Powered by Deep Web Technologies
Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

FY 2010 Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Management Monthly Reports - FY 2010 The Department of Energy Nevada Field Office Environmental Management Program creates monthly reports for the NSSAB. These...

2

FY 2007 Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Management Monthly Reports - FY 2007 The Department of Energy Nevada Field Office Environmental Management Program creates monthly reports for the NSSAB. These...

3

FY 2011 Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Management Monthly Reports - FY 2011 The Department of Energy Nevada Field Office Environmental Management Program creates monthly reports for the NSSAB. These...

4

FY 2009 Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Performance and financial information FY 2009 DOE/CF-0045 The Reports Consolidation Act of 2000 authorizes Federal agencies, with the Office of Management and Budget's (OMB) concurrence, to consolidate various reports in order to provide performance, financial and related information in a more meaningful and useful format. In accordance with the Act, the Department of Energy (Department or DOE), has produced a consolidated Performance and Accountability Report (PAR) in previous years. For fiscal year (FY) 2009, the Department has chosen to produce an alternative report to the consolidated PAR and will produce an Agency Financial Report, an Annual Performance Report and a Summary of Performance and Financial

5

Annual Performance Report FY 2005 Annual Performance Plan FY...  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Report FY 2005 Annual Performance Plan FY 2006 Iam pleased to present the Office of Inspector General's combined Fiscal Year 2005 Annual Performance Report and...

6

Annual Performance Report FY 2010 Annual Performance Plan FY...  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Report FY 2010 Annual Performance Plan FY 2011 I am pleased to submit the Office of Inspector General's combined Fiscal Year 2010 Annual Performance Report and...

7

Annual Performance Report FY 2011 Annual Performance Plan FY...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Performance Report FY 2011 Annual Performance Plan FY 2012 2 FY 2011 OIG Performance Results The OIG measures its performance against long-term and annual goals set forth...

8

Office Inspector General DOE Annual Performance Report FY 2008...  

NLE Websites -- All DOE Office Websites (Extended Search)

Inspector General DOE Annual Performance Report FY 2008, Annual Performance Plan FY 2009 Office Inspector General DOE Annual Performance Report FY 2008, Annual Performance Plan FY...

9

DOE/IG Annual Performance Report FY 2008, Annual Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Report FY 2008, Annual Performance Plan FY 2009 More Documents & Publications Office Inspector General DOE Annual Performance Report FY 2008, Annual Performance Plan FY...

10

FY 2012 LDRD Report  

Energy.gov (U.S. Department of Energy (DOE))

The total FY 2012 LDRD Program cost at the national laboratories was $578.9 million in 1,738 projects.

11

FY 2013 LDRD Report  

Energy.gov (U.S. Department of Energy (DOE))

The total FY 2013 LDRD Program cost at the national laboratories was $568.6 million in 1,742 projects.

12

FY 2011 LDRD Report  

Energy.gov (U.S. Department of Energy (DOE))

The total FY 2011 LDRD Program cost at the national laboratories was $581 million, which represents approximately 4.7 percent of total cost base at these laboratories.

13

FY 2010 LDRD Report  

Energy.gov (U.S. Department of Energy (DOE))

The total FY 2010 LDRD program cost at the national laboratories was $541 million, which represents approximately 4.6 percent of total cost base at these laboratories.

14

FY 2004 House Report 108-221, FY 2004 CJS Appropriations ...  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Taken from FY 2004 House Report 108-221. FY 2004 CJS Appropriations Bill. SCIENCE AND TECHNOLOGY. ...

2010-10-05T23:59:59.000Z

15

Risk-Informed Safety Requirements for H2 Codes and Standards Development - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Aaron Harris (Primary Contact), Jeffrey LaChance, Katrina Groth Sandia National Laboratories P.O. Box 969 Livermore, CA 94551-0969 Phone: (925) 294-4530 Email: apharri@sandia.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: October 1, 2003 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Present results of indoor refueling risk assessment to the * National Fire Protection Association (NFPA) 2 Fueling Working Group. Perform and document required risk assessment (with * input from NFPA 2 and others) for developing science- based risk-informed codes and standards for indoor

16

House Report 109-272 FY 2006 Conference Report  

Science Conference Proceedings (OSTI)

Taken from House Report 109-272 FY 2006 Conference Report SCIENCE AND TECHNOLOGY. TECHNOLOGY ADMINISTRATION. ...

2010-10-05T23:59:59.000Z

17

FY 1996 cost savings report  

SciTech Connect

Cost savings are an integral part of Hanford site operations. Congressional actions towards establishing a balanced budget have resulted in reductions to funding for all federal agencies, including the Department of Energy (DOE) Environmental Management (EM) cleanup mission. In September 1994 the DOE Richland Operations Office (RL) approved the FY 1995 multi-year baseline that included a cost estimate of $1.9 billion for FY 1996. However, Congress only appropriated $1.3 billion for that year. The shortfall of $600 million resulted in a significant challenge to accomplish the required workscope. Therefore, RL initiated an aggressive cost savings program to eliminate the shortfall by deleting workscope that was unnecessary and performing the remaining workscope more efficiently. RL initiated baseline planning actions (including deletions, deferrals, transfers, and additions) during the FY 1996 multi-year baseline development process to match workscope and anticipated funding and identified $205 million of workscope deletions. CFR (Contract Finance and Review Division) then reviewed over 200 cost baseline change requests during FY 1996 and documented an additional $95 million of FY 1996 cost savings. This included $73 million of workscope deletions and $22 million of efficiencies. Total savings as a result of FY 1996 initiatives, including baseline planning actions and current year initiatives, were $300 million.

Andrews-Smith, K.L.

1997-08-15T23:59:59.000Z

18

Annual Performance Report FY 2011 Annual Performance Plan FY 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Performance Report FY 2011 Annual Performance Plan FY 2012 2 FY 2011 OIG Performance Results The OIG measures its performance against long-term and annual goals set forth in OIG planning documents. During this reporting period, the OIG successfully achieved its FY 2011 performance goals. The following are the specific results: Goal 1 Promote Presidential Reform Initiatives, Secretarial Mission Priorities, and Congress Objective 1: Conduct reviews seeking positive change in the Department relating to the implementation of Presidential Reform Initiatives, the Secretary's Mission Priorities, and the OIG-identified Management Challenges. Performance Measures: Accomplishments

19

FY 2008 & FY 2009 Annual Uncosted Balances Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uncosted Balances Reports » FY 2008 & FY 2009 Uncosted Balances Reports » FY 2008 & FY 2009 Annual Uncosted Balances Report FY 2008 & FY 2009 Annual Uncosted Balances Report This report presents a combined presentation and analysis of the Department's uncosted balances for FY 2008 and FY 2009. In FY 2009, the American Recovery and Reinvestment Act of 2009 (Recovery Act) provided the Department an additional $36.7 billion of funding. The FY 2009 uncosted balances associated with Recovery Act funding are separately presented but are not included in the additional analysis of uncosted balances in this report. FY 2008-2009 Report on Uncosted Balances More Documents & Publications FY 2010 Annual Uncosted Balances Report FY 2011 Annual Uncosted Balances Report FY 2012 Annual Uncosted Balances

20

OPT Annual Report, FY 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPT Annual Report, FY 2012 OPT Annual Report, FY 2012 i Executive Summary The Office of Environmental Management (EM) was established to mitigate the risks and hazards posed by the legacy of nuclear weapons production and research. The most ambitious and far ranging of these missions is dealing with the environmental legacy of the Cold War. Many problems posed by its operations are unique, and include the transportation of unprecedented amounts of contaminated waste, water, and soil, and a vast number of contaminated structures during remediation of the contaminated sites. Since Fiscal Year (FY) 2004, EM has completed over 150,000 shipments of radioactive material and waste. The mission of the Department of Energy (DOE) Office of Packaging and Transportation (OPT) positioned

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

FY 2008 Annual Performance Report  

Energy.gov (U.S. Department of Energy (DOE))

Focuses on detailed performance information including performance targets associated with the Departments budget activities. The report discusses individual and summary performance measure results through narrative descriptions with references to supporting documentation, a concise statement on highlevel program challenges and benefits, and the status of all FY 2007 unmet measures.

22

Ethanol annual report FY 1990  

DOE Green Energy (OSTI)

This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

Texeira, R.H.; Goodman, B.J. (eds.)

1991-01-01T23:59:59.000Z

23

FY 2012 Agency Financial Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in order to provide performance, financial in order to provide performance, financial and related information in a more meaningful and useful format. The Department of Energy (Department or DOE), has chosen an alternative reporting to the consolidated Performance and Accountability Report and instead, produces an Agency Financial Report, an Annual Performance Report and a Summary of Performance and Financial Information, pursuant to the OMB Circular A-136. This reporting approach simplifies and streamlines the performance presentations while utilizing the Internet for providing and leveraging additional performance information. The Department's fiscal year (FY) 2012 reporting includes the following three components and will be available at the website below, as each component

24

CAES Annual Report FY 2011  

SciTech Connect

The Center for Advanced Energy Studies was created to lead research programs important to the nation, attract students and faculty to the Idaho universities and act as a catalyst for technology-based economic development. CAES is striving to meet those goals by continuing to develop its infrastructure and equipment capabilities, expand its research portfolio and bolster Idaho's energy workforce. This Annual Report details the progress CAES made in FY 2011 toward fulfilling its research, education and economic development missions.

Kortny Rolston

2011-10-01T23:59:59.000Z

25

CAES Annual Report FY 2011  

SciTech Connect

The Center for Advanced Energy Studies was created to lead research programs important to the nation, attract students and faculty to the Idaho universities and act as a catalyst for technology-based economic development. CAES is striving to meet those goals by continuing to develop its infrastructure and equipment capabilities, expand its research portfolio and bolster Idaho's energy workforce. This Annual Report details the progress CAES made in FY 2011 toward fulfilling its research, education and economic development missions.

Kortny Rolston

2011-10-01T23:59:59.000Z

26

FY 2009 LDRD Report to Congress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LDRD Report to Congress LDRD Report to Congress Department of Energy Department of Energy FY 2009 Laboratory Directed Research and Development at the DOE National Laboratories Report to Congress April 2010 FY 2009 LDRD Report to Congress Department of Energy Table of Contents Executive Summary 1 Table 1. LDRD, PDRD and SDRD Breakdown 1 1. Introduction 2 1.1 Background 2 1.2 Purpose of the Report 2 2. FY 2009 LDRD Program 3 2.1 Financial Information 3 2.1.1 LDRD Funding Mechanism 3 2.1.2 FY 2009 Expenditures 3 Table 2. Laboratory Costs and LDRD Costs 4

27

FY 2008 Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

8 The Department of Energy Nevada Field Office Environmental Management Program creates monthly reports for the NSSAB. These reports cover the completed activities for the current...

28

FY 2009 Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

9 The Department of Energy Nevada Field Office Environmental Management Program creates monthly reports for the NSSAB. These reports cover the completed activities for the current...

29

FY 2009 LDRD Report  

Energy.gov (U.S. Department of Energy (DOE))

The national laboratories included in this report devoted approximately $515 million to LDRD, addressing topics that span the entire range of DOEs broad scientific mandate.

30

FY 2008 LDRD Report  

Energy.gov (U.S. Department of Energy (DOE))

The national laboratories included in this report devoted approximately $513 million to LDRD, addressing topics that span the entire range of DOEs broad scientific mandate.

31

Post Competition Accountability Report: Second Quarter, FY 2013  

Energy.gov (U.S. Department of Energy (DOE))

Post Competition Accountability Quarterly Report: High Performing Organization Proposal 2012Fiscal Years (FY) 20122016: Reporting Period:Second Quarter, FY 2013

32

Post Competition Accountability Report: First Quarter, FY2013  

Energy.gov (U.S. Department of Energy (DOE))

Post Competition Accountability Quarterly Report: High Performing Organization Proposal 2012Fiscal Years (FY) 2012 2016: Reporting Period: First Quarter, FY2013

33

Post Competition Accountability Report: Third Quarter, FY 2013  

Energy.gov (U.S. Department of Energy (DOE))

Post Competition Accountability Quarterly Report: High Performing Organization Proposal 2012Fiscal Years (FY) 20122016: Reporting Period: Third Quarter, FY 2013

34

FY 2007 LDRD Report  

Energy.gov (U.S. Department of Energy (DOE))

The multi-program national laboratories included in this report devoted approximately $499 million to LDRD, funding projects ranging in size from less than $5,000 per year to over $3 million, addressing topics that span the entire range of DOEs broad scientific mandate.

35

FY 2004 LDRD Report  

Energy.gov (U.S. Department of Energy (DOE))

The multi-program National Laboratories included in this report devoted approximately $365 million to LDRD, funding projects ranging in size from less than $5,000 per year to over $3 million, addressing topics that span the entire range of DOEs broad scientific mandate.

36

FY 2006 LDRD Report  

Energy.gov (U.S. Department of Energy (DOE))

The multi-program national laboratories included in this report devoted approximately $476 million to LDRD, funding projects ranging in size from less than $5,000 per year to over $3 million, addressing topics that span the entire range of DOEs broad scientific mandate.

37

FY 2005 LDRD Report  

Energy.gov (U.S. Department of Energy (DOE))

The multi-program national laboratories included in this report devoted approximately $384 million to LDRD, funding projects ranging in size from less than $5,000 per year to over $3 million, addressing topics that span the entire range of DOE's broad specific mandate.

38

Electronics Engineering Research. Final report, FY 1979  

Science Conference Proceedings (OSTI)

Accomplishments in Electronics Engineering Research (EER) during FY79 spanned a broad range of technologies, from high-speed microelectronics to digital image enhancement; from underground probing with electromagnetic waves to detecting neutrons with a small solid-state device; and from computer systems to aid engineers, to software tools to aid programmers. This report describes the overall EER program and its objectives, summarizes progress made in FY79, and outlines plans for FY80.

Weissenberger, S. (ed.)

1980-01-01T23:59:59.000Z

39

Office of Legacy Management FY 2009 Energy Management Data Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Office of Legacy Management FY 2009 Energy Management Data Report Office of Legacy Management FY 2009 Energy Management Data...

40

FY 2006 Executive Order 13101 Report: Department of Energy Affirmative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2006 Executive Order 13101 Report: Department of Energy FY 2006 Executive Order 13101 Report: Department of Energy Affirmative Procurement and Recycling Fiscal Year 2006 Report, 3/12/07 FY 2006 Executive Order 13101 Report: Department of Energy Affirmative Procurement and Recycling Fiscal Year 2006 Report, 3/12/07 The Department of Energy (DOE) is pleased to transmit the enclosed report in fulfillment of the annual reporting requirements under Executive Order 13101, Greening the Government through Waste Prevention, Recycling, and Federal Acquisition. The report was prepared in accordance with the survey instructions provided in your letter to Agency Environmental Executives and Senior Procurement Executives, dated November 2, 2006. DOE's report contains the specific purchasing data that you requested on the eight (8)

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

FY 2013 FRPC DATA REPORTING INSTRUCTIONS I. Background  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2013 FRPC DATA REPORTING INSTRUCTIONS I. Background Executive Order 13327, "Federal Real Property Asset Management" was created to promote the efficient and economical use of the Federal Government's real property assets. The E.O. established the interagency Federal Real Property Council (FRPC), established the role of the Senior Real Property Officer, and mandated the creation of a centralized real property database. This document provides instructions for populating the required data in FIMS so that the Department can report in accordance with the FY 2013 FRPC reporting requirements.

42

FY 2008 LDRD Report to Congress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Report to Congress 8 Report to Congress Laboratory Directed Research and Development (LDRD) at the DOE National Laboratories (Report also available at http://www.mbe.doe.gov/cf1-2/ldrd.htm) March 2009 2 Table of Contents Executive Summary 3 1. Introduction 5 1.1 Background 5 1.2 Purpose of the Report 5 2. FY 2008 LDRD Program 7 2.1 Financial Information 7 2.1.1 LDRD Funding Mechanism 7 2.1.2 FY 2008 Expenditures 7 2.1.3 FY 2008 LDRD Allocation Percentages 8 2.2 Workforce Development 9 2.3 LDRD and the Work for Others (WFO) Program 11 3. FY 2008 PDRD and SDRD Programs 13 3.1 Plant Directed Research and Development Programs 13 3.2 Site Directed Research and Development Program 13

43

FY 2007 LDRD Report to Congress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Report to Congress 7 Report to Congress Laboratory Directed Research and Development (LDRD) at the DOE National Laboratories (Report also available at http://www.mbe.doe.gov/cf1-2/ldrd.htm) December 2007 2 Table of Contents Executive Summary 3 1. Introduction 4 1.1 Background 4 1.2 Purpose of the Report 4 2. FY 2007 LDRD Program 6 2.1 Financial Information 6 2.1.1 LDRD Funding Mechanism 6 2.1.2 FY 2007 Expenditures 6 2.1.3 FY 2007 LDRD Allocation Percentages 7 2.2 Workforce Development 8 2.3 LDRD and the Work for Others (WFO) Program 10 3. FY 2007 PDRD and SDRD Programs 12 3.1 Plant Directed Research and Development Programs 12 3.2 Site Directed Research and Development Program 12

44

Vehicle Technologies Office: FY 2005 Progress Report for Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Progress Report 5 Progress Report for Automotive Lightweighting Materials to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on AddThis.com...

45

Vehicle Technologies Office: FY 2005 Progress Report for Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Progress Report 5 Progress Report for Advanced Combustion Engine Technologies to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for Advanced Combustion Engine Technologies on

46

Vehicle Technologies Office: FY 2006 Progress Report for Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Progress Report 6 Progress Report for Advanced Combustion Engine Technologies to someone by E-mail Share Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Facebook Tweet about Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Twitter Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Google Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Delicious Rank Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on Digg Find More places to share Vehicle Technologies Office: FY 2006 Progress Report for Advanced Combustion Engine Technologies on

47

Vehicle Technologies Office: FY 2003 Progress Report for Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for Automotive Lightweighting Materials to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on AddThis.com...

48

Vehicle Technologies Office: FY 2006 Progress Report for Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Progress Report 6 Progress Report for Automotive Lightweighting Materials to someone by E-mail Share Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Facebook Tweet about Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Twitter Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Google Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Delicious Rank Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Digg Find More places to share Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on AddThis.com...

49

ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 October 1, 2013 - 2:09pm Addthis ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 In 2013 the program operated above the 6 year average and 6 year high, and participation increased by adding 13 new program locations. Southeastern Power Administration and its partners conducted 32 training events which directly impacted 855 trainees, and our outreach efforts promoted energy efficiency and renewable energy to an estimated 3505

50

ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 October 1, 2013 - 2:09pm Addthis ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 ENERGY EFFICIENCY AND RENEWABLE ENERGY REPORT - FY 2013 In 2013 the program operated above the 6 year average and 6 year high, and participation increased by adding 13 new program locations. Southeastern Power Administration and its partners conducted 32 training events which directly impacted 855 trainees, and our outreach efforts promoted energy efficiency and renewable energy to an estimated 3505

51

House Conference Report 108-401 FY 2004 Appropriations ...  

Science Conference Proceedings (OSTI)

Taken from House Conference Report 108-401 FY 2004 Appropriations billConsolidated Appropriations Act, 2004. REPORT LANGUAGE. ...

2010-10-05T23:59:59.000Z

52

FY 2011 Annual Performance Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance Reports » FY 2011 Annual Performance Performance Reports » FY 2011 Annual Performance Report FY 2011 Annual Performance Report DOE's FY 2011 Annual Performance Report (APR) presents the performance results for fiscal year 2011 that contributed to the achievement of goals identified in the President's fiscal year 2011 budget. The performance measures in this report were initially outlined in the Department's FY 2011 Congressional Budget Request. After final congressional budget negotiations, some performance targets were revised to reflect changes in funding levels in enacted appropriations. DOE's FY 2011 Summary Report provides highlights of key financial and performance information that demonstrates DOE's accountability to ensure America's security and prosperity by addressing its energy,

53

FY 2008 Annual Performance Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hyd Hyd rog en Tan k Res earc h, LLN L PH EN IX Ex pe rim en t, BN L Fu el Ce ll Re sea rch , AN L Ca rb on Se qu es tra tio n Re se ar ch , PN NL Hi gh Ex pl os iv es Ap pl ic at io ns Fa ci lit y, LL NL Com put er Sim ulat ion The ater , LAN L Al ga e Re se ar ch , NR EL Ad va nc ed Bio fue ls Re se arc h, LB NL T ra in in g Nuc lear Mat eria ls Sto rag e, SRS C o a l G a s if ic a ti o n R e s e a rc h , P N N L Cli ma te Mo de lin g, OR NL AnnuAl PerformAnce rePort fY 2008 Table of Contents Introduction....................................................................................................................................1 Performance Summary Scorecard..................................................................................................2 Department Performance ...............................................................................................................4

54

FY 2011 LDRD Report to Congress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2011 Report to Congress FY 2011 Report to Congress Laboratory Directed Research and Development (LDRD) at the DOE National Laboratories For additional information on the Department's Laboratory Directed Research and Development program, please see the Office of Science website: http://science.energy.gov/lpe/laboratory-directed-research-and-development/ or the National Nuclear Security Administration website: http://tri-lab.lanl.gov/ Formally, this Report responds to the Conference Report (H.R. Rep. No. 106-988 (Conf. Rep.)) accompanying the Fiscal Year (FY) 2001 Energy and Water Development Appropriations Act, which requested the DOE Chief Financial Officer "develop and execute a financial accounting report of LDRD expenditures by laboratory and weapons production plant." It also responds to the National Defense

55

FY 2004 LDRD Report to Congress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Report to Congress 4 Report to Congress Laboratory Directed Research and Development (LDRD) at the DOE National Laboratories December 2004 Table of Contents Executive Summary 1 1. Introduction....................................................................................................... 2 1.1 Background............................................................................................ 2 1.2 Purpose of the Report............................................................................. 2 2. FY 2004 LDRD Program ............................................................. 4 2.1 Financial Information ........................................................ 4 2.1.1 LDRD Funding Mechanism ................................................. 4

56

Laboratory Directed Research and Development Program FY 2006 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

Sjoreen, Terrence P [ORNL

2007-04-01T23:59:59.000Z

57

Laboratory Directed Research and Development Program FY 2006 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

Sjoreen, Terrence P [ORNL

2007-04-01T23:59:59.000Z

58

EMSL Quarterly Highlights Report: 4th Quarter, FY08  

SciTech Connect

This report outlines the science highlights, publications, and other happenings at EMSL in 4th quarter of FY08.

Showalter, Mary Ann

2008-11-24T23:59:59.000Z

59

House Conference Report 108-401 FY 2004 Appropriations ...  

Science Conference Proceedings (OSTI)

Taken from House Conference Report 108-401 FY 2004 Appropriations billConsolidated Appropriations Act, 2004. ...

2010-10-05T23:59:59.000Z

60

NIST Conference Report 108-792 FY 2005 Omnibus ...  

Science Conference Proceedings (OSTI)

Taken from NIST Conference Report 108-792 FY 2005 Omnibus Appropriations Commerce, Justice, and State Appropriations. ...

2010-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EMSL Quarterly Highlights Report: FY09, 3rd Quarter  

Science Conference Proceedings (OSTI)

This report outlines the science and publications that occurred at EMSL during the 3rd quarter of FY09.

Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.; Wiley, Julie G.

2009-07-17T23:59:59.000Z

62

Transmutation Fuels Campaign FY-09 Accomplishments Report  

Science Conference Proceedings (OSTI)

This report summarizes the fiscal year 2009 (FY-08) accomplishments for the Transmutation Fuels Campaign (TFC). The emphasis is on the accomplishments and relevance of the work. Detailed description of the methods used to achieve the highlighted results and the associated support tasks are not included in this report.

Lori Braase

2009-09-01T23:59:59.000Z

63

FY 2007 Report on Uncosted Balances  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on Uncosted Balances Report on Uncosted Balances For Fiscal Year Ended September 30,2007 August 2008 Prepared by: Office of the Chief Financial Officer TABLE OF CONTENTS Purpose.. . . . : . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . .. . .. . . . . . . . , . . , . , , . . . . , Executive Summary ... . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . .... .. .... .... .. Threshold Analysis - Approach and Background ................... . .... .. Composition of FY 2007 Year-End Uncosted Obligations ..... .. . . . . . Explanation of Significant Threshold Variances ... ... .. . . . . . .. . .. .. . . . . . List of Acronyms.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

64

Microsoft Word - FY07AnnualReport.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Annual Report (revised) - 1 - Created on 01/11/2008 7 Annual Report (revised) - 1 - Created on 01/11/2008 PROCUREMENT AND ASSISTANCE DATA SYSTEM (PADS) FISCAL YEAR 2007 ANNUAL REPORTS FY 2007 Obligations to Facilities Management Contracts......................................................................................................................... 2 FY 2007 Non-Facilities Management Awards and Obligations................................................................................................................. 4 FY 2007 Obligations to Non-Facilities Management Awards by Organization Type ............................................................................... 5 Geographic Distribution of FY 2007 Obligations to Non-Facilities Management Awards .......................................................................

65

FY 1995 cost savings report  

SciTech Connect

Fiscal Year (FY) 1995 challenged us to dramatically reduce costs at Hanford. We began the year with an 8 percent reduction in our Environmental Management budget but at the same time were tasked with accomplishing additional workscope. This resulted in a Productivity Challenge whereby we took on more work at the beginning of the year than we had funding to complete. During the year, the Productivity Challenge actually grew to 23 percent because of recissions, Congressional budget reductions, and DOE Headquarters actions. We successfully met our FY 1995 Productivity Challenge through an aggressive cost reduction program that identified and eliminated unnecessary workscope and found ways to be more efficient. We reduced the size of the workforce, cut overhead expenses, eliminated paperwork, cancelled construction of new facilities, and reengineered our processes. We are proving we can get the job done better and for less money at Hanford. DOE`s drive to do it ``better, faster, cheaper`` has led us to look for more and larger partnerships with the private sector. The biggest will be privatization of Hanford`s Tank Waste Remediation System, which will turn liquid tank waste into glass logs for eventual disposal. We will also save millions of dollars and avoid the cost of replacing aging steam plants by contracting Hanford`s energy needs to a private company. Other privatization successes include the Hanford Mail Service, a spinoff of advanced technical training, low level mixed waste thermal treatment, and transfer of the Hanford Museums of Science and history to a private non-profit organization. Despite the rough roads and uncertainty we faced in FY 1995, less than 3 percent of our work fell behind schedule, while the work that was performed was completed with an 8.6 percent cost under-run. We not only met the FY 1995 productivity challenge, we also met our FY 1995-1998 savings commitments and accelerated some critical cleanup milestones. The challenges continue. Budgets remain on the decline, even while the expectations increase. Yet we are confident in our ability to keep our commitments and goals by identifying new efficiencies in the Hanford cleanup program. We will also pursue new contracting arrangements that will allow us to foster greater competition and use more commercial practices while maintaining our commitment to the safety and health of the public, our workers, and the environment.

Andrews-Smith, K.L., Westinghouse Hanford

1996-06-21T23:59:59.000Z

66

Microsoft Word - FY08AnnualReport.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Annual Procurement and Financial Assistance Report for FY 2008 Page 2 of 40 TABLE OF CONTENTS Introduction................................................................................................................................................................................................. 3 Summary..................................................................................................................................................................................................... 4 Highlights of Fiscal Year 2008 ................................................................................................................................................................... 5 FY 2008 Obligations to Facilities Management Contracts.........................................................................................................................

67

FY2006SmallBusinessReport.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEPARTMENT OF ENERGY DEPARTMENT OF ENERGY ANNUAL REPORT TO THE SECRETARY SMALL BUSINESS PROGRAMS FISCAL YEAR (FY) 2006 Table of Contents I. INTRODUCTION Page 3 II. DEPARTMENT OF ENERGY (DOE) MISSION Page 3 III. OFFICE of SMALL and DISADVANTAGED BUSINESS UTILIZATION (OSDBU) Page 3 IV. LAWS & REGULATIONS Page 3 V. DEPARTMENT OF ENERGY BUSINESS MODEL Page 4 A. Facility Management Contractors (FMC) B. Non-FMCs VI. SMALL BUSINESS GOALS Page 5 A. Government Statutory Goals B. FY 2006 DOE Negotiated Goals VII. PRIME CONTRACT SMALL BUSINESS ACHIEVEMENTS Page 7 A. 8(a) and Small & Disadvantaged Business (SDB) B. Women-Owned Small Business (WOSB) C. HUBZone Small Business

68

SERI Biomass Program. FY 1983 annual report  

DOE Green Energy (OSTI)

This report summarizes the progress and research accomplishments of the SERI Biomass Program during FY 1983. The SERI Biomass Program consists of three elements: Aquatic Species, Anaerobic Digestion, and Photo/Biological Hydrogen. Each element has been indexed separately. 2 references, 44 figures, 22 tables.

Corder, R.E.; Hill, A.M.; Lindsey, H.; Lowenstein, M.Z.; McIntosh, R.P.

1984-02-01T23:59:59.000Z

69

FY08 Engineering Research and Technology Report  

Science Conference Proceedings (OSTI)

This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

Minichino, C; McNichols, D

2009-02-24T23:59:59.000Z

70

PADS FY 2010 Annual Reports  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A00 - SMALL BUSINESS 1,890 1,921,241,548 A00 - SMALL BUSINESS 1,890 1,921,241,548 B22 - LARGE BUSINESS 979 2,388,060,659 C0F - FEDERAL GOVERNMENT 478 388,669,688 C0L - LOCAL GOVT/MUNICIPALITY 2 125,000 C3N - NON-PROFIT ORGANIZATION 24 282,357,286 C4N - SHELTERED WORKSHOP 1 831,263 E1N - FOREIGN CONTRACTOR 1 -16,921,324 I0E - EDUCATIONAL INSTITUTION 9 4,970,555 8 UNIQUE VALUES 3,384 4,969,334,675 Geographic Distribution of FY 2010 Obligations to Non-Facilities Management Awards STATE NUMBER OF AWARDS FY 2010 OBLIGATIONS ALABAMA (AL) 12 2,445,191 ALASKA (AK) 5 3,073,629 ARIZONA (AZ) 96 8,732,671 ARKANSAS (AR) 17 3,142,515 CALIFORNIA (CA) 174 102,574,020 COLORADO (CO) 233 155,184,318 CONNECTICUT (CT) 24 3,663,352 DELAWARE (DE) 3 136,752 DISTRICT OF COLUMBIA (DC) 770 524,559,400

71

FY 2005 Progress Report for Fuels Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Progress Report Progress rePort for fuels technologies Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle F r e e d o m C A r A n d V e h i C l e T e C h n o l o g i e s P r o g r A m U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2005 Progress Report for Fuels Technologies Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Stephen Goguen January 2006 Fuels Technologies FY 2005 Progress Report Contents I Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 II Fuels and Lubricants to Enable High Efficiency Engine Operation while Meeting 2007 - 2010 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

72

ASCOT FY-1980 progress report  

DOE Green Energy (OSTI)

An overview of the accomplishments of the DOE Atmospheric Studies in Complex Terrain (ASCOT) program during FY-1980 is presented. Fiscal Year 1980 was the second in a three to four year ASCOT study being conducted in The Geysers area of Northern California to achieve the following objectives: to augment the present knowledge of the physical mechanisms involved in the development, perpetuation, and breakup of nocturnal drainage flows; to develop an integrated measurement and modeling methodology to perform air quality impact assessment and control strategies for energy development in areas subject to drainage flows; and to provide the developed methodology with special applications to the H/sub 2/S emissions associated with The Geysers geothermal development. This year the focus of the work was on the major areas of reducing, analyzing and modeling data taken during the July 1979 field experiment within the Anderson Creek Valley at The Geysers and planning and executing a major field experiment in September 1980.

Dickerson, M.H.; Gudiksen, P.H.

1980-11-01T23:59:59.000Z

73

Photovoltaic Program Branch annual report, FY 1989  

DOE Green Energy (OSTI)

This report summarizes the progress of the Photovoltaic (PV) Program Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30, 1989. The branch is responsible for managing the subcontracted portion of SERI's PV Advanced Research and Development Project. In fiscal year (FY) 1989, this included nearly 50 subcontracts, with a total annualized funding of approximately $13.1 million. Approximately two-thirds of the subcontracts were with universities, at a total funding of nearly $4 million. The six technical sections of the report cover the main areas of the subcontracted program: Amorphous Silicon Research, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, New Ideas, and University Participation. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1989, and future research directions. Each report will be cataloged individually.

Summers, K A [ed.

