Powered by Deep Web Technologies
Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Map Data: Renewable Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Production Map Data: Renewable Production renewprod2009.csv More Documents & Publications Map Data: Total Production Map Data: State Consumption Directory of Potential...

2

Enhanced Renewable Methane Production System | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates...

3

Renewable Energy Products LLC | Open Energy Information  

Open Energy Info (EERE)

Products LLC Jump to: navigation, search Name Renewable Energy Products, LLC Place Santa Fe Springs, California Zip 90670 Product Own and operate a biodiesel production facility in...

4

Renewable Energy Production By State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Production By State Renewable Energy Production By State Renewable Energy Production By State Click on a state for more information. Addthis Browse By Topic TOPICS...

5

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

Complexity of Renewable Energy Production in the Countrysidea shift to renewable energy production. Even if politicaldifficulties. Renewable energy production as a new economic

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

6

Community Based Renewable Energy Production Incentive (Pilot...  

Open Energy Info (EERE)

History Share this page on Facebook icon Twitter icon Community Based Renewable Energy Production Incentive (Pilot Program) (Maine) This is the approved revision of this...

7

Renewable Energy Production Tax Credits (Corporate) (Iowa) |...  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Renewable Energy Production Tax Credits (Corporate) (Iowa) This is the approved revision of this...

8

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

development of local renewable energy strategies: The casesin Germany to support renewable energies. Published masterThe Social Complexity of Renewable Energy Production in the

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

9

Alternative Fuels Data Center: Renewable Fuel Production Facility Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Production Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Production Facility Tax Credit

10

Renewable Energy Production Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Incentive Production Incentive Renewable Energy Production Incentive < Back Eligibility Agricultural Commercial Industrial Nonprofit Residential Savings Category Bioenergy Maximum Rebate None Program Info State Minnesota Program Type Performance-Based Incentive Rebate Amount 1.0¢-1.5¢/kWh Other undetermined incentive for on farm biogas ''not'' used to produce electricity Provider Minnesota Department of Commerce Supported by the state's Renewable Development Fund, Minnesota offers a payment of 1.5¢ per kilowatt-hour (kWh) for on-farm biogas facilities. Previously, this incentive also offered payments to wind and hydroelectric facilities, but no new incentives are being offered for these technologies. Hydro Facility Eligibility Generally, the incentive is available to hydro facilities located at the

11

Renewable hydrogen production by photosynthetic water splitting  

SciTech Connect

This mission-oriented research project is focused on the production of renewable hydrogen. The authors have demonstrated that certain unicellular green algae are capable of sustained simultaneous photoproduction of hydrogen and oxygen by light-activated photosynthetic water splitting. It is the goal of this project to develop a practical chemical engineering system for the development of an economic process that can be used to produce renewable hydrogen. There are several fundamental problems that need to be solved before the application of this scientific knowledge can be applied to the development a practical process: (I) maximizing net thermodynamic conversion efficiency of light energy into hydrogen energy, (2) development of oxygen-sensitive hydrogenase-containing mutants, and (3) development of bioreactors that can be used in a real-world chemical engineering process. The authors are addressing each of these problems here at ORNL and in collaboration with their research colleagues at the National Renewable Energy Laboratory, the University of California, Berkeley, and the University of Hawaii. This year the authors have focused on item 1 above. In particular, they have focused on the question of how many light reactions are required to split water to molecular hydrogen and oxygen.

Greenbaum, E.; Lee, J.W.

1998-06-01T23:59:59.000Z

12

Renewable hydrogen production for fossil fuel processing  

DOE Green Energy (OSTI)

The objective of this mission-oriented research program is the production of renewable hydrogen for fossil fuel processing. This program will build upon promising results that have been obtained in the Chemical Technology Division of Oak Ridge National Laboratory on the utilization of intact microalgae for photosynthetic water splitting. In this process, specially adapted algae are used to perform the light-activated cleavage of water into its elemental constituents, molecular hydrogen and oxygen. The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of their hydrogen-producing capability. These are: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the original development of an evacuated photobiological reactor for real-world engineering applications; (6) the potential for using modern methods of molecular biology and genetic engineering to maximize hydrogen production. The significance of each of these points in the context of a practical system for hydrogen production is discussed. This program will be enhanced by collaborative research between Oak Ridge National Laboratory and senior faculty members at Duke University, the University of Chicago, and Iowa State University. The special contribution that these organizations and faculty members will make is access to strains and mutants of unicellular algae that will potentially have useful properties for hydrogen production by microalgal water splitting.

Greenbaum, E.

1994-09-01T23:59:59.000Z

13

Renewable Energy Production Tax Credit (Personal) (Iowa) | Open...  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Renewable Energy Production Tax Credit (Personal) (Iowa) This is the approved revision of this page,...

14

DOE Hydrogen Analysis Repository: Hydrogen Production from Renewables...  

NLE Websites -- All DOE Office Websites (Extended Search)

at the 1998 DOE Hydrogen Program Review. Keywords: Technoeconomic analysis; hydrogen production; costs; hydrogen storage; renewable Purpose To determine technical and economic...

15

Table 10.1 Renewable Energy Production and Consumption by ...  

U.S. Energy Information Administration (EIA)

1 Production equals consumption for all renewable energy sources except biofuels. 9 Wood and wood-derived fuels. 2 Total biomass inputs to the ...

16

Community Based Renewable Energy Production Incentive (Pilot...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

eligible for incentives, a generating facility must be 51% locally owned, use renewable energy resources (solar, wind, hydro, certain biomass, fuel cells, and tidal), be no...

17

General Renewable Energy-Productive Uses and Development Impact | Open  

Open Energy Info (EERE)

General Renewable Energy-Productive Uses and Development Impact General Renewable Energy-Productive Uses and Development Impact Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy-Productive Uses and Development Impact Agency/Company /Organization: World Bank Sector: Energy Topics: Implementation, Co-benefits assessment, - Energy Access Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: General Renewable Energy-Productive Uses and Development Impact[1] Resources Productive Uses Productive Uses of Energy for Rural Development, R. Anil Cabraal, Douglas F. Barnes, and Sachin G. Agarwal, Annual Rev. Environ. Resour. 2005. 30:117-44. Millennium Development Goals: Status 2004, United Nations Energy and Gender Bioenergy-Based Productive Use Platforms for Rural Economic

18

Renewable Energy Production Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Production Tax Credit (Personal) Renewable Energy Production Tax Credit (Personal) Renewable Energy Production Tax Credit (Personal) < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Wind and biomass: First 400,000 MWh annually for 10 years (i.e. 4,000,000/year) Solar electric: First 200,000 MWh annually for 10 years (annual amount varies) Statewide cap: 2,000,000 MWh plus an additional 500,000 MWh for solar electric Program Info Start Date 1/1/2008 State New Mexico Program Type Personal Tax Credit Rebate Amount 0.01/kWh for wind and biomass 0.027/kWh (average) for solar (see below) Provider New Mexico Energy, Minerals and Natural Resources Department Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit

19

Renewable Hydrogen Production Using Sugars and Sugar Alcohols (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Group Meeting Working Group Meeting 11/06/2007 Renewable Hydrogen Production Using Renewable Hydrogen Production Using Sugars and Sugar Alcohols Sugars and Sugar Alcohols * * Problem: Problem: Need Need to develop renewable to develop renewable hydrogen production technologies using hydrogen production technologies using diverse diverse feedstocks feedstocks 10 15 20 CH 4 : C 6 H 14 ln(P) * * Description: Description: The BioForming The BioForming TM TM process uses process uses aqueous phase reforming to cost effectively aqueous phase reforming to cost effectively produce hydrogen from a range of feedstocks, produce hydrogen from a range of feedstocks, including glycerol and sugars. The key including glycerol and sugars. The key breakthrough is a proprietary catalyst that breakthrough is a proprietary catalyst that

20

Renewable Energy Production Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Production Tax Credit (Corporate) Renewable Energy Production Tax Credit (Corporate) Renewable Energy Production Tax Credit (Corporate) < Back Eligibility Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Wind and biomass: First 400,000 MWh annually for 10 years (i.e. 4,000,000/year) Solar electric: First 200,000 MWh annually for 10 years (annual amount varies) Statewide cap: 2,000,000 MWh plus an additional 500,000 MWh for solar electric Program Info Start Date 7/1/2002 State New Mexico Program Type Corporate Tax Credit Rebate Amount 0.01/kWh for wind and biomass 0.027/kWh (average) for solar (see below) Provider New Mexico Energy, Minerals and Natural Resources Department Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Renewable Energy Production Tax Credit (Florida) | Open Energy...  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Renewable Energy Production Tax Credit (Florida) This is the approved revision of this page, as well...

22

Energy Department Policy on Acquiring Tribal Renewable Energy Products  

Energy.gov (U.S. Department of Energy (DOE))

As part of the Department of Energys efforts to support tribal renewable energy production, Secretary Steven Chu has issued a policy statement and guidance to give preference to Indian Tribes when...

23

Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

DOE Green Energy (OSTI)

To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

2005-09-01T23:59:59.000Z

24

Use of cooling-temperature heat for sustainable food production  

E-Print Network (OSTI)

Food production and energy are undoubtedly interlinked. However, at present food production depends almost exclusively on direct use of stored energy sources, may they be nuclear-, petroleum- or bio-based. Furthermore, non-storage based renewable energy systems, like wind and solar, need development before bering able to contribute at a significant level. This presentation will point towards surplus heat as a way to bridge the gap between todays food systems and truly sustainable ones, suitable to be performed in urban and peri-urban areas. Considering that arable land and fresh water resources are the base for our present food systems, but are limited, in combination with continued urbanisation, such solutions are urgently needed. By combining the use of surplus energy with harvest of societys organic side flows, like e.g. food waste and aquatic based cash crops, truly sustainable and urban close food systems are possible at a level of significance also for global food security.

CERN. Geneva

2013-01-01T23:59:59.000Z

25

The potential for renewable energy technologies in the rural postharvest food system in developing countries  

SciTech Connect

This report examines energy demand and potential renewable energy technologies for postharvest food processing with particular emphasis on technologies related to grain. Postharvest activities (harvesting, drying, threshing, winnowing, shelling, hulling, grinding, storage, refrigeration, canning, cooking) and the techniques used in these activities are explored. Possible renewable sources include fuelwood, charcoal, solar cookers, ovens, and crop dryers, photovoltaics, animal draft, pedal power, wind power, hydropower, biogas, and alcohol fuels; some of these, it is noted, also have potential applicability beyond postharvest activities.

Lindblad, C.J.

1981-04-01T23:59:59.000Z

26

Request for Information Renewable Energy Generation/Production Shreveport  

Open Energy Info (EERE)

Request for Information Renewable Energy Generation/Production Shreveport Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Home > Groups > Renewable Energy RFPs Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 pv land use Solar solar land use Solar Power The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. The Authority is particularly interested in solar photovoltaic generation but other technically and economically feasible technologies may also be included. A study by NREL estimates the annual capacity factor of fixed tilt covered parking at 15.3% and for one-axis tracking at 19.4%. Specifically, the

27

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels standard requires 36 billion gallons of renewable  

E-Print Network (OSTI)

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels standard requires 36 billion gallons of renewable fuels be used annually by 2022, which allows continued

28

Renewable Energy Production Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Energy Production Tax Credit Renewable Energy Production Tax Credit < Back Eligibility Commercial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Solar Wind Maximum Rebate No maximum specified for individual projects. Maximum of $1 million per corporation. Maximum of $5 million for state FY 2012-13 and $10 million for state for FY 2013-14 until FY 2016-2017. Program Info Start Date 7/1/2012 Expiration Date 6/30/2016 State Florida Program Type Corporate Tax Credit Rebate Amount $0.01/kWh Provider Florida Department of Revenue In June 2006, [http://archive.flsenate.gov/cgi-bin/View_Page.pl?File=sb0888er.html&Dire... S.B. 888] established a renewable energy production tax credit to encourage

29

Renewable Electricity Production Tax Credit (PTC) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Electricity Production Tax Credit (PTC) Renewable Electricity Production Tax Credit (PTC) < Back Eligibility Commercial Industrial Savings Category Bioenergy Buying & Making Electricity Water Home Weatherization Wind Program Info Program Type Corporate Tax Credit Rebate Amount 2.3¢/kWh for wind, geothermal, closed-loop biomass; 1.1¢/kWh for other eligible technologies. Generally applies to first 10 years of operation. Provider U.S. Internal Revenue Service '''''Note: The American Recovery and Reinvestment Act of 2009 allows taxpayers eligible for the federal renewable electricity production tax credit (PTC) to take the federal business energy investment tax credit (ITC) instead of taking the PTC for new installations.'''''

30

Bio-hydrogen production from renewable organic wastes  

DOE Green Energy (OSTI)

Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

Shihwu Sung

2004-04-30T23:59:59.000Z

31

Renewable Energy Production Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Corporate) Renewable Energy Production Tax Credit (Corporate) < Back Eligibility Commercial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate 2 million per year Program Info Start Date 12/31/2010 Expiration Date 12/31/2020 State Arizona Program Type Corporate Tax Credit Rebate Amount Wind and Biomass: 0.01/kWh, paid for 10 years Solar: Varies by year (see below), paid for 10 years Provider Arizona Department of Revenue '''''Note: this tax credit is only available for systems installed on or after December 31, 2010, and before January 1, 2021.''''' [http://www.azleg.gov/FormatDocument.asp?inDoc=/legtext/49leg/2r/bills/sb... Senate Bill 1254] of 2010 created a tax credit for electricity produced by certain renewable resources. Qualified renewable energy systems installed

32

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

the development of local renewable energy strategies: Theof energy by local, renewable sources. Refrences Altvater,in Germany to support renewable energies. Published master

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

33

Renewable Energy Production Tax Credits (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Credits (Corporate) Credits (Corporate) Renewable Energy Production Tax Credits (Corporate) < Back Eligibility Agricultural Commercial Industrial Institutional Rural Electric Cooperative Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Maximum Rebate 1.5¢/kWh (IA Code § 476C) Program Info Start Date 06/15/2005 State Iowa Program Type Corporate Tax Credit Rebate Amount 1.5¢/kWh (IA Code § 476C) or 1.0¢/kWh (IA Code § 476B) for 10 years after facility begins producing energy Provider Iowa Utilities Board In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify for only one of the two

34

Renewable Energy Production Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Credit (Personal) Credit (Personal) Renewable Energy Production Tax Credit (Personal) < Back Eligibility Agricultural Commercial Industrial Institutional Residential Rural Electric Cooperative Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Maximum Rebate 1.5¢/kWh (IA Code § 476C) Program Info Start Date 06/15/2005 State Iowa Program Type Personal Tax Credit Rebate Amount 1.5¢/kWh (IA Code § 476C) or 1.0¢/kWh (IA Code § 476B) for 10 years after facility begins producing energy Provider Iowa Utilities Board In June 2005, Iowa enacted legislation creating two separate production tax credit programs for energy generated by eligible wind and renewable energy facilities. An eligible facility can qualify for only one of the two

35

Energy Use In American Food Production  

E-Print Network (OSTI)

Dale Pfeiffer (2006, 29) opens the fifth chapter of his book Eating Fossil Fuels with the statement, Current civilization is founded upon an abundance of cheap energy derived from hydrocarbons. He presents the natural extension of that premise to food production in the opening of his sixth chapter, Modern industrial agriculture is unsustainable. It has been pushed to the limit and is in

Michael Minn

2009-01-01T23:59:59.000Z

36

Energy production from food industry wastewaters using bioelectrochemical cells  

Science Conference Proceedings (OSTI)

Conversion of waste and renewable resources to energy using microbial fuel cells (MFCs) is an upcoming technology for enabling a cleaner and sustainable environment. This paper assesses the energy production potential from the US food industry wastewater resource. It also reports on an experimental study investigating conversion of wastewater from a local milk dairy plant to electricity. An MFC anode biocatalyst enriched on model sugar and organic acid substrates was used as the inoculum for the dairy wastewater MFC. The tests were conducted using a two-chamber MFC with a porous three dimensional anode and a Pt/C air-cathode. Power densities up to 690 mW/m2 (54 W/m3) were obtained. Analysis of the food industry wastewater resource indicated that MFCs can potentially recover 2 to 260 kWh/ton of food processed from wastewaters generated during food processing, depending on the biological oxygen demand and volume of water used in the process. A total of 1960 MW of power can potentially be produced from US milk industry wastewaters alone. Hydrogen is an alternate form of energy that can be produced using bioelectrochemical cells. Approximately 2 to 270 m3 of hydrogen can be generated per ton of the food processed. Application of MFCs for treatment of food processing wastewaters requires further investigations into electrode design, materials, liquid flow management, proton transfer, organic loading and scale-up to enable high power densities at the larger scale. Potential for water recycle also exists, but requires careful consideration of the microbiological safety and regulatory aspects and the economic feasibility of the process.

Hamilton, Choo Yieng [ORNL

2009-01-01T23:59:59.000Z

37

Promotion of Renewable Energies for Water Production through Desalination 56th Annual NM Water Conf., New Water New Energy: A Conference Linking Desalination and Renewable Energy  

E-Print Network (OSTI)

Promotion of Renewable Energies for Water Production through Desalination 56th Annual NM Water Conf., New Water New Energy: A Conference Linking Desalination and Renewable Energy 11 Promotion of Renewable with is ProDes (Promotion of Renewable Energy for Water production through Desalination), which brought

Johnson, Eric E.

38

An Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of Hydrogen An Analysis of Hydrogen Production from Renewable Electricity Sources Preprint J.I. Levene, M.K. Mann, R. Margolis, and A. Milbrandt National Renewable Energy Laboratory Prepared for ISES 2005 Solar World Congress Orlando, Florida August 6-12, 2005 Conference Paper NREL/CP-560-37612 September 2005 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

39

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

the transition from non-renewable to renewable energy in arenewable energy region/village. Interviews were made with relevant stakeholders such as professional and non-

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

40

Federal Energy Management Program: Covered Product Category: Hot Food  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Food Holding Cabinets to someone by E-mail Hot Food Holding Cabinets to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Google Bookmark Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Delicious Rank Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A Life-Cycle Analysis of Alternatives for the Management of Waste Hot-Mix Asphalt, Commercial Food Waste, and Construction and Demolition Waste.  

