Powered by Deep Web Technologies
Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Integrated process for coalbed brine disposal  

SciTech Connect

A brine disposal process is described that converts the brine stream of a coalbed gas producing site into clean water for agricultural use, combustion products and water vapor that can be released into the atmosphere and dry solids that can be recycled for industrial consumption. The process uses a reverse osmosis unit, a submerged combustion evaporator and a pulse combustion dryer. Pretreatment of the brine feedstream is necessary to prevent fouling of the membranes of the reverse osmosis unit and to separate from the brine stream hazardous metal and other constituents that may make the permeate from the reverse osmosis unit unsuitable for agricultural or other use. A chemical modeling code is used to calculate the saturation states of solids that may precipitate and foul the reverse osmosis membranes. Sodium carbonate is added to the brine to precipitate carbonates of Ba, Ca, Mg and Sr prior to filtration, acidification, and passage into the reverse osmosis unit. Optimization of the process in terms of types and amounts of additives is possible with analysis using the modeling code. The minimum amounts of additives to prevent scaling are calculated. In a typical operation, a brine feedstream of 1,000 m{sup 3}/day (6,290 bpd) that may have a total dissolved salt concentration (TDS) of 7,000 ppm will be separated into a permeate stream of 750 m{sup 3}/day (4,718 bpd) with a TDS of 400 ppm and a concentrated brine stream of 250 m{sup 3}/day (1,573 bpd) with a TDS of 26,800 ppm. The submerged combustion evaporator will concentrate this latter stream to a concentration of 268,000 ppm and reduce the volume to 25 m{sup 3}/day (158 bpd). The pulse combustion dryer can dry the concentrated brine mixture to a low moisture salt. Energy costs to operate the reverse osmosis unit are primarily the pumping costs.

Brandt, H. [AQUATECH Services, Inc., Fair Oaks, CA (United States)]|[California Univ., Davis, CA (United States). Dept. of Mechanical Engineering; Bourcier, W.L.; Jackson, K.J. [Lawrence Livermore National Lab., CA (United States)

1994-03-01T23:59:59.000Z

2

Integrated process for coalbed brine and methane disposal  

SciTech Connect

This paper describes a technology and project to demonstrate and commercialize a brine disposal process for converting the brine stream of a coalbed gas producing site into clean water for agricultural use and dry solids that can be recycled for industrial consumption. The process also utilizes coalbed methane (CBM) released from coal mining for the combustion process thereby substantially reducing the potential for methane emissions to the atmosphere. The technology is ideally suited for the treatment and disposal of produced brines generated from the development of coal mines and coalbed methane resources worldwide. Over the next 10 to 15 years, market potential for brine elimination equipment and services is estimated to be in the range of $1 billion.

Byam, J.W. Jr.; Tait, J.H.; Brandt, H.

1996-12-31T23:59:59.000Z

3

ABSORBING WIPP BRINES: A TRU WASTE DISPOSAL STRATEGY  

SciTech Connect

Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250- liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WIPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $311k in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

Yeamans, D. R.; Wrights, R. S.

2002-02-25T23:59:59.000Z

4

Absorbing WIPP brines : a TRU waste disposal strategy.  

SciTech Connect

Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250-liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WlPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $3 1 lk in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

Yeamans, D. R. (David R.); Wright, R. (Robert)

2002-01-01T23:59:59.000Z

5

Fate of Brine Applied to Unpaved Roads at a Radioactive Waste Subsurface Disposal Area  

SciTech Connect

Between 1984 and 1993, MgCl2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl– might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl– in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl– concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl– concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl– was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl– remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl– in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface disposal area.

Larry C. Hull; Carolyn W. Bishop

2004-02-01T23:59:59.000Z

6

Environmental assessment of the brine pipeline replacement for the Strategic Petroleum Reserve Bryan Mound Facility in Brazoria County, Texas  

SciTech Connect

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0804, for the proposed replacement of a deteriorated brine disposal pipeline from the Strategic Petroleum Reserve (SPR) Bryan Mound storage facility in Brazoria County, Texas, into the Gulf of Mexico. In addition, the ocean discharge outfall would be moved shoreward by locating the brine diffuser at the end of the pipeline 3.5 miles offshore at a minimum depth of 30 feet. The action would occur in a floodplain and wetlands; therefore, a floodplain/wetlands assessment has been prepared in conjunction with this EA. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 USC. 4321, et seg.). Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact (FONSI). This FONSI also includes a Floodplain Statement of Findings in accordance with 10 CFR Part 1022.

Not Available

1993-09-01T23:59:59.000Z

7

Hydrogeologic aspects of brine disposal in the East Poplar oil field, Fort Peck Indian Reservation, northeastern Montana  

SciTech Connect

The East Poplar Oil Field encompasses about 70 square miles in the south-central part of the Fort Peck Indian Reservation. Oil production began in 1952 from the Mississippian Madison Group. Production depths range from about 5,500 to 6,000 feet below land surface. Large quantities of brine (water having a dissolved-solids concentration greater than 35,000 milligrams per liter) have been produced with the oil. The brine has a dissolved-solids concentration of as much as 160,000 milligrams per liter. Most of the brine has been disposed of by injection into shallower subsurface formations (mainly the Lower Cretaceous Dakota Sandstone at depths of about 3,300 feet and the Upper Cretaceous Judith River Formation at depths of about 1,000 feet). Smaller quantities of brine have been directed to storage and evaporation pits. Handling, transport, and disposal of the brine have resulted in its movement into and migration through shallow Quaternary alluvial and glacial deposits along the Poplar River valley. Locally, domestic water supplies are obtained from these deposits. The major point, sources of shallow ground-water contamination probably is leakage of brine from corroded disposal-well casing and pipelines. Using electromagnetic geophysical techniques and auger drilling, three saline-water plumes in alluvial deposits and one plum in glacial deposits have been delineated. Dominant constituents in plume areas are sodium and chloride, whereas those in nonplume areas are sodium and bicarbonate.

Craigg, S.D.; Thamke, J.N. (Geological Survey, Helena, MT (United States))

1993-04-01T23:59:59.000Z

8

Fate of Magnesium Chloride Brine Applied to Suppress Dust from Unpaved Roads at the INEEL Subsurface Disposal Area  

SciTech Connect

Between 1984 and 1993, MgCl2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl– might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl– in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl– concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl– concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl– was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl– remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl– in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface

Larry Hull; Carolyn Bishop

2004-02-01T23:59:59.000Z

9

The implications of UIC and NPDES regulations on selection of disposal options for spent geothermal brine  

SciTech Connect

This document reviews and evaluates the various options for the disposal of geothermal wastewater with respect to the promulgated regulations for the protection of surface and groundwaters. The Clean Water Act of 1977 and the Safe Drinking Water Act Amendments are especially important when designing disposal systems for geothermal fluids. The former promulgates regulations concerning the discharge of wastewater into surface waters, while the latter is concerned with the protection of ground water aquifers through the establishment of underground injection control (UIC) programs. There is a specific category for geothermal fluid discharge if injection is to be used as a method of disposal. Prior to February 1982, the UIC regulations required geothermal power plant to use Class III wells and direct use plants to use Class V wells. More stringent regulatory requirements, including construction specification and monitoring, are imposed on the Class III wells. On February 3, 1982, the classification of geothermal injection wells was changed from a Class III to Class V on the basis that geothermal wells do not inject for the extraction of minerals or energy, but rather they are used to inject brines, from which heat has been extracted, into formations from which they were originally taken. This reclassification implies that a substantial cost reduction will be realized for geothermal fluid injection primarily because well monitoring is no longer mandatory. The Clean Water Act of 1977 provides the legal basis for regulating the discharge of liquid effluent into the nation's surface waters, through a permitting system called the National Pollution Discharge Elimination System (NPDES) Discharge quantities, rates, concentrations and temperatures are regulated by the NPDES permits. These permits systems are based upon effluent guidelines developed by EPA on an industry by industry basis. For geothermal energy industry, effluent guidelines have not been formulated and are not currently scheduled. There, are however, water quality standards that control the quantity and quality of wastewaters discharged into surface waters. These standards are established by the states in concert with EPA, and frequently result in NPDES conditions more restrictive than those based on effluent guidelines.

None

1982-07-01T23:59:59.000Z

10

EA-1793: Replacement Capability for Disposal of Remote-handled Low-level  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

793: Replacement Capability for Disposal of Remote-handled 793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site Summary This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017. Public Comment Opportunities Submit Comments to: Mr. Chuck Ljungberg 1955 Fremont Avenue, Mailstop 1216 Idaho Falls, ID 83415 Electronic mail: rhllwea@id.doe.gov Documents Available for Download December 21, 2011 EA-1793: Finding of No Significant Impact Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive

11

West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume III. Biological oceanography. Final report  

SciTech Connect

The Department of Energy's Strategic Petroleum Reserve Program began discharging brine into the Gulf of Mexico from its West Hackberry site near Cameron, Louisiana in May 1981. The brine originates from underground salt domes being leached with water from the Intracoastal Waterway, making available vast underground storage caverns for crude oil. The effects of brine discharge on aquatic organisms are presented in this volume. The topics covered are: benthos; nekton; phytoplankton; zooplankton; and data management.

DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

1983-02-01T23:59:59.000Z

12

Evaluation of brine disposal from the Bryan Mound site of the strategic petroleum reserve program. Final report  

SciTech Connect

On March 10, 1980, the Department of Energy's Strategic Petroleum Reserve Program began leaching the Bryan Mound salt dome and discharging the resulting brine into the coastal waters off Freeport, Texas. During the months of March and April, a team of scientists and engineers from Texas A and M University conducted an intensive environmental study of the area surrounding the diffuser site. A pipeline has been laid from the Bryan Mound site to a location 12.5 statute miles (20 km) offshore. The last 3060 ft (933 m) of this pipeline is a 52-port diffuser through which brine can be discharged at a maximum rate of 680,000 barrels per day. Initially, 16 ports were open which permitted a maximum discharge rate of 350,000 barrels per day and a continuous brine discharge was achieved on March 13, 1980. The purpose of this report is to describe the findings of the project team during the intensive postdisposal study period of March and April, 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management.

Case, Robert J.; Chittenden, Jr, Mark E.; Harper, Jr, Donald E.; Kelly, Jr, Francis J.; Loeblich, Laurel A.; McKinney, Larry D.; Minello, Thomas J.; Park, E. Taisoo; Randall, Robert E.; Slowey, J. Frank

1981-01-01T23:59:59.000Z

13

Session 21: Disposal of Flashed Brine Dosed with CaCO3 Scale Inhibitor: What Happens When the Inhibitor is Exhausted?  

SciTech Connect

Inhibited, flashed brine is thermodynamically poised to deposit CaCO{sub 3}. Eventually the scale inhibitor will be overcome by dilution in native reservoir fluid, sorption on rocks, slow overgrowth of CaCO{sub 3}, decomposition, or some combination of processes. Consequences to the reservoir which receives the fluid apparently have not been previously explored. However, Huff-Puff tests (monitored backflow of injected tracers), carried out at East Mesa in the summer of 1983, have provided a starting point for addressing the questions. An effective lifetime of about 14 hours is indicated for one inhibitor. Additionally, reactions between injected fluid and native resource fluid have been observed in two contexts: (1) the native fluid around the disposal well is the unflashed counterpart of the injectate; (2) the native fluid around the disposal well is chemically distinct from the injectate and from its unflashed counterpart. In the two cases investigated, situation (1) yielded significant reaction (deposition of CaCO{sub 3}) whereas, situation (2) appeared unreactive. These outcomes have important implications regarding the mechanics of reservoir management for long-term electricity production.

Michels, D.E.

1983-12-01T23:59:59.000Z

14

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energys Idaho Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site August 2011 DOE/EA-1793 Draft Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site August 2011 v EXECUTIVE SUMMARY The U.S. Department of Energy (DOE) proposes to provide replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017. Historically, INL has disposed of this LLW onsite. However, the existing disposal area located within the INL Radioactive Waste Management Complex will undergo

15

West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume II. Physical and chemical oceanography. Final report  

SciTech Connect

This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Contents of Volume II include: introduction; physical oceanography; estuarine hydrology and hydrography; analysis of discharge plume; and water and sediment quality.

DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

1983-02-01T23:59:59.000Z

16

West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume IV. Bibliography and supporting data for physical oceanography. Final report. [421 references  

SciTech Connect

This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume IV contains the following: bibliography; appendices for supporting data for physical oceanography, and summary of the physical oceanography along the western Louisiana coast.

DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.) [eds.

1983-02-01T23:59:59.000Z

17

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energys Idaho Site  

NLE Websites -- All DOE Office Websites (Extended Search)

93 93 Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site Final December 2011 Department of Energy Idaho Operations Office 1955 Fremont Avenue Idaho Falls, ID 83415 December 21, 2011 Dear Citizen: The U.S. Department of Energy (DOE) has completed the Final Environmental Assessment (EA) for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site and determined that a Finding of No Significant Impact (FONSI) is appropriate. The draft EA was made available for an 81-day public review and comment period on September 1,2011. DOE considered all comments made

18

Brine flow in heated geologic salt.  

SciTech Connect

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01T23:59:59.000Z

19

Evaporite diagenesis driven by synsedimentary evolution of brines  

SciTech Connect

Back-reaction of brines has modified cyclic shallow water carbonate-sulfate-halite sequences (Permian) in the Palo Duro basin, Texas Panhandle. Successive parts of regressive evaporite cycles were deposited from progressively more highly evaporated seawater. The reaction of the brine with sediments deposited during earlier parts of each cycle was the major force criving diagenetic reactions and determining the final mineralogy. Normal marine limestones at the base of cycles were dolomitized in the shallow subsurface environments by brines that precipitated brine-pool evaporites in the upper parts of cycles. Gypsum dehydrated to anhydrite at burial depths of 1-2m beneath the brine-pool floor as brine salinity increased toward halite saturation. Diagenetic limpid dolomite and anhydrite replacing halite were probably derived from mixed meteoric and evaporated-marine brines squeezed from mudstone beds during compaction in the shallow subsurface. Anhydrite and halite pervasively cemented and partly replaced carbonates and gypsum. The resulting low permeability limited later diagenetic alteration, so that the early diagenetic textures and mineralogy were preserved in the burial environment. Reduction in permeability occurred before the transgression initiating the next cycle; the only major result of the introduction of seawater into the evaporite environment was dissolution of the last-deposited few meters of halite.

Hovorka, S.D.

1988-01-01T23:59:59.000Z

20

Salt caverns for oil field waste disposal.  

SciTech Connect

Salt caverns used for oil field waste disposal are created in salt formations by solution mining. When created, caverns are filled with brine. Wastes are introduced into the cavern by pumping them under low pressure. Each barrel of waste injected to the cavern displaces a barrel of brine to the surface. The brine is either used for drilling mud or is disposed of in an injection well. Figure 8 shows an injection pump used at disposal cavern facilities in west Texas. Several types of oil field waste may be pumped into caverns for disposal. These include drilling muds, drill cuttings, produced sands, tank bottoms, contaminated soil, and completion and stimulation wastes. Waste blending facilities are constructed at the site of cavern disposal to mix the waste into a brine solution prior to injection. Overall advantages of salt cavern disposal include a medium price range for disposal cost, large capacity and availability of salt caverns, limited surface land requirement, increased safety, and ease of establishment of individual state regulations.

Veil, J.; Ford, J.; Rawn-Schatzinger, V.; Environmental Assessment; RMC, Consultants, Inc.

2000-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Emplacement and release of brines from subsurface  

E-Print Network (OSTI)

Groundwater contamination by dense brines is addressed fromgroundwater contamination where dense brines might have beenbrines can become long-term sources of groundwater contamination

Hunt, James R; Flowers, Tracey C

2004-01-01T23:59:59.000Z

22

Conclusions after eleven years of studying brine at the Waste Isolation Pilot Plant  

SciTech Connect

The Waste Isolation Pilot Plant (WIPP) was established to demonstrate the safe disposal of defense-generated transuranic waste in the United States. When excavations began at the WIPP in 1982, small brine seepages (weeps) were observed on the walls. WIPP performance assessment activities raised the concern that the brine could cause anoxic corrosion of metal in the waste storage drums and waste inventory, potentially producing large quantities of hydrogen gas, which would affect the long-term performance of Thee repository. Th WIPP Brine Sampling and Evaluation Program was developed to investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences. The WIPP is excavated in the Salado Formation, which is bedded salt of Permian age. The sediments exposed in the excavations consist of clear halite and polyhalitic halite, halite containing clay, thin clay seams, and interbedded anhydrite layers. The clear halite beds contain little brine and are effectively impermeable. The clay within the salt and in the clay seams contains brine that is released to the excavations, although virtually all of the brine release occurs within the first few years of mining. Consequently, by the time the waste storage rooms at the WIPP are filled and sealed, most of the brine that can be derived from the clay will have evaporated. These is no observed evidence from the WIPP excavations that brine will seep into the working from the anhydrite beds. It has been postulated, however, that brine could seep through the underlying anhydrite Marker Bed 139 (MB139). Recently acquired data on the hydrologic properties of MB139 show that, even if flow through the anhydrite occurs, the brine released to the storage rooms could only corrode a small percentage of the susceptible metal in the repository.

Deal, D.E. [IT Corporation, Albuquerque, NM (United States); Bills, R.A. [Department of Energy, Carlsbad, NM (United States)

1994-12-31T23:59:59.000Z

23

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energys Idaho Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT FINDING OF NO SIGNIFICANT IMPACT FOR THE ENVIRONMENTAL ASSESSMENT FOR THE REPLACEMENT CAPABILITY FOR THE DISOPOSAL OF REMOTE-HANDLED LOW-LEVEL RADIOACTIVE WASTE GENERATED AT THE DEPARTMENT OF ENERGY'S IDAHO SITE Agency: U. S. Department of Energy (DOE) Action: Finding ofNo Significant Impact (FONSI) Summary: Operations conducted in support ofIdaho National Laboratory (INL) and Naval Reactors Facility (NRF) missions on the Idaho site generate low-level radioactive waste (LL W). DOE classifies some of the LL W generated at the INL as remote-handled LL W because its potential radiation dose is high enough to require additional protection of workers using distance and shielding. Remote-handled wastes are those with radiation levels exceeding 200 millirem

24

Brining studies at Pepper Products Inc.  

E-Print Network (OSTI)

of Department) A. B. Childers (Member) V. E. Sweat (Member) December 1988 Abstract Optimum brining conditions, causes of secondary fermentation, and salt fluctuation were investigated. Jalapeno peppers held in brine solution undergo lactic acid... fermentation, controlled by level of acidification and concentration of salt. Only brining at 7. 5% NaCl, with no added acetic acid, resulted in loss of all fermentable sugars. However, salt concentration fluctuated widely in this sample. Brining in 25...

Okoro, John Daniel

2012-06-07T23:59:59.000Z

25

Brine Sampling and Evaluation Program, 1991 report  

SciTech Connect

The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plan (WIPP) during 1991. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. When excavations began at the WIPP in 1982, small brine seepages (weeps) were observed on the walls. Brine studies began as part of the Site Validation Program and were formalized as a program in its own right in 1985. During nine years of observations (1982--1991), evidence has mounted that the amount of brine seeping into the WIPP excavations is limited, local, and only a small fraction of that required to produce hydrogen gas by corroding the metal in the waste drums and waste inventory. The data through 1990 is discussed in detail and summarized by Deal and others (1991). The data presented in this report describes progress made during the calendar year 1991 and focuses on four major areas: (1) quantification of the amount of brine seeping across vertical surfaces in the WIPP excavations (brine ``weeps); (2) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes; (3) further characterization of brine geochemistry; and (4) preliminary quantification of the amount of brine that might be released by squeezing the underconsolidated clays present in the Salado Formation.

Deal, D.E.; Abitz, R.J.; Myers, J.; Martin, M.L.; Milligan, D.J.; Sobocinski, R.W.; Lipponer, P.P.J. [International Technology Corp., Albuquerque, NM (United States)] [International Technology Corp., Albuquerque, NM (United States); Belski, D.S. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.] [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

1993-09-01T23:59:59.000Z

26

Improved Water Flooding through Injection Brine Modification  

SciTech Connect

Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman; (U of Wyoming)

2003-01-01T23:59:59.000Z

27

Modeling acid-gas generation from boiling chloride brines  

SciTech Connect

This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent expected conditions in an emplacement drift, but nevertheless illustrate the potential for acid-gas generation at moderate temperatures (<150 C).

Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

2009-11-16T23:59:59.000Z

28

Property:BrineConstituents | Open Energy Information  

Open Energy Info (EERE)

BrineConstituents BrineConstituents Jump to: navigation, search Property Name BrineConstituents Property Type String Description Describes major elements, compounds in geothermal brine This is a property of type Page. Subproperties This property has the following 1 subproperty: V Valles Caldera - Redondo Geothermal Area Pages using the property "BrineConstituents" Showing 2 pages using this property. N North Brawley Geothermal Area + Chlorine, sodium, potassium, and calcium. Silica concentrations are 527 mg/l and total dissolved solids measure 82,900 mg/l. + S Salt Wells Geothermal Area + Cl, Na, SO4, SiO2, HCO3, and minor Ca, K + Retrieved from "http://en.openei.org/w/index.php?title=Property:BrineConstituents&oldid=598832#SMWResults" Category: Properties

29

Development Operations Hypersaline Geothermal Brine Utilization Imperial  

Open Energy Info (EERE)

Hypersaline Geothermal Brine Utilization Imperial Hypersaline Geothermal Brine Utilization Imperial County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Operations Hypersaline Geothermal Brine Utilization Imperial County, California Abstract N/A Authors Whitescarver and Olin D. Published U.S. Department of Energy, 1984 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Development Operations Hypersaline Geothermal Brine Utilization Imperial County, California Citation Whitescarver, Olin D.. 1984. Development Operations Hypersaline Geothermal Brine Utilization Imperial County, California. (!) : U.S. Department of Energy. Report No.: N/A. Retrieved from "http://en.openei.org/w/index.php?title=Development_Operations_Hypersaline_Geothermal_Brine_Utilization_Imperial_County,_California&oldid=682648

30

Modeling gas and brine migration for assessing compliance of the Waste Isolation Pilot Plant  

SciTech Connect

At the request of the WIPP Project Integration Office (WPIO) of the DOE, the WIPP Performance Assessment (PA) Department of Sandia National Laboratories (SNL) has completed preliminary uncertainty and sensitivity analyses of gas and brine migration away from the undisturbed repository. This paper contains descriptions of the numerical model and simulations, including model geometries and parameter values, and a summary of major conclusions from sensitivity analyses. Because significant transport of contaminants can only occur in a fluid (gas or brine) medium, two-phase flow modeling can provide an estimate of the distance to which contaminants can migrate. Migration of gas or brine beyond the RCRA ``disposal-unit boundary`` or the Standard`s accessible environment constitutes a potential, but not certain, violation and may require additional evaluations of contaminant concentrations.

Vaughn, P. [Applied Physics, Inc., Albuquerque, NM (United States); Butcher, B. [Sandia National Labs., Albuquerque, NM (United States); Helton, J. [Arizona State Univ., Tempe, AZ (United States); Swift, P. [Tech. Reps., Inc., Albuquerque, NM (United States)

1993-10-01T23:59:59.000Z

31

Exposure and effects of oilfield brine discharges on western sandpipers (Calidris mauri) in Nueces Bay, Texas  

SciTech Connect

Discharge of oilfield brines into fresh and estuarine waters is a common disposal practice in Texas. Petroleum crude oil (PCO) extraction from underground stores includes the removal of a significant amount of water along with the oil. Several methods may be used to separate the oil and water fractions, including tank batteries, heat separation, and skimming ponds. Disposal of the resultant produced water (oilfield brine) may be accomplished by deep-well injection or discharge to surface waters. In Texas, an estimated 766,000 barrels of oilfield brine were discharged daily into tidal waters in 1979. The maximum concentration for oil and grease in these discharges permitted by the Texas Railroad Commission is 25 ppm. Several studies have shown that oilfield brines are toxic to a wide range of marine life, yet little is known about their effects on birds and mammals. Exposure to petroleum in oilfield wastes could evoke toxicological effects in some waterbird species. Avian responses to PCO exposure are highly variable, including cessation of growth, osmoregulatory impairment, endocrine dysfunction, hemolytic anemia, altered blood chemistry, cytochrome P450 induction, reduced reproductive success, and mortality. Oilfield brine discharges may soon be the largest and most pervasive source of contaminants entering Texas estuaries. Migratory and resident birds feeding in the vicinity of discharge sites may be ingesting food items contaminated with petroleum hydrocarbons, heavy metals and salts in sufficient quantities to evoke toxicity. The present study of wintering western sandpipers (Calidris mauri) that feed and roost near discharge sites sought to examine oilfield brine exposure and effects through quantification of contaminant burdens, morphological characteristics, and cytochrome P450-associated monooxygenase activities. 20 refs., 2 tabs.

Rattner, B.A.; Melancon, M.J. [National Biological Survey, Laurel, MD (United States); Capizzi, J.L. [Texas A& M Univ., College Station, TX (United States); King, K.A. [Fish and Wildlife Service, Phoenix, AZ (United States); LeCaptain, L.J. [Fish and Wildlife Service, Spokane, WA (United States)

1995-05-01T23:59:59.000Z

32

CX-010404: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Replace Brine Disposal System Header to West Hackberry Brine Tanks, Government Furnished Equipment CX(s) Applied: B1.3 Date: 04222013 Location(s):...

33

The Brine Shrimp's Butterfly Stroke  

E-Print Network (OSTI)

We investigate the fluid dynamics of brine shrimp larvae swimming in this gallery of fluid motion video. Time resolved particle image velocimetry was performed using nano-particles as seeding material to measure the time dependent velocity and vorticity fields. The Reynolds number of the flow was roughly 8 and the Womerseley number (ratio of periodic forcing to viscous forcing) was about 5. Vorticity dynamics reveals the formation of a vortex ring structure at the tip of each arm at the beginning of the power stroke. This two vortex system evolves dramatically with time as the stroke progresses. The outer circulation is noted to weaken while the inner circulation strengthens over the power stroke. The gaining strength of the inner vortex correlates with the acceleration and forward movement of the larvae.

Johnson, Brennan; Dasi, Lakshmi Prasad

2011-01-01T23:59:59.000Z

34

Sampling procedure for atmospheric geothermal brines  

SciTech Connect

Thermodynamic and chemical changes can alter the characteristics of geothermal brine samples significantly. A procedure which minimizes these changes has been developed for sampling atmospheric geothermal brines. The method is fast with minimal cooling and yields representative samples which have been stabilized to preserve their integrity. The procedure provides reliable suspended solids data and both the solid and liquid samples are suitable for elemental analysis. The procedure is also a valuable tool to aid in monitoring a geothermal brine conditioning system. Data are included from a flow test at an MCR Geothermal well in the Imperial Valley area of California to illustrate the utility of the sampling procedure.

Kochelek, J.T.; Zienty, D.F.

1981-10-01T23:59:59.000Z

35

Septage Disposal, Licensure (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This statute describes licensing requirements for septage disposal, and addresses land disposal and processing facilities.

36

Volatility of HCl and the thermodynamics of brines during brine dryout  

SciTech Connect

Laboratory measurements of liquid-vapor partitioning (volatility) of chlorides from brines to steam can be used to indicate the potential for corrosion problems in geothermal systems. Measurements of volatilities of solutes in chloride brines have established a possible mechanism for the production of high-chloride steam from slightly acidic high temperature brines. Questions concerning the fate of NaCl in the steam production process have been addressed through extensive measurements of its volatility from brines ranging in concentration from dilute solutions to halite saturation. Recent measurements of chloride partitioning to steam over brines in contact with Geysers rock samples are consistent with our concept of the process for production of high-chloride steam.

Simonson, J.M.; Palmer, D.A.

1997-04-01T23:59:59.000Z

37

Re-assessing the impact of desalination plants brine discharges on eroding beaches  

Science Journals Connector (OSTI)

Sea outfall discharge is a practical way to dispose of brine waste stream from a coastal desalination plant. However, sandy beaches are changing as a result of coastal erosion. Coastline urban developments are the manmade permanent changing of beaches, where the coastlines are being dredged and reclaimed as artificial land. Therefore, if a plant is built and operated with an outfall to satisfy the imposed site's environmental regulation compliance but the beach is subsequently being eroded, what action needs to be done to make sure the imposed criteria that minimize the impact on the marine environment can still be met? A mathematical model is presented that accounts the effect of beach erosion for estimating the brine's outfall adverse impact on the environment.

H.H. Al-Barwani; Anton Purnama

2007-01-01T23:59:59.000Z

38

Portable brine evaporator unit, process, and system  

DOE Patents (OSTI)

The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

2009-04-07T23:59:59.000Z

39

Assessment of Brine Management for Geologic Carbon Sequestration  

E-Print Network (OSTI)

Economic  Geology Billion  Gallons  per  Year Brine  Use  Sequence Carbon  dioxide  Capture  and  Storage Carbon  Dioxide Coal-­?

Breunig, Hanna M.

2014-01-01T23:59:59.000Z

40

Brine tolerant polymer for oil recovery applications  

SciTech Connect

This patent describes a beta-alanine-type branched partially hydrolyzed polyacrylamide, which is added to an aqueous injection fluid to increase the viscosity of the fluid. The polymer resists plugging of the wellbore face and/or matrix pores and is brine tolerant when injected into a subterranean hydrocarbon-bearing formation.

Tackett, J.E.

1987-11-24T23:59:59.000Z

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Chemistry of Silica in Cerro Prieto Brines  

E-Print Network (OSTI)

data was generated by t e CFE Laioratory a t Cerro Prietowere performed a t the CFE Laboratory a t Cerro P r i e t oe h e l p of J,. Fausto L of CFE. Brine from Cerro P r i e t

Weres, Oleh

2012-01-01T23:59:59.000Z

42

Chemistry of Silica in Cerro Prieto Brines  

E-Print Network (OSTI)

data was generated by t e CFE Laioratory a t Cerro Prietowere performed a t the CFE Laboratory a t Cerro P r i e t oe h e l p of J,. Fausto L of CFE. Brine from Cerro P r i e t

Weres, O.

2010-01-01T23:59:59.000Z

43

20 - Nuclear Waste Disposal  

Science Journals Connector (OSTI)

Disposal options are outlined, including geological and near-surface disposal. Alternative disposal options are briefly considered. The multi-barrier system is described, including the natural geological barrier and the engineered barrier system. The roles of both EBS and NGB are discussed. Worldwide disposal experience is reviewed and acceptance criteria for disposal are analysed.

M.I. Ojovan; W.E. Lee

2014-01-01T23:59:59.000Z

44

Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir  

SciTech Connect

The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a significant source of brine to the repository, which is consumed in the corrosion of iron and thus contributes to increased repository pressures. Fourth, the DRZ itself lowers repository pressures by providing storage for gas and access to additional gas storage in areas of the repository. Fifth, given the pathway that the DRZ provides for gas and brine to flow around the panel closures, isolation of the waste panels by the panel closures was not essential to compliance with the U.S. Environment Protection Agency's regulations in the 1996 WIPP PA.

ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

1999-10-01T23:59:59.000Z

45

Polyacrylamide polymer viscosity as a function of brine composition  

SciTech Connect

A computer model has been developed which predicts the viscosity of polymer and oil field brine mixtures. The polymers used were Amoco- Sweepaid 103 and Dow- Pusher 500 polyacrylamide polymers. All of the experiments were conducted at 1200 ppM polymer concentration. The computer input consists of the ionic strength of the brine in the mixture and the fraction of that ionic strength due to sodium ions. The computer program makes predictions of viscosity by referencing a family of viscosity curves for various mixtures of sodium chloride and calcium chloride in 1200 ppM polymer solutions. The model has been tested using 59 mixtures of brines and polymers. The ionic strength of the brine in the mixtures varied from 0.0018 to 0.025. The fraction of the brines' total ionic strength due to sodium ions varied from 0.22 to 0.49. The brines consisted predominantly of sodium, potassium, magnesium, calcium, chloride, bicarbonate and sulfate ions.

French, T.R.; Stacy, N.; Collins, A.G.

1981-05-01T23:59:59.000Z

46

REPLACE YOUR MERCURY THERMOMETERS BEFORE THEY BREAK!  

E-Print Network (OSTI)

REPLACE YOUR MERCURY THERMOMETERS BEFORE THEY BREAK! Did you know, mercury from broken thermometers to the local environment, if broken thermometers in sinks eventually end at the sanitary sewer plant. Broken mercury thermometers create hazardous waste that is costly to clean up and costly to dispose of. Other

47

OUT Success Stories: Chemical Treatments for Geothermal Brines  

SciTech Connect

DOE research helped develop the large, untapped geothermal resource beneath the Salton Sea in California's Imperial Valley. The very hot brines under high pressure make them excellent for electric power production. The brines are very corrosive and contain high concentrations of dissolved silica. DOE worked with San Diego Gas and Electric Company to find a solution to the silica-scaling problem. This innovative brine treatment eliminated scaling and made possible the development of the Salton Sea geothermal resource.

Burr, R.

2000-08-31T23:59:59.000Z

48

Assessment of Brine Management for Geologic Carbon Sequestration  

E-Print Network (OSTI)

brine  management  or   extracted  water  management  infrastructure  or  where  nearby  fresh  water  resources  need  to  be   carefully  monitored  for  later  contamination.  

Breunig, Hanna M.

2014-01-01T23:59:59.000Z

49

EVALUATIONS OF RADIONUCLIDES OF URANIUM, THORIUM, AND RADIUM ASSOCIATED WITH PRODUCED FLUIDS, PRECIPITATES, AND SLUDGES FROM OIL, GAS, AND OILFIELD BRINE INJECTION WELLS IN MISSISSIPPI  

SciTech Connect

Naturally occurring radioactive materials (NORM) are known to be produced as a byproduct of hydrocarbon production in Mississippi. The presence of NORM has resulted in financial losses to the industry and continues to be a liability as the NORM-enriched scales and scale encrusted equipment is typically stored rather than disposed of. Although the NORM problem is well known, there is little publically available data characterizing the hazard. This investigation has produced base line data to fill this informational gap. A total of 329 NORM-related samples were collected with 275 of these samples consisting of brine samples. The samples were derived from 37 oil and gas reservoirs from all major producing areas of the state. The analyses of these data indicate that two isotopes of radium ({sup 226}Ra and {sup 228}Ra) are the ultimate source of the radiation. The radium contained in these co-produced brines is low and so the radiation hazard posed by the brines is also low. Existing regulations dictate the manner in which these salt-enriched brines may be disposed of and proper implementation of the rules will also protect the environment from the brine radiation hazard. Geostatistical analyses of the brine components suggest relationships between the concentrations of {sup 226}Ra and {sup 228}Ra, between the Cl concentration and {sup 226}Ra content, and relationships exist between total dissolved solids, BaSO{sub 4} saturation and concentration of the Cl ion. Principal component analysis points to geological controls on brine chemistry, but the nature of the geologic controls could not be determined. The NORM-enriched barite (BaSO{sub 4}) scales are significantly more radioactive than the brines. Leaching studies suggest that the barite scales, which were thought to be nearly insoluble in the natural environment, can be acted on by soil microorganisms and the enclosed radium can become bioavailable. This result suggests that the landspreading means of scale disposal should be reviewed. This investigation also suggests 23 specific components of best practice which are designed to provide a guide to safe handling of NORM in the hydrocarbon industry. The components of best practice include both worker safety and suggestions to maintain waste isolation from the environment.