1990-03-01T23:59:59.000Z

74

Theoretical Division annual report, FY 1975. [LASL  

SciTech Connect

This report presents an overview of the activities in the Theoretical Division and a summary of research highlights during FY 1975. It is intended to inform a wide audience about the theoretical work of the LASL and, therefore, contains introductory material which places recent advances in a broader context. The report is organized into two special interest reports: reactor safety research and the Advanced Research Committee, and 11 reports from the T-Division group leaders on the work of their respective groups. Main interests and responsibilities are outlined including the relationship of the group's work to the work of other T-Division groups and other divisions at the Laboratory. The description of research highlights for FY 1975 explains in a fairly simple, straightforward manner the major recent advances and their significance. Each group report is followed by a publication list for FY 1975 (330 references) and a list of talks given outside the Laboratory (140 references). 29 figures. (auth)

Carruthers, P.A.

1976-02-01T23:59:59.000Z

75

Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on

76

Vehicle Technologies Office: FY 2004 Progress Report for High Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for High Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for High Strength Weight Reduction Materials on

77

Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on

78

Vehicle Technologies Office: FY 2005 Progress Report for High Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Progress Report 5 Progress Report for High Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for High Strength Weight Reduction Materials on

79

WINCO Metal Recycle annual report, FY 1993  

Science Conference Proceedings (OSTI)

This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

Bechtold, T.E. [ed.

1993-12-01T23:59:59.000Z

80

Photovoltaic Subcontract Program. Annual report, FY 1992  

DOE Green Energy (OSTI)

This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

Not Available

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Vehicle Technologies Office: FY 2004 Progress Report for Advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for Advanced Combustion Engine Research and Development to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Advanced Combustion Engine Research and Development on Digg Find More places to share Vehicle Technologies Office: FY 2004

82

FY 2011 Annual Performance Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Performance Reports » FY 2011 Annual Performance Annual Performance Reports » FY 2011 Annual Performance Report FY 2011 Annual Performance Report DOE's FY 2011 Annual Performance Report (APR) presents the performance results for fiscal year 2011 that contributed to the achievement of goals identified in the President's fiscal year 2011 budget. The performance measures in this report were initially outlined in the Department's FY 2011 Congressional Budget Request. After final congressional budget negotiations, some performance targets were revised to reflect changes in funding levels in enacted appropriations. DOE's FY 2011 Summary Report provides highlights of key financial and performance information that demonstrates DOE's accountability to ensure America's security and prosperity by addressing its energy,

83

NREL photovoltaic program FY 1997 annual report  

DOE Green Energy (OSTI)

This report summarizes the in-house and subcontracted research and development (R and D) activities under the NREL PV Program from October 1, 1996, through September 30, 1997 (FY 1997). The NREL PV Program is part of the US Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996--2000. The FY 1997 budget authority for carrying out the NREL PV Program was $39.3 million in operating funds and $0.4 million in capital equipment funds. Subcontract activities represent a major part of the NREL PV Program, with $21.8 million (55% of PV funds) going to some 84 subcontractors. Cost sharing by industry added almost $8.8 million to the subcontract R and D activities with industry.

McConnell, R.D.; Hansen, A.; Smoller, S.

1998-06-01T23:59:59.000Z

84

FY 2011 Agency Financial Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Foreword Foreword he Reports Consolidation Act of 2000 authorizes Federal agencies, with the Office of Management and Budget's (OMB) concurrence, to consolidate various reports in order to provide performance, financial and related information in a more meaningful and useful format. The Department of Energy (Department or DOE) has chosen an alternative reporting to the consolidated Performance and Accountability Report and instead, produces an Agency Financial Report, an Annual Performance Report and a Summary of Performance and Financial Information, pursuant to the OMB Circular A-136. This reporting approach simplifies and streamlines the performance presentations while utilizing the Internet for providing and leveraging additional performance

85

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program I. IntroductIon 2 Office of Fossil Energy Fuel Cell Program FY 2010 Annual Report 3 FY 2010 Annual Report Office of...

86

Office Inspector General DOE Annual Performance Report FY 2008, Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

Inspector General DOE Annual Performance Report FY 2008, Inspector General DOE Annual Performance Report FY 2008, Annual Performance Plan FY 2009 Office Inspector General DOE Annual Performance Report FY 2008, Annual Performance Plan FY 2009 During Fiscal Year (FY) 2008, we reviewed a variety of critical areas relevant to the Department's mission priorities. One of our goals, for example, was to examine possible programmatic improvements in Department operations relating to cyber security and contract management. Overall, our efforts resulted in the issuance of over 70 audit and inspection reports containing recommendations for enhancing Departmental operations, with likely savings of over $7 million. Further as a result of our investigative efforts, we obtained 20 criminal convictions, recovered $22.8 million in

87

NREL Photovoltaic Program FY 1996 Annual Report  

DOE Green Energy (OSTI)

This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

Not Available

1997-08-01T23:59:59.000Z

88

NREL Photovoltaic Program FY 1996 Annual Report  

SciTech Connect

This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

1997-08-01T23:59:59.000Z

89

House Report 108-576, FY 2005 House Report for Commerce ...  

Science Conference Proceedings (OSTI)

Taken from House Report 108-576, FY 2005 House Report for Commerce, Justice, and State Appropriations bill. SCIENTIFIC ...

2010-10-05T23:59:59.000Z

90

Idaho National Laboratorys FY09 & FY10 Greenhouse Gas Report  

Science Conference Proceedings (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2009 and 2010 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL's GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries, but are a consequence of INL's activities). This inventory found that INL generated 103,590 and 102,413 MT of CO2-equivalent emissions during FY09 and FY10, respectively. The following conclusions were made from looking at the results of the individual contributors to INL's FY09 and FY10 GHG inventories: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

Jennifer D. Morton

2011-06-01T23:59:59.000Z

91

FY 2009 Annual Performance Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AnnuAl PerformAnce rePort Working to Save the Planet DOE/CF-0044 CONTENTS Introduction ....................................................................................................................................1 Mission ...........................................................................................................................................2 Message from the Secretary ...........................................................................................................3 Performance Background...............................................................................................................5 High Priority Performance Goals ...................................................................................................7

92

FY 2012 DOE Agency Financial Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reports » Agency Financial Reports » FY 2012 DOE Agency Financial Reports » Agency Financial Reports » FY 2012 DOE Agency Financial Report FY 2012 DOE Agency Financial Report Notable accomplishments in FY 2012 include: the first electric grid-connected tidal energy project off the coast of Maine a new approach to sea water desalination that could lower the costs of water purification new insights into the molecular structure of a hydrogen fuel cell that could aid in achieving the goal of producing electricity for transportation new advances in engineering inedible plant biomass into biofuels In the national security area, we met a major milestone of eliminating 450 metric tons of highly enriched Russian uranium taken from nuclear weapons and the dismantlement of the last remaining B53 nuclear bomb. FY 2012 Agency Financial Report

93

Advanced evaporator technology progress report FY 1992  

SciTech Connect

This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

1995-01-01T23:59:59.000Z

94

FY 2010 DOE Agency Financial Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agency Financial Reports » FY 2010 DOE Agency Financial Agency Financial Reports » FY 2010 DOE Agency Financial Report FY 2010 DOE Agency Financial Report The Department's efforts brought it closer to its goals of: expanding the frontiers of science (science, discovery and innovation) creating clean energy jobs (economic prosperity) curbing the carbon pollution that threatens our planet (clean, secure energy) reducing nuclear dangers (national security) FY 2010 was the second year of implementing the American Recovery and Reinvestment Act (Recovery Act). The Department contributed to the Administration's goal of stimulating the U.S. economy through ramping up its activities in energy-related areas of spending, project performance, and job creation. FY 2010 DOE Agency Financial Report More Documents & Publications

95

Annual Report: Photovoltaic Subcontract Program FY 1990  

DOE Green Energy (OSTI)

This report summarizes the progress of the Photovoltaic (PV) Subcontract Program of the Solar Energy Research Institute (SERI) from October 1, 1989 through September 30, 1990. The PV Subcontract Program is responsible for managing the subcontracted portion of SERI's PV Advanced Research and Development Project. In fiscal year 1990, this included more than 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of the subcontracts were with universities at a total funding of nearly $3.3 million. The six technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports on its progress.

Summers, K. A.

1991-03-01T23:59:59.000Z

96

Advanced Fuels Campaign FY 2011 Accomplishments Report  

SciTech Connect

One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).

Not Listed

2011-11-01T23:59:59.000Z

97

Separations and Waste Forms Research and Development: FY 2012 Accomplishments Report  

Science Conference Proceedings (OSTI)

This report contains FY 2012 accomplishments for the Separations and Waste Form Research and Development Project.

Not Listed

2013-02-01T23:59:59.000Z

98

FY 2005 LDRD Report to Congress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy United States Department of Energy Laboratory, Plant or Site Directed Research and Development Report Project List -- Fiscal Year 2005 ANL - Argonne National Lab Project ID FY Total Project Name Multidisciplinary Theory P/ANL2003-336 $298000 The Use of Synchrotron Radiation Sources for Homeland Security - Terahertz and X-Ray Radiation P/ANL2003-337 $241600 Modeling Near-Field Atmospheric Dispersion and the Potential Health and Economic Impacts from Terrorism Scenarios Involving "Dirty Bombs" or Similar Devices P/ANL2003-338 $218500 Core-Shell Nanocrystal Spring Magnets P/ANL2003-340 $60400 Simulation and Modeling of Reactivity in Nanoporous Materials P/ANL2003-341 $46700 Development of Germanium Double Sided Strip Detectors for Nuclear Imaging Applications

99

FY 2010 LDRD Report to Congress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy United States Department of Energy Washington, DC 20585 FY 2010 LDRD Report to Congress U.S. Department of Energy The images on the front cover represent science and technology at the DOE national laboratories produced under the LDRD Program that support the Department of Energy and Department of Homeland Security's major missions. The images, in order, include: an 1) ultrasonic macro-blade cutting device used for sampling and analyzing the building blocks of the solar system to determine the particles' makeup, 2) a modeling capability from quantum computers that illustrates the electron density in the electrostatic electron-confinement chamber; 3) porous wall hollow glass microspheres used as a solid-state storage medium for storage and release

100

Polycrystalline thin films FY 1992 project report  

DOE Green Energy (OSTI)

This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

Zweibel, K. (ed.)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Polycrystalline thin films FY 1992 project report  

DOE Green Energy (OSTI)

This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

Zweibel, K. [ed.

1993-01-01T23:59:59.000Z

102

Environmental research program: FY 1987, annual report  

SciTech Connect

This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. The Program's Annual Report contains summaries of research performed during FY 1987 in the areas of atmospheric aerosols, flue gas chemistry, combustion, membrane bioenergetics, and analytical chemistry. The main research interests of the Atmospheric Aerosol Research group concern the chemical and physical processes that occur in haze, clouds, and fogs. For their studies, the group is developing novel analytical and research methods for characterizing aerosol species. Aerosol research is performed in the laboratory and in the field. Studies of smoke emissions from fires and their possible effects on climatic change, especially as related to nuclear winter, are an example of the collaboration between the Atmospheric Aerosol Research and Combustion Research Groups.

Not Available

1988-03-01T23:59:59.000Z

103

Geothermal injection technology program. Annual progress report, FY-85  

DOE Green Energy (OSTI)

This report summarizes injection research conducted during FY-1985. The objective was to develop a better understanding of the migration and impact of fluids injected in geothermal reservoirs. Separate abstracts have been prepared for individual project summaries. (ACR)

Not Available

1986-02-01T23:59:59.000Z

104

FY 2013 DOE Agency Financial Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agency Financial Reports » FY 2013 DOE Agency Financial Agency Financial Reports » FY 2013 DOE Agency Financial Report FY 2013 DOE Agency Financial Report Notable accomplishments in FY 2013: Investments in energy transformation have resulted in testing of greenhouse gas storage, the first grid-connected offshore wind prototype, cost competitive advances in cellulosic ethanol, the first commercial geothermal system to deliver power to the electric grid, improved efficiency and cyber security for the electric grid, new appliance efficiency standards, the first full-scale nuclear reactor simulation. Basic research in the science field yielded several results, such as: the discovery of a powerful new microbe, major improvements to organic electronics, high-resolution molecular images, 3D printed batteries, improved efficiency in thermoelectric devices.

105

FY 2013 DOE Agency Financial Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agency Financial Reports » FY 2013 DOE Agency Financial Agency Financial Reports » FY 2013 DOE Agency Financial Report FY 2013 DOE Agency Financial Report Notable accomplishments in FY 2013: Investments in energy transformation have resulted in testing of greenhouse gas storage, the first grid-connected offshore wind prototype, cost competitive advances in cellulosic ethanol, the first commercial geothermal system to deliver power to the electric grid, improved efficiency and cyber security for the electric grid, new appliance efficiency standards, the first full-scale nuclear reactor simulation. Basic research in the science field yielded several results, such as: the discovery of a powerful new microbe, major improvements to organic electronics, high-resolution molecular images, 3D printed batteries, improved efficiency in thermoelectric devices.

106

Laboratory Directed Research and Development FY 2000 Annual Report  

SciTech Connect

This Annual Report provides an overview of the FY2000 Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) and presents a summary of the results achieved by each project during the year.

Al-Ayat, R

2001-05-24T23:59:59.000Z

107

SOP Quarterly Report FY-94 3rd Quarter  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Vehicle Program Site Operator Program Quarterly Progress Report for April thru June 1994 (3rd Quarter of FY-1994) INEL-940072-Qtr 3 Formerly: EGG-EP-11237-Qtr 3 D. M. Kiser...

108

Savannah River Ecology Laboratory FY2006 Annual Technical Progress Report  

SciTech Connect

FY2006 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of the University of Georgia operating on the Savannah River Site in Aiken, County, SC.

Paul M. Bertsch

2006-10-23T23:59:59.000Z

109

DOE Chief FOIA Officer Report for FY 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

communications that are protected by legal privilege. As stated in the Annual Report for FY2011, Exemption 5 was used 102 times to deny requests in whole or in part. In...

110

Laboratory Directed Research and Development Program FY 2008 Annual Report  

E-Print Network (OSTI)

to the conversion of biomass to value-added chemicals. ThisChemical Sciences Division LDRD FY2008 Annual Report LB07006 Conversion of Glycerol, other Carbohydrates and Aromatic Compounds from Biomass

editor, Todd C Hansen

2009-01-01T23:59:59.000Z

111

Annual Performance Report FY 2004 Annual Performance Plan FY...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reports Calendar Year Reports Recovery Act Peer Reviews DOE Directives Performance Strategic Plan Testimony Financial Statements Semiannual Reports Work Plan Mission About Us...

112

Enhanced surveillance program FY97 accomplishments. Progress report  

Science Conference Proceedings (OSTI)

This annual report is one volume of the Enhanced Surveillance Program (ESP) FY97 Accomplishments. The complete accomplishments report consists of 11 volumes. Volume 1 includes an ESP overview and a summary of selected unclassified FY97 program highlights. Volume 1 specifically targets a general audience, reflecting about half of the tasks conducted in FY97 and emphasizing key program accomplishments and contributions. The remaining volumes of the accomplishments report are classified, organized by program focus area, and present in technical detail the progress achieved in each of the 104 FY97 program tasks. Focus areas are as follows: pits; high explosives; organics; dynamics; diagnostics; systems; secondaries; nonnuclear materials; nonnuclear components; and Surveillance Test Program upgrades.

Mauzy, A. [ed.; Laake, B. [comp.

1997-10-01T23:59:59.000Z

113

House Report 108-576, FY 2005 House Report for Commerce ...  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Taken from House Report 108-576, FY 2005 House Report for Commerce, Justice, and State Appropriations bill. ...

2010-10-05T23:59:59.000Z

114

FY 2006 LDRD Report to Congress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project ID FY Total Project Name Planning for a New Neutrino Experiment at a Nuclear Reactor PANL2005-160 116700 Femtosecond Pulses of Coherent Synchrotron Radiation from an...

115

Solar thermal power systems. Annual technical progress report, FY 1978  

DOE Green Energy (OSTI)

A technical progress report on the DOE Solar Thermal Power Systems Program is given. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the prior to FY 1978 is given; the significant achievements and real progress of each project during FY 1978 are described; and future project activities as well as anticipated significant achievements for each project are forecast. (WHK)

Not Available

1979-06-01T23:59:59.000Z

116

NEPA Lessons Learned Quarterly Report - 4th Quarter FY 1994  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LESSONS LEARNED QUARTERLY REPORT 4TH QUARTER FY1994 Oflicx of NEPA Oversight U.S. Department of Energy December ~ 1994 INTRODUCTION . To fdster continuing improvementof the Department's National Environmental policy Act (NEPA) compliance program, the Secretarial Policy Statement on NEP& issued June 13, 1994, requires the OffIceof Environment StUetyand Health to soiicit comments tkom the NEPA Document Manager, the NEPA Compliance Offker, and team members after completing each environmental impact statement and environmental assessment on lessons learned in the proces~ and to distribute a -Y SUmmW tOall NEpA Gmplf-c Offfcem and NEPA Document Managem On August Q 1994 the Oftice of NEPA Oversight distributed an interhddraft kSSOI.W ]WImed questionnaire to NEPA contacts to be used for reporting on environmental impact statements and environmental assessments approvedbetween

117

NEPA Lessons Learned Quarterly Report - 1st Quarter FY 1995  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . National Environmental Policy Act N E P . A LESSONS Office of NEPA LEARNED QUARTERLY REPORT 1ST QUARTER FY 1995 Policy and Assistance U.S. Department of Energy March 1,1995 ODU- To foster continuing improvement of the Department's National Environmental Policy Act (NEPA) compliance program, the Secretarial Policy Statement on NEPA, issued June 13, 1994, requires the Office of Environment Safety and Health to solicit comments from the NEPA Document Manager, the NEPA Compliance Officer, and team members after completing each environmental impact statement and environmental assessment on lessons learned in the process, and to distribute a quarterly summary to all,NEPA Compliance Officers and NEPA Document Managers. This second quarterly report summarizes the lessons learned for documents completed between October 1 and December 31, 1994. It is based on responses to the revised

118

Advanced Fuels Campaign FY 2010 Accomplishments Report  

Science Conference Proceedings (OSTI)

The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word fuel is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

Lori Braase

2010-12-01T23:59:59.000Z

119

FY 2009 Annual Progress Report for Advanced Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

PROGRESS REPORT PROGRESS REPORT FOR ADVANCED POWER ELECTRONICS annual progress report 2009 2009 2009 2009 2009 2009 2009 2009 2009 U.S. Department of Energy FreedomCAR and Vehicle Technologies, EE-2G 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2009 Annual Progress Report for Advanced Power Electronics Prepared by: Susan A. Rogers, Technology Development Manager Submitted to: Energy Efficiency and Renewable Energy Vehicle Technologies Program January 2010 Advanced Power Electronics FY 2009 Progress Report Contents Page Acronyms and Abbreviations ..............................................................................................................v

120

Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995  

Science Conference Proceedings (OSTI)

In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

NONE

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear waste treatment program: Annual report for FY 1987  

SciTech Connect

Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

Brouns, R.A.; Powell, J.A. (comps.)

1988-09-01T23:59:59.000Z

122

FY 2010 Annual Performance Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance Reports » FY 2010 Annual Performance Performance Reports » FY 2010 Annual Performance Report FY 2010 Annual Performance Report Department of Energy's Annual Performance Report (APR) compares the Department's performance results for fiscal year 2010 with goals set in the President's fiscal year 2010 budget. The performance measures discussed in this report were outlined in the Department's congressional budget justifications and carried through the actual execution of the budget during the fiscal year. Performance information is also presented for projects funded by the American Recovery and Reinvestment Act of 2009. Provides key performance information that demonstrates DOE's accountability to the American people for discovering the solutions to power and secure America's future. Documents for Download

123

FY 2009 Annual Performance Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Performance Reports » FY 2009 Annual Performance Annual Performance Reports » FY 2009 Annual Performance Report FY 2009 Annual Performance Report DOE's Annual Performance Report (APR) outlines the Department's performance in fiscal year 2009 against the goals that were set in the President's fiscal year 2009 budget. The performance measures discussed in this report were outlined in the Department's congressional budget justifications and carried through the actual execution of the budget during the fiscal year. Because these measures were created before final congressional allocations, in some cases the actual appropriation levels did not match the Department's request and may have affected a program's ability to meet its planned performance level. Performance information is also presented for projects funded by the American Recovery and Reinvestment Act of 2009.

124

FY 2009 Annual Performance Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Performance Reports » FY 2009 Annual Performance Annual Performance Reports » FY 2009 Annual Performance Report FY 2009 Annual Performance Report DOE's Annual Performance Report (APR) outlines the Department's performance in fiscal year 2009 against the goals that were set in the President's fiscal year 2009 budget. The performance measures discussed in this report were outlined in the Department's congressional budget justifications and carried through the actual execution of the budget during the fiscal year. Because these measures were created before final congressional allocations, in some cases the actual appropriation levels did not match the Department's request and may have affected a program's ability to meet its planned performance level. Performance information is also presented for projects funded by the American Recovery and Reinvestment Act of 2009.

125

Hangman Restoration Project Year-End Report FY2008.  

DOE Green Energy (OSTI)

This report covers the main goals of FY2008 from which the Work Elements were derived. The goals and products are listed by heading and the associated work elements are referenced in the text. A list of the FY2008 Work Elements is included as Appendix A. FY2008 witnessed the completion of the hntkwipn Management Plan and the first substantive efforts to restore the important habitats encompassed by the mitigation properties in the Upper Hangman Watershed. Native grasses were planted and germination was evaluated. Also, drain tiles that greatly altered the hydrologic function of the Sheep and Hangman Creek Flood Plains were removed and/or disrupted. Preparation for future restoration efforts were also made in FY2008. Designs were produced for the realignment of Sheep Creek and the decommissioning of seven drainage ditches within hntkwipn. A prioritization plan was drafted that greatly expands the area of focus for restoring native fish population in Hangman Creek.

Coeur d'Alene Tribe Department of Natural Resources.

2008-11-12T23:59:59.000Z

126

Ferrocyanide Safety Project: FY 1991 annual report  

SciTech Connect

The Hanford Ferrocyanide Task Team is addressing issues involving ferrocyanide precipitates in the single-shell waste storage tanks (SSTs), in particular the risk of explosion. This Task Team, which is composed of researchers from Westinghouse Hanford Company (WHC), Pacific Northwest Laboratory (PNL), an outside consultants, was formed in response to the need for an updated analysis of safety questions on the Hanford SSTSs. The Ferrocyanide Safety Project, discussed in this report, is being conducted by PNL as part of the Waste Tank Safety Program led by WHC. The overall purpose of the WHC program, which is sponsored by the US Department of Energy`s Tank Safety Project Office, is to provide technical information on ferrocyanide chemistry and its interaction and reactive behavior with other tank constituents. Ultimately, this information will be used to maintain the tanks in a safe condition, implement interim stabilization strategies, and identify optimal disposal options. While by itself ferrocyanide is a stable complex of ferrous ion and cyanide, it can be made to explode in the laboratory in the presence of oxidizing materials such as nitrates and/or nitrites temperatures above 280{degree}C or by sufficient electrical spark. The specific goal of the PNL project is so determine the conditions necessary for the ferrocyanide-bearing wastes in Hanford SSTs to represent a hazard, to determine the conditions where these same wastes am not a hazard, or to determine the conditions which are necessary to assure the wastes are safe prior to treatment for permanent disposal. This annual report gives the results of the work conducted by PNL in FY 1991. The activities mainly focused on preparing and characterizing synthetic wastes and alkali nickel ferrocyanides produced using the In-Farm cesium scavenging flowsheet and pure potential nickel ferrocyanides that could be produced by all of the cesium scavenging flowsheets.

Hallen, R.T.; Burger, L.L.; Hockey, R.L.; Lilga, M.A.; Scheele, R.D.; Tingey, J.M.

1992-06-01T23:59:59.000Z

127

Ferrocyanide Safety Project: FY 1991 annual report  

SciTech Connect

The Hanford Ferrocyanide Task Team is addressing issues involving ferrocyanide precipitates in the single-shell waste storage tanks (SSTs), in particular the risk of explosion. This Task Team, which is composed of researchers from Westinghouse Hanford Company (WHC), Pacific Northwest Laboratory (PNL), an outside consultants, was formed in response to the need for an updated analysis of safety questions on the Hanford SSTSs. The Ferrocyanide Safety Project, discussed in this report, is being conducted by PNL as part of the Waste Tank Safety Program led by WHC. The overall purpose of the WHC program, which is sponsored by the US Department of Energy's Tank Safety Project Office, is to provide technical information on ferrocyanide chemistry and its interaction and reactive behavior with other tank constituents. Ultimately, this information will be used to maintain the tanks in a safe condition, implement interim stabilization strategies, and identify optimal disposal options. While by itself ferrocyanide is a stable complex of ferrous ion and cyanide, it can be made to explode in the laboratory in the presence of oxidizing materials such as nitrates and/or nitrites temperatures above 280{degree}C or by sufficient electrical spark. The specific goal of the PNL project is so determine the conditions necessary for the ferrocyanide-bearing wastes in Hanford SSTs to represent a hazard, to determine the conditions where these same wastes am not a hazard, or to determine the conditions which are necessary to assure the wastes are safe prior to treatment for permanent disposal. This annual report gives the results of the work conducted by PNL in FY 1991. The activities mainly focused on preparing and characterizing synthetic wastes and alkali nickel ferrocyanides produced using the In-Farm cesium scavenging flowsheet and pure potential nickel ferrocyanides that could be produced by all of the cesium scavenging flowsheets.

Hallen, R.T.; Burger, L.L.; Hockey, R.L.; Lilga, M.A.; Scheele, R.D.; Tingey, J.M.

1992-06-01T23:59:59.000Z

128

FY2002 Annual Progress Report for the Light Vehicle Propulsioin & Ancillary Subsystems Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Vehicle Technologies & Vehicle Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2002 Annual Progress Report for the Light Vehicle Propulsion & Ancillary Subsystems Program Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy Office of FreedomCAR & Vehicle Technologies Vehicle Systems Team Robert Kost, Team Leader January 2003 Light Vehicle Propulsion & Ancillary Subsystems Program FY 2002 Annual Progress Report CONTENTS I. INTRODUCTION ............................................................................................... 1 II. TECHNOLOGY REQUIREMENTS DEFINITION....................................... 3 A. Simulation Model Development ..................................................................... 3 1. Improvement, Validation and Application of Advanced

129

FY 2006 SC Laboratory Performance Report Cards | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

6 SC Laboratory Performance Report Cards 6 SC Laboratory Performance Report Cards Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards FY 2007 SC Laboratory Performance Report Cards FY 2006 SC Laboratory Performance Report Cards Ames: Oct 1, 2005 - Sept 30, 2006 Argonne: Oct 1, 2005 - Sept 30, 2006 BNL: Oct 1, 2005 - Sept 30, 2006 Fermilab: Oct 1, 2005 - Sept 30, 2006 LBNL: Oct 1, 2005 - Sept 30, 2006 ORNL: Oct 1, 2005 - Sept 30, 2006 PNNL: Oct 1, 2005 - Sept 30, 2006 PPPL: Oct 1, 2005 - Sept 30, 2006

130

Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Progress Report FY 2012 Progress Report for Energy Storage R&D to someone by E-mail Share Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Facebook Tweet about Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Twitter Bookmark Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Google Bookmark Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Delicious Rank Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Digg Find More places to share Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports

131

FY 2009 DOE Agency Financial Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 DOE Agency Financial 09 DOE Agency Financial Report FY 2009 DOE Agency Financial Report The American Recovery and Reinvestment Act of 2009, which was signed into law by President Obama on February 17, 2009. It is an unprecedented effort to jumpstart our economy and create or save millions of jobs. The Recovery Act also made a down payment on our clean energy future. DOE received nearly $37 billion through the Recovery Act to complement the base appropriation of $34 billion. The base appropriation increased by over $9 billion from the FY 2008 level due to additional funding of the Advanced Technology Vehicles Manufacturing Loan program and numerous science, energy, and national security initiatives. FY 2009 DOE Agency Financial Report More Documents & Publications Audit Report: OAS-FS-12-03

132

FY 2007 Annual Uncosted Balances Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Uncosted Balances Reports » FY 2007 Annual Annual Uncosted Balances Reports » FY 2007 Annual Uncosted Balances Report FY 2007 Annual Uncosted Balances Report The Department faced significant challenges due to the unusually long Continuing Resolution (CR), which extended until April 2007. Under the CR the Department must act conservatively to ensure that obligations and costs are restrained in order to mitigate any negative impacts should actual appropriations differ significantly from planned and budgeted amounts. In addition, the Department is prohibited from engaging in any "new starts" for contracts or projects, which means that these activities are deferred until later in the year, thereby increasing the amount of uncosted balances at year-end since the costing cycle is, in essence, no longer on a fiscal

133

Natural System Evaluation and Tool Development FY11 Progress Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural System Evaluation and Tool Development FY11 Progress Report Natural System Evaluation and Tool Development FY11 Progress Report Natural System Evaluation and Tool Development FY11 Progress Report The report describes selected aspects of progress for four major tasks: (1) development of a detailed R&D plan for natural system evaluation and tool development; (2) in-depth analsis of key attributes and new concepts identified in the R&D plan; (3) preliminary demonstration of new modeling and experimental tools; and (4) conceptual design of a databse for natural system evaluation. This includes discussions related to: 1) discrete fracture network simulation; 2) spatial heterogeneity in Kd; 3) literature review of radionuclide interactions with clay/clay minerals; 4) behavior of aqueous Pu(IV) and intrinsic Pu(IV) nanocolloids; 5) mechanical response of clay,

134

House Conference Report HRpt 106-1033 of PL 106-554 FY ...  

Science Conference Proceedings (OSTI)

"Taken from House Conference Report HRpt 106-1033 of PL 106-554 FY 2001 Omnibus Appropriations Act". MAKING ...

2010-10-05T23:59:59.000Z

135

FY06 High Strength Weight Reduction Materials Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

HigH StrengtH HigH StrengtH WeigHt reduction MaterialS U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2006 Progress Report for High Strength Weight Reduction Materials Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Advanced Materials Technologies Edward Wall Program Manager, OFCVT Rogelio Sullivan Advanced Materials Technologies Team Leader James Eberhardt Chief Scientist March 2006 High Strength Weight Reduction Materials FY 2006 Progress Report CONTENTS 1. INTRODUCTION................................................................................................................................... 1 2. MATERIALS DEVELOPMENT .......................................................................................................... 3

136

FY 2004 Annual Progress Report for Heavy Vehicle Systems Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

HEAVY HEAVY VEHICLE SYSTEMS OPTIMIZATION FreedomCAR and Vehicle Technologies Program U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2004 Annual Progress Report for Heavy Vehicle Systems Optimization Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Approved by Dr. Sidney Diamond Technology Area Development Specialist February 2005 Heavy Vehicle Systems Optimization Program FY 2004 Annual Report iii Contents Foreword by Dr. Sidney Diamond, FreedomCAR and Vehicle Technologies Program, Energy Efficiency and Renewable Energy, U.S. Department of Energy ................................. 1 I. Aerodynamic Drag Reduction......................................................................................................

137

FY2003 Progress Report for Automotive Propulsion Materials Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FreedomCAR and Vehicle Technologies FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 CONTENTS 1. INTRODUCTION ........................................................................................................... 1

138

Lead Slowing Down Spectrometer FY2013 Annual Report  

SciTech Connect

Executive Summary The Lead Slowing Down Spectrometry (LSDS) project, funded by the Materials Protection And Control Technology campaign, has been evaluating the feasibility of using LSDS techniques to assay fissile isotopes in used nuclear fuel assemblies. The approach has the potential to provide considerable improvement in the assay of fissile isotopic masses in fuel assemblies compared to other non-destructive techniques in a direct and independent manner. This report is a high level summary of the progress completed in FY2013. This progress included: Fabrication of a 4He scintillator detector to detect fast neutrons in the LSDS operating environment. Testing of the detector will be conducted in FY2014. Design of a large area 232Th fission chamber. Analysis using the Los Alamos National Laboratory perturbation model estimated the required number of neutrons for an LSDS measurement to be 10 to the 16th source neutrons. Application of the algorithms developed at Pacific Northwest National Laboratory to LSDS measurement data of various fissile samples conducted in 2012. The results concluded that the 235U could be measured to 2.7% and the 239Pu could be measured to 6.3%. Significant effort is yet needed to demonstrate the applicability of these algorithms for used-fuel assemblies, but the results reported here are encouraging in demonstrating that we are making progress toward that goal. Development and cost-analysis of a research plan for the next critical demonstration measurements. The plan suggests measurements on fresh fuel sub assemblies as a means to experimentally test self-attenuation and the use of fresh mixed-oxide fuel as a means to test simultaneous measurement of 235U and 239Pu.