E-Print Network (OSTI)

??Effective management of commercially generated food waste presents an opportunity for avoided global warming potential, renewable energy production, and renewable agrochemical production. The vast majority (more)

Levis, James William

2008-01-01T23:59:59.000Z

42

Community Based Renewable Energy Production Incentive (Pilot Program)  

Energy.gov (U.S. Department of Energy (DOE))

In June 2009, Maine established the Community-based Renewable Energy Pilot Program. As the name suggests, this program is intended to encourage the development of locally owned, in-state renewable...

43

IMPACTS OF BIOFUEL PRODUCTION ON FOOD SECURITY  

E-Print Network (OSTI)

Food security exists when all people, at all times, have physical and economic access to sufficient safe and nutritious food to meet their dietary needs and food preferences for a healthy and active life. This definition was adopted at the World Food Summit in 1996 (FAO, 1996) when references to food safety,

unknown authors

2010-01-01T23:59:59.000Z

44

Table 10.1 Renewable Energy Production and Consumption by Source ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review September 2013 137 Table 10.1 Renewable Energy Production and Consumption by Source

45

Renewable utility-scale electricity production differs by fuel ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... For non-hydro renewables, the 2011 generation share ranges from less than 1% in Alaska, Ohio, Alabama, and Kentucky, ...

46

Soybeans as Functional Foods and IngredientsChapter 8 Barriers to Soy Protein Applications in Food Products  

Science Conference Proceedings (OSTI)

Soybeans as Functional Foods and Ingredients Chapter 8 Barriers to Soy Protein Applications in Food Products Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press ...

47

Nuclear-renewables energy system for hydrogen and electricity production  

E-Print Network (OSTI)

Climate change concerns and expensive oil call for a different mix of energy technologies. Nuclear and renewables attract attention because of their ability to produce electricity while cutting carbon emissions. However ...

Haratyk, Geoffrey

2011-01-01T23:59:59.000Z

48

Biocatalysis and Biotechnology for Functional Foods and Industrial Products  

Science Conference Proceedings (OSTI)

Divided into two sections, this book covers the latest applications for enzyme catalysis, biotransformation, bioconversion, fermentation, genetic engineering, and product recove Biocatalysis and Biotechnology for Functional Foods and Industrial Products H

49

EVermont Renewable Hydrogen Production and Transportation Fueling System  

DOE Green Energy (OSTI)

A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

Garabedian, Harold T.

2008-03-30T23:59:59.000Z

50

Application of controlled thermonuclear reactor fusion energy for food production  

SciTech Connect

Food and energy shortages in many parts of the world in the past two years raise an immediate need for the evaluation of energy input in food production. The present paper investigates systematically (1) the energy requirement for food production, and (2) the provision of controlled thermonuclear fusion energy for major energy intensive sectors of food manufacturing. Among all the items of energy input to the ''food industry,'' fertilizers, water for irrigation, food processing industries, such as beet sugar refinery and dough making and single cell protein manufacturing, have been chosen for study in detail. A controlled thermonuclear power reactor was used to provide electrical and thermal energy for all these processes. Conceptual design of the application of controlled thermonuclear power, water and air for methanol and ammonia synthesis and single cell protein production is presented. Economic analysis shows that these processes can be competitive. (auth)

Dang, V.D.; Steinberg, M.

1975-06-01T23:59:59.000Z

51

Hawkeye Renewables formerly Midwest Renewables | Open Energy...  

Open Energy Info (EERE)

(formerly Midwest Renewables) Place Iowa Falls, Iowa Zip 50126 Product Midwest bioethanol producer References Hawkeye Renewables (formerly Midwest Renewables)1 LinkedIn...

52

Made with Renewable Energy: How and Why Companies are Labeling Consumer Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Made with Renewable Energy: Made with Renewable Energy: How and Why Companies are Labeling Consumer Products Deborah Baker Brannan, Jenny Heeter, and Lori Bird Technical Report NREL/TP-6A20-53764 March 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Made with Renewable Energy: How and Why Companies are Labeling Consumer Products Deborah Baker Brannan, Jenny Heeter, and Lori Bird Prepared under Task No. SAO9.3110 Technical Report NREL/TP-6A20-53764

53

Nuclear-Renewables Energy System for Hydrogen and Electricity Production  

Science Conference Proceedings (OSTI)

Technical Paper / Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Nuclear Hydrogen Production

Geoffrey Haratyk; Charles W. Forsberg

54

Covered Product Category: Hot Food Holding Cabinets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Food Holding Cabinets Hot Food Holding Cabinets Covered Product Category: Hot Food Holding Cabinets October 7, 2013 - 11:08am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including hot food holding cabinets, which are covered by the ENERGY STAR® program. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Manufacturers display the ENERGY STAR label on complying models. For a model not displaying the label, check the qualified products lists maintained on the ENERGY STAR website. This product category overview covers the following: Meeting Energy Efficiency Requirements

55

Potential for Hydrogen Production from Key Renewable Resources in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential for Hydrogen Production Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Technical Report NREL/TP-640-41134 February 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Prepared under Task No. H278.2100 Technical Report NREL/TP-640-41134 February 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

56

Global Water Availability and Requirements for Future Food Production  

Science Conference Proceedings (OSTI)

This study compares, spatially explicitly and at global scale, per capita water availability and water requirements for food production presently (19712000) and in the future given climate and population change (207099). A vegetation and ...

D. Gerten; J. Heinke; H. Hoff; H. Biemans; M. Fader; K. Waha

2011-10-01T23:59:59.000Z

57

Made with Renewable Energy: How and Why Companies are Labeling Consumer Products  

Science Conference Proceedings (OSTI)

Green marketing--a marketing strategy highlighting the environmental attributes of a product, often through the use of labels or logos--dates back to the 1970s. It did not proliferate until the 1990s, however, when extensive market research identified a rapidly growing group of consumers with a heightened concern for the environment. This group expressed not only a preference for green products but also a willingness to pay a premium for such products. The response was a surge in green marketing that lasted through the early 1990s. This report discusses the experience of companies that communicate to consumers that their products are 'made with renewable energy.' For this report, representatives from 20 companies were interviewed and asked to discuss their experiences marketing products produced using renewable energy. The first half of this report provides an overview of the type of companies that have labeled products or advertised them as being made with renewable energy. It also highlights the avenues companies use to describe their use of renewable energy. The second half of the report focuses on the motivations for making on-product claims about the use of renewable energy and the challenges in doing so.

Baker Brannan, D.; Heeter, J.; Bird, L.

2012-03-01T23:59:59.000Z

58

Renewable Energy Production By State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Per Person Solar Energy Potential Solar Energy Potential 2009 Total Energy Production by State 2009 Total Energy Production by State 2009 Energy Consumption Per Person...

59

PPC Renewables | Open Energy Information  

Open Energy Info (EERE)

Twitter icon PPC Renewables Jump to: navigation, search Name PPC Renewables Place Greece Sector Renewable Energy Product The renewables division of Public Power Corp. of...

60

Cholesterol and Phytosterol Oxidation ProductsChapter 16 Determination of Phytosterol Oxidation Products in Foods and Biological Samples  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 16 Determination of Phytosterol Oxidation Products in Foods and Biological Samples Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Cholesterol and Phytosterol Oxidation ProductsChapter 11 Formation and Content of Cholesterol Oxidation Products in Other Foods  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 11 Formation and Content of Cholesterol Oxidation Products in Other Foods Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Bioche

62

Cholesterol and Phytosterol Oxidation ProductsChapter 15 Formation and Content of Phytosterol Oxidation Products in Foods  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 15 Formation and Content of Phytosterol Oxidation Products in Foods Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry

63

Dr Writer s Food Products Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Dr Writer s Food Products Pvt Ltd Dr Writer s Food Products Pvt Ltd Jump to: navigation, search Name Dr. Writerâ€(tm)s Food Products Pvt. Ltd. Place Mumbai, Maharashtra, India Sector Biomass Product Mumbai-based biomass project developer. Coordinates 19.076191°, 72.875877° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.076191,"lon":72.875877,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind to Hydrogen Project: Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Hydrogen Technologies and Systems Center Todd Ramsden, Kevin Harrison, Darlene Steward November 16, 2009 NREL/PR-560-47432 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL Wind2H2 RD&D Project * The National Renewable Energy Laboratory in partnership with Xcel Energy and DOE has designed, operates, and continues to perform testing on the wind-to-hydrogen (Wind2H2) project at the National Wind Technology Center in Boulder * The Wind2H2 project integrates wind turbines, PV arrays and electrolyzers to produce from renewable energy

65

Renewable Hydrogen Production at Hickam Air Force Base  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production at Hickam Air Force Base November 2009 Hawaii Center for Advanced Transportation Technologies *&1; Established by the High Technology Development Corporation (a...

66

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

in one case. Biomass or Biogas plants for electricityand heat production 24 Biogas plants use manure and energythat they do not run on biogas but biological waste or wood.

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

67

The Social Complexity of Renewable Energy Production in the Countryside  

E-Print Network (OSTI)

cheap oil and abundant fossil energy 1 is coming to an end (the local monopolist of fossil energy production 32 was ableregion since spending for fossil energy imports are reduced.

Kunze, Conrad; Busch, Henner

2011-01-01T23:59:59.000Z

68

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities  

E-Print Network (OSTI)

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

69

Soy Protein ProductsChapter 6 Uses in Food Systems  

Science Conference Proceedings (OSTI)

Soy Protein Products Chapter 6 Uses in Food Systems Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry 92B3B17CCACD0D1166530AEA8D994D92 AOCS Press Downloadable pdf of Chapter 6 Uses in

70

Soybeans: Chemistry, Production, Processing, and UtilizationChapter 15 Food Uses for Soybean Oil and Alternatives to Trans Fatty Acids in Foods  

Science Conference Proceedings (OSTI)

Soybeans: Chemistry, Production, Processing, and Utilization Chapter 15 Food Uses for Soybean Oil and Alternatives to Trans Fatty Acids in Foods Food Science Health Nutrition Biochemistry Processing Soybeans eChapters Food Science &

71

Soybeans: Chemistry, Production, Processing, and UtilizationChapter 14 Food Use of Whole Soybeans  

Science Conference Proceedings (OSTI)

Soybeans: Chemistry, Production, Processing, and Utilization Chapter 14 Food Use of Whole Soybeans Food Science Health Nutrition Biochemistry Processing Soybeans eChapters Food Science & Technology Health - Nutrition - Biochemistry

72

Frying Technology and PracticesChapter 9 Technology of Coating and Frying Food Products  

Science Conference Proceedings (OSTI)

Frying Technology and Practices Chapter 9 Technology of Coating and Frying Food Products Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press Downloadab

73

Advanced Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Jump to: navigation, search Name Advanced Renewable Energy Place Italy Sector Biomass, Renewable Energy, Wind energy Product Advanced Renewable Energy Ltd combines...

74

Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems  

SciTech Connect

The increased use of intermittent renewable power in the United States is forcing utilities to manage increasingly complex supply and demand interactions. This paper evaluates biomass pathways for hydrogen production and how they can be integrated with renewable resources to improve the efficiency, reliability, dispatchability, and cost of other renewable technologies. Two hybrid concepts were analyzed that involve co-production of gaseous hydrogen and electric power from thermochemical biorefineries. Both of the concepts analyzed share the basic idea of combining intermittent wind-generated electricity with a biomass gasification plant. The systems were studied in detail for process feasibility and economic performance. The best performing system was estimated to produce hydrogen at a cost of $1.67/kg. The proposed hybrid systems seek to either fill energy shortfalls by supplying hydrogen to a peaking natural gas turbine or to absorb excess renewable power during low-demand hours. Direct leveling of intermittent renewable electricity production is accomplished with either an indirectly heated biomass gasifier, or a directly heated biomass gasifier. The indirect gasification concepts studied were found to be cost competitive in cases where value is placed on controlling carbon emissions. A carbon tax in the range of $26-40 per metric ton of CO{sub 2} equivalent (CO{sub 2}e) emission makes the systems studied cost competitive with steam methane reforming (SMR) to produce hydrogen. However, some additional value must be placed on energy peaking or sinking for these plants to be economically viable. The direct gasification concept studied replaces the air separation unit (ASU) with an electrolyzer bank and is unlikely to be cost competitive in the near future. High electrolyzer costs and wind power requirements make the hybridization difficult to justify economically without downsizing the system. Based on a direct replacement of the ASU with electrolyzers, hydrogen can be produced for $0.27 premium per kilogram. Additionally, if a non-renewable, grid-mix electricity is used, the hybrid system is found to be a net CO{sub 2}e emitter.

Dean, J.; Braun, R.; Penev, M.; Kinchin, C.; Munoz, D.

2010-01-01T23:59:59.000Z

75

Food and Yard Waste Compost as a Nutrient Source for Corn Production.  

E-Print Network (OSTI)

??Utilizing food and yard waste (FYW) compost for plant production requires determination of application rates that support crop production, improve soil properties and avoid excessive (more)

Garnett, Angela

2012-01-01T23:59:59.000Z

76

Effective Supply Chain Management Strategy for Food Products: An Insight to Linked Partnerships  

Science Conference Proceedings (OSTI)

This paper explores and extends the supply chain management strategy for food products effectively and efficiently through analysis of insights to linked partnerships within the supply chain due to the possibility of a global food crisis. The required ... Keywords: Food Crisis Resolution, Logistics Management, Strategic Partnership, Supply Chain Management Strategy, Supply Chain Strategy, Supply Chain for Agricultural Products

Witaya Krajaysri

2010-07-01T23:59:59.000Z

77

Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources  

DOE Green Energy (OSTI)

This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

Donaldson, T.L.; Culberson, O.L.

1983-06-01T23:59:59.000Z

78

Area Solar energy production BACKGROUND -All renewable energies, except for geothermal and tidal, derive their energy from the sun. By harnessing the power of  

E-Print Network (OSTI)

Area Solar energy production ­ BACKGROUND - All renewable energies installations. Advantages: · A renewable form of energy - "Locks up" carbon, except for geothermal and tidal, derive their energy from the sun

Keinan, Alon

79

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

of locational renewable energy production in each renewableto total renewable energy production, although accountingproduction data from the 2006 data set of the National Renewable Energy

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

80

World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard  

Science Conference Proceedings (OSTI)

This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

Sastri, B.; Lee, A.

2008-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Representation of Energy Use in the Food Products Industry  

E-Print Network (OSTI)

Traditional representations of energy in the manufacturing sector have tended to represent energy end-uses rather than actual energy service demands. While this representation if quite adequate for understanding how energy is used today, for forecasting future technology choices it is creates a rigid representation of how future energy is used. This representation can restrict the range of technology choices considered, particularly for fuel switching and on-site conversion processes such as combined heat and power (CHP). This paper discusses the differences between energy end-uses and service demands, proposes an approach for approximating service demands and discusses the ramifications of this alternative representation to energy modeling. An example for food products manufacturing (NAICS 311) is provided as an example.

Elliott, N. R.

2007-01-01T23:59:59.000Z

82

Production of Biogas from Wastewaters of Food Processing Industries  

E-Print Network (OSTI)

An Upflow Anaerobic Sludge Blanket Process used in converting biodegradable, soluble, organic pollutants in industrial wastewaters to a directly-burnable biogas composed mainly of methane has been developed, tested, and commercially applied in Holland. Operations on wastewater from the processing of sugar beets have shown hydraulic retention times of less than 10 hours with reactor loadings of at least 10 Kg COD per m3 digester volume per day and purification efficiencies exceeding 90%. Biogas production is at a rate of about 1 therm (100000 BTU) per 10 Kg COD treated. A moderately sized (1000 m3) wastewater treatment plant processing the order of 10000 Kg COD per day will, therefore, produce the order of 1000 therms of energy per day while, at the same time, reducing the COD level in the effluent by an order of magnitude. The set of conditions required for efficient operation of this anaerobic process will be discussed. The process is unique in its mixed sludge bed approach allowing for tolerance of swings in Ph (6-8) at relatively low temperatures (32 C - 38 C) which can be readily achieved from most wastewater streams with little expenditure of additional energy. Sludge production is remarkably low, only about 5% of the COD loading, greatly alleviating disposal problems. These characteristics are conducive for the use of the anaerobic process to recover energy from a variety of wastewaters rich in carbohydrate-type substances as produced routinely as a by product of many types of food processing activities.

Sax, R. I.; Holtz, M.; Pette, K. C.

1980-01-01T23:59:59.000Z

83

REVIEW Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production  

E-Print Network (OSTI)

Abstract High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into biomass. Two strategies are used in parallel: plantbased production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO2 into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhapsafter acid

Ida G. Anemaet; Martijn Bekker; Klaas J. Hellingwerf

2010-01-01T23:59:59.000Z

84

Improving productivity in food processing industries using simulation: a case study  

Science Conference Proceedings (OSTI)

Process optimization is a major decision problem when drawing a balance between meeting variable demands and maintaining the quality of products in food processing industries. Simulation is a useful technique to study the effects of system changes in ... Keywords: business process reengineering, food processing, production planning, productivity, simulation models

Seraj Yousef Abed

2008-07-01T23:59:59.000Z

85

Distant harvest : the production and price of organic food  

E-Print Network (OSTI)

Organic food is growing in popularity, enjoying a 15 to 20% increase in sales, yearly, since about 1997, according to the Organic Trade Association. Organic produce makes up about 2% of the United States' total food sales ...

Sherburne, Morgan (Morgan L.)

2010-01-01T23:59:59.000Z

86

Effects Of Cash Crop Production On Food Crop Productivity In Zimbabwe: Synergies Or Trade-Offs?  