Charles Swann; John Matthews; Rick Ericksen; Joel Kuszmaul

2004-03-01T23:59:59.000Z

50

Origin, distribution, and movement of brine in the Permian Basin (U. S. A. ). A model for displacement of connate brine  

SciTech Connect

Na-Cl, halite Ca-Cl, and gypsum Ca-Cl brines with salinities from 45 to >300 g/L are identified and mapped in four hydrostratigraphic units in the Permian Basin area beneath western Texas and Oklahoma and eastern New Mexico, providing spatial and lithologic constraints on the interpretation of the origin and movement of brine. Na-Cl brine is derived from meteoric water as young as 5-10 Ma that dissolved anhydrite and halite, whereas Ca-Cl brine is interpreted to be ancient, modified-connate Permian brine that now is mixing with, and being displaced by, the Na-Cl brine. Displacement fronts appear as broad mixing zones with no significant salinity gradients. Evolution of Ca-Cl brine composition from ideal evaporated sea water is attributed to dolomitization and syndepositional recycling of halite and bittern salts by intermittent influx of fresh water and sea water. Halite Ca-Cl brine in the evaporite section in the northern part of the basin differs from gypsum Ca-Cl brine in the south-central part in salinity and Na/Cl ratio and reflects segregation between halite- and gypsum-precipitating lagoons during the Permian. Ca-Cl brine moved downward through the evaporite section into the underlying Lower Permian and Pennsylvanian marine section that is now the deep-basin brine aquifer, mixing there with pre-existing sea water. Buoyancy-driven convection of brine dominated local flow for most of basin history, with regional advection governed by topographically related forces dominant only for the past 5 to 10 Ma. 71 refs., 11 figs.

Bein, A.; Dutton, A.R. (Univ. of Texas, Austin (United States))

1993-06-01T23:59:59.000Z

51

Consolidation and permeability of salt in brine  

SciTech Connect

The consolidation and loss of permeability of salt crystal aggregates, important in assessing the effects of water in salt repositories, has been studied as a function of several variables. The kinetic behavior was similar to that often observed in sintering and suggested the following expression for the time dependence of the void fraction: phi(t) = phi(0) - (A/B)ln(1 + Bt/z(0)/sup 3/), where A and B are rate constants and z(0) is initial average particle size. With brine present, A and phi(0) varied linearly with stress. The initial void fraction was also dependent to some extent on the particle size distribution. The rate of consolidation was most rapid in brine and least rapid in the presence of only air as the fluid. A brine containing 5 m MgCl/sub 2/ showed an intermediate rate, presumably because of the greatly reduced solubility of NaCl. A substantial wall effect was indicated by an observed increase in the void fraction of consolidated columns with distance from the top where the stress was applied and by a dependence of consolidation rate on the column height and radius. The distance through which the stress fell by a factor of phi was estimated to change inversely as the fourth power of the column diameter. With increasing temperature (to 85/sup 0/C), consolidation proceeded somewhat more rapidly and the wall effect was reduced. The permeability of the columns dropped rapidly with consolidation, decreasing with about the sixth power of the void fraction. In general, extrapolation of the results to repository conditions confirms the self-sealing properties of bedded salt as a storage medium for radioactive waste.

Shor, A.J.; Baes, C.F. Jr.; Canonico, C.M.

1981-07-01T23:59:59.000Z

52

Waste Disposal | Department of Energy  

Office of Environmental Management (EM)

Disposal Waste Disposal Trucks transport debris from Oak Ridges cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility....

53

slc_disposal.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal Disposal Site This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I disposal site at Salt Lake City, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Salt Lake City, Utah, Disposal Site ENERGY Office of Legacy Management U.S. DEPARTMENT OF Site Description and History Regulatory Setting The Salt Lake Disposal Site is located approximately 81 miles west of Salt Lake City and 2.5 miles south of Interstate 80 on the eastern edge of the Great Salt Lake Desert. The disposal cell is adjacent to Energy Solutions, Inc., a commercial low-level radioactive materials disposal site. The surrounding area is sparsely populated, and the nearest residences are at least 15 miles from the site. Vegetation in the area is sparse and typical of semiarid low shrubland. The disposal cell encapsulates about

54

Waste Disposal (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

55

Origin and geochemical evolution of the Michigan basin brine  

SciTech Connect

Chemical and isotopic data were collected on 126 oil field brine samples and were used to investigate the origin and geochemical evolution of water in 8 geologic formations in the Michigan basin. Two groups of brine are found in the basin, the Na-Ca-Cl brine in the upper Devonian formations, and Ca-Na-Cl brine from the lower Devonian and Silurian aged formations. Water in the upper Devonian Berea, Traverse, and Dundee formations originated from seawater concentrated into halite facies. This brine evolved by halite precipitation, dolomitization, aluminosilicate reactions, and the removal of SO{sub 4} by bacterial action or by CaSO{sub 4} precipitation. The stable isotopic composition (D, O) is thought to represent dilution of evapo-concentrated seawater by meteoric water. Water in the lower Devonian Richfield, Detroit River Group, and Niagara-Salina formations is very saline Ca-Na-Cl brine. Cl/Br suggest it originated from seawater concentrated through the halite and into the MgSO{sub 4} salt facies, with an origin linked to the Silurian and Devonian salt deposits. Dolomitization and halite precipitation increased the Ca/Na, aluminosilicate reactions removed K, and bacterial action or CaSO{sub 4} precipitation removed SO{sub 4} from this brine. Water chemistry in the Ordovician Trenton-Black River formations indicates dilution of evapo-concentrated seawater by fresh or seawater. Possible saline end-members include Ordovician seawater, present-day upper Devonian brine, or Ca-Cl brine from the deeper areas in the basin.

Wilson, T.P.

1989-01-01T23:59:59.000Z

56

Summary Results for Brine Migration Modeling Performed by LANL LBNL and SNL for the UFD Program  

SciTech Connect

This report summarizes laboratory and field observations and numerical modeling related to coupled processes involving brine and vapor migration in geologic salt, focusing on recent developments and studies conducted at Sandia, Los Alamos, and Berkeley National Laboratories. Interest into the disposal of heat-generating waste in salt has led to interest into water distribution and migration in both run-of-mine crushed and intact geologic salt. Ideally a fully coupled thermal-hydraulic-mechanical-chemical simulation is performed using numerical models with validated constitutive models and parameters. When mechanical coupling is not available, mechanical effects are prescribed in hydraulic models as source, boundary, or initial conditions. This report presents material associated with developing appropriate initial conditions for a non-mechanical hydrologic simulation of brine migration in salt. Due to the strong coupling between the mechanical and hydrologic problems, the initial saturation will be low for the excavation disturbed zone surrounding the excavation. Although most of the material in this report is not new, the author hopes it is presented in a format making it useful to other salt researchers.

Kuhlman, Kristopher L.

2014-09-01T23:59:59.000Z

57

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

58

Public Invited to Comment on Draft Environmental Assessment for Replacement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Invited to Comment on Draft Environmental Assessment for Public Invited to Comment on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at the U.S. Department of Energy's Idaho Site Public Invited to Comment on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at the U.S. Department of Energy's Idaho Site September 1, 2011 - 12:00pm Addthis Media Contact Tim Jackson 208-526-8484 The U.S. Department of Energy invites the public to read and comment on a draft environmental assessment it has prepared, for a proposal to provide a replacement capability for continued disposal of remote-handled low-level radioactive waste that is generated at the Idaho National Laboratory site.

59

Disposal Information - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Disposal of Radioactive Waste at Hanford The Hanford Site operates lined, RCRA Subtitle C land...

60

Disposal of boiler ash  

SciTech Connect

As more boilers are converted from oil to solid fuels such as coal, the quantity of ash requiring disposal will increase dramatically. The factors associated with the development of land disposal systems for ash landfills are presented, including ash characterization, site selection procedures, design parameters, and costs.

Atwell, J.S.

1981-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CX-010401: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Replace Brine Disposal System Header to West Hackberry Brine Tanks CX(s) Applied: B1.3 Date: 04222013 Location(s): Louisiana Offices(s): Strategic...

62

CX-010712: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Replace West Hackberry Brine Disposal System Header from MOV-51's to WHT-1415 Brine Tanks with HDPE Pipe CX(s) Applied: B5.2 Date: 07032013 Location(s): Louisiana Offices(s):...

63

CX-011223: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

equipment, and supervision required to replace the existing Bryan Mound brine disposal pumps, BMP- 115 and BMP-116 with two new pumps (supplied as Government Furnished Equipment)....

64

Microsoft Word - BM-MM-1152 NEPA.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

equipment, and supervision required to replace the existing Bryan Mound brine disposal pumps, BMP- 115 and BMP-116 with two new pumps (supplied as Government Furnished Equipment)....

65

Effect of explicit representation of detailed stratigraphy on brine and gas flow at the Waste Isolation Pilot Plant  

SciTech Connect

Stratigraphic units of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) disposal room horizon includes various layers of halite, polyhalitic halite, argillaceous halite, clay, and anhydrite. Current models, including those used in the WIPP Performance Assessment calculations, employ a ``composite stratigraphy`` approach in modeling. This study was initiated to evaluate the impact that an explicit representation of detailed stratigraphy around the repository may have on fluid flow compared to the simplified ``composite stratigraphy`` models currently employed. Sensitivity of model results to intrinsic permeability anisotropy, interbed fracturing, two-phase characteristic curves, and gas-generation rates were studied. The results of this study indicate that explicit representation of the stratigraphy maintains higher pressures and does not allow as much fluid to leave the disposal room as compared to the ``composite stratigraphy`` approach. However, the differences are relatively small. Gas migration distances are also different between the two approaches. However, for the two cases in which explicit layering results were considerably different than the composite model (anisotropic and vapor-limited), the gas-migration distances for both models were negligible. For the cases in which gas migration distances were considerable, van Genuchten/Parker and interbed fracture, the differences between the two models were fairly insignificant. Overall, this study suggests that explicit representation of the stratigraphy in the WIPP PA models is not required for the parameter variations modeled if ``global quantities`` (e.g., disposal room pressures, net brine and gas flux into and out of disposal rooms) are the only concern.

Christian-Frear, T.L.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.

1996-04-01T23:59:59.000Z

66

Strontium isotopic study of subsurface brines from Illinois basin  

SciTech Connect

The abundance of the radiogenic isotope /sup 87/Sr in a subsurface brine can be used as a tracer of brine origin, evolution, and diagenetic effects. The authors have determined the /sup 87/Sr//sup 86/Sr ratios of over 60 oil-field waters from the Illinois basin, where brine origin is perplexing because of the absence of any significant evaporite strata. Initially, they analyzed brines from 15 petroleum-producing sandstone and carbonate units; waters from Ordovician, Silurian, Devonian, and Mississippian strata have /sup 87/Sr//sup 86/Sr ratios in the range 0.7079-0.7108. All but those from the Ste. Genevieve Limestone (middle Mississippian) are more radiogenic in /sup 87/Sr//sup 86/Sr than seawater values for this interval of geologic time. The detrital source of the more radiogenic /sup 87/Sr may be the New Albany Shale group, considered to be a major petroleum source rock in the basin. The /sup 87/Sr//sup 86/Sr ratios of Ste. Genevieve brines apparently evolved without a contribution from fluid-shale interaction.

hetherington, E.A.; Stueber, A.M.; Pushkar, P.

1986-05-01T23:59:59.000Z

67

Brine Migration Experimental Studies for Salt Repositories | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Experiments were used to examine water content in Permian salt samples (Salado Formation) collected from the WIPP site. The profile of water release and movement is recognized as a function of temperature from 30 to 275 oC using classical gravimetric methods to measure weight loss as a result of heating. The amount of water released from heating the salt was found to be correlated with the salts accessory mineral content (clay, other secondary minerals lost up to 3 wt % while pure halite salt lost less than 0.5 wt % water). Water released from salt at lower temperature was reversible and is attributed to clay hydration and dehydration processes. The analysis

68

Brine Migration Experimental Studies for Salt Repositories | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Brine Migration Experimental Studies for Salt Repositories Experiments were used to examine water content in Permian salt samples (Salado Formation) collected from the WIPP site. The profile of water release and movement is recognized as a function of temperature from 30 to 275 oC using classical gravimetric methods to measure weight loss as a result of heating. The amount of water released from heating the salt was found to be correlated with the salts accessory mineral content (clay, other secondary minerals lost up to 3 wt % while pure halite salt lost less than 0.5 wt % water). Water released from salt at lower temperature was reversible and is attributed to clay hydration and dehydration processes. The analysis

69

Actinide (III) solubility in WIPP Brine: data summary and recommendations  

SciTech Connect

The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

2009-09-01T23:59:59.000Z

70

Cementation process for minerals recovery from Salton Sea geothermal brines  

SciTech Connect

The potential for minerals recovery from a 1000-MWe combined geothermal power and minerals recovery plant in the Salton Sea is examined. While the possible value of minerals recovered would substantially exceed the revenue from power production, information is insufficient to carry out a detailed economic analysis. The recovery of precious metals - silver, gold, and platinum - is the most important factor in determining the economics of a minerals recovery plant; however, the precious metals content of the brines is not certain. Such a power plant could recover 14 to 31% of the US demand for manganese and substantial amounts of zinc and lead. Previous work on minerals extraction from Salton Sea brines is also reviewed and a new process, based on a fluidized-bed cementation reaction with metallic iron, is proposed. This process would recover the precious metals, lead, and tin present in the brines.

Maimoni, A.

1982-01-26T23:59:59.000Z

71

Geothermal Brine Brings Low-Cost Power with Big Potential | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Brine Brings Low-Cost Power with Big Potential Geothermal Brine Brings Low-Cost Power with Big Potential January 3, 2014 - 9:05am Addthis John Fox, CEO of Electratherm,...

72

Municipal Sludge disposal economics  

Science Journals Connector (OSTI)

Municipal Sludge disposal economics ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ... Atmospheric emissions of elements on particles from the Parkway sewage-sludge incinerator ...

Jerry Jones; David Bomberger, Jr.; F Lewis; Joel Jacknow

1977-01-01T23:59:59.000Z

73

Radiation Source Replacement Workshop  

SciTech Connect

This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

2010-12-01T23:59:59.000Z

74

Hazardous Waste Disposal Sites (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

75

Design of a Large Explosive Ordnance Disposal Robot  

Science Journals Connector (OSTI)

The explosive ordnance disposal robot (EOD robot) can replace man to reconnoiter, remove and deal with explosives or other dangerous articles in the dangerous environment. We design a large EOD robot which is constituted by the vehicle body, the mechanical ... Keywords: EOD robot, vehicle body, mechanical hand, vision system

Boyu Wei; Junyao Gao; Jianguo Zhu; Kejie Li

2009-10-01T23:59:59.000Z

76

Uranium (VI) solubility in carbonate-free ERDA-6 brine  

SciTech Connect

When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.

Lucchini, Jean-francois [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

77

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

78

Separation and Fixation of Toxic Components in Salt Brines Using a Water-Based Process  

SciTech Connect

Efforts to implement new water quality standards, increase water reuse and reclamation, and minimize the cost of waste storage motivate the development of new processes for stabilizing wastewater residuals that minimize waste volume, water content and the long-term environmental risk from related by-products. This work explores the use of an aqueous-based emulsion process to create an epoxy/rubber matrix for separating and encapsulating waste components from salt laden, arsenic contaminated, amorphous iron hydrate sludges. Such sludges are generated from conventional water purification precipitation/adsorption processes, used to convert aqueous brine streams to semi-solid waste streams, such as ion exchange/membrane separation, and from other precipitative heavy metal removal operations. In this study, epoxy and polystyrene butadiene (PSB) rubber emulsions are mixed together and then combined with a surrogate sludge. The surrogate sludge consists of amorphous iron hydrate with 1 part arsenic fixed to the surface of the hydrate per 10 parts iron mixed with sodium nitrate and chloride salts and water. The resulting emulsion is cured and dried at 80 °C to remove water. Microstructure characterization by electron microscopy confirms that the epoxy/PSB matrix surrounds and encapsulates the arsenic laden amorphous iron hydrate phase while allowing the salt to migrate to internal and external surfaces of the sample. Salt extraction studies indicate that the porous nature of the resulting matrix promotes the separation and removal of as much as 90% of the original salt content in only one hour. Long term leaching studies based on the use of the infinite slab diffusion model reveal no evidence of iron migration or, by inference, arsenic migration, and demonstrate that the diffusion coefficients of the unextracted salt yield leachability indices within regulations for non-hazardous landfill disposal. Because salt is the most mobile species, it is inferred that arsenic leaches from the host material at an even slower rate, making the waste forms amenable to unregulated land disposal options. These results indicate that the environmentally-benign, water-based emulsion processing of epoxy/PSB polymeric hosts show great promise as a separation and fixation technology for treating brine streams from wastewater treatment facilities.

Franks, C.; Quach, A.; Birnie III, D.; Ela, W.; Saez, A.E.; Zelinski, B.; Smith, H.; Smith, G.

2004-01-01T23:59:59.000Z

79

Oil production enhancement through a standardized brine treatment. Final report  

SciTech Connect

In order to permit the environmentally safe discharge of brines produced from oil wells in Pennsylvania to the surface waters of the Commonwealth and to rapidly brings as many wells as possible into compliance with the law, the Pennsylvania Oil and Gas Association (POGAM) approached the Pennsylvania State University to develop a program designed to demonstrate that a treatment process to meet acceptable discharge conditions and effluent limitations can be standardized for all potential stripper wells brine discharge. After the initial studies, the first phase of this project was initiated. A bench-scale prototype model was developed for conducting experiments in laboratory conditions. The experiments pursued in the laboratory conditions were focused on the removal of ferrous iron from synthetically made brine. Iron was selected as the primary heavy metals for studying the efficiency of the treatment process. The results of a number of experiments in the lab were indicative of the capability of the proposed brine treatment process in the removal of iron. Concurrent with the laboratory experiments, a comprehensive and extensive kinetic study was initiated. This study was necessary to provide the required data base for process modeling. This study included the investigation of the critical pH as well as the rate and order of reactions of the studied elements: aluminum, lead, zinc, and copper. In the second phase of this project, a field-based prototype was developed to evaluate and demonstrate the treatment process effectiveness. These experiments were conducted under various conditions and included the testing on five brines from different locations with various dissolved constituents. The outcome of this research has been a software package, currently based on iron`s reactivity, to be used for design purposes. The developed computer program was refined as far as possible using the results from laboratory and field experiments.

Adewumi, A.; Watson, R.; Tian, S.; Safargar, S.; Heckman, S.; Drielinger, I.

1995-08-01T23:59:59.000Z

80

disposal_cell.cdr  

Office of Legacy Management (LM)

With the With the April 24, 1997, ceremonial ground-breaking for disposal facility construction, the Weldon Spring Site Remedial Action Project (WSSRAP) moved into the final stage of cleanup, treatment, and disposal of uranium- processing wastes. The cleanup of the former uranium- refining plant consisted of three primary operations: Demolition and removal of remaining concrete pads and foundations that supported the 44 structures and buildings on site Treatment of selected wastes Permanent encapsulation of treated and untreated waste in an onsite engineered disposal facility In September l993, a Record of Decision (ROD) was signed by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), with concurrence by the Missouri Department of Natural

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Safer Transportation and Disposal of Remote Handled Transuranic Waste - 12033  

SciTech Connect

Since disposal of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) began in 2007, the Department of Energy (DOE) has had difficulty meeting the plans and schedule for disposing this waste. PECOS Management Services, Inc. (PECOS) assessed the feasibility of proposed alternate RH-TRU mixed waste containerisation concepts that would enhance the transportation rate of RH-TRU waste to WIPP and increase the utilization of available WIPP space capacity for RH-TRU waste disposal by either replacing or augmenting current and proposed disposal methods. In addition engineering and operational analyses were conducted that addressed concerns regarding criticality, heat release, and worker exposure to radiation. The results of the analyses showed that the concept, development, and use of a concrete pipe based design for an RH-TRU waste shipping and disposal container could be potentially advantageous for disposing a substantial quantity of RHTRU waste at WIPP in the same manner as contact-handled RH waste. Additionally, this new disposal method would eliminate the hazard associated with repackaging this waste in other containers without the requirement for NRC approval for a new shipping container. (authors)

Rojas, Vicente; Timm, Christopher M.; Fox, Jerry V. [PECOS Management Services, Inc., Albuquerque, NM (United States)

2012-07-01T23:59:59.000Z

82

22 - Radioactive waste disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the disposal of radioactive wastes that arise from a great variety of sources, including the nuclear fuel cycle, beneficial uses of isotopes, and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. The spent fuel is accumulating, awaiting the development of a high-level waste repository. It is anticipated that a multi-barrier system involving packaging and geologic media will provide protection of the public over the centuries. The favored method of disposal is in a mined cavity deep underground. In some countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is done by casks and containers designed to withstand severe accidents. Low-level wastes come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2001-01-01T23:59:59.000Z

83

Radioactive waste disposal package  

DOE Patents (OSTI)

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

84

Waste disposal package  

DOE Patents (OSTI)

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

85

Nuclear Waste Disposal Plan Drafted  

Science Journals Connector (OSTI)

Nuclear Waste Disposal Plan Drafted ... Of all the issues haunting nuclear power plants, that of disposing of the radioactive wastes and spent nuclear fuel they generate has been the most vexing. ...

1984-01-09T23:59:59.000Z

86

2 INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 EXPERIMENTAL STUDY OF CRUDE/BRINE/ROCK INTERACTION AT  

E-Print Network (OSTI)

INTERACTION AT RESERVOIR CONDITIONS 2.1.1 Introduction In the previous section, the fluid/rock interactions in this section and expand the understanding of the interactions of the Spraberry reservoir rock, oil and brine, brine displacement and rock wettability using low permeability Spraberry cores. A schematic

Schechter, David S.

87

Characterization of a soil contaminated by oilfield brine  

SciTech Connect

Brine contamination of soil is a common environmental problem associated with the onshore production of oil and gas. A site of extensive contamination in Oklahoma has been characterized using conductimetry, direct potentiometry (pH- and chloride-selective electrodes), and atomic absorption spectrophotometry (for Na{sup +} and Ca{sup 2+}) to determine the extent of the contamination and the efficacy of various remediation technologies.

Al-Mutairi, K.; Harris, T. [Univ. of Tulsa, OH (United States)

1995-12-01T23:59:59.000Z

88

Reactor Pressure Vessel Head Packaging & Disposal  

SciTech Connect

Reactor Pressure Vessel (RPV) Head replacements have come to the forefront due to erosion/corrosion and wastage problems resulting from the susceptibility of the RPV Head alloy steel material to water/boric acid corrosion from reactor coolant leakage through the various RPV Head penetrations. A case in point is the recent Davis-Besse RPV Head project, where detailed inspections in early 2002 revealed significant wastage of head material adjacent to one of the Control Rod Drive Mechanism (CRDM) nozzles. In lieu of making ASME weld repairs to the damaged head, Davis-Besse made the decision to replace the RPV Head. The decision was made on the basis that the required weld repair would be too extensive and almost impractical. This paper presents the packaging, transport, and disposal considerations for the damaged Davis-Besse RPV Head. It addresses the requirements necessary to meet Davis Besse needs, as well as the regulatory criteria, for shipping and burial of the head. It focuses on the radiological characterization, shipping/disposal package design, site preparation and packaging, and the transportation and emergency response plans that were developed for the Davis-Besse RPV Head project.

Wheeler, D. M.; Posivak, E.; Freitag, A.; Geddes, B.

2003-02-26T23:59:59.000Z

89

Nanofiltration separation of polyvalent and monovalent anions in desalination brines  

Science Journals Connector (OSTI)

Abstract This work, as part of a global membrane process for the recovery of alkali and acids from reverse osmosis (RO) desalination brines, focuses on the nanofiltration (NF) separation of polyvalent and monovalent anions, more specifically sulfate and chloride. This pretreatment stage plays a key role in the whole recovery process. Working with model brines simulating the concentration of RO concentrates, 0.2–1.2 M chloride concentration and 0.1 M sulfate concentration, the experimental performance and modeling of the NF separation is reported. The study has been carried out with the NF270 (Dow Filmtec) membrane. The effect of operating pressure (500–2000 kPa), ionic strength (0.4–1.3 M) and chloride initial concentration (0.2–1.2 M) on the membrane separation capacity has been investigated. Finally, the Donnan Steric Pore Model (DSPM) together with experimentally determined parameters, effective pore radius (rp), thickness of the membrane effective layer (?) and effective membrane charge density (Xd), was proved accurate enough to satisfactorily describe the experimental results. In this work we provide for the first time the analysis of partitioning effects and transport mechanism in the NF separation of sulfate and chloride anions in concentrations that simulate those found in RO desalination brines.

A. Pérez-González; R. Ibáñez; P. Gómez; A.M. Urtiaga; I. Ortiz; J.A. Irabien

2015-01-01T23:59:59.000Z

90

Retail Replacement Lamps  

Energy.gov (U.S. Department of Energy (DOE))

Annual CALiPER testing of A19, G25, candelabra, night light, MR16/PAR16, PAR20, and PAR30 replacement lamps – purchased directly from store shelves – offers insights on performance trends from year to year. The report findings offer valuable insights for manufacturers and retailers alike.

91

Brine pH Modification Scale Control Technology. 2. A Review.pdf | Open  

Open Energy Info (EERE)

Brine pH Modification Scale Control Technology. 2. A Review.pdf Brine pH Modification Scale Control Technology. 2. A Review.pdf Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Brine pH Modification Scale Control Technology. 2. A Review.pdf Abstract A variety of processes has been deployed at geothermalfields to inhibit or control siliceous scale deposition. It has beenknown for decades that the kinetics of silicic acid polymerizationis retarded when the pH of an aqueous solution is decreased.Therefore, a potential method for controlling siliceous scalingfrom geothermal brine is treatment with acid. Early attempts tocontrol siliceous scaling in geothermal brine-handling equipmentby retarding polymerization led to the belief that the pHhad to be reduced to < 4. Acidifying brine was discourageddue to corrosion concerns.

92

Disposable Electrochemical Immunosensor Diagnosis Device Based...  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposable Electrochemical Immunosensor Diagnosis Device Based on Nanoparticle Probe and Immunochromatographic Strip. Disposable Electrochemical Immunosensor Diagnosis Device Based...

93

Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth's most saline  

E-Print Network (OSTI)

Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth's most saline lake for RSL formation, CaCl2 brines and chloride deposits in basins may provide clues to the origin of ancient,2,10­14 , the composition of the brine is unlike any other body of water in the world, as ,90% of the salt is CaCl2 1

Marchant, David R.

94

A cost-effective statistical screening method to detect oilfield brine contamination  

SciTech Connect

A statistical screening method has been developed using Tolerance Limits for barium (Ba{sup +2}) to identify contamination of a fresh-water aquifer by oilfield brines. The method requires an understanding of the local hydrochemistry of oilfield brines, inexpensive, Publicly available hydrochemical data, a single sample analysis from the suspect well and the application of a simple statistical procedure. While this method may not provide absolute evidence of oilfield brine contamination of a fresh-water aquifer, it does identify conditions where brine contamination is a strong probability over other possible sources of chlorides.

Alyanak, N.; Grace, J.T.; Campbell, M.D. [United Resources International, Houston, TX (United States)

1995-12-01T23:59:59.000Z

95

The development of appropriate brine electrolysers for disinfection of rural water supplies .  

E-Print Network (OSTI)

??A comparative study of electrolysers using different anodic materials for the electrolysis of brine (sodium chloride) for the production of sodium hypochlorite as a source… (more)

Siguba, Maxhobandile

2005-01-01T23:59:59.000Z

96

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

97

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

98

The incandescent disposal system  

SciTech Connect

The electrotechnology device being introduced to the low-level waste market is an Incandescent Disposal System (IDS) for volume reduction and vitrification. The process changes the composition of the waste material, usually long molecular chains, into simple molecules and elements. It renders the volume of low-level wastes to a manageable solid vitrified residue, carbon black, and a water discharge. The solid material, which has been vitrified if silica is introduced into the waste stream, is an ideal inert filler. The carbon black is non-leaching and is readily available for vitrification as it comes out of the IDS.

Smith, R.G.

1996-03-01T23:59:59.000Z

99

Converter waste disposal study  

SciTech Connect

The importance of waste management and disposal issues to the converting and print industries is demonstrated by the high response rate to a survey of US and Canadian converters and printers. The 30-item questionnaire measured the impact of reuse, recycling, source reduction, incineration, and landfilling on incoming raw-material packaging, process scrap, and waste inks, coatings, and adhesives. The results indicate that significant amounts of incoming packaging materials are reused in-house or through supplier take-back programs. However, there is very little reuse of excess raw materials and process scrap, suggesting the need for greater source reduction within these facilities as the regulatory climate becomes increasingly restrictive.

Schultz, R.B. (RBS Technologies, Inc., Skokie, IL (United States))

1993-07-01T23:59:59.000Z

100

Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions  

SciTech Connect

Halite crystals were selected from a 186m subsurface core taken from the Badwater salt pan, Death Valley, California to ascertain if halophilic Archaea and their associated 16S rDNA can survive over several tens of thousands of years. Using a combined microscope microdrill/micropipette system, fluids from brine inclusions were aseptically extracted from primary, hopper texture, halite crystals from 8 and 85 metres below the surface (mbls). U-Th disequilibrium dating indicates that these halite layers were deposited at 9600 and 97000 years before present (ybp) respectively.

Mormile, Melanie R.; Biesen, Michelle A.; Gutierrez, M. Carmen; Ventosa, Antonio; Pavlovich, Justin B.; Onstott, T C.; Fredrickson, Jim K.

2003-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Reverse osmosis process successfully converts oil field brine into freshwater  

SciTech Connect

A state-of-the-art process in the San Ardo oil field converted produced brine into freshwater. The conversion process used chemical clarification, softening, filtration, and reverse osmosis (RO). After extensive testing resolved RO membrane fouling problems, the pilot plant successfully handled water with about 7,000 mg/l. of total dissolved solids, 250 mg/l. silica, and 170 mg/l. soluble oil. The treated water complies with the stringent California drinking water standard. The paper describes water reclamation, the San Ardo process, stability, reverse osmosis membrane fouling, membranes at high pH, water quality, and costs.

Tao, F.T.; Curtice, S.; Hobbs, R.D.; Sides, J.L.; Wieser, J.D. (Texaco Inc., Bellaire, TX (United States)); Dyke, C.A.; Tuohey, D. (Texaco Inc., Beacon, NY (United States)); Pilger, P.F. (Texaco E and P Inc., Denver, CO (United States))

1993-09-20T23:59:59.000Z

102

Testosterone-Replacement Therapy  

Science Journals Connector (OSTI)

...took a quiz on a commercial website. On the basis of his answers to the questions on the quiz — he answered "yes" to questions about decreased energy, decreased ability to play sports, and decreased sexual pleasure and erectile function — the site suggested that he talk to his doctor. Martin adds... Testosterone-replacement therapy for aging men is controversial and is being debated amid heightened concern about associated cardiovascular risks. This Clinical Decisions article features expert opinions from both sides of the debate. Vote and comment at NEJM.org.

2014-11-20T23:59:59.000Z

103

Cadmium plating replacements  

SciTech Connect

The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

Nelson, M.J.; Groshart, E.C.

1995-03-01T23:59:59.000Z

104

Geochemistry of Salado Formation brines recovered from the Waste Isolation Pilot Plant (WIPP) repository  

SciTech Connect

Intergranular brines recovered from the repository horizon of the Waste Isolation Pilot Plant (WIPP) have major- and trace-element compositions that reflect seawater evaporation and diagenetic processes. Brines obtained from repository drill holes are heterogenous with respect to composition, but their compositional fields are distinct from those obtained from fluid inclusions in WIPP halite. The heterogeneity of brine compositions within the drill-hole population indicates a lack of mixing and fluid homogenization within the salt at the repository level. Compositional differences between intergranular (drill hole) and intragranular (fluid inclusions) brines is attributed to isolation of the latter from diagenetic fluids that were produced from dehydration reactions involving gypsum and clay minerals. Modeling of brine-rock equilibria indicates that equilibration with evaporite minerals controls the concentrations of major elements in the brine. Drill-hole brines are in equilibrium with the observed repository minerals halite, anhydrite, magnesite, polyhalite and quartz. The equilibrium model supports the derivation of drill-hole brines from near-field fluid, rather than large-scale vertical migration of fluids from the overlying Rustler or underlying Castile Formations. 13 refs., 6 figs., 6 tabs.

Abitz, R.; Myers, J.; Drez, P.; Deal, D.

1990-01-01T23:59:59.000Z

105

Dynamics and storage of brine in mid-ocean ridge hydrothermal systems  

E-Print Network (OSTI)

Dynamics and storage of brine in mid-ocean ridge hydrothermal systems Fabrice J. Fontaine1 substantially different from seawater as a result of phase separation and segregation of the resulting vapor below seawater for over a decade, which raises important questions concerning the fate of brines

Wilcock, William

106

NEW MARINE DECAPOD CRUSTACEANS FROM WATERS INFLUENCED BY HYDROmERMAL DISCHARGE, BRINE, AND HYDROCARBON SEEPAGE  

E-Print Network (OSTI)

and waters influenced by brine and hydrocarbon seeps continue to yield species new to science. Such enNEW MARINE DECAPOD CRUSTACEANS FROM WATERS INFLUENCED BY HYDROmERMAL DISCHARGE, BRINE, AND HYDROCARBON SEEPAGE AUSTIN B. WILLIAMS} ABSTRACT Five species of decapod crustaceans new to science

107

RIS-M-2260 HEAT GRADIENT INDUCED MIGRATION OF BRINE INCLUSIONS IN ROCK SALT  

E-Print Network (OSTI)

;#12;- 5 - 1. INTRODUCTION The storage of heat producing radioactive waste in rock salt, will produce of the brine migration under influence of the decreasing heat production in the waste. A general expressionRISÃ?-M-2260 HEAT GRADIENT INDUCED MIGRATION OF BRINE INCLUSIONS IN ROCK SALT Mathematical treatment

108

Replace / Renewal BUDGET ZZ106  

E-Print Network (OSTI)

Replace / Renewal BUDGET ZZ106 FUND: 126 CERTIFIED FOOD MANAGER CERTIFICATE RENEWAL Certificate Replacement Reason for Application: Replacement $15.00 Certificate Renewal Reason for Application: [Renewal application may be submitted up to 60 days prior to expiration.] Renewal - $10.00 Please Note: All

109

Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations  

E-Print Network (OSTI)

brine in the wellbore up to the base of the freshwater aquifer and would thereby lead to contamination.