Warren, Glen A.; Kulisek, Jonathan A.; Gavron, Victor A.; Danon, Yaron; Weltz, Adam; Harris, Jason; Stewart, T.

2013-10-29T23:59:59.000Z

139

ACE Merit Review Report FY2004  

NLE Websites -- All DOE Office Websites (Extended Search)

Merit Review and Peer Evaluation Merit Review and Peer Evaluation of FY 2004 DOE Advanced Combustion Engine R&D Argonne National Laboratory, Argonne, IL May 18-20, 2004 Office of Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program December 2004 Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Department of Energy Washington, DC 20585 December 13, 2004 Dear Colleague: This document summarizes the comments provided by the Review Panel for the FY 2004 Department of Energy (DOE) Advanced Combustion Engine R&D Merit Review and Peer Evaluation Meeting, the "ACE Review," held on May 18-20, 2004 at Argonne National Laboratory (ANL). The raw evaluations and comments of the panel were

140

Annual Report FY2012 University of Rhode Island  

E-Print Network (OSTI)

2006 5 4 New category (as of FY2006): US Dept. of Defense excluding funds from Army, Navy and Air Force. 1 5 6 New category (as of FY2006): University funds other than URI. 2 1 FY2007 FY2008 1 FY2009 1 FY DEVELOPMENT OF NEW ELECTROLYTE SYSTEMS LITHIUM ION BATTERY S $674,769 $674,769 LUCHT, BRETT INVESTIGATION

Rhode Island, University of

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Component Standard Research and Development - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Robert Burgess (Primary Contact), William Buttner, Matthew Post, Carl Rivkin, Chad Blake National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3823 Email: robert.burgess@nrel.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Subcontractor: SAE International, Troy, MI Project Start Date: Fiscal Year (FY) 2008 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Support development of new codes and standards * required for commercialization of hydrogen technologies. Create code language that is based on the latest scientific *

142

Insolation models, data and algorithms. Annual report FY78  

SciTech Connect

The FY78 objectives, descriptions, and results of insolation research tasks of the Solar Energy Research Institute's (SERI) Energy Resource Assessment Branch (ERAB) are presented. The tasks performed during FY78, the first year of operation for SERI/ERAB, addressed the resources of insolation (''sunshine'') and wind. Described in this report is the insolation portion of the FY78 ERAB efforts, which resulted in operational computer models for the thermal (broadband) and spectral insolation, a data base (SOLMET) for the U.S. geographical distribution of thermal insolation, preliminary research measurements of the thermal insolation on tilted surfaces, and a complete design concept of advanced instrumentation to measure automatically the insolation on 37 tilted surfaces at various orientations.

Hulstrom, R. L.

1978-12-01T23:59:59.000Z

143

Integral Fast Reactor Program. Annual progress report, FY 1993  

Science Conference Proceedings (OSTI)

This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1993. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R and D.

Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

1994-10-01T23:59:59.000Z

144

Integral Fast Reactor Program annual progress report, FY 1994  

Science Conference Proceedings (OSTI)

This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1994. Technical accomplishments are presented in the following areas of the IFR technology development activities: metal fuel performance; pyroprocess development; safety experiments and analyses; core design development; fuel cycle demonstration; and LMR technology R&D.

Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, J.J.

1994-12-01T23:59:59.000Z

145

Integral Fast Reactor Program. Annual progress report, FY 1992  

Science Conference Proceedings (OSTI)

This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R&D.

Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

1993-06-01T23:59:59.000Z

146

Analytical Chemistry Laboratory. Progress report for FY 1996  

DOE Green Energy (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

Green, D.W.; Boparai, A.S.; Bowers, D.L.

1996-12-01T23:59:59.000Z

147

FY2011 Annual Report for NREL Energy Storage Projects  

SciTech Connect

This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.

Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Lee, K. J.; Long, D.; Neubauer, J.; Santhangopalan, S.; Smith, K.

2012-04-01T23:59:59.000Z

148

FY2011 Annual Report for NREL Energy Storage Projects  

DOE Green Energy (OSTI)

This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.

Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Lee, K. J.; Long, D.; Neubauer, J.; Santhangopalan, S.; Smith, K.

2012-04-01T23:59:59.000Z

149

Geothermal Materials Development. Annual report FY 1991  

DOE Green Energy (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level I and II Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY 1991, utility company sponsored ``full cost`` recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY 1991 the DOE/GD-sponsored R&D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO{sub 2}- resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

Kukacka, L.E.

1991-12-01T23:59:59.000Z

150

Geothermal Materials Development, Annual Report FY 1991  

DOE Green Energy (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level I and II Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY 1991, utility company sponsored full cost'' recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY 1991 the DOE/GD-sponsored R D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO{sub 2}- resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

Kukacka, L.E.

1991-12-01T23:59:59.000Z

151

SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2003 THRU FY2046 VERSION 2003.1 VOLUME 2 [SEC 1 & 2  

Science Conference Proceedings (OSTI)

This report includes data requested on September 10, 2002 and includes radioactive solid waste forecasting updates through December 31, 2002. The FY2003.0 request is the primary forecast for fiscal year FY 2003.

BARCOT, R.A.

2003-12-01T23:59:59.000Z

152

Advanced Neutron Source (ANS) Project progress report, FY 1994  

SciTech Connect

The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

Campbell, J.H.; King-Jones, K.H. [eds.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Central Engineering Services

1995-01-01T23:59:59.000Z

153

FY10 Engineering Innovations, Research and Technology Report  

SciTech Connect

This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

2011-01-11T23:59:59.000Z

154

Decontamination and decommissioning surveillance and maintenance report for FY 1991  

SciTech Connect

The Decontamination and Decommissioning (D D) Program has three distinct phases: (1) surveillance and maintenance (S M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D D is devoted to S M at each of the sites. Our S M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

Not Available

1991-12-01T23:59:59.000Z

155

Analytical Chemistry Laboratory, progress report for FY 1993  

Science Conference Proceedings (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

Not Available

1993-12-01T23:59:59.000Z

156

FY 2008 Progress Report for Advanced Combustion Engine Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION COMBUSTION ENGINE TECHNOLOGIES annual progress report 2008 V e h i c l e T e c h n o l o g i e s P r o g r a m U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2008 Progress rePort For AdvAnced combustion engine technologies Energy Efficiency

157

DOE Solar Energy Technologies Program FY 2006 Annual Report  

DOE Green Energy (OSTI)

The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2007-07-01T23:59:59.000Z

158

DOE Solar Energy Technologies Program FY 2005 Annual Report  

SciTech Connect

The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2006-03-01T23:59:59.000Z

159

DOE Solar Energy Technologies Program: FY 2004 Annual Report  

SciTech Connect

The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2005-10-01T23:59:59.000Z

160

Aquatic species project report: FY 1991  

DOE Green Energy (OSTI)

This report summarizes the progress and research accomplishments of the Aquatic Species Project, which is managed by the National Renewable Energy Laboratory for the US Department of Energy. The project is focused on applying genetic engineering techniques to enhance the lipid, or oil, production of microalgae. Those lipids can be extracted and processed into high-energy liquid fuels such as diesel. Because microalgae require carbon dioxide, a major greenhouse'' gas, as a nutrient, project researchers also study the role that microalgae could play in a possible global climate change mitigation strategy.

Brown, L.M. (National Renewable Energy Lab., Golden, CO (United States)); Sprague, S. (USDOE, Washington, DC (United States))

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Herbaceous Energy Corps Program: Annual progress report for FY 1986  

SciTech Connect

This report describes the activities and accomplishments of the Herbaceous Energy Crops Program (HECP) for the year ending September 30, 1986. HECP is devoted to research on the development of terrestrial, nonwoody plant species for use as energy feedstocks. HECP emphasizes lignocellulosic forage crops. In FY 1986 screening and selection trials continued on 25 species of perennial and annual grasses and legumes in five projects in the Southeast and the Midwest-Lake States regions. Research also continued on the development of winter rapeseed as a diesel-fuel substitute. Activities in FY 1986 included genetic crosses and selections to incorporate atrazine resistance, development of Canola-quality winter rapeseed for the Southeast, and development of dwarf varieties. Production practices for double-cropped winter rapeseed in the Southeast were also examined. Exploratory research efforts in FY 1986 included the physiology and biochemistry of hydrocarbon production in latex-bearing plants, the productivity of cattail stands under sustained harvesting, the development of tissue culture techniques for hard-to-culture sorghum genotypes, and the start of a study to measure sustained productivity of old-field successional vegetation. Environmental and economic analyses in FY 1986 included studies on the uses of wetlands and wet soils, the use of lignocellulosic crops as an alcohol feedstock, the potential of direct combustion of lignocellulosic crops, and existing oilseed extraction facilities. 6 refs., 12 figs., 15 tabs.

Cushman, J.H.; Turhollow, A.F.; Johnston, J.W.

1987-05-01T23:59:59.000Z

162

FY 1992 work plan and technical progress reports  

SciTech Connect

The Desert Research Institute (DRI) is a division of the University of Nevada System devoted to multidisciplinary scientific research. For more than 25 years, DRI has conducted research for the US Department of Energy`s Nevada Field Office (DOE/NV) in support of operations at the Nevada Test Site (NTS). During that time, the research program has grown from an early focus on hydrologic studies to include the areas of geology, archaeology, environmental compliance and monitoring, statistics, database management, public education, and community relations. The range of DRI`s activities has also expanded to include a considerable amount of management and administrative support in addition to scientific investigations. DRI`s work plan for FY 1992 reflects a changing emphasis in DOE/NV activities from nuclear weapons testing to environmental restoration and monitoring. Most of the environmental projects from FY 1991 are continuing, and several new projects have been added to the Environmental Compliance Program. The Office of Technology Development Program, created during FY 1991, also includes a number of environmental projects. This document contains the FY 1992 work plan and quarterly technical progress reports for each DRI project.

NONE

1992-11-01T23:59:59.000Z

163

Laboratory Directed Research and Development Program FY 2004 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2005-04-01T23:59:59.000Z

164

Laboratory Directed Research and Development Program FY 2004 Annual Report  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2005-04-01T23:59:59.000Z

165

Laboratory Directed Research and Development Program FY 2005 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2006-04-01T23:59:59.000Z

166

Laboratory Directed Research and Development Program FY 2005 Annual Report  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel and seminal ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2006-04-01T23:59:59.000Z

167

Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Progress Report 11 Progress Report for Energy Storage R&D to someone by E-mail Share Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Facebook Tweet about Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Twitter Bookmark Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Google Bookmark Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Delicious Rank Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Digg Find More places to share Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports

168

Resource Analysis for Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Marc W. Melaina (Primary Contact), Michael Penev and Donna Heimiller National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3836 Email: Marc.Melaina@nrel.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Project Start Date: October 1, 2009 Project End Date: September 28, 2012 Fiscal Year (FY) 2012 Objectives Understand the hydrogen production requirements for a * future demand scenario Estimate low-carbon energy resources required to meet * the future scenario demand Compare resource requirements to current consumption * and projected future consumption Determine resource availability geographically and on a *

169

FY 2010 SC Laboratory Performance Report Cards | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

10 SC Laboratory Performance Report Cards 10 SC Laboratory Performance Report Cards Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards Ames: Oct 1, 2009 - Sept 30, 2010 Argonne: Oct 1, 2009 - Sept 30, 2010 BNL: Oct 1, 2009 - Sept 30, 2010 Fermilab: Oct 1, 2009 - Sept 30, 2010 LBNL: Oct 1, 2009 - Sept 30, 2010 ORNL: Oct 1, 2009 - Sept 30, 2010 PNNL: Oct 1, 2009 - Sept 30, 2010 PPPL: October 1, 2009 - September 30, 2010 SLAC: Oct 1, 2009 - Sept 30, 2010 JLab: Oct 1, 2009 - Sept 30, 2010 FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards

170

FY 2013 SC Laboratory Performance Report Cards | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

3 SC Laboratory Performance Report Cards 3 SC Laboratory Performance Report Cards Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards Ames: Oct 1, 2012 - Sept 30, 2013 Argonne: Oct 1, 2012 - Sept 30, 2013 BNL: Oct 1, 2012 - Sept 30, 2013 Fermilab: Oct 1, 2012 - Sept 30, 2013 LBNL: Oct 1, 2012 - Sept 30, 2013 ORNL: Oct 1, 2012 - Sept 30, 2013 PNNL: Oct 1, 2012 - Sept 30, 2013 PPPL: Oct 1, 2012 - Sept 30, 2013 SLAC: Oct 1, 2012 - Sept 30, 2013 JLab: Oct 1, 2012 - Sept 30, 2013 FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards

171

FY 2012 SC Laboratory Performance Report Cards | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

2 SC Laboratory Performance Report Cards 2 SC Laboratory Performance Report Cards Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards Ames: Oct 1, 2011 - Sept 30, 2012 Argonne: Oct 1, 2011 - Sept 30, 2012 BNL: Oct 1, 2011 - Sept 30, 2012 Fermilab: Oct 1, 2011 - Sept 30, 2012 LBNL: Oct 1, 2011 - Sept 30, 2012 ORNL: Oct 1, 2011 - Sept 30, 2012 PNNL: Oct 1, 2011 - Sept 30, 2012 PPPL: Oct 1, 2011 - Sept 30, 2012 SLAC: Oct 1, 2011 - Sept 30, 2012 JLab: Oct 1, 2011 - Sept 30, 2012 FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards

172

Vehicle Technologies Office: FY 2003 Progress Report for High-Strength  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for High-Strength Weight Reduction Materials to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for High-Strength Weight Reduction Materials on

173

FY 2011 SC Laboratory Performance Report Cards | U.S. DOE Office of Science  

NLE Websites -- All DOE Office Websites (Extended Search)

1 SC Laboratory Performance Report Cards 1 SC Laboratory Performance Report Cards Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards Ames: Oct 1, 2010 - Sept 30, 2011 Argonne: Oct 1, 2010 - Sept 30, 2011 BNL: Oct 1, 2010 - Sept 30, 2011 Fermilab: Oct 1, 2010 - Sept 30, 2011 LBNL: Oct 1, 2010 - Sept 30, 2011 ORNL: Oct 1, 2010 - Sept 30, 2011 PNNL: Oct 1, 2010 - Sept 30, 2011 PPPL: October 1, 2010 - September 30, 2011 SLAC: Oct 1, 2010 - Sept 30, 2011 JLab: Oct 1, 2010 - Sept 30, 2011 FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards

174

Sustainable NREL, Biennial Report | FY 2010-2011 (Management Report), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable NREL Sustainable NREL B I E N N I A L R E P O R T | F Y 2010 - 2011 B I E N N I A L R E P O R T | F Y 2010 - 2011 ACKNOWLEDGMENTS NREL reports on the laboratory's sustainability performance goals, objectives, and strategies. The Sustainable NREL Program has been rigorous in its pursuit to create the biennial report for FY 2010 and FY 2011 by expanding the reporting parameters to include the standardized sustainability framework of the Global Reporting Initiative (GRI). The GRI framework is considered the most credible in the world, and is the most used today by national and global corporations. Many managers and staff members assisted with the production of the Sustainable NREL Biennial Report FY 2010-FY 2011- providing technical content and data collection and communication support. They include: the Sustainable NREL staff

175

FY 2010 NNSA DVAAP Report - November 17, 2010 13  

National Nuclear Security Administration (NNSA)

FY 2010 NNSA DVAAP Report - November 17, 2010 13 FY 2010 NNSA DVAAP Report - November 17, 2010 13 members will also spend a portion of their summers at these two labs contributing to ongoing research programs. As the MAC Program continues to develop, NNSA anticipates additional benefits for program participants, including: providing several- month long appointments at NNSA sites to recent graduates, ROTC internships, ROTC Days throughout the country, enabling experts at NNSA sites to take sabbaticals to teach at a service academy, and providing reciprocal opportunities to service academy faculty, guest lectures at NNSA and academy staff visiting lectures, collaboration between the academies and NNSA sites on pilot initiatives, and strengthening existing collaborations. This program is also a part of our overall effort

176

NEPA Lessons Learned Quarterly Report, Fourth Quarter FY 2006  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 1 6 1 Fourth Quarter FY 2006 December 1, 2006; Issue No. 49 National Environmental Policy Act U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT LESSONS LEARNED LEARNED LESSONS N E P A (continued on page 6) Scoping Process Underway for Two Yucca Mountain EISs The Department of Energy (DOE) recently initiated public scoping for two EISs related to Yucca Mountain, the Nation's proposed repository for disposal of commercial

177

NEPA Lessons Learned Quarterly Report, Second Quarter FY 2007  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 1 7 1 Second Quarter FY 2007 June 1, 2007; Issue No. 51 National Environmental Policy Act U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT LESSONS LEARNED LEARNED LESSONS N E P A We have all been told to "work together" to accomplish a particular goal. Together Everyone Achieves More illustrates the benefi ts of "teamwork." Federal agencies, including the Council on Environmental Quality

178

LLNL input to FY94 hydrogen annual report  

DOE Green Energy (OSTI)

This report summarizes the FY 1994 progress made in hydrogen research at the Lawrence Livermore National Laboratory. Research programs covered include: Technical and Economic Assessment of the Transport and Storage of Hydrogen; Research and Development of an Optimized Hydrogen-Fueled Internal Combustion Engine; Hydrogen Storage in Engineered Microspheres; Synthesis, Characterization and Modeling of Carbon Aerogels for Hydrogen Storage; Chemical Kinetic Modeling of H2 Applications; and, Municipal Solid Waste to Hydrogen.

Schock, R.N.; Smith, J.R.; Rambach, G.; Pekala, R.W.; Westbrook, C.K.; Richardson, J.H.

1994-12-16T23:59:59.000Z

179

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network (OSTI)

pipeline) Offshore Requirements Platform sites Gas treatmentand gas) Offshore oil/gas production (tanker) Platform site

Authors, Various

2010-01-01T23:59:59.000Z

180

FY 2007 Miniature Spherical Retroreflectors Final Report  

SciTech Connect

Miniature spherical retroreflectors, less than 8 millimeters in diameter, are currently being developed to enhance remote optical detection of nuclear proliferation activities. These retroreflecting spheres resemble small, sand-colored marbles that have the unique optical property of providing a strong reflection directly back to the source (i.e., retroreflecting) when illuminated with a laser. The addition of specific coatings, sensitive to specific chemicals or radioactive decay in the environment, can be applied to the surface of these retroreflectors to provide remote detection of nuclear proliferation activities. The presence of radioactive decay (e.g., alpha, gamma, neutron) or specific chemicals in the environment (e.g., TBP, acids) will change the optical properties of the spheres in a predictable fashion, thus indicating the presence or absence of the target materials. One possible scenario might employ an airborne infrared laser system (e.g., quantum-cascade lasers) to illuminate a section of ground littered with these retroreflective spheres. Depending on the coating and the presence of a specific chemical or radioisotope in the environment, the return signal would be modified in some predictable fashion because of fluorescence, frequency shifting, intensity attenuation/enhancement, or change in polarization. Research conducted in FY 2007 focused on developing novel optical fabrication processes and exploiting the unique material properties of chalcogenide infrared-transparent glass (germanium-arsenic-sulfur-tellurium compounds) to produce highly efficient retroreflectors. Pacific Northwest National Laboratorys approach provides comparable performance to the ideal graded index sphere concept, developed by R. K. Luneburg in 1944 (Luneburg 1944), while greatly reducing the complexity in fabrication by utilizing chalcogenide glass materials and compression-molding processes.

Anheier, Norman C.; Bernacki, Bruce E.; Krishnaswami, Kannan

2008-02-20T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

FY-2010 Process Monitoring Technology Final Report  

Science Conference Proceedings (OSTI)

During FY 2010, work under the Spectroscopy-Based Process Monitoring task included ordering and receiving four fluid flow meters and four flow visible-near infrared spectrometer cells to be instrumented within the centrifugal contactor system at Pacific Northwest National Laboratory (PNNL). Initial demonstrations of real-time spectroscopic measurements on cold-stream simulants were conducted using plutonium (Pu)/uranium (U) (PUREX) solvent extraction process conditions. The specific test case examined the extraction of neodymium nitrate (Nd(NO3)3) from an aqueous nitric acid (HNO3) feed into a tri-n-butyl phosphate (TBP)/ n-dodecane solvent. Demonstration testing of this system included diverting a sample from the aqueous feed meanwhile monitoring the process in every phase using the on-line spectroscopic process monitoring system. The purpose of this demonstration was to test whether spectroscopic monitoring is capable of determining the mass balance of metal nitrate species involved in a cross-current solvent extraction scheme while also diverting a sample from the system. The diversion scenario involved diverting a portion of the feed from a counter-current extraction system while a continuous extraction experiment was underway. A successful test would demonstrate the ability of the process monitoring system to detect and quantify the diversion of material from the system during a real-time continuous solvent extraction experiment. The system was designed to mimic a PUREX-type extraction process with a bank of four centrifugal contactors. The aqueous feed contained Nd(NO3)3 in HNO3, and the organic phase was composed of TBP/n-dodecane. The amount of sample observed to be diverted by on-line spectroscopic process monitoring was measured to be 3 mmol (3 x 10-3 mol) Nd3+. This value was in excellent agreement with the 2.9 mmol Nd3+ value based on the known mass of sample taken (i.e., diverted) directly from the system feed solution.

Orton, Christopher R.; Bryan, Samuel A.; Casella, Amanda J.; Hines, Wes; Levitskaia, Tatiana G.; henkell, J.; Schwantes, Jon M.; Jordan, Elizabeth A.; Lines, Amanda M.; Fraga, Carlos G.; Peterson, James M.; Verdugo, Dawn E.; Christensen, Ronald N.; Peper, Shane M.

2011-01-01T23:59:59.000Z

182

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009  

SciTech Connect

This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitor the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

Brenda R. Pace; Julie B. Braun

2009-10-01T23:59:59.000Z

183

Laboratory Directed Research and Development FY 2000 Annual Progress Report  

SciTech Connect

This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

Los Alamos National Laboratory

2001-05-01T23:59:59.000Z

184

FY 2012 Progress Report for Fuel & Lubricant Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

911 911 Fuels & Lubricant Technologies VEHICLE TECHNOLOGIES OFFICE 2012 annual progress report U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2012 PROGRESS REPORT FOR FUEL & LUBRICANT TECHNOLOGIES Energy Efficiency and Renewable Energy Vehicle Technologies Office Approved by Kevin Stork Team Leader, Fuel & Lubricant Technologies Vehicle Technologies Office June 2013 DOE/EE-0911 Acknowledgement We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report.

185

FY 2012 Annual Workforce Analysis and Staffing Plan Report - NNSA NSO  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93-8518 93-8518 JAN 162m3 Karen L. Boardman, Chairperson, Federal Technical Capability Panel, DOE National Training Center, (HS-50) Albuquerque, NM NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE (NNSAINSO}ANNUAL WORKFORCE ANALYSIS AND STAFFING PLAN REPORT Please find enclosed the NNSA/NSO Fiscal Year (FY) 2013 Annual Workforce Analysis and Staffing Plan Report. It conforms to your guidance dated October 24, 2012. In summary, the current shortages at NNSA/NSO are: High Priority None Medium Priority None Other Positions 0.25 Civil/Structural Engineering FTE 0.25 Construction Management FTE The enclosed plan outlines our strategy to meet these requirements in FY 2013. If you have any questions regarding this plan, please contact Barry Mellor at (702) 295-1456.

186

Light Water Reactor Sustainability Constellation Pilot Project FY12 Summary Report  

SciTech Connect

Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY12.

R. Johansen

2012-09-01T23:59:59.000Z

187

Light Water Reactor Sustainability Constellation Pilot Project FY13 Summary Report  

SciTech Connect

Summary report for Light Water Reactor Sustainability (LWRS) activities related to the R. E. Ginna and Nine Mile Point Unit 1 for FY13.

R. Johansen

2013-09-01T23:59:59.000Z

188

Environmental Systems Research and Analysis FY 2000 Annual Report  

SciTech Connect

The Environmental Systems Research (ESR) Program, a part of the Environmental Systems Research and Analysis (ESRA) Program, was implemented to enhance and augment the technical capabilities of the INEEL. Strengthening the Technical capabilities of the INEEL will provide the technical base to serve effectively as the Environmental Management Laboratory for the Office of Environmental Management (EM). This is a progress report for the third year of the ESR Program (FY 2000). A report of activities is presented for the five ESR research investment areas: (1) Transport Aspects of Selective Mass Transport Agents, (2) Chemistry of Environmental Surfaces, (3) Materials Dynamics, (4) Characterization Science, and (5) Computational Simulation of Mechanical and Chemical Systems. In addition to the five technical areas, the report describes activities in the Science and Technology Foundations element of the program, e.g., interfaces between ESR and the EM Science Program (EMSP) and the EM Focus Areas. The five research areas are subdivided into 18 research projects. FY 2000 research in these 18 projects has resulted in more than 50 technical papers that are in print, in press, in review, or in preparation. Additionally, more than 100 presentations were made at professional society meetings nationally and internationally. Work supported by this program was in part responsible for one of our researchers, Dr. Mason Harrup, receiving the Department of Energys Bright Light and Energy at 23 awards. Significant accomplishments were achieved. Non-Destructive Assay hardware and software was deployed at the INEEL, enhancing the quality and efficiency of TRU waste characterization for shipment. The advanced tensiometer has been employed at numerous sites around the complex to determine hydrologic gradients in variably saturated vadose zones. An ion trap, secondary ion mass spectrometer (IT-SIMS) was designed and fabricated to deploy at the INEEL site to measure the chemical speciation of radionuclides and toxic metals on the surfaces of environmentally significant minerals. The FY 2001 program will have a significantly different structure and research content. This report presents the final summary of projects coming to an end in FY 2000 and is a bridge to the FY 2001 program.

David L. Miller; Castle, Peter Myer; Steven J. Piet

2001-01-01T23:59:59.000Z

189

Analytical Chemistry Laboratory Progress Report for FY 1994  

Science Conference Proceedings (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

1994-12-01T23:59:59.000Z

190

Hydrologic resources management program, FY 1998 progress report  

SciTech Connect

This report presents the results from FY 1998 technical studies conducted by Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) project. The HRMP is sponsored by Defense Programs (DP) of the U.S. Department of Energy, Nevada Operations Office (DOE/NV), and supports DP operations at the Nevada Test Site (NTS) through studies of radiochemistry and resource management related to the defense programs mission. Other participating organizations include the Los Alamos National Laboratory (LANL), the United States Geological Survey (USGS), the Desert Research Institute (DRI) of the University of Nevada, the United States Environmental Protection Agency (EPA), and Bechtel-Nevada (BN). The UGTA project is an Environmental Management (EM) activity of DOE/NV that supports a Federal Facilities Agreement and Consent Order between the Department of Energy, the Department of Defense, and the State of Nevada. UGTA's primary function is to address the legacy release of hazardous constituents at the Nevada Test Site, the Tonopah Test Range, and off-Nevada Test Site underground nuclear testing areas. Participating contractors include LLNL (Earth and Environmental Sciences Directorate, Analytical and Nuclear Chemistry Division), LANL, DRI, USGS, BN, HSI-GeoTrans, and IT Corporation. The FY 1998 HRMP and UGTA annual progress report follows the organization and contents of our FY 1997 report (Smith et al., 1998), and includes our results from CY 1997-1998 technical studies of radionuclide migration and isotope hydrology at the Nevada Test Site. During FY 1998, LLNL continued its efforts under the HRMP to pursue a technical agenda relevant to the science-based stockpile stewardship program at DOE/NV. Support to UGTA in FY 1998 included efforts to quantitatively define the radionuclide source term residual from underground nuclear weapons testing and the derivative solution, or hydrologic source term, from radionuclides dissolved in or transported by groundwater. The hydrologic source term is a component of a predicted dose assessment for the five principal NTS testing areas.

Benedict, F.C.; Criss, R.E.; Davisson, M.L.; Eaton, G.F.; Hudson, G.B.; Kenneally, J.M.; Rose, T.P.; Smith, D.

1999-07-26T23:59:59.000Z

191

FY2007 Laboratory Directed Research and Development Annual Report  

SciTech Connect

The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

Craig, W W; Sketchley, J A; Kotta, P R

2008-03-20T23:59:59.000Z

192

FY 2010 DOE Agency Financial Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Foreword Foreword „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ „ T he Reports Consolidation Act of 2000 authorizes Fed- eral agencies, with the Office of Management and Bud- get's (OMB) concurrence, to consolidate various reports in order to provide performance, financial and related informa- tion in a more meaningful and useful format. The Department of Energy (Department or DOE), has chosen an alternative reporting to the consolidated Performance and Accountability Report and instead, produces an Agency Financial Report, an Annual Performance Report and a Summary of Performance and Financial Information, pursuant to the OMB Circular A-136. This reporting approach simplifies and streamlines the performance presentations while utilizing the Internet for providing and leveraging additional performance information.

193

Building America Systems Integration Research Annual Report: FY 2012  

SciTech Connect

This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

Gestwick, M.

2013-05-01T23:59:59.000Z

194

Biological and chemical technologies research. FY 1995 annual summary report  

DOE Green Energy (OSTI)

The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

NONE

1996-03-01T23:59:59.000Z

195

Building America Systems Integration Research Annual Report: FY 2012  

SciTech Connect

This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

Gestwick, M.

2013-05-01T23:59:59.000Z

196

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network (OSTI)

is required for Cd in shale and oil and for Cd, As, Se, Sb,retorted shale and shale oils, they constitute a leachate ofspecies present in shale oils, process waters, gases, and

Authors, Various

2010-01-01T23:59:59.000Z

197

Draft FY 2012 Agency Financial Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to provide performance, financial and to provide performance, financial and related information in a more meaningful and useful format. For Fiscal Year 2013, the Department of Energy (Department or DOE), has produced an Agency Financial Report, and will provide an Annual Performance Report and a Summary of Performance and Financial Information, pursuant to OMB Circular A-136. They will be available at the website below, as each report is completed. This reporting approach simplifies and streamlines the performance presentations. T Agency Financial Report (AFR) - The AFR is organized by three major sections.  Management's Discussion and Analysis provides executive-level information on the Department's history, mission, organization, Secretarial priorities, analysis of financial statements, systems, controls and legal

198

Hydrogen Embrittlement of Structural Steels - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Daniel Dedrick (Primary Contact), Brian Somerday Sandia National Laboratories P.O. Box 969 Livermore, CA 94550 Phone: (925) 294-1552 Email: dededri@sandia.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Project Start Date: January, 2007 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Determine the threshold level of oxygen impurity * concentration required to mitigate accelerated fatigue crack growth of X52 steel in hydrogen at gas pressures up to 3,000 psi (21 MPa) Measure the fatigue crack growth (da/dN vs. * ∆K) relationship at constant H 2 gas pressure in X65 pipeline

199

Electron Microscopy Characterization of Tc-Bearing Metallic Waste Forms- Final Report FY10  

SciTech Connect

The DOE Fuel Cycle Research & Development (FCR&D) Program is developing aqueous and electrochemical approaches to the processing of used nuclear fuel that will generate technetium-bearing waste streams. This final report presents Pacific Northwest National Laboratory (PNNL) research in FY10 to evaluate an iron-based alloy waste form for Tc that provides high waste loading within waste form processing limitations, meets waste form performance requirements for durability and the long-term retention of radionuclides and can be produced with consistent physical, chemical, and radiological properties that meet regulatory acceptance requirements for disposal.

Buck, Edgar C.; Neiner, Doinita

2010-09-30T23:59:59.000Z

200

Annual report, Basic Sciences Branch, FY 1991  

DOE Green Energy (OSTI)

This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL`s in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

Not Available

1993-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Annual report, Basic Sciences Branch, FY 1991  

DOE Green Energy (OSTI)

This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL's in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy's National Photovoltaic Research Program plans.

Not Available

1993-04-01T23:59:59.000Z

202

Laboratory Directed Research and Development Program FY 2007 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2008-04-01T23:59:59.000Z

203

Laboratory Directed Research and Development Program FY 2007 Annual Report  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.

