate impacts of oil field activities on listed species, 674 preactivity surveys covering approximately 211 hectares (521 acres) were conducted in FY95. EG and G/EM also assisted with mitigating effects from third-party projects, primarily by conducting biological and cultural resource consultations with regulatory agencies. EG and G/EM has conducted an applied habitat reclamation program at NPRC since 1985. In FY95, an evaluation of revegetation rates on reclaimed and non-reclaimed disturbed lands was completed, and the results will be used to direct future habitat reclamation efforts at NPRC. In FY95, reclamation success was monitored on 50 sites reclaimed in 1985. An investigation of factors influencing the distribution and abundance of kit foxes at NPRC was initiated in FY94. Factors being examined include habitat disturbance, topography, grazing, coyote abundance, lagomorph abundance, and shrub density. This investigation continued in FY95 and a manuscript on this topic will be completed in FY96. Also, Eg and G/EM completed collection of field data to evaluate the effects of a well blow-out on plant and animal populations. A final report will be prepared in FY96. Finally, EG and G/EM completed a life table analysis on San Joaquin kit foxes at NPRC.

NONE

1996-04-01T23:59:59.000Z

245

Facilities and Administrative Cost Recovery Annual Report FY 2009 2010  

E-Print Network [OSTI]

; 43,441; 1% Private; 245,344; 3% Sources of F&A Revenue FY 2010 Federal State Local Private #12,795 250,513 183,413 222,549 Energy (DOE) 8,555 21,391 25,5

Dodla, Ramana

246

ARPA-E FY2010 Annual Report Highlights Transformational Projects Since  

Broader source: Energy.gov (indexed) [DOE]

FY2010 Annual Report Highlights Transformational Projects FY2010 Annual Report Highlights Transformational Projects Since Agency's Establishment ARPA-E FY2010 Annual Report Highlights Transformational Projects Since Agency's Establishment June 22, 2011 - 10:30am Addthis Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What does this mean for me? ARPA-E has funded 121 projects -- in amounts ranging from roughly $400,000 to $9 million, with an average award value of $3 million -- which have the potential to transform our Nation's energy future. Private investments have not only signaled commercial potential, but are helping projects accelerate technical development, create jobs and acquire capital equipment and facilities. It's hard to believe the Advanced Research Projects Agency-Energy (ARPA-E)

247

House Energy and Water Appropriations Subcommittee Report on FY 2013 Budget April 25, 2012  

E-Print Network [OSTI]

House Energy and Water Appropriations Subcommittee Report on FY 2013 Budget April 25, 2012 FUSION-year plan for Fusion Energy Sciences directed in the fiscal year 2012 appropriations conference report ENERGY SCIENCES The Fusion Energy Sciences program supports basic research and experimentation aiming

248

FY 1991 environmental research programs for the Nevada Operations Office: Work plan and quarterly reports, first and second quarter reports  

SciTech Connect (OSTI)

The work carried out on behalf of the DOE by the Desert Research Institute (DRI) includes a wide range of research and support activities associated with the Weapons Testing Program conducted at the Nevada Test Site (NTS). Ongoing and new environmental research programs to be conducted by DRI over the period of this contract include archaeological studies, site mitigation plans, compliance activities, and historical research; offsite community radiation monitoring support; environmental compliance activities related to stat and federal regulations; hydrologic assessment of containment of underground nuclear detonations; hydrology/radionuclide investigations designed to better understand and predict the possible subsurface movement of radionuclides at the NTS; and support of various statistical and data management and design, laboratory, field, and administrative activities. In addition to these, archaeological site characterization, flood hazards for rail transportation, and paleofaunal investigations will be carried out in support of the Yucca Mountain Project. Other areas of the overall program which require DRI support are classified security activities, radiation safety and training, quality assurance and control, computer protection and historical data management, review and classification of DRI documents, and preparation of any special reports, e.g., quarterly reports, not included in the requirements of the individual projects. A new set of programs funded by the Office of Technology Development will be in place by the third quarter of FY 1991. These projects will address environmental restoration and waste management concerns, among other related topics. This document contains the Work Plan, including project descriptions, tasks, deliverables and quarterly progress reports on each project for FY 1991.

NONE

1991-05-01T23:59:59.000Z

249

FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AdvAnced vehicle Technology AdvAnced vehicle Technology AnAlysis And evAluATion AcTiviTies U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities FY 2006 Annual Report CONTENTS I. INTRODUCTION............................................................................................................................ 1 II. MODELING AND SIMULATION ................................................................................................ 9

250

FY 2006 Annual Progress Report for Heavy Vehicle Systems Optimization Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heavy veHicle SyStemS Heavy veHicle SyStemS OptimizatiOn prOgram U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2006 Annual Progress Report for Heavy Vehicle Systems Optimization Program Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Heavy Vehicle Systems Optimization Program FY 2006 Annual Report iii CONTENTS I. Aerodynamic Drag Reduction......................................................................................................... 1 A. DOE Project on Heavy Vehicle Aerodynamic Drag .................................................................. 1

251

FY 2012 Annual Progress Report for Energy Storage R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Duong - DOE V.A Introduction Duong - DOE V.A Introduction FY 2012 Annual Progress Report cdlxxxvii Energy Storage R&D FY 2012 Annual Progress Report 489 Energy Storage R&D V. Focused Fundamental Research V.A Introduction The focused fundamental research program, also called the Batteries for Advanced Transportation Technologies (BATT) Program, is supported by the DOE's Vehicle Technologies Program (DOE-VTP) to research and analyze new materials for high- performance, next generation, rechargeable batteries for use in HEVs, PHEVs, and EVs. The effort in FY 2012 continued the increased emphasis on high-energy materials for PHEV and EV applications and expanded efforts into technologies for enabling the use of Li metal anodes. Background and Program Context The BATT Program addresses the fundamental problems of chemical and mechanical instabilities that have slowed the

252

FY08 MEMBRANE CHARACTERIZATION REPORT FOR HYBRID SULFUR ELECTROLYZER  

SciTech Connect (OSTI)

This report summarizes results from all of the membrane testing completed to date at the Savannah River National Laboratory (SRNL) for the sulfur dioxide-depolarized electrolyzer (SDE). Several types of commercially-available membranes have been analyzed for ionic resistance and sulfur dioxide transport including perfluorinated sulfonic acid (PFSA), sulfonated polyether-ketone-ketone (SPEKK), and polybenzimidazole membranes (PBI). Of these membrane types, the poly-benzimidazole membrane, Celtec-L, exhibited the best combination of characteristics for use in an SDE. Several experimental membranes have also been analyzed including hydrated sulfonated Diels-Alder polyphenylenes (SDAPP) membranes from Sandia National Laboratory, perfluorosulfonimide (PFSI) and sulfonated perfluorocyclobutyl aromatic ether (S-PFCB) prepared by Clemson University, hydrated platinum-treated PFSA prepared by Giner Electrochemical Systems (GES) and Pt-Nafion{reg_sign} 115 composites prepared at SRNL. The chemical stability, SO{sub 2} transport and ionic conductivity characteristics have been measured for several commercially available and experimental proton-conducting membranes. Commercially available PFSA membranes such as the Nafion{reg_sign} series exhibited excellent chemical stability and ionic conductivity in sulfur dioxide saturated sulfuric acid solutions. Sulfur dioxide transport in the Nafion{reg_sign} membranes varied proportionally with the thickness and equivalent weight of the membrane. Although the SO{sub 2} transport in the Nafion{reg_sign} membranes is higher than desired, the excellent chemical stability and conductivity makes this membrane the best commercially-available membrane at this time. Initial results indicated that a modified Nafion{reg_sign} membrane incorporating Pt nanoparticles exhibited significantly reduced SO{sub 2} transport. Reduced SO{sub 2} transport was also measured with commercially available PBI membrane and several experimental membranes produced at SNL and Clemson. These membranes also exhibit good chemical stability and conductivity in concentrated sulfuric acid solutions and, thus, serve as promising candidates for the SDE. Therefore, we recommend further testing of these membranes including electrolyzer testing to determine if the reduced SO{sub 2} transport eliminates the formation of sulfur-containing films at the membrane/cathode interface. SO{sub 2} transport measurements in the custom built characterization cell identified experimental limitations of the original design. During the last quarter of FY08 we redesigned and fabricated a new testing cell to overcome the previous limitations. This cell also offers the capability to test membranes under polarized conditions as well as test the performance of MEAs under selected electrolyzer conditions.

Hobbs, D; Hector Colon-Mercado, H; Mark Elvington, M

2008-09-01T23:59:59.000Z

253

ARM - Reporting Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PDF) Second Quarter (PDF) Third Quarter (PDF) Fourth Quarter (PDF) 2013 Quarterly Reports First Quarter (PDF) Second Quarter (PDF) Third Quarter (PDF) Fourth Quarter (PDF)...

254

Photon Sciences Directorate | 2010 Annual Report | FY10 Beamline Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FY10 Beamline Guide FY10 Beamline Guide beamline status chart Click on the image to download a high-resolution version. Beamline Status In 2010, 49 X-Ray and 11 Vacuum Ultraviolet-Infrared operational beamlines were available for a wide range of experiments using a variety of techniques. There are two types of beamlines at NSLS: facility beamlines, of which there were 21; and participating research team (PRT) beamlines, of which there were 39. Facility beamlines are operated by Photon Sciences staff members and reserve a minimum of 50 percent of their beam time for general users. PRT beamlines are run by user groups with similar interests and reserve 25 percent of their beam time for general users, although they can grant additional time at their own discretion. The following pages provide details on NSLS operational beamlines,

255

FY 2005 Quantum Cascade Laser Alignment System Final Report  

SciTech Connect (OSTI)

The Alignment Lasers Task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Project PL211I) is a co-funded project between DOE NA-22 and a Classified Client. This project, which began in the second half of FY03, involved building and delivering a Quantum Cascade (QC) Laser Alignment System to be used for testing the pupil alignment of an infrared sensor by measuring the response from four pairs of diametrically opposed QC lasers. PNNL delivered the system in FY04 and provided technical assistance in FY05 culminating into a successful demonstration of the system. This project evolved from the Laser Development Task of PL211I, which is involved in developing novel laser technology to support development of advanced chemical sensors for detecting the proliferation of nuclear weapons. The laser systems are based on quantum cascade (QC) lasers, a new semiconductor source in the infrared. QC lasers can be tailored to emit light throughout the infrared region (3.5 ? 17 ?m) and have high output power and stability. Thus, these lasers provide an infrared source with superb power and spectral stability enabling them to be used for applications such as alignment and calibration in addition to chemical sensing.

Myers, Tanya L.; Cannon, Bret D.; Wojcik, Michael D.; Broocks, Bryan T.; Stewart, Timothy L.; Hatchell, Brian K.

2006-01-11T23:59:59.000Z

256

DOD Facilities Energy: FY 2009 Annual Energy Report Overview and Status on NDAA 2010 Studies  

Broader source: Energy.gov (indexed) [DOE]

Facilities Energy Facilities Energy FY 2009 Annual Energy Report: Overview and Status on NDAA 2010 Studies Brian J. Lally, P.E. Deputy Director, Facilities Energy and Utilities Privatization Deputy Under Secretary of Defense for Installations and Environment FUPWG: 14-15 April 2010 FY 09-08 Facilities Total Delivered Energy (Billions Btu) 2 5,000 30,000 55,000 80,000 105,000 130,000 155,000 180,000 205,000 DoD Army Air Force Dept Navy Other DoD FY 09 FY 08 FY 09 Site Delivered Energy By Type (Billions Btu) 3 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 Electricity Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane & Renewables DoD Army Air Force Dept Navy Other DoD All Facilities Site Delivered Energy By Type (BTU) Electricity 46% Natural Gas 33% Fuel Oil 9% Coal 7% Purchased Steam

257

Nevada Test Site-Directed Research and Development: FY 2006 Report  

SciTech Connect (OSTI)

The Nevada Test SiteDirected Research and Development (SDRD) program completed its fifth successful year of research and development activities in FY 2006. Forty new projects were selected for funding this year, and ten FY 2005 projects were brought to conclusion. The total funds expended by the SDRD program were $6 million, for an average per-project cost of $120 thousand. Beginning in May, 2006 programmatic burden rates were applied to SDRD project costs. An external audit conducted in September 2006 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: the filing of 27 invention disclosures for intellectual property generated by FY 2006 projects; programmatic adoption of four FY 2005 SDRD-developed technologies; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2006 projects; and the successful completion of 50 R&D projects, as presented in this report.

Wil Lewis, editor

2007-08-01T23:59:59.000Z

258

Biological Systems for Hydrogen Photoproduction - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Maria L. Ghirardi (Primary Contact), Paul W. King, Kathleen Ratcliff and David Mulder National Renewable Energy Laboratory (NREL) 1617 Cole Blvd. Golden, CO 80401 Phone: (303) 384-6312 Email: maria.ghirardi@nrel.gov DOE Manager Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Subcontractors: * Dr. Sergey Kosourov, Institute of Basic Biological Problems, RAS, Pushchino, Russia * Dr. Eric Johnson, Johns Hopkins University, Baltimore, MD Project Start Date: October 1, 2000 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Primary Objectives

259

Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance  

Broader source: Energy.gov (indexed) [DOE]

Final July 01, 2010 Final July 01, 2010 1 Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance On Real Property 1. The following is the FY 2010 implementation procedures for the field offices/sites to determine and report deferred maintenance on real property as required by the Statement of Federal Financial Accounting Standards (SFFAS) No. 6, Accounting for Property, Plant, and Equipment (PP&E) and DOE Order 430.1B, Real Property Asset Management (RPAM). a. This document is intended to assist field offices/sites in consistently and accurately applying the appropriate methods to determine and report deferred maintenance estimates and reporting of annual required and actual maintenance costs. b. This reporting satisfies the Department's obligation to recognize and record deferred

260

Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance  

Broader source: Energy.gov (indexed) [DOE]

Draft July 9, 2009 Draft July 9, 2009 1 Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance On Real Property 1. The following is the FY 2009 implementation procedures for the field offices/sites to determine and report deferred maintenance on real property as required by the Statement of Federal Financial Accounting Standards (SFFAS) No. 6, Accounting for Property, Plant, and Equipment (PP&E) and DOE Order 430.1B, Real Property Asset Management (RPAM). a. This document is intended to assist field offices/sites in consistently and accurately applying the appropriate methods to determine and report deferred maintenance estimates and reporting of annual required and actual maintenance costs. b. This reporting satisfies the Department's obligation to recognize and record deferred

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Photoelectrochemical Materials: Theory and Modeling - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Muhammad N. Huda (Primary Contact), Yanfa Yan*, Todd Deutsch*, Mowafak M. Al-Jassim* and A. John A. Turner* Department of Physics University of Texas at Arlington Arlington, TX 76019 Phone: (817) 272-1097 Email: huda@uta.edu *National Renewable Energy Laboratory DOE Manager HQ: Eric L. Miller Phone: (202) 287-5892 Email: Eric.Miller@ee.doe.gov Subcontractor: University of Texas at Arlington, Arlington, TX Project Start Date: September 2009 Project End Date: August 2012 Fiscal Year (FY) 2012 Objectives For FY 2012, the main goal of this project was to improve materials efficiency by understanding and hence tuning the following by theoretical/computational modeling

262

Characterization of Fuel Cell Materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Karren L. More Oak Ridge National Laboratory (ORNL) 1 Bethel Valley Rd. Oak Ridge, TN 37831-6064 Phone: (865) 574-7788 Email: morekl1@ornl.gov DOE Manager HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov Contributors: * David Cullen (ORNL) * Miaofang Chi (ORNL) * Kelly Perry (ORNL) Project Start Date: Fiscal Year (FY) Year 1999 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop and/or apply novel preparation, imaging, and * analytical methods to characterize fuel cell materials and architectures in the as-processed (fresh) state, during

263

Primary Contacts Index, DOE Hydrogen Program FY 2010 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 FY 2010 Annual Progress Report DOE Hydrogen Program A Abken, Anke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Abruna, Hector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 Aceves, Salvador . . . . . . . . . . . . . . . . 282, 341, 615, 1363 Adams, Thad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 Adzic, Radoslav . . . . . . . . . . . . . . . . . . . . . . . . . 841, 1092 Ahluwalia, Rajesh . . . . . . . . . . . . . . . . . . . . . . . . 566, 661 Ahmed, Shabbir . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 1209 Allendorf, Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 Anton, Don . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413, 514 Arif, Muhammad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686 Atanasoski, Radoslav . . . . . . . . . . . . . . . . . . . . . . . . . . 825 Ayers, Katherine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 B Balachandran, Balu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Balbuena, Perla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099 Barclay, John . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

264

Materials Corrosion and Mitigation Strategies for APT, End of FY '97 Report  

E-Print Network [OSTI]

Materials Corrosion and Mitigation Strategies for APT, End of FY '97 Report: I. Inconel 718 In-Beam Corrosion Rates from the '97 A6 Irradiation R. Scott Lillard, Donald L. Pile, Darryl P. Butt Materials Corrosion & Environmental Effects Lab MST-6, Metallurgy Group Los Alamos National Laboratory, Los Alamos NM

265

Materials Corrosion and Mitigation Strategies for APT, End of FY '97 Report  

E-Print Network [OSTI]

Materials Corrosion and Mitigation Strategies for APT, End of FY '97 Report: II. Out-of-Beam Corrosion Rates and Water Analysis from the '97 A6 Irradiation R. Scott Lillard, Donald L. Pile, Darryl P. Butt Materials Corrosion & Environmental Effects Lab MST-6, Metallurgy Group Los Alamos National

266

FY 2013 AgencY FinAnciAl RepoRt www.nasa.gov  

E-Print Network [OSTI]

FY 2013 AgencY FinAnciAl RepoRt www.nasa.gov National Aeronautics and Space Administration #12;Front Cover: Outside Front Main Image: Artist concept of planets space. (Credit: NASA) Outside Front of extrave- hicular activity (EVA) as work continues on the International Space Station. (Credit: NASA

Waliser, Duane E.

267

Fuel Cells for Transportation FY 2001 Progress Report V. PEM STACK COMPONENT COST REDUCTION1  

E-Print Network [OSTI]

Fuel Cells for Transportation FY 2001 Progress Report 113 V. PEM STACK COMPONENT COST REDUCTION1 A. High-Performance, Matching PEM Fuel Cell Components and Integrated Pilot Manufacturing Processes Mark K polymer electrolyte membrane (PEM) fuel cell components and pilot manufacturing processes to facilitate

268

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report II.D Electrolytic Processes  

E-Print Network [OSTI]

% higher than separated PV electrolysis devices, and analysis work has shown that the cost of PEC hydrogenHydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 125 II.D Electrolytic Processes II.D.1 Photoelectrochemical Systems for Hydrogen Production Ken Varner, Scott Warren, J.A. Turner

269

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section III. Hydrogen Storage  

E-Print Network [OSTI]

. Hydrogen Storage #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 200 #12 square inch (psi) 7.5 wt % and 8.5 wt% Type IV composite hydrogen storage tanks of specified sizes for DOE Future Truck and Nevada hydrogen bus programs · Demonstrate 10,000 psi storage tanks Approach

270

DOE Hydrogen Program FY 2005 Progress Report IV.F Photoelectrochemical  

E-Print Network [OSTI]

barriers from the Hydrogen Production section of the Hydrogen, Fuel Cells and Infrastructure TechnologiesDOE Hydrogen Program FY 2005 Progress Report 13 IV.F Photoelectrochemical IV.F.1 High-Efficiency Generation of Hydrogen Using Solar Thermochemical Splitting of Water - UNLV: Photoelectrochemical Hydrogen

271

Dartmouth Biomedical Libraries Annual Report, FY08 (July 2007June 2008)  

E-Print Network [OSTI]

Dartmouth Biomedical Libraries Annual Report, FY08 (July 2007­June 2008) Contents: Digital Resources Usage · D: July 1, 2008, Biomedical Libraries Organization Introduction: Mission and Core Priorities The mission of the Dartmouth Biomedical Libraries is to provide health and life

Myers, Lawrence C.