Birkholzer, J.T.

2012-01-01T23:59:59.000Z

110

Origin of the oil-field brines in the Paris basin  

SciTech Connect

From Br{sup {minus}}/Cl{sup {minus}} ratios coupled with stable-isotope compositions, the components of deep sedimentary brines - namely, primary and secondary brines (from dissolving evaporites) and diluting waters of meteoric origin - can be identified, and in favorable cases, their respective proportions can be quantified. Dilution of primary marine brines (mother liquors of halite) by meteoric waters has occurred in the Dogger and the Keuper aquifers. The presence of highly saline brines (molality of Cl{sup {minus}} = 3.9) in the Rhaetian aquifer may be due to dissolution of primary marine halite by sea water with minor contributions of primary brines. The resulting mixture is diluted by meteoric circulation.

Matray, J.M. (Service Geochimie Minerale, Pau (France)); Fontes, J.C. (Universite de Paris-Sud, Orsay (France))

1990-06-01T23:59:59.000Z

111

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

18 18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest level of safety in waste handling and trans- portation. Coordination with sites Disposal operations require coordination with sites that will ship transuranic waste to the WIPP and include periodic certification of waste characterization and handling practices at those facilities. During the WIPP's

112

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 3 T he journey to the WIPP began nearly 60 years before the first barrels of transuranic waste arrived at the repository. The United States produced the world's first sig- nificant quantities of transuranic material during the Manhattan Project of World War II in the early 1940s. The government idled its plutonium- producing reactors and warhead manu- facturing plants at the end of the Cold War and scheduled most of them for dismantlement. However, the DOE will generate more transuranic waste as it cleans up these former nuclear weapons facilities. The WIPP is a cor- nerstone of the effort to clean up these facilities by providing a safe repository to isolate transuranic waste in disposal rooms mined out of ancient salt beds, located 2,150 feet below ground. The need for the WIPP

113

In cooperation with Fort Peck Tribes Office of Environmental Protection Delineation of Brine Contamination in and near the  

E-Print Network (OSTI)

;#12;Delineation of Brine Contamination in and near the East Poplar Oil Field, Fort Peck Indian Reservation citation: Thamke, J.N., and Smith, B.D., 2014, Delineation of brine contamination in and near the EastIn cooperation with Fort Peck Tribes Office of Environmental Protection Delineation of Brine

Torgersen, Christian

114

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network (OSTI)

Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

Sheridan, Jennifer

115

Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3  

SciTech Connect

Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

2013-07-29T23:59:59.000Z

116

Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2010-10-01T23:59:59.000Z

117

The brine underlying the Oak Ridge Reservation, Tennessee, USA: Characterization, genesis, and environmental implications  

SciTech Connect

The deep hydrogeologic system underlying the Oak Ridge Atomic Reservation contains brine. Its origin was assessed using existing and newly acquired chemical and isotopic data. The proposed model which best fits the data is modification of residual brine from which halite has been precipitated. Potential sources for this brine are in the Appalachian Mountains in the east, where bedded halite is documented, and where the hydraulic gradient needed to move the residual brine exists. Other models, such as ultrafiltration and halite dissolution, were also evaluated. In places, contaminants such as radionuclides, heavy metals, nitrates, and organic compounds have reached the deep system. The chemical and isotopic features of the brine were examined with respect to its potential discharge, contaminated in places, into shallow, freshwater systems. The observations suggest that whereas the origin of the salts in the brine may be very old, influx of recent water takes place. Consequently, the brine is not isolated (in terms of recharge and discharge) from the overlying active and fresh-water-bearing units. 78 refs., 8 figs., 1 tab.

Nativ, R. [Hebrew Univ. of Jerusalem, Rehovot (Israel)] [Hebrew Univ. of Jerusalem, Rehovot (Israel)

1996-03-01T23:59:59.000Z

118

Brine inclusions in halite and the origin of the Middle Devonian Prairie evaporites of Western Canada  

SciTech Connect

Brines were extracted from fluid inclusions in Lower Salt halite of the Middle Devonian Prairie Formation in Saskatchewan, Canada. The brines were analyzed by ion chromatography and were found to be of the Na-K-Mg-Ca-Cl type. They do not fall along a simple evaporation trend. Brines from clear, diagenetic halite are significantly lower in Na{sup +} and higher in Mg{sup 2+}, and Cl{sup {minus}} than brines from cloudy, subaqueously formed halite with chevron structures. The isotopic composition of strontium and sulfur in anhydrite associated with the halites was found to be the same as that of Middle Devonian seawater. The composition of the inclusion brines can be derived from that of modern seawater by evaporation, extensive dolomitization of limestone, and albitization of clay minerals. Other evolution paths are, however, also feasible, and it is impossible to rule out effects due to the addition of nonmarine waters (hydrothermal solutions, surface runoff, and groundwater), or dissolutional recycling of existing evaporites within the Prairie evaporite basin. These analyses and published data on brine inclusions in halite from a number of Phanerozoid evaporite deposits show that the Na-K-Mg-Ca-Cl type brine is more common than the Na-K-Mg-Cl-SO{sub 4} type, which is expected from evaporation of modern seawater.

Horita, J. [Oak Ridge National Lab., TN (United States). Chemical and Analytical Sciences Div.; Weinberg, A.; Das, N.; Holland, H.D. [Harvard Univ., Cambridge, MA (United States). Dept. of Earth and Planetary Sciences

1996-09-01T23:59:59.000Z

119

Experience with minerals recovery from geothermal and other brines  

SciTech Connect

The commercial extraction of minerals from geothermal fluids is not a novelty, although there appear to be no current commercial activities. Products which have been commercially recovered from geothermal fluids include NaC1, CaC1/sub 2/, H/sub 3/BO/sub 3/, and NH/sub 3/. Sites of significant commercial activity include Larderello, Italy and the Imperial Valley in California. Furthermore, a few pilot-plant systems have been tested for this purpose. Commercial recovery from natural non-geothermal brines has a long history, which may have implications for geothermal energy applications. The technical feasibility and economic benefits of large-scale minerals production in conjunction with geothermal energy exploitation remain speculative. In any case, the uncertainties can be resolved only on a site- and product-specific basis.

Crane, C.H.

1982-10-01T23:59:59.000Z

120

A comparison of ichthyofaunal communities at two potential brine disposal areas in the Northwestern Gulf of Mexico  

E-Print Network (OSTI)

cruises 28 Mean weight (g) of fishes per trawl tow at West Hack- berry and Weeks Island stations during 1978-1979 sea- sonal cruises 29 Mean Shannon-Wiener values per trawl tow at West Hack- berry and Weeks Island stations during 1978-1979 sea- sonal... 28 Table 3 Mean number (n) of individuals per trawl tow at West Hack- cruises. Season West Hackberry All 2 6 8 10 14 Stations Summer Pall Winter Spring All Seasons 291. 0 684. 3 396. 0 2607. 0 242. 0 844. 1 186 3 534. 7 473. 7 219. 0 494...

Beene, Edward Lloyd

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Recommendation 212: Evaluate additional storage and disposal...  

Office of Environmental Management (EM)

212: Evaluate additional storage and disposal options Recommendation 212: Evaluate additional storage and disposal options The ORSSAB encourages DOE to evaluate additional storage...

122

Transmittal Memo for Disposal Authorization Statement | Department...  

Office of Environmental Management (EM)

Disposal Facility Federal Review Group (LFRG) has conducted a review of the Savannah River Site (SRS) Saltstone Disposal Facility (SDF) 2009 performance assessment (PA) in...

123

ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: PROPERTY DISPOSAL RECORDS (Revision 2) ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS (Revision 2) These records pertain to the sales by agencies of real and...

124

PROPERTY DISPOSAL RECORDS | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROPERTY DISPOSAL RECORDS PROPERTY DISPOSAL RECORDS These records pertain to the sales by agencies of real and personal property surplus to the needs of the Government PROPERTY...

125

Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect

As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

Danny Anderson

2014-07-01T23:59:59.000Z

126

Optimization of Waste Disposal - 13338  

SciTech Connect

From 2009 through 2011, remediation of areas of a former fuel cycle facility used for government contract work was conducted. Remediation efforts were focused on building demolition, underground pipeline removal, contaminated soil removal and removal of contaminated sediments from portions of an on-site stream. Prior to conducting the remediation field effort, planning and preparation for remediation (including strategic planning for waste characterization and disposal) was conducted during the design phase. During the remediation field effort, waste characterization and disposal practices were continuously reviewed and refined to optimize waste disposal practices. This paper discusses strategic planning for waste characterization and disposal that was employed in the design phase, and continuously reviewed and refined to optimize efficiency. (authors)

Shephard, E.; Walter, N.; Downey, H. [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States)] [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States); Collopy, P. [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States)] [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States); Conant, J. [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)] [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)

2013-07-01T23:59:59.000Z

127

Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance  

SciTech Connect

Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 contains an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.

Not Available

1993-08-01T23:59:59.000Z

128

Efficacy of Ultraviolet Light and Antimicrobials to Reduce Listeria monocytogenes in Chill Brines.  

E-Print Network (OSTI)

??Chill brines used in ready-to-eat meat processing may be an important source of post-processing contamination by Listeria monocytogenes. The purpose of this study was to… (more)

Parikh, Priti P.

2007-01-01T23:59:59.000Z

129

Remediation of brine-contaminated soil using calcium nitrate, gypsum, and straw.  

E-Print Network (OSTI)

??Salt-affected soils from point source brine contamination are common in the active oil field in SE Saskatchewan. A remediation process that included dewatering by sub-surface… (more)

Nielsen, Jennifer I.

2013-01-01T23:59:59.000Z

130

Hybrid electrodialysis reverse osmosis system design and its optimization for treatment of highly saline brines  

E-Print Network (OSTI)

The demand is rising for desalination technologies to treat highly saline brines arising from hydraulic fracturing processes and inland desalination. Interest is growing in the use of electrical desalination technologies ...

McGovern, Ronan Killian

131

E-Print Network 3.0 - acartia tonsa brine Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

for: acartia tonsa brine Page: << < 1 2 3 4 5 > >> 1 Vol. 114: 203-208,1994 MARINE ECOLOGY PROGRESS SERIES Summary: . divergens attacking it. Ingestion rates of P, cf....

132

Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations  

SciTech Connect

Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

David B. Burnett; Mustafa Siddiqui

2006-12-29T23:59:59.000Z

133

Proper use of sodium bisulfite with minimal salt penetration during brine immersion freezing of shrimp  

E-Print Network (OSTI)

PROPER USE OF SODIUM BISULFITE WITH MINIMAL SALT PENETRATION DURING BRINE IMMERSION FREEZING OF SHRIMP A Thesis by SUZANNE RENE BROUSSARD Submitted to the Graduate College of Texas ASM University in partial fulfillment of the reguirement... for the degree of MASTER OF SCIENCE MAY 1988 OC o Z m Z IJ III s Z Major Subject: Food Science and Technology PROPER USE OF SODIUM BISULFITE WITH MINIMAL SALT PENETRATION DURING BRINE IMMERSION FREEZING OF SHRIMP A Thesis by SUZANNE RENE...

Broussard, Suzanne Rene

2012-06-07T23:59:59.000Z

134

The effects of an ambient salinity gradient on the dilution of dense brine jets  

E-Print Network (OSTI)

THE EFFECTS OF AN AMBIENT SALINITY GRADIENT ON THE DILUTION OF DENSE BRINE JETS A Thesis by GARY WAYNE MCCULLOUGH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1986 Major Subject: Ocean Engineering THE EFFECTS OF AN AMBIENT SALINITY GRADIENT ON THE DILUTION OF DENSE BRINE JETS A Thesis by GARY NAYNE MCCULLOUGH Approved as to style and content by: Robert E. Randall (Chair of Committee...

McCullough, Gary Wayne

2012-06-07T23:59:59.000Z

135

New Energy Efficient Method for Cleaning Oilfield Brines with Carbon Dioxide  

E-Print Network (OSTI)

NEW ENERGY EFFICIENT METHOD FOR CLEANING OILFIELD BRINES WITH CARBON DIOXIDE C. T. LITTLE A. F. SEIBERT Research Engineer Technical Manager Amoco Oil Company Separations Research Program Naperville, Illinois The University of Texas Austin... dioxide to clean oilfield brines. The new treatment method, described in this work, is actually an enhancement of existing gas flotation technology. The enhancement results from the use of carbon dioxide as the sweeping gas combined with its ability...

Little, C. T.; Seibert, A. F.; Bravo, J. L.; Fair, J. R.

136

Recovery of energy from geothermal brine and other hot water sources  

DOE Patents (OSTI)

Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

Wahl, III, Edward F. (Claremont, CA); Boucher, Frederic B. (San Juan Capistrano, CA)

1981-01-01T23:59:59.000Z

137

Numerical simulations of lab-scale brine-water mixing experiments.  

SciTech Connect

Laboratory-scale experiments simulating the injection of fresh water into brine in a Strategic Petroleum Reserve (SPR) cavern were performed at Sandia National Laboratories for various conditions of injection rate and small and large injection tube diameters. The computational fluid dynamic (CFD) code FLUENT was used to simulate these experiments to evaluate the predictive capability of FLUENT for brine-water mixing in an SPR cavern. The data-model comparisons show that FLUENT simulations predict the mixing plume depth reasonably well. Predictions of the near-wall brine concentrations compare very well with the experimental data. The simulated time for the mixing plume to reach the vessel wall was underpredicted for the small injection tubes but reasonable for the large injection tubes. The difference in the time to reach the wall is probably due to the three-dimensional nature of the mixing plume as it spreads out at the air-brine or oil-brine interface. The depth of the mixing plume as it spreads out along the interface was within a factor of 2 of the experimental data. The FLUENT simulation results predict the plume mixing accurately, especially the water concentration when the mixing plume reaches the wall. This parameter value is the most significant feature of the mixing process because it will determine the amount of enhanced leaching at the oil-brine interface.

Khalil, Imane; Webb, Stephen Walter

2006-10-01T23:59:59.000Z

138

Chemical analyses of geothermal waters and Strategic Petroleum Reserve brines for metals of economic importance  

SciTech Connect

Waters from seven hydrothermal-geothermal, one geopressured-geothermal, and six Strategic Petroleum Reserve wells have been surveyed for 12 metals of economic importance using trace chemical analysis techniques. The elements sought were Cr, Co, Mn, Ta, Sn, V, Nb, Li, Sr, Pt, Au and Ag. Platinum was found at a concentration of approx. 50 ppb in a brine from the Salton Sea geothermal area. Brine from this region, as has been known from previous studies, is also rich in Li, Sr and Mn. Higher concentrations (approx. 900 ppm) of Sr are found in the high-salinity geopressured brines. None of the fluids contained interesting concentrations of the other metals. Good recovery of precious metals at sub-ppm concentrations from synthetic high salinity brines was achieved using Amborane reductive resin, but similar recovery in the laboratory using real brines could not be demonstrated. Several analytical techniques were compared in sensitivity for the determination of the precious metals; neutron activation analysis with carrier separation is the best for gold and platinum in geothermal brines. 26 references, 7 tables.

Harrar, J.E.; Raber, E.

1984-01-01T23:59:59.000Z

139

Brine Sampling and Evaluation Program 1992--1993 report and summary of BSEP data since 1982  

SciTech Connect

This report is the last one that is currently scheduled in the sequence of reports of new data, and therefore, also includes summary comments referencing important data obtained by BSEP since 1983. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the (WIPP) Waste Isolation Pilot Plant. A project concern is that enough brine might be present after sealing and closure to generate large quantities of hydrogen gas by corroding the metal in the waste drums and waste inventory. This report describes progress made during the calendar years 1992 and 1993 and focuses on four major areas: (1) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes from the underground drifts; (2) observations of weeps in the Air Intake Shaft (AIS); (3) further characterization of brine geochemistry; and (4) additional characterization of the hydrologic conditions in the fractured zone beneath the excavations.

Deal, D.E.; Abitz, R.J. [I. T. Corp., Carlsbad, NM (United States); Belski, D.S. [USDOE Albuquerque Operations Office, Carlsbad, NM (United States). Waste Isolation Pilot Plant Project Office

1995-04-01T23:59:59.000Z

140

Tank Waste Disposal Program redefinition  

SciTech Connect

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Chapter 22 - Radioactive Waste Disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses safe disposal of radioactive waste in order to provide safety to workers and the public. Radioactive wastes arise from a great variety of sources, including the nuclear fuel cycle, and from beneficial uses of isotopes and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. In the United States spent fuel is accumulating, awaiting the development of a high-level waste repository. A multi-barrier system involving packaging and geological media will provide protection of the public over the centuries the waste must be isolated. The favored method of disposal is in a mined cavity deep underground. In other countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is by casks and containers designed to withstand severe accidents. Low-level wastes (LLWs) come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Establishment of regional disposal sites by interstate compacts has generally been unsuccessful in the United States. Decontamination of defense sites will be long and costly. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2009-01-01T23:59:59.000Z

142

Brine clarity maintenance in salinity-gradient solar ponds  

Science Journals Connector (OSTI)

Brine transparency is an important part of the maintenance of a salinity-gradient solar pond as it affects the amount of solar radiation reaching the storage zone and hence has an influence on the thermal performance. There is a wide range of factors that can hinder the transmission of light in a solar pond. Algal and microbial growths are the most common problems encountered in working solar ponds and control of their densities is essential to maintain transparency. Two different chemical treatment methods for algae growth prevention are described in this paper: chlorine and a novel chemical product – copper ethylamine complex. The latter method has never been implemented previously in a working pond. This paper discusses the theory of the algae control methods used and presents the experimental results of the chemical treatments. The results showed that Cupricide is more effective than chlorine and is therefore the recommended chemical for algae control in solar ponds; it improves the water transparency especially in the upper convective zone and lower convective zone with all measurement values less than 1 NTU. Chlorine was found to be more corrosive than Cupricide due to the acidic effect it has on the pH. The preliminary cost analysis showed that granular chlorine is the cheapest chemical. A more detailed financial analysis is nevertheless required to refine these costs.

Neus Gasulla; Yusli Yaakob; Jimmy Leblanc; Aliakbar Akbarzadeh; Jose Luis Cortina

2011-01-01T23:59:59.000Z

143

NACS Voice Mail Replacement Project  

E-Print Network (OSTI)

NACS Voice Mail Replacement Project Presented to the TPAG Monday, November 13, 2006 #12 criteria Integration with email is a key factor Taking a second look at Cisco & AVST Cost of Interactive

Brody, James P.

144

Virent is Replacing Crude Oil  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Virent is Replacing Crude Oil Randy Cortright, Founder & Chief Technology Officer, Virent

145

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 RADIOACTIVE WASTE DISPOSAL  

E-Print Network (OSTI)

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 CHAPTER 7 RADIOACTIVE WASTE DISPOSAL PAGE I. Radioactive Waste Disposal ............................................................................................ 7-2 II. Radiation Control Technique #2 Instructions for Preparation of Radioactive Waste

Slatton, Clint

146

Disposable telemetry cable deployment system  

DOE Patents (OSTI)

A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

Holcomb, David Joseph (Sandia Park, NM)

2000-01-01T23:59:59.000Z

147

Interim radiological safety standards and evaluation procedures for subseabed high-level waste disposal  

SciTech Connect

The Seabed Disposal Project (SDP) was evaluating the technical feasibility of high-level nuclear waste disposal in deep ocean sediments. Working standards were needed for risk assessments, evaluation of alternative designs, sensitivity studies, and conceptual design guidelines. This report completes a three part program to develop radiological standards for the feasibility phase of the SDP. The characteristics of subseabed disposal and how they affect the selection of standards are discussed. General radiological protection standards are reviewed, along with some new methods, and a systematic approach to developing standards is presented. The selected interim radiological standards for the SDP and the reasons for their selection are given. These standards have no legal or regulatory status and will be replaced or modified by regulatory agencies if subseabed disposal is implemented. 56 refs., 29 figs., 15 tabs.

Klett, R.D.

1997-06-01T23:59:59.000Z

148

Summary Results for Brine Migration Modeling Performed by LANL, LBNL and SNL for the Used Fuel Disposition Program  

Energy.gov (U.S. Department of Energy (DOE))

The report summarizes laboratory and field observations and numerical modeling related to coupledprocesses involving brine and vapor migration in geologic salt, focusing on recent developments and...

149

Electrochemical Apparatus with Disposable and Modifiable Parts  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts Electrochemical Apparatus with Disposable and Modifiable Parts The invention also includes electrochemical apparatus that can interface with optical instrumentation. If the working electrode is transparent, light from an optical fiber may be directed through the working electrode and into a cuvette. July 3, 2013 Electrochemical Apparatus with Disposable and Modifiable Parts Available for thumbnail of Feynman Center (505) 665-9090 Email Electrochemical Apparatus with Disposable and Modifiable Parts Applications: Electrochemical experiments in solution Electrochemical experiments on surfaces Bulk electrolysis experiments Fuel cells Corrosion studies Academic Labs Teaching and research Benefits: Incorporates disposable, commercially available cuvettes

150

Optimizing High Level Waste Disposal  

SciTech Connect

If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being evaluated at Idaho National Laboratory and the facilities we’ve designed to evaluate options and support optimization.

Dirk Gombert

2005-09-01T23:59:59.000Z

151

Disposal Practices at the Nevada Test Site 2008 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Practices at the Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download Disposal Practices at...

152

New Facility Will Test Disposal Cell Cover Renovation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Ecosystem Management Team New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal...

153

The depth of the oil/brine interface and crude oil leaks in SPR caverns  

SciTech Connect

Monitoring wellhead pressure evolution is the best method of detecting crude oil leaks in SPR caverns while oil/brine interface depth measurements provide additional insight. However, to fully utilize the information provided by these interface depth measurements, a thorough understanding of how the interface movement corresponds to cavern phenomena, such as salt creep, crude oil leakage, and temperature equilibration, as well as to wellhead pressure, is required. The time evolution of the oil/brine interface depth is a function of several opposing factors. Cavern closure due to salt creep and crude oil leakage, if present, move the interface upward. Brine removal and temperature equilibration of the oil/brine system move the interface downward. Therefore, the relative magnitudes of these factors determine the net direction of interface movement. Using a mass balance on the cavern fluids, coupled with a simplified salt creep model for closure in SPR caverns, the movement of the oil/brine interface has been predicted for varying cavern configurations, including both right-cylindrical and carrot-shaped caverns. Three different cavern depths and operating pressures have been investigated. In addition, the caverns were investigated at four different points in time, allowing for varying extents of temperature equilibration. Time dependent interface depth changes of a few inches to a few feet were found to be characteristic of the range of cases studied. 5 refs, 19 figs., 1 tab.

Heffelfinger, G.S.

1991-06-01T23:59:59.000Z

154

Evaporative Evolution of Carbonate-Rich Brines from Synthetic Topopah Spring Tuff Pore Water, Yucca Mountain  

SciTech Connect

The evaporation of a range of synthetic pore water solutions representative of the potential high-level-nuclear-waste repository at Yucca Mountain, NV is being investigated. The motivation of this work is to understand and predict the range of brine compositions that may contact the waste containers from evaporation of pore waters, because these brines could form corrosive thin films on the containers and impact their long-term integrity. A relatively complex synthetic Topopah Spring Tuff pore water was progressively concentrated by evaporation in a closed vessel, heated to 95 C in a series of sequential experiments. Periodic samples of the evaporating solution were taken to determine the evolving water chemistry. According to chemical divide theory at 25 C and 95 C our starting solution should evolve towards a high pH carbonate brine. Results at 95 C show that this solution evolves towards a complex brine that contains about 99 mol% Na{sup +} for the cations, and 71 mol% Cl{sup -}, 18 mol% {Sigma}CO{sub 2}(aq), 9 mol%SO{sub 4}{sup 2-} for the anions. Initial modeling of the evaporating solution indicates precipitation of aragonite, halite, silica, sulfate and fluoride phases. The experiments have been used to benchmark the use of the EQ3/6 geochemical code in predicting the evolution of carbonate-rich brines during evaporation.

Sutton, M; Alai, M; Carroll, S A

2004-04-14T23:59:59.000Z

155

Developing a process for commercial silica production from Salton Sea brines  

SciTech Connect

The goal of this joint LLNL-CalEnergy project is to develop a method for precipitating marketable silica from spent Salton Sea Geothermal Field (SSGF) brines. Many markets for silica exist. We have initially targeted production of silica as a rubber additive. Silica reinforced rubber gives tires less rolling resistance, greater tear strength, and better adhesion to steel belts. Previous silica precipitates produced by CalEnergy from Salton Sea brines were not suitable as rubber additives. They did not to disperse well in the rubber precursors and produced inferior rubber. CalEnergy currently minimizes silica scaling in some of their production facilities by acidifying the brine pH. The rate of silica precipitation slows down as the pH is lowered, so that energy extraction and brine reinfection are possible without unacceptable amounts of scaling even with more than 700 ppm SiO{sub 2} in solution. We are adding a step in which a small amount of base is added to the acidified brine to precipitate silica before reinfection. By carefully controlling the type, rate, and amount of base addition, we can optimize the properties of the precipitate to approach those of an ideal rubber additive.

Bourcier, W; McCutcheon, M; Leif, R; Bruton, C

2000-09-25T23:59:59.000Z

156

Enzyme replacement therapy for Pompe disease  

E-Print Network (OSTI)

Transport of Active Enzymes to Lysosomes. Molecular therapyOF CALIFORNIA, SAN DIEGO Enzyme Replacement Therapy forDisease……………………………… 3 1.3 Enzyme Replacement Therapy for

Burris, Ryan Jonathan William

2010-01-01T23:59:59.000Z

157

Spent Fuel Disposal Trust Fund (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

Any licensee operating a nuclear power plant in this State shall establish a segregated Spent Nuclear Fuel Disposal Trust Fund in accordance with this subchapter for the eventual disposal of spent...

158

Deep Borehole Disposal Research: Demonstration Site Selection...  

Office of Environmental Management (EM)

Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal...

159

Generic Argillite/Shale Disposal Reference Case  

E-Print Network (OSTI)

of eastern Devonian gas shale: Society of PetroleumShale Disposal Reference Case August 2014 Borehole activity: Oil and gas

Zheng, Liange

2014-01-01T23:59:59.000Z

160

Pore-Level Modeling of Carbon Dioxide Sequestration in Brine Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

Pore-Level Modeling of Carbon Dioxide Sequestration in Brine Fields Pore-Level Modeling of Carbon Dioxide Sequestration in Brine Fields M. Ferer, (mferer@wvu.edu) Department of Physics, West Virginia University, Morgantown, WV 26506-6315, Grant S. Bromhal, (bromhal@netl.doe.gov) US DOE, National Energy Technology Laboratory, Morgantown, WV 26507-0880; and Duane H. Smith, (dsmith@netl.doe.gov) US DOE, National Energy Technology Laboratory, Morgantown, WV 26507-0880 & Department of Physics, West Virginia University. Underground injection of gas is a common practice in the oil and gas industry. Injection into deep, brine-saturated formations is a commercially proven method of sequestering CO 2 . However, it has long been known that displacement of a connate fluid by a less viscous fluid produces unstable displacement fronts with significant fingering. This fingering allows only a

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Environmental waste disposal contracts awarded  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental contracts awarded locally Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste clean-up contracts. April 3, 2012 Worker moves drums of transuranic (TRU) waste at a staging area A worker stages drums of transuranic waste at Los Alamos National Laboratory's Technical Area 54. the Lap ships such drums to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) in Southern New Mexico. The Lab annually averages about 120 shipments of TRU waste to WIPP. Contact Small Business Office (505) 667-4419 Email "They will be valuable partners in the Lab's ability to dispose of the waste safely and efficiently." Small businesses selected for environmental work at LANL

162

Turbine-generator replacement study  

SciTech Connect

This paper describes an engineering study for the replacement of a nominal 70 Mw turbine-generator in a multi-unit utility cogeneration station. The existing plant is briefly described, alternatives considered are discussed, and the conclusions reached are presented. Key topics are the turbine steam cycle evaluation and the turbine pedestal analysis.

Miller, E.F.; Stuhrke, S.P., Shah, A.A. (Burns and Roe Enterprises, Inc., Oradell, NJ (USA))

1988-01-01T23:59:59.000Z

163

Stanford University Mercury Thermometer Replacement  

E-Print Network (OSTI)

Stanford University Mercury Thermometer Replacement Program Instructions for Reuniting Separated Fluid Column of Non-Mercury Thermometer Heating Method Heat the thermometers bulb in an upright position of the thermometer. Note that over filling the expansion chamber will break the thermometer. Tap the thermometer

164

Risk assessment of nonhazardous oil-field waste disposal in salt caverns.  

SciTech Connect

Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could, from technical and legal perspectives, be suitable for disposing of oil-field wastes. On the basis of these findings, ANL subsequently conducted a preliminary risk assessment on the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in salt caverns. The methodology for the risk assessment included the following steps: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing contaminant toxicities; estimating contaminant intakes; and estimating human cancer and noncancer risks. To estimate exposure routes and pathways, four postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (for noncancer health effects) estimates that were well within the EPA target range for acceptable exposure risk levels. These results lead to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

Elcock, D.

1998-03-10T23:59:59.000Z

165

Validation of classical density-dependent solute transport theory for stable, high-concentration-gradient brine displacements in  

E-Print Network (OSTI)

-concentration-gradient brine displacements in coarse and medium sands S.J. Watson a,1 , D.A. Barry a,1 , R.J. Schotting b,*, S.M. Hassanizadeh b a School of Civil and Environmental Engineering, Contaminated Land Assessment and Remediation by a brine solution, under either constant head or constant volume flux conditions. The experimental data

Hassanizadeh, S. Majid

166

Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations  

SciTech Connect

Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.

Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.

2011-05-01T23:59:59.000Z

167

Formation of Thetis Deep metal-rich sediments in the absence of brines, Red Sea M.C. Pierret a  

E-Print Network (OSTI)

Formation of Thetis Deep metal-rich sediments in the absence of brines, Red Sea M.C. Pierret a , N October 2009 Available online 23 October 2009 Keywords: Pb­Sr­Nd isotopes REE Metal-rich sediments-rich sediments covered by brine pools. It is generally agreed that these metal-rich deposits precipitated from

Demouchy, Sylvie

168

Environmental Engineering: Energy Value of Replacing Waste Disposal with Resource Recovery  

Science Journals Connector (OSTI)

...microfiltered reclaimed wastewater with ultraviolet...other contaminants in wastewater (28, 30, 44...colors of glass during recycling, so that efforts...other contaminants in wastewater (28, 30, 44...colors of glass during recycling, so that efforts...

R. Iranpour; M. Stenstrom; G. Tchobanoglous; D. Miller; J. Wright; M. Vossoughi

1999-07-30T23:59:59.000Z

169

Environmental Engineering: Energy Value of Replacing Waste Disposal with Resource Recovery  

Science Journals Connector (OSTI)

...such as UV disinfection. Geothermal Pyrolysis: An Opportunistic...petroleum-like materials by geothermal pyrolysis is an opportunistic...long-exploited fact that heating organic materials with little...be a less demanding use of geothermal energy than previous efforts...

R. Iranpour; M. Stenstrom; G. Tchobanoglous; D. Miller; J. Wright; M. Vossoughi

1999-07-30T23:59:59.000Z

170

Cluster-based find and replace  

Science Journals Connector (OSTI)

In current text editors, the find & replace command offers only two options: replace one match at a time prompting for confirmation, or replace all matches at once without any confirmation. Both approaches are prone to errors. This paper explores a third ... Keywords: clustering, error prevention, find & replace, text editing

Robert C. Miller; Alisa M. Marshall

2004-04-01T23:59:59.000Z

171

Buying Vs. Raising Replacement Heifers  

E-Print Network (OSTI)

. As in other businesses, when supplies are down and demand is steady, prices tend to rise. When cattle prices are high, producers begin to rebuild their herds by retaining ?high value? heifers or by purchasing replacements. The thinking is that with high... cattle prices, it is time to get into beef production or to increase cur- rent cow inventories. After the rebuilding phase occurs, supplies increase and prices drop. This is the beginning of the herd liquidation phase of the cattle cycle. Another...

Cleere, Jason

2006-01-02T23:59:59.000Z

172

DOE SPENT NUCLEAR FUEL DISPOSAL CONTAINER  

SciTech Connect

The DOE Spent Nuclear Fuel Disposal Container (SNF DC) supports the confinement and isolation of waste within the Engineered Barrier System of the Mined Geologic Disposal System (MGDS). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the access mains, and emplaced in emplacement drifts. The DOE Spent Nuclear Fuel Disposal Container provides long term confinement of DOE SNF waste, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The DOE SNF Disposal Containers provide containment of waste for a designated period of time, and limit radionuclide release thereafter. The disposal containers maintain the waste in a designated configuration, withstand maximum handling and rockfall loads, limit the individual waste canister temperatures after emplacement. The disposal containers also limit the introduction of moderator into the disposal container during the criticality control period, resist corrosion in the expected repository environment, and provide complete or limited containment of waste in the event of an accident. Multiple disposal container designs may be needed to accommodate the expected range of DOE Spent Nuclear Fuel. The disposal container will include outer and inner barrier walls and outer and inner barrier lids. Exterior labels will identify the disposal container and contents. Differing metal barriers will support the design philosophy of defense in depth. The use of materials with different failure mechanisms prevents a single mode failure from breaching the waste package. The corrosion-resistant inner barrier and inner barrier lid will be constructed of a high-nickel alloy and the corrosion-allowance outer barrier and outer barrier lid will be made of carbon steel. The DOE Spent Nuclear Fuel Disposal Containers interface with the emplacement drift environment by transferring heat from the waste to the external environment and by protecting the DOE waste canisters and their contents from damage/degradation by the external environment. The disposal containers also interface with the SNF by limiting access of moderator and oxidizing agents to the waste. The disposal containers interface with the Ex-Container System's emplacement drift disposal container supports. The disposal containers interface with the Canister Transfer System, Waste Emplacement System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and remediation of the disposal container.

F. Habashi

1998-06-26T23:59:59.000Z

173

NUMERICAL INVESTIGATION OF TEMPERATURE EFFECTS DURING THE INJECTION OF CARBON DIOXIDE INTO BRINE  

E-Print Network (OSTI)

NUMERICAL INVESTIGATION OF TEMPERATURE EFFECTS DURING THE INJECTION OF CARBON DIOXIDE INTO BRINE for the simulation of carbon dioxide injection into geological formations is currently an intensive field of research for the balance of thermal energy, we can investigate numerically the effects of temperature variations during

Cirpka, Olaf Arie

174

Sulfate Removal from Reject Brined in Inland Desalination with Zero Liquid Discharge  

E-Print Network (OSTI)

Sulfate is one of the most problematic ions present in reject brine in desalination systems due to its high potential of scale formation and membrane fouling; making it an obstacle in the application of zero liquid discharge. The ultra-high lime...