E-Print Network (OSTI)

This paper is published by the Department of Agricultural Economics and the Department of Economics, Michigan State University (MSU). Support for this study was provided by the Food Security and Productivity Unit of the Productive Sectors Growth and Environmental Division, Office of Sustainable Development, Africa Bureau, USAID (AFR/SD/PSGE/FSP), through the Food Security II Cooperative Agreement between Michigan State University and the United States Agency for International Development, through the Africa Bureau's Office of Sustainable Development, Africa Bureau, AID/Washington. Govereh is a visiting research scholar and Jayne is a visiting associate professor in the Department of Agricultural Economics, Michigan State University. The authors acknowledge the help of Paul Strasberg, Takashi Yamano, Maxwell Mudhara, and E. Mazhangara in the preparation of the paper; all remaining errors are ours. ii

Carl Liedholm; Michael T. Weber; Jones Govereh; Jones Govereh; T.S. Jayne; T. S. Jayne

1999-01-01T23:59:59.000Z

87

Omega-3 Oils: Applications in Functional FoodsChapter 4 Production of Marine Oils  

Science Conference Proceedings (OSTI)

Omega-3 Oils: Applications in Functional Foods Chapter 4 Production of Marine Oils Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry AOCS Press Downloadable pdf of Chapter 4 Production of

88

The Food and Fiber System and Production Agriculture's Contributions to the Texas Economy  

E-Print Network (OSTI)

In 2001, Texas agriculture generated $14 billion in cash receipts. The production, processing, distribution and consumption of food and fiber products contributes substantially to the economy of Texas. This publication reports the contributions of the food and fiber system and individual commodities.

Nelson, Gene

2004-12-01T23:59:59.000Z

89

UNDERSTANDING THE LINK BETWEEN ETHANOL PRODUCTION AND FOOD PRICES.  

E-Print Network (OSTI)

??Food prices have increased rapidly in recent years, and so has ethanol consumption. Some studies have claimed that there is a connection between those two. (more)

Monteiro, Nathalia Ferreira

2009-01-01T23:59:59.000Z

90

Soybeans as Functional Foods and IngredientsChapter 3 Soy Isoflavones: Chemistry, Processing Effects, Health Benefits, and Commercial Production  

Science Conference Proceedings (OSTI)

Soybeans as Functional Foods and Ingredients Chapter 3 Soy Isoflavones: Chemistry, Processing Effects, Health Benefits, and Commercial Production Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - N

91

Palm Oil: Production, Processing, Uses, and CharacterizationChapter 19 Food Uses of Palm Oil and Its Components  

Science Conference Proceedings (OSTI)

Palm Oil: Production, Processing, Uses, and Characterization Chapter 19 Food Uses of Palm Oil and Its Components Food Science Health Nutrition Biochemistry Processing eChapters Food Science & Technology Health - Nutrition - Biochemistry

92

Palm Oil: Production, Processing, Uses, and CharacterizationChapter 20 Palm Oleochemicals in Non-food Applications  

Science Conference Proceedings (OSTI)

Palm Oil: Production, Processing, Uses, and Characterization Chapter 20 Palm Oleochemicals in Non-food Applications Food Science Health Nutrition Biochemistry Processing eChapters Food Science & Technology Health - Nutrition - Biochemis

93

Soybeans as Functional Foods and Ingredients\tChapter 2 Edible Soybean Products in the Current Market  

Science Conference Proceedings (OSTI)

Soybeans as Functional Foods and Ingredients Chapter 2 Edible Soybean Products in the Current Market Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press ...

94

Flaxseed in Human Nutrition, 2nd EditionChapter 22 Availability and Labeling of Flaxseed Food Products and Supplements  

Science Conference Proceedings (OSTI)

Flaxseed in Human Nutrition, 2nd Edition Chapter 22 Availability and Labeling of Flaxseed Food Products and Supplements Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry P

95

Soybeans as Functional Foods and IngredientsChapter 9 Value-Added Products from Extruding-Expelling of Soybeans  

Science Conference Proceedings (OSTI)

Soybeans as Functional Foods and Ingredients Chapter 9 Value-Added Products from Extruding-Expelling of Soybeans Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press

96

Renewable Choice Energy | Open Energy Information  

Open Energy Info (EERE)

Choice Energy Jump to: navigation, search Name Renewable Choice Energy Place Boulder, Colorado Zip 80301 Sector Carbon, Renewable Energy Product Renewable Choice Energy is a...

97

Renewable Energy Engineering LLC | Open Energy Information  

Open Energy Info (EERE)

Engineering LLC Jump to: navigation, search Name Renewable Energy Engineering, LLC Place Newberg, Oregon Zip 22700 Sector Renewable Energy Product Oregon-based renewable energy...

98

American Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Jump to: navigation, search Name American Renewable Energy Place Evanston, Illinois Zip 60202 Sector Geothermal energy, Renewable Energy, Solar Product American...

99

Superior Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Superior Renewable Energy LLC Jump to: navigation, search Name Superior Renewable Energy LLC Place Houston, Texas Zip 77002 Sector Renewable Energy, Wind energy Product An...

100

Encore Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Encore Renewable Energy LLC Jump to: navigation, search Name Encore Renewable Energy, LLC Place Santa Barbara, California Zip 93111 Sector Renewable Energy Product National...

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Renewable Powertech Inc | Open Energy Information  

Open Energy Info (EERE)

Powertech Inc Jump to: navigation, search Name Renewable Powertech Inc Place Las Vegas, Nevada Sector Efficiency, Renewable Energy Product Las Vegas-based renewable energy...

102

Whites Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Whites Renewable Energy Jump to: navigation, search Name Whites Renewable Energy Place United Kingdom Zip YO8 8EF Sector Biomass, Renewable Energy Product UK based company...

103

Review of International Experience with Renewable Energy Obligation Support Mechanisms  

E-Print Network (OSTI)

electricity production from renewable energy (approx. 15-25electricity production from renewable energy sources andthe production of electricity from renewable energy sources

Wiser, R.

2005-01-01T23:59:59.000Z

104

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)  

DOE Green Energy (OSTI)

Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

Ramsden, T.; Harrison, K.; Steward, D.

2009-11-16T23:59:59.000Z

105

Wind Energy and Production of Hydrogen and Electricity -- Opportunities for Renewable Hydrogen: Preprint  

DOE Green Energy (OSTI)

An assessment of options for wind/hydrogen/electricity systems at both central and distributed scales provides insight into opportunities for renewable hydrogen.

Levene, J.; Kroposki, B.; Sverdrup, G.

2006-03-01T23:59:59.000Z

106

Impacts of renewable fuel regulation and production on agriculture, energy, and welfare.  

E-Print Network (OSTI)

??The purpose of this dissertation is to study the impact of U.S. federal renewable fuel regulations on energy and agriculture commodity markets and welfare. We (more)

Mcphail, Lihong Lu

2010-01-01T23:59:59.000Z

107

The Treatment of Renewable Energy Certificates, Emissions Allowances, and Green Power Programs in State Renewables Portfolio Standards  

E-Print Network (OSTI)

benefits from renewable energy production accrue to thefinance the production of renewable energy to meet portfolioUnit of Production definition: One Renewable Energy Credit

Holt, Edward A.; Wiser, Ryan H.

2007-01-01T23:59:59.000Z

108

Redwood Renewables | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Redwood Renewables Sector Solar Product Developing integrated solar roofing projects References Redwood Renewables1 LinkedIn Connections...

109

Schoeller Renewables | Open Energy Information  

Open Energy Info (EERE)

Schoeller Renewables Jump to: navigation, search Name Schoeller Renewables Place Germany Sector Solar, Wind energy Product Germany-based subsidiary of Schoeller Industries that...

110

RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION  

SciTech Connect

ABSTRACT The Texas Panhandle is regarded as the ??Cattle Feeding Capital of the World?, producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO??s), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco??the primary source of potable water for Waco??s 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 ?? Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 ?? Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and Califor

John M. Sweeten, Kalyan Annamalai Brent Auvermann Saqib Mukhtar Sergio C. Capareda Cady Engler Wyatte Harman J.N. Reddy, Robert DeOtte David B. Parker Dr. B.A. Stewart

2012-05-03T23:59:59.000Z

111

RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION  

SciTech Connect

The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling beh

Kalyan Annamalai, John M. Sweeten, Brent W. Auvermann, Saqib Mukhtar, Sergio Caperada Cady R. Engler, Wyatte Harman Reddy JN Robert Deotte

2012-05-03T23:59:59.000Z

112

RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION  

Science Conference Proceedings (OSTI)

The Texas Panhandle is regarded as the â??Cattle Feeding Capital of the Worldâ?, producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFOâ??s), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Wacoâ??the primary source of potable water for Wacoâ??s 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 â?? Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 â?? Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys a

John M. Sweeten, Kalyan Annamalai Brent Auvermann Saqib Mukhtar Sergio C. Capareda Cady Engler Wyatte Harman J.N. Reddy, Robert DeOtte David B. Parker Dr. B.A. Stewart

2012-05-02T23:59:59.000Z

113

Alternative Renewable Fuels 'Plus' Research and Development Fund (Ontario,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Renewable Fuels 'Plus' Research and Alternative Renewable Fuels &#039;Plus&#039; Research and Development Fund (Ontario, Canada) Alternative Renewable Fuels 'Plus' Research and Development Fund (Ontario, Canada) < Back Eligibility Commercial State/Provincial Govt Industrial Local Government Schools Institutional Program Info State Ontario Program Type Grant Program Provider Ministry of Agriculture, Food, and Rural Affairs "Exploration of new markets and new uses for bioproducts, alternative renewable fuels and their co-products will contribute to the long term sustainability of Ontario's agri-food, energy and rural sectors. Investment in research will help position Ontario to take advantage of new technologies in these areas. The Alternative Renewable Fuels 'Plus' Research and Development Fund is a

114

GULF OF MEXICO SHRIMP PRODUCTION: A FOOD WEB HYPOTHESISl R. WARREN FLINT AND NANCY N. RABALAIS'  

E-Print Network (OSTI)

GULF OF MEXICO SHRIMP PRODUCTION: A FOOD WEB HYPOTHESISl R. WARREN FLINT AND NANCY N. RABALAIS. With the comple- tion of a 3-yr multidisciplinary environmental study of the south Texas continental shelf (Flint

115

A Phenomenological Study of the Metal-Oxide Interface: The Role of Catalysis in Hydrogen Production from Renewable Resources  

SciTech Connect

The truth about Cats: The metal-oxide interface of a Pd-Rh/CeO{sub 2} catalyst was studied in the context of developing active, selective and durable solid catalytic materials for the production of hydrogen from renewables. The presence of a stable contact between finely dispersed transition-metal clusters (Pd and Rh) on the nanoparticles of the CeO{sub 2} support leads to a highly active and stable catalyst for the steam reforming of ethanol.

Idriss, H.; Llorca, J; Chan, S; Blackford, M; Pas, S; Hill, A; Alamgir, F; Rettew, R; Petersburg, C; Barteau, M

2008-01-01T23:59:59.000Z

116

Managing R&D Risk in Renewable Energy  

E-Print Network (OSTI)

estimated costs of renewable energy production of potentialreduction. Production cost reductions in renewable energyproduction (DOE (2008)). Table 3: Federal Renewable Energy

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

117

Alaska's renewable energy potential.  

SciTech Connect

This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

Not Available

2009-02-01T23:59:59.000Z

118

Bison Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Bison Renewable Energy LLC Place Minneapolis, Minnesota Zip 55401 Product Developing biogas production facilities. References Bison Renewable Energy LLC1 LinkedIn Connections...

119

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

3.6,Focus:RenewableEnergy forHydrogenProductioninFocus:RenewableEnergyfor PowerProductionandHybrid

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

120

Renewable energy for domestic electricity production and prediction of short-time electric consumption  

Science Conference Proceedings (OSTI)

Modern interest in renewable energy development is linked to concerns about exhaustion of fossil fuels and environmental, social and political risks of extensive use of fossil fuels and nuclear energy. It is a form of energy development with a focus ... Keywords: Kohonen Self-Organizing Maps, Photovoltaic Solar Cells, Short-Time Electric Consumption, Time Series, Windmills

Stphane Grieu; Frdrik Thiery; Adama Traor; Monique Polit

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Biodiesel Production from Algal Blooms: A Step towards Renewable Energy Generation & Measurement  

Science Conference Proceedings (OSTI)

Usage of Bio-energy is becoming more and more prominent due to the peak oil crisis. Bio-energy is the energy which can be synthesized using methods and raw material which are available in nature and are derived from the biological sources. They are referred ... Keywords: Bio-Diesel, Octane Number, Ph Measurement, Renewable Energy Generation, Trans-Esterification

Shabana Urooj, Athar Hussain, Narayani Srivastava

2012-07-01T23:59:59.000Z

122

Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy1354608000000Renewable EnergySome of these resources are LANL-only and will require Remote Access.No Renewable Energy Some of these resources are...

123

Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency  

E-Print Network (OSTI)

MWh of incremental renewable energy production provides, onincremental renewable energy production exceeds 10 billion

Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

2004-01-01T23:59:59.000Z

124

Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy The WIPP Site Holds Promise as an Ideal Source of Renewable Energy Encompassing 16 square miles of open Chihuahuan desert with abundant sunshine and minimal surface roughness, the WIPP site is ideal for either solar- or wind-generated electricity production, demonstration or testing. In fact, WIPP is striving to take advantage of its abundance of sunshine and wind. The Department of Energy's Office of Environmental Management has created what is being called the Energy Park Initiative (EPI). This initiative's goal is to convert DOE facilities into assets by focusing on providing solutions for renewable energy technologies. WIPP, which has always been a DOE leader in terms of safety, has set the additional goal of trying to become the first DOE site operating with 100 percent clean energy. A team, consisting of representatives from CBFO, WTS, Sandia National Laboratories, Los Alamos National Laboratory, New Mexico State University, Texas Tech, the Carlsbad community and area utilities, have come up with several potential solutions. Members of the team are continuing to look into these solutions.

125

AOCS/SFA Edible Oils Manual, 2nd EditionChapter 4 Oil Processing for the Production of Snack Foods  

Science Conference Proceedings (OSTI)

AOCS/SFA Edible Oils Manual, 2nd Edition Chapter 4 Oil Processing for the Production of Snack Foods Food Science eChapters Food Science & Technology AOCS 9BB55FA134CE6032BA8427D4D9656634 Press Downloadable pdf ...

126

Federal Energy Management Program: Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy to someone by E-mail Share Federal Energy Management Program: Renewable Energy on Facebook Tweet about Federal Energy Management Program: Renewable Energy on Twitter Bookmark Federal Energy Management Program: Renewable Energy on Google Bookmark Federal Energy Management Program: Renewable Energy on Delicious Rank Federal Energy Management Program: Renewable Energy on Digg Find More places to share Federal Energy Management Program: Renewable Energy on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Project Planning & Implementation Project Assistance Resource Maps & Screening Tools Purchasing Renewable Power Case Studies Training Working Group Contacts

127

Production Tax Credit for Renewable Electricity Generation (released in AEO2005)  

Reports and Publications (EIA)

In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the Federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10-percent Federal tax credit on new investment in capital-intensive wind and solar generation technologies.

Information Center

2005-04-01T23:59:59.000Z

128

Food production and consumption near the Savannah River Site  

SciTech Connect

Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study`s scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

Hamby, D.M.

1991-12-31T23:59:59.000Z

129

Food production and consumption near the Savannah River Site  

SciTech Connect

Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study's scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

Hamby, D.M.

1991-01-01T23:59:59.000Z

130

Conergy Renewable Services GmbH | Open Energy Information  

Open Energy Info (EERE)

Conergy Renewable Services GmbH Jump to: navigation, search Name Conergy Renewable Services GmbH Place Hamburg, Germany Zip 20537 Sector Renewable Energy, Services Product Provides...

131

Mulilo Renewable Energy Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

Mulilo Renewable Energy Pty Ltd Jump to: navigation, search Name Mulilo Renewable Energy Pty (Ltd) Place Cape Town, South Africa Zip 7525 Sector Renewable Energy Product Cape...

132

Ocean Renewable Power Company LLC | Open Energy Information  

Open Energy Info (EERE)

Ocean Renewable Power Company LLC Jump to: navigation, search Name Ocean Renewable Power Company LLC Place Portland, Maine Zip 4101 Sector Ocean, Renewable Energy Product Ocean...

133

American Council on Renewable Energy ACORE | Open Energy Information  

Open Energy Info (EERE)

on Renewable Energy ACORE Jump to: navigation, search Name American Council on Renewable Energy (ACORE) Place Washington, Washington, DC Zip 20006 Sector Renewable Energy Product...

134

Renewable Energy Across the 50 United States and Related Factors.  

E-Print Network (OSTI)

??Renewable energy production replaces diminishing non-renewable energy sources including fossil fuels. Major sources of renewable energy include biofuels, geothermal, hydroelectric, solar thermal and photovoltaic, wind, (more)

Christenson, Cynthia Brit

2013-01-01T23:59:59.000Z

135

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network (OSTI)

which provides a renewable energy production incentive toonly renewable energy small power production facilities haveor a renewable-energy-fired small power production facility.

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

136

Recharging U.S. Energy Policy: Advocating for a National Renewable Portfolio Standard  

E-Print Network (OSTI)

to fa- cilitate renewable energy production growth in theat pro- moting renewable energy production in the memberof significant renewable energy production in the U.S. also

Lunt, Robin J.

2007-01-01T23:59:59.000Z

137

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

RenewableEnergy forHydrogenProductioninCalifornia UndergraduateStudies:CaliforniaPolytechnicState

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

138

Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE))

Renewable energy leveraged from natural, renewable resources delivers electricity, heating, cooling, and other applications to Federal facilities and fleets. By using renewable energy, Federal agencies increase national security, conserve natural resources, and meet regulatory requirements and goals.

139

Absorption of zinc and iron by rats fed meals containing sorghum food products  

Science Conference Proceedings (OSTI)

Zinc and iron absorption from freeze-dried traditionally-prepared sorghum food products was studied in rats. After a period of marginal zinc or iron depletion, rats were fed test meals containing 1 of 4 sorghum foods cooked maize gruel or an inorganic mineral each of which was extrinsically labeled with either /sup 65/Zn or /sup 59/Fe before being added to the diets. Absorption was determined by whole body percent retention of the initial radioisotope dose over a period of 19 days. Iron was highly available from all products tested (75-83%) with no significant differences in absorption among groups (p>0.05). Zinc from fermented Aceta (97%) was more available than that from the other sorghum products (69-78%) or maize gruel (76%). Zinc from acid To (78%) and Aceta (97%) was as available as that from zinc oxide in the control diet (93%) (p>0.05). There were no significant differences in zinc absorption among groups fed Acid To (78%), neutral To (76), alkali To (69%) or maize gruel (76%) (psorghum foods. Iron and zinc were highly available from all sorghum foods. Reduction phytate by fermentation increased Zn availability.