272

Dartmouth Biomedical Libraries Annual Report, FY09 (July 2008June 2009)  

E-Print Network [OSTI]

Dartmouth Biomedical Libraries Annual Report, FY09 (July 2008­June 2009) Contents Introduction: Biomedical Libraries Organization as of July 1, 2009 Introduction: Mission and Core Priorities The mission of the Dartmouth Biomedical Libraries is to provide health and life sciences information resources and services

Myers, Lawrence C.

273

Dartmouth Biomedical Libraries Annual Report, FY07 (July 2006June 2007)  

E-Print Network [OSTI]

Dartmouth Biomedical Libraries Annual Report, FY07 (July 2006June 2007) Contents and Actuals · C: Digital Resources Usage · D: July 1, 2007, Biomedical Libraries Organization Introduction: Mission and Core Priorities The mission of the Dartmouth Biomedical Libraries is to provide

Myers, Lawrence C.

274

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report IV.E Air Management Subsystems  

E-Print Network [OSTI]

the motor driven compressor/expander and evaluated performance, weight and cost projection data. As comparedHydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 490 IV.E Air and by improving upon previous project results. · Reduce turbocompressor/motor controller costs while increasing

275

Advanced organic analysis and analytical methods development: FY 1995 progress report. Waste Tank Organic Safety Program  

SciTech Connect (OSTI)

This report describes the work performed during FY 1995 by Pacific Northwest Laboratory in developing and optimizing analysis techniques for identifying organics present in Hanford waste tanks. The main focus was to provide a means for rapidly obtaining the most useful information concerning the organics present in tank waste, with minimal sample handling and with minimal waste generation. One major focus has been to optimize analytical methods for organic speciation. Select methods, such as atmospheric pressure chemical ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry, were developed to increase the speciation capabilities, while minimizing sample handling. A capillary electrophoresis method was developed to improve separation capabilities while minimizing additional waste generation. In addition, considerable emphasis has been placed on developing a rapid screening tool, based on Raman and infrared spectroscopy, for determining organic functional group content when complete organic speciation is not required. This capability would allow for a cost-effective means to screen the waste tanks to identify tanks that require more specialized and complete organic speciation to determine tank safety.

Wahl, K.L.; Campbell, J.A.; Clauss, S.A. [and others

1995-09-01T23:59:59.000Z

276

Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.  

SciTech Connect (OSTI)

The construction of Hungry Horse Dam inundated 125 km of adfluvial trout habitat in the South Fork of the Flathead River and its tributaries, impacting natural fish reproduction and rearing. Rapid residential and commercial growth in the Flathead Watershed now threaten the best remaining habitats and restrict our opportunities to offset natural resource losses. Hydropower development and other land disturbances caused severe declines in the range and abundance of our focal resident fish species, bull trout and westslope cutthroat trout. Bull trout were listed as threatened in 1998 under the Endangered Species Act and westslope cutthroat were petitioned for listing under ESA. Westslope cutthroat are a species of special concern in Montana and a species of special consideration by the Confederated Salish and Kootenai Tribes. The Secure & Protect Fisheries Habitat project follows the logical progression towards habitat restoration outlined in the Hungry Horse Dam Fisheries Mitigation Implementation Plan approved by the NWPPC in 1993. This project is also consistent with the 2000 Fish and Wildlife Program and the Flathead River Subbasin Plan that identifies the protection of habitats for these populations as one of the most critical needs in the subbasin and directs actions to offset habitat losses. The Flathead basin is one of the fastest growing human population centers in Montana. Riparian habitats are being rapidly developed and subdivided, causing habitat degradation and altering ecosystem functions. Remaining critical habitats in the Flathead Watershed need to be purchased or protected with conservation easements if westslope cutthroat and bull trout are to persist and expand within the subbasin. In addition, habitats degraded by past land uses need to be restored to maximize the value of remaining habitats and offset losses caused by the construction of Hungry Horse Dam. Securing and restoring remaining riparian habitat will benefit fish by shading and moderating water temperatures, stabilizing banks and protecting the integrity of channel dimension, improving woody debris recruitment for in-channel habitat features, producing terrestrial insects and leaf litter for recruitment to the stream, and helping to accommodate and attenuate flood flows. The purpose of this project is to work with willing landowners to protect the best remaining habitats in the Flathead subbasin as identified in the Flathead River Subbasin Plan. The target areas for land protection activities follow the priorities established in the Flathead subbasin plan and include: (1) Class 1 waters as identified in the Flathead River Subbasin Plan; (2) Class 2 watersheds as identified in the Flathead River Subbasin Plan; and (3) 'Offsite mitigation' defined as those Class 1 and Class 2 watersheds that lack connectivity to the mainstem Flathead River or Flathead Lake. This program focuses on conserving the highest quality or most important riparian or fisheries habitat areas consistent with program criteria. The success of our efforts is subject to a property's actual availability and individual landowner negotiations. The program is guided using biological and project-based criteria that reflect not only the priority needs established in the Flathead subbasin plan, but also such factors as cost, credits, threats, and partners. The implementation of this project requires both an expense and a capital budget to allow work to be completed. This report addresses accomplishments under both budgets during FY08 as the two budgets are interrelated. The expense budget provided pre-acquisition funding to conduct activities such as surveys, appraisals, staff support, etc. The capital budget was used to purchase the interest in each parcel including closing costs. Both the pre-acquisition contract funds and the capital funds used to purchase fee title or conservation easements were spent in accordance with the terms negotiated within the FY08 through FY09 MOA between the Tribes, State, and BPA. In FY08, the focus of this project was to pursue all possible properties

DuCharme, Lynn [Confederated Salish and Kootenai Tribes; Tohtz, Joel [Montana Fish, Wildlife & Parks

2008-11-12T23:59:59.000Z

277

Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) |  

Broader source: Energy.gov (indexed) [DOE]

Preliminary Report on Dual-Purpose Canister Disposal Alternatives Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) This report documents the first phase of a multi-year project to understand the technical feasibility and logistical implications of direct disposal of spent nuclear fuel (SNF) in existing dual-purpose canisters (DPCs) and other types of storage casks. The first phase includes a set of preliminary disposal concepts and associated technical analyses, identification of additional R&D needs, and a recommendation to proceed with the next phase of the evaluation effort. Preliminary analyses indicate that DPC direct disposal could be technically feasible, at least for certain disposal concepts. DPC disposal concepts include the salt concept, and emplacement

278

Decontamination and decommissioning surveillance and maintenance report for FY 1991. Environmental Restoration Program  

SciTech Connect (OSTI)

The Decontamination and Decommissioning (D&D) Program has three distinct phases: (1) surveillance and maintenance (S&M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D&D is devoted to S&M at each of the sites. Our S&M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S&M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

Not Available

1991-12-01T23:59:59.000Z

279

Analytical Chemistry Laboratory progress report for FY 1985  

SciTech Connect (OSTI)

The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.

Green, D.W.; Heinrich, R.R.; Jensen, K.J.

1985-12-01T23:59:59.000Z

280

NEPA Lessons Learned Quarterly Report, First Quarter FY 2005 (March 1, 2005)  

Broader source: Energy.gov (indexed) [DOE]

5 1 5 1 Green Book, Second Edition, Issued; see page 4 New Assistant Secretary Shaw Promotes NEPA as Essential to Energy Mission and Goals National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT First Quarter FY 2005 March 1, 2005; Issue No. 42 LESSONS LEARNED LEARNED LESSONS (continued on page 3) In a recent interview for Lessons Learned Quarterly Report, John Spitaleri Shaw, the new Assistant Secretary for

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Office for Analysis and Evaluation of Operational Data. Annual report, 1994-FY 95  

SciTech Connect (OSTI)

The United States Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) has published reports of its activities since 1984. The first report covered January through June of 1984, and the second report covered July through December 1984. Since those first two semiannual reports, AEOD has published annual reports of its activities from 1985 through 1993. Beginning with the report for 1986, AEOD Annual Reports have been published as NUREG-1272. Beginning with the report for 1987, NUREG-1272 has been published in two parts, No. 1 covering power reactors and No. 2 covering nonreactors (changed to {open_quotes}nuclear materials{close_quotes} with the 1993 report). The 1993 AEOD Annual Report was NUREG-1272, Volume 8. AEOD has changed its annual report from a calendar year to a fiscal year report to be consistent with the NRC Annual Report and to conserve staff resources. NUREG-1272, Volume 9, No. 1 and No. 2, therefore, are combined calendar year 1994 (1994) and fiscal year 1995 (FY 95) reports which describe activities conducted between January 1, 1994, and September 30, 1995. Certain data which have historically been reported on a calendar year basis, however, are complete through calendar year 1995. Throughout this report, whenever information is presented for fiscal year 1995, it is designated as FY 95 data. Calendar year information is always designated by the four digits of the calendar year. This report, NUREG-1272, Volume 9, No. 1, covers power reactors and presents an overview of the operating experience of the nuclear power industry from the NRC perspective. NUREG-1272, Vol. 9, No. 2, covers nuclear materials and presents a review of the events and concerns associated with the use of licensed material in non-power reactor applications. A new part has been added, NUREG-1272, Volume 9, No. 3, which covers technical training and presents the activities of the Technical Training Center in FY 95 in support of the NRC`s mission.

none,

1996-07-01T23:59:59.000Z

282

Applied Science Division annual report, Environmental Research Program FY 1983  

SciTech Connect (OSTI)

The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1983, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, freshwater ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring.

Cairns, E.J.; Novakov, T.

1984-05-01T23:59:59.000Z

283

Combined Fiscal Year (FY) 2009 Annual Performance Results and FY 2010  

Broader source: Energy.gov (indexed) [DOE]

Combined Fiscal Year (FY) 2009 Annual Performance Results and FY Combined Fiscal Year (FY) 2009 Annual Performance Results and FY 2010 Annual Performance Plan Combined Fiscal Year (FY) 2009 Annual Performance Results and FY 2010 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2009 Annual Performance Results and FY 2010 Annual Performance Plan This report presents the goals, objectives, and strategies for measuring the OIG's FY 2009 actual performance and FY 2010 planned activities. Combined Fiscal Year (FY) 2009 Annual Performance Results and FY 2010 Annual Performance Plan More Documents & Publications U.S. Departmetn of Energy, Office of Inspector General, Annaul Peformance Report FY 2009, Annual Performance Plan Fy 2010 Combined Fiscal Year (FY) 2011 Annual Performance Results and FY 2012

284

Semiannual Report to Congress: for the first half of Fiscal Year (FY) 1998  

Broader source: Energy.gov (indexed) [DOE]

for the first half of Fiscal Year for the first half of Fiscal Year (FY) 1998 Semiannual Report to Congress: for the first half of Fiscal Year (FY) 1998 April 30, 1998 1998 Inspector General Semiannual Report to Congress During this reporting period, the Office of Inspector General continued to advise Headquarters and field managers of opportunities to improve the efficiency and effectiveness of the Department's management controls, with particular emphasis on coverage of issues addressed in the Department's Strategic Plan. We also have supported the Department's streamlining initiatives by evaluating the cost effectiveness and overall efficiency of Department programs and operations, placing special emphasis on key issue areas which have historically benefited from Office of Inspector General

285

Electrically switched cesium ion exchange. FY 1996 annual report  

SciTech Connect (OSTI)

An electrochemical method for metal ion separations, called Electrically Switched Ion Exchange, is described. Direct oxidation and reduction of an electroactive film attached to an electrode surface is used to load and unload the film with alkali metal cations. The electroactive films under investigation are Ni hexacyanoferrates, which are deposited on the surface by applying an anodic potential to a Ni electrode in a solution containing the ferricyanide anion. Reported film preparation procedures were modified to produce films with improved capacity and stability. Electrochemical behavior of the derivatized electrodes were investigated using cyclic voltammetry and chronocoulometry. The films show selectivity for Cs in concentrated sodium solutions. Raman spectroscopy was used to monitor changes in oxidation state of the film and imaging experiments have demonstrated that the redox reactions are spatially homogenous across the film. Requirements for a bench scale unit were identified.

Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H. [Pacific Northwest National Lab., Richland, WA (United States); Schwartz, D.T.; Haight, S.M. [Washington Univ., Seattle, WA (United States); Genders, D. [Electrosynthesis Co., Inc., Cheektowaga, NY (United States)

1996-12-01T23:59:59.000Z

286

FY2007 Annual Progress Report for the Advanced Power Electronics and Electric Machinery Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power electronics And Power electronics And electric MAchinery ProgrAM v ehicle t echnologies Progr AM Less dependence on foreign oil today, and transition to a petroleum-free, emissions-free vehicle tomorrow. 2 0 0 7 a n n u a l p r o g r e s s r e p o r t U.S. Department of Energy Office of Vehicle Technologies, EE-2G 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2007 Annual Progress Report for the Advanced Power Electronics and Electric Machinery Program Submitted to: Energy Efficiency and Renewable Energy Office of Vehicle Technologies Vehicle Systems Team Susan A. Rogers, Technology Development Manager December 2007 Power Electronics and Electric Machines FY 2007 Progress Report Contents Acronyms and Abbreviations ................................................................................................................ v

287

FY 2012 Annual Progress Report for Energy Storage R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FY 2012 Annual Progress Report ix Energy Storage R&D FY 2012 Annual Progress Report ix Energy Storage R&D $1.5 Billion for Advanced Battery Manufacturing for Electric Drive Vehicles "Commercial Ready Technologies" Material Supply Cell Components Cell Fabrication Pack Assembly Recycling Lithium Supply Cathode Prod. Iron Phosphate Iron Phosphate Lithium Ion 1 award 3 awards 1 award 1 award 1 award Anode Prod. Nickel Cobalt Metal Nickel Cobalt Metal 2 awards 3 awards 3 awards Electrolyte Prod. Manganese Spinel Manganese Spinel 2 awards 2 awards 2 awards Advanced Lead Separator Prod. Acid Batteries 2 awards 2 awards Other Component 1 award $28.43 M $259 M $735 M $462 M $9.55 M II. American Recovery & Reinvestment Act (ARRA) of 2009

288

Hydrogen Materials and Components Compatibility - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Aaron Harris (Primary Contact), Brian Somerday, Chris San Marchi Sandia National Laboratories P.O. Box 969 Livermore, CA 94551-0969 Phone: (925) 294-4530 Email: apharri@sandia.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: October, 2003 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Complete Canadian Standards Association (CSA) Test * Method for Evaluating Material Compatibility for Compressed Hydrogen Applications - Phase I - Metals (CHMC1) document Issue Sandia report reflecting updated content from * Technical Reference website

289

Technology Development, Evaluation, and Application (TDEA) FY 1998 Progress Report Environment, Safety, and Health (ESH) Division  

SciTech Connect (OSTI)

This progress report presents the results of 10 projects funded ($504K) in FY98 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Nine projects are new for this year; two projects were completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published 19 papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space were also provided to the TDEA-funded projects by organizations external to ESH Division. Products generated from the projects funded in FY98 included a new extremity dosimeter that replaced the previously used finger-ring dosimeters, a light and easy-to-use detector to measure energy deposited by neutron interactions, and a device that will allow workers to determine the severity of a hazard.

Larry G. Hoffman; Kenneth Alvar; Thomas Buhl; Bruce Erdal; Philip Fresquez; Elizabeth Foltyn; Wayne Hansen; Bruce Reinert

1999-06-01T23:59:59.000Z

290

Contaminated Materials Treatment Program annual report for FY 1989  

SciTech Connect (OSTI)

The Western New York Nuclear Services Center reprocessed nuclear fuel for five years until operations were terminated in 1972. Underground tanks at the site contain high-level waste (HLW) generated during the reprocessing operations. Based on original agreements, the state of New York has assumed responsibility for the wastes and the site. The Department of Energy (DOE) is assisting New York State, through the West Valley Demonstration Project (WVDP), in processing and solidifying the HLW. The site contractor for the WVDP is West Valley Nuclear Services Co., Inc. (WVNS). The Pacific Northwest Laboratory (PNL), through the West Valley Support Project, has been supporting WVNS and DOE in establishing vitrification and waste processing technology and capability at the West Valley Site. The specific objective of the West Valley Support Project during FY 1989 were to complete designs of remote equipment, assist in characterizing the WVNS feed, sampling, ceramic melter and off-gas systems, provide chemical analysis of the radioactive wastes and testing of future processes with actual radioactive wastes, provide testing and modeling studies of the reference WV waste product, and conduct special studies, such as evaluating corrosion of the waste tanks and supporting operation of the supernatant treatment system. 13 refs., 13 figs., 5 tabs.

Ross, W.A.; Powell, J.A. (comps.)

1990-08-01T23:59:59.000Z

291

Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY12 Status Report  

SciTech Connect (OSTI)

Executive Summary The Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign is supporting a multi-institutional collaboration to study the feasibility of using Lead Slowing Down Spectroscopy (LSDS) to conduct direct, independent and accurate assay of fissile isotopes in used fuel assemblies. The collaboration consists of Pacific Northwest National Laboratory (PNNL), Los Alamos National Laboratory (LANL), Rensselaer Polytechnic Institute (RPI), Idaho State University (ISU). There are three main challenges to implementing LSDS to assay used fuel assemblies. These challenges are the development of an algorithm for interpreting the data with an acceptable accuracy for the fissile masses, the development of suitable detectors for the technique, and the experimental benchmarking of the approach. This report is a summary of the progress in these areas made by the collaboration during FY2012. Significant progress was made on the project in FY2012. Extensive characterization of a semi-empirical algorithm was conducted. For example, we studied the impact on the accuracy of this algorithm by the minimization of the calibration set, uncertainties in the calibration masses, and by the choice of time window. Issues such a lead size, number of required neutrons, placement of the neutron source and the impact of cadmium around the detectors were also studied. In addition, new algorithms were developed that do not require the use of plutonium fission chambers. These algorithms were applied to measurement data taken by RPI and shown to determine the 235U mass within 4%. For detectors, a new concept for a fast neutron detector involving 4He recoil from neutron scattering was investigated. The detector has the potential to provide a couple of orders of magnitude more sensitivity than 238U fission chambers. Progress was also made on the more conventional approach of using 232Th fission chambers as fast neutron detectors. For benchmarking measurements, we continue to improve our understanding of the experimental setup by studying issues such as the effect of room return and impurities in the lead. RPI performed a series of experiments with a fresh fuel pin and various 235U and 239Pu sources. A comparison between simulations and measurements shows significant deviations after 200 s for both 235U and 239Pu samples, as well as significant deviations at earlier times for the 239Pu sample. The FY2013 effort will shift focus to planning for a Technical Readiness Level 5 demonstration. The primary deliverable for the year will be a plan on how to do this demonstration. The plan will include measurement design, sample acquisition, sample handling, cost estimate, schedule and assumptions. Research will continue on the 4He detector, algorithms development, thorium fission chambers and benchmarking measurements involving sub assemblies of fresh fuel.