Almasri, Dema A

2013-07-03T23:59:59.000Z

175

Author's personal copy Fossil brines preserved in the St-Lawrence Lowlands,  

E-Print Network (OSTI)

halite disso- lution. 87 Sr/86 Sr ratios and Ca excess indicate prolonged interactions with silicate degassing, are identical to their production ratios in rocks. The source of salinity (halite dissolution during Devonian­Silurian time. Brines might result from infiltration of Devonian water leaching halite

Long, Bernard

176

Accurate Thermodynamic Model for the Calculation of H2S Solubility in Pure Water and Brines  

E-Print Network (OSTI)

Accurate Thermodynamic Model for the Calculation of H2S Solubility in Pure Water and Brines Zhenhao, 2007 A thermodynamic model calculating the solubility of hydrogen sulfide (H2S) in pure water phase. With this specific interaction approach, this model is able to predict H2S solubility in other

Zhu, Chen

177

Brine Assemblages of Ultrasmall Microbial Cells within the Ice Cover of Lake Vida, Antarctica  

Science Journals Connector (OSTI)

...Antarctica, is one of the largest lakes in the McMurdo...the abundance of the larger cells, consists of...vol) (30). After drilling, brine infiltrated the borehole until it reached a...107 cells ml1, while larger cells (0.2 to 1...

Emanuele Kuhn; Andrew S. Ichimura; Vivian Peng; Christian H. Fritsen; Gareth Trubl; Peter T. Doran; Alison E. Murray

2014-04-11T23:59:59.000Z

178

Analysis of hydrocarbon removal methods for the management of oilfield brines and produced waters  

E-Print Network (OSTI)

and globally, the petroleum industries challenge has been to develop a high-tech and cost effective method to purify the large volumes of oilfield brines and produced water. Currently, most of the produced water requires several pre- and post- treatment methods...

Furrow, Brendan Eugene

2005-11-01T23:59:59.000Z

179

River Protection Project (RPP) Immobilized Low Activity Waste (ILAW) Disposal Plan  

SciTech Connect

This document replaces HNF-1517, Rev 2 which is deleted. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract change and associated DOE/ORP guidance. In addition it incorporates the cancellation of Project W-465, Grout Facility, and the associated modifications to Project W-520, Immobilized High-Level Waste Disposal Facility. It also includes document format changes and section number modifications consistent with CH2M HILL Hanford Group, Inc. procedures.

BRIGGS, M.G.

2000-09-22T23:59:59.000Z

180

Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1  

SciTech Connect

The National Risk Assessment Partnership (NRAP) consists of 5 U.S DOE national laboratories collaborating to develop a framework for predicting the risks associated with carbon sequestration. The approach taken by NRAP is to divide the system into components, including injection target reservoirs, wellbores, natural pathways including faults and fractures, groundwater and the atmosphere. Next, develop a detailed, physics and chemistry-based model of each component. Using the results of the detailed models, develop efficient, simplified models, termed reduced order models (ROM) for each component. Finally, integrate the component ROMs into a system model that calculates risk profiles for the site. This report details the development of the Groundwater Geochemistry ROM for the Edwards Aquifer at PNNL. The Groundwater Geochemistry ROM for the Edwards Aquifer uses a Wellbore Leakage ROM developed at LANL as input. The detailed model, using the STOMP simulator, covers a 5x8 km area of the Edwards Aquifer near San Antonio, Texas. The model includes heterogeneous hydraulic properties, and equilibrium, kinetic and sorption reactions between groundwater, leaked CO2 gas, brine, and the aquifer carbonate and clay minerals. Latin Hypercube sampling was used to generate 1024 samples of input parameters. For each of these input samples, the STOMP simulator was used to predict the flux of CO2 to the atmosphere, and the volume, length and width of the aquifer where pH was less than the MCL standard, and TDS, arsenic, cadmium and lead exceeded MCL standards. In order to decouple the Wellbore Leakage ROM from the Groundwater Geochemistry ROM, the response surface was transformed to replace Wellbore Leakage ROM input parameters with instantaneous and cumulative CO2 and brine leakage rates. The most sensitive parameters proved to be the CO2 and brine leakage rates from the well, with equilibrium coefficients for calcite and dolomite, as well as the number of illite and kaolinite sorption sites proving to be of secondary importance. The Groundwater Geochemistry ROM was developed using nonlinear regression to fit the response surface with a quadratic polynomial. The goodness of fit was excellent for the CO2 flux to the atmosphere, and very good for predicting the volumes of groundwater exceeding the pH, TDS, As, Cd and Pb threshold values.

Bacon, Diana H.

2013-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Enhancements to Generic Disposal System Modeling Capabilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

disposal system modeling and analysis capability that takes advantage of high-performance computing (HPC) environments to simulate the important multi-physics phenomena and...

182

Environmental Restoration Disposal Facility - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Receiving and Processing Facility Waste Sampling and Characterization Facility Waste Treatment Plant Environmental Restoration Disposal Facility Email Email Page | Print Print...

183

Operational Issues at the Environmental Restoration Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Facility at Idaho National Laboratory Environmental Management Waste Management Facility (EMWMF) at Oak Ridge Briefing: Summary and Recommendations of EM Landfill Workshop...

184

Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect

The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

Lisa Harvego

2009-06-01T23:59:59.000Z

185

Phaser.MRage: automated molecular replacement  

Science Journals Connector (OSTI)

The functionality of the molecular-replacement pipeline phaser.MRage is introduced and illustrated with examples.

Bunk?czi, G.

2013-10-18T23:59:59.000Z

186

Computation of optimal policies in replacement models  

Science Journals Connector (OSTI)

......in a given replacement cycle, and let Zk be the value of...properties, and the replacement cycles are repeated indefini- tely...Optimal replacement times--a general set-up J. Appl. Prob. 23...Proportional hazards analysis of diesel engine failure data. Quality......

V. MAKIS; A. K. S. JARDINE

1991-01-01T23:59:59.000Z

187

Used Fuel Disposition Campaign Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Campaign Disposal Research and Development Roadmap Prepared for U.S. Department of Energy Used Fuel Disposition Campaign September 2012 FCR&D-USED-2011-000065 REV 1 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or

188

14 - Lubricant use and disposal  

Science Journals Connector (OSTI)

Abstract: Criteria are defined for optimum machine-specific selection of conventional, high-performance and specialty lubricants. Lubrication consolidation is indicated as a means of rationalisation of inventories. Intended use of lubricants may be compromised by oxidation, water and air contamination, additive depletion and accumulation of contaminants, including wear debris, and biological degradation. Strategic oil analysis is described from simple in-shop sensory inspections to primary on-site standard testing and more comprehensive secondary testing methods as an operational maintenance tool for machine and lubricant condition monitoring to estimate remaining lubricant life time and prevent premature machine failure. The disposal of spent lubricants, including waste oil legislation and management, and re-refining technologies, are discussed.

Jan C.J. Bart; Emanuele Gucciardi; Stefano Cavallaro

2013-01-01T23:59:59.000Z

189

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network (OSTI)

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency left intentionally blank.] #12;Prepared for the U.S. Department of Energy PNNL-SA-69994 under Contract DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL

190

Asset Management Equipment Disposal Form -Refrigerant Recovery  

E-Print Network (OSTI)

enters the waste stream with the charge intact (e.g., motor vehicle air conditioners, refrigeratorsAsset Management Equipment Disposal Form - Refrigerant Recovery Safe Disposal Requirements Under refrigeration, cold storage warehouse refrigeration, chillers, and industrial process refrigeration) has to have

Sin, Peter

191

Title II Disposal Sites Annual Report  

Energy.gov (U.S. Department of Energy (DOE))

This report presents the results of long-term surveillance and maintenance activities conducted by the DOE Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements.

192

Tritium waste disposal technology in the US  

SciTech Connect

Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references.

Albenesius, E.L.; Towler, O.A.

1983-01-01T23:59:59.000Z

193

Operation of a mineral-recovery unit on brine from the Salton Sea known geothermal resource area  

SciTech Connect

The Bureau of Mines operated a mineral recovery unit to recover metal values from post-flash geothermal brines from the Salton Sea known geothermal resource area as part of its research into the use of plentiful resources. The brine was available for metals recovery after its heat content had been used to generate electricity. The brine source was treated with lime to precipitate the contained iron, manganese, lead, and zinc before injection of the heat-depleted brine into the underground reservoir. Data are presented on the effects of process variables, such as rate and method of lime addition and air oxidation versus air exclusion. Variations in precipitation of metal values, composition of precipitates, effectiveness of slurry thickeners, and methods of treating the precipitates to recover metal values are discussed.

Schultze, L.E.; Bauer, D.J.

1982-01-01T23:59:59.000Z

194

The effect of stratigraphic dip on brine inflow and gas migration at the Waste Isolation Pilot Plant  

SciTech Connect

The natural dip of the Salado Formation at the Waste Isolation Pilot Plant (WIPP), although regionally only about 111, has the potential to affect brine inflow and gas-migration distances due to buoyancy forces. Current models, including those in WIPP Performance Assessment calculations, assume a perfectly horizontal repository and stratigraphy. With the addition of buoyancy forces due to the dip, brine and gas flow patterns can be affected. Brine inflow may increase due to countercurrent flow, and gas may preferentially migrate up dip. This scoping study has used analytical and numerical modeling to evaluate the impact of the dip on brine inflow and gas-migration distances at the WIPP in one, two, and three dimensions. Sensitivities to interbed permeabilities, two-phase curves, gas-generation rates, and interbed fracturing were studied.

Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Larson, K.W. [INTERA, Inc., Albuquerque, NM (United States)] [INTERA, Inc., Albuquerque, NM (United States)

1996-02-01T23:59:59.000Z

195

Land Management and Disposal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Management and Disposal Land Management and Disposal Land Management and Disposal Land Management and Disposal 42 USC 2201(g), Section 161(g), of the AEA 42 USC Section 2224, Section 174 DOE, July 2004, Real Property Desk Guide Requirements: Document Title P.L. 83-703 (68 Stat. 919), Section 161g Grants Special Authority as Required in the Act to Acquire, Sell, Dispose, etc., of Real Property in Furtherance of the Department's Mission (Under the Atomic Energy Act of 1954) P.L. 95-91, 91 Stat. 578 (Sections 302 and 347) Department of Energy Organizational Act of 1977, Delegated Authority for Real Property P.L. 106-580 Federal Property and Administrative Services Act of 1949, As Amended P.L. 105-85 Federal Property and Administrative Services Act of 1949, As Amended 10 CFR 770 Transfer of Real Property at Defense Nuclear Facilities for Economic Development

196

Corrosion of selected metals and a high-temperature thermoplastic in hypersaline geothermal brine. Report of investigations/1983  

SciTech Connect

The Bureau of Mines conducted corrosion research to determine suitable construction materials for geothermal resource recovery plants. Weight loss, pitting and crevice corrosion, U-bend stress corrosion, and electrochemical polarization measurements were made on selected metals in brine and steam process environments produced from high-enthalpy hypersaline brine from geothermal well Magmamax No. 1 at the Salton Sea Known Geothermal Resources Area, Imperial Valley, Calif.

Conrad, R.K.; Carter, J.P.; Cramer, S.D.

1983-09-01T23:59:59.000Z

197

Sorption of lithium from a geothermal brine by pelletized mixed aluminum-lithium hydrous oxides  

SciTech Connect

An inorganic ion exchanger was evaluated by the Bureau of Mines for recovering lithium from geothermal brines. The ion exchanger or sorbent was mixed hydrous oxide of aluminum and lithium that had been dried at 100 C. The dried precipitate was pelletized with a sodium silicate binder to improve flow rates in sorption tests. The sorbent was loaded to 2 mg Li/g of pellets and sorption from the solution was independent of the concentrations of Ca, Fe, Mn, and Zn. Manganese and zinc were sorbed by the pellets but did not suppress lithium sorption. Lithium was desorbed with water, but none of the washing solutions investigated removed entrained brine without stripping lithium. The complex nature of the sorption mechanisms is discussed.

Schultze, L.E.; Bauer, D.J.

1985-01-01T23:59:59.000Z

198

Scientific Considerations Related to Regulation Development for CO2 Sequestration in Brine Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

SCIENTIFIC CONSIDERATIONS RELATED TO REGULATION SCIENTIFIC CONSIDERATIONS RELATED TO REGULATION DEVELOPMENT FOR CO 2 SEQUESTRATION IN BRINE FORMATIONS Chin-Fu Tsang (cftsang@lbl.gov; (510) 486-5782) Sally M. Benson (smbenson@lbl.gov; (510) 486-7071) Earth Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory One Cyclotron Road, MS 90-1116, Berkeley, CA 94720 Bruce Kobelski (kobelski.bruce@epa.gov) Robert Smith (smith.robert-eu@epamail.epa.gov) U.S. Environmental Protection Agency Office of Drinking Water and Ground Water, Washington D.C. Introduction Reduction of atmospheric emissions of CO 2 (DOE, 1999a) through injection of CO 2 into in deep brine formations is being actively studied both in the U.S. and internationally. If this technology is to be employed broadly enough to make a significant impact on global

199

A model for the evolution of brines in salt from the lower Salado Formation, southeastern New Mexico  

SciTech Connect

Fluid inclusions were collected from a bedded salt horizon in the lower Permian Salado Formation in the Delaware Basin, southeastern New Mexico. The sampling horizon, at a depth of approximately 645 meters, consists primarily of recrystallized halite, with thin layers of anhydrite. Other trace minerals, dispersed throughout the salt, include quartz, polyhalite, gypsum, K-feldspar, magnesite, and clays. The chemistry of the inclusion fluids and the associated mineralogy suggest that these brines represent Permian seawater that has undergone evaporation and subsequent modification by diagenetic reactions, dominated by the alteration of calcium sulfate to polyhalite and magnesite formation. The range of fluid inclusion compositions suggests a significant departure from a simple seawater evaporation model. Other brines from the same horizon in the Salado Formation were sampled and analyzed for the same elements as the fluid inclusions, and differed significantly from them primarily by the depletion of Mg relative to K. The association of these brines with argillaceous and/or anhydritic halite containing a suite of authigenic minerals (quartz, magnesite, and Mg-rich clays) suggests that these are intergranular brines with compositions determined over a much longer time scale than that required by the fluid inclusions. The principal reactions affecting intergranular brine chemistry are dehydration of gypsum, dewatering of detrital clays, and uptake of Mg during clay diagenesis. Overall, the observed variation in brine compositions implies that, if large-scale hydrologic circulation is occurring in the Salado halite, the time scale is limited by the rate required for low-temperature silicate diagenesis.

Stein, C.L.; Krumhansl, J.L. (Sandia National Laboratories, Albuquerque, NM (USA))

1988-05-01T23:59:59.000Z

200

Hydrological and geochemical monitoring for a CO2 sequestration pilot in a brine formation  

SciTech Connect

Hydrological and geochemical monitoring are key components of site characterization and CO2 plume monitoring for a pilot test to inject CO2 into a brine-bearing sand of the fluvial-deltaic Frio formation in the upper Texas Gulf Coast. In situ, injected CO2 forms a supercritical phase that has gas-like properties (low density and viscosity) compared to the surrounding brine, while some CO2 dissolves in the brine. The pilot test employs one injection well and one monitor well, with continuous pressure and flow-rate monitoring in both wells, and continuous surface fluid sampling and periodic down-hole fluid sampling from the monitor well. Pre-injection site-characterization includes pump tests with pressure-transient analysis to estimate single-phase flow properties, establish hydraulic connectivity between the wells, determine appropriate boundary conditions, and analyze ambient phase conditions within the formation. Additionally, a pre-injection tracer test furnishes estimates of kinematic porosity and the geometry of flow paths between injection and monitor wells under single-phase conditions. Pre-injection geochemical sampling provides a baseline for subsequent geochemical monitoring and helps determine the optimal tracers to accompany CO2 injection. During CO2 injection, hydrological monitoring enables estimation of two-phase flow properties and helps track the movement of the injected CO2 plume, while geochemical sampling provides direct evidence of the arrival of CO2 and tracers at the monitor well. Furthermore, CO2-charged water acts as a weak acid, and reacts to some extent with the minerals in the aquifer, producing a distinct chemical signature in the water collected at the monitor well. Comparison of breakthrough curves for the single-phase tracer test and the CO2 (and its accompanying tracers) illuminates two-phase flow processes between the supercritical CO2 and native brine, an area of current uncertainty that must be better understood to effectively sequester CO2 in saline aquifers.

Doughty, Christine; Pruess, Karsten; Benson, Sally M.; Freifeld, Barry M.; Gunter, William D.

2004-05-17T23:59:59.000Z

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Salt Brine Blending to Optimize Deicing and Anti-icing Performance and Cost  

E-Print Network (OSTI)

Chloride (MgCl2) w/additives ·Envirotech Serv., Scotwood Ind., NA Salt ·Calcium Chloride (CaCl2) ·Tiger 135% 90% 115% Thawrox Gold Treated MgCl2 150% 120% 115% Ice Slicer CaCl2 130% 95% 70% Ice Bite @ 3 gal to Salt Brine Material Base @ 12 F @20 F @ 28 F Calcium Chloride CaCl2 160% 185% 135% RGP-8 CaCl2 170% 80

Minnesota, University of

202

Biochemical solubilization of toxic salts from residual geothermal brines and waste waters  

DOE Patents (OSTI)

A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed. The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts. For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates. 54 figs.

Premuzic, E.T.; Lin, M.S.

1994-11-22T23:59:59.000Z

203

Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site  

SciTech Connect

The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE`s Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS.

Price, L. [Science Applications International Corp., Albuquerque, NM (United States)

1994-09-01T23:59:59.000Z

204

A Comparative Review of Hydrologic Issues Involved in Geologic Storage of CO2 and Injection Disposal of Liquid Waste  

SciTech Connect

The paper presents a comparison of hydrologic issues and technical approaches used in deep-well injection and disposal of liquid wastes, and those issues and approaches associated with injection and storage of CO{sub 2} in deep brine formations. These comparisons have been discussed in nine areas: (1) Injection well integrity; (2) Abandoned well problems; (3) Buoyancy effects; (4) Multiphase flow effects; (5) Heterogeneity and flow channeling; (6) Multilayer isolation effects; (7) Caprock effectiveness and hydrogeomechanics; (8) Site characterization and monitoring; and (9) Effects of CO{sub 2} storage on groundwater resources There are considerable similarities, as well as significant differences. Scientifically and technically, these two fields can learn much from each other. The discussions presented in this paper should help to focus on the key scientific issues facing deep injection of fluids. A substantial but by no means exhaustive reference list has been provided for further studies into the subject.

Tsang, C.-F.; Birkholzer, J.; Rutqvist, J.

2008-04-15T23:59:59.000Z

205

Low-Level Waste Disposal Facility Federal Review Group Manual...  

Office of Environmental Management (EM)

Low-Level Waste Disposal Facility Federal Review Group Manual Low-Level Waste Disposal Facility Federal Review Group Manual This Revision 3 of the Low-Level Waste Disposal Facility...

206

Evidence for ground-water circulation in the brine-filled aquitard, Oak Ridge, Tennessee  

SciTech Connect

Various geologic, hydrologic, and geochemical methods were used to assess active ground-water circulation in a brine-filled, deep (> 50 m below land surface) aquitard underlying the Oak Ridge Reservation, Tennessee. In places, the brine which was presumed to be stagnant in the past, contains various contaminants. If ground-water circulation is viable in the brine-containing formations, then remediation or containment of the deep-seated contaminants should be considered a high priority. Data used to determine this included (1) spatial and temporal pressures and hydraulic heads measured in the aquitard, (2) hydraulic parameters of the formations in question, (3) vertical temperature gradients, and (4) spatial and temporal chemical and isotopic composition of the saline ground water. Conclusions suggest that the saline water contained at depth is not isolated (in terms of recharge and discharge) from the overlying active and fresh-water-(< 500 mg/l) bearing units. Consequently, influx of young water (and contamination) from land surface does occur. Potential discharge into the shallow aquifers was assumed where the hydraulic head of the saline water was higher than that in the shallow aquifers, accounting for temperature and salinity anomalies observed close to land surface. The confined water (and dissolved solutes) move along open conduits at relatively high velocity into adjacent, more permeable units.

Nativ, R. [Hebrew Univ. of Jerusalem (Israel). Dept. of Soil and Water Sciences; Halleran, A.; Hunley, A. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

1997-07-01T23:59:59.000Z

207

Recovering lithium chloride from a geothermal brine. Report of investigations/1984  

SciTech Connect

The Bureau of Mines has devised techniques to recover lithium from geothermal brines as the chloride. More than 99 pct of the lithium was precipitated from a brine containing 170 mg/L Li by adding a solution of A1C13 and increasing the pH to 7.5 with lime slurry. The Li-Al precipitate was dissolved in HCl and sparged with gaseous HC1 to recover the A1C13; this resulted in a solution containing LiCl and CaC12. The solution was evaporated at 100C to obtain a mixture of the chlorides from which 97 pct of the lithium was recovered and 90 pct of the calcium was rejected by leaching with tetrahydrofuran. The LiC1 recovered by evaporation of the tetrahydrofuran was purified by dissolution in water and treatment with oxalic acid. The final LiC1 solution contained 89 pct of the lithium originally present in the brine and had a purity of 99.9 pct.

Schultze, L.E.; Bauer, D.J.

1984-01-01T23:59:59.000Z

208

Replacing an Oversized and Underloaded Electric Motor | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Replacing an Oversized and Underloaded Electric Motor Replacing an Oversized and Underloaded Electric Motor This fact sheet will assist in decisions regarding replacement of...

209

Microsoft Word - Appendix C_DisposalCellContents.doc  

Office of Legacy Management (LM)

and entombed in soil. Total occupied volume is below 50 cy. Use 50 cy. 50.00 Brine tanks from SWTP Mixed with soil. Est. conversion factor is 0.430. 25.80 Contaminated Jersey...

210

International Collaboration Activities in Different Geologic Disposal Environments  

Energy.gov (U.S. Department of Energy (DOE))

This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign.  To date, UFD’s International Disposal R...

211

Used Fuel Disposition Campaign Disposal Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of...

212

A novel nanoparticle-based disposable electrochemical immunosensor...  

NLE Websites -- All DOE Office Websites (Extended Search)

nanoparticle-based disposable electrochemical immunosensor for diagnosis of exposure to toxic organophosphorus agents. A novel nanoparticle-based disposable electrochemical...

213

Changes in Vegetation at the Monticello, Utah, Disposal Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monticello, Utah, Disposal Cell Cover Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the...

214

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This...

215

Evaporative evolution of Martian brines based on halogens in nakhlites and MER samples  

SciTech Connect

Comparison of Cl and Br from Nakhla viens to MER samples suggests two kinds of brine solutions existed on Mars, one early and one late in the evaporation sequence. These solutions precipitated the secondary salts at the Meridiani and Gusev sites. We have recently reported the Cl and Br abundances determined by APS X-ray Microprobe and EMPA analyses of secondary aqueous minerals in Nakhla veins and discussed the significance of Cl-Br correlations with respect to the evolution of brine solutions on Mars. In that study, we suggested that the low Br concentration ({approx}10 ppm) in Lafayette Iddingsite is indicative of early stage of evaporation during progressive evolution of Martian brine solutions, which is, in turn, consistent with the petrographic evidence of early deposition of salt sequence of carbonate-sulfate- and no halite in Lafayette. We showed that the high Br concentrations of {approx}240 ppm in secondary salts in Nakhla veins similarly indicate late stages of evaporation in evolving Martian brine solutions which is again consistent with petrographic evidence of late stage deposition of salt sequence i.e. carbonate-sulfate-halite in Nakhla. When sea water evaporates under equilibrium conditions, the most insoluble carbonates (siderite and calcite) deposit first, followed by sulfates (gypsum and anhydrite) and finally the water-soluble halides are precipitated when the water content is sufficiently low. In the present study, we make a detailed comparison of Cl/Br ratios in secondary minerals in nakhlites with those in MER soils and rocks at Gusev and Meridiani and show that the compositions of solutions that inundated Lafayette iddingsite (early stage) and Nakhla veins (late stage) include the range of solution-compositions that gave rise to a variety of secondary salts at Gusev and Meridiani sites. Further, the results obtained here suggest that two kinds of brine solutions (one, late and the other, early or intermediate stage) seem to have inundated most of the rocks and soils to varying degrees and precipitated the secondary salts at Meridiani and Gusev sites.

Rao, M.N.; Sutton, S.R.; McKay, D.S. (Lockheed); (UC); (NASA)

2005-02-04T23:59:59.000Z

216

Replacing Fluorescent Lightbulbs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Replacing Fluorescent Lightbulbs Replacing Fluorescent Lightbulbs Replacing Fluorescent Lightbulbs July 29, 2012 - 6:37pm Addthis Although fluorescent lightbulbs are generally energy efficient, you can replace them with new, even more efficient bulbs that use better electrodes and coatings than older ones. | Photo courtesy of ©iStockphoto.com/JoLin. Although fluorescent lightbulbs are generally energy efficient, you can replace them with new, even more efficient bulbs that use better electrodes and coatings than older ones. | Photo courtesy of ©iStockphoto.com/JoLin. What does this mean for me? Today's fluorescent light fixtures and bulbs are far more efficient than older ones. You can replace fluorescent bulbs and ballasts with more efficient ones to save money and energy. All fluorescent bulbs contain a very small amount of mercury:

217

Radiological assessment of BWR recirculatory pipe replacement  

SciTech Connect

Replacement of primary recirculating coolant pipe in BWRs is a major effort that has been carried out at a number of nuclear generating stations. This report reviews the planned or actual pipe replacement projects at six sites: Nine Mile Point-1, Monticello, Cooper, Peach Bottom-2, Vermont Yankee, and Browns Ferry-1. It covers the radiological issues of the pipe replacement, measures taken to reduce doses to ALARA, estimated and actual occupational doses, and lessons learned during the various replacements. The basis for the decisions to replace the pipes, the methods used for preparation and decontamination, the removal of old pipe, and the installation of the new pipe are briefly described. Methods for reducing occupational radiation dose during pipe repairs/replacements are recommended. 32 refs., 12 figs., 17 tabs.

Parkhurst, M.A.; Hadlock, D.E.; Harty, R.; Pappin, J.L.

1986-02-01T23:59:59.000Z

218

Salt Disposal Investigations to Study Thermally Hot Radioactive Waste In A Deep Geologic Repository in Bedded Rock Salt - 12488  

SciTech Connect

A research program is proposed to investigate the behavior of salt when subjected to thermal loads like those that would be present in a high-level waste repository. This research would build upon results of decades of previous salt repository program efforts in the US and Germany and the successful licensing and operation of a repository in salt for disposal of defense transuranic waste. The proposal includes a combination of laboratory-scale investigations, numerical simulations conducted to develop validated models that could be used for future repository design and safety case development, and a thermal field test in an underground salt formation with a configuration that replicates a small portion of a conceptual repository design. Laboratory tests are proposed to measure salt and brine properties across and beyond the range of possible repository conditions. Coupled numerical models will seek to describe phenomenology (thermal, mechanical, and hydrological) observed in the laboratory tests. Finally, the field test will investigate many phenomena that have been variously cited as potential issues for disposal of thermally hot waste in salt, including buoyancy effects and migration of pre-existing trapped brine up the thermal gradient (including vapor phase migration). These studies are proposed to be coordinated and managed by the Carlsbad Field Office of DOE, which is also responsible for the operation of the Waste Isolation Pilot Plant (WIPP) within the Office of Environmental Management. The field test portion of the proposed research would be conducted in experimental areas of the WIPP underground, far from disposal operations. It is believed that such tests may be accomplished using the existing infrastructure of the WIPP repository at a lower cost than if such research were conducted at a commercial salt mine at another location. The phased field test is proposed to be performed over almost a decade, including instrumentation development, several years of measurements during heating and then subsequent cooling periods, and the eventual forensic mining back of the test bed to determine the multi-year behavior of the simulated waste/rock environment. Funding possibilities are described, and prospects for near term start-up are discussed. Mining of the access drifts required to create the test area in the WIPP underground began in November 2011. Because this mining uses existing WIPP infrastructure and labor, it is estimated to take about two years to complete the access drifts. WIPP disposal operations and facility maintenance activities will take priority over the SDI field test area mining. Funding of the SDI proposal was still being considered by DOE's Offices of Environmental Management and Nuclear Energy at the time this paper was written, so no specific estimates of the progress in 2012 have been included. (authors)

Nelson, Roger A. [DOE, Carlsbad Field Office, Carlsbad NM (United States); Buschman, Nancy [DOE, Office of Environmental Management, Washington DC (United States)

2012-07-01T23:59:59.000Z

219

Gas Content of Gladys McCall Reservoir Brine A Topical Report  

Office of Scientific and Technical Information (OSTI)

i g h enough t o i n j e c t t h e b r i n e i n t o the disposal w e l l . There are no pumps t.o push t h e britie down the disposal well. The second c r i t e r i o n i s t h e...

220

Optimal scheduling for replacing perimeter guarding unmanned ...  

E-Print Network (OSTI)

difference between charging batteries, automatically replacing batteries [11] or refueling with liquid fuel. The main difference is the time required before the UAV

2014-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

LED Replacements for Linear Fluorescent Lamps Webcast  

Energy.gov (U.S. Department of Energy (DOE))

In this June 20, 2011 webcast on LED products marketed as replacements for linear fluorescent lamps, Jason Tuenge of the Pacific Northwest National Laboratory (PNNL) discussed current Lighting...

222

Trim or Replace Impellers on Oversized Pumps  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet discusses the reasoning behind trimming or replacing impellers on oversized pumps and describes how it works to improve pumping system efficiency.

223

Grand Coulee Transmission Line Replacement Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Grand-Coulee-Transmission-Line-Replacement-Project Sign In About | Careers | Contact | Investors | bpa.gov Search Doing Business Expand Doing Business Customer Involvement Expand...

224

Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Israel  

SciTech Connect

A boron isotope study combined with analyses of elemental boron, lithium, and chlorine is used to suggest that brines from the Dead Sea and on-shore hypersaline thermal springs (Hamme Yesha, Hamme Zohar, and Hamme Mazor) are the products of interaction of evaporated seawater with detrital sediments. The high {delta}{sup 11}B values of the Dead Sea brines (55.7 to 57.4{per thousand} versus NBS-951) and the hot springs (52.2 to 55.7{per thousand}), and low B/Li ratios (2.0 to 2.3 and 2.5 to 2.7, respectively), relative to seawater, indicate preferential removal of {sup 10}B from the brines and hence boron adsorption onto clay minerals. The brackish 'En Feshcha springs and the freshwater 'En Dawid and Nahal Arugot springs yield lower B contents and {delta}{sup 11}B values (37.7 to 40.6{per thousand} and 33.8 to 36.9{per thousand}, respectively). The {delta}{sup 11}B values and B contents of diluted Dead Sea brines lie on calculated mixing lines between the composition of the brackish and freshwater springs with the composition of the Dead Sea. The {delta}{sup 11}B values of the hot springs, however, given their boron content, are significantly lower than those of the mixing lines. Thus, waters from the hot springs cannot be a mixing product of the Dead Sea brine with freshwater. Instead, the Dead Sea brine has evolved from the brines of the hot springs through further isotopic fractionation and boron adsorption onto detrital sediments.

Vengosh, A. (Australian National Univ., Canberra (Australia) Hebrew Univ., Jerusalem (Israel)); Starinsky, A.; Kolodny, Y. ( Hebrew Univ., Jerusalem (Israel)); Chivas, A.R. (Australian National Univ., Canberra (Australia))

1991-06-01T23:59:59.000Z

225

The Salt Defense Disposal Investigations (SDDI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Defense Disposal Investigations (SDDI) Salt Defense Disposal Investigations (SDDI) will utilize a newly mined Underground Research Lab (URL) in WIPP to perform a cost effective, proof-of-principle field test of the emplacement of heat-generating radioactive waste and validate modeling efforts. The goals of the SDDI Thermal Test are to: * Demonstrate a proof-of-principle concept for in-drift disposal in salt. * Investigate, in a specific emplacement concept, the response of the salt to heat. * Develop a full-scale response for run-of- mine (ROM) salt. * Develop a validated coupled process model for disposal of heat-generating wastes in salt. * Evaluate the environmental conditions of the

226

Acquisition, Use, and Disposal of Real Estate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 17.3 (March 2011) Chapter 17.3 (March 2011) 1 Acquisition, Use, and Disposal of Real Estate References DEAR 917.74 - Acquisition, Use, and Disposal of Real Estate DOE Directives DOE Order 413.3B, Program and Project Management for the Acquisition of Capital Assets, or current version DOE Order 430.1B, Real Property Asset Management, or current version Overview This section provides internal Departmental information and DOE and NNSA points of contact for issues dealing with real estate acquisition, use, and disposal for cost reimbursement and fixed price contracts when in performance of the contract, the contractor will acquire or proposes to acquire use of real property. Background DEAR Subpart 917.74 - Acquisition, Use, and Disposal of Real Estate provides the policy and

227

Policy Issues in Nuclear Waste Disposal  

Science Journals Connector (OSTI)

The Congressional Research Service, in an issue brief on nuclear waste disposal, compactly described a common assessment when it noted that “nuclear waste has sometimes been called the Achilles’ heel of the nu...

2005-01-01T23:59:59.000Z

228

A disposable, self-administered electrolyte test  

E-Print Network (OSTI)

This thesis demonstrates the novel concept that it is possible to make a disposable, self-administered electrolyte test to be introduced to the general consumer market. Although ion specific electrodes have been used to ...

Prince, Ryan, 1977-

2003-01-01T23:59:59.000Z

229

Available Options for Waste Disposal [and Discussion  

Science Journals Connector (OSTI)

...vitrified high-activity waste in properly selected deep...alternatives to present projects of waste disposal, but rather as...benefits will be different. Long-term storage of either spent fuel or vitrified waste, although not an alternative...

1986-01-01T23:59:59.000Z

230

US nuclear waste: Widespread problem of disposal  

Science Journals Connector (OSTI)

... individual states in the United States to develop facilities for disposal of low-level radioactive waste produced by ... produced by nuclear reactors, industry and biomdical research and treatment. The federal Low-Level ...

Christopher Earl

1984-07-19T23:59:59.000Z

231

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

232

CSMRI Bagged Soil Disposal Summary Report  

E-Print Network (OSTI)

.......................................................................................................................... 1 4. Landfill Acceptance and Equipment Appendix G Daily GPS Coordinants of Disposal Location at BFI Foothills Landfill Appendix H Ambient Landfill (Stoller 2005a). After review of the dose assessment report, the CDPHE approved shipment

233

Disposable Bioreactors: Maturation into Pharmaceutical Glycoprotein Manufacturing  

Science Journals Connector (OSTI)

To summarise: the range of disposable bioreactors available on the market offers flexible, cost efficient and time-saving solutions from early process development to large-scale production. Table 1 gives an overv...