Stuart, S.M.A.; Johnson, P.E.; Hamaker, B.; Kirleis, A.

1986-03-05T23:59:59.000Z

140

BMT Renewables Ltd | Open Energy Information  

Open Energy Info (EERE)

United Kingdom Zip TW11 8LZ Sector Renewable Energy Product Engineering, design and risk management support to the renewable energy sector, covering planning, installation and...

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

PNE Renewable Solutions JV | Open Energy Information  

Open Energy Info (EERE)

Renewable Solutions JV Jump to: navigation, search Name PNE & Renewable Solutions JV Place Delaware Sector Wind energy Product Delaware-based limited liability company and JV...

142

Renewable Generation Inc | Open Energy Information  

Open Energy Info (EERE)

Renewable Generation Inc Jump to: navigation, search Name Renewable Generation Inc Place Austin, Texas Sector Wind energy Product Developer of utility-scale wind projects....

143

Gigha Renewable Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Gigha Renewable Energy Ltd Jump to: navigation, search Name Gigha Renewable Energy Ltd Place Isle of Gigha, Scotland, United Kingdom Sector Wind energy Product Developer of the...

144

Renewable NRG LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name Renewable NRG LLC Place Woodstock, New York Zip 12498 Product Small manufacturing company located in New York. References Renewable NRG LLC1...

145

Renewable Power Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Power Systems, LLC Place Averill Park, New York Zip 12018 Sector Solar Product Albany, New York-based solar systems installer. References Renewable Power Systems, LLC1...

146

Calgren Renewable Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Fuels LLC Place Newport Beach, California Zip 92660 Product Developer of bio-ethanol plants in US, particularly California. References Calgren Renewable Fuels LLC1...

147

Crown Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy LLC Jump to: navigation, search Name Crown Renewable Energy LLC Place Union City, California Zip 94587 Product Buys monosilicon PV cells from JingAo. References...

148

Tersus Asian Renewables | Open Energy Information  

Open Energy Info (EERE)

Product Tersus Asian Renewables is focusing on investments in wind, biomass and clean coal, principally in China and India. References Tersus Asian Renewables1 LinkedIn...

149

RDC Falck Renewables JV | Open Energy Information  

Open Energy Info (EERE)

JV Place United Kingdom Sector Renewable Energy, Wind energy Product RDC created a joint venture with Falck Renewables Ltd (FRL) to develop a portfolio of wind energy projects...

150

BEE Renewable Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Product Investment company, prioritising operation in the renewable energy industry. Coordinates 47.99854, 7.849655 Loading map... "minzoom":false,"mappi...

151

Succinic Acid-A Model Building Block for Chemical Production from Renewable Resources  

Science Conference Proceedings (OSTI)

One of the major considerations for the development of new technologies that can be utilized in a corn wet mill for the production of new chemical products is the concept of platform building blocks. This concept is based on the fact that a single building block has the potential to create a significant number of final products. Succinic acid represents a building block that can be used as a starting material for producing a large number of commodity and specialty chemicals.

Werpy, Todd A.; Frye, John G.; Holladay, John E.

2006-04-01T23:59:59.000Z

152

A GIS decision support system for regional forest management to assess biomass availability for renewable energy production  

Science Conference Proceedings (OSTI)

Currently, the use of a mix of renewable and traditional energy sources is deemed to help in solving increasing energy demands and environmental issues, thus making it particularly important to assess the availability of renewable energy sources. In ... Keywords: Bioenergy, Decision support system, Environmental sustainability, Forest residues, GIS, Harvesting techniques modelling, Renewable energy

Pietro Zambelli; Chiara Lora; Raffaele Spinelli; Clara Tattoni; Alfonso Vitti; Paolo Zatelli; Marco Ciolli

2012-12-01T23:59:59.000Z

153

Tax Credits for Home Energy Improvements: If You Buy an Energy-Efficient Product or Renewable Energy System for Your Home, You May be Eligible for a Federal Tax Credit (Fact Sheet)  

Science Conference Proceedings (OSTI)

This two-page fact sheet provides an overview of 2010 federal tax credits for energy efficient products or renewable energy systems in the home.

Not Available

2010-05-01T23:59:59.000Z

154

LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS  

DOE Green Energy (OSTI)

Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

G. L. Hawkes; J. E. O'Brien; M. G. McKellar

2011-11-01T23:59:59.000Z

155

Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming. National Renewable Energy Laboratory  

E-Print Network (OSTI)

Contract No. DE-AC36-99-GO10337NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at

Pamela L. Spath; Margaret K. Mann; Pamela L. Spath; Margaret K. Mann

2000-01-01T23:59:59.000Z

156

Using contingent valuation to explore willingness to pay for renewable energy: A comparison of collective and voluntary payment vehicles  

E-Print Network (OSTI)

surcharge, renewable energy production in the United Statessurcharge, renewable energy production in the United Statessurcharge, renewable energy production in the United States

Wiser, Ryan H.

2002-01-01T23:59:59.000Z

157

Using Contingent Valuation to Explore Willingness to Pay for Renewable Energy: A Comparison of Collective and Voluntary Payment Vehicles  

E-Print Network (OSTI)

surcharge, renewable energy production in the United Statessurcharge, renewable energy production in the United Statessurcharge, renewable energy production in the United States

Wiser, Ryan H.

2005-01-01T23:59:59.000Z

158

Using Contingent Valuation to Explore Willingness to Pay for Renewable Energy: A Comparison of Collective and Voluntary Payment Vehicles  

E-Print Network (OSTI)

this surcharge, renewable energy production in the Unitedthis surcharge, renewable energy production in the Unitedthis surcharge, renewable energy production in the United

Wiser, Ryan H.

2005-01-01T23:59:59.000Z

159

Production of Hydrogen from Peanut Shells The goal of this project is the production of renewable hydrogen from agricultural  

E-Print Network (OSTI)

to existing methane reforming technologies. The hydrogen produced will be blended with CNG and used to power activated carbon. The vapor by-products from the first step can be steam reformed into hydrogen. NREL has developed the technology for bio- oil to hydrogen via catalytic steam reforming and shift conversion

160

Federal Energy Management Program: Renewable Energy Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Contacts to someone by E-mail Share Federal Energy Management Program: Renewable Energy Contacts on Facebook Tweet about Federal Energy Management Program: Renewable Energy Contacts on Twitter Bookmark Federal Energy Management Program: Renewable Energy Contacts on Google Bookmark Federal Energy Management Program: Renewable Energy Contacts on Delicious Rank Federal Energy Management Program: Renewable Energy Contacts on Digg Find More places to share Federal Energy Management Program: Renewable Energy Contacts on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Project Planning & Implementation Project Assistance Resource Maps & Screening Tools Purchasing Renewable Power

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Renewable Fuels Module  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.

Chris Namovicz

2013-07-03T23:59:59.000Z

162

Production of Hydrogen for Clean and Renewable Source of Energy for Fuel Cell Vehicles  

Science Conference Proceedings (OSTI)

This was a two-year project that had two major components: 1) the demonstration of a PV-electrolysis system that has separate PV system and electrolysis unit and the hydrogen generated is to be used to power a fuel cell based vehicle; 2) the development of technologies for generation of hydrogen through photoelectrochemical process and bio-mass derived resources. Development under this project could lead to the achievement of DOE technical target related to PEC hydrogen production at low cost. The PEC part of the project is focused on the development of photoelectrochemical hydrogen generation devices and systems using thin-film silicon based solar cells. Two approaches are taken for the development of efficient and durable photoelectrochemical cells; 1) An immersion-type photoelectrochemical cells (Task 3) where the photoelectrode is immersed in electrolyte, and 2) A substrate-type photoelectrochemical cell (Task 2) where the photoelectrode is not in direct contact with electrolyte. Four tasks are being carried out: Task 1: Design and analysis of DC voltage regulation system for direct PV-to-electrolyzer power feed Task 2: Development of advanced materials for substrate-type PEC cells Task 3: Development of advanced materials for immersion-type PEC cells Task 4: Hydrogen production through conversion of biomass-derived wastes

Deng, Xunming; Ingler, William B, Jr.; Abraham, Martin; Castellano, Felix; Coleman, Maria; Collins, Robert; Compaan, Alvin; Giolando, Dean; Jayatissa, Ahalapitiya. H.; Stuart, Thomas; Vonderembse, Mark

2008-10-31T23:59:59.000Z

163

Renewable Portfolio Standard MARK JACCARD  

E-Print Network (OSTI)

Renewable Portfolio Standard MARK JACCARD Simon Fraser University Vancouver, British Columbia feed-in tariff An offer by government or a utility to purchase electricity from renewables producers at a fixed price, regardless of the producers' costs of production. green (renewables) certificate

164

Renewable Energy  

U.S. Energy Information Administration (EIA)

Renewable energy sources including biomass, hydropower, geothermal, wind, and solar provide 8% of the energy used in the United States.

165

Advances in Conjugated Linoleic Acid Research, Vol 2Chapter 11 CLA in Functional Food: Enrichment of Animal Products  

Science Conference Proceedings (OSTI)

Advances in Conjugated Linoleic Acid Research, Vol 2 Chapter 11 CLA in Functional Food: Enrichment of Animal Products Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Downloadable pdf of Cha

166

Energy Department Policy on Acquiring Tribal Renewable Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Policy on Acquiring Tribal Renewable Energy Products Energy Department Policy on Acquiring Tribal Renewable Energy Products As part of the Department of Energy's...

167

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

Renewable Energy Production .Benefits and Renewable Energy Production One source ofauspicious source of renewable energy production from such

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

168

Production of sugarcane and tropical grasses as renewable energy source. Third annual report, 1979-1980  

DOE Green Energy (OSTI)

Research continued on tropical grasses from Saccharum and related genera as sources of intensively-propagated fiber and fermentable solids. Candidate screening for short-rotation grasses was expanded to include six sorghum x Sudan grass hybrids developed by the Dekalb Company. Sugacane and napier grass yield trends in year 3 include: (1) Increased yields with delay of harvest frequency; (2) lack of response to close spacing; (3) a superiority of napier grass over sugarcane when harvested at intervals of six months or less; and (4) a general superiority of the sugarcane variety NCo 310 over varieties PR 980 and PR 64-1791. Delayed tasseling of a wild, early-flowering S. spontaneum hybrid enabled three crosses to be made in December using commercial hybrids as female parents. Approximately 1000 seedlings were produced. The first field-scale minimum tillage experiment was completed. Sordan 77 produced 2.23 OD tons/acre/10 weeks, with winter growing conditions and a total moisture input of 4.75 inches. Mechanization trials included successful planting of napier grass with a sugarcane planter, and the mowing, solar-drying, and round--baling of napier grass aged three to six months. Production-cost and energy-balance studies were initiated during year 3 using first-ratoon data for intensively propagated sugarcane. Preliminary cost estimates for energy cane (sugarcane managed for total biomass rather than sucrose) were in the order of $25.46/OD ton, or about $1.70/mm Btus.

Not Available

1980-01-01T23:59:59.000Z

169

Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA) developed the RE-Powering America's Land initiative to re-use contaminated sites for renewable energy generation when aligned with the community's vision for the site. The former Kaiser Aluminum Landfill in St. Bernard Parish, Louisiana, was selected for a feasibility study under the program. Preliminary work focused on selecting a biomass feedstock. Discussions with area experts, universities, and the project team identified food wastes as the feedstock and anaerobic digestion (AD) as the technology.

Moriarty, K.

2013-01-01T23:59:59.000Z

170

Renewable Capital | Open Energy Information  

Open Energy Info (EERE)

Capital Jump to: navigation, search Name Renewable Capital Place Las Vegas, Nevada Zip 89109 Sector Solar Product Investment vehicle of Ed Stevenson, founder of Solar Integrated...

171

Catalyst Renewables | Open Energy Information  

Open Energy Info (EERE)

Zip 75204 Product Pursue projects with low technical risk, stable fuel supply and prices, and long-term power purchase agreements References Catalyst Renewables1 LinkedIn...

172

Co-digestion of cattle manure with food waste and sludge to increase biogas production  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

Maranon, E., E-mail: emara@uniovi.es [Department of Chemical Engineering and Environmental Technology, University Institute of Technology of Asturias, Campus of Gijon, University of Oviedo, 33203 Gijon (Spain); Castrillon, L.; Quiroga, G.; Fernandez-Nava, Y. [Department of Chemical Engineering and Environmental Technology, University Institute of Technology of Asturias, Campus of Gijon, University of Oviedo, 33203 Gijon (Spain); Gomez, L.; Garcia, M.M. [Zero Emissions Technology, 41018 Seville (Spain)

2012-10-15T23:59:59.000Z

173

Analytical approaches to photobiological hydrogen production in unicellular green algae  

E-Print Network (OSTI)

photosynthesis in renewable energy production. This articlebe applied in renewable energy production. In addition, the

Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

2009-01-01T23:59:59.000Z

174

Hydrogen production from food wastes and gas post-treatment by CO{sub 2} adsorption  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer The dark fermentation process of food wastes was studied over an extended period. Black-Right-Pointing-Pointer Decreasing the HRT of the process negatively affected the specific gas production. Black-Right-Pointing-Pointer Adsorption of CO{sub 2} was successfully attained using a biomass type activated carbon. Black-Right-Pointing-Pointer H{sub 2} concentration in the range of 85-95% was obtained for the treated gas-stream. - Abstract: The production of H{sub 2} by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H{sub 2} streams appropriate for industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO{sub 2} from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H{sub 2} yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H{sub 2} producing microflora leading to a reduction in specific H{sub 2} production. Adsorption of CO{sub 2} from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H{sub 2}S onto the activated carbon also took place, there being no evidence of H{sub 2}S present in the bio-H{sub 2} exiting the column. Nevertheless, the concentration of H{sub 2}S was very low, and this co-adsorption did not affect the CO{sub 2} capture capacity of the activated carbon.

Redondas, V. [Chemical Engineering Department, University of Leon, IRENA-ESTIA, Avda. de Portugal 41, Leon 24071 (Spain); Gomez, X., E-mail: xagomb@unileon.es [Chemical Engineering Department, University of Leon, IRENA-ESTIA, Avda. de Portugal 41, Leon 24071 (Spain); Garcia, S.; Pevida, C.; Rubiera, F. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Moran, A. [Chemical Engineering Department, University of Leon, IRENA-ESTIA, Avda. de Portugal 41, Leon 24071 (Spain); Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

2012-01-15T23:59:59.000Z

175

Renewable Energy Research Activities in Mexico  

Science Conference Proceedings (OSTI)

... Out line ? Scientometrics ? Analysis of renewable energy topics ... "OCEANIC ENERGY") ... It seems we reach the saturation production in RE themes. ...

2013-10-31T23:59:59.000Z

176

Renewable RFI (Generic)  

Open Energy Info (EERE)

for Information for Information Renewable Energy Generation/Production Shreveport Airport Authority SHV AND DTN Shreveport, LA The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. The Authority is particularly interested in solar photovoltaic generation but other technically and economically feasible technologies may also be included. The Airport Authority will provide airport land, at both Shreveport Regional (SHV) and Shreveport Downtown Airports (DTN), for a renewable energy generation system, or systems, to be developed, constructed, owned, operated and maintained by a private entity under a lease agreement for fair market value of the land (currently appraised at

177

Renewable Polymers  

Science Conference Proceedings (OSTI)

... the amounts of natural resources and energy they consume and the wastes they produce. However, the adoption of renewable polymeric materials ...

2012-10-02T23:59:59.000Z

178

Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE))

Learn how the Energy Department's investments in clean, renewable energy technologies -- including wind, solar and geothermal sources -- are helping strengthen the American economy.

179

The use of daylight in the design of a controlled environment for food production in the Caribbean and other equatorial climates  

E-Print Network (OSTI)

This thesis addresses the use of daylight in the design of a controlled environment for food production in the Caribbean and other Equatorial climates. An expanding population has put a tremendous burden on the food ...

Charles, Curtis B

1989-01-01T23:59:59.000Z

180

Renewable Energy Powers Renewable Energy Lab, Employees  

NLE Websites -- All DOE Office Websites (Extended Search)

Powers Renewable Energy Lab, Employees The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) does more than just research renewable energy. It runs on...

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Green Power Network: Renewable Energy Certificates (RECs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Retail Products Table of Retail Products Table of Commercial Certificate Marketers List of REC Marketers REC Prices National Renewable Energy Certificate Tracking Systems Map Carbon Offsets State Policies Renewable Energy Certificates (RECs) Renewable energy certificates (RECs), also known as renewable energy credits, green certificates, green tags, or tradable renewable certificates, represent the environmental attributes of the power produced from renewable energy projects and are sold separate from commodity electricity. Customers can buy green certificates whether or not they have access to green power through their local utility or a competitive electricity marketer. And they can purchase green certificates without having to switch electricity suppliers. Table of Retail Products

182

Making use of renewable energy  

SciTech Connect

This book describes renewable energy projects proposed for the rural areas of developing countries. Topics considered include biogas generation in Zimbabwe, biogas technology for water pumping in Botswana, soil fertility and energy problems in rural development in the Zaire rain forest, international scientific collaboration on biogas technologies for rural development, alcohol from biomass, an ethanol project in Zimbabwe, biomass alcohol and the fuel-food issue, solar water heating in Zimbabwe, absorbent box solar cookers, solar crop drying in Zimbabwe, the use of passive solar energy in Botswana buildings, the potential of mini hydro systems, woodfuel as a potential renewable energy source, small-scale afforestation for domestic needs in the communal lands of Zimbabwe, muscle power, the use of human energy in construction, hand-operated water pumps, animal power for water pumping in Botswana, the production of charcoal in Zambia, improving the efficiency of a traditional charcoal-burning Burmese cooking stove, social impacts, non-engineering constraints affecting energy use in a rural area, women and energy, and non-technical factors influencing the establishment of fuels-from-crops industries in developing countries.

Johnston, J.C.

1984-01-01T23:59:59.000Z

183

Astonfield Renewable Resources Ltd ARRL | Open Energy Information  

Open Energy Info (EERE)

Astonfield Renewable Resources Ltd ARRL Jump to: navigation, search Name Astonfield Renewable Resources Ltd. (ARRL) Place New York, New York Zip 10017 Sector Biomass, Solar Product...