Sjoreen, Terrence P [ORNL

2008-04-01T23:59:59.000Z

204

Isotope and Nuclear Chemistry Division annual report, FY 1983  

Science Conference Proceedings (OSTI)

This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

Heiken, J.H.; Lindberg, H.A. (eds.)

1984-05-01T23:59:59.000Z

205

Laboratory-directed research and development: FY 1996 progress report  

Science Conference Proceedings (OSTI)

This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

Vigil, J.; Prono, J. [comps.

1997-05-01T23:59:59.000Z

206

Laboratory Directed Research and Development FY-10 Annual Report  

Science Conference Proceedings (OSTI)

The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

Dena Tomchak

2011-03-01T23:59:59.000Z

207

Nuclear Chemistry Division annual report FY83  

Science Conference Proceedings (OSTI)

The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2).

Struble, G. (ed.)

1983-01-01T23:59:59.000Z

208

CEMENTITIOUS BARRIERS PARTNERSHIP FY2013 END-YEAR REPORT  

SciTech Connect

In FY2013, the Cementitious Barriers Partnership (CBP) demonstrated continued tangible progress toward fulfilling the objective of developing a set of software tools to improve understanding and prediction of the long?term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. In November 2012, the CBP released Version 1.0 of the CBP Software Toolbox, a suite of software for simulating reactive transport in cementitious materials and important degradation phenomena. In addition, the CBP completed development of new software for the Version 2.0 Toolbox to be released in early FY2014 and demonstrated use of the Version 1.0 Toolbox on DOE applications. The current primary software components in both Versions 1.0 and 2.0 are LeachXS/ORCHESTRA, STADIUM, and a GoldSim interface for probabilistic analysis of selected degradation scenarios. The CBP Software Toolbox Version 1.0 supports analysis of external sulfate attack (including damage mechanics), carbonation, and primary constituent leaching. Version 2.0 includes the additional analysis of chloride attack and dual regime flow and contaminant migration in fractured and non?fractured cementitious material. The LeachXS component embodies an extensive material property measurements database along with chemical speciation and reactive mass transport simulation cases with emphasis on leaching of major, trace and radionuclide constituents from cementitious materials used in DOE facilities, such as Saltstone (Savannah River) and Cast Stone (Hanford), tank closure grouts, and barrier concretes. STADIUM focuses on the physical and structural service life of materials and components based on chemical speciation and reactive mass transport of major cement constituents and aggressive species (e.g., chloride, sulfate, etc.). THAMES is a planned future CBP Toolbox component focused on simulation of the microstructure of cementitious materials and calculation of resultant hydraulic and constituent mass transfer parameters needed in modeling. Two CBP software demonstrations were conducted in FY2013, one to support the Saltstone Disposal Facility (SDF) at SRS and the other on a representative Hanford high?level waste tank. The CBP Toolbox demonstration on the SDF provided analysis on the most probable degradation mechanisms to the cementitious vault enclosure caused by sulfate and carbonation ingress. This analysis was documented and resulted in the issuance of a SDF Performance Assessment Special Analysis by Liquid Waste Operations this fiscal year. The two new software tools supporting chloride attack and dual?regime flow will provide additional degradation tools to better evaluate performance of DOE and commercial cementitious barriers. The CBP SRNL experimental program produced two patent applications and field data that will be used in the development and calibration of CBP software tools being developed in FY2014. The CBP software and simulation tools varies from other efforts in that all the tools are based upon specific and relevant experimental research of cementitious materials utilized in DOE applications. The CBP FY2013 program involved continuing research to improve and enhance the simulation tools as well as developing new tools that model other key degradation phenomena not addressed in Version 1.0. Also efforts to continue to verify the various simulation tools through laboratory experiments and analysis of field specimens are ongoing and will continue into FY2014 to quantify and reduce the uncertainty associated with performance assessments. This end?year report summarizes FY2013 software development efforts and the various experimental programs that are providing data for calibration and validation of the CBP developed software.

Flach, G.; Langton, C.; Burns, H.; Smith, F.; Kosson, D.; Brown, K.; Samson, E.; Meeussen, J.; van der Sloot, H.; Garboczi, E.

2013-11-01T23:59:59.000Z

209

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1 II. Hydrogen Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II-1 II.0 Hydrogen Production Sub-Program Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II-3 II.A Distributed Biomass-Derived Liquids Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-11 II.A.1 Pacific Northwest National Laboratory: Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

210

Annual report to Congress, FY 1992  

SciTech Connect

The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for disposing of the Nation`s spent nuclear fuel from civilian nuclear power reactors and high-level radioactive waste from its defense activities in a cost-effective manner that protects the health and safety of the public and workers and the quality of the environment. To accomplish this mission OCRWM is developing a waste management system consisting of a geologic repository, a facility for monitored retrievable storage, and a system for transporting the waste. This is the ninth annual report submitted by the OCRWM to Congress. The OCRWM submits this report to inform Congress of its activities and expenditures during fiscal year 1992 (October 1, 1991 through September 30, 1992).

1993-07-01T23:59:59.000Z

211

Accelerator Technology Division progress report, FY 1993  

Science Conference Proceedings (OSTI)

This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation.

Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

1993-12-31T23:59:59.000Z

212

NREL Photovoltaic Program FY 1995 annual report  

DOE Green Energy (OSTI)

This report summarizes the in-house and subcontracted R&D activities from Oct. 1994 through Sept. 1995; their objectives are to conduct basic, applied, and engineering research, manage subcontracted R&D projects, perform research complementary to subcontracted work, develop and maintain state-of-the-art measurement and device capabilities, develop PV manufacturing technology and modules, transfer results to industry, and evolve viable partnerships for PV systems and market development. The research activities are grouped into 5 sections: crystalline Si and advanced devices, thin-film PV, PV manufacturing, PV module and system performance and engineering, and PV applications and market development.

NONE

1996-06-01T23:59:59.000Z

213

Accelerator Technology Division progress report, FY 1992  

SciTech Connect

This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

1993-07-01T23:59:59.000Z

214

Environmental Systems Research FY-99 Annual Report  

SciTech Connect

The Environmental Systems Research (ESR) Program, a part of the Environmental Systems Research and Analysis (ESRA) Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Department of Energy's Office of Environmental Management (EM). The original portfolio of research activities was assembled after an analysis of the EM technology development and science needs as gathered by the Site Technology Coordination Groups (STCGs) complex-wide. Current EM investments in science and technology throughout the research community were also included in this analysis to avoid duplication of efforts. This is a progress report for the second year of the ESR Program (Fiscal Year 99). A report of activities is presented for the five ESR research investment areas: (a) Transport Aspects of Selective Mass Transport Agents, (b) Chemistry of Environmental Surfaces, (c) Materials Dynamics, (d) Characterization Science, and (e) Computational Simulation of Mechanical and Chemical Systems. In addition to the five technical areas, activities in the Science and Technology Foundations element of the program, e.g., interfaces between ESR and the EM Science Program (EMSP) and the EM Focus Areas, are described.

Miller, D.L.

2000-01-01T23:59:59.000Z

215

Environmental Systems Research, FY-99 Annual Report  

Science Conference Proceedings (OSTI)

The Environmental Systems Research (ESR) Program, a part of the Environmental Systems Research and Analysis (ESRA) Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Department of Energy's Office of Environmental Management (EM). The original portfolio of research activities was assembled after an analysis of the EM technology development and science needs as gathered by the Site Technology Coordination Groups (STCGs) complex-wide. Current EM investments in science and technology throughout the research community were also included in this analysis to avoid duplication of efforts. This is a progress report for the second year of the ESR Program (Fiscal Year 99). A report of activities is presented for the five ESR research investment areas: (a) Transport Aspects of Selective Mass Transport Agents, (b) Chemistry of Environmental Surfaces, (c) Materials Dynamics, (d) Characterization Science, and (e) Computational Simulation of Mechanical and Chemical Systems. In addition to the five technical areas, activities in the Science and Technology Foundations element of the program, e.g., interfaces between ESR and the EM Science Program (EMSP) and the EM Focus Areas, are described.

Miller, David Lynn

2000-01-01T23:59:59.000Z

216

Safety, Codes & Standards Sub-Program Overview - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program IntroductIon The Safety, Codes and Standards sub-program supports research and development (R&D) to provide an experimentally validated fundamental understanding of the relevant physics, critical data, and safety information needed to define the requirements for technically sound and defensible codes and standards. This information is used to help facilitate and enable the widespread deployment and commercialization of hydrogen and fuel cell technologies. In Fiscal Year (FY) 2012, the sub-program continued to identify and evaluate safety

217

FY 1990 Applied Sciences Branch annual report  

DOE Green Energy (OSTI)

The Applied Sciences Branch actively supports the advancement of DOE/SERI goals for the development and implementation of the solar photovoltaic technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility which is capable of providing information on the full range of photovoltaic components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of photovoltaic technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. This report contains information on surface and interface analysis, materials characterization, development, electro-optical characterization module testing and performance, surface interactions and FTIR spectroscopy.

Keyes, B.M.; Dippo, P.C. (eds.)

1991-11-01T23:59:59.000Z

218

FY 1987 Aquatic Species Program: Annual report  

DOE Green Energy (OSTI)

The goal of the Department of Energy/Solar Energy Research Institute Aquatic Species Program is to develop the technology base to produce liquid fuels from microalagae at prices competitive with conventional alternatives. Microalgae are unusual plants that can accumulate large quantities of oil and can thrive in high-salinity water, which currently has no competing uses. The algal oils, in turn, are readily converted into gasoline and diesel fuels. The best site for successful microalgae production was determined to be the US desert Southwest, with potential applications to other warm areas. Aggressive research is needed, but the improvements required are attainable. The four prime research areas in the development of this technology are growth and production, engineering design, harvesting, and conversion. Algae are selected for three criteria: tolerance to environmental fluctuations, high growth rates, and high lipid production. From 1982 to 1986, the program collected more than 3000 strains of microalgae that are more than twice as tolerant to temperature and salinity fluctuation than the initial strains. Productivity has been increased by a factor of two in outdoor culture systems since 1982, and lipid content has also been increased from 20% of body weight in 1982 to greater than 66% of body weight in 1987. Research programs are ongoing in lipid biochemistry and genetic engineering so that ultimately strains can be modified and improved to combine their best characteristics. An outdoor test facility is being built in Roswell, New Mexico.

Johnson, D.A.; Sprague, S.

1987-09-01T23:59:59.000Z

219

Tanks Focus Area annual report FY2000  

SciTech Connect

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

None

2000-12-01T23:59:59.000Z

220

FY1993 annual report to Congress  

SciTech Connect

As established by the Nuclear Waste Policy Act of 1982, as amended, the United States Department of Energy`s Office of Civilian Radioactive Waste Management is responsible for managing and disposing of the Nation`s spent nuclear fuel from civilian nuclear power reactors and high-level radioactive waste from defense activities. The program will provide leadership in developing and implementing strategies that assure the health and safety of the public and workers, protect the environment, and merit public confidence, in an economically viable manner. To accomplish the program`s mission, we are developing a waste management system culminating in a geologic repository for permanent disposal deep beneath the surface of the earth. Our goals include: (1) determining whether Yucca Mountain, Nevada, designated by the Nuclear Waste Policy Amendments Act of 1987 as the only site currently to be evaluated, is suitable for a geologic repository; (2) resolving the issue of acceptance of spent fuel from nuclear utilities in 1998; (3) developing more effective working relationships with external parties who have an interest in the waste disposal mission; and (4) establishing a new funding mechanism that will permit efficient and effective execution of our mission and achievement of our goals. This report contains details of the program`s accomplishments and activities over the past fiscal year and the audited financial statements for the Nuclear Waste Fund.

NONE

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FY2001 Progress Report for Automotive Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMOTIVE PROPULSION AUTOMOTIVE PROPULSION MATERIALS 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory, Computer Systems Management, Inc., and Oak Ridge National Laboratory, for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Propulsion Materials

222

EMSL Quarterly Highlights Report 2nd Quarter FY08  

NLE Websites -- All DOE Office Websites (Extended Search)

Quarterly Highlights Report: 2 Quarterly Highlights Report: 2 nd Quarter, FY08 1 The W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL) is a U.S. Department of Energy (DOE) national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. EMSL is operated by PNNL for the DOE Office of Biological and Environmental Research. At one location, EMSL offers a comprehensive array of leading-edge resources and expertise. Access to the instrumentation and expertise is obtained on a peer-reviewed proposal basis. Users are participants on accepted proposals. Staff members work with users to expedite access. The EMSL Quarterly Highlights Report documents research and activities of EMSL staff and users. Research Highlights Atmospheric Aerosol Chemistry

223

HYBRID SULFUR ELECTROLYZER DEVELOPMENT FY09 SECOND QUARTER REPORT  

DOE Green Energy (OSTI)

The primary objective of the DOE-NE Nuclear Hydrogen Initiative (NHI) is to develop the nuclear hydrogen production technologies necessary to produce hydrogen at a cost competitive with other alternative transportation fuels. The focus of the NHI is on thermochemical cycles and high temperature electrolysis that can be powered by heat from high temperature gas reactors. The Savannah River National Laboratory (SRNL) has been tasked with the primary responsibility to perform research and development in order to characterize, evaluate and develop the Hybrid Sulfur (HyS) thermochemical process. This report documents work during the first quarter of Fiscal Year 2009, for the period between January 1, 2009 and March 31, 2009. The HyS Process is a two-step hybrid thermochemical cycle that is part of the 'Sulfur Family' of cycles. As a sulfur cycle, it uses high temperature thermal decomposition of sulfuric acid to produce oxygen and to regenerate the sulfur dioxide reactant. The second step of the process uses a sulfur dioxide depolarized electrolyzer (SDE) to split water and produce hydrogen by electrochemically reacting sulfur dioxide with H{sub 2}O. The SDE produces sulfuric acid, which is then sent to the acid decomposer to complete the cycle. The DOE NHI program is developing the acid decomposer at Sandia National Laboratory for application to both the HyS Process and the Sulfur Iodine Cycle. The SDE is being developed at SRNL. During FY05 and FY06, SRNL designed and conducted proof-of-concept testing for a SDE using a low temperature, PEM fuel cell-type design concept. The advantages of this design concept include high electrochemical efficiency, small footprint and potential for low capital cost, characteristics that are crucial for successful implementation on a commercial scale. During FY07, SRNL extended the range of testing of the SDE to higher temperature and pressure, conducted a 100-hour longevity test with a 60-cm{sup 2} single cell electrolyzer, and designed and built a larger, multi-cell stack electrolyzer. During FY08, SRNL continued SDE development, including development and successful testing of a three-cell electrolyzer stack with a rated capacity of 100 liters per hour. The HyS program for FY09 program will address improving SDE performance by focusing on preventing or minimizing sulfur deposition inside the cell caused by SO{sub 2} crossover, reduction of cell voltage for improved efficiency, an extension of cell operating lifetime. During FY09 a baseline technology development program is being conducted to address each of these issues. Button-cell (2-cm{sup 2}) and single cell (60-cm{sup 2}) SDEs will be fabricated and tested. A pressurized button-cell test facility will be designed and constructed to facilitate addition testing. The single cell test facility will be upgraded for unattended operation, and later for operation at higher temperature and pressure. Work will continue on development of the Gas Diffusion Electrode (GDE), or Gap Cell, as an alternative electrolyzer design approach that is being developed under subcontract with industry partner Giner Electrochemical Systems. If successful, it could provide an alternative means of preventing sulfur crossover through the proton exchange membrane, as well as the possibility for higher current density operation based on more rapid mass transfer in a gas-phase anode. Promising cell components will be assembled into membrane electrode assemblies (MEAs) and tested in the single cell test facility. Upon modification for unattended operation, test will be conducted for 200 hours or more. Both the button-cell and modified single cell facility will be utilized to demonstrate electrolyzer operation without sulfur build-up limitations, which is a Level 1 Milestone.

Herman, D; David Hobbs, D; Hector Colon-Mercado, H; Timothy Steeper, T; John Steimke, J; Mark Elvington, M

2009-04-15T23:59:59.000Z

224

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008  

Science Conference Proceedings (OSTI)

This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

Brenda R. Pace

2009-01-01T23:59:59.000Z

225

Annual Report FY2012 University of Rhode Island  

E-Print Network (OSTI)

(CSMNS) AS NOVEL NAN $433,605 $433,605 NARAYANAN, RADHA SURFACE EXTINCTION SPECTROSCOPY AS NOVEL METHOD 127 31 15 23 6 78 46 5 1 3 4 3 4 New category (as of FY2006): US Dept. of Defense excluding funds from Army, Navy and Air Force. New category (as of FY2006): University funds other than URI. FY2007 660 14 5

Rhode Island, University of

226

ARPA-E FY2010 Annual Report Highlights Transformational Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are enabling batteries for transportation -- beyond lithium-ion -- that could make electric cars cheaper and go much farther distances than today's batteries. The FY2010...

227

Introduction, DOE Hydrogen Program FY 2010 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production The FY 2010 Hydrogen Production activities continued to focus on developing technologies that enable the long-term viability of hydrogen as an energy...

228

Federal Facility Consolidated Annual Reporting Requirements | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Reporting » Federal Facility Facility Reporting » Federal Facility Consolidated Annual Reporting Requirements Federal Facility Consolidated Annual Reporting Requirements October 8, 2013 - 2:07pm Addthis Section 548(a) of National Energy Conservation Policy Act (NEPCA, 42 U.S.C. 8258(a)) requires each Federal agency to submit to the U.S. Department of Energy an annual report describing activities to meet the energy management requirements of Section 543 of NECPA (42 U.S.C. 8253). Information and data collected from the agencies will be used to develop DOE's Annual Report to Congress on Federal Government Energy Management. Annual GHG and Sustainability Data Report for FY 2013 Reporting The Federal Energy Management Program's (FEMP) Annual GHG and Sustainability Data Report, Version 4.2 is to be used by top-tier Federal

229

Deep Bed Iodine Sorbent Testing FY 2011 Report  

Science Conference Proceedings (OSTI)

Nuclear fission results in the production of fission products (FPs) and activation products that increasingly interfere with the fission process as their concentrations increase. Some of these fission and activation products tend to evolve in gaseous species during used nuclear fuel reprocessing. Analyses have shown that I129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Deep-bed iodine sorption testing has been done to evaluate the performance of solid sorbents for capturing iodine in off-gas streams from nuclear fuel reprocessing plants. The objectives of the FY 2011 deep bed iodine sorbent testing are: (1) Evaluate sorbents for iodine capture under various conditions of gas compositions and operating temperature (determine sorption efficiencies, capacities, and mass transfer zone depths); and (2) Generate data for dynamic iodine sorption modeling. Three tests performed this fiscal year on silver zeolite light phase (AgZ-LP) sorbent are reported here. Additional tests are still in progress and can be reported in a revision of this report or a future report. Testing was somewhat delayed and limited this year due to initial activities to address some questions of prior testing, and due to a period of maintenance for the on-line GC. Each test consisted of (a) flowing a synthetic blend of gases designed to be similar to an aqueous dissolver off-gas stream over the sorbent contained in three separate bed segments in series, (b) measuring each bed inlet and outlet gas concentrations of iodine and methyl iodide (the two surrogates of iodine gas species considered most representative of iodine species expected in dissolver off-gas), (c) operating for a long enough time to achieve breakthrough of the iodine species from at least one (preferably the first two) bed segments, and (d) post-test purging with pure N2 to drive loosely or physisorbed iodine species off of the sorbent. Post-test calculations determine the control efficiencies for each bed, iodine loadings on the sorbent, and mass transfer zone depths. Portions of the iodine-laden sorbent from the first bed of two of the tests have been shipped to SNL for waste form studies. Over the past three years, we have explored a full range of inlet iodine and methyl iodide concentrations ranging from {approx}100 ppb to {approx}100 ppm levels, and shown adequate control efficiencies within a bed depth as shallow as 2 inches for lower concentrations and 4 inches for higher concentrations, for the AgZ-type sorbents. We are now performing a limited number of tests in the NC-77 sorbent from SNL. Then we plan to continue to (a) fill in data gaps needed for isotherms and dynamic sorbent modeling, and (b) test the performance of additional sorbents under development.

Nick Soelberg; Tony Watson

2011-08-01T23:59:59.000Z

230

NEPA Lessons Learned Quarterly Report - 1st Quarter FY 1997  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decisionmakers Decisionmakers States/Local Governm ents Agencies Academ icians Congress Framers of NEPA Drafters of CEQ Regs Native Am erican Tribes La wyers NGOs/ Citizen Groups Businesses Council on Environmental Quality NEPA Effectiveness Study Partners continued next page -- Improved Implementation Needed -- -- DOE Leadership Highlighted -- CEQ Study: NEPA a "Success" Overall National Environmental Policy Act N E P A U.S. Department of Energy Quarterly Report LESSONS LEARNED LESSONS LEARNED For First Quarter FY 1997 March 3, 1997 The President's Council on Environmental Quality (CEQ) issued in January the results of its extensive study on the effectiveness of the National Environmental Policy Act during the statute's 25-year history. From the cover letter by CEQ Chair Kathleen McGinty to its four short appendices, the 50-page booklet entitled The National Environmental

231

NEPA Lessons Learned Quarterly Report - 1st Quarter FY 1998  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 1998 1 March 1998 1 continued on page 2 For First Quarter FY 1998 March 2, 1998, Issue No. 14 National Environmental Policy Act N E P A LESSONS LEARNED LESSONS LEARNED U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT Managing Progress on the Repository EIS How to Move a Mountain Tour members approach the entry to the Yucca Mountain Exploratory Studies Facility. The EIS Management Council, along with members and technical advisors of the EIS Preparation Team, visited the site in January while participating in briefings on technical, legal, and policy issues. How do you manage preparation of a major EIS that is important to five Program Offices, four Field Offices, and other Federal agencies, not to mention a wide array of stakeholders? How do you address extremely complex and

232

NEPA Lessons Learned Quarterly Report - 2nd Quarter FY 1999  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 1999 June 1999 1 LESSONS LEARNED LEARNED LESSONS National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT For Second Quarter FY 1999 June 1, 1999; Issue No. 19 continued on page 6 NEPA and Habitat Management Plan: Environmental Synergy By: Elizabeth Withers, NEPA Compliance Officer, Los Alamos Area Office, with John Stetson, Pacific Western Technologies, Ltd. On the day DOE issued the Draft EIS for the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility at Los Alamos National Laboratory (LANL), LANL biologists discovered a nesting pair of Mexican spotted owls (Strix occidentalis lucida) – which had only recently been listed as threatened – in the canyons directly below the proposed site. Today, this nest site, at the edge

233

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010  

SciTech Connect

This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts were documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

INL Cultural Resource Management Office

2010-10-01T23:59:59.000Z

234

Hydrogen separation membranes annual report for FY 2008.  

DOE Green Energy (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. HTMs will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes progress that was made during Fy 2008 on the development of HTM materials.

Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

2009-03-17T23:59:59.000Z

235

NEPA Lessons Learned Quarterly Report - 3rd Quarter FY 1998  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SEPTEMBER 1998 1 SEPTEMBER 1998 1 LESSONS LEARNED LEARNED LESSONS National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT DOE NEPA Community to Meet in October For Third Quarter FY 1998 September 1, 1998, Issue No. 16 On October 14 and 15, 1998, the DOE NEPA Community will meet in North Las Vegas, hosted by the Nevada Operations Office at its new Support Facility. The Office of NEPA Policy and Assistance is sponsoring this meeting to improve DOE NEPA performance through sharing of lessons learned and discussion of current issues. Managing the NEPA Process Managing the NEPA Process Managing the NEPA Process Managing the NEPA Process Managing the NEPA Process The meeting will focus on issues that NEPA Document Managers face daily: What tools and techniques can help

236

NEPA Lessions Learned Quarterly Report - 4th Quarter FY 1998  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DECEMBER 1998 DECEMBER 1998 1 LESSONS LEARNED LEARNED LESSONS National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT For Fourth Quarter FY 1998 December 1, 1998, Issue No. 17 New and Improved NEPA Compliance Guide Issued in 2 Volumes A new and improved DOE NEPA Compliance Guide, issued by the Office of Environment, Safety and Health, has been distributed to about 750 members of the DOE NEPA Community. Intended to foster sound and efficient NEPA compliance, the Compliance Guide is a collection of resources and references to aid in NEPA document preparation and other aspects of the NEPA process. Volume I, General NEPA References, contains the statute, and regulations and guidance from the Council on Environmental Quality, the Department of State, and the

237

FY2000 Progress Report for the Advanced Technology Development Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Advanced Automotive Technologies 1000 Independence Avenue S.W. Washington, D.C. 20585-0121 FY 2000 Progress Report for the Advanced Technology Development Program Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Advanced Automotive Technologies Energy Management Team Raymond A. Sutula Energy Management Team Leader December 2000 This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency, thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

238

NEPA Lessons Learned Quarterly Report - 1st Quarter FY 1999  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 1 LESSONS LEARNED LEARNED LESSONS National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT For First Quarter FY 1999 March 1, 1999; Issue No. 18 continued on page 3 Dr. David Michaels, new Assistant Secretary for Environment, Safety and Health, enthusiastically supports the Lessons Learned approach. Dr. David Michaels — DOE’s New Leader for Environment, Safety and Health The new Assistant Secretary for Environment, Safety and Health, Dr. David Michaels, recognizes the value of NEPA in supporting good decisions. “I understand the importance of examining options carefully before we make decisions that will affect our workers, the public, and the environment in lasting and profound ways,” he said. “We must be fully informed of the environmental

239

NEPA Lessons Learned Quarterly Report - 3rd Quarter FY 1999  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 1999 September 1999 1 LESSONS LEARNED LEARNED LESSONS National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT For Third Quarter FY 1999 September 1, 1999; Issue No. 20 Proposed Arizona-Mexico Transmission Project Presents Challenges to NEPA Process and Analysis By: Ellen Russell, NEPA Document Manager, Fossil Energy with Carolyn Osborne, Office of NEPA Policy and Assistance continued on page 3 Fossil Energy (FE) is preparing an environmental impact statement (EIS) for what would be the first cross-border high-voltage transmission project to connect the main power delivery systems of the United States and Mexico (DOE/EIS-0307). EIS scoping has been complex. Through the scoping process, FE has identified and worked with many stakeholders to define a broad range

240

NEPA Lessons Learned Quarterly Report - 1st Quarter FY2000  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2000 2000 1 LESSONS LEARNED LEARNED LESSONS National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT For First Quarter FY 2000 March 1, 2000; Issue No. 22 Hanford Comprehensive Land-Use Plan EIS Helps DOE Preserve Unique Resources continued on page 4 By: Thomas W. Ferns, NEPA Document Manager, Richland Operations Office, and Yardena Mansoor, Office of NEPA Policy and Assistance A 50-year land-use plan for the Hanford Site? Some said it couldn't be done. Too many factions, they said, with irreconcilably different visions for the future. Would NEPA be a help or a hindrance in developing such a land-use plan? It turns out that the Hanford Comprehensive Land-Use Plan EIS Record of Decision (ROD) (64 FR 61615; November 12, 1999) marks the end of a successful, albeit

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NEPA Lessons Learned Quarterly Report - 4th Quarter FY 1999  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 1999 December 1999 1 continued on page 3 LESSONS LEARNED LEARNED LESSONS National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT For Fourth Quarter FY 1999 December 1, 1999; Issue No. 21 Good Information, Good Government Using Technology to Improve NEPA Decisionmaking provides a comprehensive guide to Federal environmental information resources available electronically and to useful Web sites provided by nongovernmental groups and professional organizations. “One of the foundations of good government is good information,” President Clinton observed. NEPA is “at its core, a mandate for informed, democratic decisionmaking. And its contribution to environmental protection is incalculable.” Managing a National Public Participation

242

Hydrogen separation membranes annual report for FY 2010.  

DOE Green Energy (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. These membranes will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2010.

Balachandran, U.; Dorris, S. E; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

2011-03-14T23:59:59.000Z

243

Laboratory directed research and development: FY 1997 progress report  

Science Conference Proceedings (OSTI)

This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

Vigil, J.; Prono, J. [comps.

1998-05-01T23:59:59.000Z

244

Laboratory Directed Research and Development FY 1998 Progress Report  

SciTech Connect

This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

John Vigil; Kyle Wheeler

1999-04-01T23:59:59.000Z

245

Hydrogen separation membranes annual report for FY 2009.  

SciTech Connect

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. HTMs will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2009.

Balachandran, U.; Dorris, S. E.; Lu, Y.; Emerson, J. E.; Park, C. Y.; Lee, T. H.; Picciolo, J. J.; Energy Systems

2010-04-16T23:59:59.000Z

246

FY2007 NREL Energy Storage R&D Progress Report  

SciTech Connect

The National Renewable Energy Laboratory is engaged in research and development activities to support achieving targets and objectives set by the Energy Storage Program at the Office of FreedomCAR and Vehicle Technology in the U.S. Department of Energy. These activities include: 1. supporting the Battery Technology Development Program with battery thermal characterization and modeling and with energy storage system simulations and analysis; 2. supporting the Applied Research Program by developing thermal models to address abuse of Li-Ion batteries; and 3. supporting the Focused Long-Term Research Program by investigating improved Li-Ion battery electrode materials. This report summarizes the results of NREL energy storage activities in FY07.

Pesaran, A.

2007-11-01T23:59:59.000Z

247

Gas-Cooled Fast Reactor (GFR) FY05 Annual Report  

SciTech Connect

The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection. Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with on outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom and Switzerland), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report outlines the current design status of the GFR, and includes work done in the areas mentioned above for this fiscal year. In addition, this report fulfills the Level 2 milestones, ''Complete annual status report on GFR reactor design'', and ''Complete annual status report on pre-conceptual GFR reactor designs'' in work package GI0401K01. GFR funding for FY05 included FY04 carryover funds, and was comprised of multiple tasks. These tasks involved a consortium of national laboratories and universities, including the Idaho National Laboratory (INL), Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Oak Ridge National Laboratory (ORNL), Auburn University (AU), Idaho State University (ISU), and the University of Wisconsin-Madison (UW-M). The total funding for FY05 was $1000K, with FY04 carryover of $174K. The cost breakdown can be seen in Table 1.

K. D. Weaver; T. Marshall; T. Totemeier; J. Gan; E.E. Feldman; E.A Hoffman; R.F. Kulak; I.U. Therios; C. P. Tzanos; T.Y.C. Wei; L-Y. Cheng; H. Ludewig; J. Jo; R. Nanstad; W. Corwin; V. G. Krishnardula; W. F. Gale; J. W. Fergus; P. Sabharwall; T. Allen

2005-09-01T23:59:59.000Z

248

FY 93 Thermal Loading Systems Study Final Report  

Science Conference Proceedings (OSTI)

The objective of the Mined Geologic Disposal System (MGDS) Thermal Loading Systems Study being conducted by the is to identify a thermal strategy that will meet the performance requirements for waste isolation and will be safe and licensable. Specifically, both postclosure and preclosure performance standards must be met by the thermal loading strategy ultimately selected. In addition cost and schedule constraints must be considered. The Systems Engineering approach requires structured, detailed analyses that will ultimately provide the technical basis for the development, integration, and evaluation of the overall system, not just a subelement of that system. It is also necessary that the systems study construct options from within the range that are allowed within the current legislative and programmatic framework. For example the total amount of fuel that can legally be emplaced is no more than 70,000 metric tons of uranium (MTU) which is composed of 63,000 MTU spent fuel and 7,000 MTU of defense high level waste. It is the intent of this study to begin the structured development of the basis for a thermal loading decision. However, it is recognized that to be able to make a final decision on thermal loading will require underground data on the effects of heating as well as a suite of ''validated'' models. It will be some time before these data and models are available to the program. Developing a final, thermal loading decision will, therefore, be an iterative process. In the interim, the objective of the thermal loading systems study has been to utilize the information available to assess the impact of thermal loading. Where technical justification exists, recommendations to narrow the range of thermal loading options can be made. Additionally, recommendations as to the type of testing and accuracy of the testing needed to establish the requisite information will be made. A constraint on the ability of the study to select an option stems from the lack of primary hard data, uncertainties in derived data, unsubstantiated models, and the inability to fully consider simultaneously coupled processes. As such, the study must rely on idealized models and available data to compare the thermal loading options. This report presents the findings of the FY 1993 MGDS Thermal Loading Systems Study. The objectives of the study were to: (1) if justified, place bounds on the thermal loading which would establish the loading that is ''too hot''; (2) ''grade'' or evaluate the performance as a function of thermal loading of the potential repository to contain high level spent nuclear fuel against performance criteria; (3) evaluate the performance of the various options with respect to cost, safety, and operability; and (4) recommend the additional types of tests and/or analyses to be conducted to provide the necessary information for a thermal loading selection.