René Brecht

2010-01-01T23:59:59.000Z

234

Pesticide fate in an aboveground disposal system  

E-Print Network (OSTI)

PESTICIDE FATE IN AN ABOVEGROUND DISPOSAL SYSTEM A Thesis by BRIAN RICHARD VANDERGLAS Submitted to the Graduate College of Texas A 8 M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 'l988... Major Subject: Soil Science PESTICIDE FATE IN AN ABOVEGROUND DISPOSAL SYSTEM A Thesis by BRIAN RICHARD VANDERGLAS Approved as to style and content by: K. W. Brown (Chair of Committee) John M. Sweeten (Member) Jack D. Price (Member) E. C. A...

Vanderglas, Brian Richard

2012-06-07T23:59:59.000Z

235

Title I Disposal Sites Annual Report  

Energy.gov (U.S. Department of Energy (DOE))

This report presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements.

236

Contact replacement for NMR resonance assignment  

Science Journals Connector (OSTI)

......experimental and synthetic datasets, it is robust to...edu 1 INTRODUCTION Nuclear magnetic resonance...experimental and synthetic datasets, it is robust to...edu 1 INTRODUCTION Nuclear magnetic resonance...an ensemble for a dataset, while bars indicate...replacement and nuclear vector replacement......

Fei Xiong; Gopal Pandurangan; Chris Bailey-Kellogg

2008-07-01T23:59:59.000Z

237

PILOT TESTING: PRETREATMENT OPTIONS TO ALLOW RE-USE OF FRAC FLOWBACK AND PRODUCED BRINE FOR GAS SHALE RESOURCE DEVELOPMENT  

SciTech Connect

The goal of the A&M DOE NETL Project No. DE-FE0000847 was to develop a mobile, multifunctional water treatment capability designed specifically for “pre-treatment” of field waste brine. The project consisted of constructing s mobile “field laboratory” incorporating new technology for treating high salinity produced water and using the lab to conduct a side-by-side comparison between this new technology and that already existing in field operations. A series of four field trials were performed utilizing the mobile unit to demonstrate the effectiveness of different technology suitable for use with high salinity flow back brines and produced water. The design of the mobile unit was based on previous and current work at the Texas A&M Separation Sciences Pilot Plant. The several treatment techniques which have been found to be successful in both pilot plant and field tests had been tested to incorporate into a single multifunctional process train. Eight different components were evaluated during the trials, two types of oil and grease removal, one BTEX removal step, three micro-filters, and two different nanofilters. The performance of each technique was measured by its separation efficiency, power consumption, and ability to withstand fouling. The field trials were a success. Four different field brines were evaluated in the first trial in New York. Over 16,000 gallons of brine were processed. Using a power cost of $.10 per kWh, media pretreatment power use averaged $0.004 per barrel, solids removal $.04 per barrel and brine “softening” $.84 per barrel. Total power cost was approximately $1.00 per barrel of fluid treated. In Pennsylvania, brines collected from frac ponds were tested in two additional trials. Each of the brines was converted to an oil-free, solids-free brine with no biological activity. Brines were stable over time and would be good candidates for use as a make-up fluid in a subsequent fracturing fluid design. Reports on all of the field trials and subcontractor research have been summarized in this Final Report. Individual field trial reports and research reports are contained in the companion volume titled “Appendices”

Burnett, David

2012-12-31T23:59:59.000Z

238

Geochemistry of two pressurized brines from the Castile Formation in the vicinity of the Waste Isolation Pilot Plant (WIPP) site  

SciTech Connect

The major and minor element data and isotopic data from the ERDA-6 and WIPP-12 testing indicate that the brine reservoirs encountered in the Upper Castile Formation are largely in equilibrium with their surrounding host rock environment. This contention is supported by thermodynamic and stable isotope data. It is not possible to assign an absolute age to the brine based on uranium disequilibrium considerations, but the data do indicate that the brine reequilibrated with a new rock environment at least two million years ago. Information and data evaluated herein indicate the likelihood that the brines encountered are predominantly, if not entirely, derived from a trapped seawater source subsequently modified by diagenesis. Major ion/bromide ratios indicate that halite dissolution has occurred to some extent subsequent to deposition of the Castile anhydrites and entrapment of the seawater brine. Mechanisms for additional halite dissolution are discussed. Based on the degree of present halite saturation, it is concluded that the potential for future dissolution of halite is minimal.

Faith, S.; Spiegler, P.; Rehfeldt, K.R.

1983-04-01T23:59:59.000Z

239

Integrated modeling and experimental programs to predict brine and gas flow at the Waste Isolation Pilot Plant  

SciTech Connect

Evaluation of the performance of the WIPP repository involves modeling of brine and gas flow in the host rocks of the Salado Formation, which consist of halite and anhydrite interbeds. Numerous physical, chemical, and structural processes, must be understood to perform this modeling. Gas generation within the repository is strongly coupled to the amount of brine inflow to the repository because brine aids in the corrosion of metals and associated generation of hydrogen gas. Increasing gas pressure in the repository decreases the rate of brine inflow. Ultimately, the gas pressure may exceed the brine pressure and gas may flow out of the repository. Relative-permeability curves and a correlation between threshold pressure and permeability taken from studies reported in the literature were used in PA models prior to being experimentally verified as appropriate for WIPP. In addition, interbed permeabilities were treated as constant and independent of effective stress in early models. Subsequently, the process of interbed fracturing (or fracture dilation) was recognized to limit gas pressures in the repository to values below lithostatic, and assumed (and unverified) relationships between porosity, permeability, and pore pressure were employed. Parameter-sensitivity studies performed using the simplified models identified important parameters for which site-specific data were needed. Unrealistic modeling results, such as room pressures substantially above lithostatic, showed the need to include additional processes in the models. Field and laboratory experimental programs have been initiated in conjunction with continued model development to provide information on important processes and parameters.

Beauheim, R.L.; Howarth, S.M.; Vaughn, P.; Webb, S.W.; Larson, K.W.

1995-01-01T23:59:59.000Z

240

Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect

The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

Boyd D. Christensen

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Clean Cities: National Clean Fleets Partner: Advanced Disposal Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Disposal Services to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Google Bookmark Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Delicious Rank Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Advanced Disposal Services on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

242

Generic Disposal System Modeling, Fiscal Year 2011 Progress Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal System Modeling, Fiscal Year 2011 Progress Report Disposal System Modeling, Fiscal Year 2011 Progress Report Generic Disposal System Modeling, Fiscal Year 2011 Progress Report The UFD Campaign is developing generic disposal system models (GDSM) of different disposal environments and waste form options. Currently, the GDSM team is investigating four main disposal environment options: mined repositories in three geologic media (salt, clay, and granite) and the deep borehole concept in crystalline rock (DOE 2010d). Further developed the individual generic disposal system (GDS) models for salt, granite, clay, and deep borehole disposal environments. GenericDisposalSystModelFY11.pdf More Documents & Publications Integration of EBS Models with Generic Disposal System Models TSPA Model Development and Sensitivity Analysis of Processes Affecting

243

CFD Simulation of Brine-Seawater Mixing in a Rotary Energy Recovery Device  

Science Journals Connector (OSTI)

CFD Simulation of Brine-Seawater Mixing in a Rotary Energy Recovery Device ... The effects of operational conditions on the mixing behavior of rotary energy recovery device have been systematically investigated through the combined methods of computational fluid dynamics and validating experiments in this paper. ... The obtained formulas between mixing and dimensionless flow length provide a simple way to calculate and predict the mixing of device, which will be beneficial to design and operate the rotary energy recovery device in a lower mixing level. ...

Enle Xu; Yue Wang; Liming Wu; Shichang Xu; Yuxin Wang; Shichang Wang

2014-11-05T23:59:59.000Z

244

Capacity Investigation of Brine-Bearing Sands of the Frio Formation for Geologic Sequestration of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Investigation of Brine-Bearing Sands of the Frio Capacity Investigation of Brine-Bearing Sands of the Frio Formation for Geologic Sequestration of CO 2 Christine Doughty (cadoughty@lbl.gov; 510-486-6453) Karsten Pruess (k_pruess@lbl.gov; 510-486-6732) Sally M. Benson (smbenson@lbl.gov; 510-486-5875) Lawrence Berkeley National Laboratory 1 Cyclotron Rd, MS 90-1116 Berkeley, CA 94720 Susan D. Hovorka (susan.hovorka@beg.utexas.edu; 512-471-4863) Paul R. Knox (paul.knox@beg.utexas.edu; 512-471-7313) Bureau of Economic Geology P.O. Box X, The University of Texas Austin, TX 78713 Christopher T. Green (ctgreen@ucdavis.edu; 530-752-1372) University of California, Hydrologic Sciences 1 Shields Ave. Davis, CA 95616 Abstract The capacity of fluvial brine-bearing formations to sequester CO 2 is investigated using numerical simulations of CO

245

Replacement solvents for use in chemical synthesis  

DOE Patents (OSTI)

Replacement solvents for use in chemical synthesis include polymer-immobilized solvents having a flexible polymer backbone and a plurality of pendant groups attached onto the polymer backbone, the pendant groups comprising a flexible linking unit bound to the polymer backbone and to a terminal solvating moiety. The polymer-immobilized solvent may be dissolved in a benign medium. Replacement solvents for chemical reactions for which tetrahydrofuran or diethyl may be a solvent include substituted tetrahydrofurfuryl ethers and substituted tetrahydro-3-furan ethers. The replacement solvents may be readily recovered from the reaction train using conventional methods.

Molnar, Linda K. (Philadelphia, PA); Hatton, T. Alan (Sudbury, MA); Buchwald, Stephen L. (Newton, MA)

2001-05-15T23:59:59.000Z

246

Spontaneous Imbibition of Aqueous Surfactant Solutions into Neutral to Oil-Wet Carbonate Cores:? Effects of Brine Salinity and Composition  

Science Journals Connector (OSTI)

Knowing that the brine salinity of carbonate reservoirs can vary in the range of salinity range than what was done in the previous experiments (salinities of 1?5 g/L). ... Thus, the increase in temperature seemed to make the effect of the salinity gradient observed at 40 °C vanish. ... Even though the increase in temperature from 40 °C to 70 °C make the effect of the salinity gradient of 1.0?10 wt % vanish, the final oil recovery was significantly lower (?45%, from Figure 3), compared to brine that contains sulfate at similar salinities (?70%, from Figure 6). ...

Skule Strand; Dag C. Standnes; Tor Austad

2003-07-10T23:59:59.000Z

247

Microsoft Word - SRSSaltWasteDisposal.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Disposal - References - §3116 Determination (RWR NDAA of 2005) Salt Waste Disposal - References - §3116 Determination (RWR NDAA of 2005) Doc. No. Filename Title Main Document References 1. 2005 RWR DAA §3116 NDAA.pdf "Ronald W. Regan National Defense Authorization Act for FY 2005," Section 3116, 2004. 2. CBU-PIT-2004-00024 CBU-PIT-2004-00024.pdf Ledbetter, L. S., CBU-PIT-2004-00024, 12/01/04 - December Monthly WCS Curie and Volume Inventory Report," Revision 0, December 9, 2004. 3. CBU-PIT-2005-00031 CBU-PIT-2005-00031.pdf Rios-Armstrong, M. A., CBU-PIT-2005-00031, "Decontaminated Salt Solution Volume to be transferred to the Saltstone Disposal Facility from Salt Treatment and Disposition Activities," Revision 0, February 13, 2005.

248

Qualifying radioactive waste forms for geologic disposal  

SciTech Connect

We have developed a phased strategy that defines specific program-management activities and critical documentation for producing radioactive waste forms, from pyrochemical processing of spent nuclear fuel, that will be acceptable for geologic disposal by the US Department of Energy. The documentation of these waste forms begins with the decision to develop the pyroprocessing technology for spent fuel conditioning and ends with production of the last waste form for disposal. The need for this strategy is underscored by the fact that existing written guidance for establishing the acceptability for disposal of radioactive waste is largely limited to borosilicate glass forms generated from the treatment of aqueous reprocessing wastes. The existing guidance documents do not provide specific requirements and criteria for nonstandard waste forms such as those generated from pyrochemical processing operations.

Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Laidler, J.J.; McPheeters, C.C. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

249

A XANES study of Cu speciation in high-temperature brines using synthetic fluid inclusions  

SciTech Connect

Cu K-edge X-ray absorption near edge structure (XANES) spectra were recorded from individual synthetic brine fluid inclusions as a function of temperature up to 500 C. The inclusions serve as sample cells for high-temperature spectroscopic studies of aqueous Cu-Cl speciation. Cu{sup +} and Cu{sup 2+} can both be identified from characteristic pre-edge features. Mixed oxidation states can be deconvoluted using linear combinations of Cu{sup +} and Cu{sup 2+} spectra. This work illustrates how complex Cu XANES spectra can be interpreted successfully. Cu{sup 2+} is the stable oxidation state in solution at room temperature and Cu{sup +} at high temperatures. The change in oxidation state with temperature was completely reversible. Cu{sup +} was found to occur exclusively as the linear species [CuCl{sub 2}]{sup -} in solutions containing KCl with Cu:Cl ratios up to 1:6. In the absence of K{sup +}, there is evidence for higher order coordination of Cu{sup +}, in particular the tetrahedral complex [CuCl{sub 4}]{sup 3-}. The importance of such complexes in natural ore-forming fluids is yet to be determined, but may explain the vapor-phase partitioning of Cu as a Cl complex from a Cl-rich brine.

Berry, Andrew J.; Hack, Alistair C.; Mavrogenes, John A.; Newville, Matthew; Sutton, Stephen R. (UC); (ANU)

2010-12-03T23:59:59.000Z

250

Report on design, construction, and testing of CO/sub 2/ breakout system for geothermal brines  

SciTech Connect

A skid mounted test facility has been built for determining conditions at which CO/sub 2/ flashes from geothermal brines. The system has been checked and operated at one geothermal plant. It performed as designed. The equipment is designed to operate at temperatures and pressures typical of wells near Heber, California. (Nominally 180/sup 0/C and 300 to 500 psig). It has heat exchangers which can cool the brine to less than 70/sup 0/C. (The cooling water is recirculated after being cooled by a forced air heat exchanger). Breakout pressures can be determined for any temperature between 70/sup 0/C and wellhead temperature. An adjustable orifice provides final control on pressure required to initiate flashing. The orifice is at the bottom of a sight glass. A light beam shines through the sight glass and focuses on a photoelectric cell. The presence of bubbles scatters light and decreases the output of the cell. Results using the cell were more reproducible than those using the naked eye. Results from one test show a smooth curve over the temperature range 75/sup 0/C to 165/sup 0/C. Agreement between the experimental values and calculated ones is discussed.

Robertus, R.J.; Shannon, D.W.; Sullivan, R.G.

1984-03-01T23:59:59.000Z

251

Sensitivity study of CO2 storage capacity in brine aquifers withclosed boundaries: Dependence on hydrogeologic properties  

SciTech Connect

In large-scale geologic storage projects, the injected volumes of CO{sub 2} will displace huge volumes of native brine. If the designated storage formation is a closed system, e.g., a geologic unit that is compartmentalized by (almost) impermeable sealing units and/or sealing faults, the native brine cannot (easily) escape from the target reservoir. Thus the amount of supercritical CO{sub 2} that can be stored in such a system depends ultimately on how much pore space can be made available for the added fluid owing to the compressibility of the pore structure and the fluids. To evaluate storage capacity in such closed systems, we have conducted a modeling study simulating CO{sub 2} injection into idealized deep saline aquifers that have no (or limited) interaction with overlying, underlying, and/or adjacent units. Our focus is to evaluate the storage capacity of closed systems as a function of various reservoir parameters, hydraulic properties, compressibilities, depth, boundaries, etc. Accounting for multi-phase flow effects including dissolution of CO{sub 2} in numerical simulations, the goal is to develop simple analytical expressions that provide estimates for storage capacity and pressure buildup in such closed systems.

Zhou, Q.; Birkholzer, J.; Rutqvist, J.; Tsang, C-F.

2007-02-07T23:59:59.000Z

252

Phase-field theory of brine entrapment in sea ice: Short-time frozen microstructures  

E-Print Network (OSTI)

We analyze the early phase of brine entrapment in sea ice, using a phase field model. This model for a first-order phase transition couples non-conserved order parameter kinetics to salt diffusion. The evolution equations are derived from a Landau-Ginzburg order parameter gradient dynamics together with salinity conservation. The numerical solution of model equations by an exponential time differencing scheme describes the time evolution of phase separation between liquid water with high salinity and the ice phase with low salinity. The numerical solution in one and two dimensions indicates the formation of one dominant wavelength which sets the length scale of short-time frozen structures. A stability analysis provides the phase diagram in terms of two Landau parameters. It is distinguished an uniform ice phase, a homogeneous liquid saline water solution and a phase where solidification structures can be formed. The Landau parameters are extracted from the supercooling and superheating as well as the freezing point temperature of water. With the help of realistic parameters the distribution of brine inclusions is calculated and found in agreement with the measured samples. The size of the ice domains separating regions of concentrated seawater depends on salinity and temperature and corresponds to the size of sea ice platelets obtained from a morphological stability analysis for the solidification of salt water.

Silke Thoms; Bernd Kutschan; Klaus Morawetz

2014-05-01T23:59:59.000Z

253

Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures  

SciTech Connect

In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

2014-08-14T23:59:59.000Z

254

Organic agriculture cannot replace conventional agriculture  

E-Print Network (OSTI)

Organic agriculture cannot replace conventional agriculture Sina Adl , David Iron and Theodore Agriculture | Pathogen Dispersal Introduction Organic farming [1, 2] is gaining in popularity in Eu- rope, because or- ganic agriculture avoids using environmentally harmful chem- icals that pollute soil

Kolokolnikov, Theodore

255

BALBES: a molecular-replacement pipeline  

Science Journals Connector (OSTI)

The fully automated pipeline, BALBES, integrates a redesigned hierarchical database of protein structures with their domains and multimeric organization, and solves molecular-replacement problems using only input X-ray and sequence data.

Long, F.

2007-12-04T23:59:59.000Z

256

Marin County- Wood Stove Replacement Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The County of Marin has created a rebate program to encourage homeowners to remove or replace non-EPA certified wood-burning heaters (wood stoves and fireplace inserts) with cleaner burning stoves...

257

Computation of optimal policies in replacement models  

Science Journals Connector (OSTI)

......the level of metal particles in an engine oil, or a vibration monitoring...Optimal replacement times--a general set-up J. Appl. Prob. 23...Proportional hazards analysis of diesel engine failure data. Quality & Reliab......

V. MAKIS; A. K. S. JARDINE

1991-01-01T23:59:59.000Z

258

Electrochemical apparatus comprising modified disposable rectangular cuvette  

DOE Patents (OSTI)

Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

2013-09-10T23:59:59.000Z

259

Generic Deep Geologic Disposal Safety Case | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deep Geologic Disposal Safety Case Deep Geologic Disposal Safety Case Generic Deep Geologic Disposal Safety Case The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW). Potential disposal options include mined disposal in a variety of geologic media (e.g., salt, shale, granite), and deep borehole disposal in basement rock. The Generic Safety Case is intended to be a source of information to provide answers to questions that may arise as the U.S. works to develop strategies to dispose of current and future inventories of UNF and HLW. DOE is examining combinations of generic geologic media and facility designs that could potentially support

260

A replaceable reflective film for solar concentrators  

SciTech Connect

The 3M Company manufactures a silvered acrylic film called ECP-305 that is regarded as the preferred reflective film for use on stretched-membrane heliostats. However, ECP-305 will degrade in time, due to both corrosion of the silver layer and delamination at the film's silver-to-acrylic interface, and will eventually need to be replaced. 3M uses a very aggressive adhesive on this film, and once it is laminated, replacement is very difficult. The purpose of this investigation was the development of a replaceable reflector, a reflective film that can be easily removed and replaced. A replaceable reflector was successfully configured by laminating ECP-305 to the top surface of a smooth, dimensionally stable polymer film, with a removable adhesive applied to the underside of the polymer film. Several stages of screening and testing led to the selection of a 0.010-inch thick polycarbonate (GE 8030) as the best polymer film and a medium tack tape (3M Y-9425) was selected as the best removable adhesive. To demonstrate the feasibility of the replaceable reflector concept and to provide a real-time field test, the chosen construction was successfully applied to the 50-m{sup 2} SKI heliostat at the Central Receiver Test Facility at Sandia National Laboratories in Albuquerque. 4 refs., 13 figs., 7 tabs.

Not Available

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The disposal of orphan wastes using the greater confinement disposal concept  

SciTech Connect

In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ``home`` for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ``special-case`` or ``orphan`` wastes. This paper describes an ongoing project sponsored by the DOE`s Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes can be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs.

Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H. [Sandia National Labs., Albuquerque, NM (USA); Dickman, P.T. [Department of Energy, Las Vegas, NV (USA). Nevada Operations Office

1991-02-01T23:59:59.000Z

262

Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio  

SciTech Connect

On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and strategies to reduce uranium concentration in the leachate.

Hazen, Terry

2002-08-26T23:59:59.000Z

263

Status of UFD Campaign International Activities in Disposal Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Status of UFD Campaign International Activities in Disposal Status of UFD Campaign International Activities in Disposal Research Status of UFD Campaign International Activities in Disposal Research Several international organizations have made significant progress in the characterization and performance evaluation of other disposal design options and host rock characteristics (clay/shale, granite), most of which were very different from those studied in the United States. The DOE recognizes that close international collaboration is a beneficial and cost effective strategy for advancing disposal science. This report describes the active collaboration opportunities available to U.S. researchers, and presents specific cooperative research activities that have been recently initiated within DOE's disposal research program.

264

The feasibility of replacing or upgrading utility distribution transformers during routine maintenance  

SciTech Connect

It is estimated that electric utilities use about 40 million distribution transformers in supplying electricity to customers in the United States. Although utility distribution transformers collectively have a high average efficiency, they account for approximately 61 billion kWh of the 229 billion kWh of energy lost annually in the delivery of electricity. Distribution transformers are being replaced over time by new, more efficient, lower-loss units during routine utility maintenance of power distribution systems. Maintenance is typically not performed on units in service. However, units removed from service with appreciable remaining life are often refurbished and returned to stock. Distribution transformers may be removed from service for many reasons, including failure, over- or underloading, or line upgrades such as voltage changes or rerouting. When distribution transformers are removed from service, a decision must be made whether to dispose of the transformer and purchase a lower-loss replacement or to refurbish the transformer and return it to stock for future use. This report contains findings and recommendations on replacing utility distribution transformers during routine maintenance, which is required by section 124(c) of the Energy Policy Act of 1992. The objectives of the study are to evaluate the practicability, cost-effectiveness, and potential energy savings of replacing or upgrading existing transformers during routine utility maintenance and to develop recommendations on was to achieve the potential energy savings.

Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.; Cohn, S.M.; Purucker, S.L.

1995-04-01T23:59:59.000Z

265

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

72.1 0614 On-Site Disposal Facility Inspection Report June 2014 6319-D6320 8972.2 0614 East Face Cell 1 West Face Cell 1 6319D-6322 6319D-6346 8972.3 0614 North Face Cell 1...

266

Low-level-waste-disposal methodologies  

SciTech Connect

This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE.

Wheeler, M.L.; Dragonette, K.

1981-01-01T23:59:59.000Z

267

COUEB N T ED Safe Disposal of  

E-Print Network (OSTI)

COUEB N T ED Safe Disposal of Household Chemicals: Protect Yourself and Your Community see inside Minutes The 2010 census asks 10 questions that most households can answer in 10 minutes! You will be asked the name, age, gender, race, ethnic group (if Hispanic), and relationship of all persons living at your

Liskiewicz, Maciej

268

Neptunium(V) and neptunium(VI) solubilities in synthetic brines of interest to the Waste Isolation Pilot Plant (WIPP)  

SciTech Connect

The solubility of Np(V) and Np(VI) has been measured in three synthetic Na-K-Mg-Cl brines in the presence of CO{sub 2}(g). Experiments were prepared from oversaturation by adding an excess of NpO{sub 2}{sup +} or NpO{sub 2}{sup 2+} to the brines and allowing the neptunium solids to precipitate. Vessels were maintained in contact with fixed CO{sub 2}(g) partial pressures at constant pH and 24 {+-} 1 C. Dissolved Np(V) concentrations decreased several orders of magnitude within the first 100 days of the experiment, while dissolved Np(VI) concentrations decreased initially but then remained relatively constant for more than 400 days. The solid phases formed in all experiments were identified by X-ray powder diffraction as KNpO{sub 2}CO{sub 3}{center_dot}xH{sub 2}O(s). Steady state concentrations for Np(V) are similar to those observed for Pu(V) in the same brines under the same conditions, where Pu occurs predominantly as Pu(V). Similarly, steady state concentrations for Np(VI), which was not reduced over a two year period, compare well with measured Pu(VI) concentrations in the same brines before the Pu(VI) was reduced to Pu(V).

Novak, C.F. [Sandia National Labs., Albuquerque, NM (United States); Nitsche, H. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.]|[Forschungszentrum Rossendorf e.V., Dresden (Germany). Inst. fuer Radiochemie; Silber, H.B. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.]|[San Jose State Univ., CA (United States). Chemistry Dept.] [and others

1996-12-31T23:59:59.000Z

269

Energy optimization in ice hockey halls I. The system COP as a multivariable function, brine and design choices  

E-Print Network (OSTI)

This work is the first of a series of articles addressing the energy optimization in ice hockey halls. Here we outline an analytic method to predict in which design and operating conditions the COP of the entire cooling system (refrigerator and cooling tower) ${\\rm COP}_{sys}$ is maximum. ${\\rm COP}_{sys}$ is investigated as a function of several variables, like electric consumption and brine physical properties. With this method, the best configuration and brine choices for the system can therefore be determined in advance. We estimate the optimal design of an average-sized ice rink, including pipe diameter, depth and brine type (ethylene glycol and ammonia). We also single out an optimal brine density and show the impact of the electric consumption of the pump on ${\\rm COP}_{sys}$. Our theoretical predictions are validated with heat flow measurement data obtained at an ice hockey hall in Finland. They are also confronted with technical and cost-related constraints, and implemented by simulations with the pr...

Ferrantelli, Andrea; Räikkönen, Miska; Viljanen, Martti

2012-01-01T23:59:59.000Z

270

LED T8 Replacement Lamps | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

T8 Replacement Lamps LED T8 Replacement Lamps This documents provides an overview of LED T8 replacement lamps and helps define a reasonable minimum performance level for the...

271

REPLACING AN OVERSIZED AND UNDERLOADED ELECTRIC MOTOR  

E-Print Network (OSTI)

This fact sheet will assist in decisions regarding replacement of oversized and underloaded motors. It includes a discussion of how the MotorMaster software can be used to conduct motor replacement analyses. Motors rarely operate at their full-load point. Field tests of 60 motors at four industrial plants indicate that, on average, they operate at 60 % of their rated load. 1 Motors that drive supply or return air fans in heating, ventilation and air-conditioning (HVAC) systems generally operate at 70 % to 75 % of rated load. 2 A persistent myth is that oversized motors, especially motors operating below 50 % of rated load, are not efficient and should be immediately replaced with appropriately sized energy-efficient units. In actuality, several pieces of information are required to complete an accurate assessment of energy savings. They are the load on the motor, the operating efficiency of the motor at that load point, the full-load speed (in revolutions per minute [rpm]) of the motor to be replaced, and the full-load speed of the downsized replacement motor. 3 Motor Load Estimation Techniques Operating efficiency and motor load values must be assumed or based on field measurements and

unknown authors

272

DOE - Office of Legacy Management -- Burro Canyon Disposal Cell...  

Office of Legacy Management (LM)

materials from the Slick RockOld North Continent site and the Slick RockUnion Carbide site were disposed of in this dedicated disposal cell. The Department of Energys...

273

INNOVATIVE DISPOSAL PRACTICES AT THE NEVADA TEST SITE TO MEET...  

National Nuclear Security Administration (NNSA)

Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs E.F. Di Sanza, J.T. Carilli U.S. Department of Energy National...

274

Strategy for the Management and Disposal of Used Nuclear Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

275

Maintenance Guide for DOE Low-Level Waste Disposal Facility ...  

Office of Environmental Management (EM)

Guide for DOE Low-Level Waste Disposal Facility Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses...

276

Nuclear Waste Disposal: Can the Geologist Guarantee Isolation?  

Science Journals Connector (OSTI)

...to check whether waste disposal really does need an almost...been reported recently at Maxey Flats (Kentucky) (26...radioactive waste burial site, inside a fractured rock...effect of the geological disposal is to con-centrate 3530...

G. de Marsily; E. Ledoux; A. Barbreau; J. Margat

1977-08-05T23:59:59.000Z

277

Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Replacement Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Replacement Grants

278

Cobalt discovery replaces precious metals as industrial catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

replaces precious metals Cobalt discovery replaces precious metals as industrial catalyst Cobalt holds promise as an industrial catalyst with potential applications in such...

279

Cobalt discovery replaces precious metals as industrial catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Replaces Precious Metals Cobalt discovery replaces precious metals as industrial catalyst Cobalt holds promise as an industrial catalyst with potential applications in such...

280

Magnesium Replacement of Aluminum Cast Components in a Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Magnesium Replacement of Aluminum Cast Components in a Production V6 Engine to Effect Cost-Effective Mass Reduction Magnesium Replacement of Aluminum Cast Components in a...

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Effects of an Accelerated Diesel Engine Replacement/Retrofit Program  

E-Print Network (OSTI)

No. 894 Effects of an Accelerated Diesel Engine Replacement/2009 Effects of an Accelerated Diesel Engine Replacement/reductions occurring on an accelerated schedule compared to

Millstein, Dev E.; Harley, Robert A

2009-01-01T23:59:59.000Z

282

Acceptance of Classified Excess Components for Disposal at Area 5  

SciTech Connect

This slide-show discusses weapons dismantlement and disposal, issues related to classified waste and their solutions.

Poling, Jeanne [National Security Technologies, LLC (United States); Saad, Max [Sandia National Lab., NM (United States)

2012-04-09T23:59:59.000Z

283

Transportation, Aging and Disposal Canister System Performance Specification: Revision 1  

Energy.gov (U.S. Department of Energy (DOE))

This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system.

284

A Methodology for Measuring the Rate of Reaction of CO2 with Brine-Rock Mixtures  

NLE Websites -- All DOE Office Websites (Extended Search)

Methodology for Measuring the Rate of Reaction of CO Methodology for Measuring the Rate of Reaction of CO 2 with Brine-Rock Mixtures Nicholas B. Janda (nbj2@po.cwru.edu; 216-368-2648) Philip W. Morrison, Jr. (pwm5@po.cwru.edu; 216-368-4238) Department of Chemical Engineering Case Western Reserve University 10900 Euclid Avenue Cleveland, OH 44106-7217 Beverly Z. Saylor (bzs@po.cwru.edu; 216-368-3763) Gerald Matisoff (gxm4@po.cwru.edu; 216-368-3677) Department of Geological Sciences Case Western Reserve University 10900 Euclid Avenue Cleveland, OH 44106-7216 Introduction Storage of carbon dioxide in deep, porous, and permeable reservoir rocks is one of the most promising technologies for reducing emissions of greenhouse gases to the atmosphere. Although oil and gas reservoirs are a sensible first step for sequestration of carbon dioxide in geologic

285

Reducing Foreign Lithium Dependence through Co-Production of Lithium from Geothermal Brine  

NLE Websites -- All DOE Office Websites (Extended Search)

Foreign Lithium Dependence through Co-Production of Lithium from Foreign Lithium Dependence through Co-Production of Lithium from Geothermal Brine Kerry Klein 1 , Linda Gaines 2 1 New West Technologies LLC, Washington, DC, USA 2 Center for Transportation Research, Argonne National Laboratory, Argonne, IL, USA KEYWORDS Mineral extraction, zinc, silica, strategic metals, Imperial Valley, lithium ion batteries, electric- drive vehicles, battery recycling ABSTRACT Following a 2009 investment of $32.9 billion in renewable energy and energy efficiency research through the American Recovery and Reinvestment Act, President Obama in his January 2011 State of the Union address promised deployment of one million electric vehicles by 2015 and 80% clean energy by 2035. The United States seems poised to usher in its bright energy future,

286

Brine-in-crude-oil emulsions at the Strategic Petroleum Reserve.  

SciTech Connect

Metastable water-in-crude-oil emulsion formation could occur in a Strategic Petroleum Reserve (SPR) cavern if water were to flow into the crude-oil layer at a sufficient rate. Such a situation could arise during a drawdown from a cavern with a broken-hanging brine string. A high asphaltene content (> 1.5 wt %) of the crude oil provides the strongest predictor of whether a metastable water-in-crude-oil emulsion will form. However there are many crude oils with an asphaltene content > 1.5 wt % that don't form stable emulsions, but few with a low asphaltene content that do form stable emulsions. Most of the oils that form stable emulsions are %E2%80%9Csour%E2%80%9D by SPR standards indicating they contain total sulfur > 0.50 wt %.

Nemer, Martin B.; Lord, David L.; MacDonald, Terry L.

2013-10-01T23:59:59.000Z

287

Phase-field theory of brine entrapment in sea ice: Short-time frozen microstructures  

E-Print Network (OSTI)

We analyze the early phase of brine entrapment in sea ice, using a phase field model. This model for a first-order phase transition couples non-conserved order parameter kinetics to salt diffusion. The evolution equations are derived from a Landau-Ginzburg order parameter gradient dynamics together with salinity conservation. The numerical solution of model equations by an exponential time differencing scheme describes the time evolution of phase separation between liquid water with high salinity and the ice phase with low salinity. The numerical solution in one and two dimensions indicates the formation of one dominant wavelength which sets the length scale of short-time frozen structures. A stability analysis provides the phase diagram in terms of two Landau parameters. It is distinguished an uniform ice phase, a homogeneous liquid saline water solution and a phase where solidification structures can be formed. The Landau parameters are extracted from the supercooling and superheating as well as the freezin...

Thoms, Silke; Morawetz, Klaus

2014-01-01T23:59:59.000Z

288

Light hydrocarbon geochemistry of brines and sediments of the red sea  

E-Print Network (OSTI)

1LGTIT II'YDROC/', REIGN GEOCIII'IITS'IRY GI' BTITNES IIND SRuZSIRNIS O? YIIR RZD SRR . T'. 1'. Sl S RO(cRR rII, DQN !' iT RRR AI!pcoverl s. s 'o style and cootent hyr 'o-Cheittreri ol Corrrrci tt. ee) r, rrr rl!I! e: ) j Deccr, het 1'rI79... The Ai 7 antis II Deep has i. &o ? tin& ! ay) . = !if i!& s-:I:, oif icar . 7y rii '. ferenL lig!it hydrocarbon con&sr:i ar. i&n . The l, a c. , in tbe iso layers a7so aprirertly come fro. d'I'&c:&nt sources. Tli. . up!&cr. brine (Ti50'0, Cl s /3...