184

Midwest Renewable Energy Projects LLC | Open Energy Information  

Open Energy Info (EERE)

Projects LLC Jump to: navigation, search Name Midwest Renewable Energy Projects LLC Place Florida Zip FL 33408 Sector Renewable Energy, Wind energy Product MRE Projects LLC is a...

185

DOE Hydrogen Analysis Repository: Hydrogen from Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen from Renewable Energy Project Summary Full Title: H2 Production Infrastructure Analysis - Task 3: Hydrogen From Renewable Energy Sources: Pathway to 10 Quads for...

186

S R Renewable Energy Ltd SRREL | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Ltd SRREL Jump to: navigation, search Name S.R. Renewable Energy Ltd. (SRREL) Place Hyderabad, Andhra Pradesh, India Zip 500 026 Sector Biomass Product...

187

Soham Renewable Energy P Ltd | Open Energy Information  

Open Energy Info (EERE)

Name Soham Renewable Energy (P) Ltd Place Bangalore, Karnataka, India Zip 560001 Sector Hydro, Renewable Energy, Wind energy Product Bangalore-based firm generating power using...

188

Consumer approval of genetic modification of food products: a comparison of United States and South Korean perspectives  

E-Print Network (OSTI)

Genetic modification presents the potential to advance not only agricultural production but to increase quality of life as well. The potential this innovation presents will be irrelevant if the public is unwilling to accept and adopt it. The following study examines public perceptions of biotechnology, specifically the consumer approval of genetically modified food products. This study was based on data collected from a national survey conducted in both the United States and South Korea. The United States survey was designed to be nationally representative and consisted of 1201 respondents. The South Korean survey was also designed to be nationally representative and consisted of 1054 respondents Analysis was conducted using two questions from the survey questionnaire as dependent variables: (1) approval of the use of genetic modification in the creation of plant-based food products, and (2) approval of the use of genetic modification in the creation of animal-based food products. This study utilized probit models for binary choice and ordered probit models to analyze the likelihood of consumer approval of the use of genetic modification for the creation of food products. Findings indicated that consumers in the U.S. and South Korea who possessed an accurate knowledge of the applications and outcomes of GM technology were more likely to approve of its use for the creation of foods than those who had inaccurate or no knowledge of the technology. Additionally, the majority of consumers in the U.S. and South Korea believe that GM foods should be labeled as such. Those consumers who felt GM labeling to be necessary were less likely to approve of the GM of foods than those who did not feel GM labeling to be necessary. It was also found that consumers in both countries are less approving of the GM of animals than the GM of plants. Consumer approval of the use of genetic modification in the creation of food products can be increased with proper education that provides accurate knowledge of the applications of GM. Labeling of GM products is likely to result in a decrease in demand, which may be offset by public educational campaigns.

Gillett, Mary Caperton

2003-05-01T23:59:59.000Z

189

Renewable Energy Network of Entrepreneurs in Western New York RENEW NY |  

Open Energy Info (EERE)

Network of Entrepreneurs in Western New York RENEW NY Network of Entrepreneurs in Western New York RENEW NY Jump to: navigation, search Name Renewable Energy Network of Entrepreneurs in Western New York (RENEW NY) Place Rochester, New York Zip 14623 Sector Renewable Energy Product US-based incubator fund, Renewable Energy Network of Entrepreneurs in Western New York, helps early stage renewable energy companies to start and grow in Western New York. References Renewable Energy Network of Entrepreneurs in Western New York (RENEW NY)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Network of Entrepreneurs in Western New York (RENEW NY) is a company located in Rochester, New York . References ↑ "Renewable Energy Network of Entrepreneurs in Western New York

190

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

Hydrogen Production, National Renewable Energy Laboratory,Production Using Concentrated Solar Energy, National Renewablethe production of hydrogen from renewable energy sources. In

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

191

Renewable Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. U.S. Dependence on...

192

Strategic Renewal  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewal Renewal of the Advanced Photon Source Proposal for Approval to Proceed with Conceptual Design (CD-0) Submitted to the US Department of Energy Office of Basic Energy Sciences May 31, 2009 Advanced Photon Source A BS t R AC t This document proposes a coordinated upgrade of the accelerator, beamlines, and enabling technical infrastructure that will equip future users of the Advanced Photon Source (APS) to address key

193

The Treatment of Renewable Energy Certificates, Emissions Allowances, and Green Power Programs in State Renewables Portfolio Standards  

E-Print Network (OSTI)

program. New Mexico rules state: renewable energy soldenergy production accrue to the public at large (legislation) New Mexico: Mexico: Legislation passed in March 2007 defines a renewable energy

Holt, Edward A.; Wiser, Ryan H.

2007-01-01T23:59:59.000Z

194

Federal Energy Management Program: Renewable Energy Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy Working Group to someone by E-mail Share Federal Energy Management Program: Renewable Energy Working Group on Facebook Tweet about Federal Energy Management Program: Renewable Energy Working Group on Twitter Bookmark Federal Energy Management Program: Renewable Energy Working Group on Google Bookmark Federal Energy Management Program: Renewable Energy Working Group on Delicious Rank Federal Energy Management Program: Renewable Energy Working Group on Digg Find More places to share Federal Energy Management Program: Renewable Energy Working Group on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Project Planning & Implementation Project Assistance Resource Maps & Screening Tools

195

Federal Energy Management Program: Renewable Energy Project Assistance  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy Project Assistance to someone by E-mail Share Federal Energy Management Program: Renewable Energy Project Assistance on Facebook Tweet about Federal Energy Management Program: Renewable Energy Project Assistance on Twitter Bookmark Federal Energy Management Program: Renewable Energy Project Assistance on Google Bookmark Federal Energy Management Program: Renewable Energy Project Assistance on Delicious Rank Federal Energy Management Program: Renewable Energy Project Assistance on Digg Find More places to share Federal Energy Management Program: Renewable Energy Project Assistance on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Project Planning & Implementation

196

Comparison of emissions from selected commercial kitchen appliances and food products  

SciTech Connect

Effluents have been measured from various grease-producing cooking processes in an attempt to quantify the emissions that enter typical commercial kitchen exhaust hoods. The appliances tested include gas and electric versions of single-sided griddles, open-vat deep fat fryers, under-fired broilers, full size convection ovens, and six burner ranges. Food products include hamburger, chicken breast, fries, sausage pizza, and a spaghetti meal. Emission data were obtained for particles, grease vapor, CO, CO{sub 2}, NO{sub x}, and hydrocarbons. Velocity and temperature fields were measured in the plume above each appliance. Results show that a large fraction of the grease emission is typically in vapor form. The broilers emit significantly more particles less than 2.5 {micro}m in size (PM 2.5) than the other appliances tested. Combustion by-products were measured for all gas appliances. Both the gas and electric broilers emitted significant amounts of CO when hamburgers were cooked. Aromatic hydrocarbon concentrations were below detectable limits in all tests.

Kuehn, T.H.; Gerstler, W.D.; Pui, D.Y.H.; Ramsey, J.W.

1999-07-01T23:59:59.000Z

197

Bio Renewables Group | Open Energy Information  

Open Energy Info (EERE)

Name Bio-Renewables Group Place United Kingdom Zip CB6 2BA Sector Biomass, Renewable Energy Product Specialist in bio-energy consultancy, research and project development related...

198

Estimating exergy renewability for sustainability assessment of corn ethanol  

Science Conference Proceedings (OSTI)

Although distinction between renewable and non-renewable energy resources has important political ramifications, in reality all practical energy production chains use a combination of resources that are renewable to different ...

Christopher D. Cummings; Thomas P. Seager

2008-05-01T23:59:59.000Z

199

Renewable Energy Certificates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Certificates Renewable Energy Certificates Renewable Energy Certificates October 16, 2013 - 5:15pm Addthis Image of a red balloon reading 'Electricity' plus a green balloon reading 'REC' equals a purple balloon reading 'Renewable Power' Components of a Renewable Energy Certificate Two separate products exist from electricity produced by renewable energy projects that can be sold together or treated separately. One is the actual electrons produced, which can either be transferred through the power grid to provide power to utility customers or used off-grid or at a customer site. Although they are not common in the market, Federal renewable energy policy recognizes renewable energy certificates (RECs) from thermal renewable energy projects. For thermal RECs the energy product is British

200

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

202

Renewable energy in commercial buildings  

E-Print Network (OSTI)

Dynamic life cycle assessment (LCA) of renewable energytechnologies, Renewable energy. [6] REN21 Renewable Energy Policy Network. 2005. Renewables

Scarpa, Massimiliano; Schiavon, Stefano; Zecchin, Roberto

2008-01-01T23:59:59.000Z

203

Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues  

E-Print Network (OSTI)

12 Table 3. Renewable Energy Production Required forTable Table 3. Renewable Energy Production Required forEnergy Consumption Renewable Energy Production B kWH Year In

Budhraja, Vikram

2008-01-01T23:59:59.000Z

204

Federal Energy Management Program: Federal Requirements for Renewable  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Federal Requirements for Renewable Energy to someone by E-mail Share Federal Energy Management Program: Federal Requirements for Renewable Energy on Facebook Tweet about Federal Energy Management Program: Federal Requirements for Renewable Energy on Twitter Bookmark Federal Energy Management Program: Federal Requirements for Renewable Energy on Google Bookmark Federal Energy Management Program: Federal Requirements for Renewable Energy on Delicious Rank Federal Energy Management Program: Federal Requirements for Renewable Energy on Digg Find More places to share Federal Energy Management Program: Federal Requirements for Renewable Energy on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

205

Natural Innovative Renewable Energy formerly Northwest Iowa Renewable  

Open Energy Info (EERE)

Innovative Renewable Energy formerly Northwest Iowa Renewable Innovative Renewable Energy formerly Northwest Iowa Renewable Energy Jump to: navigation, search Name Natural Innovative Renewable Energy (formerly Northwest Iowa Renewable Energy) Place Akron, Iowa Zip 51001 Sector Renewable Energy Product Natural Innovative Renewable Energy, formerly Northwest Iowa Renewable Energy, is a development stage limited liability company that plans to construct a 60m gallon (227m litre) per year beef tallow biodiesel plant in South Sioux City, Nebraska. Coordinates 40.15731°, -76.204844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15731,"lon":-76.204844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Renewable Energy RFP  

NLE Websites -- All DOE Office Websites (Extended Search)

Request for Proposal October 15, 2003 Renewable Energy Today For a Cleaner Tomorrow Biomass Group, LLC - Renewable Energy Request for Proposal, October 15, 2003 Renewable Energy...

207

Renewable Power and Light | Open Energy Information  

Open Energy Info (EERE)

and Light and Light Jump to: navigation, search Name Renewable Power and Light Place London, Greater London, United Kingdom Zip W1 J5P2 Sector Biofuels, Renewable Energy Product Renewable Power and Light intend to become a power producer generating from renewable sources with renewable technologies, in particluar with regard to biofuels. References Renewable Power and Light[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Power and Light is a company located in London, Greater London, United Kingdom . References ↑ "Renewable Power and Light" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Power_and_Light&oldid=350347"

208

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

209

Alyra Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Alyra Renewable Energy Alyra Renewable Energy Jump to: navigation, search Name Alyra Renewable Energy Place Northampton, Massachusetts Zip 10600 Sector Renewable Energy, Services Product Massachusetts-based provider of financial advisory services exclusively to the renewable energy sector. The firm specializes in M&A/cross-border joint venture advisory and structured tax equity/project finance advisory. References Alyra Renewable Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alyra Renewable Energy is a company located in Northampton, Massachusetts . References ↑ "Alyra Renewable Energy" Retrieved from "http://en.openei.org/w/index.php?title=Alyra_Renewable_Energy&oldid=342082

210

Renewable Energy Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Resources, Inc. Renewable Energy Resources, Inc. Place Las Vegas, Nevada Sector Hydro, Renewable Energy, Solar, Wind energy Product Renewable Energy is a privately-held consultancy with proprietary technology in the solar, wind and hydro fields. References Renewable Energy Resources, Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Resources, Inc. is a company located in Las Vegas, Nevada . References ↑ "Renewable Energy Resources, Inc." rated format, with renewable energy as its base, insuring a successful project throughout construction and commissioning. |Number of employees= |Coordinates= |References=Renewable Energy Resources, Inc.[1] }}

211

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable Energy Office Valerie Hall Deputy Director Efficiency, Renewables, and Demand Analysis Division #12;These

212

Renewable Energy 101 (Presentation)  

SciTech Connect

Presentation given at the 2012 Department of Homeland Security Renewable Energy Roundtable as an introduction to renewable technologies and applications.

Walker, A.

2012-03-01T23:59:59.000Z

213

Renewable Energy Group REG | Open Energy Information  

Open Energy Info (EERE)

Group REG Jump to: navigation, search Name Renewable Energy Group (REG) Place Ames, Iowa Zip 50010 Product Iowa-based designer and builder of turnkey biodiesel plants. References...

214

Dale Renewables Consulting | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Dale Renewables Consulting Place California Sector Solar Product PV marketing and installation firm, merged with Solar Power Inc in January...

215

Renewable Fuels Limited RFL | Open Energy Information  

Open Energy Info (EERE)

RFL Jump to: navigation, search Name Renewable Fuels Limited (RFL) Place York, United Kingdom Zip YO19 6ET Sector Biomass Product Supplies various biomass fuels and offers...

216

Renewable Development Company RDC | Open Energy Information  

Open Energy Info (EERE)

Development Company RDC Jump to: navigation, search Name Renewable Development Company (RDC) Place Mold, United Kingdom Zip CH7 4ED Sector Wind energy Product Wind farm developer...

217

Renewable Energy Technology Center | Open Energy Information  

Open Energy Info (EERE)

Technology Center Jump to: navigation, search Name Renewable Energy Technology Center Place Hamburg, Hamburg, Germany Zip D-22335 Sector Wind energy Product RETC, a JV formed which...

218

EREC: Energy Efficiency and Renewable Energy Clearinghouse  

NLE Websites -- All DOE Office Websites (Extended Search)

EREC: Energy Efficiency and Renewable Energy Clearinghouse If you have questions about: Passive solar home design Energy-efficient appliances Biofuels production Home heating...

219

Managing R&D Risk in Renewable Energy  

E-Print Network (OSTI)

a common framework. 3.1 Production and Cost Representationsthe duality between production and costs, such productivitycost reduction. Production cost reductions in renewable

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

220

Rivertop Renewables | Open Energy Information  

Open Energy Info (EERE)

Rivertop Renewables Rivertop Renewables Jump to: navigation, search Name Rivertop Renewables Place Missoula, Montana Zip P.O. Box 8165 Sector Renewable Energy Product Montana based startup focused on creating bioproducts from renewable plant sugars. Coordinates 46.87278°, -113.996234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.87278,"lon":-113.996234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alteris Renewables | Open Energy Information  

Open Energy Info (EERE)

Alteris Renewables Alteris Renewables Jump to: navigation, search Logo: Alteris Renewables Name Alteris Renewables Address 523 Danbury Rd Place Wilton, Connecticut Zip 06897 Sector Solar Product Renewable energy systems integrator Number of employees 51-200 Website http://www.alterisinc.com/inde Coordinates 41.227489°, -73.425272° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.227489,"lon":-73.425272,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Whirlwind Renewables | Open Energy Information  

Open Energy Info (EERE)

Whirlwind Renewables Whirlwind Renewables Jump to: navigation, search Name Whirlwind Renewables Place Huddersfield, England, United Kingdom Sector Renewable Energy, Wind energy Product Whirlwind Renewables Limited is a Yorkshire based independent wind energy business that specialises in the development of small onshore wind farms in the UK. Coordinates 53.646955°, -1.782684° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.646955,"lon":-1.782684,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Type: Renewal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 INCITE Awards 1 INCITE Awards Type: Renewal Title: -Ab Initio Dynamical Simulations for the Prediction of Bulk Properties‖ Principal Investigator: Theresa Windus, Iowa State University Co-Investigators: Brett Bode, Iowa State University Graham Fletcher, Argonne National Laboratory Mark Gordon, Iowa State University Monica Lamm, Iowa State University Michael Schmidt, Iowa State University Scientific Discipline: Chemistry: Physical INCITE Allocation: 10,000,000 processor hours Site: Argonne National Laboratory Machine (Allocation): IBM Blue Gene/P (10,000,000 processor hours) Research Summary: This project uses high-quality electronic structure theory, statistical mechanical methods, and

224

KP Renewables Plc | Open Energy Information  

Open Energy Info (EERE)

Plc Plc Jump to: navigation, search Name KP Renewables Plc Place Brentford, Middlesex, Greater London, United Kingdom Zip TW8 9JJ Sector Renewable Energy, Wind energy Product KP is a renewable energy project developer. KP raises funding for small renewable generating projects, especially using wind and waste as fuel and then acts as PPA arranger and power producer. References KP Renewables Plc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. KP Renewables Plc is a company located in Brentford, Middlesex, Greater London, United Kingdom . References ↑ "KP Renewables Plc" Retrieved from "http://en.openei.org/w/index.php?title=KP_Renewables_Plc&oldid=348173

225

Federal Energy Management Program: Renewable Energy Project Planning and  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy Project Planning and Implementation to someone by E-mail Share Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Facebook Tweet about Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Twitter Bookmark Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Google Bookmark Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Delicious Rank Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Digg Find More places to share Federal Energy Management Program: Renewable Energy Project Planning and Implementation on AddThis.com... Energy-Efficient Products

226

Declining global per capita agricultural production and warming oceans threaten food security  

E-Print Network (OSTI)

per capita production levels in 2030 similar to those of theby 14% between 2008 and 2030. Climate change is likely tocereal production by 2030. If done sustainably, raising

Funk, Chris C.; Brown, Molly E.