Warren, Glen A.; Anderson, Kevin K.; Casella, Andrew M.; Danon, Yaron; Devlin, M.; Gavron, A.; Haight, R. C.; Harris, Jason; Imel, G. R.; Kulisek, Jonathan A.; O'Donnell, J. M.; Stewart, T.; Weltz, Adam

2012-10-01T23:59:59.000Z

292

FY2002 Progress Report for Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuels for Advanced Compression Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Stephen Goguen November 2002 Fuels for Advanced CIDI Engines FY 2002 Progress Report iii CONTENTS CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INDEX OF PRIMARY CONTACTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. FUEL/LUBRICANT EFFECTS TESTING ON ENGINE PERFORMANCE . . . . . . . . . 13 A. Oil Consumption Contribution to CIDI PM Emissions during Transient Operation . . . . . . . . . . . . . . . . . . . .13

293

Primary Contacts Index; DOE Hydrogen Program FY 2009 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2009 Annual Progress Report DOE Hydrogen Program XIII. Primary Contacts Index A Aceves, Salvador . . . . . . . . . . . . . . . . . . . . 336, 771, 1257 Adams, Thad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95, 358 Adrianowycz, Orest . . . . . . . . . . . . . . . . . . . . . . . . . . 1108 Ahluwalia, Rajesh . . . . . . . . . . . . . . . . . . . . . . . . 714, 919 Ahmed, Shabbir . . . . . . . . . . . . . . . . . . . . . . . . . . 49, 1274 Ahn, Channing . . . . . . . . . . . . . . . . . . . . . . . . . . . 487, 625 Allendorf, Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 Anton, Donald . . . . . . . . . . . . . . . . . . . . . . . 483, 675, 720 Arif, Muhammad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952 Autrey, Tom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528, 846 B Bain, Richard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Balachandran, U . (Balu) . . . . . . . . . . . . . . . . . . . . . . . . 41 Baldwin, Don . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 Barclay, John . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 Barton, Tom . . . .

294

NEPA Lessons Learned Quarterly Report, March 3, 2008; Issue No. 54; First Quarter FY 2008  

Broader source: Energy.gov (indexed) [DOE]

08 1 08 1 First Quarter FY 2008 March 3, 2008; Issue No. 54 National Environmental Policy Act U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT LESSONS LEARNED LEARNED LESSONS N E P A (continued on page 3) Programmatic EIS on Nuclear Weapons Complex Draws National Interest, Many Comments Dinah Bear, General Counsel Council on Environmental Quality Anne Norton Miller, Director Offi ce of Federal Activities

295

NEPA Lessons Learned Quarterly Report, June 1, 2005; Issue No. 43; Second Quarter FY 2005  

Broader source: Energy.gov (indexed) [DOE]

5 1 5 1 National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT Second Quarter FY 2005 June 1, 2005; Issue No. 43 LESSONS LEARNED LEARNED LESSONS (continued on page 4) Who Has More Than 500 Years of NEPA Experience? A Closer Look at the DOE NEPA Compliance Officers Who are these 47 individuals? What inspires their commitment to the environment? How do they carry out

296

NEPA Lessons Learned Quarterly Report, Issue No. 41; Fourth Quarter FY 2004; December 1, 2004  

Broader source: Energy.gov (indexed) [DOE]

4 1 4 1 The EIS Comment-Response Process Guidance Issued; see page 9 Putting the Web to Work for NEPA National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT Fourth Quarter FY 2004 December 1, 2004; Issue No. 41 LESSONS LEARNED LEARNED LESSONS (continued on page 4) "What's your e-mail address? Do you have a Web site?" These are common questions in

297

FY 2011 Annual Progress Report for Energy Storage R&D  

Broader source: Energy.gov [DOE]

FY 2011 annual report of the energy storage research and development effort within the VT Program. The object of this effort is to advance the development of batteries to enable a large market penetration of hybrid and electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.

298

Technical report for the alkali lake ecological assessment, phase 1 reconnaissance (FY 91 and FY 92)  

SciTech Connect (OSTI)

The report summarizes the results of three field survey trips (June and September 1991, May 1992) taken to investigate the ecological effects associated with the release of over a million gallons of hazardous waste from herbicide production on the Alkali Lake playa. Sampling of soil, sediment, groundwater, soil-dwelling invertebrates and vegetation confirmed that hazardous materials from the waste disposal area are migrating westerly within the shallow aquifer to West Alkali Lake. Two areas of dead vegetation were identified and permanently marked to determine if these areas are changing in size and location. Preliminary calculations using a linear food-chain model suggested that small mammalian herbivores would probably not display adverse effects due to dietary exposures to the contaminants. However, nestling shorebirds may be exposed to concentrations potentially associated with adverse biological effects.

Linder, G.

1993-03-01T23:59:59.000Z

299

Moses Lake Fishery Restoration Project : FY 1999 Annual Report.  

SciTech Connect (OSTI)

The Moses Lake Project consists of 3 phases. Phase 1 is the assessment of all currently available physical and biological information, the collection of baseline biological data, the formulation of testable hypotheses, and the development of a detailed study plan to test the hypotheses. Phase 2 is dedicated to the implementation of the study plan including data collection, hypotheses testing, and the formulation of a management plan. Phase 3 of the project is the implementation of the management plan, monitoring and evaluation of the implemented recommendations. The project intends to restore the failed recreational fishery for panfish species (black crappie, bluegill and yellow perch) in Moses Lake as off site mitigation for lost recreational fishing opportunities for anadromous species in the upper Columbia River. This report summarizes the results of Phase 1 investigations and presents the study plan directed at initiating Phase 2 of the project. Phase 1of the project culminates with the formulation of testable hypotheses directed at investigating possible limiting factors to the production of panfish in Moses Lake. The limiting factors to be investigated will include water quality, habitat quantity and quality, food limitations, competition, recruitment, predation, over harvest, environmental requirements, and the physical and chemical limitations of the system in relation to the fishes.

None given

2000-12-01T23:59:59.000Z

300

FY 2012 Annual Progress Report for Energy Storage R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

844 844 Energy Storage VEHICLE TECHNOLOGIES OFFICE 2012 annual progress report U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FISCAL YEAR 2012 ANNUAL PROGRESS REPORT FOR ENERGY STORAGE R&D January 2013 Approved by David Howell, Hybrid Electric Systems Team Lead Vehicle Technologies Program, Energy Efficiency and Renewable Energy FY 2012 Annual Progress Report i Energy Storage R&D Table of Contents I. INTRODUCTION ................................................................................................................................................. 1 I.A Vehicle Technologies Program Overview ..................................................................................................... 1

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Office of Inspector General FY 1983 semiannual report, October 1, 1982-March 31, 1983  

SciTech Connect (OSTI)

Activities of the IG Office during the first half of FY 83 are summarized. This is followed by a three-part section on audit, inspection, and investigative activities which deals with the problems uncovered, corrective recommendations, and the implementation progress made by the Department of Energy on the recommended corrective actions. The fourth section discussed other significant activities during the report period. Appendices include reports on which corrective action is incomplete and lists the public audit and inspection reports issued during this period. (PSB)

Not Available

1983-05-31T23:59:59.000Z

302

Waste Tank Organic Safety Program: Analytical methods development. Progress report, FY 1994  

SciTech Connect (OSTI)

The objectives of this task are to develop and document extraction and analysis methods for organics in waste tanks, and to extend these methods to the analysis of actual core samples to support the Waste Tank organic Safety Program. This report documents progress at Pacific Northwest Laboratory (a) during FY 1994 on methods development, the analysis of waste from Tank 241-C-103 (Tank C-103) and T-111, and the transfer of documented, developed analytical methods to personnel in the Analytical Chemistry Laboratory (ACL) and 222-S laboratory. This report is intended as an annual report, not a completed work.

Campbell, J.A.; Clauss, S.A.; Grant, K.E. [and others

1994-09-01T23:59:59.000Z

303

Corrugated Membrane Fuel Cell Structures - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Stephen Grot Ion Power Incorporated 720 Governor Lea Rd New Castle, DE 19720-5501 Phone: (302) 832 9550 Email: s.grot@ion-power.com DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Technical Advisor Thomas Benjamin Phone: (630) 252-1632 Email: benjamin@anl.gov Subcontractors: * Graftech International Holdings Inc., Parma, OH * General Motors Corporation, Flint, MI Contract Number: DE-EE0000462 Project Start Date: September 1, 2010 Project End Date: February 28, 2014 Fiscal Year (FY) 2012 Objectives

304

Electrochemical Reversible Formation of Alane - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Ragaiy Zidan 1 (Primary Contact), Douglas A. Knight 1 , Scott Greenway 2 1 Savannah River National Laboratory 999-2W Room 121 Savannah River Site Aiken, SC 29808 Phone: (803) 646-8876 Email: ragaiy.zidan@srnl.doe.gov 2 Greenway Energy DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Project Start Date: October 1, 2006 Project End Date: October 1, 2012 Fiscal Year (FY) 2012 Objectives Identify means for achieving energy efficiency * improvements of over 50%. Perform electrochemical production of alane and alane * adducts in a pressurized electrochemical cell and demonstrate production of α-alane. Demonstrate the formation of alane and the regeneration *

305

Hawaii Hydrogen Power Park - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Richard (Rick) E. Rocheleau (Primary Contact), Mitch Ewan Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii at Manoa 1680 East-West Road, POST 109 Honolulu, HI 96822 Phone: (808) 956-8346 Email: rochelea@hawaii.edu DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805; Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC51-02R021399 A008 Project Start Date: June 29, 2009 Project End Date: December 31, 2014 Fiscal Year (FY) 2012 Objectives Island of Hawaii (Big Island) Install hydrogen fueling station infrastructure at Hawaii * Volcanoes (HAVO) National Park on the Big Island of

306

Hydrogen Refueling Infrastructure Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Marc W. Melaina (Primary Contact), Michael Penev and Darlene Steward National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3836 Email: Marc.Melaina@nrel.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Subcontractor: IDC Energy Insights, Framingham, MA Project Start Date: October 1, 2010 Project End Date: September 28, 2012 Fiscal Year (FY) 2012 Objectives Identify the capacity (kg/day) and capital costs * associated with "Early Commercial" hydrogen stations (defined below) Identify cost metrics for larger numbers of stations and * larger capacities Technical Barriers This project addresses the following technical barriers

307

California Hydrogen Infrastructure Project - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Edward C. Heydorn Air Products and Chemicals, Inc. 7201 Hamilton Boulevard Allentown, PA 18195 Phone: (610) 481-7099 Email: heydorec@airproducts.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Jim Alkire Phone: (720) 356-1426 Email: James.Alkire@go.doe.gov Contract Number: DE-FC36-05GO85026 Working Partners/Subcontractors: * University of California Irvine (UCI), Irvine, CA * National Fuel Cell Research Center (NFCRC), Irvine, CA Project Start Date: August 1, 2005 Project End Date: December 31, 2011 Fiscal Year (FY) 2012 Objectives Demonstrate a cost-effective infrastructure model in

308

Composite Technology for Hydrogen Pipelines - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Barton Smith (Primary Contact), Barbara J. Frame and Lawrence M. Anovitz Oak Ridge National Laboratory (ORNL) P. O. Box 2008 Oak Ridge, TN 37831 Phone: (865) 574-2196 Email: smithdb@ornl.gov DOE Manager HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov Start Date: January 2005 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Complete high-pressure cyclic fatigue tests to verify that * a combination of H 2 environment and stress does not adversely affect composite pipeline integrity and service life. Identify the requisite data, provide data, and contribute * to the codification of hydrogen composite pipelines, in

309

Photoelectrochemical Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Arun Madan MVSystems, Incorporated (MVS) 500 Corporate Circle, Suite L Golden, CO 80401 Phone: (303) 271-9907 Email: ArunMadan@aol.com or amadan@mvsystemsinc.com DOE Managers HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-FC36-07GO17105, A00 Subcontractor: University of Hawaii at Manoa (UH), Honolulu, HI Project Start Date: September 1, 2007 Project End Date: December 31, 2012 Fiscal Year (FY) 2012 Objectives Work closely with the DOE Working Group on * Photoelectrochemical (PEC) Hydrogen Production for optimizing PEC materials and devices. Develop new PEC film materials compatible with high- *

310

Distributed Bio-Oil Reforming - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Stefan Czernik (Primary Contact), Richard French, Michael Penev National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-6135 Email: Stefan.Czernik@nrel.gov DOE Manager Sara Dillich Phone: (202) 586-1623 Email: Sara.Dillich@ee.doe.gov Subcontractor: University of Minnesota, Minneapolis, MN Project Start Date: October 1, 2004 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives By 2012, develop and demonstrate distributed reforming * technology for producing hydrogen from bio-oil at $4.10/ kilogram (kg) purified hydrogen. Demonstrate integrated performance at bench scale * including bio-oil vaporization, partial-oxidation (POX)

311

Landfill Gas-to-Hydrogen - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20 20 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Shannon Baxter-Clemmons (Primary Contact), Russ Keller 1 South Carolina Hydrogen Fuel Cell Alliance P.O. Box 12302 Columbia, SC 29211 Phone: (803) 727-2897 Emails: baxterclemmons@schydrogen.org; russ.keller@ati.org DOE Managers HQ: Pete Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-FG36-08GO18113 Subcontractor: 1 Advanced Technology International, Charleston, SC Project Start Date: March 1, 2011 Project End Date: January 31, 2013 Fiscal Year (FY) 2012 Objectives Validate that a financially viable business case * exists for a full-scale deployment of commercially

312

Hydrogen Delivery Infrastructure Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Amgad Elgowainy (Primary Contact), Marianne Mintz and Krishna Reddi Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-3074 Email: aelgowainy@anl.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Project Start Date: October 2007 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Identify cost drivers of current technologies for hydrogen * delivery to early market applications of fuel cells Evaluate role of high-pressure tube-trailers in reducing * hydrogen delivery cost Identify and evaluate benefits of synergies between *

313

Aluminum Hydride - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jason Graetz (Primary Contact), James Wegrzyn Brookhaven National Laboratory (BNL) Building 815 Upton, NY 11973 Phone: (631) 344-3242 Email: graetz@bnl.gov DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Project Start Date: October 1, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop onboard vehicle storage systems using aluminum hydride that meets all of DOE's targets for proton exchange membrane fuel cell vehicles. Produce aluminum hydride material with a hydrogen * storage capacity greater than 9.7% gravimetric (kg-H 2 /kg) and 0.13 kg-H 2 /L volumetric. Develop practical and economical processes for *

314

Science-Driven Candidate Search for New Scintillator Materials: FY 2014 Annual Report  

SciTech Connect (OSTI)

This annual reports presents work carried out during Fiscal Year (FY) 2014 at Pacific Northwest National Laboratory (PNNL) under the project entitled Science-Driven Candidate Search for New Scintillator Materials (Project number: PL13-SciDriScintMat-PD05) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project is divided into three tasks: 1) Ab initio calculations of electronic properties, electronic response functions and secondary particle spectra; 2) Intrinsic response properties, theoretical light yield, and microscopic description of ionization tracks; and 3) Kinetics and efficiency of scintillation: nonproportionality, intrinsic energy resolution, and pulse shape discrimination. Detailed information on the results obtained in each of the three tasks is provided in this Annual Report. Furthermore, peer-reviewed articles published this FY or currently under review and presentations given this FY are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Wu, Dangxin; Prange, Micah P.

2014-10-01T23:59:59.000Z

315

Vehicle technologies heavy vehicle program : FY 2008 benefits analysis, methodology and results --- final report.  

SciTech Connect (OSTI)

This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the Vehicle Technologies (VT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, and (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 08 the Heavy Vehicles program continued its involvement with various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. These changes are the result of a planning effort that first occurred during FY 04 and was updated in the past year. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY08 Budget Request. The energy savings models are utilized by the VT program for internal project management purposes.

Singh, M.; Energy Systems; TA Engineering

2008-02-29T23:59:59.000Z

316

Microsoft Word - Blue Report Cover for FY 2012 DOE IPERA  

Broader source: Energy.gov (indexed) [DOE]

Performance Audit of the Performance Audit of the Department of Energy's Improper Payment Reporting in the Fiscal Year 2012 Agency Financial Report OAS-FS-13-12 March 2013 U.S. Department of Energy Office of Inspector General Office of Audits & Inspections Department of Energy Washington, DC 20585 March 14, 2013 MEMORANDUM FOR THE SECRETARY MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Report on "Performance Audit of the Department of Energy's Improper Payment Reporting in the Fiscal Year 2012 Agency Financial Report" The attached report presents the results of an evaluation of the Department of Energy's (Department) Improper Payment Reporting in the Fiscal Year 2012 Agency Financial Report

317

Advanced Neutron Source (ANS) Project progress report FY 1992  

SciTech Connect (OSTI)

This report discusses project management, research and development, design, and safety at the Advanced Neutron Source facility.

Campbell, J.H. (ed.); Selby, D.L.; Harrington.

1993-01-01T23:59:59.000Z

318

Component Testing for Industrial Trucks and Early Market Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Aaron Harris (Primary Contact), Brian Somerday, Chris San Marchi Sandia National Laboratories P.O. Box 969 Livermore, CA 94551-0969 Phone: (925) 294-4530 Email: apharri@sandia.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: January 2010 Project End Date: May 2011 (carryover from Fiscal Year [FY] 2011 extended objectives into FY 2012) Fiscal Year (FY) 2012 Objectives (1) Provide technical basis for the development of standards defining the use of steel (Type 1) storage pressure vessels for gaseous hydrogen: Compare fracture mechanics based design approach - for fatigue assessment of pressure vessels for

319

Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986  

SciTech Connect (OSTI)

This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

Heiken, J.H. (ed.)

1987-06-01T23:59:59.000Z

320

Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division  

SciTech Connect (OSTI)

This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

Larry G. Hoffman

2000-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Technology Development, Evaluation, and Application (TDEA) FY 2001 Progress Report Environment, Safety, and Health (ESH) Division  

SciTech Connect (OSTI)

This progress report presents the results of 11 projects funded ($500K) in FY01 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division (ESH). Five projects fit into the Health Physics discipline, 5 projects are environmental science and one is industrial hygiene/safety. As a result of their TDEA-funded projects, investigators have published sixteen papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplement funds and in-kind contributions, such as staff time, instrument use, and workspace, were also provided to TDEA-funded projects by organizations external to ESH Divisions.

L.G. Hoffman; K. Alvar; T. Buhl; E. Foltyn; W. Hansen; B. Erdal; P. Fresquez; D. Lee; B. Reinert

2002-05-01T23:59:59.000Z

322

Office Inspector General DOE Annual Performance Report FY 2008...  

Energy Savers [EERE]

Overall, our efforts resulted in the issuance of over 70 audit and inspection reports containing recommendations for enhancing Departmental operations, with likely savings...

323

FY 2009 Progress Report for Lightweighting Materials - 6. Automotive...  

Broader source: Energy.gov (indexed) [DOE]

2008 Progress Report for Lightweighting Materials - 6. Automotive Metals-Crosscutting Magnesium Front End Research and Development AMD 604 Magnesium Front End Development (AMD 603...