S.F. Saterlie

1994-08-29T23:59:59.000Z

249

Integrated Disposal Facility FY2010 Glass Testing Summary Report  

SciTech Connect

Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo calculations, 2) compiling the solution data and alteration phases identified from accelerated weathering tests conducted with ILAW glass by PNNL and Viteous State Laboratory/Catholic University of America as well as other literature sources for use in geochemical modeling calculations, and 3) conducting several initial calculations on glasses that contain the four major components of ILAW-Al2O3, B2O3, Na2O, and SiO2.

Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

2010-09-30T23:59:59.000Z

250

Radiation monitor reporting requirements  

SciTech Connect

Within High-Level Waste Management (HLWM), CAMs and VAMPs are currently considered Class B equipment, therefore, alarm conditions associated with the CAMs and VAMPs result in an Unusual Occurrence or Off-Normal notification and subsequent occurrence reporting. Recent equipment difficulties associated with Continuous Air Monitors (CAMs) and Victoreen Area Radiation Monitors (VAMPs) have resulted in a significant number of notification reports. These notification have the potential to decrease operator sensitivity to the significance of specific CAM and VAMP failures. Additionally, the reports are extremely costly and are not appropriate as a means for tracking and trending equipment performance. This report provides a technical basis for a change in Waste Management occurrence reporting categorization for specific CAM and VAMP failure modes.

Bates, W.F.

1993-12-10T23:59:59.000Z

251

Computer Applications Group Inc., Final report FY93 and FY94. Volume 3  

SciTech Connect

This report presents data pertaining to the geologic mapping of the Yucca Mountain Exploratory Studies facility. Topics discussed include; investigation plans, investigation controls, order of performing multiple investigations, and references to the design requirements of the exploratory studies facility.

NONE

1994-12-15T23:59:59.000Z

252

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2010 Annual Report FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program I. IntroductIon 2 Office of Fossil Energy Fuel Cell Program FY 2010 Annual Report 3 FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program Competitive Innovation: Accelerating Technology Development The U.S. Department of Energy (DOE) Office of Fossil Energy, through the National Energy Technology Laboratory (NETL) and in collaboration with private industry, universities and national laboratories, has forged Government-industry partnerships under the Solid State Energy Conversion Alliance (SECA) to reduce the cost of solid oxide fuel cells (SOFCs). This fuel cell technology shall form the basis for integrated gasification fuel cell (IGFC) systems utilizing coal for clean and efficient

253

FY 2012 Annual Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

35 Energy Storage R&D FY 2012 Annual Progress Report 1 Energy Storage R&D I. INTRODUCTION I.A Vehicle Technologies Program Overview The Department of Energy's (DOE's) Vehicle...

254

FY 2012 Annual Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

lxxvii Energy Storage R&D FY 2012 Annual Progress Report 81 Energy Storage R&D III Advanced Battery Development, Systems Analysis, and Testing One of the primary objectives of the...

255

FY 2009 Annual Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 ENERGY STORAGE RESEARCH AND DEVELOPMENT annual progress report U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2009 ANNUAL PROGRESS...

256

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

XVI-1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Sunita Satyapal, Director DOE Hydrogen and Fuel Cells Program Fuel Cell Technologies Program DOE Office of...

257

Pollution prevention opportunity assessment approach, training, and technical assistance for DOE contractors. FY 1995 report  

SciTech Connect

The Department of Energy and its contractors are faced with environmental concerns and large waste management costs. Federal legislation and DOE Orders require sites to develop waste minimization/pollution prevention programs. In response to these requirements, the Kansas City Plant developed a pollution prevention tool called a pollution prevention opportunity assessment (PPOA). Pilot assessments resulted in the development of a graded approach to reduce the amount of effort required for activities that utilized nonhazardous and/or low-volume waste streams. The project`s objectives in FY95 were to validate DOE`s PPOA Graded Approach methodology, provide PPOA training and technical assistance to interested DOE personnel and DOE contractors, enhance the methodology with energy analysis and tools for environmental restoration activities, implement a DOE-wide PPOA database, and provide support to DOE EM-334 in the completion of a report which estimates the future potential for pollution prevention and waste minimization in the DOE complex.

Pemberton, S.

1996-02-01T23:59:59.000Z

258

IN-PILE INSTRUMENTATION TO SUPPORT FUEL CYCLE RESEARCH AND DEVELOPMENT - FY12 STATUS REPORT  

Science Conference Proceedings (OSTI)

As part of the FCRD program objective to emphasize science-based, goal-oriented research, a strategic research program is underway to develop new sensors that can be used to obtain the high fidelity, real-time, data required for characterizing the performance of new fuels during irradiation testing. The overarching goal of this initiative is to develop new test vehicles with new sensors of unprecedented accuracy and resolution that can obtain the required data. Prior laboratory testing and, as needed, irradiation testing of sensors in these capsules will be completed as part of this initiative to give sufficient confidence that the irradiation tests will yield the required data. This report documents FY12 progress in this initiative.

J. . Rempe; J. Daw; D. Knudson; R. Schley

2012-09-01T23:59:59.000Z

259

FY2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines Energy Efficiency and Renewable Energy Office of Transportation Technologies Approved by Steven Chalk November 2000 Combustion and Emission Control for Advanced CIDI Engines FY 2000 Progress Report CONTENTS Page iii I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 II. EMISSION CONTROL SUBSYSTEM DEVELOPMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . .9 A. Emission Control Subsystem Evaluation for Light-Duty CIDI Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

260

Lead Slowing-Down Spectrometry Time Spectral Analysis for Spent Fuel Assay: FY12 Status Report  

SciTech Connect

Executive Summary Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration, of which PNNL is a part, to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of todays confirmatory methods. This document is a progress report for FY2012 PNNL analysis and algorithm development. Progress made by PNNL in FY2012 continues to indicate the promise of LSDS analysis and algorithms applied to used fuel assemblies. PNNL further refined the semi-empirical model developed in FY2011 based on singular value decomposition (SVD) to numerically account for the effects of self-shielding. The average uncertainty in the Pu mass across the NGSI-64 fuel assemblies was shown to be less than 3% using only six calibration assemblies with a 2% uncertainty in the isotopic masses. When calibrated against the six NGSI-64 fuel assemblies, the algorithm was able to determine the total Pu mass within <2% uncertainty for the 27 diversion cases also developed under NGSI. Two purely empirical algorithms were developed that do not require the use of Pu isotopic fission chambers. The semi-empirical and purely empirical algorithms were successfully tested using MCNPX simulations as well applied to experimental data measured by RPI using their LSDS. The algorithms were able to describe the 235U masses of the RPI measurements with an average uncertainty of 2.3%. Analyses were conducted that provided valuable insight with regard to design requirements (e.g. Pb stack size, neutron source location) of an LSDS for the purpose of assaying used fuel assemblies. Sensitivity studies were conducted that provide insight as to how the LSDS instrument can be improved by making it more sensitive to the center of the fuel assemblies. In FY2013, PNNL will continue efforts to develop and refine design requirements of an LSDS for the ultimate purpose of assaying used fuel assemblies. Future efforts will be directed toward more extensive experimental benchmarking of currently implemented time-spectra analysis algorithms.

Kulisek, Jonathan A.; Anderson, Kevin K.; Casella, Andrew M.; Siciliano, Edward R.; Warren, Glen A.

2012-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

FY 2013 Summary Report: Post-Irradiation Examination of Zircaloy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In the future, baseline data generated from these activities will be used to benchmark hot-cell testing of actual high-burnup UNF cladding. FY13SumRprtPostIrradiationExaminatZir...

262

Uranium from seawater research : final progress report, FY 1982  

E-Print Network (OSTI)

During the FY '82 campaign 14 new ion exchange resin formulations, prepared by the Rohm & Haas Company, were tested by MIT at the Woods Hole Oceanographic Institution. The best of these chelating resins was again of the ...

Borzekowski, J.

1982-01-01T23:59:59.000Z

263

Laboratory Directed Research and Development FY2008 Annual Report  

Science Conference Proceedings (OSTI)

The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

2009-03-24T23:59:59.000Z

264

Nuclear Fuel Cycle Reasoner: PNNL FY13 Report  

SciTech Connect

In Fiscal Year 2012 (FY12) PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In Fiscal Year 2013 (FY13) the SNAP demonstration was enhanced with respect to query and navigation usability issues.

Hohimer, Ryan E.; Strasburg, Jana D.

2013-09-30T23:59:59.000Z

265

Lead Slowing-Down Spectrometry Time Spectral Analysis for Spent Fuel Assay: FY12 Status Report  

Science Conference Proceedings (OSTI)

Executive Summary Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration, of which PNNL is a part, to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of todays confirmatory methods. This document is a progress report for FY2012 PNNL analysis and algorithm development. Progress made by PNNL in FY2012 continues to indicate the promise of LSDS analysis and algorithms applied to used fuel assemblies. PNNL further refined the semi-empirical model developed in FY2011 based on singular value decomposition (SVD) to numerically account for the effects of self-shielding. The average uncertainty in the Pu mass across the NGSI-64 fuel assemblies was shown to be less than 3% using only six calibration assemblies with a 2% uncertainty in the isotopic masses. When calibrated against the six NGSI-64 fuel assemblies, the algorithm was able to determine the total Pu mass within Pu isotopic fission chambers. The semi-empirical and purely empirical algorithms were successfully tested using MCNPX simulations as well applied to experimental data measured by RPI using their LSDS. The algorithms were able to describe the 235U masses of the RPI measurements with an average uncertainty of 2.3%. Analyses were conducted that provided valuable insight with regard to design requirements (e.g. Pb stack size, neutron source location) of an LSDS for the purpose of assaying used fuel assemblies. Sensitivity studies were conducted that provide insight as to how the LSDS instrument can be improved by making it more sensitive to the center of the fuel assemblies. In FY2013, PNNL will continue efforts to develop and refine design requirements of an LSDS for the ultimate purpose of assaying used fuel assemblies. Future efforts will be directed toward more extensive experimental benchmarking of currently implemented time-spectra analysis algorithms.

Kulisek, Jonathan A.; Anderson, Kevin K.; Casella, Andrew M.; Siciliano, Edward R.; Warren, Glen A.

2012-09-28T23:59:59.000Z

266

FY2011 Progress Report: Agreement 8697 - NOx Sensor Development  

SciTech Connect

Objectives are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) OBD II systems; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements and designs and manufacturing methods that are compatible with mass fabrication; and (3) Collaborate with industry in order to (ultimately) transfer the technology to a supplier for commercialization. Approach used is: (1) Use an ionic (O{sup 2-}) conducting ceramic as a solid electrolyte and metal or metal-oxide electrodes; (2) Correlate NO{sub x} concentration with changes in cell impedance; (3) Evaluate sensing mechanisms and aging effects on long-term performance using electrochemical techniques; and (4) Collaborate with Ford Research Center to optimize sensor performance and perform dynamometer and on-vehicle testing. Work in FY2011 focused on using an algorithm developed in FY2010 in a simplified strategy to demonstrate how data from controlled laboratory evaluation could be applied to data from real-world engine testing. The performance of a Au wire prototype sensor was evaluated in the laboratory with controlled gas compositions and in dynamometer testing with diesel exhaust. The laboratory evaluation indicated a nonlinear dependence of the NO{sub x} and O{sub 2} sensitivity with concentration. For both NO{sub x} and O{sub 2}, the prototype sensor had higher sensitivity at concentrations less than {approx}20 ppm and {approx}7%, respectively, compared to lower NO{sub x} and O{sub 2} sensitivity at concentrations greater than {approx}50 ppm and {approx}10.5%, respectively. Results in dynamometer diesel exhaust generally agreed with the laboratory results. Diesel exhaust after-treatment systems will likely require detection levels less than {approx}20 ppm in order to meet emission regulations. The relevant mathematical expressions for sensitivity in different concentration regimes obtained from bench-level laboratory evaluation were used to adjust the sensor signal in dynamometer testing. Both NO{sub x} and O{sub 2} exhibited non-linear responses over the concentration regimes examined (0-100 ppm for NO{sub x} and 4-7% for O{sub 2}). Adjusted sensor signals had better agreement with both a commercial NO{sub x} sensor and FTIR measurements. However, the lack of complete agreement indicated that it was not possible to completely account for the nonlinear sensor behavior in certain concentration regimes. The agreement at lower NO{sub x} levels (less than 20 ppm) was better than at higher levels (50-100 ppm). Other progress in FY2011 included dynamometer testing of sensors with imbedded heaters and protective housings that were mounted directly into the exhaust manifold. Advanced testing protocols were used to evaluate the sensors. These experiments confirmed the potential for sensor robustness and durability. Advanced material processing methods appropriate for mass manufacturing, such as sputtering, are also being evaluated. A major milestone for this past year was the licensing of the LLNL NO{sub x} sensor technology to EmiSense Technologies, LLC. EmiSense has extensive experience and resources for the development of emission control sensors. A CRADA is in development that will allow LLNL to work in partnership with EmiSense to bring the LLNL NO{sub x} sensor technology to commercialization. Ford Motor Company is also a partner in this effort.

Woo, L Y; Glass, R S

2011-11-01T23:59:59.000Z

267

FY 2000 Annual Report to the Office of Management and Budget  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Department of Energy memorandum DATE: REPLY TO ATTN OF: Office of Nuclear and Facility Safety Policy:R. Serbu:301-903-2856 SUBJECT: FY 2000 Annual Report to the Office of Management and Budget TO: David Michaels, PhD, MPH Assistant Secretary Environment, Safety and Health As Standards Executive for the Department of Energy, I am providing our input for the Fiscal Year 2000 Annual Report to the Office of Management and Budget (OMB) on the Status of Agency Interaction with Voluntary Standards Bodies as required by OMB Circular No. A-119. Included with our input is supplementary information regarding Department of Energy standards and conformity assessment activities related to the principles and objectives of Public Law 104-113 and OMB

268

The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report  

SciTech Connect

In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

2009-10-12T23:59:59.000Z

269

Microsoft Word - Transmittal Memo - FY 2009 D&D Fund Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Memorandum DATE: April 21, 2010 REPLY TO ATTN OF: IG-34 (A09FN003) SUBJECT: Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2009 Financial Statement Audit - Report No.: OAS-FS-10-06 TO: Assistant Secretary for Environmental Management, EM-1 Deputy Assistant Secretary for Program Planning and Budget, Environmental Management, EM-60 The attached report presents the results of the independent certified public accountants' audit of the United States Department of Energy's Uranium Enrichment Decontamination and Decommissioning Fund's (D&D Fund) Fiscal Year (FY) 2009 balance sheet and the related statements of net cost, changes in net position, and budgetary resources. Pursuant to requirements established by the Government Management Reform Act of

270

Hydrogen separation membranes annual report for FY 2006.  

Science Conference Proceedings (OSTI)

The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. This goal of this project is to develop two types of dense ceramic membrane for producing hydrogen nongalvanically, i.e., without electrodes or external power supply, at commercially significant fluxes under industrially relevant operating conditions. The first type of membrane, hydrogen transport membranes (HTMs), will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. The second type of membrane, oxygen transport membranes (OTMs), will produce hydrogen by nongalvanically removing oxygen that is generated when water dissociates at elevated temperatures. This report describes progress that was made during FY 2006 on the development of OTM and HTM materials.

Balachandran, U.; Chen, L.; Ciocco, M.; Doctor, R. D.; Dorris, S.E.; Emerson, J. E.; Fisher, B.; Lee, T. H.; Killmeyer, R. P.; Morreale,B.; Picciolo, J. J.; Siriwardane, R. V.; Song, S. J.

2007-02-05T23:59:59.000Z

271

DOE Hydropower Program Annual Report for FY 2002  

SciTech Connect

The U.S. Department of Energy (DOE) conducts research on advanced hydropower technology through its hydropower program, which is organized under the Office of Wind and Hydropower Technologies within the Office of Energy Efficiency and Renewable Energy. This annual report describes the various projects supported by the hydropower program in FY 2002. The program=s current focus is on improving the environmental performance of hydropower projects by addressing problems such as fish mortality during passage through turbines, alteration of instream habitat, and water quality in tailwaters. A primary goal of this research is to develop new, environmentally friendly technology. DOE-funded projects have produced new conceptual designs for turbine systems, and these are now being tested in pilot-scale laboratory tests and in the field. New design approaches range from totally new turbine runners to modifications of existing designs. Biological design criteria for these new turbines have also been developed in controlled laboratory tests of fish response to physical stresses, such as hydraulic shear and pressure changes. These biocriteria are being combined with computational tools to locate and eliminate areas inside turbine systems that are damaging to fish. Through the combination of laboratory, field, and computational studies, new solutions are being found to environmental problems at hydropower projects. The diverse program activities continue to make unique contributions to clean energy production in the U.S. By working toward technology improvements that can reduce environmental problems, the program is helping to reposition hydropower as an acceptable, renewable, domestic energy choice.

Garold L. Sommers; R. T. Hunt

2003-07-01T23:59:59.000Z

272

Strategic Nuclear Research Collaboration - FY99 Annual Report  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

T. J. Leahy

1999-07-01T23:59:59.000Z

273

Integrated Disposal Facility FY2011 Glass Testing Summary Report  

SciTech Connect

Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

2011-09-29T23:59:59.000Z

274

O:\A76\647b Report\647B Report FY 2006\647bLetter.pdf.prn.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Richard B. Cheney Richard B. Cheney President of the Senate United States Senate Washington, DC 20510 Dear Mr. President: This letter is in response to the annual Competitive Sourcing reporting requirement contained in section 647(b) of Division F of the Consolidated Appropriations Act, for FY 2004, P.L. 108-199. The enclosed report on the Department of Energy's (DOE) Competitive Sourcing program complies with the agency reporting elements outlined in P.L. 108-199 for submitting the annual Congressiona l Competitive Sourcing Activity Report. In summary, DOE's Fiscal Year (FY) 2006 Competitive Sourcing Activity Report includes data on costs, savings, Federal full-time equivalent employees (FTEs), and other information on the Department's completed, ongoing, and planned competitive sourcing studies.

275

FY 2006 Appropriations bill report language, House Report ...  

Science Conference Proceedings (OSTI)

... House Report 109-272 - MAKING APPROPRIATIONS FOR SCIENCE, THE DEPARTMENTS OF STATE, JUSTICE, AND COMMERCE, AND ...

2010-10-05T23:59:59.000Z

276

Thermally conductive cementitious grouts for geothermal heat pumps. Progress report FY 1998  

DOE Green Energy (OSTI)

Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98. The developed thermally conductive grout consists of cement, water, a particular grade of silica sand, superplasticizer and a small amount of bentonite. While the primary function of the grout is to facilitate heat transfer between the U-loop and surrounding formation, it is also essential that the grout act as an effective borehole sealant. Two types of permeability (hydraulic conductivity) tests was conducted to evaluate the sealing performance of the cement-sand grout. Additional properties of the proposed grout that were investigated include bleeding, shrinkage, bond strength, freeze-thaw durability, compressive, flexural and tensile strengths, elastic modulus, Poisson`s ratio and ultrasonic pulse velocity.

Allan, M.L.; Philippacopoulos, A.J.

1998-11-01T23:59:59.000Z

277

Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft July 9, 2009 Draft July 9, 2009 1 Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance On Real Property 1. The following is the FY 2009 implementation procedures for the field offices/sites to determine and report deferred maintenance on real property as required by the Statement of Federal Financial Accounting Standards (SFFAS) No. 6, Accounting for Property, Plant, and Equipment (PP&E) and DOE Order 430.1B, Real Property Asset Management (RPAM). a. This document is intended to assist field offices/sites in consistently and accurately applying the appropriate methods to determine and report deferred maintenance estimates and reporting of annual required and actual maintenance costs. b. This reporting satisfies the Department's obligation to recognize and record deferred

278

Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final July 01, 2010 Final July 01, 2010 1 Attachment Implementation Procedures to Report Deferred, Actual, and Required Maintenance On Real Property 1. The following is the FY 2010 implementation procedures for the field offices/sites to determine and report deferred maintenance on real property as required by the Statement of Federal Financial Accounting Standards (SFFAS) No. 6, Accounting for Property, Plant, and Equipment (PP&E) and DOE Order 430.1B, Real Property Asset Management (RPAM). a. This document is intended to assist field offices/sites in consistently and accurately applying the appropriate methods to determine and report deferred maintenance estimates and reporting of annual required and actual maintenance costs. b. This reporting satisfies the Department's obligation to recognize and record deferred

279

SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2  

Science Conference Proceedings (OSTI)

This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is not considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.

BARCOT, R.A.

2005-08-17T23:59:59.000Z

280

Tethys and Annex IV Progress Report for FY 2012  

SciTech Connect

The marine and hydrokinetic (MHK) environmental Impacts Knowledge Management System, dubbed Tethys after the mythical Greek titaness of the seas, is being developed by the Pacific Northwest National Laboratory (PNNL) to support the U.S. Department of Energys Wind and Water Power Program (WWPP). Functioning as a smart database, Tethys enables its users to identify key words or terms to help gather, organize and make available information and data pertaining to the environmental effects of MHK and offshore wind (OSW) energy development. By providing and categorizing relevant publications within a simple and searchable database, Tethys acts as a dissemination channel for information and data which can be utilized by regulators, project developers and researchers to minimize the environmental risks associated with offshore renewable energy developments and attempt to streamline the permitting process. Tethys also houses a separate content-related Annex IV data base with identical functionality to the Tethys knowledge base. Annex IV is a collaborative project among member nations of the International Energy Agency (IEA) Ocean Energy Systems Implementing Agreement (OES-IA) that examines the environmental effects of ocean energy devices and projects. The U.S. Department of Energy leads the Annex IV working with federal partners such as the Federal Energy Regulatory Commission (FERC), the Bureau of Ocean Energy Management (BOEM), and the National Oceanic Atmospheric Administration (NOAA). While the Annex IV database contains technical reports and journal articles, it is primarily focused on the collection of project site and research study metadata forms (completed by MHK researchers and developers around the world, and collected by PNNL) which provide information on environmental studies and the current progress of the various international MHK developments in the Annex IV member nations. The purpose of this report is to provide a summary of the content, accessibility and functionality enhancements made to the Annex IV and Tethys knowledge bases in FY12.

Hanna, Luke A.; Butner, R. Scott; Whiting, Jonathan M.; Copping, Andrea E.

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Laboratory Directed Research and Development Program FY 2008 Annual Report  

Science Conference Proceedings (OSTI)

The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.

editor, Todd C Hansen

2009-02-23T23:59:59.000Z

282

PADS FY 2010 Annual Reports FY 2010 Obligations to Facilities Management Contracts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C4N - SHELTERED WORKSHOP 1 831,263 C4N - SHELTERED WORKSHOP 1 831,263 C0L - LOCAL GOVT/MUNICIPALITY 2 125,000 B22 - LARGE BUSINESS 979 2,388,060,659 C3N - NON-PROFIT ORGANIZATION 24 282,357,286 I0E - EDUCATIONAL INSTITUTION 9 4,970,555 A00 - SMALL BUSINESS 1,890 1,921,241,548 C0F - FEDERAL GOVERNMENT 478 388,669,688 E1N - FOREIGN CONTRACTOR 1 -16,921,324 8 UNIQUE VALUES 3,384 4,969,334,675 Geographic Distribution of FY 2010 Obligations to Non-Facilities Management Awards STATE NUMBER OF AWARDS FY 2010 OBLIGATIONS NORTH DAKOTA (ND) 28 2,832,957 ILLINOIS (IL) 68 25,598,750 ARIZONA (AZ) 96 8,732,671 WISCONSIN (WI) 6 831,049 GEORGIA (GA) 34 5,300,948 NORTH CAROLINA (NC) 17 10,995,700 RHODE ISLAND (RI) 2 660,000 DISTRICT OF COLUMBIA (DC) 770 524,559,400 PENNSYLVANIA (PA) 132 84,970,982

283

Ferrocyanide safety project ferrocyanide aging studies FY 1995 annual report  

Science Conference Proceedings (OSTI)

This annual report gives the results of the work conducted by the Pacific Northwest Laboratory in FY 1995 on Task 3 of the Ferrocyanide Safety Project, Ferrocyanide Aging Studies. Aging refers to the dissolution and hydrolysis of simulated Hanford ferrocyanide waste in alkaline aqueous solutions by radiolytic and chemical means. The ferrocyanide simulant primarily used in these studies was dried In-Farm-1B, Rev. 7, prepared by Westinghouse Hanford Company to simulate the waste generated when the In-Farm flowsheet was used to remove radiocesium from waste supernates in single-shell tanks at the Hanford Site. In the In-Farm flowsheet, nickel ion and ferrocyanide anion were added to waste supernates to precipitate sodium nickel ferrocyanide, Na{sub 2}NiFe(CN){sub 6}, and co-precipitate radiocesium. Once the radiocesium was removed, supernates were pumped from the tanks, and new wastes from cladding removal processes or from evaporators were added. These new wastes were typically highly caustic, having hydroxide ion concentrations of over 1 M and as high as 4 M. The Aging Studies task is investigating reactions this caustic waste may have had with the precipitated ferrocyanide waste in a radiation field. In previous Aging Studies research, Na{sub 2}NiFe(CN){sub 6} in simulants was shown to dissolve in basic solutions, forming insoluble Ni(OH){sub 2} and soluble Na{sub 4}Fe(CN){sub 6}. The influence on solubility of base strength, sodium ion concentration, anions, and temperature was previously investigated. The results may indicate that even ferrocyanide sludge that did not come into direct contact with highly basic wastes may also have aged significantly.

Lilga, M.A.; Alderson, E.V.; Hallen, R.T. [and others

1995-09-01T23:59:59.000Z

284

HyPEP FY06 Report: Models and Methods  

DOE Green Energy (OSTI)

The Department of Energy envisions the next generation very high-temperature gas-cooled reactor (VHTR) as a single-purpose or dual-purpose facility that produces hydrogen and electricity. The Ministry of Science and Technology (MOST) of the Republic of Korea also selected VHTR for the Nuclear Hydrogen Development and Demonstration (NHDD) Project. This research project aims at developing a user-friendly program for evaluating and optimizing cycle efficiencies of producing hydrogen and electricity in a Very-High-Temperature Reactor (VHTR). Systems for producing electricity and hydrogen are complex and the calculations associated with optimizing these systems are intensive, involving a large number of operating parameter variations and many different system configurations. This research project will produce the HyPEP computer model, which is specifically designed to be an easy-to-use and fast running tool for evaluating nuclear hydrogen and electricity production facilities. The model accommodates flexible system layouts and its cost models will enable HyPEP to be well-suited for system optimization. Specific activities of this research are designed to develop the HyPEP model into a working tool, including (a) identifying major systems and components for modeling, (b) establishing system operating parameters and calculation scope, (c) establishing the overall calculation scheme, (d) developing component models, (e) developing cost and optimization models, and (f) verifying and validating the program. Once the HyPEP model is fully developed and validated, it will be used to execute calculations on candidate system configurations. FY-06 report includes a description of reference designs, methods used in this study, models and computational strategies developed for the first year effort. Results from computer codes such as HYSYS and GASS/PASS-H used by Idaho National Laboratory and Argonne National Laboratory, respectively will be benchmarked with HyPEP results in the following years.

DOE report

2006-09-01T23:59:59.000Z

285

NEPA Lessons Learned Quarterly Report - 4th Quarter FY 1997  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 1997 December 1997 1 National Environmental Policy Act N E P A LESSONS LEARNED LESSONS LEARNED For Fourth Quarter FY 1997 December 1, 1997, Issue No. 13 U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT continued on page 2 I@Q6£Sr‰vr£6qq†£ I@Q6£Sr‰vr£6qq†£ I@Q6£Sr‰vr£6qq†£ I@Q6£Sr‰vr£6qq†£ I@Q6£Sr‰vr£6qq†£W W W W Whyˆr£‡‚£Q…‚ƒ‚†rq hyˆr£‡‚£Q…‚ƒ‚†rq hyˆr£‡‚£Q…‚ƒ‚†rq hyˆr£‡‚£Q…‚ƒ‚†rq hyˆr£‡‚£Q…‚ƒ‚†rq Thyr£‚s£Ih‰hy£Qr‡…‚yrˆ€£Sr†r…‰r Thyr£‚s£Ih‰hy£Qr‡…‚yrˆ€£Sr†r…‰r Thyr£‚s£Ih‰hy£Qr‡…‚yrˆ€£Sr†r…‰r Thyr£‚s£Ih‰hy£Qr‡…‚yrˆ€£Sr†r…‰r Thyr£‚s£Ih‰hy£Qr‡…‚yrˆ€£Sr†r…‰r The endangered San Joaquin Kit Fox would continue to be protected after sale of NPR-1. (Photo courtesy of

286

Lifecycle Verification of Polymeric Storage Tank Liners - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Barton Smith (Primary Contact) and Lawrence M. Anovitz Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831 Phone: (865) 574-2196 Email: smithdb@ornl.gov DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Start Date: June 2008 Projected End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Continue temperature cycling and permeation * measurements on tank liner polymers, and use permeation data to assess ability of tank liners to retain a steady-state hydrogen discharge rate that does not exceed 110% of the 75 normal cubic centimeters per minute (Ncc)/min permeation requirement of SAE International

287

FY 93 thermal loading systems study final report: Volume 2. Revision 1  

Science Conference Proceedings (OSTI)

The ability to meet the overall performance requirements for the proposed Mined Geology Disposal System at Yucca Mountain, Nevada requires the two major subsystem (natural barriers and engineered barriers) to positively contribute to containment and radionuclide isolation. In addition to the postclosure performance the proposed repository must meet preclosure requirements of safety, retrievability, and operability. Cost and schedule were also considered. The thermal loading strategy chosen may significantly affect both the postclosure and preclosure performance of the proposed repository. Although the current Site Characterization Plan reference case is 57 kilowatts (kW)/acre, other thermal loading strategies (different areal mass loadings) have been proposed which possess both advantages and disadvantages. The objectives of the FY 1993 Thermal Loading Study were to (1) place bounds on the thermal loading which would establish the loading regime that is ``too hot`` and the loading regime that is ``too cold``, to (2) ``grade`` or evaluate the performance, as a function of thermal loading, of the repository to contain high level wastes against performance criteria and to (3) evaluate the performance of the various options with respect to cost, safety, and operability. Additionally, the effort was to (4) identify important uncertainties that need to be resolved by tests and/or analyses in order to complete a performance assessment on the effects of thermal loading. The FY 1993 Thermal Loading Study was conducted from December 1, 1992 to December 30, 1993 and this final report provides the findings of the study. Volume 2 consists of 10 appendices which contain the following: Waste Stream Analysis; Waste Package Design Inputs; Subsurface Design Inputs; Thermal-Hydrologic Model Inputs; Near-Field Calculations; Far-Field; Reliability of Electronics as a Function of Temperature; Cost Analysis Details; Geochemistry; and Areas of Uncertainty in Thermal Loading.

NONE

1994-08-29T23:59:59.000Z

288

ARPA-E FY2010 Annual Report Highlights Transformational Projects Since  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY2010 Annual Report Highlights Transformational Projects FY2010 Annual Report Highlights Transformational Projects Since Agency's Establishment ARPA-E FY2010 Annual Report Highlights Transformational Projects Since Agency's Establishment June 22, 2011 - 10:30am Addthis Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What does this mean for me? ARPA-E has funded 121 projects -- in amounts ranging from roughly $400,000 to $9 million, with an average award value of $3 million -- which have the potential to transform our Nation's energy future. Private investments have not only signaled commercial potential, but are helping projects accelerate technical development, create jobs and acquire capital equipment and facilities. It's hard to believe the Advanced Research Projects Agency-Energy (ARPA-E)

289

SIGMOBILE FY'07 annual report: July 2006--June 2007  

Science Conference Proceedings (OSTI)

This article reproduces SIGMOBILE's Annual Report to ACM for the period July 1, 2006, through June 30, 2007. Corresponding to ACM's fiscal year cycle, each SIG Chair is required to submit an annual report to ACM's SIG Governing Board that summarizes ...

David B. Johnson

2007-10-01T23:59:59.000Z

290

FY 2009 National Renewable Energy Laboratory (NREL) Annual Report: A Year of Energy Transformation  

SciTech Connect

This FY2009 Annual Report surveys the National Renewable Energy Laboratory's (NREL) accomplishments in renewable energy and energy efficiency research and development, commercialization and deployment of technologies, and strategic energy analysis. It offers NREL's vision and progress in building a clean, sustainable research campus and reports on community involvement.