Burke, Roger Allen

2012-06-07T23:59:59.000Z

289

Disposability Assessment: Aluminum-Based Spent Nuclear Fuel Forms  

SciTech Connect

This report provides a technical assessment of the Melt-Dilute and Direct Al-SNF forms in disposable canisters with respect to meeting the requirements for disposal in the Mined Geologic Disposal System (MGDS) and for interim dry storage in the Treatment and Storage Facility (TSF) at SRS.

Vinson, D.W.

1998-11-06T23:59:59.000Z

290

Landfill Disposal of CCA-Treated Wood with Construction and  

E-Print Network (OSTI)

Landfill Disposal of CCA-Treated Wood with Construction and Demolition (C&D) Debris: Arsenic phased out of many residential uses in the United States, the disposal of CCA-treated wood remains. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills

Florida, University of

291

Chapter 8 - Coal Combustion Residue Disposal Options  

Science Journals Connector (OSTI)

Abstract Coal combustion residues (CCRs) are presently regulated as solid waste (Subtitle D) under the Resource Conservation Recovery Act. Such classification promotes beneficial use by end-users i.e. mitigating excessive liability. According to the US Environmental Protection agency (USEPA), about 131 million tons of coal combustion residuals—including 71 million tons of fly ash, 20 million tons of bottom ash and boiler slag, and 40 million tons of flue gas desulfurization (FGD) material—were generated in the US in 2007. Of this, approximately 36% was disposed of in landfills, 21% was disposed of in surface impoundments, 38% was beneficially reused, and 5% was used as minefill. Stringent regulation, as Subtitle C (hazardous waste), would impose a perceived liability upon end-users; greatly reducing beneficial use opportunities. Mandatory use of synthetic liners—would not have prevented dike wall failure and fails to consider inherent engineering characteristics of CCRs.

Richard W. Goodwin

2014-01-01T23:59:59.000Z

292

Technical and philosophical aspects of ocean disposal  

E-Print Network (OSTI)

Di sposai . Geological aspects Physical aspects Chemical aspects Biological aspects CHAPTER II. TECHNICAL ASPECTS OF OCEAN DISPOSAL Types of Waste Materials. Dredged materiais. Industrial wastes, DomestIc sewage wa tes Solid wastes Radloact..., can reduce the passage of light through the water column and cause damaging effects to the marine ecosystem. Each of five major oceans has pronounced gyral, or circular current motion (Fiaure 1. 1). The North Atlantic current system is comprised...

Zapatka, Marchi Charisse

1976-01-01T23:59:59.000Z

293

The Ringhals 2 steam generator replacement  

SciTech Connect

Righals 2, located on the west coast of Sweden and operated by Vattenfall (Swedish State Power), is a Westinghouse 800-MW three-loop pressurized water reactor that started commercial operation in 1975. In 1983, a task force was assigned to make a study of the steam generator (SG) tube corrosion problems, mainly stress corrosion cracking in the tubesheet area, which caused between two and three unscheduled outages each year. The task force study concluded that replacement was clearly the best of the three alternatives considered. Late in 1984, a decision was made to replace the SG in the summer of 1989. It was also decided to take advantage of existing margins in the plant by increasing the heat transfer area of the new SG. A power increase of 9% would then be possible by fairly moderate modifications of the turbine plant. The SG replacement project was on time, below budget, and much below dose budget. As a consequence of the 9% uprating, the cost of the SG replacement will be recovered after 3 to 4 yr.

Looft, H.

1990-06-01T23:59:59.000Z

294

Geochemical aspects of radioactive waste disposal  

SciTech Connect

The book addresses various topics related to the geochemistry of waste disposal: natural radioactivity, kinds of radioactive waste, details of possible disposal sites, low-level waste, uranium mill tailing, natural analogs, waste forms, and engineered barriers. Emphasis throughout is on the importance of natural analogs, the behavior of elements resembling those to be put in a waste repository as they occur in natural situations where the temperature, pressure, and movement of ground water are similar to those expected near a repository. The author is convinced that conclusions drawn from the study of analog elements are directly applicable to predictions about radionuclide behavior, and that the observed near-immobility of most of these elements in comparable geologic environments is good evidence that radioactive waste can be disposed of underground with negligible effects on the biosphere. Much of his own research has been in this area, and the best parts of the book are the descriptions of his work on trace elements in the salt minerals at the Waste Isolation Pilot Plant in southeastern New Mexico, on the movement of radionuclides and their daughter elements from the famous Precambrian reactor at Oklahoma in Gabon, and on the distribution of analog elements in rocks near the contacts of igneous intrusions.

Brookins, D.G.

1984-01-01T23:59:59.000Z

295

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

296

DOE Applauds Opening of Historic Disposal Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applauds Opening of Historic Disposal Facility Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility June 6, 2013 - 12:00pm Addthis The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. ANDREWS, Texas - DOE officials participated in an event today to celebrate the opening of the first commercial disposal facility of its kind. EM Senior Advisor Dave Huizenga and several other federal, state and local officials attended the event at Waste Control Specialists (WCS) in Andrews and witnessed the first container being placed in the new state-of-the-art facility. WCS is a waste processing and disposal company. "I am proud to be here today to celebrate this historic event. We

297

Innovative Technique Accelerates Waste Disposal at Idaho Site | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly disposed. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. IDAHO FALLS, Idaho - An innovative treatment and disposal technique is enabling the Idaho site to accelerate shipments of legacy nuclear waste for

298

DOE Applauds Opening of Historic Disposal Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility DOE Applauds Opening of Historic Disposal Facility June 6, 2013 - 12:00pm Addthis The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. The Waste Control Specialists Federal Waste Disposal Facility in Andrews, Texas. ANDREWS, Texas - DOE officials participated in an event today to celebrate the opening of the first commercial disposal facility of its kind. EM Senior Advisor Dave Huizenga and several other federal, state and local officials attended the event at Waste Control Specialists (WCS) in Andrews and witnessed the first container being placed in the new state-of-the-art facility. WCS is a waste processing and disposal company. "I am proud to be here today to celebrate this historic event. We

299

Radioactive waste isolation in salt: geochemistry of brine in rock salt in temperature gradients and gamma-radiation fields - a selective annotated bibliography  

SciTech Connect

Evaluation of the extensive research concerning brine geochemistry and transport is critically important to successful exploitation of a salt formation for isolating high-level radioactive waste. This annotated bibliography has been compiled from documents considered to provide classic background material on the interactions between brine and rock salt, as well as the most important results from more recent research. Each summary elucidates the information or data most pertinent to situations encountered in siting, constructing, and operating a mined repository in salt for high-level radioactive waste. The research topics covered include the basic geology, depositional environment, mineralogy, and structure of evaporite and domal salts, as well as fluid inclusions, brine chemistry, thermal and gamma-radiation effects, radionuclide migration, and thermodynamic properties of salts and brines. 4 figs., 6 tabs.

Hull, A.B.; Williams, L.B.

1985-07-01T23:59:59.000Z

300

Microsoft Word - DisposalInSaltDifferentThanDisposalInWIPP.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Issues Statement Concerning Debates Over DOE Issues Statement Concerning Debates Over Waste Disposal in Salt CARLSBAD, N.M., July 24, 2009 - The U.S. Department of Energy and its Carlsbad Field Office recognize and respect the long history that led to the current regulations that govern operations at the Waste Isolation Pilot Plant (WIPP). The WIPP is authorized to ship and dispose of transuranic (TRU) waste that was created by U.S. defense programs. TRU waste is a category of waste strictly defined by legislation and legal agreements. The WIPP mission includes the safe disposal of two types of defense-related TRU waste, contact-handled (CH) and remote-handled (RH). Both consist of tools, rags, protective clothing, sludges, soil and other materials contaminated with radioactive

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Experimental and Computational Studies of Fluid Flow Phenomena in Carbon Dioxide Sequestration in Brine and Oil Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID FLOW PHENOMENA IN CARBON DIOXIDE SEQUESTRATION IN BRINE AND OIL FIELDS Chuang Ji ( chuang.ji@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 BOX 5725 Clarkson University Potsdam, NY 13699 Goodarz Ahmadi ( ahmadi@clarkson.edu ) BOX 5725 Clarkson University Potsdam, NY 13699 Duane H. Smith ( duane.smith@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 2 INTRODUCTION Sequestration of CO 2 by injection into deep geological formations is a method to reduce CO 2 emissions into the atmosphere. However, when CO 2 is injected underground, it forms fingers extending into the rock pores saturated with brine or petroleum. This flow

302

Evaluation of Brine-Bearing Sands of the Frio Formation, Upper Texas Gulf Coast for Geological Sequestration of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Brine-Bearing Sands of the Evaluation of Brine-Bearing Sands of the Frio Formation, Upper Texas Gulf Coast for Geological Sequestration of CO 2 S. D. Hovorka (susan.hovorka@beg.utexas.edu; 512-471-4863) Bureau of Economic Geology, P.O. Box X, The University of Texas at Austin, Austin, TX 78713 C. Doughty (CADoughty@lbl.gov; 510-486-6453 ) Lawrence Berkeley National Lab, 1 Cyclotron Road Mailstop 90-1116, Berkeley, CA 94720 P. R. Knox (paul.knox@beg.utexas.edu; 512-471-7313), Bureau of Economic Geology, P.O. Box X, The University of Texas at Austin, Austin, TX 78713 C. T. Green (ctgreen@ucdavis.edu; 510-495-2461) University of California, Hydrologic Sciences, One Shields Ave., Davis, CA 95616 K. Pruess(K_Pruess@lbl.gov; 510-486-6732) Lawrence Berkeley National Lab, 1 Cyclotron Road Mailstop 90-1116,

303

Understanding Long-Term Solute Transport in Sedimentary Basins: Simulating Brine Migration in the Alberta Basin. Final Report  

SciTech Connect

Mass transport in deep sedimentary basins places important controls on ore formation, petroleum migration, CO2 sequestration, and geochemical reactions that affect petroleum reservoir quality, but large-scale transport in this type of setting remains poorly understood. This lack of knowledge is highlighted in the resource-rich Alberta Basin, where geochemical and hydrogeologic studies have suggested residence times ranging from hundreds of millions of years to less than 5 My, respectively. Here we developed new hydrogeologic models that were constrained by geochemical observations to reconcile these two very different estimates. The models account for variable-density fluid flow, heat transport, solute transport, sediment deposition and erosion, sediment compressibility, and dissolution of salt deposits, including Cl/Br systematics. Prior interpretations of Cl/Br ratios in the Alberta Basin concluded that the brines were derived from evaporatively-concentrated brines that were subsequently diluted by seawater and freshwater; models presented here show that halite dissolution must have contributed strongly as well, which implies significantly greater rates of mass transport. This result confirms that Cl/Br ratios are subject to significant non-uniqueness and thus do not provide good independent indicators of the origin of brines. Salinity and Cl/Br ratios provided valuable new constraints for basin-scale models, however. Sensitivity studies revealed that permeabilities obtained from core- and field-scale tests were appropriate for basin-scale models, despite the differences in scale between the tests and the models. Simulations of groundwater age show that the residence time of porefluids in much of the basin is less than 100 My. Groundwater age increases with depth and approaches 200 My in the deepest part of the basin, but brines are significantly younger than their host rocks throughout the basin.

Alicia M. Wilson

2009-11-30T23:59:59.000Z

304

Review of Yucca Mountain Disposal Criticality Studies  

SciTech Connect

The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

305

Summary - Disposal Practices at the Nevada Test Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Test Site, NV Nevada Test Site, NV EM Project: Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive waste (MLLW) are disposed of in Area 5 in shallow

306

DOE - Office of Legacy Management -- Maryland Disposal Site - MD 05  

Office of Legacy Management (LM)

Maryland Disposal Site - MD 05 Maryland Disposal Site - MD 05 FUSRAP Considered Sites Site: MARYLAND DISPOSAL SITE (MD.05 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore - Vicinity , Maryland MD.05-1 Evaluation Year: 1989 MD.05-1 Site Operations: Proposed disposal site - never developed. MD.05-1 Site Disposition: Eliminated Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to MARYLAND DISPOSAL SITE MD.05-1 - Report (DOE/OR/20722-131 Revision 0); Site Plan for the Maryland Disposal Site; April 1989 Historical documents may contain links which are no longer valid or to

307

Deep Borehole Disposal Research: Demonstration Site Selection Guidelines,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deep Borehole Disposal Research: Demonstration Site Selection Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal of spent nuclear fuel and other radioactive waste forms, along with research and development for mined repositories in salt, granite, and clay, as part of the used fuel disposition (UFD) campaign. The deep borehole disposal concept consists of drilling a borehole on the order of 5,000 m deep, emplacing waste canisters in the lower part of the borehole, and sealing the upper part of the borehole with bentonite and concrete seals. A reference design of the

308

Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INL, Idaho INL, Idaho EM Project: Idaho CERCLA Disposal Facility ETR Report Date: December 2007 ETR-10 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Idaho CERCLA Disposal Facility (ICDF) At Idaho National Laboratory (INL) Why DOE-EM Did This Review The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility that is used to dispose of LLW and MLW generated from remedial activities at the Idaho National Laboratory (INL). Components of the ICDF include a landfill that is used for disposal of solid waste, an evaporation pond that is used to manage leachate from the landfill and other aqueous wastes (8.3 million L capacity), and a staging and treatment facility. The ICDF is located near the southwest

309

LANL completes excavation of 1940s waste disposal site  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL completes excavation LANL completes excavation LANL completes excavation of 1940s waste disposal site The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. September 22, 2011 Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation. Contact Colleen Curran Communicatons Office (505) 664-0344 Email LOS ALAMOS, New Mexico, September 22, 2011-Los Alamos National Laboratory has completed excavation of its oldest waste disposal site, Material Disposal Area B (MDA-B). The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. MDA-B was used from 1944-48 as a waste disposal site for Manhattan Project and Cold War-era research and

310

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used Fuel Disposition Campaign Disposal Research and Development Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

311

Low-Level Radioactive Waste Disposal Act (Pennsylvania) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info State Pennsylvania Program Type Environmental Regulations Provider Pennsylvania Department of Environmental Protection This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and storage of low-level radioactive waste. Commercial incineration of radioactive wastes is prohibited. Licenses are required for low-level radioactive waste disposal facilities not licensed to accept low-level radioactive waste. Disposal at

312

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Research and Development Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

313

Disposal Practices at the Nevada Test Site 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Area 5 LLRW & MLLW Disposal Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive

314

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-01-01T23:59:59.000Z

315

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE`s Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site`s waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-12-31T23:59:59.000Z

316

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

317

Microsoft Word - BM-MM-762A,GFE.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A Title: Replace Brine Disposal System Header to BM Brine Tank, GFE Description: Manufacturer shall provide the piping and fittings associated with the replacement of the brine disposal system header to the BM Brine Tank as Government Furnished Equipment (GFE). The manufacturer shall load all materials onto transports supplied by others. Installation will be performed by others under BM-MM-762. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021) 10 CFR 1021.410 (Application of Categorical Exclusions) (a) The actions listed in Appendices A and B of Subpart D are classes of actions that DOE has determined do not individually or cumulatively have a significant effect on the human environment (categorical exclusions).

318

RECORD OF CATEGORICAL EXCLUSION DETERMINATION Project ID No. WH-MM-767A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A A Title: Replace Brine Disposal System Header to WH Brine Tanks, GFE Description: Manufacturer shall provide the piping and fittings associated with the replacement of the brine disposal system header to the WH Brine Tanks as Government Furnished Equipment (GFE). The manufacturer shall load all materials onto transports supplied by others. Installation will be performed by others under BM-MM-767. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021) 10 CFR 1021.410 (Application of Categorical Exclusions) (a) The actions listed in Appendices A and B of Subpart D are classes of actions that DOE has determined do not individually or cumulatively have a significant effect on the human environment (categorical exclusions).

319

Microsoft InfoPath - nepa_19496.xml  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

67 67 Title: Replace Brine Disposal System Header to WH Brine Tanks Description: Subcontractor shall shall provide all labor, materials, tools, equipment, and supervision required to replace the existing brine disposal piping to the WH brine tanks with new cement lined piping and fittings, to be supplied by others as Government Furnished Equipment under WH-MM-767A. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021) 10 CFR 1021.410 (Application of Categorical Exclusions) (a) The actions listed in Appendices A and B of Subpart D are classes of actions that DOE has determined do not individually or cumulatively have a significant effect on the human environment (categorical exclusions). (b) To find that a proposal is categorically excluded, DOE shall determine the following:

320

Microsoft Word - WH-MM-767B NEPA.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

67B 67B Title: Replace WH Brine Disposal System Header from MOV-51's to WHT-14/15 Brine Tanks with HDPE Pipe Description: Subcontractor shall provide all labor, tools, materials, equipment and supervision required to replace the WH brine disposal system header from MOV-51's to WHT-14/15 brine tanks with HDPE pipe. Tasks include demolishing existing piping, installing two new pipe support foundations, pipe support steel, pipe shoes and pipe supports, and HDPE piping. Subcontractor shall reuse existing pipe support foundations, pipe support steel and pipe shoes, and existing tank pipe supports. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021) 10 CFR 1021.410 (Application of Categorical Exclusions) (a) The actions listed in Appendices A and B of Subpart D are classes of actions that DOE has

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Microsoft Word - BM-MM-762 NEPA.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

62 62 Title: Replace Brine Disposal System Header to BM Brine Tank Description: Subcontractor shall shall provide all labor, materials, tools, equipment, and supervision required to replace the existing brine disposal piping to the BM brine tank with new carbon steel pipe and concrete lined carbon steel pipe. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021) 10 CFR 1021.410 (Application of Categorical Exclusions) (a) The actions listed in Appendices A and B of Subpart D are classes of actions that DOE has determined do not individually or cumulatively have a significant effect on the human environment (categorical exclusions). (b) To find that a proposal is categorically excluded, DOE shall determine the following:

322

Municipal solid waste disposal in Portugal  

SciTech Connect

In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.

Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Didelet, Filipe [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: ViriatoSemiao@ist.utl.pt

2006-07-01T23:59:59.000Z

323

Iraq nuclear facility dismantlement and disposal project  

SciTech Connect

The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)

Cochran, J.R.; Danneels, J. [Sandia National Laboratories, Albuquerque, NM (United States); Kenagy, W.D. [U.S. Department of State, Bureau of International Security and Nonproliferation, Office of Nuclear Energy, Safety and Security, Washington, DC (United States); Phillips, C.J.; Chesser, R.K. [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX (United States)

2007-07-01T23:59:59.000Z

324

Will new disposal regulations undo decades of progress?  

SciTech Connect

In 1980, the Belville Amendments to RCRA instructed EPA to 'conduct a detailed and comprehensive study and submit a report' to Congress on the 'adverse effects on human health and the environment, if any, of the disposal and utilization' of coal ash. In both 1988 and 1999, EPA submitted reports to Congress and recommended coal ash should not be regulated as hazardous waste. After the failure of a Tennesse power plant's coal ash disposal facility, EPA will be proposing new disposal regulations.

Ward, J. [John Ward Inc. (United States)

2009-07-01T23:59:59.000Z

325

Remedial Action and Waste Disposal Conduct of OperationsMatrix  

SciTech Connect

This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

M. A. Casbon.

1999-05-24T23:59:59.000Z

326

Commercial low-level radioactive waste disposal in the US  

SciTech Connect

Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

Smith, P.

1995-10-01T23:59:59.000Z

327

Selected biological investigations on deep sea disposal of industrial wastes  

E-Print Network (OSTI)

found at an actual disposal site with respect to waste dilution with time. This technique was incorporated into the standard 96-hour bioassay test to afford a means of obtaining preliminary information regarding the bioaccumulation of each waste... with time from the 16 ocean dispose 1 study by Ball (1973) Laboratory dilution setup used to simulate conditions found at an actual disposal site with regard to waste dilution. 18 20 CHAPTER I INTRODUCTION Until recently man haS considered...

Page, Sandra Lea

2012-06-07T23:59:59.000Z

328

System design for disposal of tritium at TFTR  

SciTech Connect

The Tokamak Fusion Test Reactor (TFTR) has cleanup systems which convert tritium gas to the oxide form and absorb it on molecular sieve beds. These beds are regenerated by transferring their moisture content to disposable sieve beds. Preparing this sieve for disposal can be awkward and hazardous. Monitoring the tritium and moisture content of the disposable sieve is not straightforward. Modifications to the regeneration system at the TFTR are being made to address these concerns and others relating to maintainability.

Tuohy, J.M.; Cherdack, R.; Lacy, N.H.

1988-09-01T23:59:59.000Z

329

Dredged and Fill Material Disposal (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dredged and Fill Material Disposal (North Dakota) Dredged and Fill Material Disposal (North Dakota) Dredged and Fill Material Disposal (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Siting and Permitting This chapter provides regulations for the disposal of dredged and fill

330

Hazardous Waste Treatment, Storage and Disposal Facilities (TSDF...  

Open Energy Info (EERE)

Treatment, Storage and Disposal Facilities (TSDF) Guidance Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

331

South Carolina Radioactive Waste Transportation and Disposal Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Health and Environmental Control is responsible for regulating the transportation of radioactive waste, with some exceptions, into or within the state for storage, disposal, or...

332

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

333

Canister design for deep borehole disposal of nuclear waste .  

E-Print Network (OSTI)

??The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories… (more)

Hoag, Christopher Ian.

2006-01-01T23:59:59.000Z

334

Fees For Disposal Of Hazardous Waste Or Substances (Alabama)  

Energy.gov (U.S. Department of Energy (DOE))

The article lists annual payments to be made to counties, restrictions on disposal of hazardous waste, additional fees collected by counties and penalties.

335

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-01-01T23:59:59.000Z

336

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy`s (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency`s (EPA`s) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-12-31T23:59:59.000Z

337

Erosion Control and Revegetation at DOE's Lowman Disposal Site...  

Office of Environmental Management (EM)

Site, Lowman, Idaho More Documents & Publications Title I Disposal Sites Annual Report Long-Term Surveillance and Maintenance Program 2003 Report Revegetation of the Rocky Flats...

338

Disposal Practices at the Savannah River Site | Department of...  

Office of Environmental Management (EM)

Site More Documents & Publications Compilation of ETR Summaries Disposal Practices at the Nevada Test Site 2008 Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned...

339

Solid Waste Disposal Facilities (Massachusetts) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Transportation Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the Massachusetts Department of Environmental Protection as well as the Department of Public

340

Microsoft Word - B-8.Replacement-3.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy Southeastern Power Administration Wholesale Rate Schedule Replacement-3 Availability: This rate schedule shall be available to public bodies and cooperatives ( any one of whom is hereinafter called the Customer) in Virginia, North Carolina, Tennessee, Georgia, Alabama, Mississippi, Kentucky and southern Illinois to whom power is provided pursuant to contracts between the Government and the customer from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, Cordell Hull, and Laurel Projects (all of such projects being hereinafter called collectively the "Cumberland Projects") . Applicability: This rate schedule shall be applicable to the sale of wholesale energy purchased to

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative Fuels Data Center: Clean Vehicle Replacement Vouchers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle Replacement Vouchers to someone by E-mail Share Alternative Fuels Data Center: Clean Vehicle Replacement Vouchers on Facebook Tweet about Alternative Fuels Data Center: Clean Vehicle Replacement Vouchers on Twitter Bookmark Alternative Fuels Data Center: Clean Vehicle Replacement Vouchers on Google Bookmark Alternative Fuels Data Center: Clean Vehicle Replacement Vouchers on Delicious Rank Alternative Fuels Data Center: Clean Vehicle Replacement Vouchers on Digg Find More places to share Alternative Fuels Data Center: Clean Vehicle Replacement Vouchers on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Vehicle Replacement Vouchers The Texas Commission on Environmental Quality administers the AirCheckTexas

342

Steam Plant Replaces Outdated Coal-Fired System | Department...  

Office of Environmental Management (EM)

Steam Plant Replaces Outdated Coal-Fired System September 1, 2012 - 12:00pm Addthis A new natural gas-fired steam plant will replace an older coal-fired steam plant shown here. The...

343

Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered...  

Energy Savers (EERE)

Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered Energy Systems May 1, 2014 - 9:33am...

344

Text-Alternative Version: LED Replacements for Linear Fluorescent Lamps  

Energy.gov (U.S. Department of Energy (DOE))

Below is the text-alternative version of the "LED Replacements for Linear Fluorescent Lamps" webcast, held June 20, 2011.

345

Computer Replacement Guidelines Environmental Health and Safety, Stanford University  

E-Print Network (OSTI)

Computer Replacement Guidelines Environmental Health and Safety, Stanford University 17 November 2005 This document describes the guidelines for replacing laptop and desktop computers at Environmental Health and Safety. PC laptop and desktop computers will be replaced a) on an ongoing basis where

346

Sludge utilization and disposal in Virginia  

SciTech Connect

This state-of-the-art study was initiated to determine the problem issues, present knowledge about the issues, and additional research needs in the area of land disposal of municipal sewage sludge. Three questionnaires were developed to survey technically oriented professional, county extension agents, and Virginia NPDES permit holders to obtain these groups' views on problems and deficiencies needing further investigation. Another phase of the study was to conduct an extensive review of the literature on the subject of land application of sewage sludge. Listings of pertinent literature relating to land application with specific interest toward potentially toxic metals, pathogens, nitrogen, and phosphorus were obtained and reviewed. Additional research is needed in the following areas: a method that accurately estimates metal availability within the soil; a method to determine the potential for a disease outbreak from controlled application of treated municipal sewage sludge; a more precise method of N-balancing; the impact of P loading on water quality.

Martens, D.C.; McCart, G.D.; Reneau, R.B. Jr; Simpson, T.W.; Ban-Kiat, T.

1982-10-01T23:59:59.000Z

347

Testing efficiency of storage in the subsurface: frio brine pilot experiment  

SciTech Connect

Can we demonstrate that subsurface storage is an effective method of reducing emissions of CO2 to the atmosphere? The Frio Brine Pilot Experiment is designed to test storage performance of a typical subsurface environment in an area where large-volume sources and sinks are abundant, near Houston, Texas, USA. We employed extensive pre-experiment characterization and modeling to identify significant factors that increase or decrease risk of leakage from the injection zone. We then designed the experiment to focus on those factors, as well as to test for presence or absence of events that are not expected. A fully developed reservoir model of heterogeneous reworked fluvial sandstones of the Frio Formation documents three-dimensional compartmentalization of the injection horizon by faulting associated with salt-dome intrusion and growth. Modeling using the TOUGH2 simulator showed that a significant source of uncertainty for subsurface performance of injected CO2 is residual CO2 saturation during storage. If initial displacement of water during injection is efficient and capillary effects create the expected residual saturation of 30 percent CO2, the volume occupied by the plume will be limited, and long-term storage can be expected even in an open system. If, however, during injection, CO2 moves out from the injection well along high-permeability pathways, it may not contact most pores, and residual saturation will have a smaller effect on storage. Our experiment is therefore designed to monitor plume geometry and CO2 saturation near the injection well and closely spaced observation well. Leakage out of the injection zone as a result of well engineering or other flaws in the seal is also monitored in the sandstone immediately overlying the injection zone and at the surface using multiple techniques. Permitting strategies include cooperation among two State agencies, as well as Federal NEPA assessment, because of the innovative aspects of the experiment.

Hovorka, Susan D.; Doughty, Christine; Holtz, Mark

2004-06-30T23:59:59.000Z

348

Technology transfer report: feasibility study for the use of geothermal brine in the Ashdod area, Israel  

SciTech Connect

The hydrothermal potential of the Ashdod area, Israel, was evaluated to determine its suitability as the low grade energy source required to operate the Ashdod desalination plant. An estimated 1250 cubic meters per hour of 120/sup 0/C brine would be adequate to supply the hot water necessary for operating the desalination plant. Considerable interest in oil exploration in the Ashdod area resulted in the drilling of six wells into the Jurassic formations by Oil Exploration (Investments) Ltd. (OEL) in 1976-1980. A small amount of oil was found in two wells, Ashdod 2 and 5. The remaining wells were abandoned as ''dry holes''. Evaluation of the drill cuttings, cores, and the electric logs defined two lithologic units of potential interest for hydrothermal exploitation, the Zohar and Shderot Dolomites. Investigation of the hydrothermal potential of the Jurassic formations underlying the Ashdod area has revealed that the aquifer temperatures range between 85 and 92/sup 0/C. The hydrologic parameters are not well defined; however the matrix permeability of the dolomites and limestones is probably between 1 and 10 md. This is insufficient permeability for a large scale pumping operation such as the one required to operate the desalination plant. Therefore, successful utilization of the resource requires the presence of significant fractures and/or connected vugs in the formation. The very low well productivity and formation plugging may indicate that permeability of the fracture zones may easily be impaired, suggesting that the fracture zones are not suitable production intervals. Until a test is conducted on a properly completed well, it is not possible to evaluate the deliverability of wells tapping these aquifers. 14 refs., 8 figs.

Benson, S.M.

1984-08-01T23:59:59.000Z

349

Sorting and disposal of hazardous laboratory Radioactive waste  

E-Print Network (OSTI)

Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ½ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

Maoz, Shahar

350

1 INSTRODUCTION In the concept of geological radioactive waste disposal,  

E-Print Network (OSTI)

1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being of the radioactive waste disposal, the host rock will be subjected to various thermo-hydro-mechanical loadings, thermal solicitation comes from the heat emitting from the radioactive waste packages. On one hand

Boyer, Edmond

351

A model approach to radioactive waste disposal at Sellafield  

E-Print Network (OSTI)

A model approach to radioactive waste disposal at Sellafield R. 5. Haszeldine* and C. Mc of the great environmentalproblems of our age is the safe disposal of radioactive waste for geological time periods. Britain is currently investigating a potential site for underground burial of waste, near

Haszeldine, Stuart

352

User Guide for Disposal of Unwanted Items and Electronic Waste  

E-Print Network (OSTI)

is the Recycle department at 502-6808 o For more information on the UCSF Sustainability program visit: http://sustainability.ucsf.edu/stay_informed/recycling_resources consulting support Ensuring proper reuse, recycle, or disposal Maintaining regulatory and policy compliance metal and wood o Waste/trash management o Recycle, reuse or disposal of materials D&S does not process o

Mullins, Dyche

353

Solid waste disposal options: an optimum disposal model for the management of municipal solid waste  

E-Print Network (OSTI)

and compostable material was generally burned in backyards. In 1970, the Clean Air Act was passed restricting the burning of leaves and other yard waste. ' These wastes were then disposed in landfills. As landfills reached capacity, commu- nities composted... separation pro- grams because of their "throw-away" mentality. " ~ln in r ttgtt Incineration is the controlled burning of the combustible fraction of solid waste. The first electrical generating station in the United States that was fueled by solid waste...

Haney, Brenda Ann

2012-06-07T23:59:59.000Z

354

2009 Performance Assessment for the Saltstone Disposal Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance Assessment for the Saltstone Disposal Facility Performance Assessment for the Saltstone Disposal Facility 2009 Performance Assessment for the Saltstone Disposal Facility This Performance Assessment (PA) for the Savannah River Site (SRS) was prepared to support the operation and eventual closure of the Saltstone Disposal Facility (SDF). This PA was prepared to demonstrate compliance with the pertinent requirements of the United States Department of Energy (DOE) Order 435.1, Change 1, Radioactive Waste Management, Chapter IV, and Title 10, of the Code of Federal Regulations (CFR) Part 61, Licensing Requirements for Land Disposal of Radioactive Waste, Subpart C as required by the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, Section 3116. [DOE O 435.1-1, 10 CFR 61, NDAA_3116]

355

Used Fuel Disposition Campaign Disposal Research and Development Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Research and Development Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of SNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been made in the U.S and other nations, but gaps in knowledge still exist. This document provides an evaluation and prioritization of R&D opportunities

356

DOE - Office of Legacy Management -- Cheney Disposal Cell - 008  

NLE Websites -- All DOE Office Websites (Extended Search)

Cheney Disposal Cell - 008 Cheney Disposal Cell - 008 FUSRAP Considered Sites Site: Cheney Disposal Cell (008) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: All of the uranium mill tailings and other residual radioactive materials from the former Grand Junction uranium mill site were disposed of in this dedicated disposal cell. The cell is authorized to remain open until 2003 to accept any additional byproduct materials from Title I UMTRA sites and the Monticello, Utah site; e.g. materials from additional vicinity properties that may be identified. The Department of Energy¿s Grand Junction Office is responsible for Long Term Surveillance and Maintenance

357

Summary - Disposal Practices at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR-19 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Disposal Practices at the Savannah River Site Why DOE-EM Did This Review Disposal operations have been ongoing at the Savannah River Site (SRS) for over 50 years. Active disposal in E-Area, is near the center of the site. Although a wide range of wastes are being managed at the SRS, only low level radioactive wastes (LLRW) are disposed of on site. Wastes are disposed of in unlined slit and engineered trenches, and in low activity waste and intermediate level vaults. Some wastes are isolated in place with grout and all wastes will be covered with a cap that includes a hydraulic barrier to limit precipitation infiltration. The objective of this review was to

358

Low-Level Waste Disposal Facility Federal Review Group Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcili~l' Federal Review Group il1allUlli Revision 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group Manual, Revision 3, is approved for use as of the most recent date below. Date Chair, Low-Level Waste Disposal Federal Review Group Andrew WalJo, 1II Deputy Director, Otlice of Nuclear Safety, Quality Assurance, and Environment Department of Energy OHlce of Health, Safety, and Security e C. WilJiams Associate Administrator for Infrastructure and Environment National Nuclear Security Administration Low-Level 'Vaste Disposal Facility Federal Review Group J1aJll/ai

359

NNSA Reaches LEU Disposal Milestone | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Reaches LEU Disposal Milestone | National Nuclear Security Reaches LEU Disposal Milestone | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > NNSA Reaches LEU Disposal Milestone NNSA Reaches LEU Disposal Milestone November 08, 2004 Aiken, SC NNSA Reaches LEU Disposal Milestone The National Nuclear Security Administration's reached an important

360

OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE December 1, 2010 - 12:00pm Addthis OAK RIDGE CERCLA DISPOSAL FACILITY ACHIEVES SAFETY MILESTONE Oak Ridge, TN - The Environmental Management Waste Management Facility (EMWMF) provides the onsite disposal capability for the majority of cleanup-generated wastes on the Oak Ridge Reservation. EMWMF has continued a long-standing pattern of safe, complaint operations with 3,000 days without a lost workday case since operations commenced on May 28, 2002. The EMWMF has placed 1.5 million tons of waste and fill in the facility. The EMWMF receives waste from many Oak Ridge cleanup projects, including American Recovery and Reinvestment Act-funded projects, multiple

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Drilling Waste Management Fact Sheet: Offsite Disposal at Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Disposal Facilities Commercial Disposal Facilities Fact Sheet - Commercial Disposal Facilities Although drilling wastes from many onshore wells are managed at the well site, some wastes cannot be managed onsite. Likewise, some types of offshore drilling wastes cannot be discharged, so they are either injected underground at the platform (not yet common in the United States) or are hauled back to shore for disposal. According to an American Petroleum Institute waste survey, the exploration and production segment of the U.S. oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes in 1985. The report estimates that 28% of drilling wastes are sent to offsite commercial facilities for disposal (Wakim 1987). A similar American Petroleum Institute study conducted ten years later found that the volume of drilling waste had declined substantially to about 150 million bbl.