324

DOE Hydrogen Program FY2004 Progress Report Table of Contents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Progress Report 4 Progress Report CONTENTS I Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 II Hydrogen Production and Delivery Sub-Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Overview.....................................................................................................................................................9 II.A Distributed Production Technologies ..............................................................................................13 II.A.1 Ceramic Membrane Reactor Systems for Converting Natural Gas to Hydrogen and Synthesis Gas (ITM Syngas) ....................................................................13

325

Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008  

SciTech Connect (OSTI)

This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

2009-03-01T23:59:59.000Z

326

NEPA Lessons Learned Quarterly Report 1st Quarter FY 1996  

Broader source: Energy.gov (indexed) [DOE]

LEARNED LEARNED LESSONS N E P A Inside LESSONS LEARNED March 1, 1996 Quarterly Report LESSONS LEARNED National Environmental Policy Act U.S. Department of Energy Welcome to the newly-revised Quarterly Report of Lessons Learned in the NEPA process. In response to reader suggestions, we have expanded the scope of the report to provide a wider variety of NEPA- related information, and enhanced the format for better clarity and overall readability. This Quarterly Report includes: * NEPA lessons learned at the Hanford Site - Page 1 * Mini-guidance on the preparation of EIS summaries, properly eliminating alternatives and impacts from detailed analysis, application of DOE NEPA regulations to procurement, and NEPA questions and answers - Pages 3-6 * Updates on the proposed amendments to DOE's NEPA

327

Microsoft Word - Management Challenges Report _FY 2009_.doc  

Broader source: Energy.gov (indexed) [DOE]

Special Special Report Management Challenges at the Department of Energy DOE/IG-0808 December 2008 ______________________________________________________________________ _____________________________________________________________________ Table of Contents Introduction ...................................................................................................1 Management Challenges ...................................................................................3 Watch List ....................................................................................................8 Appendices ....................................................................................................l1

328

Inertial Confinement Fusion Program. Progress report FY 1980  

SciTech Connect (OSTI)

Brief description of work progress during this report period are given for: (1) acceleration of disc targets, (2) laser upgrade, (3) diagnostic development, and (4) stimulated brillouin backscatter theory.

Not Available

1980-12-31T23:59:59.000Z

329

B61 System FY 2012 June Monthly Report  

SciTech Connect (OSTI)

These viewgraphs are to be provided to NNSA to update the status of the B61 legacy work and activities. The viewgraphs cover such issues as budget, schedule, scope, and the like. They are part of the monthly reporting process.

Wentz, Kip G. [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

330

B61 System FY 2012 May Monthly Report  

SciTech Connect (OSTI)

These viewgraphs are to be provided to NNSA to update the status of the B61 legacy work and activities. The viewgraphs cover such issues as budget, schedule, scope, and the like. They are part of the monthly reporting process.

Neff, Warren E [Los Alamos National Laboratory

2012-06-05T23:59:59.000Z

331

Annual Report on DOE Technology Transfer FY 2007 and 2008  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Annual Report Annual Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2007 and 2008 Prepared by: Office of Laboratory Policy and Evaluation Office of Science and National Nuclear Security Administration U.S. Department of Energy In Coordination With: Technology Transfer Policy Board Technology Transfer Working Group U.S. Department of Energy December 2009 ii TABLE OF CONTENTS Background .......... .................................................................................................................................................1 Technology Partnering Policy .................................................................................................................................1

332

GNEP Material Transportation, Storage and Disposal Analysis FY-08 Summary Report  

SciTech Connect (OSTI)

This report provides a summary for FY-2008 of activities, analyses and products from the Material Transportation, Storage and Disposal (M-TSD) sub-task of Systems Analysis within the Advanced Fuel Cycle Research & Development area of the Global Nuclear Energy Partnership. The objective of this work is to evaluate near-term material management requirements for initial GNEP facilities and activities, long-term requirements for large-scale GNEP technology deployment, and alternatives and paths forward to meet these needs. For FY-08, the work expanded to include the Integrated Waste Management Strategy as well as integration with the newly formed Waste Forms Campaign. The M-TSD team was expanded with the addition of support from Savannah River National Lab (SRNL) to the existing team of Lawrence Livermore National Lab (LLNL), Argonne National Lab (ANL), Idaho National Lab (INL), Sandia National Lab (SNL) and University of Nevada - Reno (UN-R). During the first half of the year, analysis was focused on providing supporting technical analysis and documentation to support anticipated high-level decisions on program direction. A number of analyses were conducted and reports prepared as program deliverables. This work is briefly summarized in this report. Analyses provided informally to other program efforts are included in this report to provide documentation. This year-end summary was planned primarily as a compilation of activities following the anticipated programmatic decisions. These decisions were deferred beyond the end of the year, and funds were reallocated in a number of areas, thus reducing the M-TSD activities. This report summarizes the miscellaneous 'ad-hoc' work conducted during the later part of the year, such as support to the draft Programmatic Environmental Impact Statement (PEIS), and support to other program studies. Major programmatic contributions from the M-TSD team during the year included: (1) Completion of the IWMS in March 2008 as the baseline for waste management calculations for the GNEP Programmatic Environmental Impact Statement (PEIS). The IWMS represents a collaborative effort between the Systems Analysis, Waste Forms, and Separations Campaigns with contributing authors from multiple laboratories. The IWMS reference is: 'Global Nuclear Energy Partnership Integrated Waste Management Strategy, D. Gombert, INL, et al, GNEP-WAST-WAST-AI-RT-2008-000214, March 2008'. (2) As input to the IWMS and support for program decisions, an evaluation of the current regulatory framework in the U.S. pertaining to the disposal of radioactive wastes under an advanced nuclear fuel cycle was completed by ANL. This evaluation also investigated potential disposal pathways for these wastes. The entire evaluation is provided in Appendix A of this report. (3) Support was provided to the development of the GNEP Programmatic Environmental Impact Statement from INL, SNL and ANL M-TSD staff. (4) M-TSD staff prepared input for DSARR (Dynamic Systems Analysis Report for Nuclear Fuel Recycle) report. The DSARR is an INL led report to examine the time-dependent dynamics for a transition from the current open fuel cycle to either a 1-tier or 2-tier closed fuel cycle. Section 5.3 Waste Management Impacts was provided to INL for incorporation into the DSARR. (5) SNL M-TSD staff prepared a M2 milestone report 'Material Transportation, Storage and Disposal Contribution for Secretarial Decision Package'. The report purpose was to comprehensively evaluate and discuss packaging, storage, and transportation for all potential nuclear and radioactive materials in the process and waste streams being considered by the GNEP program. In particular, a systems view was used to capture all packaging, storage, and transport operations needed to link the various functional aspects of the fuel cycle. (6) SRNL M-TSD staff developed a deliverable report 'Management of Decay Heat from Spent Nuclear Fuel'. This report evaluated a range of options for managing the near-term decay heat associated with Cs and Sr in spent nuclear fuel (SNF) reprocessing waste

Halsey, W

2009-01-15T23:59:59.000Z

333

Power Generation from an Integrated Biomass Reformer and Solid Oxide Fuel Cell (SBIR Phase III) - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Quentin Ming (Primary Contact), Patricia Irving InnovaTek, Inc. 3100 George Washington Way, Suite 108 Richland, WA 99354 Phone: (509) 375-1093 Email: ming@innovatek.com DOE Managers HQ: Charles Russomanno Phone: (202) 586-7543 Email: Charles.Russomanno@ee.doe.gov HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov Contract Number: DE-EE0004535 Project Start Date: October 1, 2010 Project End Date: September 30, 2013 Fiscal Year (FY) 2012 Objectives Establish the requirements and design for an integrated * fuel cell and fuel processor that will meet the technical and operational needs for distributed energy production. Develop and integrate key system components - *

334

Development of Hydrogen Selective Membranes/Modules as Reactors/Separators for Distributed Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Paul KT Liu Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 Phone: (412) 826-3711 Email: pliu@mediaandprocess.com DOE Managers HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-05GO15092 Subcontractor: University of Southern California Project Start Date: July 1, 2005 Projected End Date: December 31, 2012 Fiscal Year (FY) 2012 Objectives The water-gas shift (WGS) reaction becomes less efficient when high CO conversion is required, such as for distributed hydrogen production applications. Our project

335

Chemical and biological nonproliferation program. FY99 annual report  

SciTech Connect (OSTI)

This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community.

NONE

2000-03-01T23:59:59.000Z

336

Microsoft Word - FY 2011 MD-715 Report.docx  

National Nuclear Security Administration (NNSA)

1 1 DOE NNSA December 14, 2011 i National Nuclear Security Administration U.S. Department of Energy ANNUAL EEO PROGRAM STATUS REPORT EEO PLAN TO ATTAIN THE ESSENTIAL ELEMENTS OF A MODEL EEO PROGRAM Table of Contents Page FORM 715-01 Part A Department or Agency Identifying Information......................1 FORM 715-01 Part B Total Employment....................................................................1 FORM 715-01 Part C Agency Official(s) Responsible for oversight of EEO Program(s)................................................................................................................1 FORM 715-01 Part D List of Subordinate Components Covered in this Report ........3 FORM 715-01 Part E Executive Summary.................................................................4

337

Energy and Environment Division, annual report FY 1980  

SciTech Connect (OSTI)

This report covers research in: energy analysis; energy efficiency studies; solar energy; chemical process; energy-efficient buildings; environmental pollutant studies; combustion research; laser spectroscopy and trace elements; and oil shale and coal research. An energy and environment personnel listing is appended. Separate projects are indexed individually for the database. (PSB)

Osowitt, M. (ed.)

1981-07-01T23:59:59.000Z

338

Federal Facility Agreement Annual Progress Report for FY 1998  

SciTech Connect (OSTI)

This FFA Annual Progress Report has been developed to summarize the information for activities performed during the Fiscal Year 1998 (October 1, 1997, to September 30, 1998) and activities planned for Fiscal Year 1999 by U.S. EPA, SCDHEC, and SRS at those units and areas identified for remediation in the Agreement.

Palmer, E.

1999-08-04T23:59:59.000Z

339

Mixed Stream Test Rig Winter FY-2011 Report  

SciTech Connect (OSTI)

This report describes the data and analysis of the initial testing campaign of the Mixed Stream Test Rig (MISTER) at Idaho National Laboratory (INL). It describes the test specimen selection, physical configuration of the test equipment, operations methodology, and data and analysis of specimens exposed in two environments designed to represent those expected for high temperature steam electrolysis (HTSE).

Chalres Park; Tedd Lister; Kevin DeWall

2011-04-01T23:59:59.000Z

340

Project Listings by State, DOE Hydrogen Program FY 2010 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 FY 2010 Annual Progress Report DOE Hydrogen Program Alabama V.B.2 CFD Research Corp.: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .711 V.B.2 ESI US R&D: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .711 Alaska VIII.9 Tanadgusix Foundation: TDX Foundation Hydrogen Project/PEV Project . . . . . . . . . . . . . . . . . . . . 1288 VIII.9 TDX Power: TDX Foundation Hydrogen Project/PEV Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1288 VIII.9 Alaska Center for Energy and Power: TDX Foundation Hydrogen Project/PEV Project . . . . . . . . . 1288

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Project Listings by State; DOE Hydrogen Program FY 2008 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2008 Annual Progress Report DOE Hydrogen Program Alabama IV.B.1i University of Alabama: Main Group Element and Organic Chemistry for Hydrogen Storage and Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .592 V.H.1 CFD Research Corporation: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1033 V.H.1 ESI US R&D: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1033 Alaska II.C.3 University of Alaska: Development of a Novel Efficient Solid-Oxide Hybrid for Co-Generation of Hydrogen and Electricity Using Nearby Resources for Local Application .

342

National Codes and Standards Coordination - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Carl Rivkin, (Primary Contact), Chad Blake, Robert Burgess, William Buttner, and Matthew Post National Renewable Energy Laboratory (NREL) 1617 Cole Boulevard Golden, CO 80401 Phone: (303) 275-3839 Email: carl.rivkin@nrel.gov DOE Manager Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Subcontractors: * CSA, Standards, Cleveland, OH * FP2 Fire Protection Engineering, Golden, CO * GWS Solutions, Tolland, CT * Kelvin Hecht, Avon, CT * MorEvents, Englewood, CO * SAE International (SAE), Warrendale, PA

343

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XVII-1 XVII-1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Alabama V.F.5 CFD Research Corporation: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-226 V.F.5 ESI US R&D: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-226 Arizona VI.3 Arizona State University: Adaptive Process Controls and Ultrasonics for High-Temperature PEM MEA Manufacture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI-17 Arkansas XII.4 FedEx Freight: Fuel Cell-Powered Lift Truck FedEx Freight Fleet Deployment .

344

Project Listings by Organization, DOE Hydrogen Program FY 2010 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

33 33 FY 2010 Annual Progress Report DOE Hydrogen Program 3M Company V.D.2 Membranes and MEAs for Dry, Hot Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .748 V.D.7 Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .772 V.E.1 Advanced Cathode Catalysts and Supports for PEM Fuel Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .790 V.E.6 Durable Catalysts for Fuel Cell Protection during Transient Conditions. . . . . . . . . . . . . . . . . . . . . . . . .825 V.E.8 Nanosegregated Cathode Alloy Catalysts with Ultra-Low Platinum Loading. . . . . . . . . . . . . . . . . . . . .835

345

Appliance Standard Program - The FY 2003 Priority -Setting Summary Report and Actions Proposed  

Broader source: Energy.gov (indexed) [DOE]

Appliance Appliance Standards Program The FY 2003 Priority- Setting Summary Report and Actions Proposed Date: August 22, 2002 Table of Contents i EXECUTIVE SUMMARY.............................................................................................. iv 1 Energy Conservation Program - Product Prioritization Process.......1-1 1.1 Background on Appliance Standards Program........................................... 1-1 1.2 DOE Authority to Add Products ................................................................ 1-2 1.2.1 Consumer Products .................................................................................... 1-3 1.2.2 Commercial Products................................................................................. 1-5 1.2.2.1 Products Regulated under EPCA Provisions Concerning Consumer

346

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XV-1 XV-1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program A Aceves, Salvador. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .III.11 Adzic, Radoslav . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V.D.6 Ahluwalia, Rajesh. . . . . . . . . . . . . . . . . . . . . . . . IV.E.1, V.A.4 Ainscough, Chris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V.A.8 Anton, Don . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IV.D.1 Arif, Muhammad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V.A.6 Atanasoski, Radoslav . . . . . . . . . . . . . . . . . . . . . . . . . . . V.D.3 Autrey, Tom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IV.H.16 Ayers, Katherine . . . . . . . . . . . . . . . . . . . . . . . . . II.D.2, II.D.5 B Baxter-Clemmons, Shannon. . . . . . . . . . . . . . . . . . . IX.1, X.4

347

Project Listings by Organization; DOE Hydrogen Program FY 2008 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 FY 2008 Annual Progress Report DOE Hydrogen Program 3M Company V.C.1 Advanced Cathode Catalysts and Supports for PEM Fuel Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .861 V.G.5 Membranes and MEAs for Dry, Hot Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .962 V.G.8 Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978 A Mountain Top, LLC X.8 HyDRA: Hydrogen Demand and Resource Analysis Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1275 Addison Bain VIII.6 Hydrogen Safety Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202

348

FY 2012 Annual Progress Report for Energy Storage R&D  

Broader source: Energy.gov [DOE]

FY 2012 annual report of the energy storage research and development effort within the VT Office. An important step for the electrification of the nations light duty transportation sector is the development of more cost-effective, long lasting, and abuse-tolerant PEV batteries. In fiscal year 2012, battery R&D work continued to focus on the development of high-energy batteries for PEVs and very high power devices for hybrid vehicles. This document provides a summary and progress update of the VTP battery R&D projects that were supported in 2012.

349

Project Listings by Organization; DOE Hydrogen Program FY 2009 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2009 Annual Progress Report DOE Hydrogen Program 3M Company V.D.11 Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034 V.D.13 Membranes and MEAs for Dry, Hot Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042 V.E.1 Advanced Cathode Catalysts and Supports for PEM Fuel Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 A Mountaintop LLC VII.1 HyDRA: Hydrogen Demand and Resource Analysis Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267 Acumentrics Corporation V.I.5 Development of a Low Cost 3-10 kW Tubular SOFC Power System . . . . . . . . . . . . . . . . . . . . . . . . . . 1141 Addison Bain IX.7 Hydrogen Safety Panel

350

Introduction; DOE Hydrogen Program FY 2009 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 Annual Progress Report 9 Annual Progress Report DOE Hydrogen Program The DOE Hydrogen Program (the Program) has conducted comprehensive and focused efforts to enable the widespread commercialization of fuel cells in diverse sectors of the economy. With emphasis on applications that will most effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration (RD&D) of critical improvements in the technologies, as well as diverse activities to overcome economic and institutional obstacles to commercialization. The Program addresses the full range of barriers facing the development and deployment of fuel cell technologies by integrating basic and applied research, technology development and demonstration, and other supporting activities. In

351

The AMTEX Partnership{trademark}. Fourth quarter FY95 report  

SciTech Connect (OSTI)

The AMTEX Partnership{trademark} is a collaborative research and development program among the US Integrated Textile Industry, the Department of Energy (DOE), the national laboratories, other federal agencies and laboratories, and universities. The goal of AMTEX is to strengthen the competitiveness of this vital industry, thereby preserving and creating US jobs. The operations and program management of the AMTEX Partnership{trademark} is provided by the Program Office. This report is produced by the Program Office on a quarterly basis and provides information on the progress, operations, and project management of the partnership. Progress is reported on the following projects: computer-aided fabric evaluation; cotton biotechnology; demand activated manufacturing architecture; electronic embedded fingerprints; on-line process control for flexible fiber manufacturing; rapid cutting; sensors for agile manufacturing; and textile resource conservation.

NONE

1995-09-01T23:59:59.000Z

352

Hydrogen Tank Project Q2 Report - FY 11  

SciTech Connect (OSTI)

Quarterly report that represents PNNL's results of HDPE, LDPE, and industrial polymer materials testing. ASTM D638 type 3 samples were subjected to a high pressure hydrogen environment between 3000 and 4000 PSI. These samples were tested using an instron load frame and were analyzed using a proprietary set of excel macros to determine trends in data. The development of an in-situ high pressure hydrogen tensile testing apparatus is discussed as is the stress modeling of the carbon fiber tank exterior.

Johnson, Kenneth I.; Alvine, Kyle J.; Skorski, Daniel C.; Nguyen, Ba Nghiep; Kafentzis, Tyler A.; Dahl, Michael E.; Pitman, Stan G.

2011-05-15T23:59:59.000Z

353

REACTOR ANALYSIS AND VIRTUAL CONTROL ENVIRONMENT (RAVEN) FY12 REPORT  

SciTech Connect (OSTI)

RAVEN is a complex software tool that will have tasks spanning from being the RELAP-7 user interface, to using RELAP-7 to perform Risk Informed Safety Characterization (RISMC), and to controlling RELAP-7 calculation execution. The goal of this document is to: 1. Highlight the functional requirements of the different tasks of RAVEN 2. Identify shared functions that could be aggregate in modules so to obtain a minimal software redundancy and maximize software utilization. RAVEN is in fact a software framework that will allow exploiting the following functionalities: Derive and actuate the control logic required to: o Simulate the plant control system o Simulate the operator (procedure guided) actions o Perform Monte Carlo sampling of random distributed events o Perform event three based analysis Provide a GUI to: o Input a plant description to RELAP-7 (component, control variable, control parameters) o Concurrent monitoring of Control Parameters o Concurrent alteration of control parameters Provide Post Processing data mining capability based on o Dimensionality reduction o Cardinality reduction In this document it will be shown how an appropriate mathematical formulation of the control logic and probabilistic analysis leads to have most of the software infrastructure leveraged between the two main tasks. Further, this document will go through the development accomplished this year, including simulation results, and priorities for the next years development

Cristian Rabiti; Andrea Alfonsi; Joshua Cogliati; Diego Mandelli; Robert Kinoshita

2012-09-01T23:59:59.000Z

354

Lessons Learned Quarterly Report 1st Quarter FY 1996  

Broader source: Energy.gov (indexed) [DOE]

Success Stories: Success Stories: Articles from Department of Energy NEPA Lessons Learned Quarterly Reports 1996 Mar Hanford Tanks Public participation in NEPA process resulted in changes to the scope of the proposed project. The NEPA process resulted in enforceable mitigation commitments. 1997 Dec NPR Sale The NEPA process resulted in enforceable mitigation commitments for biological and cultural resources. 1999 Mar SPR Pipeline Integrating NEPA and the Section 404 permit processes proved efficient and resulted in mitigation commitments. 1999 Jun LANL Habitat Plan The NEPA process resulted in a site-wide habitat management plan (reducing future need for biological assessments), geographic information system (reference for future project analyses), and endangered species protection.