Not Available

2010-01-01T23:59:59.000Z

291

FY 2009 National Renewable Energy Laboratory (NREL) Annual Report: A Year of Energy Transformation  

SciTech Connect

This FY2009 Annual Report surveys the National Renewable Energy Laboratory's (NREL) accomplishments in renewable energy and energy efficiency research and development, commercialization and deployment of technologies, and strategic energy analysis. It offers NREL's vision and progress in building a clean, sustainable research campus and reports on community involvement.

2010-01-01T23:59:59.000Z

292

FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvAnced vehicle Technology AdvAnced vehicle Technology AnAlysis And evAluATion AcTiviTies U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities FY 2006 Annual Report CONTENTS I. INTRODUCTION............................................................................................................................ 1 II. MODELING AND SIMULATION ................................................................................................ 9

293

FY 2006 Annual Progress Report for Heavy Vehicle Systems Optimization Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy veHicle SyStemS Heavy veHicle SyStemS OptimizatiOn prOgram U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2006 Annual Progress Report for Heavy Vehicle Systems Optimization Program Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Heavy Vehicle Systems Optimization Program FY 2006 Annual Report iii CONTENTS I. Aerodynamic Drag Reduction......................................................................................................... 1 A. DOE Project on Heavy Vehicle Aerodynamic Drag .................................................................. 1

294

FY 2012 Annual Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Duong - DOE V.A Introduction Duong - DOE V.A Introduction FY 2012 Annual Progress Report cdlxxxvii Energy Storage R&D FY 2012 Annual Progress Report 489 Energy Storage R&D V. Focused Fundamental Research V.A Introduction The focused fundamental research program, also called the Batteries for Advanced Transportation Technologies (BATT) Program, is supported by the DOE's Vehicle Technologies Program (DOE-VTP) to research and analyze new materials for high- performance, next generation, rechargeable batteries for use in HEVs, PHEVs, and EVs. The effort in FY 2012 continued the increased emphasis on high-energy materials for PHEV and EV applications and expanded efforts into technologies for enabling the use of Li metal anodes. Background and Program Context The BATT Program addresses the fundamental problems of chemical and mechanical instabilities that have slowed the

295

FY 1991 environmental research programs for the Nevada Operations Office: Work plan and quarterly reports, first and second quarter reports  

SciTech Connect

The work carried out on behalf of the DOE by the Desert Research Institute (DRI) includes a wide range of research and support activities associated with the Weapons Testing Program conducted at the Nevada Test Site (NTS). Ongoing and new environmental research programs to be conducted by DRI over the period of this contract include archaeological studies, site mitigation plans, compliance activities, and historical research; offsite community radiation monitoring support; environmental compliance activities related to stat and federal regulations; hydrologic assessment of containment of underground nuclear detonations; hydrology/radionuclide investigations designed to better understand and predict the possible subsurface movement of radionuclides at the NTS; and support of various statistical and data management and design, laboratory, field, and administrative activities. In addition to these, archaeological site characterization, flood hazards for rail transportation, and paleofaunal investigations will be carried out in support of the Yucca Mountain Project. Other areas of the overall program which require DRI support are classified security activities, radiation safety and training, quality assurance and control, computer protection and historical data management, review and classification of DRI documents, and preparation of any special reports, e.g., quarterly reports, not included in the requirements of the individual projects. A new set of programs funded by the Office of Technology Development will be in place by the third quarter of FY 1991. These projects will address environmental restoration and waste management concerns, among other related topics. This document contains the Work Plan, including project descriptions, tasks, deliverables and quarterly progress reports on each project for FY 1991.

NONE

1991-05-01T23:59:59.000Z

296

Environmental Systems Research Candidates Program--FY2000 Annual report  

SciTech Connect

The Environmental Systems Research Candidates (ESRC) Program, which is scheduled to end September 2001, was established in April 2000 as part of the Environmental Systems Research and Analysis Program at the Idaho National Engineering and Environmental Laboratory (INEEL) to provide key science and technology to meet the clean-up mission of the U.S. Department of Energy Office of Environmental Management, and perform research and development that will help solve current legacy problems and enhance the INEELs scientific and technical capability for solving longer-term challenges. This report documents the progress and accomplishments of the ESRC Program from April through September 2000. The ESRC Program consists of 24 tasks subdivided within four research areas: A. Environmental Characterization Science and Technology. This research explores new data acquisition, processing, and interpretation methods that support cleanup and long-term stewardship decisions. B. Subsurface Understanding. This research expands understanding of the biology, chemistry, physics, hydrology, and geology needed to improve models of contamination problems in the earths subsurface. C. Environmental Computational Modeling. This research develops INEEL computing capability for modeling subsurface contaminants and contaminated facilities. D. Environmental Systems Science and Technology. This research explores novel processes to treat waste and decontaminate facilities. Our accomplishments during FY 2000 include the following: We determined, through analysis of samples taken in and around the INEEL site, that mercury emissions from the INEEL calciner have not raised regional off-INEEL mercury contamination levels above normal background. We have initially demonstrated the use of x-ray fluorescence to image uranium and heavy metal concentrations in soil samples. We increased our understanding of the subsurface environment; applying mathematical complexity theory to the problem of transport of subsurface contaminants. We upgraded the INEELs high-speed computer link to offsite supercomputers from T1 (1.5 MB/s) to DS3 (45 MB/s). Procurements have initiated a further upgrade to OC3 (155 MB/s) with additional onsite computational power that should put the INEEL on the Top 500 Supercomputing Sites list. We developed advanced decontamination, decommissioning, and dismantlement techniques, including the Decontamination, Decommissioning, and Remediation Optimal Planning System.

Piet, Steven James

2001-01-01T23:59:59.000Z

297

Photon Sciences Directorate | 2010 Annual Report | FY10 Beamline Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

FY10 Beamline Guide FY10 Beamline Guide beamline status chart Click on the image to download a high-resolution version. Beamline Status In 2010, 49 X-Ray and 11 Vacuum Ultraviolet-Infrared operational beamlines were available for a wide range of experiments using a variety of techniques. There are two types of beamlines at NSLS: facility beamlines, of which there were 21; and participating research team (PRT) beamlines, of which there were 39. Facility beamlines are operated by Photon Sciences staff members and reserve a minimum of 50 percent of their beam time for general users. PRT beamlines are run by user groups with similar interests and reserve 25 percent of their beam time for general users, although they can grant additional time at their own discretion. The following pages provide details on NSLS operational beamlines,

298

Idaho National Laboratory's FY11 Greenhouse Gas Report  

SciTech Connect

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

Kimberly Frerichs

2012-03-01T23:59:59.000Z

299

Idaho National Laboratory FY12 Greenhouse Gas Report  

Science Conference Proceedings (OSTI)

A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

Kimberly Frerichs

2013-03-01T23:59:59.000Z

300

FY 2005 Quantum Cascade Laser Alignment System Final Report  

Science Conference Proceedings (OSTI)

The Alignment Lasers Task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Project PL211I) is a co-funded project between DOE NA-22 and a Classified Client. This project, which began in the second half of FY03, involved building and delivering a Quantum Cascade (QC) Laser Alignment System to be used for testing the pupil alignment of an infrared sensor by measuring the response from four pairs of diametrically opposed QC lasers. PNNL delivered the system in FY04 and provided technical assistance in FY05 culminating into a successful demonstration of the system. This project evolved from the Laser Development Task of PL211I, which is involved in developing novel laser technology to support development of advanced chemical sensors for detecting the proliferation of nuclear weapons. The laser systems are based on quantum cascade (QC) lasers, a new semiconductor source in the infrared. QC lasers can be tailored to emit light throughout the infrared region (3.5 ? 17 ?m) and have high output power and stability. Thus, these lasers provide an infrared source with superb power and spectral stability enabling them to be used for applications such as alignment and calibration in addition to chemical sensing.

Myers, Tanya L.; Cannon, Bret D.; Wojcik, Michael D.; Broocks, Bryan T.; Stewart, Timothy L.; Hatchell, Brian K.

2006-01-11T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Dose-to-Man Program progress report, FY 1973  

SciTech Connect

The Dose-to-Man Program at the Savannah River Plant (SRP) was conceived in FY-1972 and operations began in FY-1973. The major objectives of the program are to develop (or adapt), test, and apply comprehensive mathematical models to calculate the radiation dose-to-man from one or more point sources released to the atmosphere or surface waters. These models will be applied to SRP operations; however, the methods are expected to be generally applicable over a large portion of the southeastern United States. A discussion is included of a new meteorological data acquisition program now in operation using a 1200-ft TVtower located near the plant site and seven 200-ft towers to be located onsite in FY-1974. Previously collected meteorological data from the TV-tower were analyzed to show spatial and temporal variation in eddy diffusivity, mesoscale kinetic energy spectra, and dispersion climatology based upon wind-sequencing information. A discussion of a framework for calculation of doseto-man, and a comparison of the Brookhaven National Laboratory (BNL) and Pasquill methods for determining dispersion coefficients are also included. A currert sulfur dioxide survey is discussed which will help verify the calculation techniques for predicting dispersion from heated plumes. (auth)

Crawford, T.V.

1974-01-01T23:59:59.000Z

302

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report I. INTRODUCTION  

E-Print Network (OSTI)

, and Infrastructure Technologies Program. This new program office integrates activities in hydrogen production Secretary for Energy Efficiency and Renewable Energy (EERE), the new Office of Hydrogen, Fuel Cells-effective thermal energy needs for some or all of the building's heating/cooling requirements In FY 2003, a study

303

DOE Hydropower Program Biennial Report for FY 2005-2006  

DOE Green Energy (OSTI)

SUMMARY The U.S. Department of Energy (DOE) Hydropower Program is part of the Office of Wind and Hydropower Technologies, Office of Energy Efficiency and Renewable Energy. The Program's mission is to conduct research and development (R&D) that will increase the technical, societal, and environmental benefits of hydropower. The Department's Hydropower Program activities are conducted by its national laboratories: Idaho National Laboratory (INL) [formerly Idaho National Engineering and Environmental Laboratory], Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and National Renewable Energy Laboratory (NREL), and by a number of industry, university, and federal research facilities. Programmatically, DOE Hydropower Program R&D activities are conducted in two areas: Technology Viability and Technology Application. The Technology Viability area has two components: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices) and (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis). The Technology Application area also has two components: (1) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications) and (2) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology). This report describes the progress of the R&D conducted in FY 2005-2006 under all four program areas. Major accomplishments include the following: Conducted field testing of a Retrofit Aeration System to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri. Contributed to the installation and field testing of an advanced, minimum gap runner turbine at the Wanapum Dam project in Washington. Completed a state-of-the-science review of hydropower optimization methods and published reports on alternative operating strategies and opportunities for spill reduction. Carried out feasibility studies of new environmental performance measurements of the new MGR turbine at Wanapum Dam, including measurement of behavioral responses, biomarkers, bioindex testing, and the use of dyes to assess external injuries. Evaluated the benefits of mitigation measures for instream flow releases and the value of surface flow outlets for downstream fish passage. Refined turbulence flow measurement techniques, the computational modeling of unsteady flows, and models of blade strike of fish. Published numerous technical reports, proceedings papers, and peer-reviewed literature, most of which are available on the DOE Hydropower website. Further developed and tested the sensor fish measuring device at hydropower plants in the Columbia River. Data from the sensor fish are coupled with a computational model to yield a more detailed assessment of hydraulic environments in and around dams. Published reports related to the Virtual Hydropower Prospector and the assessment of water energy resources in the U.S. for low head/low power hydroelectric plants. Convened a workshop to consider the environmental and technical issues associated with new hydrokinetic and wave energy technologies. Laboratory and DOE staff participated in numerous workshops, conferences, coordination meetings, planning meetings, implementation meetings, and reviews to transfer the results of DOE-sponsored research to end-users.

Sale, Michael J [ORNL; Cada, Glenn F [ORNL; Acker, Thomas L. [Northern Arizona State University and National Renewable Energy Laboratory; Carlson, Thomas [Pacific Northwest National Laboratory (PNNL); Dauble, Dennis D. [Pacific Northwest National Laboratory (PNNL); Hall, Douglas G. [Idaho National Laboratory (INL)

2006-07-01T23:59:59.000Z

304

DOD Facilities Energy: FY 2009 Annual Energy Report Overview and Status on NDAA 2010 Studies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Energy Facilities Energy FY 2009 Annual Energy Report: Overview and Status on NDAA 2010 Studies Brian J. Lally, P.E. Deputy Director, Facilities Energy and Utilities Privatization Deputy Under Secretary of Defense for Installations and Environment FUPWG: 14-15 April 2010 FY 09-08 Facilities Total Delivered Energy (Billions Btu) 2 5,000 30,000 55,000 80,000 105,000 130,000 155,000 180,000 205,000 DoD Army Air Force Dept Navy Other DoD FY 09 FY 08 FY 09 Site Delivered Energy By Type (Billions Btu) 3 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 Electricity Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane & Renewables DoD Army Air Force Dept Navy Other DoD All Facilities Site Delivered Energy By Type (BTU) Electricity 46% Natural Gas 33% Fuel Oil 9% Coal 7% Purchased Steam

305

Nevada Test Site-Directed Research and Development: FY 2006 Report  

SciTech Connect

The Nevada Test SiteDirected Research and Development (SDRD) program completed its fifth successful year of research and development activities in FY 2006. Forty new projects were selected for funding this year, and ten FY 2005 projects were brought to conclusion. The total funds expended by the SDRD program were $6 million, for an average per-project cost of $120 thousand. Beginning in May, 2006 programmatic burden rates were applied to SDRD project costs. An external audit conducted in September 2006 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: the filing of 27 invention disclosures for intellectual property generated by FY 2006 projects; programmatic adoption of four FY 2005 SDRD-developed technologies; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2006 projects; and the successful completion of 50 R&D projects, as presented in this report.

Wil Lewis, editor

2007-08-01T23:59:59.000Z

306

Biological Systems for Hydrogen Photoproduction - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Maria L. Ghirardi (Primary Contact), Paul W. King, Kathleen Ratcliff and David Mulder National Renewable Energy Laboratory (NREL) 1617 Cole Blvd. Golden, CO 80401 Phone: (303) 384-6312 Email: maria.ghirardi@nrel.gov DOE Manager Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Subcontractors: * Dr. Sergey Kosourov, Institute of Basic Biological Problems, RAS, Pushchino, Russia * Dr. Eric Johnson, Johns Hopkins University, Baltimore, MD Project Start Date: October 1, 2000 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Primary Objectives

307

Photoelectrochemical Materials: Theory and Modeling - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Muhammad N. Huda (Primary Contact), Yanfa Yan*, Todd Deutsch*, Mowafak M. Al-Jassim* and A. John A. Turner* Department of Physics University of Texas at Arlington Arlington, TX 76019 Phone: (817) 272-1097 Email: huda@uta.edu *National Renewable Energy Laboratory DOE Manager HQ: Eric L. Miller Phone: (202) 287-5892 Email: Eric.Miller@ee.doe.gov Subcontractor: University of Texas at Arlington, Arlington, TX Project Start Date: September 2009 Project End Date: August 2012 Fiscal Year (FY) 2012 Objectives For FY 2012, the main goal of this project was to improve materials efficiency by understanding and hence tuning the following by theoretical/computational modeling

308

Characterization of Fuel Cell Materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Karren L. More Oak Ridge National Laboratory (ORNL) 1 Bethel Valley Rd. Oak Ridge, TN 37831-6064 Phone: (865) 574-7788 Email: morekl1@ornl.gov DOE Manager HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov Contributors: * David Cullen (ORNL) * Miaofang Chi (ORNL) * Kelly Perry (ORNL) Project Start Date: Fiscal Year (FY) Year 1999 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop and/or apply novel preparation, imaging, and * analytical methods to characterize fuel cell materials and architectures in the as-processed (fresh) state, during

309

Primary Contacts Index, DOE Hydrogen Program FY 2010 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2010 Annual Progress Report DOE Hydrogen Program A Abken, Anke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Abruna, Hector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 Aceves, Salvador . . . . . . . . . . . . . . . . 282, 341, 615, 1363 Adams, Thad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 Adzic, Radoslav . . . . . . . . . . . . . . . . . . . . . . . . . 841, 1092 Ahluwalia, Rajesh . . . . . . . . . . . . . . . . . . . . . . . . 566, 661 Ahmed, Shabbir . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 1209 Allendorf, Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 Anton, Don . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413, 514 Arif, Muhammad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686 Atanasoski, Radoslav . . . . . . . . . . . . . . . . . . . . . . . . . . 825 Ayers, Katherine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 B Balachandran, Balu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Balbuena, Perla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099 Barclay, John . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

310

Division of Enrollment Management 2009-10 (FY10) Annual Report  

E-Print Network (OSTI)

and maintenance #12;Division of Enrollment Management Annual Report ­ FY10 Page 7 A Chronology Enrollment website is migrated to the campus-wide, DoIT supported WiscWeb content management system (CMS) #12 new solutions to manage new residency statutes Office of the Registrar UW-System Developed

Sheridan, Jennifer

311

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section III. Hydrogen Storage  

E-Print Network (OSTI)

. Hydrogen Storage #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 200 #12 square inch (psi) 7.5 wt % and 8.5 wt% Type IV composite hydrogen storage tanks of specified sizes for DOE Future Truck and Nevada hydrogen bus programs · Demonstrate 10,000 psi storage tanks Approach

312

Technical Standards, FY 2000 - February 02, 2001 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2000 - February 02, 2001 Technical Standards, FY 2000 - February 02, 2001 February 02, 2001 FY 2000: Annual Report; Replaced by 2003 The use of voluntary consensus standards...

313

Combined Fiscal Year (FY) 2009 Annual Performance Results and FY 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combined Fiscal Year (FY) 2009 Annual Performance Results and FY Combined Fiscal Year (FY) 2009 Annual Performance Results and FY 2010 Annual Performance Plan Combined Fiscal Year (FY) 2009 Annual Performance Results and FY 2010 Annual Performance Plan Subject: Office of Inspector General's combined Fiscal Year (FY) 2009 Annual Performance Results and FY 2010 Annual Performance Plan This report presents the goals, objectives, and strategies for measuring the OIG's FY 2009 actual performance and FY 2010 planned activities. Combined Fiscal Year (FY) 2009 Annual Performance Results and FY 2010 Annual Performance Plan More Documents & Publications U.S. Departmetn of Energy, Office of Inspector General, Annaul Peformance Report FY 2009, Annual Performance Plan Fy 2010 Combined Fiscal Year (FY) 2011 Annual Performance Results and FY 2012

314

Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.  

DOE Green Energy (OSTI)

The construction of Hungry Horse Dam inundated 125 km of adfluvial trout habitat in the South Fork of the Flathead River and its tributaries, impacting natural fish reproduction and rearing. Rapid residential and commercial growth in the Flathead Watershed now threaten the best remaining habitats and restrict our opportunities to offset natural resource losses. Hydropower development and other land disturbances caused severe declines in the range and abundance of our focal resident fish species, bull trout and westslope cutthroat trout. Bull trout were listed as threatened in 1998 under the Endangered Species Act and westslope cutthroat were petitioned for listing under ESA. Westslope cutthroat are a species of special concern in Montana and a species of special consideration by the Confederated Salish and Kootenai Tribes. The Secure & Protect Fisheries Habitat project follows the logical progression towards habitat restoration outlined in the Hungry Horse Dam Fisheries Mitigation Implementation Plan approved by the NWPPC in 1993. This project is also consistent with the 2000 Fish and Wildlife Program and the Flathead River Subbasin Plan that identifies the protection of habitats for these populations as one of the most critical needs in the subbasin and directs actions to offset habitat losses. The Flathead basin is one of the fastest growing human population centers in Montana. Riparian habitats are being rapidly developed and subdivided, causing habitat degradation and altering ecosystem functions. Remaining critical habitats in the Flathead Watershed need to be purchased or protected with conservation easements if westslope cutthroat and bull trout are to persist and expand within the subbasin. In addition, habitats degraded by past land uses need to be restored to maximize the value of remaining habitats and offset losses caused by the construction of Hungry Horse Dam. Securing and restoring remaining riparian habitat will benefit fish by shading and moderating water temperatures, stabilizing banks and protecting the integrity of channel dimension, improving woody debris recruitment for in-channel habitat features, producing terrestrial insects and leaf litter for recruitment to the stream, and helping to accommodate and attenuate flood flows. The purpose of this project is to work with willing landowners to protect the best remaining habitats in the Flathead subbasin as identified in the Flathead River Subbasin Plan. The target areas for land protection activities follow the priorities established in the Flathead subbasin plan and include: (1) Class 1 waters as identified in the Flathead River Subbasin Plan; (2) Class 2 watersheds as identified in the Flathead River Subbasin Plan; and (3) 'Offsite mitigation' defined as those Class 1 and Class 2 watersheds that lack connectivity to the mainstem Flathead River or Flathead Lake. This program focuses on conserving the highest quality or most important riparian or fisheries habitat areas consistent with program criteria. The success of our efforts is subject to a property's actual availability and individual landowner negotiations. The program is guided using biological and project-based criteria that reflect not only the priority needs established in the Flathead subbasin plan, but also such factors as cost, credits, threats, and partners. The implementation of this project requires both an expense and a capital budget to allow work to be completed. This report addresses accomplishments under both budgets during FY08 as the two budgets are interrelated. The expense budget provided pre-acquisition funding to conduct activities such as surveys, appraisals, staff support, etc. The capital budget was used to purchase the interest in each parcel including closing costs. Both the pre-acquisition contract funds and the capital funds used to purchase fee title or conservation easements were spent in accordance with the terms negotiated within the FY08 through FY09 MOA between the Tribes, State, and BPA. In FY08, the focus of this project was to pursue all possible properties

DuCharme, Lynn [Confederated Salish and Kootenai Tribes; Tohtz, Joel [Montana Fish, Wildlife & Parks

2008-11-12T23:59:59.000Z

315

Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Report on Dual-Purpose Canister Disposal Alternatives Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) This report documents the first phase of a multi-year project to understand the technical feasibility and logistical implications of direct disposal of spent nuclear fuel (SNF) in existing dual-purpose canisters (DPCs) and other types of storage casks. The first phase includes a set of preliminary disposal concepts and associated technical analyses, identification of additional R&D needs, and a recommendation to proceed with the next phase of the evaluation effort. Preliminary analyses indicate that DPC direct disposal could be technically feasible, at least for certain disposal concepts. DPC disposal concepts include the salt concept, and emplacement

316

Decontamination and decommissioning surveillance and maintenance report for FY 1991. Environmental Restoration Program  

SciTech Connect

The Decontamination and Decommissioning (D&D) Program has three distinct phases: (1) surveillance and maintenance (S&M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D&D is devoted to S&M at each of the sites. Our S&M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S&M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

Not Available

1991-12-01T23:59:59.000Z

317

Barium titanate nanocomposite capacitor FY09 year end report.  

DOE Green Energy (OSTI)

This late start RTBF project started the development of barium titanate (BTO)/glass nanocomposite capacitors for future and emerging energy storage applications. The long term goal of this work is to decrease the size, weight, and cost of ceramic capacitors while increasing their reliability. Ceramic-based nanocomposites have the potential to yield materials with enhanced permittivity, breakdown strength (BDS), and reduced strain, which can increase the energy density of capacitors and increase their shot life. Composites of BTO in glass will limit grain growth during device fabrication (preserving nanoparticle grain size and enhanced properties), resulting in devices with improved density, permittivity, BDS, and shot life. BTO will eliminate the issues associated with Pb toxicity and volatility as well as the variation in energy storage vs. temperature of PZT based devices. During the last six months of FY09 this work focused on developing syntheses for BTO nanoparticles and firing profiles for sintering BTO/glass composite capacitors.

Stevens, Tyler E.; DiAntonio, Christopher Brian; Yang, Pin; Chavez, Tom P.; Winter, Michael R.; Monson, Todd C.; Roesler, Alexander William; Fellows, Benjamin D.

2009-11-01T23:59:59.000Z

318

Magma Energy Research Project, FY 1979 annual progress report  

DOE Green Energy (OSTI)

The objective of the Magma Energy Research Project is to define the scientific feasibility of extracting energy from magma bodies. Activities to accomplish the objective are divided into five tasks: resource location and identification; source tapping; magma characterization; materials compatibility; and energy extraction. The program activities of FY 1979 are summarized here according to the individual tasks. Major emphasis of the program in the last year was on field experimentation with the United States Geological Survey in geoscience and technological studies at the Kilauea Iki lava lake. Other major efforts included installation of the magma simulation facility and magma-metal compatibility studies. The Magma Energy Advisory Panel also met during this period. Efforts and results are summarized.

Colp, J.L.

1979-12-01T23:59:59.000Z

319

Applied Science Division annual report, Environmental Research Program FY 1983  

Science Conference Proceedings (OSTI)

The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1983, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, freshwater ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring.

Cairns, E.J.; Novakov, T.

1984-05-01T23:59:59.000Z

320

Simulating Collisions for Hydrokinetic Turbines. FY2010 Annual Progress Report.  

DOE Green Energy (OSTI)

Computational fluid dynamics (CFD) simulations of turbulent flow and particle motion are being conducted to evaluate the frequency and severity of collisions between marine and hydrokinetic (MHK) energy devices and debris or aquatic organisms. The work is part of a collaborative research project between Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories , funded by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Water Power Program. During FY2010 a reference design for an axial flow MHK turbine was used to develop a computational geometry for inclusion into a CFD model. Unsteady simulations of turbulent flow and the moving MHK turbine blades are being performed and the results used for simulation of particle trajectories. Preliminary results and plans for future work are presented.

Richmond, Marshall C.; Rakowski, Cynthia L.; Perkins, William A.; Serkowski, John A.

2010-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NEPA Lessons Learned Quarterly Report, First Quarter FY 2005 (March 1, 2005)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 1 5 1 Green Book, Second Edition, Issued; see page 4 New Assistant Secretary Shaw Promotes NEPA as Essential to Energy Mission and Goals National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT First Quarter FY 2005 March 1, 2005; Issue No. 42 LESSONS LEARNED LEARNED LESSONS (continued on page 3) In a recent interview for Lessons Learned Quarterly Report, John Spitaleri Shaw, the new Assistant Secretary for

322

Field Demonstration of a 24-kV Warm Dielectric Superconducting Cable at Detroit Edison: FY2003 Annual Progress Report  

Science Conference Proceedings (OSTI)

A project sponsored by EPRI, Pirelli Power Cables and Systems, the Department of Energy, Detroit Edison, and American Superconductor Corporation was initiated in 1998 to install and operate a 24 kV HTS power cable in a Detroit Edison substation to serve customer load. The previous years of activity have focused on design, testing, manufacturing, and installation of the cable system as described in the FY2000 and FY2001 status reports. The FY2002 status report focused on leak detection. The cornerstone of...

2004-03-30T23:59:59.000Z

323

Semiannual Report to Congress: for the first half of Fiscal Year (FY) 1998  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the first half of Fiscal Year for the first half of Fiscal Year (FY) 1998 Semiannual Report to Congress: for the first half of Fiscal Year (FY) 1998 April 30, 1998 1998 Inspector General Semiannual Report to Congress During this reporting period, the Office of Inspector General continued to advise Headquarters and field managers of opportunities to improve the efficiency and effectiveness of the Department's management controls, with particular emphasis on coverage of issues addressed in the Department's Strategic Plan. We also have supported the Department's streamlining initiatives by evaluating the cost effectiveness and overall efficiency of Department programs and operations, placing special emphasis on key issue areas which have historically benefited from Office of Inspector General

324

Nevada Test Site-Directed Research and Development, FY 2007 Report  

SciTech Connect

The Nevada Test Site-Directed Research and Development (SDRD) program completed a very successful year of research and development activities in FY 2007. Twenty-nine new projects were selected for funding this year, and eight projects started in FY 2006 were brought to conclusion. The total funds expended by the SDRD program were $5.67 million, for an average per-project cost of $153 thousand. An external audit conducted in September 2007 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: programmatic adoption of 8 SDRD-developed technologies; the filing of 9 invention disclosures for innovation evolving from SDRD projects; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD Symposium that was broadly attended by Nevada Test Site (NTS), National Nuclear Security Administration (NNSA), LDRD, U.S. Department of Homeland Security (DHS), and U.S. Department of Defense (DoD) representatives; peer reviews of all FY 2007 projects; and the successful completion of 37 R&D projects, as presented in this report. In response to a company-wide call, authors throughout the NTS complex submitted 182 proposals for FY 2007 SDRD projects. The SDRD program has seen a dramatic increase in the yearly total of submitted proposals--from 69 in FY 2002 to 182 this year--while the number of projects funded has actually decreased from a program high of 57 in FY 2004. The overall effect of this trend has helped ensure an increasingly competitive program that benefited from a broader set of innovative ideas, making project selection both challenging and rewarding. Proposals were evaluated for technical merit, including such factors as innovation, probability of success, potential benefit, and mission applicability. Authors and reviewers benefited from the use of a shortfalls list entitled the 'NTS Technology Needs Assessment' that was compiled from NTS, National Weapons Laboratory (NWL), and NNSA sources. This tool continues to be of considerable value in aligning the SDRD program with mission priorities, and was expanded in FY 2007 to include technology development needs from the DHS and other agencies with missions closely aligned to that of the NTS.

Wil Lewis, editor

2008-02-20T23:59:59.000Z

325

Utility Battery Storage Systems Program Report for FY92  

DOE Green Energy (OSTI)

This report documents the fiscal year 1992 activities of the, Utility Battery Storage Systems Program (UBS) of the US Department of Energy (DOE), Office of Energy Management (OEM). The UBS program is conducted by Sandia National Laboratories (SNL). UBS is responsible for the engineering development of integrated battery systems for use in utility-energy-storage (UES) and other stationary applications. Development is accomplished primarily through cost-shared contracts with industrial organizations. An important part of the development process is the identification, analysis, and characterization of attractive UES applications. UBS is organized into five projects: Utility Battery Systems Analyses; Battery Systems Engineering; Zinc/Bromine; Sodium/Sulfur; Supplemental Evaluations and Field Tests. The results of the Utility Systems Analyses are used to identify several utility-based applications for which battery storage can effectively solve existing problems. The results will also specify the engineering requirements for widespread applications and motivate and define needed field evaluations of full-size battery systems.

Butler, P.C.

1993-01-01T23:59:59.000Z

326

Analytical Chemistry Laboratory: Progress report for FY 1988  

Science Conference Proceedings (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

1988-12-01T23:59:59.000Z

327

FY 2012 Annual Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report ix Energy Storage R&D FY 2012 Annual Progress Report ix Energy Storage R&D $1.5 Billion for Advanced Battery Manufacturing for Electric Drive Vehicles "Commercial Ready Technologies" Material Supply Cell Components Cell Fabrication Pack Assembly Recycling Lithium Supply Cathode Prod. Iron Phosphate Iron Phosphate Lithium Ion 1 award 3 awards 1 award 1 award 1 award Anode Prod. Nickel Cobalt Metal Nickel Cobalt Metal 2 awards 3 awards 3 awards Electrolyte Prod. Manganese Spinel Manganese Spinel 2 awards 2 awards 2 awards Advanced Lead Separator Prod. Acid Batteries 2 awards 2 awards Other Component 1 award $28.43 M $259 M $735 M $462 M $9.55 M II. American Recovery & Reinvestment Act (ARRA) of 2009

328

Hydrogen Materials and Components Compatibility - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Aaron Harris (Primary Contact), Brian Somerday, Chris San Marchi Sandia National Laboratories P.O. Box 969 Livermore, CA 94551-0969 Phone: (925) 294-4530 Email: apharri@sandia.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: October, 2003 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Complete Canadian Standards Association (CSA) Test * Method for Evaluating Material Compatibility for Compressed Hydrogen Applications - Phase I - Metals (CHMC1) document Issue Sandia report reflecting updated content from * Technical Reference website

329

FY2007 Annual Progress Report for the Advanced Power Electronics and Electric Machinery Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Power electronics And Power electronics And electric MAchinery ProgrAM v ehicle t echnologies Progr AM Less dependence on foreign oil today, and transition to a petroleum-free, emissions-free vehicle tomorrow. 2 0 0 7 a n n u a l p r o g r e s s r e p o r t U.S. Department of Energy Office of Vehicle Technologies, EE-2G 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2007 Annual Progress Report for the Advanced Power Electronics and Electric Machinery Program Submitted to: Energy Efficiency and Renewable Energy Office of Vehicle Technologies Vehicle Systems Team Susan A. Rogers, Technology Development Manager December 2007 Power Electronics and Electric Machines FY 2007 Progress Report Contents Acronyms and Abbreviations ................................................................................................................ v

330

FY2000 Annual Self-Evaluation Report for the Pacific Northwest National Laboratory  

SciTech Connect

This self-evaluation report offers a summary of results from FY2000 actions to achieve Pacific Northwest National Laboratory's strategy and provides an analysis of the state of their self-assessment process. The result of their integrated planning and assessment process identifies Laboratory strengths and opportunities for improvement. Critical elements of that process are included in this report; namely, a high-level summary of external oversight activities, progress against Operations Improvement Initiatives, and a summary of Laboratory strengths and areas for improvement developed by management from across the laboratory. Some key areas targeted for improvement in FY2001 are: systems approach to resource management; information protection; integrated safety management flow-down to the benchtop; cost management; integrated assessment; Price Anderson Amendments Act (PAAA) Program; and travel risk mitigation.