362

Research, Development, and Demonstration Roadmap for Deep Borehole Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research, Development, and Demonstration Roadmap for Deep Borehole Research, Development, and Demonstration Roadmap for Deep Borehole Disposal Research, Development, and Demonstration Roadmap for Deep Borehole Disposal This roadmap is intended to advance deep borehole disposal (DBD) from its current conceptual status to potential future deployment as a disposal system for spent nuclear fuel (SNF) and high-level waste (HLW). The objectives of the DBD RD&D roadmap include providing the technical basis for fielding a DBD demonstration project, defining the scientific research activities associated with site characterization and postclosure safety, as well as defining the engineering demonstration activities associated with deep borehole drilling, completion, and surrogate waste canister emplacement. Research, Development, and Demonstration Roadmap for Deep Borehole Disposal

363

RECORD OF CATEGORICAL EXCLUSION DETERMINATION Project ID No. BM-MM-1152A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

152A 152A Title: BM Brine Disposal Pump Replacement (GFE) Description: Subcontractor shall provide all labor, materials, tools, equipment, supervision, and transportation required to supply two pumps to replace the existing Bryan Mound brine disposal pumps, BMP-115 and BMP-116. Task include providing two completely assembled brine disposal pumps with base and motor as government furnished equipment (GFE). Installation of the pumps will be performed by others. Regulatory Requirements: NEPA Implementing Procedures (10 CFR 1021) 10 CFR 1021.410 (Application of Categorical Exclusions) (a) The actions listed in Appendices A and B of Subpart D are classes of actions that DOE has determined do not individually or cumulatively have a significant effect on the human environment

364

Do You Have Windows That Need Replacing? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Have Windows That Need Replacing? Do You Have Windows That Need Replacing? Do You Have Windows That Need Replacing? August 3, 2012 - 2:11pm Addthis This week, Andrea shared the first part of her two-part story about how she replaced her more than 20-year-old windows with new, energy-efficient ones. Replacing old windows can be a great way to reduce the amount of warm and cool air (depending on the season) is leaking right out of your home. This week, we're wondering: Do you have windows that need replacing, too? Do you have any plans to replace them with newer, more efficient windows? You have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles

365

Replacing Incandescent Lightbulbs and Ballasts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Replacing Incandescent Lightbulbs and Ballasts Replacing Incandescent Lightbulbs and Ballasts Replacing Incandescent Lightbulbs and Ballasts July 29, 2012 - 5:16pm Addthis Many incandescent lightbulbs can be replaced with more energy efficient options. | Photo courtesy of ©iStockphoto.com/ClarkandCompany. Many incandescent lightbulbs can be replaced with more energy efficient options. | Photo courtesy of ©iStockphoto.com/ClarkandCompany. What does this mean for me? For the greatest energy efficiency, use new fixtures with new lightbulbs. Replace A-type lightbulbs with more energy-efficient options such as CFLs, LEDs, and energy-saving (halogen) incandescents. Matching replacement lightbulbs to existing fixtures and ballasts can be tricky, especially with older fixtures. Using new fixtures made for new

366

Replaces EIA-459E OMB Control No.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 (04-94) Replaces EIA-459E OMB Control No. 1910-0400 U.S. DEPARTMENT OF ENERGY FEDERAL ASSISTANCE MANAGEMENT SUMMARY REPORT Page of Public reporting burden for this collection of information is estimated to average 3.38 hours per response, including the time for reviewing instructions, search- ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Office of Information Resources Management Policy, Plans, and Oversight, Records Management Division, HR-422 - GTN, Paperwork Reduction Project (1910-0400), U.S. Department of Energy, 1000 Independence Avenue, S.W., Washington, DC 20585; and to the Office of Management and Budget (OMB), Paperwork Reduction Project

367

Replaces DOE F 5120.2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

700.2 700.2 (09-93) Replaces DOE F 5120.2 (02-90) edition may be used 1. INITIATOR: NAME & SIGNATURE ORGANIZATION CODE TELEPHONE NO. 2. PROJECT TITLE: 3. RESPONSIBLE ASSISTANT SECRETARY: 4. RESPONSIBLE OPERATIONS OFFICE: 5. M&O CONTRACTOR NAME: 6. WORK AUTHORIZATION NO.: FUNDS HEREBY AUTHORIZED 7. REVISION: B&R No. $000 13. WORK AUTHORIZED: (Brief description, schedule, results or products and reporting requirements, and any shifting of funds permitted within the work authorization): U.S. DEPARTMENT OF ENERGY Management & Operating (M&O) Contract Work Authorization WORK AUTHORIZATION 14. WORK AUTHORIZATION OFFICIAL: 15. OPERATIONS OFFICE OFFICIAL: 16. M&O CONTRACTOR OFFICIAL: NAME & SIGNATURE DATE 9. PERFORMANCE PERIOD COVERED BY

368

Generic Argillite/Shale Disposal Reference Case  

SciTech Connect

Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jové Colon et al. (2014).

Zheng, Liange; Jov& #233; Colon, Carlos; Bianchi, Marco; Birkholzer, Jens

2014-08-08T23:59:59.000Z

369

Selection of a method for disposing of leachate grout  

SciTech Connect

A major component of the selected remedy for the remediation of the Maxey Flats Disposal Site (MFDS) is the removal, solidification, and on-site disposal of an estimated 3000000 gal of trench leachate. The Record of Decision (ROD) and its predecessor, the Maxey Flats Feasibility Study Report, proposed as a representative process option that the trench leachate be solidified in the form of large (8 x 8 x 4 ft) concrete blocks and disposed of in trenches. The U.S. Environmental Protection Agency (EPA) had recent experience with this method when solidifying and disposing of {approximately}300000 gal of leachate that was stored in above-ground tanks at the MFDS. The EPA experience proved the capability of a U.S. Nuclear Regulatory Commission (NRC)-approved grout mix to satisfy the requirements of 10CFR61.55-56 for the Class-A liquid waste at the site, i.e., the leachate. However, a technical evaluation of the overall solidification/disposal process implemented by the EPA identified some steps that should be improved if this method is to be implemented safely and efficiently for the solidification and disposal of trench leachate as part of the remedial action. In the light of the EPA experience, the present study modified the option proposed in the ROD to make it more workable. This study also evaluated other methods, including three methods for above grade disposal.

Cockrell, R.G.

1994-12-31T23:59:59.000Z

370

Modifications of Carbonate Fracture Hydrodynamic Properties by CO{sub 2}-Acidified Brine Flow  

SciTech Connect

Acidic reactive flow in fractures is relevant in subsurface activities such as CO{sub 2} geological storage and hydraulic fracturing. Understanding reaction-induced changes in fracture hydrodynamic properties is essential for predicting subsurface flows such as leakage, injectability, and fluid production. In this study, x-ray computed tomography scans of a fractured carbonate caprock were used to create three dimensional reconstructions of the fracture before and after reaction with CO{sub 2}-acidified brine (Ellis et al., 2011, Greenhouse Gases: Sci. Technol., 1:248-260). As expected, mechanical apertures were found to increase substantially, doubling and even tripling in some places. However, the surface geometry evolved in complex ways including ‘comb-tooth’ structures created from preferential dissolution of calcite in transverse sedimentary bands, and the creation of degraded zones, i.e. porous calcite-depleted areas on reacted fracture surfaces. These geometric alterations resulted in increased fracture roughness, as measured by surface Z{sub 2} parameters and fractal dimensions D{sub f}. Computational fluid dynamics (CFD) simulations were conducted to quantify the changes in hydraulic aperture, fracture transmissivity and permeability. The results show that the effective hydraulic apertures are smaller than the mechanical apertures, and the changes in hydraulic apertures are nonlinear. Overestimation of flow rate by a factor of two or more would be introduced if fracture hydrodynamic properties were based on mechanical apertures, or if hydraulic aperture is assumed to change proportionally with mechanical aperture. The differences can be attributed, in part, to the increase in roughness after reaction, and is likely affected by contiguous transverse sedimentary features. Hydraulic apertures estimated by the 1D statistical model and 2D local cubic law (LCL) model are consistently larger than those calculated from the CFD simulations. In addition, a novel ternary segmentation method was devised to handle the degraded zones, allowing for a bounding analysis of the effects on hydraulic properties. We found that the degraded zones account for less than 15% of the fracture volume, but cover 70% to 80% of the fracture surface. When the degraded zones are treated as part of the fracture, the fracture transmissivities are two to four times larger because the fracture surfaces after reaction are not as rough as they would be if one considers the degraded zone as part of the rock. Therefore, while degraded zones created during geochemical reactions may not significantly increase mechanical aperture, this type of feature cannot be ignored and should be treated with prudence when predicting fracture hydrodynamic properties.

Deng, Hang; Ellis, Brian R.; Peters, Catherine A.; Fitts, Jeffrey P.; Crandall, Dustin; Bromhal, Grant S.

2013-08-01T23:59:59.000Z

371

On-Site Disposal Facility Inspection Report  

Office of Legacy Management (LM)

8947.1 8947.1 09/13 On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 09/13 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 09/13 North Face Cell 1 North Drainage (looking west) 6319D-6206 6319D-6205 8947.4 09/13 East Face Cell 2 West Face Cell 2 6319D-6230 6319D-6209 8947.5 09/13 East Face Cell 3 West Face Cell 3 6319D-6229 6319D-6210 8947.6 09/13 East Face Cell 4 West Face Cell 4 6319D-6227 6319D-62111 8947.7 09/13 East Face Cell 5 West Face Cell 5 6319D-6226 6319D-6213 8947.8 09/13 East Face Cell 6 6319D-6214 6319D-6225 West Face Cell 6 8947.9 09/13 East Face Cell 7 6319D-6215 6319D-6223 West Face Cell 7 8947.10 09/13 East Face Cell 8 6319D-6217 6319D-6220 West Face Cell 8 8947.11 09/13 South Face Cell 8 6319D-6219 6319D-6218 South Drainage (looking west) 8947.12 09/13

372

Fluorescent ballast and lamp disposal issues  

SciTech Connect

All around the world, governments, utility companies, and private businesses are attempting to reduce the amount of energy consumed. In the US alone, new economic strategies and programs are being created to facilitate this process. For instance, the recent enactment of the National Energy Policy Act, the Environmental Protection Agency`s (EPA) Green Lights Program, and a surge of utility involvement in Demand Side Management (DSM) Commercial/Industrial Direct Install and Rebate Programs. Many of these problems target commercial/industrial lighting system retrofits as one of the most cost effective avenues for reducing the consumption of energy. Due to this trend, hundreds of millions of lighting ballasts and lamps are being discarded. The benefits of these programs result in enormous reductions in fossil fuels (and subsequent carbon dioxide, sulfur dioxide, and nitrogen oxide emissions) required to generate the displaced electricity. Throughout the US, however, there is an increasing concern for the environmental impacts surrounding the accelerated disposal of both lighting ballasts and lamps. Regulations initially established were for a one by one, retirement (failure) process rather than promoted obsolescence and forced retirement of lamp groups or entire systems (truckloads of old technologies). Recognizing this trend and the potential negative environmental effects, federal, state, and local regulators are reevaluating the impacts and are being asked to promulgate policies to specifically address this situation.

Leishman, D.L. [Alta Resource Management Services, Inc., Springfield, MA (United States)

1996-12-01T23:59:59.000Z

373

Disposal of Rocky Flats residues as waste  

SciTech Connect

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Rivera, M.A. [Lamb Associates, Inc., Rockville, MD (United States)

1993-03-01T23:59:59.000Z

374

Disposal of Rocky Flats residues as waste  

SciTech Connect

Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

Dustin, D.F.; Sendelweck, V.S. (EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant); Rivera, M.A. (Lamb Associates, Inc., Rockville, MD (United States))

1993-01-01T23:59:59.000Z

375

Effects of a sulfide system produced by a natural brine seep on sandy-bottom community structure at the East Flower Garden Bank, northwest Gulf of Mexico  

E-Print Network (OSTI)

EFFECTS OF A SULFIDE SYSTEM PRODUCED BY A NATURAL BRINE SEEP ON SANDY-BOTTOM COI'1MUNITY STRUCTURE AT THE EAST FLOWER GARDEN BANK, NORTHWEST GULF OF MEXICO A Thesis by EDWARD ANDREW WOODS Submitted to the Graduate College of Texas ASM... University in partia 1 fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1982 Major Subject: Oceanography EFFECTS OF A SULFIDE SYSTEM PRODUCED BY A NATURAL BRINE SEEP ON SANDY-BOTTOM COMMUNITY STRUCTURE AT THE EAST FLOWER...

Woods, Edward Andrew

2012-06-07T23:59:59.000Z

376

Rules and Regulations for the Disposal of Low-Level Radioactive Waste (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to the disposal of low-level radioactive waste, disposal facilities, and applicable fees.

377

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Christine...

378

Systems engineering programs for geologic nuclear waste disposal  

SciTech Connect

The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

1980-06-01T23:59:59.000Z

379

Analysis of alternatives for immobilized low activity waste disposal  

SciTech Connect

This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

Burbank, D.A.

1997-10-28T23:59:59.000Z

380

Demilitarization and disposal technologies for conventional munitions and energetic materials  

SciTech Connect

Technologies for the demilitarization and disposal of conventional munitions and energetic materials are presented. A hazard separation system has been developed to remove hazardous subcomponents before processing. Electronic component materials separation processes have been developed that provide for demilitarization as well as the efficient recycling of materials. Energetic materials demilitarization and disposal using plasma arc and molten metal technologies are currently being investigated. These regulatory compliant technologies will allow the recycling of materials and will also provide a waste form suitable for final disposal.

Lemieux, A.A.; Wheelis, W.T.; Blankenship, D.M.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Replacement-1 Wholesale Power Rate Schedule | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Replacement-1 Wholesale Power Rate Schedule Replacement-1 Wholesale Power Rate Schedule Replacement-1 Wholesale Power Rate Schedule Area: Replacement Energy System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, Florida, South Carolina, or North Carolina to whom power is provided pursuant to contracts between the Government and the Customer. This rate schedule shall be applicable to the sale at wholesale energy purchased to meet contract minimum energy and sold under appropriate contracts between the Government and the Customer. Document Available for Download Replacement-1 Rate Schedule More Documents & Publications Replacement-3 Wholesale Power Rate Schedule

382

222-S radioactive liquid waste line replacement and 219-S secondary containment upgrade, Hanford Site, Richland, Washington  

SciTech Connect

The U.S. Department of Energy (DOE) is proposing to: (1) replace the 222-S Laboratory (222-S) radioactive liquid waste drain lines to the 219-S Waste Handling Facility (219-S); (2) upgrade 219-S by replacing or upgrading the waste storage tanks and providing secondary containment and seismic restraints to the concrete cells which house the tanks; and (3) replace the transfer lines from 219-S to the 241-SY Tank Farm. This environmental assessment (EA) has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of NEPA (40 Code of Federal Regulations [CFR] 1500-1508), and the DOE Implementing Procedures for NEPA (10 CFR 1021). 222-S is used to perform analytical services on radioactive samples in support of the Tank Waste Remediation System and Hanford Site environmental restoration programs. Activities conducted at 222-S include decontamination of analytical processing and support equipment and disposal of nonarchived radioactive samples. These activities generate low-level liquid mixed waste. The liquid mixed waste is drained through pipelines in the 222-S service tunnels and underground concrete encasements, to two of three tanks in 219-S, where it is accumulated. 219-S is a treatment, storage, and/or disposal (TSD) unit, and is therefore required to meet Washington Administrative Code (WAC) 173-303, Dangerous Waste Regulations, and the associated requirements for secondary containment and leak detection. The service tunnels are periodically inspected by workers and decontaminated as necessary to maintain as low as reasonably achievable (ALARA) radiation levels. Although no contamination is reaching the environment from the service tunnels, the risk of worker exposure is present and could increase. 222-S is expected to remain in use for at least the next 30 years to serve the Hanford Site environmental cleanup mission.

NONE

1995-01-01T23:59:59.000Z

383

Window Replacement, Rehabilitation, & Repair Guides- Building America Top Innovation  

Energy.gov (U.S. Department of Energy (DOE))

Building America team Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

384

Replacement, Variable-Speed Motors for Furnaces, Syracuse, New...  

Energy Savers (EERE)

replace- ment for PSC motors in many homes. To date, CARB has upgraded six systems with Concept 3 motors. Upgrading a fan motor is usually very straightforward. Once...

385

"Green" Replacement for Industrial Applications of Polar Organic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Advanced Materials Advanced Materials Find More Like This Return to Search "Green" Replacement for Industrial Applications of Polar Organic Solvents University of...

386

Sustainable LED Fluorescent Light Replacement Technology  

SciTech Connect

Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: • Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life. • Environmental Impact Review – Designs are comparable across lifecycle phases, subsystems, and environmental impact category, and can be normalized to a userdefined functional unit. • Drill-down Review – These provide an indepth look at individual lamp designs with the ability to review across subsystem or lifecycle phase.

None

2011-06-30T23:59:59.000Z

387

A Critical Step Toward Sustainable Nuclear Fuel Disposal | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal January 26, 2012 - 2:30pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy The Blue Ribbon Commission on America's Nuclear Future was formed at the direction of the President to conduct a comprehensive review of polices for managing the back end of the nuclear fuel cycle. If we are going to ensure that the United States remains at the forefront of nuclear safety and security, non-proliferation, and nuclear energy technology we must develop an effective strategy and workable plan for the safe and secure management and disposal of used nuclear fuel and nuclear waste. That is why I asked General Scowcroft and Representative Hamilton to draw on their

388

Repository Reference Disposal Concepts and Thermal Load Management Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repository Reference Disposal Concepts and Thermal Load Management Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are identified: 1) "open" where extended ventilation can remove heat for many years following waste emplacement underground; and 2) "enclosed" modes for clay/shale and salt media where waste packages are emplaced in direct or close contact with natural or engineered materials which may have temperature limits that constrain thermal

389

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

390

Disposing of nuclear waste in a salt bed  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposing of nuclear waste in a salt bed Disposing of nuclear waste in a salt bed 1663 Los Alamos science and technology magazine Latest Issue:November 2013 All Issues » submit Disposing of nuclear waste in a salt bed Decades' worth of transuranic waste from Los Alamos is being laid to rest at the Waste Isolation Pilot Plant in southeastern New Mexico March 25, 2013 Disposing of nuclear waste in a salt bed Depending on the impurities embedded within it, the salt from WIPP can be anything from a reddish, relatively opaque rock to a clear crystal like the one shown here. Ordinary salt effectively seals transuranic waste in a long-term repository Transuranic waste, made of items such as lab coats and equipment that have been contaminated by radioactive elements heavier than uranium, is being shipped from the Los Alamos National Laboratory to a long-term storage

391

Repository Reference Disposal Concepts and Thermal Load Management Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repository Reference Disposal Concepts and Thermal Load Management Repository Reference Disposal Concepts and Thermal Load Management Analysis Repository Reference Disposal Concepts and Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clay/shale, salt, crystalline, other sedimentary), and the engineering concept of operations (range of generic operational concepts examined). Two major categories for waste package emplacement modes are identified: 1) "open" where extended ventilation can remove heat for many years following waste emplacement underground; and 2) "enclosed" modes for clay/shale and salt media where waste packages are emplaced in direct or close contact with natural or engineered materials which may have temperature limits that constrain thermal

392

Disposal Systems Evaluations and Tool Development - Engineered Barrier  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Systems Evaluations and Tool Development - Engineered Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation Disposal Systems Evaluations and Tool Development - Engineered Barrier System (EBS) Evaluation The engineered barrier system (EBS) plays a key role in the long-term isolation of nuclear waste in geological repository environments. This report focuses on the progress made in the evaluation of EBS design concepts, assessment of clay phase stability at repository-relevant conditions, thermodynamic database development for cement and clay phases, and THMC coupled phenomena along with the development of tools and methods to examine these processes. This report also documents the advancements of the Disposal System Evaluation Framework (DSEF) for the development of

393

Integration of EBS Models with Generic Disposal System Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the Used Fuel Disposition campaign. This report addresses: predictive model capability for used nuclear fuel degradation based on electrochemical and thermodynamic principles, radiolysis model to evaluate the U(VI)-H2O-CO2 system, steps towards the evaluation of uranium alteration products, discussion of instant release fraction (IRF) of radionuclides from the nuclear fuel, and

394

Integration of EBS Models with Generic Disposal System Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models Integration of EBS Models with Generic Disposal System Models This report summarizes research activities on engineered barrier system (EBS) model integration with the generic disposal system model (GDSM), and used fuel degradation and radionuclide mobilization (RM) in support of the EBS evaluation and tool development within the Used Fuel Disposition campaign. This report addresses: predictive model capability for used nuclear fuel degradation based on electrochemical and thermodynamic principles, radiolysis model to evaluate the U(VI)-H2O-CO2 system, steps towards the evaluation of uranium alteration products, discussion of instant release fraction (IRF) of radionuclides from the nuclear fuel, and

395

Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwestern Low-Level Radioactive Waste Disposal Compact (South Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider Southwestern Low-Level Radioactive Waste Commission This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste. The Compact is administered by a commission, which can regulate and impose fees on in-state radioactive waste generators. The states of Arizona, California,

396

Shell keeps its options open for disposing of Brent Spar  

Science Journals Connector (OSTI)

... Brent Spar, may lead to similar disposal of 50 deep-water oil installations in UK offshore waters that are next in line for decommissioning, Johnston says. "No one knows ... this would have on the marine environment."

Ehsan Masood

1995-08-03T23:59:59.000Z

397

Waste Disposal Site and Radioactive Waste Management (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

398

Proof of Proper Solid Waste Disposal (West Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This rule provides guidance to persons occupying a residence or operating a business establishment in this state regarding the approved method of providing proof of proper solid waste disposal to...

399

Burning Chemical Waste Disposal Site: Investigation, Assessment and Rehabilitation  

Science Journals Connector (OSTI)

A series of underground fires on a site previously used for disposal of chemical wastes from the nylon industry was causing a nuisance and restricting the commercial development of the site and adjacent areas....

D. L. Barry; J. M. Campbell; E. H. Jones

1990-01-01T23:59:59.000Z

400

A microelectronic design for low-cost disposable chemical sensors  

E-Print Network (OSTI)

This thesis demonstrates the novel concept and design of integrated microelectronics for a low-cost disposable chemical sensor. The critical aspects of this chemical sensor are the performance of the microelectronic chip ...

Laval, Stuart S. (Stuart Sean), 1980-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Figure ES2. Annual Indices of Real Disposable Income, Vehicle...  

U.S. Energy Information Administration (EIA) Indexed Site

ES2 Figure ES2. Annual Indices of Real Disposable Income, Vehicle-Miles Traveled, Consumer Price Index (CPI-U), and Real Average Retail Gasoline Price, 1978-2004, 1985100...

402

Nuclear Waste Disposal: Yucca Blowup Theory Bombs, Says Study  

Science Journals Connector (OSTI)

...leaked into the storage area, the depleted uranium would quickly saturate it, making...disposing of the 400,000 tons of depleted uranium left over from the arms race...andotherbranches ofthe Public Health Service must demonstrate that...

Gary Taubes

1996-03-22T23:59:59.000Z

403

Canister design for deep borehole disposal of nuclear waste  

E-Print Network (OSTI)

The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories using currently available and proven oil, gas, and geothermal drilling ...

Hoag, Christopher Ian

2006-01-01T23:59:59.000Z

404

Design and Installation of a Disposal Cell Cover Field Test ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

through March 3, 2011, Phoenix, Arizona. C.H. Benson, W.J. Waugh, W.H. Albright, G.M. Smith, R.P. Bush Design and Installation of a Disposal Cell Cover Field Test More Documents...

405

Draft Environmental Impact Statement for the Disposal of Greater...  

NLE Websites -- All DOE Office Websites (Extended Search)

Friday, February 18, 2011 Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and GTCC-Like Waste WASHINGTON The...

406

Disposable Bioreactors for Inoculum Production and Protein Expression  

Science Journals Connector (OSTI)

Table 1 summarizes the disposable bioreactors available on the market today for animal cells and culture volumes from 2.5 mL up to 500 L. If traditional ...

Regine Eibl; Dieter Eibl

2007-01-01T23:59:59.000Z

407

Salt disposal of heat-generating nuclear waste.  

SciTech Connect

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01T23:59:59.000Z

408

Land disposal of water treatment plant sludge -- A feasibility analysis  

SciTech Connect

In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

1998-07-01T23:59:59.000Z

409

Geological Disposal Concept Selection Aligned with a Voluntarism Process - 13538  

SciTech Connect

The UK's Radioactive Waste Management Directorate (RWMD) is currently at a generic stage in its implementation programme. The UK site selection process is a voluntarist process and, as yet, no communities have decided to participate. RWMD has set out a process to describe how a geological disposal concept would be selected for the range of higher activity wastes in the UK inventory, including major steps and decision making points, aligned with the stages of the UK site selection process. A platform of information is being developed on geological disposal concepts at various stages of implementation internationally and, in order to build on international experience, RWMD is developing its approach to technology transfer. The UK has a range of different types of higher activity wastes with different characteristics; therefore a range of geological disposal concepts may be needed. In addition to identifying key aspects for considering the compatibility of different engineered barrier systems for different types of waste, RWMD is developing a methodology to determine minimum separation distances between disposal modules in a co-located geological disposal facility. RWMD's approach to geological disposal concept selection is intended to be flexible, recognising the long term nature of the project. RWMD is also committed to keeping alternative radioactive waste management options under review; an approach has been developed and periodic reviews of alternative options will be published. (authors)

Crockett, Glenda; King, Samantha [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)] [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

2013-07-01T23:59:59.000Z

410

University of Delaware Laboratory Chemical Waste Disposal Guide ALL CHEMICAL WASTE MUST BE DISPOSED OF THROUGH THE  

E-Print Network (OSTI)

experiments and procedures Non-Returnable gas cylinders Batteries Spent solvents, Stains, Strippers, Thinners, Fertilizers Formaldehyde and Formalin Solutions Mercury containing items (other heavy metals) Liquid OR SMALL CONTAINERS IMPORTANT: DO NOT DISPOSE OF REACTIVE, AIR SENSITIVE, OR OXIDIZER SAMPLES

Firestone, Jeremy

411

Metamorphosed Plio-Pleistocene evaporites and the origins of hypersaline brines in the Salton Sea geothermal system, California: Fluid inclusion evidence  

SciTech Connect

The Salton Sea geothermal system (SSGS) occurs in Plio-Pleistocene deltaic-lacustrine-evaporite sediments deposited in the Salton Trough, an active continental rift zone. Temperatures up to 365{degree}C and hypersaline brines with up to 26 wt.% TDS are encountered at 1-3 km depth in the sediments, which are undergoing active greenschist facies hydrothermal metamorphism. Previous models for the origins of the Na-Ca-K-Cl brines have assumed that the high salinities were derived mainly from the downward percolation of cold, dense brines formed by low-temperature dissolution of shallow non-marine evaporites. New drillcores from the central part of the geothermal field contain metamorphosed, bedded evaporites at 1 km depth consisting largely of hornfelsic anhydrite interbedded with anhydrite-cemented solution-collapse shale breccias. Fluid inclusions trapped within the bedded and breccia-cementing anhydrite homogenize at 300{degree}C and contain saline Na-Ca-K-Cl brines. Some of the inclusions contain up to 50 vol.% halite, sylvite and carbonate crystals at room temperature, and some halite crystals persist to above 300{degree}C upon laboratory heating. The data are consistent with the trapping of halite-saturated Na-Ca-K-Cl fluids during hydrothermal metamorphism of the evaporites and accompanying solution collapse of interbedded shales. The authors conclude that many of the slat crystals in inclusions are the residuum of bedded evaporitic salt that was dissolved during metamorphism by heated connate fluids.

McKibben, M.A.; Williams, A.E.; Okubo, Susumu (Univ. of California, Riverside (USA))

1988-05-01T23:59:59.000Z

412

Results of brine flow testing and disassembly of a crushed salt/bentonite block seal at the Waste Isolation Pilot Plant  

SciTech Connect

The Small-Scale Seal Performance Tests, Series C, a set of in situ experiments conducted at the Waste Isolation Pilot Plant, are designed to evaluate the performance of various seal materials emplaced in large (0.9-m-diameter) boreholes. This report documents the results of fluid (brine) flow testing and water and clay content analyses performed on one emplaced seal comprised of 100% salt blocks and 50%/50% crushed salt/bentonite blocks and disassembled after nearly three years of brine injection testing. Results from the water content analyses of 212 samples taken from within this seal show uniform water content throughout the 50%/50% salt/bentonite blocks with saturations about 100%. Clay content analyses from the 100% salt endcaps of the seal show a background clay content of about 1% by weight uniformly distributed, with the exception of samples taken at the base of the seal at the borehole wall interface. These samples show clay contents up to 3% by weight, which suggests some bentonite may have migrated under pressure to that interface. Results of the brine-flow testing show that the permeability to brine for this seal was about 2 to 3 {times} 10{sup {minus}4} darcy (2 to 3 {times} 10{sup {minus}16} m{sup 2}).

Finley, R.E. [Sandia National Labs., Albuquerque, NM (United States); Jones, R.L. [Tech. Reps., Inc., Albuquerque, NM (United States)

1994-03-01T23:59:59.000Z

413

Potential for the localized corrosion of alloy 22 Waste Packages in Multiple-Salt Deliquescent Brines in the Yucca Mountain Repository  

SciTech Connect

It has been postulated that the deliquescence of multiple-salt systems in dust deposits and the consequent localized corrosion in high-temperature brines could lead to premature failure of the Alloy 22 waste packages in the Yucca Mountain repository. EPRI has developed a decision tree approach to determine if the various stages leading to waste package failure are possible and whether the safety of the repository system could be compromised as a result. Through a series of arguments, EPRI has shown that it is highly unlikely that the multiple-salt deliquescent brines will form in the first place and, even if they did, that they would not be thermodynamically stable, that the postulated brines are not corrosive and would not lead to the initiation of localized corrosion of Alloy 22, that even if localized corrosion did initiate that the propagation would stifle and cease long before penetration of the waste package outer barrier, and that even if premature waste package failures did occur from this cause that the safety of the overall system would not be compromised. EPRI concludes, therefore, that the postulated localized corrosion of the waste packages due to high-temperature deliquescent brines is neither a technical nor a safety issue of concern for the Yucca Mountain repository. (authors)

King, F. [Integrity Corrosion Consulting, Ltd., Calgary, AB (Canada); Arthur, R.; Apted, M. [Monitor Scientific LLC, Denver, CO (United States); Kessler, J.H. [Electric Power Research Institute, Charlotte, NC (United States)

2007-07-01T23:59:59.000Z

414

Interactive Catalog Replaces Catalog Pages Sensing and Control  

E-Print Network (OSTI)

Interactive Catalog Replaces Catalog Pages Sensing and Control Honeywell Inc. 11 West Spring Street Freeport, Illinois 61032 Honeywell Sensing and Control has replaced the PDF product catalog with the new Series 2 Honeywell · Sensing and Control For application help: call 1-800-537-6945 BLOCK DIAGRAM MAXIMUM

Lozano-Nieto, Albert

415

LSB replacement steganography software detection based on model checking  

Science Journals Connector (OSTI)

Steganography software detection is one of effective approaches for steganography forensics using software analysis. In this paper a method of LSB replacement steganography software detection is proposed. Firstly three typical implementations of LSB ... Keywords: LSB replacement algorithm, automaton, model checking, steganography software

Zheng Zhao; Fenlin Liu; Xiangyang Luo; Xin Xie; Lu Yu

2012-10-01T23:59:59.000Z

416

Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance  

Energy.gov (U.S. Department of Energy (DOE))

Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance

417

Analysis of environmental regulations governing the disposal of geothermal wastes in California  

SciTech Connect

Federal and California regulations governing the disposal of sludges and liquid wastes associated with the production of electricity from geothermal resources were evaluated. Current disposal practices, near/far term disposal requirements, and the potential for alternate disposal methods or beneficial uses for these materials were determined. 36 refs., 3 figs., 15 tabs. (ACR)

Royce, B.A.

1985-09-01T23:59:59.000Z

418

Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

2012-11-15T23:59:59.000Z

419

Replacing Incandescent Lightbulbs and Ballasts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incandescent Lightbulbs and Ballasts Incandescent Lightbulbs and Ballasts Replacing Incandescent Lightbulbs and Ballasts July 29, 2012 - 5:16pm Addthis Many incandescent lightbulbs can be replaced with more energy efficient options. | Photo courtesy of ©iStockphoto.com/ClarkandCompany. Many incandescent lightbulbs can be replaced with more energy efficient options. | Photo courtesy of ©iStockphoto.com/ClarkandCompany. What does this mean for me? For the greatest energy efficiency, use new fixtures with new lightbulbs. Replace A-type lightbulbs with more energy-efficient options such as CFLs, LEDs, and energy-saving (halogen) incandescents. Matching replacement lightbulbs to existing fixtures and ballasts can be tricky, especially with older fixtures. Using new fixtures made for new lightbulbs gives you the greatest energy savings, reliability, and

420

Energy Replacement Generation Tax Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Replacement Generation Tax Exemption Replacement Generation Tax Exemption Energy Replacement Generation Tax Exemption < Back Eligibility Commercial Industrial Local Government Residential Savings Category Water Buying & Making Electricity Bioenergy Wind Maximum Rebate None Program Info Start Date 01/01/2008 (retroactively effective) State Iowa Program Type Corporate Exemption Rebate Amount 100% exemption for self-generators, landfill gas and wind Reduced rate for large hydro Provider Iowa Department of Revenue Iowa imposes a replacement generation tax of 0.06 cents ($0.0006) per kilowatt-hour (kWh) on various forms of electricity generated within the state. This tax is imposed in lieu of a property tax on generation facilities. Under the Energy Replacement Generation Tax Exemption, the following

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I brine pilot  

SciTech Connect

To demonstrate the potential for geologic storage of CO{sub 2} in saline aquifers, the Frio-I Brine Pilot was conducted, during which 1600 tons of CO{sub 2} were injected into a high-permeability sandstone and the resulting subsurface plume of CO{sub 2} was monitored using a variety of hydrogeological, geophysical, and geochemical techniques. Fluid samples were obtained before CO{sub 2} injection for baseline geochemical characterization, during the CO{sub 2} injection to track its breakthrough at a nearby observation well, and after injection to investigate changes in fluid composition and potential leakage into an overlying zone. Following CO{sub 2} breakthrough at the observation well, brine samples showed sharp drops in pH, pronounced increases in HCO{sub 3}{sup -} and aqueous Fe, and significant shifts in the isotopic compositions of H{sub 2}O and dissolved inorganic carbon. Based on a calibrated 1-D radial flow model, reactive transport modeling was performed for the Frio-I Brine Pilot. A simple kinetic model of Fe release from the solid to aqueous phase was developed, which can reproduce the observed increases in aqueous Fe concentration. Brine samples collected after half a year had lower Fe concentrations due to carbonate precipitation, and this trend can be also captured by our modeling. The paper provides a method for estimating potential mobile Fe inventory, and its bounding concentration in the storage formation from limited observation data. Long-term simulations show that the CO{sub 2} plume gradually spreads outward due to capillary forces, and the gas saturation gradually decreases due to its dissolution and precipitation of carbonates. The gas phase is predicted to disappear after 500 years. Elevated aqueous CO{sub 2} concentrations remain for a longer time, but eventually decrease due to carbonate precipitation. For the Frio-I Brine Pilot, all injected CO{sub 2} could ultimately be sequestered as carbonate minerals.