355

Advanced Neutron Source (ANS) Project. Progress report FY 1993  

SciTech Connect (OSTI)

This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts.

Campbell, J.H. [ed.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Engineering Div.

1994-01-01T23:59:59.000Z

356

Hanford prototype-barrier status report FY 1996  

SciTech Connect (OSTI)

A prototype surface barrier is being evaluated as part of a treatability study at the 200-BP-1 Operable Unit in the 200 East Area of the Hanford Site. Tests include the application of irrigation water to the northern half of the barrier and subsequent measurement of water balance, wind and water erosion, subsidence, plant establishment,a nd plant and animal intrusion. The tests are designed to evaluate both irrigated and nonirrigated sideslope and vegetated surfaces over a period of 3 years. This report documents findings from the second year of testing.

Gee, G.W.; Ward, A.L.; Gilmore, B.G.; Link, S.O.; Dennis, G.W.; O`Neil, T.K.

1996-11-01T23:59:59.000Z

357

Environmental Systems Research Candidates FY-01 Annual Report  

SciTech Connect (OSTI)

The Environmental Systems Research Candidates (ESRC) Program ran from April 2000 through September 2001 as part of the Environmental Systems Research and Analysis (ESRA) Program at the Idaho National Engineering and Environmental Laboratory (INEEL). ESRA provides key science and technology to meet the cleanup mission of the U.S. Department of Energy Office of Environmental Management (EM), and performs research and development that will help solve current legacy problems and enhance the INEELs scientific and technical capability for solving longer-term challenges. This report documents the accomplishments of the ESRC Program. The ESRC Program consisted of 25 tasks subdivided within four research areas.

Miller, David Lynn; Piet, Steven James

2001-03-01T23:59:59.000Z

358

U.S. Department of Energy State Coupled Resource Assessment Program Final Report for FY 1982  

SciTech Connect (OSTI)

During FY 1982, ESL/UURI tasks under the DOE State Coupled Program included: 2.1 Technical Assistance--Provide assistance to DOE through communicating program objectives, acting as liason among state contractors and other program participants, and writing periodic status reports. promote coordination of this program with other federal geothermal programs. 2.2 Technical Services--Provide geological, geochemical, and geophysical expertise and support as requested by state teams and other program participants to the extent made possible by funding. 2.3 Publications--Document and publish technical aspects of this program that are otherwise not documented in state contractor or other reports, provide DOE with semi-annual technical and status reports. This status report summarizes activities under 2.1 and 2.3. Technical services provided by ESL/UURI to individual state resource assessment teams are summarized in a separate technical support memorandum.

Foley, Duncan

1983-02-01T23:59:59.000Z

359

NEPA Lessons Learned Quarterly Report - 2nd Quarter FY 1997  

Broader source: Energy.gov (indexed) [DOE]

For Inside LESSONS LEARNED For Inside LESSONS LEARNED See Page 2 Do you need an environmental assessment, environmental impact statement, environmental report or a portion of one? Would you like to begin work within a few weeks? Would you like to use the best, most experienced contractors at unbeatable prices? Do you want to fully control your NEPA contracting locally? We will soon have contracts that will let you do all this and more! This may sound too good to be true, but the hard work of the DOE-wide NEPA Contract Source Evaluation Panel (and many others in the NEPA contract reform initiative) have made this dream a reality. The Panel, chaired by Roger Twitchell, NEPA Compliance Officer, Idaho Operations Office, has implemented ideas first discussed at the NEPA Contracting Reform Workshop in

360

Industrial Hygiene Group annual research report, FY 1981  

SciTech Connect (OSTI)

Field studies have been performed at several oil shale facilities to identify unique industrial hygiene problems and provide input to inhalation toxicology studies aimed at evaluating the hazards of materials associated with this developing technology. Aerosol physics support has also been provided to develop aerosol generation and animal exposure techniques for evaluating the toxicity of oil shale materials and manmade mineral fibers. As part of the effort to assure a safe, orderly, and timely development of various synfuels, field evaluation of indicator-sampling procedures was perfomed, and industrial hygiene work practices for two synfuel technologies are being prepared. Respirator studies are used to evaluate the performances of special devices (some of which are not in the existing government approval schedules) and of a proposed test procedures for self-contained breathing apparatus. An approval procedure is being developed for air-purifying respirators required for protection against radioiodine, evaluating the adequacy of respirator programs at the Nuclear Regulatory Commission licensee facilities, and developing a program for respirator use under emergency situations. A new aerosol size-characterization stack sampler has been designed, and potential instrument changes to aerosol size monitoring for filter testing are being evaluated. Material permeability tests have identified the protection afforded by protective clothing materials, and improved analytical procedures have been developed for pentachlorophenol and plutonium.

Jackson, J.O.; Ettinger, H.J. (comps.)

1982-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Combined Fiscal Year (FY) 2010 Annual Performance Results and FY 2011 Annual Performance Plan  

Broader source: Energy.gov [DOE]

This report presents the goals, objectives, and strategies for measuring the OIGs FY 2010 actual performance and FY 2011 planned activities.

362

Combined Fiscal Year (FY) 2011 Annual Performance Results and FY 2012 Annual Performance Plan  

Broader source: Energy.gov [DOE]

This report presents the goals, objectives, and strategies for measuring the OIGs FY 2011 actual performance and FY 2012 planned activities.

363

Combined Fiscal Year (FY) 2006 Annual Performance Results and FY 2007 Annual Performance Plan  

Broader source: Energy.gov [DOE]

This report presents the goals, objectives, and strategies for measuring the OIGs FY 2006 actual performance and FY 2007 planned activities.

364

Combined Fiscal Year (FY) 2007 Annual Performance Results and FY 2008 Annual Performance Plan  

Broader source: Energy.gov [DOE]

This report presents the goals, objectives, and strategies for measuring the OIGs FY 2007 actual performance and FY 2008 planned activities.

365

Idaho National Laboratory Cultural Resource Management Annual Report FY 2006  

SciTech Connect (OSTI)

The Idaho National Laboratory Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human occupation in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The INL Cultural Resource Management Office, staffed by BEA professionals, is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office staff during Fiscal Year 2006. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

Clayton F. Marler; Julie Braun; Hollie Gilbert; Dino Lowrey; Brenda Ringe Pace

2007-04-01T23:59:59.000Z

366

Idaho National Laboratory Cultural Resource Management Annual Report FY 2007  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human land use in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2007. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

Julie Braun; Hollie Gilbert; Dino Lowrey; Clayton Marler; Brenda Pace

2008-03-01T23:59:59.000Z

367

Forrest Conservation Area : Management & Implementation FY 2004 Annual Report.  

SciTech Connect (OSTI)

The Confederated Tribes of Warm Springs Reservation of Oregon (Tribes) acquired the Forrest Conservation Area during July of 2002. The property is located in the Upper John Day subbasin within the Columbia basin. The property consists of two parcels comprising 4,232 acres. The Mainstem parcel consists of 3,445 acres and is located 1/2 mile to the east of Prairie City, Oregon on the mainstem John Day River. The Middle Fork parcel consists of 786 acres and is located one mile to the west of the town of Austin, OR on the Middle Fork John Day River. The Forrest Conservation Area is under a memorandum of agreement with the Bonneville Power Administration (BPA) to provide an annual written report generally describing the real property interests of the project and management activities undertaken or in progress. Acquisition of the Forrest Conservation Area was funded by BPA as part of their program to protect, mitigate, and enhance fish and wildlife habitat affected by hydroelectric facilities on the Columbia River and its tributaries. The intent of the Conservation Area is to partially mitigate fish and wildlife impacts for the John Day Dam on the Columbia River as outlined in the Northwest Power Planning Council's Wildlife Program (NPPC 1994, {section}11.1, {section}7.6). While the Tribes hold fee-title to the property, the BPA has assured a level of management funding for the protection and restoration of fish and wildlife habitat through a memorandum of agreement.

Smith, Brent

2008-12-01T23:59:59.000Z

368

Hydrothermal Injection Research Program. Annual progress report, FY 1983  

SciTech Connect (OSTI)

The test program was initiated at the Raft River Geothermal Field in southern Idaho in September of 1982. A series of eight short-term injection and backflow tests followed by a long-term injection test were conducted on one well in the field. Tracers were added during injection and monitored during backflow of the well. The test program was successful, resulting in a unique data set which shows promise as a means to improve understanding of the reservoir characteristics. In December of 1982 an RFP was issued to obtain an industrial partner to obtain follow-on data on the injection/backflow technique in a second field and to study any alternate advanced concepts for injection testing which the industrial community might recommend. Republic Geothermal, Inc. and the East Mesa Geothermal Field were selected for the second test series. Two wells were utilized for testing, and a series of ten tests were conducted in July and August of 1983 aimed principally at further evaluation of the injection/backflow technique. This test program was also successfully completed. This report describes in detail the analysis conducted on the Raft River data, the supporting work at EG and G Idaho and at ESL/UURI, and gives an overview of the objectives and test program at East Mesa.

Blackett, R.E.; Kolesar, P.T.; Capuano, R.G.; Sill, W.R.; Allman, D.W.; Hull, L.C.; Large, R.M.; Miller, J.D.; Skiba, P.A.; Downs, W.F.; Koslow, K.N.; McAtee, R.E.; Russell, B.F.

1983-11-01T23:59:59.000Z

369

MELCOR/CONTAIN LMR Implementation Report FY14 Progress  

SciTech Connect (OSTI)

This report describes the preliminary implementation of the sodium thermophysical properties and the design documentation for the sodium models of CONTAIN-LMR to be implemented into MELCOR 2.1. In the past year, the implementation included two separate sodium properties from two different sources. The first source is based on the previous work done by Idaho National Laboratory by modifying MELCOR to include liquid lithium equation of state as a working fluid to model the nuclear fusion safety research. To minimize the impact to MELCOR, the implementation of the fusion safety database (FSD) was done by utilizing the detection of the data input file as a way to invoking the FSD. The FSD methodology has been adapted currently for this work, but it may subject modification as the project continues. The second source uses properties generated for the SIMMER code. Preliminary testing and results from this implementation of sodium properties are given. In this year, the design document for the CONTAIN-LMR sodium models, such as the two condensable option, sodium spray fire, and sodium pool fire is being developed. This design document is intended to serve as a guide for the MELCOR implementation. In addition, CONTAIN-LMR code used was based on the earlier version of CONTAIN code. Many physical models that were developed since this early version of CONTAIN may not be captured by the code. Although CONTAIN 2, which represents the latest development of CONTAIN, contains some sodium specific models, which are not complete, the utilizing CONTAIN 2 with all sodium models implemented from CONTAIN-LMR as a comparison code for MELCOR should be done. This implementation should be completed in early next year, while sodium models from CONTAIN-LMR are being integrated into MELCOR. For testing, CONTAIN decks have been developed for verification and validation use.

Humphries, Larry L.; Louie, David L.Y.

2014-10-01T23:59:59.000Z

370

Facilitation of the Estuary/Ocean Subgroup for Research, Monitoring, and Evaluation, FY07 Annual Report  

SciTech Connect (OSTI)

This annual report is a deliverable for fiscal year 2007 (FY07) for Project 2002-077-00, Facilitation of the Estuary/Ocean Subgroup (EOS). The EOS is part of the research, monitoring, and evaluation (RME) effort the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) developed in response to responsibilities arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The goal of the EOS project is to facilitate activities of the estuary/ocean RME subgroup as it coordinates design and implementation of federal RME in the lower Columbia River and estuary. In FY07, EOS project accomplishments included 1) subgroup meetings; 2) participation in the estuary work group of the Pacific Northwest Aquatic Monitoring Partnership; 3) project management via the project tracking system, PISCES; 4) quarterly project status reports; and 5) a major revision to the Estuary RME Plan (new version September 2007) based on comments by EOS members and invited reviewers.

Johnson, Gary E.; Diefenderfer, Heida L.

2007-10-10T23:59:59.000Z

371

NEPA Lessons Learned Quarterly Report; Issue No. 37; Fourth Quarter FY 2003 (12/1/03)  

Broader source: Energy.gov (indexed) [DOE]

December 2003 December 2003 1 National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT Fourth Quarter FY 2003 December 1, 2003; Issue No. 37 LESSONS LEARNED LEARNED LESSONS What's Next? CEQ Seeks More Input on Task Force Recommendations continued on page 3 NEPA practitioners, agencies, special interest groups, and the general public are reacting to recommendations intended to improve and modernize NEPA implementation presented in the NEPA Task Force Report to the Council on Environmental Quality: Modernizing NEPA Implementation, issued in September 2003. Through a series of meetings and regional roundtable discussions, CEQ is now seeking broad input on what should be done, how it should be done, and with what priority. Noting that the Report was to,

372

FY2001 Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FUELS FOR ADVANCED CIDI FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and QSS Group, Inc., for their artistic, editorial and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells

373

FY2001 Progress Report for Combusion and Emission Control for Advanced CIDI Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COMBUSTION AND COMBUSTION AND EMISSION CONTROL FOR ADVANCED CIDI ENGINES 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and QSS Group, Inc., for their artistic, editorial and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Combustion and Emission Control for Advanced CIDI Engines

374

FY2001 Progress Report for the Vehicle Power Electronics and Electric Machines Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POWER POWER ELECTRONICS AND ELECTRIC MACHINES 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to National Renewable Energy Laboratory and Energetics, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2001 Progress Report for the Vehicle Power Electronics and Electric Machines

375

FY2001 Highlights Report for the Vehicle High-Power Energy Storage Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HIGH-POWER HIGH-POWER ENERGY STORAGE 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and to Sentech, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Ave., S.W. Washington, DC 20585-0121 FY 2001 Highlights Report for the Vehicle High-Power Energy Storage Program Energy Efficiency and Renewable Energy

376

FY2001 Progress Report for the Spark Ignition Direct Injection R&D Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SPARK IGNITION, SPARK IGNITION, DIRECT INJECTION ENGINE R&D 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and Computer Systems Management, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2001 Progress Report for the Spark Ignition Direct Injection R&D Program

377

FY2001 Annual Progress Report for the Vehicle Propulsion & Ancillary Subsystems Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PROPULSION & PROPULSION & ANCILLARY SUBSYSTEMS 2 0 0 1 A N N UA L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and Computer Systems Management, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2001 Annual Progress Report for the Vehicle Propulsion & Ancillary Subsystems Program

378

FY 2013 Summary Report: Post-Irradiation Examination of Zircaloy-4 Samples  

Broader source: Energy.gov (indexed) [DOE]

Summary Report: Post-Irradiation Examination of Zircaloy-4 Summary Report: Post-Irradiation Examination of Zircaloy-4 Samples in Target Capsules and Initiation of Bending Fatigue Testing for Used Nuclear Fuel Vibration Integrity Investigations FY 2013 Summary Report: Post-Irradiation Examination of Zircaloy-4 Samples in Target Capsules and Initiation of Bending Fatigue Testing for Used Nuclear Fuel Vibration Integrity Investigations The R&D objective for this work is to conduct the separate effects tests (SET) and small-scale tests that have been identified in the Used Nuclear Fuel Storage and Transportation Data Gap Prioritization (FCRD-USED-2012-000109). R&D activities conducted during fiscal year 2013 are provided and include information derived from: 1) irradiation of hydrogen-doped zircaloy cladding in High Flux Isotope Reactor (HFIR); 2)

379

FY2001 Progress Report for the Batteries for Advanced Transportation Technologies (High-Energy Battery)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FOR ADVANCED FOR ADVANCED TRANSPORTATION TECHNOLOGIES (HIGH-ENERGY BATTERY) 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Lawrence Berkeley National Laboratory, to Argonne National Laboratory, and to Sentech, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2001 Progress Report for the

380

Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) - Year 5 : Annual Report for FY 2008.  

SciTech Connect (OSTI)

The Collaborative Systemwide Monitoring and Evaluation Project (CSMEP) is a coordinated effort to improve the quality, consistency, and focus of fish population and habitat data to answer key monitoring and evaluation questions relevant to major decisions in the Columbia River Basin. CSMEP was initiated by the Columbia Basin Fish and Wildlife Authority (CBFWA) in October 2003. The project is funded by the Bonneville Power Administration (BPA) through the Northwest Power and Conservation Council's Fish and Wildlife Program (NPCC). CSMEP is a major effort of the federal state and Tribal fish and wildlife managers to develop regionally integrated monitoring and evaluation (M&E) across the Columbia River Basin. CSMEP has focused its work on five monitoring domains: status and trends monitoring of populations and action effectiveness monitoring of habitat, harvest, hatcheries, and the hydrosystem. CSMEP's specific goals are to: (1) interact with federal, state and tribal programmatic and technical entities responsible for M&E of fish and wildlife, to ensure that work plans developed and executed under this project are well integrated with ongoing work by these entities; (2) document, integrate, and make available existing monitoring data on listed salmon, steelhead, bull trout and other fish species of concern; (3) critically assess strengths and weaknesses of these data for answering key monitoring questions; and (4) collaboratively design, implement and evaluate improved M&E methods with other programmatic entities in the Pacific Northwest. During FY2008 CSMEP biologists continued their reviews of the strengths and weaknesses (S&W) of existing subbasin inventory data for addressing monitoring questions about population status and trends at different spatial and temporal scales. Work was focused on Lower Columbia Chinook and steelhead, Snake River fall Chinook, Upper Columbia Spring Chinook and steelhead, and Middle Columbia River Chinook and steelhead. These FY2008 data assessments and others assembled over the years of the CSMEP project can be accessed on the CBFWA public website. The CSMEP web database (http://csmep.streamnet.org/) houses metadata inventories from S&W assessments of Columbia River Basin watersheds that were completed prior to FY2008. These older S&W assessments are maintained by StreamNet, but budget cutbacks prevented us from adding the new FY2008 assessments into the database. Progress was made in FY2008 on CSMEP's goals of collaborative design of improved M&E methods. CSMEP convened two monitoring design workshops in Portland (December 5 and 6, 2007 and February 11 and 12, 2008) to continue exploration of how best to integrate the most robust features of existing M&E programs with new approaches. CSMEP continued to build on this information to develop improved designs and analytical tools for monitoring the status and trends of fish populations and the effectiveness of hatchery and hydrosystem recovery actions within the Columbia River Basin. CSMEP did not do any new work on habitat or harvest effectiveness monitoring designs in FY2008 due to budget cutbacks. CSMEP presented the results of the Snake Basin Pilot Study to the Independent Scientific Review Panel (ISRP) in Portland on December 7, 2008. This study is the finalization of CSMEP's pilot exercise of developing design alternatives across different M&E domains within the Snake River Basin spring/summer Chinook ESU. This work has been summarized in two linked reports (CSMEP 2007a and CSMEP 2007b). CSMEP participants presented many of the analyses developed for the Snake Basin Pilot work at the Western Division American Fisheries Society (AFS) conference in Portland on May 4 to 7, 2008. For the AFS conference CSMEP organized a symposium on regional monitoring and evaluation approaches. A presentation on CSMEP's Cost Integration Database Tool and Salmon Viability Monitoring Simulation Model developed for the Snake Basin Pilot Study was also given to the Pacific Northwest Aquatic monitoring Partnership (PNAMP) stee

Marmorek, David R.; Porter, Marc; Pickard, Darcy; Wieckowski, Katherine

2008-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Idaho National Laboratory Integrated Safety Management System FY 2012 Effectiveness Review and Declaration Report  

SciTech Connect (OSTI)

Idaho National Laboratory (INL) performed an Annual Effectiveness Review of the Integrated Safety Management System (ISMS), per 48 Code of Federal Regulations (CFR) 970.5223 1, Integration of Environment, Safety and Health into Work Planning and Execution. The annual review assessed Integrated Safety Management (ISM) effectiveness, provided feedback to maintain system integrity, and identified target areas for focused improvements and assessments for fiscal year (FY) 2013. Results of the FY 2012 annual effectiveness review demonstrated that the INLs ISMS program was significantly strengthened. Actions implemented by the INL demonstrate that the overall Integrated Safety Management System is sound and ensures safe and successful performance of work while protecting workers, the public, and environment. This report also provides several opportunities for improvement that will help further strengthen the ISM Program and the pursuit of safety excellence. Demonstrated leadership and commitment, continued surveillance, and dedicated resources have been instrumental in maturing a sound ISMS program. Based upon interviews with personnel, reviews of assurance activities, and analysis of ISMS process implementation, this effectiveness review concludes that ISM is institutionalized and is Effective.