RR Labarge

2000-11-15T23:59:59.000Z

331

Photovoltaic Subcontract Program, FY 1991. Annual report, [October 1, 1990--September 30, 1991  

DOE Green Energy (OSTI)

This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

Not Available

1992-03-01T23:59:59.000Z

332

Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY12 Status Report  

Science Conference Proceedings (OSTI)

Executive Summary The Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign is supporting a multi-institutional collaboration to study the feasibility of using Lead Slowing Down Spectroscopy (LSDS) to conduct direct, independent and accurate assay of fissile isotopes in used fuel assemblies. The collaboration consists of Pacific Northwest National Laboratory (PNNL), Los Alamos National Laboratory (LANL), Rensselaer Polytechnic Institute (RPI), Idaho State University (ISU). There are three main challenges to implementing LSDS to assay used fuel assemblies. These challenges are the development of an algorithm for interpreting the data with an acceptable accuracy for the fissile masses, the development of suitable detectors for the technique, and the experimental benchmarking of the approach. This report is a summary of the progress in these areas made by the collaboration during FY2012. Significant progress was made on the project in FY2012. Extensive characterization of a semi-empirical algorithm was conducted. For example, we studied the impact on the accuracy of this algorithm by the minimization of the calibration set, uncertainties in the calibration masses, and by the choice of time window. Issues such a lead size, number of required neutrons, placement of the neutron source and the impact of cadmium around the detectors were also studied. In addition, new algorithms were developed that do not require the use of plutonium fission chambers. These algorithms were applied to measurement data taken by RPI and shown to determine the 235U mass within 4%. For detectors, a new concept for a fast neutron detector involving 4He recoil from neutron scattering was investigated. The detector has the potential to provide a couple of orders of magnitude more sensitivity than 238U fission chambers. Progress was also made on the more conventional approach of using 232Th fission chambers as fast neutron detectors. For benchmarking measurements, we continue to improve our understanding of the experimental setup by studying issues such as the effect of room return and impurities in the lead. RPI performed a series of experiments with a fresh fuel pin and various 235U and 239Pu sources. A comparison between simulations and measurements shows significant deviations after 200 s for both 235U and 239Pu samples, as well as significant deviations at earlier times for the 239Pu sample. The FY2013 effort will shift focus to planning for a Technical Readiness Level 5 demonstration. The primary deliverable for the year will be a plan on how to do this demonstration. The plan will include measurement design, sample acquisition, sample handling, cost estimate, schedule and assumptions. Research will continue on the 4He detector, algorithms development, thorium fission chambers and benchmarking measurements involving sub assemblies of fresh fuel.

Warren, Glen A.; Anderson, Kevin K.; Casella, Andrew M.; Danon, Yaron; Devlin, M.; Gavron, A.; Haight, R. C.; Harris, Jason; Imel, G. R.; Kulisek, Jonathan A.; O'Donnell, J. M.; Stewart, T.; Weltz, Adam

2012-10-01T23:59:59.000Z

333

TFA Tanks Focus Area midyear review report FY 2000  

SciTech Connect

In accordance with EM's office of Science and Technology (OST), the TFA is committed to assessing the maturity of technology development projects and ensuring their readiness for implementation and subsequent deployment. The TFA conducts an annual Midyear Review to document the status of ongoing projects, reaffirm and document user commitment to selected projects, and to improve the effective deployment of technology by determining and documenting the readiness of selected projects to move ahead. Since 1995, OST has used a linear technology maturation model that spans through seven defined stages of maturity, from basic research to implementation. Application of this Stage/Gate model to technology development resulted in prescriptive and somewhat cumbersome review procedures, resulting in limited and inconsistent use. Subsequently, in February 2000, OST issued revised guidance in an effort to streamline the technology tracking and review process. While the new OST guidance reinforces peer review requirements and the use of the American Society of Mechanical Engineers (ASME) for independent reviews, it also implements a simplified Gate model. The TFA is now responsible for providing auditable documentation for passing only three stages of technology maturity: ready for research (Gate 0); ready for development (Gate 2); ready for demonstration (Gate 5). The TFA Midyear Review is a key element in the overall review procedure, as the tracking evidence for all active projects is required to be available at this time. While the Midyear Report contains an overview of the status of all TFA reviews and projects, not all the reviews were conducted during the Midyear Review. The TFA used a phased approach to accomplish the Midyear Review requirements.

LR Roeder-Smith

2000-05-02T23:59:59.000Z

334

TFA Tanks Focus Area midyear review report FY 2000  

SciTech Connect

In accordance with EM's office of Science and Technology (OST), the TFA is committed to assessing the maturity of technology development projects and ensuring their readiness for implementation and subsequent deployment. The TFA conducts an annual Midyear Review to document the status of ongoing projects, reaffirm and document user commitment to selected projects, and to improve the effective deployment of technology by determining and documenting the readiness of selected projects to move ahead. Since 1995, OST has used a linear technology maturation model that spans through seven defined stages of maturity, from basic research to implementation. Application of this Stage/Gate model to technology development resulted in prescriptive and somewhat cumbersome review procedures, resulting in limited and inconsistent use. Subsequently, in February 2000, OST issued revised guidance in an effort to streamline the technology tracking and review process. While the new OST guidance reinforces peer review requirements and the use of the American Society of Mechanical Engineers (ASME) for independent reviews, it also implements a simplified Gate model. The TFA is now responsible for providing auditable documentation for passing only three stages of technology maturity: ready for research (Gate 0); ready for development (Gate 2); ready for demonstration (Gate 5). The TFA Midyear Review is a key element in the overall review procedure, as the tracking evidence for all active projects is required to be available at this time. While the Midyear Report contains an overview of the status of all TFA reviews and projects, not all the reviews were conducted during the Midyear Review. The TFA used a phased approach to accomplish the Midyear Review requirements.

LR Roeder-Smith

2000-05-02T23:59:59.000Z

335

Biodiesel from aquatic species. Project report: FY 1993  

DOE Green Energy (OSTI)

Researchers in the Biodiesel/Aquatic Species Project focus on the use of microalgae as a feedstock for producing renewable, high-energy liquid fuels. The program`s basic premise is that microalgae, which have been called the most productive biochemical factories in the world, can produce up to 30 times more oil per unit of growth area than land plants. It is estimated that 150 to 400 barrels of oil per acre per year (0.06 to 0.16 million liters/hectar) could be produced with microalgal oil technology. Initial commercialization of this technology is envisioned for the desert Southwest because this area provides high solar radiation and offers flat land that has few competing uses (hence low land costs). Similarly, there are large saline aquifers with few competing uses in the region. This water source could provide a suitable, low-cost medium for the growth of many microalgae. The primary area of research during FY 1993 was the effort to genetically improve microalgae in order to control the timing and magnitude of lipid accumulation. Increased lipid content will have a direct effect on fuel price, and the control of lipid content is a major project goal. The paper describes progress on the following: culture collection; molecular biology of lipid biosynthesis; microalgal transformation; and environmental, safety, and health and quality assurance.

Brown, L.M.; Sprague, S.; Jarvis, E.E.; Dunahay, T.G.; Roessler, P.G.; Zeiler, K.G.

1994-01-01T23:59:59.000Z

336

NEPA Lessons Learned Quarterly Report, June 1, 2005; Issue No. 43; Second Quarter FY 2005  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 1 5 1 National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT Second Quarter FY 2005 June 1, 2005; Issue No. 43 LESSONS LEARNED LEARNED LESSONS (continued on page 4) Who Has More Than 500 Years of NEPA Experience? A Closer Look at the DOE NEPA Compliance Officers Who are these 47 individuals? What inspires their commitment to the environment? How do they carry out

337

NEPA Lessons Learned Quarterly Report, Issue No. 41; Fourth Quarter FY 2004; December 1, 2004  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 1 4 1 The EIS Comment-Response Process Guidance Issued; see page 9 Putting the Web to Work for NEPA National Environmental Policy Act N E P A U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT Fourth Quarter FY 2004 December 1, 2004; Issue No. 41 LESSONS LEARNED LEARNED LESSONS (continued on page 4) "What's your e-mail address? Do you have a Web site?" These are common questions in

338

FY2002 Progress Report for Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels for Advanced Compression Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Stephen Goguen November 2002 Fuels for Advanced CIDI Engines FY 2002 Progress Report iii CONTENTS CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INDEX OF PRIMARY CONTACTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. FUEL/LUBRICANT EFFECTS TESTING ON ENGINE PERFORMANCE . . . . . . . . . 13 A. Oil Consumption Contribution to CIDI PM Emissions during Transient Operation . . . . . . . . . . . . . . . . . . . .13

339

Primary Contacts Index; DOE Hydrogen Program FY 2009 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2009 Annual Progress Report DOE Hydrogen Program XIII. Primary Contacts Index A Aceves, Salvador . . . . . . . . . . . . . . . . . . . . 336, 771, 1257 Adams, Thad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95, 358 Adrianowycz, Orest . . . . . . . . . . . . . . . . . . . . . . . . . . 1108 Ahluwalia, Rajesh . . . . . . . . . . . . . . . . . . . . . . . . 714, 919 Ahmed, Shabbir . . . . . . . . . . . . . . . . . . . . . . . . . . 49, 1274 Ahn, Channing . . . . . . . . . . . . . . . . . . . . . . . . . . . 487, 625 Allendorf, Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 Anton, Donald . . . . . . . . . . . . . . . . . . . . . . . 483, 675, 720 Arif, Muhammad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952 Autrey, Tom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528, 846 B Bain, Richard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Balachandran, U . (Balu) . . . . . . . . . . . . . . . . . . . . . . . . 41 Baldwin, Don . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 Barclay, John . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 Barton, Tom . . . .

340

NEPA Lessons Learned Quarterly Report, March 3, 2008; Issue No. 54; First Quarter FY 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 1 08 1 First Quarter FY 2008 March 3, 2008; Issue No. 54 National Environmental Policy Act U.S. DEPARTMENT OF ENERGY QUARTERLY REPORT LESSONS LEARNED LEARNED LESSONS N E P A (continued on page 3) Programmatic EIS on Nuclear Weapons Complex Draws National Interest, Many Comments Dinah Bear, General Counsel Council on Environmental Quality Anne Norton Miller, Director Offi ce of Federal Activities

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

FY 2012 Annual Uncosted Balances Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Balances Reports Budget Environmental & ES&H Liabilities Financial Management Handbook LDR&D Annual Reports Testimony This report presents the results of the Department's...

342

FY 2011 Annual Uncosted Balances Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Balances Reports Budget Environmental & ES&H Liabilities Financial Management Handbook LDR&D Annual Reports Testimony This report represents an analysis of the Department's...

343

FY 2010 Annual Uncosted Balances Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Balances Reports Budget Environmental & ES&H Liabilities Financial Management Handbook LDR&D Annual Reports Testimony This report represents an analysis of the Department's...

344

Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory  

Science Conference Proceedings (OSTI)

The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

Not Available

1992-05-01T23:59:59.000Z

345

INERI-2006-003-F FY07 Annual Report  

SciTech Connect

Project Title: Comparison of Characterization Methods for Anisotropy and Microstructure of TRISO Particle Layers This INERI was created to support a comparative study between the newly developed two modulator generalized ellipsometry microscope (2-MGEM) at the Oak Ridge National Laboratory (ORNL) and the more traditional optical polarimeter (RAPAX) at the Commissariat l' nergie Atomique (CEA). These two systems are used to measure the anisotropy of the pyrocarbon layers in tri-isotropic (TRISO) coated particle fuel, which is an important parameter related to fuel performance. Although this project was only just started in June 2007, good progress has already been made. A kickoff meeting was held at ORNL on July 30-31, 2007 to present early progress and discuss details of the proposed work plan. This meeting was of great benefit to the participants, offering an opportunity to overcome the language barrier and more thoroughly communicate project relevant information. Each technical lead gave a presentation explaining the analysis techniques used in his task and presented data on early measurements of the German reference fuels. Plans were finalized regarding what work needed to be done and how to proceed with the comparative study. Possibilities for the inclusion of other coated particle samples, in addition to the two German reference fuels originally proposed, were also discussed. A list of these additional sample has now been generated and approved. Coating fragments from this series of different TRISO particle fuels have been sent from ORNL to the CEA and TEM analysis is in progress. Comparisons have already been made between the microstructure of the two German reference fuels which are the primary samples for this project. Specimens have also been prepared from the German reference fuels for comparative analysis between the 2-MGEM and RAPAX devices and initial measurements performed. Plans are to exchange specimens of the various fuel types in early FY08 for comparative analysis.

Hunn, John D [ORNL

2007-10-01T23:59:59.000Z

346

Laboratory Directed Research and Development FY2011 Annual Report  

Science Conference Proceedings (OSTI)

A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial-Fusion Energy; (12) Advanced Laser Optical Systems and Applications; (12) Space Security; (13) Stockpile Stewardship Science; (14) National Security; (15) Alternative Energy; and (16) Climatic Change.

Craig, W; Sketchley, J; Kotta, P

2012-03-22T23:59:59.000Z

347

UCSD geothermal chemistry program; Annual progress report, FY 1989  

DOE Green Energy (OSTI)

The development of a geothermal resource requires a considerable financial commitment. As in other energy extraction ventures, the security of this investment can be jeopardized by the uncertain behavior of the resource under operating conditions. Many of the most significant problems limiting the development of geothermal power are related to the chemical properties of the high temperature and highly pressured formation fluids from which the energy is extracted. When the pressure and temperature conditions on these fluids are changed either during the production phase (pressure changes) or during the extraction phase (temperature changes) of the operation, the fluids which were originally in equilibrium under the new conditions by precipitation of solid materials (scales) or release of dissolved gases (some toxic) in the formation and well bores or in the plant equipment. Unfortunately, predicting the behavior of the production fluids is difficult, because it is a function of many variables. In order to address these problems the Department of Energy is developing a computer model describing the chemistry of geothermal fluids. The model under development at UCSD is based on recent progress in the physical chemistry of concentrated aqueous solutions, and is covered in this report.

Weare, J.H.

1989-10-01T23:59:59.000Z

348

Moses Lake Fishery Restoration Project : FY 1999 Annual Report.  

SciTech Connect

The Moses Lake Project consists of 3 phases. Phase 1 is the assessment of all currently available physical and biological information, the collection of baseline biological data, the formulation of testable hypotheses, and the development of a detailed study plan to test the hypotheses. Phase 2 is dedicated to the implementation of the study plan including data collection, hypotheses testing, and the formulation of a management plan. Phase 3 of the project is the implementation of the management plan, monitoring and evaluation of the implemented recommendations. The project intends to restore the failed recreational fishery for panfish species (black crappie, bluegill and yellow perch) in Moses Lake as off site mitigation for lost recreational fishing opportunities for anadromous species in the upper Columbia River. This report summarizes the results of Phase 1 investigations and presents the study plan directed at initiating Phase 2 of the project. Phase 1of the project culminates with the formulation of testable hypotheses directed at investigating possible limiting factors to the production of panfish in Moses Lake. The limiting factors to be investigated will include water quality, habitat quantity and quality, food limitations, competition, recruitment, predation, over harvest, environmental requirements, and the physical and chemical limitations of the system in relation to the fishes.

None given

2000-12-01T23:59:59.000Z

349

Kootenai River White Sturgeon Studies, Annual Report FY 1993.  

DOE Green Energy (OSTI)

This report evaluates natural spawning of white sturgeon in the Kootenai River before, during and after the 1993 augmented discharge period. To determine how altering the operation of Libby Dam may improve conditions for natural spawning of white sturgeon in the Kootenai River, discharge from Libby Dam (with no power peaking or load following) was increased to produce 20 kcfs ([plus minus] 2 kcfs) discharge at Bonners Ferry, Idaho, for a 14 day period June 2--16. Objectives of this research were to determine if white sturgeon spawned in the Kootenai River during 1993; and collect baseline biological data including timing, location, and habitat requirements of white sturgeon spawning in the Kootenai River in order to formulate and implement future flow regimes as effective recovery measures for white sturgeon. While sampling is not expected to collect a majority of white sturgeon eggs or larvae produced in a river, the fact that over 41,000 hours of sampling (combined gear) collected only 3 white sturgeon eggs and no larvae suggests that spawning conditions during 1993 were inadequate to benefit this population.

Anders, Paul J.; Siple, John T.

1993-12-01T23:59:59.000Z

350

Hydrogen Delivery Infrastructure Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Amgad Elgowainy (Primary Contact), Marianne Mintz and Krishna Reddi Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-3074 Email: aelgowainy@anl.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Project Start Date: October 2007 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Identify cost drivers of current technologies for hydrogen * delivery to early market applications of fuel cells Evaluate role of high-pressure tube-trailers in reducing * hydrogen delivery cost Identify and evaluate benefits of synergies between *

351

Aluminum Hydride - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jason Graetz (Primary Contact), James Wegrzyn Brookhaven National Laboratory (BNL) Building 815 Upton, NY 11973 Phone: (631) 344-3242 Email: graetz@bnl.gov DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Project Start Date: October 1, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop onboard vehicle storage systems using aluminum hydride that meets all of DOE's targets for proton exchange membrane fuel cell vehicles. Produce aluminum hydride material with a hydrogen * storage capacity greater than 9.7% gravimetric (kg-H 2 /kg) and 0.13 kg-H 2 /L volumetric. Develop practical and economical processes for *

352

Corrugated Membrane Fuel Cell Structures - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Stephen Grot Ion Power Incorporated 720 Governor Lea Rd New Castle, DE 19720-5501 Phone: (302) 832 9550 Email: s.grot@ion-power.com DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Technical Advisor Thomas Benjamin Phone: (630) 252-1632 Email: benjamin@anl.gov Subcontractors: * Graftech International Holdings Inc., Parma, OH * General Motors Corporation, Flint, MI Contract Number: DE-EE0000462 Project Start Date: September 1, 2010 Project End Date: February 28, 2014 Fiscal Year (FY) 2012 Objectives

353

Electrochemical Reversible Formation of Alane - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Ragaiy Zidan 1 (Primary Contact), Douglas A. Knight 1 , Scott Greenway 2 1 Savannah River National Laboratory 999-2W Room 121 Savannah River Site Aiken, SC 29808 Phone: (803) 646-8876 Email: ragaiy.zidan@srnl.doe.gov 2 Greenway Energy DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Project Start Date: October 1, 2006 Project End Date: October 1, 2012 Fiscal Year (FY) 2012 Objectives Identify means for achieving energy efficiency * improvements of over 50%. Perform electrochemical production of alane and alane * adducts in a pressurized electrochemical cell and demonstrate production of α-alane. Demonstrate the formation of alane and the regeneration *

354

Hawaii Hydrogen Power Park - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Richard (Rick) E. Rocheleau (Primary Contact), Mitch Ewan Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii at Manoa 1680 East-West Road, POST 109 Honolulu, HI 96822 Phone: (808) 956-8346 Email: rochelea@hawaii.edu DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805; Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC51-02R021399 A008 Project Start Date: June 29, 2009 Project End Date: December 31, 2014 Fiscal Year (FY) 2012 Objectives Island of Hawaii (Big Island) Install hydrogen fueling station infrastructure at Hawaii * Volcanoes (HAVO) National Park on the Big Island of

355

Hydrogen Refueling Infrastructure Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Marc W. Melaina (Primary Contact), Michael Penev and Darlene Steward National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3836 Email: Marc.Melaina@nrel.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Subcontractor: IDC Energy Insights, Framingham, MA Project Start Date: October 1, 2010 Project End Date: September 28, 2012 Fiscal Year (FY) 2012 Objectives Identify the capacity (kg/day) and capital costs * associated with "Early Commercial" hydrogen stations (defined below) Identify cost metrics for larger numbers of stations and * larger capacities Technical Barriers This project addresses the following technical barriers

356

California Hydrogen Infrastructure Project - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Edward C. Heydorn Air Products and Chemicals, Inc. 7201 Hamilton Boulevard Allentown, PA 18195 Phone: (610) 481-7099 Email: heydorec@airproducts.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Jim Alkire Phone: (720) 356-1426 Email: James.Alkire@go.doe.gov Contract Number: DE-FC36-05GO85026 Working Partners/Subcontractors: * University of California Irvine (UCI), Irvine, CA * National Fuel Cell Research Center (NFCRC), Irvine, CA Project Start Date: August 1, 2005 Project End Date: December 31, 2011 Fiscal Year (FY) 2012 Objectives Demonstrate a cost-effective infrastructure model in

357

Composite Technology for Hydrogen Pipelines - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Barton Smith (Primary Contact), Barbara J. Frame and Lawrence M. Anovitz Oak Ridge National Laboratory (ORNL) P. O. Box 2008 Oak Ridge, TN 37831 Phone: (865) 574-2196 Email: smithdb@ornl.gov DOE Manager HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov Start Date: January 2005 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Complete high-pressure cyclic fatigue tests to verify that * a combination of H 2 environment and stress does not adversely affect composite pipeline integrity and service life. Identify the requisite data, provide data, and contribute * to the codification of hydrogen composite pipelines, in

358

Photoelectrochemical Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Arun Madan MVSystems, Incorporated (MVS) 500 Corporate Circle, Suite L Golden, CO 80401 Phone: (303) 271-9907 Email: ArunMadan@aol.com or amadan@mvsystemsinc.com DOE Managers HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-FC36-07GO17105, A00 Subcontractor: University of Hawaii at Manoa (UH), Honolulu, HI Project Start Date: September 1, 2007 Project End Date: December 31, 2012 Fiscal Year (FY) 2012 Objectives Work closely with the DOE Working Group on * Photoelectrochemical (PEC) Hydrogen Production for optimizing PEC materials and devices. Develop new PEC film materials compatible with high- *

359

Distributed Bio-Oil Reforming - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Stefan Czernik (Primary Contact), Richard French, Michael Penev National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-6135 Email: Stefan.Czernik@nrel.gov DOE Manager Sara Dillich Phone: (202) 586-1623 Email: Sara.Dillich@ee.doe.gov Subcontractor: University of Minnesota, Minneapolis, MN Project Start Date: October 1, 2004 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives By 2012, develop and demonstrate distributed reforming * technology for producing hydrogen from bio-oil at $4.10/ kilogram (kg) purified hydrogen. Demonstrate integrated performance at bench scale * including bio-oil vaporization, partial-oxidation (POX)

360

Landfill Gas-to-Hydrogen - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

20 20 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Shannon Baxter-Clemmons (Primary Contact), Russ Keller 1 South Carolina Hydrogen Fuel Cell Alliance P.O. Box 12302 Columbia, SC 29211 Phone: (803) 727-2897 Emails: baxterclemmons@schydrogen.org; russ.keller@ati.org DOE Managers HQ: Pete Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-FG36-08GO18113 Subcontractor: 1 Advanced Technology International, Charleston, SC Project Start Date: March 1, 2011 Project End Date: January 31, 2013 Fiscal Year (FY) 2012 Objectives Validate that a financially viable business case * exists for a full-scale deployment of commercially

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Vehicle technologies heavy vehicle program : FY 2008 benefits analysis, methodology and results --- final report.  

SciTech Connect

This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the Vehicle Technologies (VT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, and (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 08 the Heavy Vehicles program continued its involvement with various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. These changes are the result of a planning effort that first occurred during FY 04 and was updated in the past year. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY08 Budget Request. The energy savings models are utilized by the VT program for internal project management purposes.

Singh, M.; Energy Systems; TA Engineering

2008-02-29T23:59:59.000Z

362

DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010  

Science Conference Proceedings (OSTI)

This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

2011-02-01T23:59:59.000Z

363

Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009  

Science Conference Proceedings (OSTI)

This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

Chandler, David [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Sease, John D [ORNL; Guida, Tracey [University of Pittsburgh; Jolly, Brian C [ORNL

2010-02-01T23:59:59.000Z

364

FY 2012 Annual Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

844 844 Energy Storage VEHICLE TECHNOLOGIES OFFICE 2012 annual progress report U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FISCAL YEAR 2012 ANNUAL PROGRESS REPORT FOR ENERGY STORAGE R&D January 2013 Approved by David Howell, Hybrid Electric Systems Team Lead Vehicle Technologies Program, Energy Efficiency and Renewable Energy FY 2012 Annual Progress Report i Energy Storage R&D Table of Contents I. INTRODUCTION ................................................................................................................................................. 1 I.A Vehicle Technologies Program Overview ..................................................................................................... 1

365

NEET Micro-Pocket Fission Detector -- FY 2012 Status Report  

SciTech Connect

A research program has been initiated by the NEET program for developing and testing compact miniature fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package. When implemented, these sensors will significantly advance flux detection capabilities for irradiation tests in US Materials Test Reactors (MTRs).Ultimately, evaluations may lead to a more compact, more accurate, and longer lifetime flux sensor for critical mock-ups, high performance reactors and commercial nuclear power plants. Deployment of Micro-Pocket Fission Detectors (MPFDs) in US DOE-NE program irradiation tests will address several challenges: Current fission chamber technologies do not offer the ability to measure fast flux, thermal flux and temperature within a single compact probe, MPFDs offer this option. MPFD construction is very different then current fission chamber construction; the use of high temperature materials allow MPFDs to be specifically tailored to survive harsh conditions in typical high performance MTR irradiation tests. New high-fidelity reactor physics codes will need a small, accurate, multipurpose in-core sensor to validate the codes without perturbing the validation experiment; MPFDs fill this requirement. MPFDs can be built with variable sensitivities to survive the lifetime of an experiment or fuel assembly in some MTRs; allowing for more efficient and cost effective power monitoring. The small size of the MPFDs allows multiple sensors to be simultaneously deployed; obtaining data required to visualize the reactor flux and temperature profiles. This report summarizes the research progress for year 1 of this 3 year project. An updated design of the MPFD has been developed, materials and tools to support the new design have been procured, construction methods to support the new design have been initiated at INLs HTTL and KSUs SMART Laboratory, plating methods are being updated at KSU, new detector electronics have been designed, built and tested at KSU. In addition, a project meeting was held at KSU and a detector evaluation plan has been initiated between INL and KSU. Once NEET program evaluations are completed, the final MPFD will be deployed in MTR irradiations, enabling DOE-NE programs evaluating the performance of candidate new fuels and materials to better characterize irradiation test conditions.

Troy Unruh; Joy Rempe; Douglas McGregor; Philip Ugorowski; Michael Reichenberger

2012-09-01T23:59:59.000Z

366

House Report 108-792 FY 2005 Commerce, Justice, and ...  

Science Conference Proceedings (OSTI)

... Report SCIENCE AND TECHNOLOGY. TECHNOLOGY ADMINISTRATION. SALARIES AND EXPENSES. The conference ...

2010-10-05T23:59:59.000Z

367

303-K Storage Facility report on FY98 closure activities  

SciTech Connect

This report summarizes and evaluates the decontamination activities, sampling activities, and sample analysis performed in support of the closure of the 303-K Storage Facility. The evaluation is based on the validated data included in the data validation package (98-EAP-346) for the 303-K Storage Facility. The results of this evaluation will be used for assessing contamination for the purpose of closing the 303-K Storage Facility as described in the 303-K Storage Facility Closure Plan, DOE/RL-90-04. The closure strategy for the 303-K Storage Facility is to decontaminate the interior of the north half of the 303-K Building to remove known or suspected dangerous waste contamination, to sample the interior concrete and exterior soils for the constituents of concern, and then to perform data analysis, with an evaluation to determine if the closure activities and data meet the closure criteria. The closure criteria for the 303-K Storage Facility is that the concentrations of constituents of concern are not present above the cleanup levels. Based on the evaluation of the decontamination activities, sampling activities, and sample data, determination has been made that the soils at the 303-K Storage Facility meet the cleanup performance standards (WMH 1997) and can be clean closed. The evaluation determined that the 303-K Building cannot be clean closed without additional closure activities. An additional evaluation will be needed to determine the specific activities required to clean close the 303-K Storage Facility. The radiological contamination at the 303-K Storage Facility is not addressed by the closure strategy.

Adler, J.G.

1998-07-17T23:59:59.000Z

368

Component Testing for Industrial Trucks and Early Market Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Aaron Harris (Primary Contact), Brian Somerday, Chris San Marchi Sandia National Laboratories P.O. Box 969 Livermore, CA 94551-0969 Phone: (925) 294-4530 Email: apharri@sandia.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: January 2010 Project End Date: May 2011 (carryover from Fiscal Year [FY] 2011 extended objectives into FY 2012) Fiscal Year (FY) 2012 Objectives (1) Provide technical basis for the development of standards defining the use of steel (Type 1) storage pressure vessels for gaseous hydrogen: Compare fracture mechanics based design approach - for fatigue assessment of pressure vessels for

369

Microsoft Word - Blue Report Cover for FY 2012 DOE IPERA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance Audit of the Performance Audit of the Department of Energy's Improper Payment Reporting in the Fiscal Year 2012 Agency Financial Report OAS-FS-13-12 March 2013 U.S. Department of Energy Office of Inspector General Office of Audits & Inspections Department of Energy Washington, DC 20585 March 14, 2013 MEMORANDUM FOR THE SECRETARY MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Report on "Performance Audit of the Department of Energy's Improper Payment Reporting in the Fiscal Year 2012 Agency Financial Report" The attached report presents the results of an evaluation of the Department of Energy's (Department) Improper Payment Reporting in the Fiscal Year 2012 Agency Financial Report

370

FY 2013 FRPC DATA REPORTING INSTRUCTIONS I. Background  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the street address of the main gate. For records that are not located at a site, report zip code. For linear assets that span multiple zip codes, report the zip code at the...

371

FY 2006 Appropriations bill, House Report 109-272  

Science Conference Proceedings (OSTI)

... House Report 109-272 - MAKING APPROPRIATIONS FOR SCIENCE, THE DEPARTMENTS OF STATE, JUSTICE, AND COMMERCE, AND ...

2010-10-05T23:59:59.000Z

372

Science and Technology Alliance work schedule FY 1992. Annual report  

SciTech Connect

This report includes operational and financial planning information for fiscal year 1992 for New Mexico Highlands University.

Not Available

1992-12-31T23:59:59.000Z

373

Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986  

Science Conference Proceedings (OSTI)

This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

Heiken, J.H. (ed.)

1987-06-01T23:59:59.000Z

374

Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division  

SciTech Connect

This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

Larry G. Hoffman

2000-12-01T23:59:59.000Z

375

Emergency Actions and Reporting Requirements  

Science Conference Proceedings (OSTI)

... I want to remind everyone that emergencies (such as fire, injury, security etc.) are properly reported to NIST Emergency Services by calling 2222. ...