2009-01-01T23:59:59.000Z

227

Renewable Fuels Consulting | Open Energy Information  

Open Energy Info (EERE)

Consulting Consulting Jump to: navigation, search Name Renewable Fuels Consulting Place Mason City, Iowa Sector Renewable Energy Product RFC specializes in providing technical solutions to renewable energy production plants. References Renewable Fuels Consulting[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Fuels Consulting is a company located in Mason City, Iowa . References ↑ "Renewable Fuels Consulting" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Fuels_Consulting&oldid=350341" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

228

Renewable Energy Group Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Renewable Energy Group Inc Place Ames, Iowa Zip 50010 Sector Renewable Energy Product Iowa-based holding company operated under the auspices of biodiesel production company Renewable Energy Group. References Renewable Energy Group Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Group Inc is a company located in Ames, Iowa . References ↑ "Renewable Energy Group Inc" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Group_Inc&oldid=350324" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

229

Renewable Project Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Overview Project Overview Federal Utility Partnership Working Group 5/6/09 Chandra Shah, NREL 303-384-7557, chandra.shah@nrel.gov National Renewable Energy Laboratory Innovation for Our Energy Future Presentation Overview Federal and utility renewable requirements Power Purchase Agreements (PPA) Western Area Power Administration Federal Renewable Program UESC and renewables * Participating in utility renewable programs - Opportunity Announcement process Renewable projects implemented using appropriations National Renewable Energy Laboratory Innovation for Our Energy Future Biomass Resource

230

Federal Renewable Energy Guidance to EPACT 2005  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Renewable Energy Guidance to EPACT 2005 David McAndrew FUPWG Sandestin Requirement Guidance Overview The guidance outlines the following: - Authority - Requirement - Definition of the renewable energy technologies & products - Requirements for qualifying renewable energy projects or purchases - How agencies renewable energy purchase toward energy reduction requirements will gradually phase out Authority The authority for this guidance is based on Section 203, FEDERAL PURCHASE REQUIREMENT of the Energy Policy Act of 2005 (42 U.S.C. 15852) and Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management (72 FR 3919; January 24, 2007), and the instructions and guidance distributed by the Chairman of the Council for Environmental

231

Guide to Purchasing Green Power: Renewable Electricity, Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates and On-Site Renewable Generation Title Guide to Purchasing Green Power: Renewable Electricity,...

232

DOE Tribal Renewable Energy Series Webinar: Renewable Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tribal Renewable Energy Series Webinar: Renewable Energy Market Update DOE Tribal Renewable Energy Series Webinar: Renewable Energy Market Update January 29, 2014 11:00AM EST...

233

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

temporally-dependent renewable energy production profiles,renewable energy offsets natural gas-fired electricity production.renewable energy to be more labor-intensive than conventional forms of electricity production (

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

234

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this segment of work, our goal was to review methods for estimating tree survival, growth, yield and value of forests growing on surface mined land in the eastern coalfields of the USA, and to determine the extent to which carbon sequestration is influenced by these factors. Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977 (SMCRA), mandates that mined land be reclaimed in a fashion that renders the land at least as productive after mining as it was before mining. In the central Appalachian region, where prime farmland and economic development opportunities for mined land are scarce, the most practical land use choices are hayland/pasture, wildlife habitat, or forest land. Since 1977, the majority of mined land has been reclaimed as hayland/pasture or wildlife habitat, which is less expensive to reclaim than forest land, since there are no tree planting costs. As a result, there are now hundreds of thousands of hectares of grasslands and scrublands in various stages of natural succession located throughout otherwise forested mountains in the U.S. A literature review was done to develop the basis for an economic feasibility study of a range of land-use conversion scenarios. Procedures were developed for both mixed hardwoods and white pine under a set of low product prices and under a set of high product prices. Economic feasibility is based on land expectation values. Further, our review shows that three types of incentive schemes might be important: (1) lump sum payment at planting (and equivalent series of annual payments); (2) revenue incentive at harvest; and (3) benefit based on carbon volume.

Jonathan Aggett

2003-12-15T23:59:59.000Z

235

Enzymes and microorganisms in food industry waste processing and conversion to useful products: a review of the literature  

DOE Green Energy (OSTI)

Bioconversion of food processing wastes is receiving increased attention with the realization that waste components represent an available and utilizable resource for conversion to useful products. Liquid wastes are characterized as dilute streams containing sugars, starches, proteins, and fats. Solid wastes are generally cellulosic, but may contain other biopolymers. The greatest potential for economic bioconversion is represented by processes to convert cellulose to glucose, glucose to alcohol and protein, starch to invert sugar, and dilute waste streams to methane by anaerobic digestion. Microbial or enzymatic processes to accomplish these conversions are described.

Carroad, P.A.; Wilke, C.R.

1976-12-01T23:59:59.000Z

236

Industrial Applications of Renewable Resources  

Science Conference Proceedings (OSTI)

Archive of Industrial Applications of Renewable Resources Industrial Applications of Renewable Resources Cincinnati, Ohio, USA Industrial Applications of Renewable Resources ...

237

Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice  

E-Print Network (OSTI)

State Legislature enacted, and the Governor signed, SB 5101, which provides a renewable energy production

Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

238

Renewable Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas JOHN DAVIS: The use of clean, domestic natural gas as highway fuel in place of imported oil is growing in popularity with fleets and trucking companies. While natural gas from underground deposits is arguably a limited resource, there is a renewable, eco-friendly resource that we have right here in the U.S.A. And we're here now to give you the straight poop! Every family, farm animal and food processing plant in America produces organic waste that creates a mix of methane, CO2 and other elements called bio gas when it decomposes. Rotten vegetables, moldy bread, last night's leftovers --- they all break down when our garbage gets to the land fill. Incredibly, for

239

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION Jeffrey D. Byron B.B. Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE Mark

240

REN21 Renewables Interactive Map | Open Energy Information  

Open Energy Info (EERE)

REN21 Renewables Interactive Map REN21 Renewables Interactive Map (Redirected from REN21's Renewables Interactive Map) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: REN21's Renewables Interactive Map Agency/Company /Organization: Renewable Energy Policy Network for the 21st Century (REN21) Sector: Energy Focus Area: Renewable Energy Topics: Market analysis, Policies/deployment programs, Resource assessment Resource Type: Dataset, Maps Website: www.map.ren21.net/ References: Renewables Interactive Map[1] The REN21 Renewables Interactive Map provides information on renewable energy policies, expansion targets, current shares, installed capacity, current production, future scenarios, and policy pledges. References ↑ "Renewables Interactive Map" Retrieved from "http://en.openei.org/w/index.php?title=REN21_Renewables_Interactive_Map&oldid=383282"

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

This is the first quarterly Technical Report for the period October-December, 2003. A kick-off meeting was held with NETL administrators and scientists at Morgantown, WV, on December 2, 2002. The purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During this first quarterly reporting period, five Graduate Research Assistants were recruited, an MOA was drafted between Virginia Tech and three industry cooperators, preliminary field locations for controlled studies were located, and a preliminary analysis of a carbon inventory of forest sites on mined land was made.

Dr. James A. Burger

2002-02-04T23:59:59.000Z

242

Alpha Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Renewable Energy Jump to: navigation, search Name Alpha Renewable Energy Place Atlanta, Georgia Sector Biomass Product Manufacturer of biomass wood gas stoves and standalone power generators for rural areas. References Alpha Renewable Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alpha Renewable Energy is a company located in Atlanta, Georgia . References ↑ "Alpha Renewable Energy" Retrieved from "http://en.openei.org/w/index.php?title=Alpha_Renewable_Energy&oldid=342033" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

243

Solterra Renewable Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Solterra Renewable Technologies Inc Solterra Renewable Technologies Inc Jump to: navigation, search Name Solterra Renewable Technologies Inc. Place Tempe, Arizona Sector Solar Product Solterra is a technology development firm focused on thin-film quantum dot solar cells. References Solterra Renewable Technologies Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solterra Renewable Technologies Inc. is a company located in Tempe, Arizona . References ↑ "Solterra Renewable Technologies Inc." Retrieved from "http://en.openei.org/w/index.php?title=Solterra_Renewable_Technologies_Inc&oldid=351521" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

244

Renewable Resource Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Resource Standard Renewable Resource Standard Renewable Resource Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Montana Program Type Renewables Portfolio Standard Provider Montana Public Service Commission Montana's renewable portfolio standard (RPS), enacted in April 2005 as part of the Montana Renewable Power Production and Rural Economic Development Act, requires public utilities and competitive electricity suppliers to obtain a percentage of their retail electricity sales from eligible renewable resources according to the following schedule: * 5% for compliance years 2008-2009 (1/1/2008 - 12/31/2009) * 10% for compliance years 2010-2014 (1/1/2010 - 12/31/2014)

245

PI Renewables Ltd | Open Energy Information  

Open Energy Info (EERE)

PI Renewables Ltd PI Renewables Ltd Jump to: navigation, search Name PI Renewables Ltd Place Livingston, United Kingdom Zip EH55 8QL Sector Hydro, Wind energy Product Builds, owns and operates wind, LFG and small hydro assets in the UK market. Mistral LP invested USD 0.9m in the company in August 2004. References PI Renewables Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. PI Renewables Ltd is a company located in Livingston, United Kingdom . References ↑ "PI Renewables Ltd" Retrieved from "http://en.openei.org/w/index.php?title=PI_Renewables_Ltd&oldid=349739" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

246

Colorado Renewable Resource Cooperative | Open Energy Information  

Open Energy Info (EERE)

Colorado Renewable Resource Cooperative Colorado Renewable Resource Cooperative Jump to: navigation, search Name Colorado Renewable Resource Cooperative Place Colorado Sector Biomass Product Colorado-based cooperative and forestry producer, that targets the use of woody biomass to generate heat or electricity. References Colorado Renewable Resource Cooperative[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Colorado Renewable Resource Cooperative is a company located in Colorado . References ↑ "Colorado Renewable Resource Cooperative" Retrieved from "http://en.openei.org/w/index.php?title=Colorado_Renewable_Resource_Cooperative&oldid=343780" Categories: Clean Energy Organizations

247

Renewable Energy Loan Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Loan Programs Title Renewable Energy Loan Programs Publication Type Case Study Year of Publication 2002 Authors Bolinger, Mark, and Kevin Porter Secondary Title...

248

Renewable Energy Innovations  

NLE Websites -- All DOE Office Websites (Extended Search)

applying our expertise in chemical and materials science to provide innovations in renewable energy generation, storage, and use. 4 08 FACT SHEET Renewable Energy Innovations 4...

249

EIA Energy Kids - Renewable  

U.S. Energy Information Administration (EIA)

Renewable energy sources including biomass, hydropower, geothermal, wind, and solar provide 8% of the energy used in the United States. Most renewable energy goes to ...

250

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During the reporting period (October-December 2004) we completed the validation of a forest productivity classification model for mined land. A coefficient of determination (R{sup 2}) of 0.68 confirms the model's ability to predict SI based on a selection of mine soil properties. To determine carbon sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio (Figure 1), West Virginia (Figure 2), and Virginia (Figure 3). The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). For hybrid poplar, total plant biomass differences increased significantly with the intensity of silvicultural input. Root, stem, and foliage biomass also increased with the level of silvicultural intensity. Financial feasibility analyses of reforestation on mined lands previously reclaimed to grassland have been completed for conversion to white pine and mixed hardwood species. Examination of potential policy instruments for promoting financial feasibility also have been completed, including lump sum payments at time of conversion, annual payments through the life of the stand, and payments based on carbon sequestration that provide both minimal profitability and fully offset initial reforestation outlays. We have compiled a database containing mine permit information obtained from permitting agencies in Virginia, West Virginia, Pennsylvania, Ohio, and Kentucky. Due to differences and irregularities in permitting procedures between states, we found it necessary to utilize an alternative method to determine mined land acreages in the Appalachian region. We have initiated a proof of concept study, focused in the State of Ohio, to determine the feasibility of using images from the Landsat Thematic Mapper (TM) and/or Enhanced Thematic Mapper Plus (ETM+) to accurately identify mined lands.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2005-02-15T23:59:59.000Z

251

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. (National Renewable Energy Lab., Golden, CO (United States)); Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States))

1992-07-01T23:59:59.000Z

252

Catalytic Preparation of Pyrrolidones from Renewable Resources  

SciTech Connect

Use of renewable resources for production of valuable chemical commodities is becoming a topic of great national interest and importance. This objective fits well with the USDOEs objective of promoting the industrial bio-refinery concept in which a wide array of valuable chemical, fuel, food, nutraceuticals and animal feed products all result from the integrated processing of grains, oil seeds and other bio-mass materials. The bio-refinery thus serves to enhance the overall utility and profitability of the agriculture industry as well as helping to reduce the dependence on petroleum. Pyrrolidones fit well with the bio-refinery concept since they may be produced in a scheme beginning with the fermentation of a portion of the bio-refinerys sugar product into succinate. Pyrrolidones are a class of industrially important chemicals with a variety of uses including as polymer intermediates, cleaners, and green solvents which can replace hazardous chlorinated compounds. Battelle has developed an efficient process for the thermo catalytic conversion of succinate into pyrrolidones, especially n-methylpyrrolidone. The process uses both novel Rh based catalysts and novel aqueous process conditions and results in high selectivities and yields of pyrrolidone compounds. The process also includes novel methodology for enhancing yields by recycling and converting non-useful side products of the catalysis into additional pyrrolidone. The process has been demonstrated in both batch and continuous reactors. Additionally, stability of the unique Rh-based catalyst has been demonstrated.

Frye, John G.; Zacher, Alan H.; Werpy, Todd A.; Wang, Yong

2005-12-01T23:59:59.000Z

253

Catalytic Preparation of Pyrrolidones from Renewable Resources  

SciTech Connect

Abstract Use of renewable resources for production of valuable chemical commodities is becoming a topic of great national interest and importance. This objective fits well with the U.S. DOEs objective of promoting the industrial bio-refinery concept in which a wide array of valuable chemical, fuel, food, nutraceuticals, and animal feed products all result from the integrated processing of grains, oil seeds, and other bio-mass materials. The bio-refinery thus serves to enhance the overall utility and profitability of the agriculture industry as well as helping to reduce the USAs dependence on petroleum. Pyrrolidones fit well into the bio-refinery concept since they may be produced in a scheme beginning with the fermentation of a portion of the bio-refinerys sugar product into succinate. Pyrrolidones are a class of industrially important chemicals with a variety of uses including polymer intermediates, cleaners, and green solvents which can replace hazardous chlorinated compounds. Battelle has developed an efficient process for the thermo-catalytic conversion of succinate into pyrrolidones, especially n-methyl-2-pyrrolidone. The process uses both novel Rh based catalysts and novel aqueous process conditions and results in high selectivities and yields of pyrrolidone compounds. The process also includes novel methodology for enhancing yields by recycling and converting non-useful side products of the catalysis into additional pyrrolidone. The process has been demonstrated in both batch and continuous reactors. Additionally, stability of the unique Rh-based catalyst has been demonstrated.

Frye, John G.; Zacher, Alan H.; Werpy, Todd A.; Wang, Yong

2005-06-01T23:59:59.000Z

254

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystems Services  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During this quarter we worked on methodologies for analyzing carbon in mine soils. A unique property of mine soils is the presence of coal and carboniferous rock particles that are present in mine soils in various sizes, quantities, and qualities. There is no existing method in the literature that may be of use for quantitative estimation of soil organic carbon (SOC) in mine soils that can successfully differentiate between pedogenic and geogenic carbon forms. In this report we present a detailed description of a 16-step method for measuring SOC in mine soils designed for and tested on a total of 30 different mine soil mixtures representing a wide spectrum of mine soils in the hard-rock region of the Appalachian coalfield. The proposed method is a combination of chemical procedure for carbonates removal, a thermal procedure for pedogenic C removal, and elemental C analysis procedure at 900 C. Our methodology provides a means to correct for the carbon loss from the more volatile constituents of coal fragments in the mine soil samples and another correction factor for the protected organic matter that can also remain unoxidized following thermal pretreatment. The correction factors for coal and soil material-specific SOM were based on carbon content loss from coal and SOM determined by a parallel thermal oxidation analysis of pure ground coal fragments retrieved from the same mined site as the soil samples and of coal-free soil rock fragments of sandstone and siltstone origin.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2006-04-30T23:59:59.000Z

255

Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

Crandall, R.S.; Nelson, B.P. [National Renewable Energy Lab., Golden, CO (United States); Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States)

1992-07-01T23:59:59.000Z

256

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Soil samples were collected from each plot to characterize the sites prior to treatment. Baseline soil carbon was determined for each of the eighty-one plots. Fertility analysis of soil samples was completed and these data were used to prepare fertilizer prescriptions and the pre-designated plots were fertilized. We also evaluated economic-based policy instruments that are designed to mitigate the reforestation burden borne by the owner of reclaimed mined land. Results suggest that although profitability of reforestation of these previously reclaimed mine lands may be achievable on better sites under lower interest rates, substantial payments would be required to reach ''profitability'' under many conditions.

J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2004-08-04T23:59:59.000Z

257

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration potential of forests growing on 14 mined sites in a seven-state region in the Midwestern and Eastern Coalfields. Carbon contents of these forests were compared to adjacent forests on non-mined land. The study was installed as a 3 x 3 factorial in a random complete block design with three replications at each location. The treatments include three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Soil samples were collected from each plot to characterize the sites prior to treatment. Analysis of soil samples was completed and these data are being used to prepare fertilizer prescriptions. Fertilizer prescripts will be developed for each site. Fertilizer will be applied during the second quarter 2004. Data are included as appendices in this report. As part of our economic analysis of mined land reforestation, we focused on the implications of a shift in reforestation burden from the landowner to the mine operator. Results suggest that the reforestation of mined lands as part of the mining operation creates a viable and profitable forest enterprise for landowners with greater potential for carbon sequestration.