Farren Hunt

2012-12-01T23:59:59.000Z

382

Sustainable Hydrogen Fueling Station, California State University, Los Angeles - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report David Blekhman California State University Los Angeles Los Angeles, CA 90032 Phone: (323) 343-4569 Email: blekhman@calstatela.edu DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-EE0000443 Subcontractors: * General Physics Corporation, Elkridge, MD * Weaver Construction, Anaheim, CA Project Start Date: January, 2009 Project End Date: December, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives Procure core equipment for the California State *

383

Hydrogen Storage in Metal-Organic Frameworks - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jeffrey Long (Primary Contact), Martin Head-Gordon Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 95720 Phone: (510) 642-0860 Email: jrlong@berkeley.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Subcontractors: * National Institute of Standards and Technology, Gaithersburg, MD (Craig Brown) * General Motors Corporation, Warren, MI (Anne Dailly) Project Start Date: April 1, 2012 Project End Date: March 31, 2015 Fiscal Year (FY) 2012 Objectives

384

V1FY 2013 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jean St-Pierre (Primary Contact), Yunfeng Zhai,  

E-Print Network [OSTI]

V­1FY 2013 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jean St-Pierre (Primary applications, 80-kWe (net) integrated transportation fuel cell power systems operating on direct hydrogen-Pierre ­ Hawaii Natural Energy InstituteV.E Fuel Cells / Impurities V­2DOE Hydrogen and Fuel Cells Program FY 2013

385

FY2003 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Advanced Vehicle Technology Analysis and Evaluation Activities Bringing you a prosperous future where energy is clean, abundant, reliable and affordable 2003 Annual Progress Report freedomCAR & vehicle technologies program Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle U.S. Department of Energy FreedomCAR & Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2003 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities

386

Lessons Learned Quarterly Report, Fourth Quarter FY 2001 (12/5/01)  

Broader source: Energy.gov (indexed) [DOE]

1 1 1 National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT Fourth Quarter FY 2001 December 5, 2001; Issue No. 29 CEQ Chair Describes Goals, Supports NEPA Principles The Council on Environmental Quality (CEQ) wants Federal agencies to weave environmental considerations into everyday business, as opposed to conducting NEPA compliance as a distinct project to fend off lawsuits. Recently appointed CEQ Chair James L. Connaughton (Lessons Learned Quarterly Report, June 2001, page 12) described this and other key CEQ goals at a September 21, 2001, meeting with Federal agency NEPA Contacts. Mr. Connaughton made it clear that this administration supports NEPA’s principles “as much as all previous administrations.” In this connection, he referred to

387

Microsoft Word - Transmittal Memo - FY 2007 Isotopes Final Report 4-7-2011_1.doc  

Broader source: Energy.gov (indexed) [DOE]

April 7, 2011 April 7, 2011 REPLY TO ATTN OF: IG-35 (A07FN003) SUBJECT: Department of Energy Isotope Program's Fiscal Year 2007 Financial Statement Audit - Audit Report No.: OAS-FS-11-06 TO: Director, Office of Science Director, Facilities and Project Management Division, Office of Nuclear Physics The attached report presents the results of the independent certified public accountants' audit of the United States (U.S.) Department of Energy Isotope Program's (the Program) Fiscal Year (FY) 2007 balance sheet and the related statements of net cost and changes in net position, and combined statement of budgetary resources for the year ended September 30, 2007 (hereinafter referred to as "financial statements"). The Office of Inspector General (OIG) engaged the independent public accounting firm of

388

Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997  

SciTech Connect (OSTI)

The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by the program.

Peterson, G.

1998-03-01T23:59:59.000Z

389

Science-Driven Candidate Search for New Scintillator Materials FY 2013 Annual Report  

SciTech Connect (OSTI)

This annual report presents work carried out during Fiscal Year (FY) 2013 at Pacific Northwest National Laboratory (PNNL) under the project entitled Science-Driven Candidate Search for New Scintillator Materials (Project number: PL13-SciDriScintMat-PD05) and led by Dr. Fei Gao. This project is divided into three tasks, namely (1) Ab initio calculations of electronic properties, electronic response functions and secondary particle spectra; (2) Intrinsic response properties, theoretical light yield, and microscopic description of ionization tracks; and (3) Kinetics and efficiency of scintillation: nonlinearity, intrinsic energy resolution, and pulse shape discrimination. Detailed information on the findings and insights obtained in each of these three tasks are provided in this report. Additionally, papers published this fiscal year or currently in review are included in Appendix together with presentations given this fiscal year.

Gao, Fei; Kerisit, Sebastien N.; Xie, YuLong; Wu, Dangxin; Prange, Micah P.; Van Ginhoven, Renee M.; Campbell, Luke W.; Wang, Zhiguo

2013-10-01T23:59:59.000Z

390

Semiannual Report to Congress: for the first half of Fiscal Year (FY) 1998  

Broader source: Energy.gov (indexed) [DOE]

, 1998 , 1998 The Honorable Federico Peña Secretary U.S. Department of Energy Washington, D.C. 20585 Dear Secretary Peña: This Semiannual Report to Congress for the first half of Fiscal Year (FY) 1998 is submitted by the Office of Inspector General for transmittal to the Congress, pursuant to the provisions of the Inspector General Act of 1978. During this reporting period, the Office of Inspector General continued to advise Headquarters and field managers of opportunities to improve the efficiency and effectiveness of the Depart- ment's management controls, with particular emphasis on coverage of issues addressed in the De- partment's Strategic Plan. We also have supported the Department's streamlining initiatives by evaluating the cost effectiveness and overall efficiency of Department programs and operations,

391

FY13 Summary Report on the Augmentation of the Spent Fuel Composition Dataset for Nuclear Forensics: SFCOMPO/NF  

SciTech Connect (OSTI)

This report documents the FY13 efforts to enhance a dataset of spent nuclear fuel isotopic composition data for use in developing intrinsic signatures for nuclear forensics. A review and collection of data from the open literature was performed in FY10. In FY11, the Spent Fuel COMPOsition (SFCOMPO) excel-based dataset for nuclear forensics (NF), SFCOMPO/NF was established and measured data for graphite production reactors, Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs) were added to the dataset and expanded to include a consistent set of data simulated by calculations. A test was performed to determine whether the SFCOMPO/NF dataset will be useful for the analysis and identification of reactor types from isotopic ratios observed in interdicted samples.

Brady Raap, Michaele C.; Lyons, Jennifer A.; Collins, Brian A.; Livingston, James V.

2014-03-31T23:59:59.000Z

392

Solid waste integrated forecast technical (SWEFT) report: FY1997 to FY 2070 - Document number changed to HNF-0918 at revision 1 - 1/7/97  

SciTech Connect (OSTI)

This web site provides an up-to-date report on the radioactive solid waste expected to be managed at Hanford`s Solid Waste (SW) Program from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the SW Program; program- level and waste class-specific estimates; background information on waste sources; and Li comparisons with previous forecasts and with other national data sources. The focus of this web site is on low- level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this site is reporting data current as of 9/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program`s life cycle.

Valero, O.J.

1996-10-03T23:59:59.000Z

393

High Repetition Rate, LINAC-Based Nuclear Resonance Fluorescence FY 2008 Final Report  

SciTech Connect (OSTI)

This summarizes the first year of a multi-laboratory/university, multi-year effort focusing on high repetition rate, pulsed LINAC-based nuclear resonance fluorescence (NRF) measurements. Specifically, this FY2008 effort centered on experimentally assessing NRF measurements using pulsed linear electron accelerators, operated at various repetition rates, and identifying specific detection requirements to optimize such measurements. Traditionally, interest in NRF as a detection technology, which continues to receive funding from DHS and DOE/NA-22, has been driven by continuous-wave (CW), Van de Graff-based bremsstrahlung sources. However, in addition to the relatively sparse present-day use of Van de Graff sources, only limited NRF data from special nuclear materials has been presented; there is even less data available regarding shielding effects and photon source optimization for NRF measurements on selected nuclear materials.

Scott M Watson; Mathew T Kinlaw; James L Jones; Alan W. Hunt; Glen A. Warren

2008-12-01T23:59:59.000Z

394

Lessons Learned Quarterly Report, March 2002, Issue No. 30, First Quarter FY 2002  

Broader source: Energy.gov (indexed) [DOE]

2 2 1 National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT First Quarter FY 2002 March 1, 2002; Issue No. 30 LESSONS LEARNED LEARNED LESSONS CEQ Guidance Encourages Agency Cooperation DOE Experience Is Generally Positive Better cooperation and coordination – always a good idea in the NEPA process – is given an extra boost by the Council on Environmental Quality (CEQ) in new guidance. James Connaughton, CEQ Chair, in a January 30, 2002, letter to Heads of Federal Agencies, underscores the benefits of enhanced cooperating agency involvement in the NEPA process. These benefits, including analytical and process efficiencies, improved trust among stakeholders, and greater likelihood of successful implementation of a proposed action, extend to both

395

Lessons Learned Quarterly Report, Issue No. 32; Third Quarter FY 2002 (September 3, 2002)  

Broader source: Energy.gov (indexed) [DOE]

September 2002 September 2002 1 National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT Third Quarter FY 2002 September 3, 2002; Issue No. 32 LESSONS LEARNED LEARNED LESSONS continued on page 3 NEPA Community Meeting Addresses Reform Initiatives James Connaughton, CEQ Chair, urged linking NEPA with EMS. Challenged to “Reform and Re-energize NEPA Implementation,” more than 150 members of the DOE NEPA Community convened in Washington, DC, on July 16 and 17, 2002, at the annual meeting sponsored by the Office of NEPA Policy and Compliance. Highlights of the meeting included presentations by James Connaughton, Chair, Council on Environmental Quality (CEQ), and the senior environmental advisor to the President; and Robert Card, Under Secretary for Energy,

396

NEPA Lessons Learned Quarterly Report; Third Quarter FY 2003 (September2, 2003)  

Broader source: Energy.gov (indexed) [DOE]

September 2003 September 2003 1 National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT Third Quarter FY 2003 September 2, 2003; Issue No. 36 LESSONS LEARNED LEARNED LESSONS DOE NEPA Community Gauges Progress In Its Continuing Pursuit of Excellence continued on page 3 "I believe we will never get to a point where we say this is done, there is nothing left to learn." - Beverly Cook "Are We There Yet?" - that is, has DOE achieved its goals for NEPA process improvement? - was the theme of the DOE NEPA Community Meeting on July 15 and 16, 2003. Participants considered DOE's NEPA performance with respect to multiple objectives using a variety of measures, finding both substantial progress and room for improvement. The meeting included

397

Lessons Learned Quarterly Report; Fourth Quarter FY 2002; December 2, 2002  

Broader source: Energy.gov (indexed) [DOE]

2 2 1 National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT Fourth Quarter FY 2002 December 2, 2002; Issue No. 33 LESSONS LEARNED LEARNED LESSONS CEQ Asks How to Improve NEPA Implementation; Responses Vary Widely continued on page 5 In response to questions from the Council on Environmental Quality's (CEQ's) NEPA Task Force, Federal, state, local, and tribal agencies, environmental and business groups, and individual citizens have weighed in during the past few months with opinions on how to improve NEPA implementation. CEQ also sought and received examples of best practices and case studies. Collectively, the comments cover nearly every aspect of NEPA implementation. They range from strong support for the value of the NEPA process to sharp criticism,

398

NEPA Lessons Learned Quarterly Report, March 1, 2004; Issue No. 38; First Quarter FY 2004  

Broader source: Energy.gov (indexed) [DOE]

March 2004 March 2004 1 National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT First Quarter FY 2004 March 1, 2004; Issue No. 38 LESSONS LEARNED LEARNED LESSONS Need Help Preparing NEPA Documents? New, Improved "Green Book" Is on the Way (continued on page 15) By: Carl Sykes, Office of NEPA Policy and Compliance Carl Sykes is leading the charge to strengthen the Green Book, DOE's NEPA primer. The time has come for the DOE NEPA Community to work together to strengthen our basic NEPA guidebook, Recommendations for the Preparation of Environmental Assessments and Environmental Impact Statements (also known as the "Green Book"). The Green Book (www.eh.doe.gov/nepa under Guidance) is certainly no weakling: it provides succinct recommendations for key

399

Education Sub-Program Overview - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program IntroductIon The Education sub-program facilitates early market hydrogen and fuel cell deployments and supports future commercialization by providing technically accurate and objective information to key target audiences that can help transform the market (see Table 1). Table 1. Key Target Audiences for the Education Sub-Program target audience Rationale code officials Code officials must be familiar with hydrogen to facilitate the permitting process and local project approval. First Responders Firefighters, as well as law enforcement and emergency medical personnel, must know how to handle potential incidents; their understanding can also facilitate local project approval. Local communities/General Public

400

Technical Assistance to Developers - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program T. Rockward and R.L. Borup (Primary Contacts), F. Garzon, R. Mukundan, and D. Spernjak Los Alamos National Laboratory (LANL) P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 667-9587 and (505) 667-2823 Emails: trock@lanl.gov, borup@lanl.gov DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Project Start Date: October 2003 Project End Date: Project continuation and direction determined annually by DOE Objectives Support technically, as directed by DOE, fuel cell * component and system developers Assess fuel cell materials and components and give * feedback to developers Assist the DOE Durability Working Group with the * development of various new material durability testing

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

State and Local Government Partnership - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Joel M. Rinebold Connecticut Center for Advanced Technology (CCAT), Inc. 222 Pitkin Street, Suite 101 East Hartford, CT 06108 Phone: (860) 291-8832 Email: Jrinebold@ccat.us DOE Managers HQ: Connie Bezanson Phone: (202) 586-8055 Email: Connie.Bezanson@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-FC36-08GO18116 / 003 Project Start Date: September 1, 2008 Project End Date: December 31, 2011 Project Objectives Foster strong relationships among federal, state, and * local government officials, industry, and appropriate stakeholders. Serve as a conduit between the DOE and state and local *

402

Market Transformation Activities - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program IntroductIon The Market Transformation sub-program is conducting activities to help promote and implement commercial and pre-commercial hydrogen and fuel cell systems in real-world operating environments and to provide feedback to research programs, U.S. industry manufacturers, and potential technology users. One of the sub-program's goals is to achieve sufficient manufacturing volumes in emerging commercial applications that will enable cost reductions through economies of scale, which will help address the current high cost of fuel cells (currently the capital and installation costs of fuel cells are from five to six times higher than

403

Acronyms and Abbreviations; DOE Hydrogen Program FY 2008 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 FY 2008 Annual Progress Report DOE Hydrogen Program °C Degrees Celsius °F Degrees Fahrenheit 1-D, 1D One-dimensional 1Q First quarter of the fiscal year 2-D, 2D Two-dimensional 2-FPTf 2, fluoropyridinium triflate 2DSM Dimensionally stable membrane with 2-dimensional laser-drilled hole support 2Q Second quarter of the fiscal year 3-D, 3D Three-dimensional 3DSM Dimensionally stable membrane with 3-dimensional porous support 3Q Third quarter of the fiscal year 4Q Fourth quarter of the fiscal year 8YSZ 8 mol% yttria-stabilized zirconia α-AlH 3 Alpha polymorph of aluminum hydride A Amps Å Angstrom AAO Anodic aluminum oxide AB Ammonia borane, NH 3 BH 3 ABI Automated ball indentation, Agent-based investment ABH 2 Ammonium borohydride, NH 4 BH 4 ABM Agent-based modeling ABMS Agent-based modeling and simulation

404

Hydrogen Program Contacts; DOE Hydrogen Program FY 2009 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 FY 2009 Annual Progress Report DOE Hydrogen Program Sunita Satyapal, DOE Hydrogen Program, Acting Program Manager Office of Hydrogen, Fuel Cells and Infrastructure Technologies DOE Office of Energy Efficiency and Renewable Energy Phone: (202) 586-9811 E-mail: Sunita.Satyapal@ee.doe.gov Mark Ackiewicz, Hydrogen and Clean Coal Fuels Program Manager Office of Sequestration, Hydrogen, and Clean Coal Fuels U.S. Department of Energy Phone: (301) 903-3913 E-mail: Mark.Ackiewicz@hq.doe.gov Carl Sink, Program Manager Nuclear Hydrogen Initiative Office of Advanced Nuclear Research DOE Office of Nuclear Energy, Science and Technology Phone: (301) 903-5131 E-mail: Carl.Sink@nuclear.energy.gov John Vetrano, Materials Sciences and Engineering Division Office of Basic Energy Sciences

405

Accelerated Testing Validation - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Rangachary Mukundan 1 (Primary Contact), Rod Borup 1 , John Davey 1 , Roger Lujan 1 , Dennis Torraco 1 , David Langlois 1 , Fernando Garzon 1 , Dusan Spernjak 1 , Joe Fairweather 1 , Sivagaminathan Balasubramanian 2 , Adam Weber 2 , Mike Brady 3 , Karren More 3 , Greg James 4 , Dana Ayotte 4 , and Steve Grot 5 1 Los Alamos National Laboratory MS D429, P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 665-8523 Email: Mukundan@lanl.gov DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Subcontractors: 2 Lawrence Berkeley National Lab, Berkeley, CA 3 Oak Ridge National Laboratory, Oak Ridge TN 4 Ballard Power Systems, Burnaby, BC V5J 5J8 Canada 5 Ion Power, New Castle, DE Project Start Date: Oct 2009

406

Acronyms, Abbreviations and Definitions, DOE Hydrogen Program FY 2010 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

81 81 FY 2010 Annual Progress Report DOE Hydrogen Program °C Degrees Celsius °F Degrees Fahrenheit α-AlH 3 Alpha polymorph of aluminum hydride Δ Change, delta ΔG Gibbs free energy of reaction ΔH Enthalpy of reaction, enthalpy of hydrogenation ΔH° f standard heat of formation ΔK Stress intensity factor ΔP Pressure drop, pressure change ~ Approximately ≈ Equals approximately > Greater than ≥ Greater than or equal to < Less than ≤ Less than or equal to @ At # Number % Percent ® Registered trademark µA Micro ampere(s) µA/cm 2 Micro ampere(s) per square centimeter μc-Si Microcrystalline silicon µg Microgram(s) µm Micrometer(s); micron(s) µM Micromolar µmol Micromole(s) µΩ-cm 2 Micro-ohm(s)-square centimeter µV Micro volt(s)

407

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XVIII-1 XVIII-1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program 3M Company II.D.5 Low-Cost Large-Scale PEM Electrolysis for Renewable Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-46 V.D.1 Advanced Cathode Catalysts and Supports for PEM Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-84 V.D.3 Durable Catalysts for Fuel Cell Protection during Transient Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-100 V.D.5 Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-111 V.F.2 Fuel Cell Fundamentals at Low and Subzero Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-211 Acumentrics Corporation V.J.2 Development of a Low-Cost 3-10 kW Tubular SOFC Power System .