Kharaka, Y.K; Doughty, C.; Freifeld, B.M.; Daley, T.M.; Xu, T.

2009-11-01T23:59:59.000Z

422

Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs  

SciTech Connect

Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

Veil, J.A. [Argonne National Lab., Washington, DC (United States). Water Policy Program

1997-10-01T23:59:59.000Z

423

Economic and thermal feasibility of multi stage flash desalination plant with brine–feed mixing and cooling  

Science Journals Connector (OSTI)

Abstract Improving the performance of MSF (multi stage flash) desalination plants is a major challenge for desalination industry. High feed temperature in summer shortens the evaporation range of MSF plants and limits their yield. Installing a cooler at the feed intake expands the evaporation range of MSF plants and increases their yield. Adding a cooler and a mixing chamber increases the capital and operational costs of MSF plants. This paper presents thermal and economic analysis of installing a feed cooler at the plant intake. The profit of selling the additionally produced water must cover the cost of the cooling system. The selling prices for a reasonable breakeven depend on the selected cooling temperature. The cost of installing coolers capable of maintaining feed–brine mixture temperatures of 18–20 °C shows breakeven selling prices of 0.5–0.9 $/m3. These prices fall within the current range of potable water selling prices.

Majed M. Alhazmy

2014-01-01T23:59:59.000Z

424

Numerical simulation of leakage from a geologic disposal reservoirfor CO2, with transitions between super- and sub-criticalconditions  

SciTech Connect

The critical point of CO2 is at temperature and pressureconditions of Tcrit = 31.04oC, Pcrit = 73.82 bar. At lower (subcritical)temperatures and/or pressures, CO2 can exist in two different phases, aliquid and a gaseous state, as well as in two-phase mixtures of thesestates. Disposal of CO2 into brine formations would be made atsupercritical pressures. However, CO2 escaping from the storage reservoirmay migrate upwards towards regions with lower temperatures andpressures, where CO2 would be in subcritical conditions. An assessment ofthe fate of leaking CO2 requires a capability to model not onlysupercritical but also subcritical CO2, as well as phase changes betweenliquid and gaseous CO2 in sub-critical conditions. We have developed amethodology for numerically simulating the behavior of water-CO2 mixturesin permeable media under conditions that may include liquid, gaseous, andsupercritical CO2. This has been applied to simulations of leakage from adeep storage reservoir in which a rising CO2 plume undergoes transitionsfrom supercritical to subcritical conditions. We find strong coolingeffects when liquid CO2 rises to elevations where it begins to boil andevolve a gaseous CO2 phase. A three-phase zone forms (aqueous - liquid -gas), which over time becomes several hundred meters thick as decreasingtemperatures permit liquid CO2 to advance to shallower elevations. Fluidmobilities are reduced in the three-phase region from phase interferenceeffects. This impedes CO2 upflow, causes the plume to spread outlaterally, and gives rise to dispersed CO2 discharge at the land surface.Our simulations suggest that temperatures along a CO2 leakage path maydecline to levels low enough so that solid water ice and CO2 hydratephases may be formed.

Pruess, Karsten

2003-04-13T23:59:59.000Z

425

Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report  

SciTech Connect

Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.

Beauheim, R.L. (Sandia National Labs., Albuquerque, NM (United States)); Saulnier, G.J. Jr.; Avis, J.D. (INTERA, Inc., Austin, TX (United States))

1991-08-01T23:59:59.000Z

426

Uncanistered Spent Nuclear fuel Disposal Container System Description Document  

SciTech Connect

The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in the emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Multiple boiling water reactor (BWR) and pressurized water reactor (PWR) disposal container designs are needed to accommodate the expected range of spent fuel assemblies and provide long-term confinement of the commercial SNF. The disposal container will include outer and inner cylinder walls, outer cylinder lids (two on the top, one on the bottom), inner cylinder lids (one on the top, one on the bottom), and an internal metallic basket structure. Exterior labels will provide a means by which to identify the disposal container and its contents. The two metal cylinders, in combination with the cladding, Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lid will be made of high-nickel alloy. The basket will assist criticality control, provide structural support, and improve heat transfer. The Uncanistered SNF Disposal Container System interfaces with the emplacement drift environment and internal waste by transferring heat from the SNF to the external environment and by protecting the SFN assemblies and their contents from damage/degradation by the external environment. The system also interfaces with the SFN by limiting access of moderator and oxidizing agents of the SFN. The waste package interfaces with the Emplacement Drift System's emplacement drift pallets upon which the wasted packages are placed. The disposal container interfaces with the Assembly Transfer System, Waste Emplacement/Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and retrieval of the disposal container/waste package.

NONE

2000-10-12T23:59:59.000Z

427

Prototype pushing robot for emplacing vitrified waste canisters into horizontal disposal drifts  

SciTech Connect

Within the French Underground Disposal concept, as described in ANDRA's (Agence Nationale pour la Gestion des Dechets Radioactifs) Dossier 2005, the Pushing Robot is an application envisaged for the emplacement (and the potential retrieval) of 'Vitrified waste packages', also called 'C type packages'. ANDRA has developed a Prototype Pushing Robot within the framework of the ESDRED Project (Engineering Studies and Demonstration of Repository Design) which is co-funded by the European Commission as part of the sixth EURATOM Research and Training Framework Programme (FP6) on nuclear energy (2002 - 2006). The Rationale of the Pushing Robot technology comes from various considerations, including the need for (1) a simple and robust system, capable of moving (and potentially retrieving) on up to 40 metres (m), a 2 tonne C type package (mounted on ceramic sliding runners) inside the carbon steel sleeve constituting the liner (and rock support) of a horizontal disposal cell, (2) small annular clearances between the package and the liner, (3) compactness of the device to be transferred from surface to underground, jointly with the package, inside a shielding cask, and (4) remote controlled operations for the sake of radioprotection. The initial design, based on gripping supports, has been replaced by a 'technical variant' based on inflatable toric jacks. It was then possible, using a test bench, to check that the Pushing Robot worked properly. Steps as high as 7 mm were successfully cleared by a dummy package pushed by the Prototype.. Based on the lessons learned by ANDRA's regarding the Prototype Pushing Robot, a new Scope of Work is being written for the Contract concerning an Industrial Scale Demonstrator. The Industrial Scale Demonstration should be completed by the end of the second Quarter of 2008. (authors)

Londe, L.; Seidler, W.K.; Bosgiraud, J.M.; Guenin, J.J. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France); Devaux, P. [CREATIV ALLIANCE, 78 - Viroflay (France)

2007-07-01T23:59:59.000Z

428

Unique method of ash disposal can benefit marine life  

SciTech Connect

As more communities turn to waste-to-energy facilities to help solve their solid waste disposal problems, the amount of ash created by these facilities increases. Incineration of solid waste produces particulate residues which are often rich in lead, cadmium, copper, and zinc because of the concentration which occurs as a result of reduction. It has been shown that such metals can sometimes be leached from ash residues, giving rise to special concerns that incineration ashes be disposed of in an environmentally acceptable manner. In urban coastal areas where landfills are few and increasingly distant, ocean disposal of stabilized incineration residues (SIR) may provide an acceptable alternative to current landfill practices. In May 1985, a research program was initiated at the Marine Sciences Research Center to examine the feasibility of utilizing SIR for artificial reef construction in the ocean. Results of these studies showed that particulate incineration residues could be combined with cement to form a solid block possessing physical properties necessary for ocean disposal. The stabilized residues were subjected to regulatory extraction protocols, and in no instance did the metal concentrations in the leachates exceed the regulatory limits for toxicity. Bioassays revealed no adverse effects on the phytoplankton communities exposed to elutriate concentrations higher than could be encountered under normal disposal conditions. The success of the laboratory studies resulted in securing the necessary permits for the placement of an artificial habitat constructed using SIR in coastal wasters. Results from this program are described.

Roethel, F.J.; Breslin, V.T. (State Univ. of New York, Stony Brook (USA))

1988-10-01T23:59:59.000Z

429

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars August 1, 2012 - 12:00pm Addthis For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory’s (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation’s few repositories for U-233 and other special nuclear materials dating back to the Manhattan Project. For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory's (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation's few repositories for U-233 and other special nuclear materials

430

Laboratory to demolish excavation enclosures at Material Disposal Area B  

NLE Websites -- All DOE Office Websites (Extended Search)

Excavation Enclosures At MDA B Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Communications Office (505) 667-7000 "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

431

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

00: Managing Treatment, Storage, and Disposal of Radioactive 00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This EIS evaluates the potential environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 7, 2011 EIS-0200-SA-03: Supplement Analysis Treatment of Transuranic Waste at the Idaho National Laboratory, Carlsbad Field Office March 7, 2008 EIS-0200: Amendment to the Record of Decision Treatment and Storage of Transuranic Waste

432

Laboratory to demolish excavation enclosures at Material Disposal Area B  

NLE Websites -- All DOE Office Websites (Extended Search)

Excavation enclosures at MDA B Excavation enclosures at MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Colleen Curran Communications Office (505) 664-0344 Email "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

433

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY Final Waste Management Programmatic Environmental Impact Statement examines the potential environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 7, 2011 EIS-0200-SA-03: Supplement Analysis Treatment of Transuranic Waste at the Idaho National Laboratory, Carlsbad Field Office March 7, 2008

434

Laboratory to demolish excavation enclosures at Material Disposal Area B  

NLE Websites -- All DOE Office Websites (Extended Search)

Excavation Enclosures At MDA B Excavation Enclosures At MDA B Laboratory to demolish excavation enclosures at Material Disposal Area B near DP Road Pre-demolition activities are beginning this week and the work should be completed by the end of March 2013. November 1, 2012 The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. The Laboratory plans to demolish the enclosures used to safely excavate and clean up the Lab's oldest waste disposal site near DP Road in Los Alamos. Contact Communications Office (505) 667-7000 "We look forward to the day we officially turn the property over for the benefit of our community." Work is beginning this week LOS ALAMOS, New Mexico, November 1, 2012-Los Alamos National Laboratory

435

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services, exemptions, investigations, and records. Article 4 (58-5-400 et seq.) of this

436

EM's Richland Operations Office Celebrates Disposal Achievement in 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM's Richland Operations Office Celebrates Disposal Achievement EM's Richland Operations Office Celebrates Disposal Achievement in 2013 EM's Richland Operations Office Celebrates Disposal Achievement in 2013 December 24, 2013 - 12:00pm Addthis Workers sample a well used to monitor groundwater at the Hanford site. Workers sample a well used to monitor groundwater at the Hanford site. Workers separate a glove box for removal from Hanford’s Plutonium Finishing Plant. Workers separate a glove box for removal from Hanford's Plutonium Finishing Plant. Workers sample a well used to monitor groundwater at the Hanford site. Workers separate a glove box for removal from Hanford's Plutonium Finishing Plant. RICHLAND, Wash. - EM's Richland Operations Office's 2013 accomplishments ranged from cleaning up buildings and waste sites to treating a record

437

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars August 1, 2012 - 12:00pm Addthis For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory’s (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation’s few repositories for U-233 and other special nuclear materials dating back to the Manhattan Project. For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory's (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation's few repositories for U-233 and other special nuclear materials

438

Crystalline ceramics: Waste forms for the disposal of weapons plutonium  

SciTech Connect

At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

1995-05-01T23:59:59.000Z

439

Earth melter and method of disposing of feed materials  

SciTech Connect

An apparatus, and method of operating the apparatus, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials.

Chapman, Christopher C. (Richland, WA)

1994-01-01T23:59:59.000Z

440

Subproject L-045H 300 Area Treated Effluent Disposal Facility  

SciTech Connect

The study focuses on the project schedule for Project L-045H, 300 Area Treated Effluent Disposal Facility. The 300 Area Treated Effluent Disposal Facility is a Department of Energy subproject of the Hanford Environmental Compliance Project. The study scope is limited to validation of the project schedule only. The primary purpose of the study is to find ways and means to accelerate the completion of the project, thereby hastening environmental compliance of the 300 Area of the Hanford site. The 300 Area'' has been utilized extensively as a laboratory area, with a diverse array of laboratory facilities installed and operational. The 300 Area Process Sewer, located in the 300 Area on the Hanford Site, collects waste water from approximately 62 sources. This waste water is discharged into two 1500 feet long percolation trenches. Current environmental statutes and policies dictate that this practice be discontinued at the earliest possible date in favor of treatment and disposal practices that satisfy applicable regulations.

Not Available

1991-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Classified Component Disposal at the Nevada National Security Site  

SciTech Connect

The Nevada National Security Site (NNSS) has added the capability needed for the safe, secure disposal of non-nuclear classified components that have been declared excess to national security requirements. The NNSS has worked with U.S. Department of Energy, National Nuclear Security Administration senior leadership to gain formal approval for permanent burial of classified matter at the NNSS in the Area 5 Radioactive Waste Management Complex owned by the U.S. Department of Energy. Additionally, by working with state regulators, the NNSS added the capability to dispose non-radioactive hazardous and non-hazardous classified components. The NNSS successfully piloted the new disposal pathway with the receipt of classified materials from the Kansas City Plant in March 2012.

Poling, J. [NSTec; Arnold, P. [NSTec; Saad, M. [SNL; DiSanza, F.; Cabble, K. [NNSA/NSO

2012-11-05T23:59:59.000Z

442

Idaho CERCLA Disposal Facility at Idaho National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Operations Idaho Operations Review of the Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory By Craig H. Benson, PhD, PE; William H. Albright, PhD; David P. Ray, PE, and John Smegal Sponsored by: The Office of Engineering and Technology (EM-20) 5 December 2007 i TABLE OF CONTENTS 1. INTRODUCTION 1 2. OBJECTIVE AND SCOPE 1 3. LINE OF INQUIRY NO. 1 2 3.1 Containerized Waste 2 3.2 Compacted Mixtures of Soil and Debris 3 3.3 Final Cover Settlement 3 3.4 Leachate Collection System and Leak Detection Zone Monitoring 4 4. LINE OF INQUIRY NO. 2 4 5. LINE OF INQUIRY NO. 3 5 6. SUMMARY OF RECOMMENDATIONS 6 7. ACKNOWLEDGEMENTS 6 FIGURES 7 1 1. INTRODUCTION The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility authorized by the US

443

Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria  

SciTech Connect

The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

W. Mahlon Heileson

2006-10-01T23:59:59.000Z

444

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses U.S. DEPARTMENT OF ENERGY DOE G 435.1-4 i (and ii) DRAFT XX-XX-XX LLW Maintenance Guide Revision 0, XX-XX-XX Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses CONTENTS 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . .

445

Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Site Inspection and Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites November 2012 LMS/S09415 ENERGY Legacy Management U.S. DEPARTMENT OF Sherwood, Washington, Disposal Site, 2012 Sherwood, Washington, Disposal Site, 2012 L-Bar, New Mexico, Disposal Site, 2012 L-Bar, New Mexico, Disposal Site, 2012 Bluewater, New Mexico, Disposal Site, 2012 Bluewater, New Mexico, Disposal Site, 2012 Maybell West, Colorado, Disposal Site, 2012 Maybell West, Colorado, Disposal Site, 2012 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

446

Remarks at the Capability Replacement Laboratory (CRL) Completion Ceremony  

NLE Websites -- All DOE Office Websites (Extended Search)

at the Capability Replacement Laboratory (CRL) Completion Ceremony at the Capability Replacement Laboratory (CRL) Completion Ceremony by Deputy Administrator Anne M. Harrington | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Remarks at the Capability Replacement Laboratory (CRL) ... Speech Remarks at the Capability Replacement Laboratory (CRL) Completion Ceremony

447

EA-1178: 300 Area Steam Plant Replacement, Hanford Site, Richland,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

78: 300 Area Steam Plant Replacement, Hanford Site, Richland, 78: 300 Area Steam Plant Replacement, Hanford Site, Richland, Washington EA-1178: 300 Area Steam Plant Replacement, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts for a proposed energy conservation measure for a number of buildings in the 300 Area of the U.S. Department of Energy Hanford Site. The proposed action includes replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing new natural gas pipelines to provide a source for many of these units and constructing a central control building to operate and maintain the system. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 12, 1997 EA-1178: Finding of No Significant Impact

448

Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site Water Monitoring Flume Replaced at the Rocky Flats, Colorado, Site October 22, 2013 - 11:01am Addthis What does this project do? Goal 1. Protect human health and the environment In August of this year the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Rocky Flats, site took advantage of an existing water diversion structure that was no longer needed, to replace an aging water monitoring flume and avoid future repairs that could interrupt data collection. The flume for Rocky Flats Legacy Management Agreement (RFLMA) Point of Evaluation (POE) monitoring location GS10 in South Walnut Creek was located at the bottom of fairly steep channel banks. The bank on the south side shows localized slumping and sliding toward the creek and GS10. Although

449

Laboratory Evaluation of LED T8 Replacement Lamp Products  

SciTech Connect

A report on a lab setting analysis involving LED lamps intended to directly replace T8 fluorescent lamps (4') showing light output, power, and economic comparisons with other fluorescent options.

Richman, Eric E.; Kinzey, Bruce R.; Miller, Naomi J.

2011-05-23T23:59:59.000Z

450

Suez SNC-Lavalin Nuclear to replace US steam generator  

Science Journals Connector (OSTI)

SNC-Lavalin Nuclear (USA) has signed a contract with Xcel Energy to replace the Unit #2 steam generators at the Prairie Island Nuclear Generating Plant (PINGP) in Welch, Minnesota.

2010-01-01T23:59:59.000Z

451

Y-12 Public Warning Siren System being replaced, tested this...  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2012 - 1:08pm The Y-12 Public Warning Siren System (PWSS) located around the Oak Ridge area is being replaced this month with a test of the new system to follow. A private...

452

EA-0923: Winnett School District Boiler Replacement Project, Winnett, Montana  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to replace the Winnett School District complex's existing oil-fired heating system with a new coal-fired heating system with funds...

453

Washington State Department of Ecology: Replacement Wells Requiring...  

Open Energy Info (EERE)

Ecology: Replacement Wells Requiring a Water Right Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Washington State Department of...

454

Developing a total replacement cost index for suburban office projects  

E-Print Network (OSTI)

Understanding the components of replacement costs for office developments, and how these components combine to create total development costs is essential for success in office real estate development. Surprisingly, the ...

Hansen, David John, S.M. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

455

Embryo collection and attempted replacement in the mare  

E-Print Network (OSTI)

EMBRYO COLLECTION AND ATTEMPTED REPLACEMENT IN THE MARE A Thesis by JANE SALISBURY BEACH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1983... Major Subject: Veterinary Physiology EMBRYO COLLECTION AND ATTEMPTED REPLACEMENT IN THE MARE A Thesis by JANE SALISBURY BEACH Approved as to style and content by: D. C. Kra'emer (Chairman of Committee) J. L. Kreider' (Member) J. G. Anderson...

Beach, Jane Salisbury

2012-06-07T23:59:59.000Z

456

Ministers block disposal of oil rigs at sea  

Science Journals Connector (OSTI)

... ministers last week ended three years of public controversy about the fate of disused oil rigs in the northeast Atlantic ocean. They decided that most will have to be dismantled ... all environmentalist groups. Oil companies, on the other hand, were disappointed. The UK Offshore Operators Association said the decision to outlaw deep-sea disposal of oil and gas ...

Ehsan Masood

1998-07-30T23:59:59.000Z

457

Disposal of soluble salt waste from coal gasification  

SciTech Connect

This paper addresses pollutants in the form of soluble salts and resource recovery in the form of water and land. A design for disposal of soluble salts has been produced. The interactions of its parameters have been shown by a process design study. The design will enable harmonious compliance with United States Public Laws 92-500 and 94-580, relating to water pollution and resource recovery. In the disposal of waste salt solutions, natural water resources need not be contaminated, because an encapsulation technique is available which will immobilize the salts. At the same time it will make useful landforms available, and water as a resource can be recovered. There is a cost minimum when electrodialysis and evaporation are combined, which is not realizable with evaporation alone, unless very low-cost thermal energy is available or unless very high-cost pretreatment for electrodialysis is required. All the processes making up the proposed disposal process are commercially available, although they are nowhere operating commercially as one process. Because of the commercial availability of the processes, the proposed process may be a candidate 'best commercially available treatment' for soluble salt disposal.

McKnight, C.E.

1980-06-01T23:59:59.000Z

458

Support of the Iraq nuclear facility dismantlement and disposal program  

SciTech Connect

Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDs Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)

Coates, Roger [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria); Cochran, John; Danneels, Jeff [Sandia National Laboratories (United States); Chesser, Ronald; Phillips, Carlton; Rogers, Brenda [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX 79409 (United States)

2007-07-01T23:59:59.000Z

459

On-Farm Storage and Disposal of Sorghum Grain.  

E-Print Network (OSTI)

APRIL 1963 ON-FARM - STORAGE AND DISPOSAL OF SORGHUM GRAIN -- THE AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS TEXAS AGRICULTURAL EXPERIMENT STATION R. E. PATTERSON. DIRECTOR. COLLEGE ST+TION, TEXAS IN COOPERATION WITH THE U. S. DEPARTMENT... OF AGRICULTURE summary The sorghum storage space. Utilization increases resulted from an increased awareness and acceptance by feeders and millers...

Brown, Charles W.; Moore, Clarence A.

1963-01-01T23:59:59.000Z

460

Pyroprocessing oxide spent nuclear fuels for efficient disposal  

SciTech Connect

Pyrochemical processing as a means for conditioning spent nuclear fuels for disposal offers significant advantages over the direct disposal option. The advantages include reduction in high-level waste volume; conversion of most of the high-level waste to a low-level waste in which nearly all the transuranics (TRU) have been removed; and incorporation of the TRUs into a stable, highly radioactive waste form suitable for interim storage, ultimate destruction, or repository disposal. The lithium process has been under development at Argonne National Laboratory for use in pyrochemical conditioning of spent fuel for disposal. All of the process steps have been demonstrated in small-scale (0.5-kg simulated spent fuel) experiments. Engineering-scale (20-kg simulated spent fuel) demonstration of the process is underway, and small-scale experiments have been conducted with actual spent fuel from a light water reactor (LWR). The lithium process is simple, operates at relatively low temperatures, and can achieve high decontamination factors for the TRU elements. Ordinary materials, such as carbon steel, can be used for process containment.

McPheeters, C.C.; Pierce, R.D.; Mulcahey, T.P. [Argonne National Lab., IL (United States). Chemical Technology Div.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "replace brine disposal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Disposal of CCA-treated Wood: An Evaluation of  

E-Print Network (OSTI)

Disposal of CCA-treated Wood: An Evaluation of Existing and Alternative Management Options (FINAL CHARACTERISTICS OF CCA-TREATED WOOD ASH II.1 Sample Preparation 10 II.2 Laboratory Methods 15 II.3 Laboratory Results 24 CHAPTER III, SORTING TECHNOLOGIES FOR SEPARATING TREATED WOOD FROM UNTREATED WOOD III.1

Florida, University of

462

The College of Engineering Electronic Media Disposal Policy  

E-Print Network (OSTI)

The College of Engineering Electronic Media Disposal Policy COE­EMD­01 1.0 Purpose The purpose of Engineering employees, contractors, consultants, temporary personnel, and other workers responsible electronic information on the medium, such as a computer, personal hand held device, audio or video player

Demirel, Melik C.

463

Long-Term Performance of Uranium Tailings Disposal Cells - 13340  

SciTech Connect

Recently, there has been interest in the performance and evolution of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell covers because some sites are not compliant with groundwater standards. Field observations of UMTRA disposal cells indicate that rock covers tend to become vegetated and that saturated conductivities in the upper portion of radon barriers may increase due to freeze/thaw cycles and biointrusion. This paper describes the results of modeling that addresses whether these potential changes and transient drainage of moisture in the tailings affect overall performance of the disposal cells. A numerical unsaturated/saturated 3-dimensional flow model was used to simulate whether increases in saturated conductivities in radon barriers with rock covers affect the overall performance of the disposal cells using field data from the Shiprock, NM, UMTRA site. A unique modeling approach allowed simulation with daily climatic conditions to determine changes in moisture and moisture flux from the disposal cell. Modeling results indicated that increases in the saturated conductivity at the top of radon barrier do not influence flux from the tailings with time because the tailings behave similar hydraulically to the radon barrier. The presence of a thin layer of low conductivity material anywhere in the cover or tailings restricts flux in the worst case to the saturated conductivity of that material. Where materials are unsaturated at depth within the radon barrier of tailings slimes, conductivities are typically less than 10{sup -8} centimeters per second. If the low conductivity layer is deep within the disposal cell, its saturated properties are less likely to change with time. The significance of this modeling is that operation and maintenance of the disposal cells can be minimized if they are allowed to progress to a natural condition with some vegetation and soil genesis. Because the covers and underlying tailings have a very low saturated hydraulic conductivity after transient drainage, eventually the amount of moisture leaving the tailings has a negligible effect on groundwater quality. Although some of the UMTRA sites are not in compliance with the groundwater standards, the explanation may be legacy contamination from mining, or earlier higher fluxes from the tailings or unlined processing ponds. Investigation of other legacy sources at the UMTRA sites may help explain persistent groundwater contamination. (authors)

Bostick, Kent; Daniel, Anamary; Pill, Ken [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States)] [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio; Noosai, Nantaporn; Villamizar, Viviana [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)] [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)

2013-07-01T23:59:59.000Z

464

Special Analysis: Revision of Saltstone Vault 4 Disposal Limits (U)  

SciTech Connect

New disposal limits have been computed for Vault 4 of the Saltstone Disposal Facility based on several revisions to the models in the existing Performance Assessment and the Special Analysis issued in 2002. The most important changes are the use of a more rigorous groundwater flow and transport model, and consideration of radon emanation. Other revisions include refinement of the aquifer mesh to more accurately model the footprint of the vault, a new plutonium chemistry model accounting for the different transport properties of oxidation states III/IV and V/VI, use of variable infiltration rates to simulate degradation of the closure system, explicit calculation of gaseous releases and consideration of the effects of settlement and seismic activity on the vault structure. The disposal limits have been compared with the projected total inventory expected to be disposed in Vault 4. The resulting sum-of-fractions of the 1000-year disposal limits is 0.2, which indicates that the performance objectives and requirements of DOE 435.1 will not be exceeded. This SA has not altered the conceptual model (i.e., migration of radionuclides from the Saltstone waste form and Vault 4 to the environment via the processes of diffusion and advection) of the Saltstone PA (MMES 1992) nor has it altered the conclusions of the PA (i.e., disposal of the proposed waste in the SDF will meet DOE performance measures). Thus a PA revision is not required and this SA serves to update the disposal limits for Vault 4. In addition, projected doses have been calculated for comparison with the performance objectives laid out in 10 CFR 61. These doses are 0.05 mrem/year to a member of the public and 21.5 mrem/year to an inadvertent intruder in the resident scenario over a 10,000-year time-frame, which demonstrates that the 10 CFR 61 performance objectives will not be exceeded. This SA supplements the Saltstone PA and supersedes the two previous SAs (Cook et al. 2002; Cook and Kaplan 2003).

Cook, J

2005-05-26T23:59:59.000Z

465

Semi-analytical model of brine and CO2 leakage through an abandoned plugged well. Applications for determining an Area of Review and CO2 leakage rate  

E-Print Network (OSTI)

Semi-analytical model of brine and CO2 leakage through an abandoned plugged well. Applications for determining an Area of Review and CO2 leakage rate Arnaud Réveillère, Jérémy Rohmer, Frédéric Wertz / contact the leak, and of CO2,g as a first approach. Compared to the state of the art, it adds the possibility

Paris-Sud XI, Université de

466

INTRAVAL Phase 2 WIPP 1 test case report: Modeling of brine flow through halite at the Waste Isolation Pilot Plant site  

SciTech Connect

This report describes the WIPP 1 test case studied as part of INTRAVAL, an international project to study validation of geosphere transport models. The WIPP 1 test case involved simulation of measured brine-inflow rates to boreholes drilled into the halite strata surrounding the Waste Isolation Pilot Plant repository. The goal of the test case was to evaluate the use of Darcy`s law to describe brine flow through halite. The general approach taken was to try to obtain values of permeability and specific capacitance that would be: (1) consistent with other available data and (2) able to provide reasonable simulations of all of the brine-inflow experiments performed in the Salado Formation. All of the teams concluded that the average permeability of the halite strata penetrated by the holes was between approximately 10{sup {minus}22} and 10{sup {minus}21} m{sup 2}. Specific capacitances greater than 10{sup {minus}10} Pa{sup {minus}1} are inconsistent with the known constitutive properties of halite and are attributed to deformation, possibly ongoing, of the halite around the WIPP excavations. All project teams found that Darcy-flow models could replicate the experimental data in a consistent and reasonable manner. Discrepancies between the data and simulations are attributed to inadequate representation in the models of processes modifying the pore-pressure field in addition to the experiments themselves, such as ongoing deformation of the rock around the excavations. Therefore, the conclusion from the test case is that Darcy-flow models can reliably be used to predict brine flow to WIPP excavations, provided that the flow modeling is coupled with measurement and realistic modeling of the pore-pressure field around the excavations. This realistic modeling of the pore-pressure field would probably require coupling to a geomechanical model of the stress evolution around the repository.

Beauheim, R.L. [ed.] [ed.

1997-05-01T23:59:59.000Z

467

Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation of the chemistry of locally occurring oil, natural gas, and brine  

SciTech Connect

The purpose of this report is to describe current water quality and the chemistry of oil, natural gas, and brine in the Mosquito Creek Lake area. Additionally, these data are used to characterize water quality in the Mosquito Creek Lake area in relation to past oil and natural gas well drilling and production. To meet the overall objective, several goals for this investigation were established. These include (1) collect water-quality and subsurface-gas data from shallow sediments and rock that can be used for future evaluation of possible effects of oil and natural gas well drilling and production on water supplies, (2) characterize current surface-water and ground-water quality as it relates to the natural occurrence and (or) release of oil, gas, and brine (3) sample and chemically characterize the oil in the shallow Mecca Oil Pool, gas from the Berea and Cussewago Sandstone aquifers, and the oil, gas, and brine from the Clinton sandstone, and (4) identify areas where aquifers are vulnerable to contamination from surface spills at oil and natural gas drilling and production sites.

Barton, G.J.; Burruss, R.C.; Ryder, R.T.

1998-12-31T23:59:59.000Z

468

Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Report on Dual-Purpose Canister Disposal Alternatives Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) This report documents the first phase of a multi-year project to understand the technical feasibility and logistical implications of direct disposal of spent nuclear fuel (SNF) in existing dual-purpose canisters (DPCs) and other types of storage casks. The first phase includes a set of preliminary disposal concepts and associated technical analyses, identification of additional R&D needs, and a recommendation to proceed with the next phase of the evaluation effort. Preliminary analyses indicate that DPC direct disposal could be technically feasible, at least for certain disposal concepts. DPC disposal concepts include the salt concept, and emplacement

469

NNSS Waste Disposal Proves Vital Resource for DOE Complex | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NNSS Waste Disposal Proves Vital Resource for DOE Complex NNSS Waste Disposal Proves Vital Resource for DOE Complex NNSS Waste Disposal Proves Vital Resource for DOE Complex March 20, 2013 - 12:00pm Addthis The Area 5 Radioactive Waste Management Site The Area 5 Radioactive Waste Management Site Like most LLW, RTGs disposed of at the NNSS were handled without any special equipment or clothing because of the relatively low dose rate levels. Like most LLW, RTGs disposed of at the NNSS were handled without any special equipment or clothing because of the relatively low dose rate levels. An irradiator from Sandia National Laboratory was disposed of at the RWMS in September 2012. An irradiator from Sandia National Laboratory was disposed of at the RWMS in September 2012. The Area 5 Radioactive Waste Management Site Like most LLW, RTGs disposed of at the NNSS were handled without any special equipment or clothing because of the relatively low dose rate levels.

470

Analysis of mineral trapping for CO2 disposal in deep aquifers  

E-Print Network (OSTI)

of Mineral Trapping for CO2 Disposal in Deep Aquifers Tianfue~mail: Tianfu Xu@lbl. gov) CO2 disposal into deep aquiferspermit significant sequestration of CO2. We performed batch

Xu, Tianfu

2014-01-01T23:59:59.000Z

471

DEVELOPMENT OF DATABASE ON FECAL SLUDGE COLLECTION, TREATMENT AND DISPOSAL IN THACHIN,  

E-Print Network (OSTI)

i DEVELOPMENT OF DATABASE ON FECAL SLUDGE COLLECTION, TREATMENT AND DISPOSAL IN THACHIN, CHAOPRAYA Sludge (FS) management and lacking of data on FS collection, treatment and disposal. Nevertheless, FS

Richner, Heinz

472

Environmental Protection Problems Connected to the Disposal of Ammunition and Explosives by Open Pit Burning  

Science Journals Connector (OSTI)

At the end of its functional life time, in service ammunition has to be disposed, as welt as the war time ammunition and explosives which are still beiing recovered. Formerly the conventional way of disposing amm...

Drs N. H. A. van Ham; A. Verweij

1990-01-01T23:59:59.000Z

473

Aspects of Nuclear Waste Disposal of Use in Teaching Basic Chemistry  

Science Journals Connector (OSTI)

Aspects of Nuclear Waste Disposal of Use in Teaching Basic Chemistry ... Various aspects of nuclear waste disposal are discussed for their value in providing pedagogical examples. ... Radioactivity, Radiation, and the Chemistry of Nuclear Waste ...

Gregory R. Choppin

1994-01-01T23:59:59.000Z

474

Format and Content Guide for DOE Low-Level Waste Disposal Facility...  

Office of Environmental Management (EM)

Format and Content Guide for DOE Low-Level Waste Disposal Facility Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments...

475

Format and Content Guide for DOE Low-Level Waste Disposal Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans Format and Content Guide for U.S. Dep