J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2004-06-04T23:59:59.000Z

258

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2003-12-18T23:59:59.000Z

259

Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

1992-07-01T23:59:59.000Z

260

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term > Renewable Energy RFPs Content Group Activity By term Q & A Feeds Term: solar land use Type Term Title Author Replies Last Post sort icon Blog entry solar land use Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2 Dec 2013 - 11:06 Groups Menu You must login in order to post into this group. Recent content Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST WAPA REC RFP - Deadline: August 9, 2013 - 4:30 p.m. PT

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term > Renewable Energy RFPs Content Group Activity By term Q & A Feeds Term: Solar Type Term Title Author Replies Last Post sort icon Blog entry Solar Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2 Dec 2013 - 11:06 Groups Menu You must login in order to post into this group. Recent content Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST WAPA REC RFP - Deadline: August 9, 2013 - 4:30 p.m. PT

262

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term > Renewable Energy RFPs Content Group Activity By term Q & A Feeds Term: pv land use Type Term Title Author Replies Last Post sort icon Blog entry pv land use Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2 Dec 2013 - 11:06 Groups Menu You must login in order to post into this group. Recent content Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST WAPA REC RFP - Deadline: August 9, 2013 - 4:30 p.m. PT

263

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term > Renewable Energy RFPs Content Group Activity By term Q & A Feeds Term: Solar Power Type Term Title Author Replies Last Post sort icon Blog entry Solar Power Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Rosborne318 2 Dec 2013 - 11:06 Groups Menu You must login in order to post into this group. Recent content Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST WAPA REC RFP - Deadline: August 9, 2013 - 4:30 p.m. PT

264

renewables | OpenEI  

Open Energy Info (EERE)

renewables renewables Dataset Summary Description No description given. Source World Bank Date Released Unknown Date Updated Unknown Keywords coal energy imports energy production energy use fossil fuels Fuel global Hydroelectric international nuclear oil renewables statistical statistics world bank Data application/zip icon Data in XML Format (zip, 1 MiB) application/zip icon Data in Excel Format (zip, 1.3 MiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1970 - 2007 License License Other or unspecified, see optional comment below Comment Summary of Usage Terms ---------------------- You are free to copy, distribute, adapt, display or include the data in other products for commercial and noncommercial purposes at no cost subject to certain limitations summarized below. You must include attribution for the data you use in the manner indicated in the metadata included with the data. You must not claim or imply that The World Bank endorses your use of the data by or use The World Bank's logo(s) or trademark(s) in conjunction with such use. Other parties may have ownership interests in some of the materials contained on The World Bank Web site. For example, we maintain a list of some specific data within the Datasets that you may not redistribute or reuse without first contacting the original content provider, as well as information regarding how to contact the original content provider. Before incorporating any data in other products, please check the list: Terms of use: Restricted Data. The World Bank makes no warranties with respect to the data and you agree The World Bank shall not be liable to you in connection with your use of the data. Links ----- Summary of Terms: http://data.worldbank.org/summary-terms-of-use Detailed Usage Terms: http://www.worldbank.org/terms-datasets

265

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Tree survival, height and diameter were measured after the first growing season. There were significant treatment and treatment x site interactions. A STELLA{reg_sign}-based model helped us develop insight as to whether it is possible to differentiate the permanent SOC from the C contained in the labile forms of SOM. The model can be used for predicting the amount of C sequestered on mine lands, and the amount of C that is expected to reside in the mine soil for more than 1,000 years. Based on our work, it appears that substantial carbon payments to landowners would be required to reach ''profitability'' under present circumstances. However, even though the payments that we examine could generate non-negative LEVs, there is no guarantee that the payments will actually cause landowners to reforest in practice. It is landowner utility associated with forestland profitability that will be the determining factor in actual conversion--utility that likely would include cash flow timing, amenities, and even the credit position of the landowner.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2004-11-29T23:59:59.000Z

266

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report we present data that show the spatial distribution of carbon in mine soils. Soil carbon data from deep soil pits from grassland minelands located in Ohio, Virginia, and West Virginia were analyzed to determine the vertical distribution and variability of soil organic carbon (SOC) down to a 2-m depth. Regression analyses were used to describe and model the distribution by soil depth of C(wt%), BD{sub fines}(g cm{sup -3}), and fines (vol%) in mine soils. The volume of excavated mine soil samples was transformed in terms of costs of digging and sampling, including sample collection and preparation, and C(wt%) analysis, in order to determine the maximum cost-effective depth (MCD) for carbon inventorying on the mined sites analyzed. Based on the horizontal variation of SOC(g m{sup -2}), we determined the sampling intensity required to achieve a desired accuracy of the amount of sequestered SOC(g m{sup -2}) at certain probability levels. The MCD and sampling intensity measurements were used to determine the minimum detectable difference (MDD) of SOC(g m{sup -2}) between two consecutive carbon inventories. We also proposed a method to determine the minimum number of years before a future C inventory event is carried out so that the measured SOC(g m{sup -2}) differences were greater than MDD. We used geostatistical analyses procedures to determine spatial dependence predictability of surface SOC(g m{sup -2}) data on the minelands analyzed. Kriging techniques were used to create surface SOC(g m{sup -2}) maps for the sites in Ohio and West Virginia. The average C sequestration rate in the surface soil layer for the Ohio (age 9) sites was estimated at 124 g C m{sup -2} yr{sup -1}, and it was estimated at 107 g C m{sup -2} yr{sup -1} for the West Virginia sites (age 4). Because of the young age of the Virginia sites, 0.2 and 1 year old, we came to a decision that C sequestration rates would be inappropriate at this stage of their development, as these soils are expected to change with time.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2006-05-05T23:59:59.000Z

267

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. Regression models of chemical and physical soil properties were created in order to estimate the SOC content down the soil profile. Soil organic carbon concentration and volumetric percent of the fines decreased exponentially down the soil profile. The results indicated that one-third of the total SOC content on mined lands was found in the surface 0-13 cm soil layer, and more than two-thirds of it was located in the 0-53 cm soil profile. A relative estimate of soil density may be best in broad-scale mine soil mapping since actual D{sub b} values are often inaccurate and difficult to obtain in rocky mine soils. Carbon sequestration potential is also a function of silvicultural practices used for reforestation success. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Relative to carbon value, our analysis this quarter shows that although short-rotation hardwood management on reclaimed surface mined lands may have higher LEVs than traditional long-rotation hardwood management, it is only profitable in a limited set of circumstances.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2005-12-01T23:59:59.000Z

268

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we compiled and evaluated all soil properties measured on the study sites. Statistical analysis of the properties was conducted, and first year survival and growth of white pine, hybrid poplars, and native hardwoods was assessed. Hardwood species survived better at all sites than white pine or hybrid poplar. Hardwood survival across treatments was 80%, 85%, and 50% for sites in Virginia, West Virginia, and Ohio, respectively, while white pine survival was 27%, 41%, and 58%, and hybrid poplar survival was 37%, 41%, and 72% for the same sites, respectively. Hybrid poplar height and diameter growth were superior to those of the other species tested, with the height growth of this species reaching 126.6cm after one year in the most intensive treatment at the site in Virginia. To determine carbon in soils on these sites, we developed a cost-effective method for partitioning total soil carbon to pedogenic carbon and geogenic carbon in mine soils. We are in the process of evaluating the accuracy and precision of the proposed carbon partitioning technique for which we are designing an experiment with carefully constructed mine soil samples. In a second effort, as part of a mined land reforestation project for carbon sequestration in southwestern Virginia we implemented the first phase of the carbon monitoring protocol that was recently delivered to DOE.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2005-06-08T23:59:59.000Z

269

The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994  

DOE Green Energy (OSTI)

The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

1994-03-15T23:59:59.000Z

270

The impact of including water constraints on food production within a CGE framework  

E-Print Network (OSTI)

This research explores the long-term relationship between water resources, irrigated land use change and crop production within a computable general equilibrium modeling framework. The modeling approach is developed on a ...

Baker, Jonathan (Jonathan Early)

2011-01-01T23:59:59.000Z

271

Running in place : renewal portfolio standards and climate change  

E-Print Network (OSTI)

Renewable portfolio standards ("RPS") have spread widely as states have made an effort to promote electricity production from renewable energy sources, granting privileged market access to eligible technologies and resources. ...

Hogan, Michael T. (Michael Thomas)

2008-01-01T23:59:59.000Z

272

National Renewable Energy Laboratory  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

273

Alternative/Renewable Energy  

Science Conference Proceedings (OSTI)

Alternative/Renewable Energy. Building Integration with Smart Grid. Building Integration with Smart Grid Project. Embedded ...

2010-10-05T23:59:59.000Z

274

Innovation, renewable energy, and state investment: Case studies of leading clean energy funds  

E-Print Network (OSTI)

www.irlgov.ie/tec/energy/renewable/ EugeneDillon@dpe.ie2002. Utility-Scale Renewable Energy Projects: A Survey ofProduction Increases 36%. Renewable Energy World, Vol. 5 (

Wiser, Ryan; Bolinger, Mark; Milford, Lewis; Porter, Kevin; Clark, Roger

2002-01-01T23:59:59.000Z

275

Marine renewable energy: potential benefits to biodiversity? An urgent call for research  

E-Print Network (OSTI)

Marine renewable energy: potential benefits to biodiversity? An urgent call for research Richard 1 Centre for Ecology and Conservation and Peninsula Research Institute for Marine Renewable Energy driver. In response, many governments have initiated programmes of energy production from renewable

Exeter, University of

276

Renewable Energy Evaluation Tools  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RENEWABLE ENERGY RENEWABLE ENERGY EVALUATION TOOLS Andy Walker, PhD PE Principal Engineer, NREL Renewable Energy Round Table May 2, 2012 2 TECHNICAL ASSESSMENT AND SCREENING TOOLS WE USE IN OUR PROJECTS Campus/Base Assessments INFRASTRUCTURE BUILDINGS ASSESSMENT RENEWABLE SUPPLY SIDE VEHICLES & TOOLS Campus/Base Assessments INFRASTRUCTURE BUILDINGS ASSESSMENT RENEWABLE SUPPLY SIDE VEHICLES & TOOLS 9 9 Renewable Energy Technologies Photovoltaics Daylighting Biomass Heat/Power Concentrating Solar Heat/Power Solar Vent Air Preheat Solar Water Heating Wind Power Ground Source Heat Pump Landfill Gas 10 10 Renewable Energy Resources Geographical Information System (GIS) Datasets * NREL Datasets (http://www.nrel.gov/gis/) - solar radiation 10x10 km grid

277

REN21 Renewables Interactive Map | Open Energy Information  

Open Energy Info (EERE)

REN21 Renewables Interactive Map REN21 Renewables Interactive Map Jump to: navigation, search Tool Summary LAUNCH TOOL Name: REN21's Renewables Interactive Map Agency/Company /Organization: Renewable Energy Policy Network for the 21st Century (REN21) Sector: Energy Focus Area: Renewable Energy Topics: Market analysis, Policies/deployment programs, Resource assessment Resource Type: Dataset, Maps Website: www.map.ren21.net/ References: Renewables Interactive Map[1] The REN21 Renewables Interactive Map provides information on renewable energy policies, expansion targets, current shares, installed capacity, current production, future scenarios, and policy pledges. References ↑ "Renewables Interactive Map" Retrieved from "http://en.openei.org/w/index.php?title=REN21_Renewables_Interactive_Map&oldid=383282"

278

2010 Renewable Energy Data Book (Book), Energy Efficiency & Renewable...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

(2010) 11.3% Nuclear 3.3% Hydropower 7.6% Non-Hydro Renewables 29.2% Coal 33.1% Natural Gas 15.6% Crude Oil U.S. Energy Production (2010): 74.9 Quadrillion Btu U.S. Non-Hydro...

279

The production of fuels and chemicals from food processing wastes using a novel fermenter separator  

Science Conference Proceedings (OSTI)

During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year's project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

1991-12-01T23:59:59.000Z

280

RENEWABLES PORTFOLIO STANDARD 2005 PROCUREMENT VERIFICATION  

E-Print Network (OSTI)

.44 If biogas is generated in Sacramento and used in LA, is this a viable pathway to meet biogas may be transported to a hydrogen production facility for the purposes of this solicitation the top where "renewable electricity" and "biogas/renewable feedstock" are required in the application

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Renewable energy 1998: Issues and trends  

SciTech Connect

This report presents the following five papers: Renewable electricity purchases: History and recent developments; Transmission pricing issues for electricity generation from renewable resources; Analysis of geothermal heat pump manufacturers survey data; A view of the forest products industry from a wood energy perspective; and Wind energy developments: Incentives in selected countries. A glossary is included. 19 figs., 27 tabs.

NONE

1999-03-01T23:59:59.000Z

282

Enhanced Renewable Methane Production System  

treatment that enhances the heating value of biogas, delivering a gas that is close to pipeline quality. This system offers

283

Current Renewable Energy Technologies and Future Projections  

SciTech Connect

The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

2007-05-01T23:59:59.000Z

284

Well production casing Brady No. 5 well, Geothermal Food Processors, Inc. , Fernley, Nevada. Falure analysis report  

DOE Green Energy (OSTI)

Failure of the casing of the Brady No. 5 resulted from severe external corrosion. The well is located in a mineral flat and it is proposed that during wet periods the exterior of the casing was exposed to aerated saturated chloride and/or sulfate salt solutions. These solutions appear to have completely destroyed the surface conductor and upper string casing and associated cements. The production casing then corroded until mechanical failure occurred.

Ellis, P.F.

1979-12-01T23:59:59.000Z

285

Property:RenewableFuelStandard/RenewableBiofuel | Open Energy Information  

Open Energy Info (EERE)

RenewableBiofuel RenewableBiofuel Jump to: navigation, search This is a property of type Number. Pages using the property "RenewableFuelStandard/RenewableBiofuel" Showing 15 pages using this property. R Renewable Fuel Standard Schedule + 12.6 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 13.2 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 13.8 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 14.4 + Renewable Fuel Standard Schedule + 9 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 10.5 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 15 + Renewable Fuel Standard Schedule + 12 +

286

Renew Services Ltd | Open Energy Information  

Open Energy Info (EERE)

Services Ltd Services Ltd Jump to: navigation, search Name Renew Services Ltd Place Fife, Scotland, United Kingdom Sector Wind energy Product A new co-operative formed to develop and fund sustainable energy solutions for the benefit of the community. Having started out in Fife, Renew is now exploring projects across Scotland, mostly in community combined heat and power (CHP) and wind. References Renew Services Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renew Services Ltd is a company located in Fife, Scotland, United Kingdom . References ↑ "Renew Services Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Renew_Services_Ltd&oldid=350299

287

NorthWinds Renewables | Open Energy Information  

Open Energy Info (EERE)

NorthWinds Renewables NorthWinds Renewables Jump to: navigation, search Name NorthWinds Renewables Place Harrison, New York Zip 10528 Sector Renewable Energy, Wind energy Product NorthWinds Renewables is an independent merchant banking firm focused exclusively on serving the renewable energy industry. Coordinates 35.10917°, -85.143009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.10917,"lon":-85.143009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Community Renewable Energy Deployment Success Stories: Financing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Deployment Success Stories: Financing Renewable Energy Projects Webinar Community Renewable Energy Deployment Success Stories: Financing Renewable Energy...

289

Edible Oleogels: Structure and Health ImplicationsChapter 6 Candelilla Wax as an Organogelator for Vegetable OilsAn Alternative to Develop trans-free Products for the Food Industry  

Science Conference Proceedings (OSTI)

Edible Oleogels: Structure and Health Implications Chapter 6 Candelilla Wax as an Organogelator for Vegetable OilsAn Alternative to Develop trans-free Products for the Food Industry Food Science eChapters Food Science & Technology A2C008

290

Role of Renewable Energy Certificates in Developing New Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Certificates in Developing New Renewable Energy Projects Edward Holt Ed Holt & Associates, Inc. Jenny Sumner and Lori Bird National Renewable Energy Laboratory...

291

Renewable energy annual 1996  

DOE Green Energy (OSTI)

This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

NONE

1997-03-01T23:59:59.000Z

292

American Renewable Fuels | Open Energy Information  

Open Energy Info (EERE)

American Renewable Fuels American Renewable Fuels Place Dallas, Texas Zip TX 75201 Sector Renewable Energy Product Developer of commercial scale renewable fuels production plants and subsidiary of Australian Renewable Fuels Pty Ltd (ARF). Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Crimson Renewable Energy LP | Open Energy Information  

Open Energy Info (EERE)

Crimson Renewable Energy LP Crimson Renewable Energy LP Jump to: navigation, search Name Crimson Renewable Energy LP Place Denver, Colorado Zip 80202 Sector Biomass, Renewable Energy Product Focused on biodiesel production and conversion of waste biomass into renewable bio-gas. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Renewable Alternatives LLC | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Renewable Alternatives LLC Jump to: navigation, search Name Renewable Alternatives LLC Place Columbia, Missouri Zip 65211 Product Focused on the research, development and commercialization of products that are an alternative to petroleum-based feedstock materials. References Renewable Alternatives LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Alternatives LLC is a company located in Columbia, Missouri . References ↑ "Renewable Alternatives LLC"

295

Algasol Renewables SL | Open Energy Information  

Open Energy Info (EERE)

Algasol Renewables SL Algasol Renewables SL Jump to: navigation, search Name Algasol Renewables SL Place Baleares, Spain Zip E-07121 Sector Renewable Energy Product Newly started technology firm that will seek to use the photosynthetic capabilities of algae to generate renewable energy and other products. Coordinates 39.613529°, 2.91156° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.613529,"lon":2.91156,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Imperium Renewables | Open Energy Information  

Open Energy Info (EERE)

Imperium Renewables Imperium Renewables Jump to: navigation, search Name Imperium Renewables Place Seattle, Washington Zip 98101 Product Seattle-based biodiesel producer. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Iberdrola Renewables | Open Energy Information  

Open Energy Info (EERE)

Renewables Renewables Address 1125 NW Couch Street Place Portland, Oregon Zip 97209 Sector Wind energy Product Renewable energy generation Website http://www.iberdrolarenewables Coordinates 45.524005°, -122.683679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.524005,"lon":-122.683679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

TCI Renewables | Open Energy Information  

Open Energy Info (EERE)

TCI Renewables TCI Renewables Jump to: navigation, search Name TCI Renewables Place Belfast, United Kingdom Zip BT5 6QR Sector Biomass, Wind energy Product The company has been formed to focus on wind farm development, construction and ownership but is also interested in biomass developments. Coordinates 54.595295°, -5.934524° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.595295,"lon":-5.934524,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Photon Science for Renewable Energy  

E-Print Network (OSTI)

Photon Science for renewable Energy at Light-Sourceour planet. The quest for renewable, nonpolluting sources ofa global revolution in renewable and carbon- neutral energy

Hussain, Zahid

2010-01-01T23:59:59.000Z

300

Energy Basics: Renewable Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Renewable Energy Technologies Renewable energy...