408

Acronyms, Abbreviations and Definitions; DOE Hydrogen Program FY 2009 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

23 23 FY 2009 Annual Progress Report DOE Hydrogen Program °C Degrees Celsius °F Degrees Fahrenheit D Change, delta ~ Approximately ≈ Equals approximately > Greater than ≥ Greater than or equal to " Inch(s) ≤ Less than or equal to < Less than # Number % Percent ® Registered trademark $ U.S. Dollars 1-D, 1D One-dimensional 2-D, 2D Two-dimensional 2-FPTf 2, fluoropyridinium triflate 3-D, 3D Three-dimensional 1Q First quarter of the fiscal year 2Q Second quarter of the fiscal year 3Q Third quarter of the fiscal year 4Q Fourth quarter of the fiscal year 6F Hexafluorinated (biphenol A) sulfonated poly(arylene ether sulfone) 6FCN-x HexaFluoro bisphenol A based disulfonated polybenzonitirle (H+ form) (x denotes degree of sulfonation) 6FK Partially fluorinated

409

Transport in PEMFC Stacks - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Cortney Mittelsteadt (Primary Contact), Hui Xu, Junqing Ma (GES); John Van Zee, Sirivatch Shimpalee, Visarn Lilavivat (USC); James E. McGrath Myoungbae Lee, Nobuo Hara, Kwan-Soo Lee, Chnng Hyun (VT); Don Conners, Guy Ebbrell (Ballard); Kevin Russell (Tech Etch) Giner Electrochemical Systems, LLC 89 Rumford Ave. Newton, MA 02466 Phone: (781) 529-0529 Email: cmittelsteadt@ginerinc.com DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-EE0000471 Subcontractors: * Tech-Etch, Plymouth, MA * Ballard Material Products, Inc., Lowell, MA

410

NEPA Lessons Learned Quarterly Report September 2001, No. 27, Third Quarter FY 2001  

Broader source: Energy.gov (indexed) [DOE]

NEPA NEPA Lessons Lear ned September 2001 1 LESSONS LEARNED LEARNED LESSONS National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT For Third Quarter FY 2001 September 4, 2001; Issue No. 28 continued on page 2 NEPA Compliance Officers Consider Further Improvements "What's New, What's Next," was the theme of the Department of Energy (DOE) NEPA Compliance Officers (NCOs) meeting on June 13 and 14, 2001, in Washington, DC. Convened by the Office of NEPA Policy and Compliance, the meeting involved 70 participants including Program and Field Office NCOs, Headquarters NEPA attorneys, and others. In welcoming participants, Carol Borgstrom, Director, Office of NEPA Policy and Compliance, recounted recent goals for DOE's NEPA Compliance Program before considering new challenges. She noted that in the 1990s, the Department achieved significant improvements

411

Florida Hydrogen Initiative (FHI) - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program David L. Block, Director Emeritus Florida Solar Energy Center/University of Central Florida 1679 Clearlake Road Cocoa, FL 32922 Phone: (321) 638-1001 Email: block@fsec.ucf.edu DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Greg Kleen Phone: (720) 356-1672 Email: Greg.Kleen@go.doe.gov Contract Number: DE-FC36-04GO14225 Subcontractors: * EnerFuels, Inc., West Palm Beach, FL * Florida Atlantic University, Boca Raton, FL * Florida Solar Energy Center, Cocoa, FL * SRT Group, Inc., Miami, FL * Electrolytic Technologies Corporation, Miami, FL

412

FY2000 Highlights Report for the Vehicle High-Power Energy Storage Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Highlights Report for the Vehicle High-Power Energy Storage Program Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Advanced Automotive Technologies Energy Management Team Raymond A. Sutula Energy Management Team Leader November 2000 This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency, thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

413

Lessons Learned Quarterly Report; March 3, 2003; Issue No. 34; First Quarter FY 2003  

Broader source: Energy.gov (indexed) [DOE]

Lessons Lear Lessons Lear ned March 2003 1 wealth of information that informs the NEPA process, he explained. Mr. Greczmiel told the workshop audience that the CEQ NEPA Task Force, which he directs, has looked at ways EMS could improve NEPA implementation. An EMS can improve relations with local communities, especially with regulators, who appreciate the Federal effort to address environmental issues systematically, he said. Another benefit of an EMS, he noted, is that it can provide methods for following up NEPA's predictive analysis. National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT First Quarter FY 2003 March 3, 2003; Issue No. 34 LESSONS LEARNED LEARNED LESSONS New DOE Order Focuses on EMS, Supports Basic NEPA Principles Few Comments Received on Proposed

414

Integrated Geothermal-CO2 Storage Reservoirs: FY1 Final Report  

SciTech Connect (OSTI)

The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

Thomas A. Buscheck

2012-01-01T23:59:59.000Z

415

Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY11 Status Report  

SciTech Connect (OSTI)

Executive Summary Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of todays confirmatory assay methods. This document is a progress report for FY2011 collaboration activities. Progress made by the collaboration in FY2011 continues to indicate the promise of LSDS techniques applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model demonstrated the potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space. Similar results were obtained using a perturbation approach developed by LANL. Benchmark measurements have been successfully conducted at LANL and at RPI using their respective LSDS instruments. The ISU and UNLV collaborative effort is focused on the fabrication and testing of prototype fission chambers lined with ultra-depleted 238U and 232Th, and uranium deposition on a stainless steel disc using spiked U3O8 from room temperature ionic liquid was successful, with improving thickness obtained. In FY2012, the collaboration plans a broad array of activities. PNNL will focus on optimizing its empirical model and minimizing its reliance on calibration data, as well continuing efforts on developing an analytical model. Additional measurements are planned at LANL and RPI. LANL measurements will include a Pu sample, which is expected to provide more counts at longer slowing-down times to help identify discrepancies between experimental data and MCNPX simulations. RPI measurements will include the assay of an entire fresh fuel assembly for the study of self-shielding effects as well as the ability to detect diversion by detecting a missing fuel pin in the fuel assembly. The development of threshold neutron sensors will continue, and UNLV will calibrate existing ultra-depleted uranium deposits at ISU.

Warren, Glen A.; Casella, Andrew M.; Haight, R. C.; Anderson, Kevin K.; Danon, Yaron; Hatchett, D.; Becker, Bjorn; Devlin, M.; Imel, G. R.; Beller, D.; Gavron, A.; Kulisek, Jonathan A.; Bowyer, Sonya M.; Gesh, Christopher J.; O'Donnell, J. M.

2011-08-01T23:59:59.000Z

416

NERSC HPC Program Requirements Review Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Published Reports Published Reports NERSC HPC Program Requirements Review Reports These publications comprise the final reports from the HPC requirements reviews presented to the Department of Energy. Downloads NERSC-PRR-HEP-2017.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for High Energy Physics - Target 2017 BER2017FinalJune7.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for Biological and Environmental Research - Target 2017 NERSC-ASCR-WorkshopReport.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research NERSC-NP-WorkshopReport.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for Nuclear Physics Research NERSC-FES-WorkshopReport.pdf | Adobe Acrobat PDF file

417

Organic Tanks Safety Program: Advanced organic analysis FY 1996 progress report  

SciTech Connect (OSTI)

Major focus during the first part of FY96 was to evaluate using organic functional group concentrations to screen for energetics. Fourier transform infrared and Raman spectroscopy would be useful screening tools for determining C-H and COO- organic content in tank wastes analyzed in a hot cell. These techniques would be used for identifying tanks of potential safety concern that may require further analysis. Samples from Tanks 241-C-106 and -C-204 were analyzed; the major organic in C-106 was B2EHPA and in C-204 was TBP. Analyses of simulated wastes were also performed for the Waste Aging Studies Task; organics formed as a result of degradation were identified, and the original starting components were monitored quantitatively. Sample analysis is not routine and required considerable methods adaptation and optimization. Several techniques have been evaluated for directly analyzing chelator and chelator fragments in tank wastes: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and liquid chromatography with ultraviolet detection using Cu complexation. Although not directly funded by the Tanks Safety Program, the success of these techniques have implications for both the Flammable Gas and Organic Tanks Safety Programs.

NONE

1996-09-01T23:59:59.000Z

418

Hydrogen Emergency Response Training for First Responders - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

52 52 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Monte R. Elmore Pacific Northwest National Laboratory (PNNL) 902 Battelle Blvd. Richland, WA 99352 Phone: (509) 372-6158 Email: monte.elmore@pnnl.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Subcontractors: * Jennifer Hamilton, California Fuel Cell Partnership (CaFCP), Sacramento, CA * Hanford Fire Department, Richland, WA * Hazardous Materials Management and Emergency

419

Modular Pebble-Bed Reactor Project: Laboratory-Directed Research and Development Program FY 2002 Annual Report  

SciTech Connect (OSTI)

This report documents the results of our research in FY-02 on pebble-bed reactor technology under our Laboratory Directed Research and Development (LDRD) project entitled the Modular Pebble-Bed Reactor. The MPBR is an advanced reactor concept that can meet the energy and environmental needs of future generations under DOEs Generation IV initiative. Our work is focused in three areas: neutronics, core design and fuel cycle; reactor safety and thermal hydraulics; and fuel performance.

Petti, David Andrew; Dolan, Thomas James; Miller, Gregory Kent; Moore, Richard Leroy; Terry, William Knox; Ougouag, Abderrafi Mohammed-El-Ami; Oh, Chang H; Gougar, Hans D

2002-11-01T23:59:59.000Z

420

Department of Energy FY 2012 OMB Scorecard  

Office of Energy Efficiency and Renewable Energy (EERE)

Office of Management and Budget (OMB) Scorecard reporting Department of Energy sustainability achievements for fiscal year (FY) 2012.

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Department of Energy FY 2011 OMB Scorecard  

Office of Energy Efficiency and Renewable Energy (EERE)

Office of Management and Budget (OMB) Scorecard reporting Department of Energy sustainability achievements for fiscal year (FY) 2011.

422

Department of Energy FY 2010 OMB Scorecard  

Office of Energy Efficiency and Renewable Energy (EERE)

Office of Management and Budget (OMB) Scorecard reporting Department of Energy sustainability achievements for fiscal year (FY) 2010.

423

Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors, Technical Progress Report for FY 2012  

SciTech Connect (OSTI)

The overall objective of this project was to investigate the effectiveness of nondestructive examination (NDE) technology in detecting material degradation precursors by initiating and growing cracks in selected materials and using NDE methods to measure crack precursors prior to the onset of cracking. Nuclear reactor components are subject to stresses over time that are not precisely known and that make the life expectancy of components difficult to determine. To prevent future issues with the operation of these plants because of unforeseen failure of components, NDE technology is needed that can be used to identify and quantify precursors to macroscopic degradation of materials. Some of the NDE methods being researched as possible solutions to the precursor detection problem are magnetic Barkhausen noise, nonlinear ultrasonics, acoustic emission, eddy current measurements, and guided wave technology. In FY12, the objective was to complete preliminary assessment of advanced NDE techniques for sensitivity to degradation precursors, using prototypical degradation mechanisms in laboratory-scale measurements. This present document reports on the deliverable that meets the following milestone: M3LW-12OR0402143 Report detailing an initial demonstration on samples from the crack-initiation tests will be provided (demonstrating acceleration of the work).

Ramuhalli, P.; Meyer, R.M.; Fricke, J.M.; Prowant, M.S.; Coble, J.B.; Griffin, J.W.; Pitman, S.G.; Dahl, M.E.; Kafentzis, T.A.; Roosendaal, T.J.

2012-09-01T23:59:59.000Z

424

ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1998  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1998 Annual Program Review held July 20-22, 1998. Aspects of ORNL's work that were presented at the Applied Superconductivity Conference (September 1998) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

Hawsey, R.A.; Murphy, A.W.

1999-04-01T23:59:59.000Z

425

Hydrologic Resources Management Program and Underground Test Area Project FY 2000 Progress Report  

SciTech Connect (OSTI)

This report highlights the results of FY 2000 technical studies conducted by the Analytical and Nuclear Chemistry Division (ANCD) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) Project. This is the latest in a series of annual reports published by LLNL-ANCD to document recent investigations of radionuclide migration and transport processes at the Nevada Test Site (NTS). The HRMP is sponsored by Defense Programs (DP) at the U.S. Department of Energy, Nevada Operations Office (DOENV), and supports DP operations at the NTS through studies of radiochemical and hydrologic processes that are relevant to the DP mission. Other organizations that support the HRMP include Los Alamos National Laboratory (LANL), the U.S. Geological Survey (USGS), the Desert Research Institute (DRI) of the University of Nevada, the U.S. Environmental Protection Agency (EPS), and Bechtel Nevada (BN). The UGTA Project is sponsored by the Environmental Management (EM) program at DOENV; its goal is to determine the extent of radionuclide contamination in groundwater resulting from underground nuclear testing at the NTS. The project strategy follows guidelines set forth in a Federal Facilities Agreement and Consent Order between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Participating contractors include LLNL (both ANCD and the Energy and Environmental Sciences Directorate), LANL, USGS, DRI, BN, and IT Corporation (with subcontract support from Geotrans Inc.).

Davisson, M L; Eaton, G F; Hakemi, N L; Hudson, G B; Hutcheon, I D; Lau, C A; Kersting, A B; Kenneally, J M; Moran, J E; Phinney, D L; Rose, T P; Smith, D K; Sylwester, E R; Wang, L; Williams, R; Zavarin, M

2001-07-01T23:59:59.000Z

426

FY-2011 Status Report for Thermodynamics and Kinetics of Advanced Separations Systems  

SciTech Connect (OSTI)

This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR&D) program during FY 2011 at the INL. On the thermodynamic front, investigations of liquid-liquid distribution of lanthanides at TALSPEAK-related conditions continued in FY11. It has been determined that a classical ion-exchanging phase transfer mechanism, where three HDEHP dimers solvate the metal ion in the organic phase, dominates metal extraction for systems that contain up to 0.1 M free lactate in solution. The correct graphical interpretation of the observed data in those regions relied on incorporating corrections for non-ideal behavior of HDEHP dimer in aliphatic diluents as well as sodium extraction equilibria. When aqueous conditions enter the complex regions of high lactate concentrations, slope analysis is no longer possible. When normalized metal distribution ratios were studied along the increasing concentration of free lactate, a slope of -1 was apparent. Such dependency either indicates aqueous complexing competition from lactate, or, a more likely scenario, a participation of lactate in the extracted metal complex. This finding agrees with our initial assessment of postulated changes in the extraction mechanism as a source of the lactate-mediated loss of extraction efficiency. The observed shape in the lanthanide distribution curve in our studies of TALSPEAK systems was the same for solutions containing no lactate or 2.3 M lactate. As such we may conclude that the mechanism of phase transfer is not altered dramatically and remains similarly sensitive to effective charge density of the metal ion. In addition to these thermodynamics studies, this report also summarizes the first calorimetric determination of heat of extraction of 248Cm in a bi-phasic system. The heat of extraction measured by isothermal titration calorimetry is compared to that determined using van't Hoff calculations. Further investigations on the kinetics of extraction in TALSPEAK with macro quantities of lanthanides present in the initial aqueous phase composition have been performed. These results have been summarized and compared to previous work performed for FCR&D. In addition, the effects of HDEHP concentration in the organic phase on europium extraction have been studied.

Leigh R. Martin; Peter R. Zalupski; Travis S. Grimes

2011-09-01T23:59:59.000Z

427

Pacific Northwest National Laboratory National Environmental Policy Act Compliance Program -- FY 2010 Annual Report  

SciTech Connect (OSTI)

During fiscal year (FY) 2010, Pacific Northwest National Laboratory (PNNL) Environmental Protection and Regulatory Programs Division (before March 1, 2011 known as the Environmental Management Services Department) staff performed a number of activities as part of PNNLs National Environmental Policy Act (NEPA) compliance program. These activities helped to verify U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) and Richland Operations Office (RL) compliance with NEPA requirements and streamline the NEPA process for federal activities conducted at PNNL. Self-assessments were performed to address NEPA compliance and cultural and biological resource protection. The NEPA self-assessments focused on implementation within the PNNL Energy and Environment Directorate and routine maintenance activities conducted during the previous calendar year. The cultural and biological resource self-assessments were conducted in accordance with the PNSO Cultural and Biological Resources Management Plan, which specifies annual monitoring of important resources to assess and document the status of the resources and the associated protective mechanisms in place to protect sensitive resources.

Weeks, Regan S.

2011-04-20T23:59:59.000Z

428

Policy Flashes for FY 2011 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

for FY 2011 for FY 2011 Policy Flashes for FY 2011 Archive of Policy Flashes issued in FY 2011. Number Topic 2011-104 Sources for Office Supplies 2011-103 Consent to Subcontracts on Management and Operating (M&O) Contracts. 2011-102 Guide Chapter 70.7 Subcontract Management-For Commercial Items & Services under $100,000. 2011-101 OFPP Policy Letter 11-01, Performance of Inherently Governmental and Critical Functions 2011-100 DOE O 227.1, Independent Oversight Program and DOE O 232.2, Occurence Reporting and Processing of Operations Information. 2011-99 Acquisition Career Management Handbook Change (Chapter 4 - FAP-C (Contracting Officer Warrant Requirements - Technology Investment Agreements) 2011-98 Class Deviation addressing Buy American Act requirements in Department of Energy Acquisition Regulation (DEAR) 970.5244-1, Contractor Purchasing System

429

Fluid Phase Chemical Hydrogen Storage Materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Benjamin L. Davis (Primary Contact), Tessui Nakagawa, Biswajit Paik, and Troy A. Semelsberger Materials Physics and Applications, Materials Chemistry Los Alamos National Laboratory (LANL), MS J514 P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 500-2463 Email: bldavis@lanl.gov DOE Manager Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@hq.doe.gov Partner Tom Baker, University of Ottawa, Ontario, Canada Project Start Date: October 1, 2010 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop fluid, pumpable ammonia-borane (AB)-based fuels with high-H 2 content. Technical Barriers

430

Alternative Fuel Cell Membranes for Energy Independence - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Robson F. Storey (Primary Contact), Daniel A. Savin, Derek L. Patton The University of Southern Mississippi 118 College Drive #5050 Hattiesburg, MS 30406 Phone: (601) 266-4879 Email: Robson.Storey@usm.edu DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-FG36-08GO88106 Project Start Date: August 1, 2009 Project End Date: May 31, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives Synthesize novel, low-cost hydrocarbon fuel cell * membrane polymers with high-temperature performance and long-term chemical/mechanical durability.