376

Advanced Fuels for LWRs: Fully-Ceramic Microencapsulated and Related Concepts FY 2012 Interim Report  

Science Conference Proceedings (OSTI)

This report summarizes the progress in the Deep Burn project at Idaho National Laboratory during the first half of fiscal year 2012 (FY2012). The current focus of this work is on Fully-Ceramic Microencapsulated (FCM) fuel containing low-enriched uranium (LEU) uranium nitride (UN) fuel kernels. UO2 fuel kernels have not been ruled out, and will be examined as later work in FY2012. Reactor physics calculations confirmed that the FCM fuel containing 500 mm diameter kernels of UN fuel has positive MTC with a conventional fuel pellet radius of 4.1 mm. The methodology was put into place and validated against MCNP to perform whole-core calculations using DONJON, which can interpolate cross sections from a library generated using DRAGON. Comparisons to MCNP were performed on the whole core to confirm the accuracy of the DRAGON/DONJON schemes. A thermal fluid coupling scheme was also developed and implemented with DONJON. This is currently able to iterate between diffusion calculations and thermal fluid calculations in order to update fuel temperatures and cross sections in whole-core calculations. Now that the DRAGON/DONJON calculation capability is in place and has been validated against MCNP results, and a thermal-hydraulic capability has been implemented in the DONJON methodology, the work will proceed to more realistic reactor calculations. MTC calculations at the lattice level without the correct burnable poison are inadequate to guarantee zero or negative values in a realistic mode of operation. Using the DONJON calculation methodology described in this report, a startup core with enrichment zoning and burnable poisons will be designed. Larger fuel pins will be evaluated for their ability to (1) alleviate the problem of positive MTC and (2) increase reactivity-limited burnup. Once the critical boron concentration of the startup core is determined, MTC will be calculated to verify a non-positive value. If the value is positive, the design will be changed to require less soluble boron by, for example, increasing the reactivity hold-down by burnable poisons. Then, the whole core analysis will be repeated until an acceptable design is found. Calculations of departure from nucleate boiling ratio (DNBR) will be included in the safety evaluation as well. Once a startup core is shown to be viable, subsequent reloads will be simulated by shuffling fuel and introducing fresh fuel. The PASTA code has been updated with material properties of UN fuel from literature and a model for the diffusion and release of volatile fission products from the SiC matrix material . Preliminary simulations have been performed for both normal conditions and elevated temperatures. These results indicated that the fuel performs well and that the SiC matrix has a good retention of the fission products. The path forward for fuel performance work includes improvement of metallic fission product release from the kernel. Results should be considered preliminary and further validation is required.

R. Sonat Sen; Brian Boer; John D. Bess; Michael A. Pope; Abderrafi M. Ougouag

2012-03-01T23:59:59.000Z

377

FY 2009 E-Government Act Report | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Act Report More Documents & Publications Request for Information - Operations and Maintenance (O & M) Support Services for the iManage iManage Presentation OCIO Strategic Plan...

378

FY 2012 Annual Report National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

2 Annual Report National Nuclear Security Administration ENERGY U.S. DEPARTMENT OF Table of Contents Executive Message Meeting National Policy Objectives The Four Pillars of NIS...

379

Washington Closure Hanford System Engineer Program FY2010 Annual Report  

SciTech Connect

This report is a summary of the assessments of the vital safety systems (VSS) that are administered under WCHs system engineer program.

J.N. Winters

2010-11-02T23:59:59.000Z

380

FY2001 Progress Report for the Electric Vehicle Battery Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

included so that changes in impedance are reflected in the predictive performance. Dr. Wright reported on elevated temperature calendar and life test studies of advanced technology...

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DOE Hydrogen Program FY2004 Progress Report Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report CONTENTS I Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 II Hydrogen Production and Delivery Sub-Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Overview.....................................................................................................................................................9 II.A Distributed Production Technologies ..............................................................................................13 II.A.1 Ceramic Membrane Reactor Systems for Converting Natural Gas to Hydrogen and Synthesis Gas (ITM Syngas) ....................................................................13

382

Sustainable NREL, Biennial Report, FY 2010-2011  

Science Conference Proceedings (OSTI)

This document reports on NREL's 'Campus of the Future,' which leverages partnerships and showcases sustainable energy on and near the NREL site. It is unique in that the report is based on GRI key performance indicators, that support NREL's sustainability goals.

Slovensky, M.; Daw, J.

2012-09-01T23:59:59.000Z

383

Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008  

Science Conference Proceedings (OSTI)

This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

2009-03-01T23:59:59.000Z

384

Development of Hydrogen Selective Membranes/Modules as Reactors/Separators for Distributed Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Paul KT Liu Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 Phone: (412) 826-3711 Email: pliu@mediaandprocess.com DOE Managers HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-05GO15092 Subcontractor: University of Southern California Project Start Date: July 1, 2005 Projected End Date: December 31, 2012 Fiscal Year (FY) 2012 Objectives The water-gas shift (WGS) reaction becomes less efficient when high CO conversion is required, such as for distributed hydrogen production applications. Our project

385

Power Generation from an Integrated Biomass Reformer and Solid Oxide Fuel Cell (SBIR Phase III) - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Quentin Ming (Primary Contact), Patricia Irving InnovaTek, Inc. 3100 George Washington Way, Suite 108 Richland, WA 99354 Phone: (509) 375-1093 Email: ming@innovatek.com DOE Managers HQ: Charles Russomanno Phone: (202) 586-7543 Email: Charles.Russomanno@ee.doe.gov HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov Contract Number: DE-EE0004535 Project Start Date: October 1, 2010 Project End Date: September 30, 2013 Fiscal Year (FY) 2012 Objectives Establish the requirements and design for an integrated * fuel cell and fuel processor that will meet the technical and operational needs for distributed energy production. Develop and integrate key system components - *

386

Microsoft Word - Management Challenges Report _FY 2009_.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Special Report Management Challenges at the Department of Energy DOE/IG-0808 December 2008 ______________________________________________________________________ _____________________________________________________________________ Table of Contents Introduction ...................................................................................................1 Management Challenges ...................................................................................3 Watch List ....................................................................................................8 Appendices ....................................................................................................l1

387

Chemistry and materials science progress report, FY 1994  

SciTech Connect

Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

NONE

1995-07-01T23:59:59.000Z

388

NEPA Lessons Learned Quarterly Report 1st Quarter FY 1996  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEARNED LEARNED LESSONS N E P A Inside LESSONS LEARNED March 1, 1996 Quarterly Report LESSONS LEARNED National Environmental Policy Act U.S. Department of Energy Welcome to the newly-revised Quarterly Report of Lessons Learned in the NEPA process. In response to reader suggestions, we have expanded the scope of the report to provide a wider variety of NEPA- related information, and enhanced the format for better clarity and overall readability. This Quarterly Report includes: * NEPA lessons learned at the Hanford Site - Page 1 * Mini-guidance on the preparation of EIS summaries, properly eliminating alternatives and impacts from detailed analysis, application of DOE NEPA regulations to procurement, and NEPA questions and answers - Pages 3-6 * Updates on the proposed amendments to DOE's NEPA

389

B61 System FY 2012 June Monthly Report  

SciTech Connect

These viewgraphs are to be provided to NNSA to update the status of the B61 legacy work and activities. The viewgraphs cover such issues as budget, schedule, scope, and the like. They are part of the monthly reporting process.

Wentz, Kip G. [Los Alamos National Laboratory

2012-07-09T23:59:59.000Z

390

B61 System FY 2012 May Monthly Report  

SciTech Connect

These viewgraphs are to be provided to NNSA to update the status of the B61 legacy work and activities. The viewgraphs cover such issues as budget, schedule, scope, and the like. They are part of the monthly reporting process.

Neff, Warren E [Los Alamos National Laboratory

2012-06-05T23:59:59.000Z

391

EMSL Quarterly Highlights Report: FY 2008, 3rd Quarter  

SciTech Connect

The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

Showalter, Mary Ann

2008-09-16T23:59:59.000Z

392

Annual Report on DOE Technology Transfer FY 2007 and 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Report Annual Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2007 and 2008 Prepared by: Office of Laboratory Policy and Evaluation Office of Science and National Nuclear Security Administration U.S. Department of Energy In Coordination With: Technology Transfer Policy Board Technology Transfer Working Group U.S. Department of Energy December 2009 ii TABLE OF CONTENTS Background .......... .................................................................................................................................................1 Technology Partnering Policy .................................................................................................................................1

393

Computing Sciences FY09 Annual Self-Assessment Report  

E-Print Network (OSTI)

facilities, a Subcontractor Job Hazards Analysis and Work Authorization (SJHAWA) form is prepared and pre-job. CS continues to monitor subcontractor work after completion of the required permits and pre-job Review (Attachment A)? Has the checklist been completed for the Division Plan? Have any Gaps been

394

GNEP Material Transportation, Storage and Disposal Analysis FY-08 Summary Report  

Science Conference Proceedings (OSTI)

This report provides a summary for FY-2008 of activities, analyses and products from the Material Transportation, Storage and Disposal (M-TSD) sub-task of Systems Analysis within the Advanced Fuel Cycle Research & Development area of the Global Nuclear Energy Partnership. The objective of this work is to evaluate near-term material management requirements for initial GNEP facilities and activities, long-term requirements for large-scale GNEP technology deployment, and alternatives and paths forward to meet these needs. For FY-08, the work expanded to include the Integrated Waste Management Strategy as well as integration with the newly formed Waste Forms Campaign. The M-TSD team was expanded with the addition of support from Savannah River National Lab (SRNL) to the existing team of Lawrence Livermore National Lab (LLNL), Argonne National Lab (ANL), Idaho National Lab (INL), Sandia National Lab (SNL) and University of Nevada - Reno (UN-R). During the first half of the year, analysis was focused on providing supporting technical analysis and documentation to support anticipated high-level decisions on program direction. A number of analyses were conducted and reports prepared as program deliverables. This work is briefly summarized in this report. Analyses provided informally to other program efforts are included in this report to provide documentation. This year-end summary was planned primarily as a compilation of activities following the anticipated programmatic decisions. These decisions were deferred beyond the end of the year, and funds were reallocated in a number of areas, thus reducing the M-TSD activities. This report summarizes the miscellaneous 'ad-hoc' work conducted during the later part of the year, such as support to the draft Programmatic Environmental Impact Statement (PEIS), and support to other program studies. Major programmatic contributions from the M-TSD team during the year included: (1) Completion of the IWMS in March 2008 as the baseline for waste management calculations for the GNEP Programmatic Environmental Impact Statement (PEIS). The IWMS represents a collaborative effort between the Systems Analysis, Waste Forms, and Separations Campaigns with contributing authors from multiple laboratories. The IWMS reference is: 'Global Nuclear Energy Partnership Integrated Waste Management Strategy, D. Gombert, INL, et al, GNEP-WAST-WAST-AI-RT-2008-000214, March 2008'. (2) As input to the IWMS and support for program decisions, an evaluation of the current regulatory framework in the U.S. pertaining to the disposal of radioactive wastes under an advanced nuclear fuel cycle was completed by ANL. This evaluation also investigated potential disposal pathways for these wastes. The entire evaluation is provided in Appendix A of this report. (3) Support was provided to the development of the GNEP Programmatic Environmental Impact Statement from INL, SNL and ANL M-TSD staff. (4) M-TSD staff prepared input for DSARR (Dynamic Systems Analysis Report for Nuclear Fuel Recycle) report. The DSARR is an INL led report to examine the time-dependent dynamics for a transition from the current open fuel cycle to either a 1-tier or 2-tier closed fuel cycle. Section 5.3 Waste Management Impacts was provided to INL for incorporation into the DSARR. (5) SNL M-TSD staff prepared a M2 milestone report 'Material Transportation, Storage and Disposal Contribution for Secretarial Decision Package'. The report purpose was to comprehensively evaluate and discuss packaging, storage, and transportation for all potential nuclear and radioactive materials in the process and waste streams being considered by the GNEP program. In particular, a systems view was used to capture all packaging, storage, and transport operations needed to link the various functional aspects of the fuel cycle. (6) SRNL M-TSD staff developed a deliverable report 'Management of Decay Heat from Spent Nuclear Fuel'. This report evaluated a range of options for managing the near-term decay heat associated with Cs and Sr in spent nuclear fuel (SNF) reprocessing waste

Halsey, W

2009-01-15T23:59:59.000Z

395

Chemical and biological nonproliferation program. FY99 annual report  

Science Conference Proceedings (OSTI)

This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community.

NONE

2000-03-01T23:59:59.000Z

396

Mechanical Engineering Department engineering research: Annual report, FY 1986  

SciTech Connect

This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstracts were prepared for each of the 13 reports in this publication. (JDH)

Denney, R.M.; Essary, K.L.; Genin, M.S.; Highstone, H.H.; Hymer, J.D.; Taft, S.O. (eds.)

1986-12-01T23:59:59.000Z

397

Engineering research, development and technology. Thrust area report, FY93  

Science Conference Proceedings (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

Not Available

1994-05-01T23:59:59.000Z

398

Microsoft Word - FY 2011 MD-715 Report.docx  

National Nuclear Security Administration (NNSA)

1 1 DOE NNSA December 14, 2011 i National Nuclear Security Administration U.S. Department of Energy ANNUAL EEO PROGRAM STATUS REPORT EEO PLAN TO ATTAIN THE ESSENTIAL ELEMENTS OF A MODEL EEO PROGRAM Table of Contents Page FORM 715-01 Part A Department or Agency Identifying Information......................1 FORM 715-01 Part B Total Employment....................................................................1 FORM 715-01 Part C Agency Official(s) Responsible for oversight of EEO Program(s)................................................................................................................1 FORM 715-01 Part D List of Subordinate Components Covered in this Report ........3 FORM 715-01 Part E Executive Summary.................................................................4

399

Combined Fiscal Year (FY) 2011 Annual Performance Results and FY 2012 Annual Performance Plan  

Energy.gov (U.S. Department of Energy (DOE))

This report presents the goals, objectives, and strategies for measuring the OIGs FY 2011 actual performance and FY 2012 planned activities.

400

Combined Fiscal Year (FY) 2006 Annual Performance Results and FY 2007 Annual Performance Plan  

Energy.gov (U.S. Department of Energy (DOE))

This report presents the goals, objectives, and strategies for measuring the OIGs FY 2006 actual performance and FY 2007 planned activities.

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Combined Fiscal Year (FY) 2007 Annual Performance Results and FY 2008 Annual Performance Plan  

Energy.gov (U.S. Department of Energy (DOE))

This report presents the goals, objectives, and strategies for measuring the OIGs FY 2007 actual performance and FY 2008 planned activities.

402

Combined Fiscal Year (FY) 2009 Annual Performance Results and FY 2010 Annual Performance Plan  

Energy.gov (U.S. Department of Energy (DOE))

This report presents the goals, objectives, and strategies for measuring the OIGs FY 2009 actual performance and FY 2010 planned activities.

403

Combined Fiscal Year (FY) 2010 Annual Performance Results and FY 2011 Annual Performance Plan  

Energy.gov (U.S. Department of Energy (DOE))

This report presents the goals, objectives, and strategies for measuring the OIGs FY 2010 actual performance and FY 2011 planned activities.

404

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

XV-1 XV-1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program A Aceves, Salvador. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .III.11 Adzic, Radoslav . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V.D.6 Ahluwalia, Rajesh. . . . . . . . . . . . . . . . . . . . . . . . IV.E.1, V.A.4 Ainscough, Chris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V.A.8 Anton, Don . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IV.D.1 Arif, Muhammad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V.A.6 Atanasoski, Radoslav . . . . . . . . . . . . . . . . . . . . . . . . . . . V.D.3 Autrey, Tom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IV.H.16 Ayers, Katherine . . . . . . . . . . . . . . . . . . . . . . . . . II.D.2, II.D.5 B Baxter-Clemmons, Shannon. . . . . . . . . . . . . . . . . . . IX.1, X.4

405

Project Listings by Organization; DOE Hydrogen Program FY 2008 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2008 Annual Progress Report DOE Hydrogen Program 3M Company V.C.1 Advanced Cathode Catalysts and Supports for PEM Fuel Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .861 V.G.5 Membranes and MEAs for Dry, Hot Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .962 V.G.8 Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978 A Mountain Top, LLC X.8 HyDRA: Hydrogen Demand and Resource Analysis Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1275 Addison Bain VIII.6 Hydrogen Safety Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202

406

Project Listings by State, DOE Hydrogen Program FY 2010 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2010 Annual Progress Report DOE Hydrogen Program Alabama V.B.2 CFD Research Corp.: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .711 V.B.2 ESI US R&D: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .711 Alaska VIII.9 Tanadgusix Foundation: TDX Foundation Hydrogen Project/PEV Project . . . . . . . . . . . . . . . . . . . . 1288 VIII.9 TDX Power: TDX Foundation Hydrogen Project/PEV Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1288 VIII.9 Alaska Center for Energy and Power: TDX Foundation Hydrogen Project/PEV Project . . . . . . . . . 1288

407

Project Listings by State; DOE Hydrogen Program FY 2008 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2008 Annual Progress Report DOE Hydrogen Program Alabama IV.B.1i University of Alabama: Main Group Element and Organic Chemistry for Hydrogen Storage and Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .592 V.H.1 CFD Research Corporation: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1033 V.H.1 ESI US R&D: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1033 Alaska II.C.3 University of Alaska: Development of a Novel Efficient Solid-Oxide Hybrid for Co-Generation of Hydrogen and Electricity Using Nearby Resources for Local Application .

408

National Codes and Standards Coordination - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Carl Rivkin, (Primary Contact), Chad Blake, Robert Burgess, William Buttner, and Matthew Post National Renewable Energy Laboratory (NREL) 1617 Cole Boulevard Golden, CO 80401 Phone: (303) 275-3839 Email: carl.rivkin@nrel.gov DOE Manager Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Subcontractors: * CSA, Standards, Cleveland, OH * FP2 Fire Protection Engineering, Golden, CO * GWS Solutions, Tolland, CT * Kelvin Hecht, Avon, CT * MorEvents, Englewood, CO * SAE International (SAE), Warrendale, PA

409

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

XVII-1 XVII-1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Alabama V.F.5 CFD Research Corporation: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-226 V.F.5 ESI US R&D: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-226 Arizona VI.3 Arizona State University: Adaptive Process Controls and Ultrasonics for High-Temperature PEM MEA Manufacture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI-17 Arkansas XII.4 FedEx Freight: Fuel Cell-Powered Lift Truck FedEx Freight Fleet Deployment .

410

Project Listings by Organization, DOE Hydrogen Program FY 2010 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

33 33 FY 2010 Annual Progress Report DOE Hydrogen Program 3M Company V.D.2 Membranes and MEAs for Dry, Hot Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .748 V.D.7 Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .772 V.E.1 Advanced Cathode Catalysts and Supports for PEM Fuel Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .790 V.E.6 Durable Catalysts for Fuel Cell Protection during Transient Conditions. . . . . . . . . . . . . . . . . . . . . . . . .825 V.E.8 Nanosegregated Cathode Alloy Catalysts with Ultra-Low Platinum Loading. . . . . . . . . . . . . . . . . . . . .835

411

Appliance Standard Program - The FY 2003 Priority -Setting Summary Report and Actions Proposed  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance Appliance Standards Program The FY 2003 Priority- Setting Summary Report and Actions Proposed Date: August 22, 2002 Table of Contents i EXECUTIVE SUMMARY.............................................................................................. iv 1 Energy Conservation Program - Product Prioritization Process.......1-1 1.1 Background on Appliance Standards Program........................................... 1-1 1.2 DOE Authority to Add Products ................................................................ 1-2 1.2.1 Consumer Products .................................................................................... 1-3 1.2.2 Commercial Products................................................................................. 1-5 1.2.2.1 Products Regulated under EPCA Provisions Concerning Consumer

412

Sigma Team for Minor Actinide Separation: PNNL FY 2011 Status Report  

SciTech Connect

This report summarizes work conducted in FY 2011 at PNNL to investigate new methods of separating the minor actinide elements (Am and Cm) from the trivalent lanthanide elements, and separation of Am from Cm. For the former, work focused on a solvent extraction system combining an acidic extractant (HDEHP) with a neutral extractant (CMPO) to form a hybrid solvent extraction system referred to as TRUSPEAK (combining the TRUEX and TALSPEAK processes). For the latter, ligands that strongly bing uranyl ion were investigated for stabilizing corresponding americyl ion.

Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Levitskaia, Tatiana G.; Carter, Jennifer C.; Warner, Marvin G.; Pittman, Jonathan W.

2011-08-13T23:59:59.000Z

413

Project Listings by Organization; DOE Hydrogen Program FY 2009 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2009 Annual Progress Report DOE Hydrogen Program 3M Company V.D.11 Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034 V.D.13 Membranes and MEAs for Dry, Hot Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042 V.E.1 Advanced Cathode Catalysts and Supports for PEM Fuel Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 A Mountaintop LLC VII.1 HyDRA: Hydrogen Demand and Resource Analysis Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267 Acumentrics Corporation V.I.5 Development of a Low Cost 3-10 kW Tubular SOFC Power System . . . . . . . . . . . . . . . . . . . . . . . . . . 1141 Addison Bain IX.7 Hydrogen Safety Panel

414

Line-focus solar thermal energy technology development. FY 79 annual report for Department 4720  

SciTech Connect

The primary role of the Solar Energy Projects Department II (4720) is the development, evaluation, and testing of line-focus solar thermal technology. This report of FY 79 progress and accomplishments is divided into two parts: (1) Component and Subsystem Development including the design and analysis of collector modules, their components, and associated materials and processes, and (2) Systems and Applications Development, involving larger configurations of solar thermal line-focus systems. The emphasis is on parabolic troughs, but significant efforts on hemispherical bowls, compound parabolic collectors, and dishes for the Solar Total Energy Project are also described.

Bergeron, K.D.; Champion, R.L.; Hunke, R.W. (eds.)

1980-04-01T23:59:59.000Z

415

Idaho National Laboratory LDRD Annual Report FY 2012  

SciTech Connect

This report provides a glimpse into our diverse research and development portfolio, wwhich encompasses both advanced nuclear science and technology and underlying technologies. IN keeping with the mission, INL's LDRD program fosters technical capabilities necessary to support current and future DOE-Office of Nuclear Energy research and development needs.

Dena Tomchak

2013-03-01T23:59:59.000Z

416

Mixed Stream Test Rig Winter FY-2011 Report  

SciTech Connect

This report describes the data and analysis of the initial testing campaign of the Mixed Stream Test Rig (MISTER) at Idaho National Laboratory (INL). It describes the test specimen selection, physical configuration of the test equipment, operations methodology, and data and analysis of specimens exposed in two environments designed to represent those expected for high temperature steam electrolysis (HTSE).

Chalres Park; Tedd Lister; Kevin DeWall

2011-04-01T23:59:59.000Z

417

Exploratory battery technology development report for FY90  

SciTech Connect

Sandia National Laboratories, Albuquerque, manages the Utility Battery Exploratory Technology Development Program, which is sponsored by the US Department of Energy's Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses and development of advanced rechargeable batteries for stationary energy storage applications. This report details the technical achievements realized during fiscal year 1990. 82 figs., 40 tabs.

Magnani, N.J.; Butler, P.C.; Akhil, A.A.; Braithwaite, J.W.; Freese, J.M.; Lott, S.E.

1991-04-01T23:59:59.000Z

418

Federal Facility Agreement Annual Progress Report for FY 1998  

SciTech Connect

This FFA Annual Progress Report has been developed to summarize the information for activities performed during the Fiscal Year 1998 (October 1, 1997, to September 30, 1998) and activities planned for Fiscal Year 1999 by U.S. EPA, SCDHEC, and SRS at those units and areas identified for remediation in the Agreement.

Palmer, E.

1999-08-04T23:59:59.000Z

419

Utility Battery Storage Systems Program report for FY93  

DOE Green Energy (OSTI)

Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses, contract development, and testing of rechargeable batteries and systems for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1993.

Butler, P.C.

1994-02-01T23:59:59.000Z

420

Energy and Environment Division, annual report FY 1980  

DOE Green Energy (OSTI)

This report covers research in: energy analysis; energy efficiency studies; solar energy; chemical process; energy-efficient buildings; environmental pollutant studies; combustion research; laser spectroscopy and trace elements; and oil shale and coal research. An energy and environment personnel listing is appended. Separate projects are indexed individually for the database. (PSB)

Osowitt, M. (ed.)

1981-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "reporting requirement fy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Site-Directed Research and Development FY 2012 Annual Report  

Science Conference Proceedings (OSTI)

The reports included in this report are for project activities that occurred from October 2011 through September 2012. These reports describe in detail the discoveries, achievements, and challenges encountered by our talented and enthusiastic principal investigators (PIs). Many of the reports describe R&D efforts that were successful in their pursuits and resulted in a positive outcome or technology realization. As weve stated before, and continue to stress, in some cases the result is a negative finding, for instance a technology is currently impractical or out of reach. This can often be viewed erroneously as a failure, but is actually a valid outcome in the pursuit of high-risk research, which often leads to unforeseen new paths of discovery. Either result advances our knowledge and increases our ability to identify solutions and/or likewise avoid costly paths not appropriate for the challenges presented. The SDRD program continues to provide an unfettered mechanism for innovation and development that returns multifold to the NNSS mission. Overall the program is a strong R&D innovation engine, benefited by an enhanced mission, committed resources, and sound competitiveness to yield maximum benefit. The 23 projects described exemplify the creativity and ability of a diverse scientific and engineering talent base. The efforts also showcase an impressive capability and resource that can be brought to find solutions to a broad array of technology needs and applications relevant to the NNSS mission and national security.

,

2013-04-01T23:59:59.000Z

422

NERSC HPC Program Requirements Review Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Published Reports Published Reports NERSC HPC Program Requirements Review Reports These publications comprise the final reports from the HPC requirements reviews presented to the Department of Energy. Downloads NERSC-PRR-HEP-2017.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for High Energy Physics - Target 2017 BER2017FinalJune7.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for Biological and Environmental Research - Target 2017 NERSC-ASCR-WorkshopReport.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research NERSC-NP-WorkshopReport.pdf | Adobe Acrobat PDF file Large Scale Computing and Storage Requirements for Nuclear Physics Research NERSC-FES-WorkshopReport.pdf | Adobe Acrobat PDF file

423

Analytical Chemistry Laboratory progress report for FY 1984  

DOE Green Energy (OSTI)

Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs.

Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

1985-03-01T23:59:59.000Z

424

Introduction; DOE Hydrogen Program FY 2009 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Annual Progress Report 9 Annual Progress Report DOE Hydrogen Program The DOE Hydrogen Program (the Program) has conducted comprehensive and focused efforts to enable the widespread commercialization of fuel cells in diverse sectors of the economy. With emphasis on applications that will most effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration (RD&D) of critical improvements in the technologies, as well as diverse activities to overcome economic and institutional obstacles to commercialization. The Program addresses the full range of barriers facing the development and deployment of fuel cell technologies by integrating basic and applied research, technology development and demonstration, and other supporting activities. In

425

Hydrogen Tank Project Q2 Report - FY 11  

DOE Green Energy (OSTI)

Quarterly report that represents PNNL's results of HDPE, LDPE, and industrial polymer materials testing. ASTM D638 type 3 samples were subjected to a high pressure hydrogen environment between 3000 and 4000 PSI. These samples were tested using an instron load frame and were analyzed using a proprietary set of excel macros to determine trends in data. The development of an in-situ high pressure hydrogen tensile testing apparatus is discussed as is the stress modeling of the carbon fiber tank exterior.

Johnson, Kenneth I.; Alvine, Kyle J.; Skorski, Daniel C.; Nguyen, Ba Nghiep; Kafentzis, Tyler A.; Dahl, Michael E.; Pitman, Stan G.

2011-05-15T23:59:59.000Z

426

Environmental management report, fy 1983. [Federal Region III  

Science Conference Proceedings (OSTI)

This report describes the environmental problems found in Region 3, which includes Delaware, Maryland, Pennsylvania, Virginia, West Virginia and the District of Columbia. The most significant Regional problems include hazardous waste dump and disposal sites, the siting of new hazardous waste facilities, ozone and SO2 air pollution, surface water contamination by acid mine drainage and non-point sources, PCB contamination incidents, persistant violations with small water supplies and potential groundwater contamination.

Not Available

1983-05-01T23:59:59.000Z

427

Utility Battery Exploratory Technology Development Program report for FY91  

DOE Green Energy (OSTI)

Sandia National Laboratories, Albuquerque, manages the Utility Battery Exploratory Technology Development Program, which is sponsored by the US Department of Energy's Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses and development of rechargeable batteries for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1991. Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminium/Air and Lead/Acid batteries are evaluated.

Magnani, N.J.; Butler, P.C.; Akhil, A.A.; Braithwaite, J.W.; Clark, N.H.; Freese, J.M.

1991-12-01T23:59:59.000Z

428

Utility Battery Exploratory Technology Development Program report for FY91  

DOE Green Energy (OSTI)

Sandia National Laboratories, Albuquerque, manages the Utility Battery Exploratory Technology Development Program, which is sponsored by the US Department of Energy`s Office of Energy Management. In this capacity, Sandia is responsible for the engineering analyses and development of rechargeable batteries for utility-energy-storage applications. This report details the technical achievements realized during fiscal year 1991. Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminium/Air and Lead/Acid batteries are evaluated.

Magnani, N.J.; Butler, P.C.; Akhil, A.A.; Braithwaite, J.W.; Clark, N.H.; Freese, J.M.

1991-12-01T23:59:59.000Z

429

Utility battery storage systems program report for FY 94  

DOE Green Energy (OSTI)

Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

Butler, P.C.

1995-03-01T23:59:59.000Z

430

Energy storage systems program report for FY1996  

DOE Green Energy (OSTI)

Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Utility Technologies. The goal of this program is to assist industry in developing cost-effective energy storage systems as a resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of energy storage systems for stationary applications. This report details the technical achievements realized during fiscal year 1996.

Butler, P.C.

1997-05-01T23:59:59.000Z

431

Energy Storage Systems Program Report for FY99  

DOE Green Energy (OSTI)

Sandia National Laboratories, New Mexico, conducts the Energy Storage Systems Program, which is sponsored by the US Department of Energy's Office of Power Technologies. The goal of this program is to develop cost-effective electric energy storage systems for many high-value stationary applications in collaboration with academia and industry. Sandia National Laboratories is responsible for the engineering analyses, contracted development, and testing of energy storage components and systems. This report details the technical achievements realized during fiscal year 1999.

BOYES,JOHN D.

2000-06-01T23:59:59.000Z

432

Core capabilities and technical enhancement, FY-98 annual report  

Science Conference Proceedings (OSTI)

The Core Capability and Technical Enhancement (CCTE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Department of Energy's Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CCTE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CCTE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

Miller, D.L.

1999-04-01T23:59:59.000Z

433

Core Capabilities and Technical Enhancement -- FY-98 Annual Report  

Science Conference Proceedings (OSTI)

The Core Capability and Technical Enhancement (CC&TE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CC&TE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CC&TE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

Miller, David Lynn

1999-04-01T23:59:59.000Z

434

REACTOR ANALYSIS AND VIRTUAL CONTROL ENVIRONMENT (RAVEN) FY12 REPORT  

Science Conference Proceedings (OSTI)

RAVEN is a complex software tool that will have tasks spanning from being the RELAP-7 user interface, to using RELAP-7 to perform Risk Informed Safety Characterization (RISMC), and to controlling RELAP-7 calculation execution. The goal of this document is to: 1. Highlight the functional requirements of the different tasks of RAVEN 2. Identify shared functions that could be aggregate in modules so to obtain a minimal software redundancy and maximize software utilization. RAVEN is in fact a software framework that will allow exploiting the following functionalities: Derive and actuate the control logic required to: o Simulate the plant control system o Simulate the operator (procedure guided) actions o Perform Monte Carlo sampling of random distributed events o Perform event three based analysis Provide a GUI to: o Input a plant description to RELAP-7 (component, control variable, control parameters) o Concurrent monitoring of Control Parameters o Concurrent alteration of control parameters Provide Post Processing data mining capability based on o Dimensionality reduction o Cardinality reduction In this document it will be shown how an appropriate mathematical formulation of the control logic and probabilistic analysis leads to have most of the software infrastructure leveraged between the two main tasks. Further, this document will go through the development accomplished this year, including simulation results, and priorities for the next years development

Cristian Rabiti; Andrea Alfonsi; Joshua Cogliati; Diego Mandelli; Robert Kinoshita

2012-09-01T23:59:59.000Z

435

Hydrogen Energy Coordinating Committee annual report: Summary of DOE hydrogen programs for FY 1991  

Science Conference Proceedings (OSTI)

The HECC was established over 13 years ago to ensure that the many varied aspects of hydrogen technology within the Department are coordinated. Each year the committee brings together technical representative within the Department to coordinate activities, share research results and discuss future priorities and directions. This FY 1990 summary is the thirteenth consecutive yearly report. It provides an overview of the hydrogen-related programs of the DOE offices represented in the HECC for the fiscal year. For the purposes of this report, the research projects within each division have been organized into two categories: Fuels-related Research and Non-fuels-related Research. An historical summary of the hydrogen budgets of the several divisions is given. Total DOE funding in FY 1990 was $6.8 million for fuels-related research and $32.9 million for non-fuels-related research. The individual program elements are described in the bo