431

Validation of an Integrated Hydrogen Energy Station - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Edward C. Heydorn Air Products and Chemicals, Inc. 7201 Hamilton Blvd Allentown, PA 18195 Phone: (610) 481-7099 Email: heydorec@airproducts.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Jim Alkire Phone: (720) 356-1426 Email: James.Alkire@go.doe.gov Contract Number: DE-FC36-01GO11087 Subcontractor: FuelCell Energy, Danbury, CT Project Start Date: September 30, 2001 Project End Date: December 31, 2011 Fiscal Year (FY) 2012 Objectives Demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. Complete a technical assessment and economic analysis *

432

Fermentation and Electrohydrogenic Approaches to Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Pin-Ching Maness (Primary Contact), Katherine Chou, and Lauren Magnusson National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-6114 Email: pinching.maness@nrel.gov DOE Manager HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Subcontractor: Bruce Logan, Pennsylvania State University, State College, PA Start Date: October 1, 2004 Projected End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Optimize sequencing fed-batch parameters in converting * cellulose to hydrogen by the cellulolytic bacterium Clostridium thermocellum; aimed at lowering feedstock cost. Improve plasmid stability in * C. thermocellum; aimed

433

Stationery and Emerging Market Fuel Cell System Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Kathya Mahadevan (Primary Contact), VinceContini, Matt Goshe, and Fritz Eubanks Battelle 505 King Avenue Columbus, OH 43201 Phone: (614) 424-3197 Email: mahadevank@battelle.org DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-EE0005250/001 Project Start Date: September 30, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives To assist the DOE in developing fuel cell systems for stationary and emerging markets by developing independent cost models and costs estimates for manufacture and

434

Stationary Fuel Cell System Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Brian D. James (Primary Contact), Andrew B. Spisak, Whitney G. Colella Strategic Analysis, Inc. 4075 Wilson Blvd. Suite 200 Arlington, VA 22203 Phone: (703) 778-7114 Email: bjames@sainc.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Technical Advisor Bryan Pivovar Phone: (303) 275-3809 Email: bryan.pivovar@nrel.gov Sub-Contract Number No: AGB-0-40628-01 under Prime Contract No. DE-AC36-08G028308 Project Start Date: July 8, 2010 Project End Date: September 7, 2012 Fiscal Year (FY) 2012 Objectives Perform Design for Manufacturing and Assembly * (DFMA ® ) cost analysis for low-temperature (LT)

435

System Level Analysis of Hydrogen Storage Options - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Rajesh K. Ahluwalia (Primary Contact), T. Q. Hua, J-K Peng, Hee Seok Roh, and Romesh Kumar Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-5979 Email: walia@anl.gov DOE Manager HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov Start Date: October 1, 2004 Projected End Date: September 30, 2014 Objective The overall objective of this effort is to support DOE with independent system level analyses of various H 2 storage approaches, to help to assess and down-select options, and to determine the feasibility of meeting DOE targets. Fiscal Year (FY) 2012 Objectives Model various developmental hydrogen storage systems. * Provide results to Hydrogen Storage Engineering Center *

436

Hydrogen Storage Cost Analysis, Preliminary Results - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Brian D. James (Primary Contact), Andrew B. Spisak, Whitney G. Colella Strategic Analysis, Inc. 4075 Wilson Blvd. Suite 200 Arlington, VA 22203 Phone: (703) 778-7114 E-mail: bjames@sainc.com DOE Managers HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-EE0005253 Project Start Date: September 30, 2012 Project End Date: September 29, 2016 Fiscal Year (FY) 2012 Objectives Develop cost models of carbon fiber hydrogen storage * pressure vessels. Explore the sensitivity of pressure vessel cost to design * parameters including hydrogen storage quantity, storage

437

Lightweight Metal Hydrides for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Ji-Cheng Zhao (Primary Contact), Xuenian Chen, Sheldon G. Shore The Ohio State University, Department of Materials Science and Engineering, 286 Watts Hall, 2041 College Road Columbus, OH 43210 Phone: (614) 292-9462 Email: zhao.199@osu.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FC3605GO15062 Project Start Date: January 1, 2005 Project End Date: August 31, 2011 (No-cost extension to December 31, 2012) Fiscal Year (FY) 2012 Objectives Develop a high-capacity lightweight hydride for * reversible vehicular hydrogen storage, capable of meeting or exceeding the 2010 DOE FreedomCAR

438

Development of Kilowatt-Scale Coal Fuel Cell Technology - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Steven S.C. Chuang (Primary Contact), Tritti Siengchum, Jelvehnaz Mirzababaei, Azadeh Rismanchian, and Seyed Ali Modjtahedi The University of Akron 302 Buchtel Common Akron, OH 44310-3906 Phone: (330) 972-6993 Email: schuang@uakron.edu DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC36-08GO0881114 Project Start Date: June 1, 2008 Project End Date: May 31, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives To develop a kilowatt-scale coal-based solid oxide fuel cell (SOFC) technology. The outcome of this research effort

439

Oil-Free Centrifugal Hydrogen Compression Technology Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hooshang Heshmat Mohawk Innovative Technology, Inc. (MiTi) 1037 Watervliet Shaker Road Albany, NY 12205 Phone: (518) 862-4290 Email: HHeshmat@miti.cc DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18060 Subcontractor: Mitsubishi Heavy Industries, Ltd, Compressor Corporation, Hiroshima, Japan Project Start Date: September 25, 2008 Project End Date: May 30, 2013 Fiscal Year (FY) 2012 Objectives Design a reliable and cost-effective centrifugal compressor for hydrogen pipeline transport and delivery: Eliminate sources of oil/lubricant contamination * Increase efficiency by using high rotational speeds *

440

Direct Methanol Fuel Cell Material Handling Equipment Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Todd Ramsden National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3704 Email: todd.ramsden@nrel.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Subcontractor: Oorja Protonics, Inc., Fremont, CA Project Start Date: June 1, 2010 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives Operate and maintain fuel-cell-powered material * handling equipment (MHE) using direct methanol fuel cell (DMFC) technology. Compile operational data of DMFCs and validate their * performance under real-world operating conditions. Provide an independent technology assessment that * focuses on DMFC system performance, operation, and

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

HGMS: Glasses and Nanocomposites for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kris Lipinska (Primary Contact), Oliver Hemmers Harry Reid Center, University of Nevada Las Vegas (UNLV) 4505 Maryland Parkway, Box 454009 Las Vegas, NV 89154-4009 Phones: (702) 895-4450, (702) 895-3742 Emails: kristina.lipinska@unlv.edu, oliver.hemmers@unlv.edu DOE Managers HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-EE0000269 Project Start Date: November 25, 2009 Project End Date: October 31, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives Fabricate glasses and nanocrystalline composites: * improve materials composition by introducing functional dopants Demonstrate controlled nucleation of nanocrystals

442

Characterization of Materials for Photoelectrochemical (PEC) Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Clemens Heske Department of Chemistry University of Nevada, Las Vegas 4505 S. Maryland Parkway Las Vegas, NV 89154-4003 Phone: (702) 895-2694 Email: heske@unlv.nevada.edu DOE Manager HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Project Start Date: November 4, 2011 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives Enhance the understanding of PEC materials and interfaces and promote break-through discoveries by: Utilizing and developing cutting-edge soft X-ray and * electron spectroscopy characterization. Determining electronic and chemical structures of PEC * candidate materials. Addressing materials performance, materials lifetime, * and capital costs through close collaboration with the

443

Development of Hydrogen Education Programs for Government Officials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Shannon Baxter-Clemmons South Carolina Hydrogen and Fuel Cell Alliance (SCHFCA) P.O. Box 12302 Columbia, SC 29211 Phone: (803) 545-0189 Email: baxterclemmons@schydrogen.org DOE Manager GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Technical Advisor Kim Cierpik Phone: (720) 356-1266 Email: kim.cierpik@go.doe.gov Contract Number: DE-FG36-08GO18113 Subcontractors: * Greenway Energy, Aiken, SC * Advanced Technology International, Charleston, SC Project Start Date: October 1, 2008 Project End Date: January 31, 2013 Fiscal Year (FY) 2012 Objectives Further develop relationships with government *

444

Hydrogen Storage by Novel CBN Heterocycle Materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Shih-Yuan Liu University of Oregon Department of Chemistry 1253 University of Oregon Eugene, OR 97403-1253 Phone: (541) 346-5573 Email: lsy@uoregon.edu DOE Managers HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18143 Project Start Date: September 1, 2008 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives The objective of this project is to develop novel boron- nitrogen heterocycles as liquid-phase hydrogen storage materials with storage capacities and thermodynamic properties that have the potential to lead to rechargeable systems capable of meeting DOE targets. We seek to:

445

Hydrogen Fuel Quality Research and Development - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Tommy Rockward (Primary Contact), C. Quesada, K. Rau, E. Brosha, F. Garzon, R. Mukundan, and C. Padró Los Alamos National Laboratory (LANL) P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 667-9587 Email: trock@lanl.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: October 1, 2011 Project End Date: September 30, 2015 Fiscal Year (FY) 2012 Objectives Determine the allowable levels of hydrogen fuel * contaminants in support of the development of science- based international standards for hydrogen fuel quality (International Organization for Standardization [ISO] TC197 WG-12). Validate the ASTM International test method for * determining low levels of non-hydrogen constituents.

446

Next Generation H2 Station Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Sam Sprik (Primary Contact), Keith Wipke, Todd Ramsden, Chris Ainscough, Jen Kurtz National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-4431 Email: sam.sprik@nrel.gov DOE Manager HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov Project Start Date: October 1, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Collect data from state-of-the-art hydrogen (H2) fueling * facilities, such as those funded by the California Air Resources Board (CARB), to enrich the analyses and composite data products (CDPs) on H2 fueling originally established by the Learning Demonstration project.

447

Hydrogen by Wire - Home Fueling System - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Luke T. Dalton Proton Energy Systems 10 Technology Drive Wallingford, CT 06492 Phone: (203) 678-2128 Email: ldalton@protonenergy.com DOE Manager HQ: Eric L. Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Contract Number: DE-SC0001149 Project Start Date: August 15, 2010 Project End Date: August 14, 2012 Fiscal Year (FY) 2012 Objectives Develop enabling technologies for 350-bar hydrogen * home fueling Design key electrolysis cell stack and system components * Fabricate, inspect and assemble prototype components * Demonstrate prototype 350-bar hydrogen generation * Demonstrate prototype 350-bar home fueling technologies * Technical Barriers This project addresses the following technical barriers

448

Air-Cooled Stack Freeze Tolerance - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Dave Hancock Plug Power Inc. 968 Albany Shaker Rd Latham, NY 12110 Phone: (518) 782-7700 Email: david_hancock@plugpower.com DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Technical Advisor Walt Podolski Phone: (630) 252-7558 Email: podolski@anl.gov Contract Number: DE-EE0000473 Subcontractor: Ballard Power Systems, Burnaby, British Columbia, Canada Project Start Date: June 1, 2009 Project End Date: November 15, 2011 Fiscal Year (FY) 2012 Objectives Advance the state of the art in technology for air-cooled * proton exchange membrane (PEM) fuel cell stacks and related GenDrive(tm) material handling application fuel

449

Development of Improved Composite Pressure Vessels for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Norman Newhouse (Primary Contact), Jon Knudsen, John Makinson Lincoln Composites, Inc. 5117 NW 40 th Street Lincoln, NE 68524 Phone: (402) 470-5035 Email: nnewhouse@lincolncomposites.com DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-09GO19004 Project Start Date: February 1, 2009 Project End Date: June 30, 2014 Fiscal Year (FY) 2012 Objectives Improve the performance characteristics, including * weight, volumetric efficiency, and cost, of composite pressure vessels used to contain hydrogen in adsorbants. Evaluate design, materials, or manufacturing process *

450

Effects of Technology Cost Parameters on Hydrogen Pathway Succession - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Mark F. Ruth* (Primary Contact), Victor Diakov*, Brian James † , Julie Perez ‡ , Andrew Spisak † *National Renewable Energy Laboratory 15013 Denver West Pkwy. Golden, CO 80401 Phone: (303) 817-6160 Email: Mark.Ruth@nrel.gov and Victor.Diakov@nrel.gov † Strategic Analysis, Inc. ‡ New West Technologies DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@ee.doe.gov Subcontractor: Strategic Analysis, Inc., Arlington, VA Project Start Date: February 1, 2009 Project End Date: October 31, 2011 Fiscal Year (FY) 2012 Objectives Develop a macro-system model (MSM): * Aimed at performing rapid cross-cutting analysis - Utilizing and linking other models - Improving consistency between models -

451

Renewable Electrolysis Integrated Systems Development and Testing - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Kevin Harrison National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-7091 Email: Kevin.Harrison@nrel.gov DOE Manager HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Contributors: Chris Ainscough and Michael Peters Subcontractor: Marc Mann, Spectrum Automation Controls, Arvada, CO Project Start Date: October 1, 2003 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Validate stack and system efficiency and contributing * sub-system performance of DOE-awarded advanced electrolysis systems Collaborate with industry to optimize and demonstrate *

452

Chemical Hydride Rate Modeling, Validation, and System Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Troy A. Semelsberger (Primary Contact), Biswajit Paik, Tessui Nakagawa, Ben Davis, and Jose I. Tafoya Los Alamos National Laboratory MS J579, P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 665-4766 Email: troy@lanl.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Project Start Date: February 2009 Project End Date: February 2014 Fiscal Year (FY) 2012 Objectives Investigate reaction characteristics of various fluid-phase * ammonia-borane (AB)-ionic liquid (IL) compositions Identify and quantify hydrogen impurities and develop *

453

Facilitation of the Estuary/Ocean Subgroup for Federal Research, Monitoring and Evaluation FY08 Annual Report.  

SciTech Connect (OSTI)

The Estuary/Ocean Subgroup (EOS) is part of the research, monitoring, and evaluation (RME) effort that the Action Agencies (Bonneville Power Administration (BPA), U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) developed in response to obligations arising from the Endangered Species Act as applied to operation of the Federal Columbia River Power System (FCRPS). The goal of the EOS project is to facilitate activities of the estuary/ocean RME subgroup as it coordinates design and implementation of federal RME in the lower Columbia River and estuary. In fiscal year 2008 (FY08), EOS project accomplishments included (1) subgroup meetings; (2) participation in the estuary work group of the Pacific Northwest Aquatic Monitoring Partnership; (3) project management via BPA's project tracking system, Pisces; (4) quarterly project status reports; and (5) a major revision to the Estuary RME document and its subsequent regional release (new version January 2008). Many of the estuary RME recommendations in this document were incorporated into the Biological Opinion on FCRPS operations (May 2008). In summary, the FY08 EOS project resulted in expanded, substantive coordination with other regional RME forums, a new version of the federal Estuary RME program document, and implementation coordination. This annual report is a FY08 deliverable for the project titled Facilitation of the Estuary/Ocean Subgroup.

Johnson, GE; Diefenderfer, HL [Pacific Northwest National Laboratory

2008-09-29T23:59:59.000Z

454

Facilitation of the Estuary/Ocean Subgroup for Federal Research, Monitoring, and Evaluation, FY08 Annual Report  

SciTech Connect (OSTI)

The Estuary/Ocean Subgroup (EOS) is part of the research, monitoring, and evaluation (RME) effort that the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) developed in response to obligations arising from the Endangered Species Act as applied to operation of the Federal Columbia River Power System (FCRPS). The goal of the EOS project is to facilitate activities of the estuary/ocean RME subgroup as it coordinates design and implementation of federal RME in the lower Columbia River and estuary. In fiscal year 2008 (FY08), EOS project accomplishments included 1) subgroup meetings; 2) participation in the estuary work group of the Pacific Northwest Aquatic Monitoring Partnership; 3) project management via the project tracking system, Pisces; 4) quarterly project status reports; and 5) a major revision to the Estuary RME document and its subsequent regional release (new version January 2008). Many of the estuary RME recommendations in this document were incorporated into the Biological Opinion on hydrosystem operations (May 2008). In summary, the FY08 EOS project resulted in expanded, substantive coordination with other regional RME forums, a new version of the federal Estuary RME program document, and implementation coordination. This annual report is a FY08 deliverable for the project titled Facilitation of the Estuary/Ocean Subgroup.

Johnson, Gary E.; Diefenderfer, Heida L.

2008-09-29T23:59:59.000Z

455

Freedom car and vehicle technologies heavy vehicle program : FY 2007 benefits analysis, methodology and results -- final report.  

SciTech Connect (OSTI)

This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the FreedomCar and Vehicle Technologies (FCVT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 05 the Heavy Vehicles program activity expanded its technical involvement to more broadly address various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. This broadening of focus has continued in subsequent activities. These changes are the result of a planning effort that occurred during FY 04 and 05. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY07 Budget Request. The energy savings models are utilized by the FCVT program for internal project management purposes.

SIngh, M.; Energy Systems; TA Engineering

2008-02-29T23:59:59.000Z

456

FY 2012 Annual Progress Report for Energy Storage R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A - 1 Energy Storage R&D A - 1 Energy Storage R&D Appendix A: List of Contributors and Research Collaborators Contributor/Collaborator (with Affiliation) FY 2012 Annual Progress Report Section(s) Abe, Yasuhiro (Toda America) II.C.2 Abkemeier, Kristin (NWTech) III.G Abouimrane, Ali (ANL) IV.B.1, IV.B.3.1, IV.B.4.1 Abraham, Daniel P. (ANL) IV.B.1, IV.B.2.7, IV.C.1, IV.C.3, IV.C.4, IV.E.3.2 Alamgir, Mohamed (LG Chem, MI) III.A.2.2, IV.B.2.5 Allen, Jan L. (ARL) IV.B.5.3 Allu, S. (ORNL) III.E.2 Alvarez, Jesus M. (A123 Systems) II.A.2 Amine, Khalil (ANL) IV.B.1, IV.B.2.2, IV.B.3.1, IV.B.3.3, IV.B.4.1, IV.B.4.2, IV.B.5.1, IV.D.2, IV.E.3.1, V.D.5, V.G.2 Anderson, Travis (SNL) IV.D.3 Angell, C. Austen (ASU) V.D.8 Armand, Michel (NCSU) V.D.6 Arnold, John (Miltec) III.A.5.2

457

High Repetition Rate, LINAC-based Nuclear Resonance Fluorescence FY 2009 Final Report  

SciTech Connect (OSTI)

Nuclear Resonance Fluorescence (NRF), which is possible for nuclei with atomic numbers greater than helium (Z=2), occurs when a nuclear level is excited by resonant absorption of a photon and subsequently decays by reemission of a photon. The excited nuclear states can become readily populated, provided the incident photons energy is within the Doppler-broadened width of the energy level being excited. Utilizing continuous energy photon spectra, as is characteristic of a bremsstrahlung photon beam, as the inspection source, ensures that at least some fraction of the impinging beam will contribute to the population of the excited energy levels in the material of interest. Upon de-excitation, either to the ground state or to a lower-energy excited state, the emitted fluorescence photons energy will correspond to the energy difference between the excited state and the state to which it decays. As each isotope inherently contains unique nuclear energy levels, the NRF states for each isotope are also unique. By exploiting this phenomenon, NRF photon detection provides a well-defined signature for identifying the presence of individual nuclear species. This report summarizes the second year (Fiscal Year [FY] 2009) of a collaborative research effort between Idaho National Laboratory, Idaho State Universitys Idaho Accelerator Center, and Pacific Northwest National Laboratory. This effort focused on continuing to assess and optimize NRF-based detection techniques utilizing a slightly modified, commercially available, pulsed medical electron accelerator.

Mathew Kinlaw; Scott Watson; James Johnson; Alan Hunt; Heather Seipel; Edward Reedy