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Renewable Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Renewable Energy October 7, 2013 - 9:16am Addthis Renewable energy increases energy security, creates jobs, and powers our clean energy economy. Renewable energy increases...

302

Renewable Devices Ltd | Open Energy Information  

Open Energy Info (EERE)

Devices Ltd Jump to: navigation, search Name Renewable Devices Ltd Place Edinburgh, Scotland, United Kingdom Zip EH26 0PH Sector Wind energy Product Holding company for a micro...

303

Beyond Diesel - Renewable Diesel  

DOE Green Energy (OSTI)

CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

Not Available

2002-07-01T23:59:59.000Z

304

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-11-01T23:59:59.000Z

305

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2013-04-01T23:59:59.000Z

306

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Hand, M. M.

2012-09-01T23:59:59.000Z

307

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

Mai, T.

2012-10-01T23:59:59.000Z

308

Bro Dyfi Community Renewables Ltd | Open Energy Information  

Open Energy Info (EERE)

Bro Dyfi Community Renewables Ltd Bro Dyfi Community Renewables Ltd Jump to: navigation, search Name Bro Dyfi Community Renewables Ltd Place Bro Dyfi, Wales, United Kingdom Sector Renewable Energy, Wind energy Product Bro Dyfi Community Renewables Ltd was formed in 2001 to create opportunities for the local community to benefit more from the use of the wind and clean sources of power. References Bro Dyfi Community Renewables Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Bro Dyfi Community Renewables Ltd is a company located in Bro Dyfi, Wales, United Kingdom . References ↑ "Bro Dyfi Community Renewables Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Bro_Dyfi_Community_Renewables_Ltd&oldid=343053

309

Missouri Valley Renewable Energy MOVRE | Open Energy Information  

Open Energy Info (EERE)

Valley Renewable Energy MOVRE Valley Renewable Energy MOVRE Jump to: navigation, search Name Missouri Valley Renewable Energy (MOVRE) Place Saint Louis, Missouri Zip 63105 Sector Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product An energy efficiency solutions company focused on renewable DP for farms, including wind, solar and hydro power. The company was absorbed by Farmergy Inc. in January 2007. References Missouri Valley Renewable Energy (MOVRE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Missouri Valley Renewable Energy (MOVRE) is a company located in Saint Louis, Missouri . References ↑ "Missouri Valley Renewable Energy (MOVRE)" Retrieved from "http://en.openei.org/w/index.php?title=Missouri_Valley_Renewable_Energy_MOVRE&oldid=348873"

310

FRV USA formerly Fotowatio Renewable Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

FRV USA formerly Fotowatio Renewable Ventures LLC FRV USA formerly Fotowatio Renewable Ventures LLC Jump to: navigation, search Name FRV USA (formerly Fotowatio Renewable Ventures LLC) Place San Francisco, California Zip 94104 Sector Renewable Energy Product A wholly-owned subsidiary of FRV which manages and operates renewable energy assets in the US. References FRV USA (formerly Fotowatio Renewable Ventures LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. FRV USA (formerly Fotowatio Renewable Ventures LLC) is a company located in San Francisco, California . References ↑ "FRV USA (formerly Fotowatio Renewable Ventures LLC)" Retrieved from "http://en.openei.org/w/index.php?title=FRV_USA_formerly_Fotowatio_Renewable_Ventures_LLC&oldid=345517"

311

US National Renewable Energy Laboratory NREL | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Laboratory NREL Renewable Energy Laboratory NREL Jump to: navigation, search Name US National Renewable Energy Laboratory (NREL) Place Golden, Colorado Zip 80401-3393 Sector Renewable Energy Product Colorado-based research institute funded by the Department of Energy and focused on renewable energy. References US National Renewable Energy Laboratory (NREL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US National Renewable Energy Laboratory (NREL) is a company located in Golden, Colorado . References ↑ "US National Renewable Energy Laboratory (NREL)" Retrieved from "http://en.openei.org/w/index.php?title=US_National_Renewable_Energy_Laboratory_NREL&oldid=352618

312

CEZ Obnovitelne zdroje sro Renewable Resources | Open Energy Information  

Open Energy Info (EERE)

CEZ Obnovitelne zdroje sro Renewable Resources CEZ Obnovitelne zdroje sro Renewable Resources Jump to: navigation, search Name CEZ Obnovitelne zdroje sro (Renewable Resources) Place Prague 4, Czech Republic Zip 140 53 Sector Biomass, Renewable Energy Product Subsidiary of CEZ Group that is focused on energy generation from renewable resources, except for combustion of biomass with coal. References CEZ Obnovitelne zdroje sro (Renewable Resources)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CEZ Obnovitelne zdroje sro (Renewable Resources) is a company located in Prague 4, Czech Republic . References ↑ "[ CEZ Obnovitelne zdroje sro (Renewable Resources)]" Retrieved from "http://en.openei.org/w/index.php?title=CEZ_Obnovitelne_zdroje_sro_Renewable_Resources&oldid=343432"

313

Renewable Energy Strategies for Sustainable Development Henrik Lund*  

E-Print Network (OSTI)

Renewable Energy Strategies for Sustainable Development Henrik Lund* Department of Development of renewable energy (wind, solar, wave and biomass) in the making of strategies for a sustainable development improvements in the energy production, and replacement of fossil fuels by various sources of renewable energy

Hansen, René Rydhof

314

National Renewable Energy Laboratory  

National Renewable Energy Laboratory Technology Transfer Marine Corps Taps NREL to Help Replace Aging Steam Plant with Efficient Biomass Cogeneration

315

Renewable Fuels Module  

Annual Energy Outlook 2012 (EIA)

The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics,...

316

Renewable Fuels Module This  

Gasoline and Diesel Fuel Update (EIA)

The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics,...

317

Renewable Energy Engineering  

E-Print Network (OSTI)

MSc in Renewable Energy Engineering School of Engineering www.cranfield.ac.uk/soe/renewableenergy #12;Postgraduate study Cranfield University 2 School of Engineering MSc in Renewable Energy Engineering Renewable Energy Engineering MSc in Climate change, growing world populations and limited fossil

318

Renewable Energy Technology Guide  

Science Conference Proceedings (OSTI)

First published in 2000 as the Renewable Energy Technical Assessment GuideTAG-RE, the Electric Power Research Institute's (EPRI's) annual Renewable Energy Technology Guide provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. These technologies include wind, solar photovoltaic (PV), solar thermal, biomass, municipal solid waste, geothermal, and emerging ocean energy conversion technologies.

2011-12-22T23:59:59.000Z

319

Energy Efficiency & Renewable Energy  

E-Print Network (OSTI)

Energy Efficiency & Renewable Energy 2009 WIND TECHNOLOGIES MARKET REPORT AUGUST 2010 #12;2009 Wind Associates) Suzanne Tegen (National Renewable Energy Laboratory) Table of Contents Acknowledgments' Association); Ed DeMeo (Renewable Energy Consulting Services, Inc.); Mike O'Sullivan (NextEra Energy Resources

320

Renewable energy and telecommunications  

E-Print Network (OSTI)

Renewable energy and telecommunications Case study: Energy Systems Week When AK Erlang first used fossil fuels and switch to renewable energy sources. But the unlikely convergence of the two fields lay to be able to deal with. "If we integrate renewable energies, such as wind power, in the electricity grid

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes the details of purchasing green power. Discussion covers topics like renewable electricity, renewable energy certificates, and on-site renewable generation.

322

On Deep-Water Renewals in Indian Arm, British Columbia: Sensitivity to the Production of Turbulent Kinetic Energy Caused by Horizontal Variations in the Flow Field  

Science Conference Proceedings (OSTI)

A two-dimensional (i.e., laterally averaged) numerical model of the circulation in Burrard Inlet and Indian Arm near British Columbia, Canada, is used to examine the sensitivity of deep-water renewal events in Indian Arm to the turbulent mixing ...

Michael W. Stacey; S. Pond

2005-05-01T23:59:59.000Z

323

COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM  

E-Print Network (OSTI)

COMMISSION GUIDEBOOK RENEWABLE ENERGY PROGRAM OVERALL PROGRAM GUIDEBOOK Fourth Edition Manager Renewable Energy Office G. William Pennington Acting Deputy Director Efficiency and Renewable of how the Energy Commission's Renewable Energy Program is administered and outlines terms

324

2008 NORTHEAST RENEWABLE ENERGY CONFERENCE  

E-Print Network (OSTI)

2008 NORTHEAST RENEWABLE ENERGY CONFERENCE Penn Stater Conference Center State College, Pennsylvania AUGUST 26 - 28, 2008 Renewable Energy ­ It's on everyone's mind. The 2008 Northeast Renewable renewable energy and energy efficiency research, demonstrations, and university

Andrews, Anne M.

325

Renewable Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Renewable Energy Calibration Facilities Ecosystem Management Team Environmental Justice Environmental Management System NEPA Long-Term Surveillance - Operations...

326

Renewable energy annual 1995  

DOE Green Energy (OSTI)

The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

NONE

1995-12-01T23:59:59.000Z

327

THE THE RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE THE RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD A Practical Guide A Practical Guide Nancy Rader Scott Hempling Prepared for the National Association of Regulatory Utility Commissioners February 2001 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Referenced herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise, does

328

Response to several FOIA requests - Renewable Energy. | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37514000.pdf Impediments to Conventional Energy Production, February 12, 2001 Response to several FOIA requests - Renewable Energy. More Documents & Publications Response to...

329

Renewable Devices Swift Turbine Ltd | Open Energy Information  

Open Energy Info (EERE)

Devices Swift Turbine Ltd Jump to: navigation, search Name Renewable Devices Swift Turbine Ltd Place Edinburgh, Scotland, United Kingdom Zip EH26 0PH Sector Wind energy Product...

330

Midwest Renewable Energy Services LLC | Open Energy Information  

Open Energy Info (EERE)

Midwest Renewable Energy Services LLC Place Florida Zip FL 33408 Sector Services, Wind energy Product MRE Services provides scheduling services to deliver a substantial portion of...

331

Renewable Energy Asia Group Ltd REA | Open Energy Information  

Open Energy Info (EERE)

Asia Group Ltd REA Jump to: navigation, search Name Renewable Energy Asia Group Ltd (REA) Place China Sector Wind energy Product Singaporean wind turbine component and system...

332

Global Renewable Power International Global RPI | Open Energy...  

Open Energy Info (EERE)

RPI) Place Spain Sector Wind energy Product Spain-based developer of wind projects in Poland, Croatia and Chile. References Global Renewable Power International (Global RPI)1...

333

Midwest Renewable Energy Corporation Partners LLC | Open Energy...  

Open Energy Info (EERE)

Wind energy Product Iberdrola subsidiary that develops wind farms in Midwest USA and Canada. References Midwest Renewable Energy Corporation Partners LLC1 LinkedIn Connections...

334

Suez Renewable Energy North America | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name Suez Renewable Energy North America Place Texas Sector Biomass, Hydro, Solar, Wind energy Product Developer of wind generation projects as well as...

335

Psm Nature Power Service Management Formerly Umweltkontor Renewable...  

Open Energy Info (EERE)

Umweltkontor Renewable Energy AG) Place Erkelenz, Germany Zip 41812 Sector Biofuels, Hydro, Solar, Wind energy Product Founded as a wind project developer, expanded into...

336

The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD  

Energy.gov (U.S. Department of Energy (DOE))

The broader goal of the RPS is to achieve various benefits associated with renewable energy. These benefits relate to the environment, resource diversity, technology advancement, and in-state...

337

EDF Energy Renewables | Open Energy Information  

Open Energy Info (EERE)

EDF Energy Renewables EDF Energy Renewables Jump to: navigation, search Name EDF Energy Renewables Place London, England, United Kingdom Zip WC2R 0PT Sector Renewable Energy, Wind energy Product UK-based renewable energy arm of EDF Energy, developing wind projects in the UK. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Renewable Spirits LLC | Open Energy Information  

Open Energy Info (EERE)

Spirits LLC Spirits LLC Jump to: navigation, search Name Renewable Spirits LLC Place Delray Beach, Florida Zip 33446 Product Focused on developing citrus waste into ethanol. References Renewable Spirits LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Spirits LLC is a company located in Delray Beach, Florida . References ↑ "Renewable Spirits LLC" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Spirits_LLC&oldid=350353" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

339

Standard Renewable Energy SRE | Open Energy Information  

Open Energy Info (EERE)

Standard Renewable Energy SRE Standard Renewable Energy SRE Jump to: navigation, search Name Standard Renewable Energy (SRE) Place Houston, Texas Zip 77007 Sector Renewable Energy, Services Product Houston-based provider of Distributed Energy Services Company (DESCO) for renewable energy services. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Grounded Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Grounded Renewable Energy Grounded Renewable Energy Jump to: navigation, search Name Grounded Renewable Energy Place Carbondale, Colorado Zip 81623 Sector Renewable Energy, Solar Product Grounded Renewable Energy designs turn-key solar systems for homes and businesses in Colorado. Coordinates 41.573959°, -75.501361° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.573959,"lon":-75.501361,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Elevance Renewable Sciences Inc | Open Energy Information  

Open Energy Info (EERE)

Elevance Renewable Sciences Inc Elevance Renewable Sciences Inc Jump to: navigation, search Name Elevance Renewable Sciences Inc Place Bolingbrook, Illinois Zip 60440 Sector Biofuels, Renewable Energy Product Illinois-based developer of biofuels and renewable chemicals from plant-based oils and animal fats. Coordinates 41.698175°, -88.081199° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.698175,"lon":-88.081199,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

Renewable Energy Providers | Open Energy Information  

Open Energy Info (EERE)

Providers Providers Jump to: navigation, search Name Renewable Energy Providers Place Redding, California Zip 96001 Sector Biomass Product The wholly owned subsidiary of this corporation, Blue Lake Power, has signed a 10-year agreement to provide 11MW of biomass energy to Southern California utility San Diego Gas & Electric. References Renewable Energy Providers[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Providers is a company located in Redding, California . References ↑ "Renewable Energy Providers" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Providers&oldid=350332" Categories: Clean Energy Organizations

343

The Treatment of Renewable Energy Certificates, Emissions Allowances, and Green Power Programs in State Renewables Portfolio Standards  

E-Print Network (OSTI)

Energy Certificates, Emissions Allowances, and Green PowerEnergy Certificates, Emissions Allowances, and Green PowerIn a green power product with 50% renewable energy, for

Holt, Edward A.; Wiser, Ryan H.

2007-01-01T23:59:59.000Z

344

Guide to Integrating Renewable Energy in Federal Construction: Renewable  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Project Funding to someone by E-mail Renewable Energy Project Funding to someone by E-mail Share Guide to Integrating Renewable Energy in Federal Construction: Renewable Energy Project Funding on Facebook Tweet about Guide to Integrating Renewable Energy in Federal Construction: Renewable Energy Project Funding on Twitter Bookmark Guide to Integrating Renewable Energy in Federal Construction: Renewable Energy Project Funding on Google Bookmark Guide to Integrating Renewable Energy in Federal Construction: Renewable Energy Project Funding on Delicious Rank Guide to Integrating Renewable Energy in Federal Construction: Renewable Energy Project Funding on Digg Find More places to share Guide to Integrating Renewable Energy in Federal Construction: Renewable Energy Project Funding on AddThis.com...

345

Renewable energy opportunities in China  

Science Conference Proceedings (OSTI)

Rapid growth in economic development coupled with the absence of an electric grid in large areas of rural China have created a need for new energy sources both in urban centers and the rural countryside. Electric capacity expansion plans call for increased use of coal?fired steam turbines for electricity production that will contribute to increased concerns over environmental pollution. China is rich in renewable energy resources

William L. Wallace; Y. Simon Tsuo

1996-01-01T23:59:59.000Z

346

Indian Renewable Energy Development Agency Limited IREDA | Open Energy  

Open Energy Info (EERE)

Indian Renewable Energy Development Agency Limited IREDA Indian Renewable Energy Development Agency Limited IREDA Jump to: navigation, search Name Indian Renewable Energy Development Agency Limited (IREDA) Place New Delhi, Delhi (NCT), India Zip 110003 Sector Efficiency, Renewable Energy Product Focused on promoting, developing and extending financial assistance for renewable energy and energy efficiency/conservation projects in India. References Indian Renewable Energy Development Agency Limited (IREDA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Indian Renewable Energy Development Agency Limited (IREDA) is a company located in New Delhi, Delhi (NCT), India . References ↑ "Indian Renewable Energy Development Agency Limited (IREDA)"

347

Renewables Portfolio Standards: What Are We Learning? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables Portfolio Standards: What Are We Learning? Renewables Portfolio Standards: What Are We Learning? Renewables Portfolio Standards: What Are We Learning? Renewables Portfolio Standards: 13 states have enacted RPS policies, which obligate suppliers to deliver a certain amount of renewable energy. Renewable Energy Funds: 15 states have set-aside funds to financially support renewable energy sources. Green Power Markets: Utility green pricing programs, competitive green power markets, and REC marketers have all emerged. Tax Incentives: Federal production tax credit for wind, investment tax credit for solar and geothermal, and accelerated depreciation, as well as state tax incentives, all help spur development. Economics: Some forms of renewable energy, especially with tax incentives, can compete on cost alone (e.g., wind at ~2-4 cents/kWh).

348

Assumptions to the Annual Energy Outlook 2002 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).117 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

349

Assumptions to the Annual Energy Outlook 2001 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

350

EIA - Assumptions to the Annual Energy Outlook 2009 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2009 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind1. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy.

351

Beijing Zhongneng United Renewable Energy Investment Co Ltd | Open Energy  

Open Energy Info (EERE)

Zhongneng United Renewable Energy Investment Co Ltd Zhongneng United Renewable Energy Investment Co Ltd Jump to: navigation, search Name Beijing Zhongneng United Renewable Energy Investment Co Ltd Place Beijing Municipality, China Sector Hydro, Renewable Energy, Solar, Wind energy Product A renewable power projects developer in China, mainly focused on wind, hydro and solar power. References Beijing Zhongneng United Renewable Energy Investment Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Beijing Zhongneng United Renewable Energy Investment Co Ltd is a company located in Beijing Municipality, China . References ↑ "Beijing Zhongneng United Renewable Energy Investment Co Ltd" Retrieved from

352

Power marketing and renewable energy  

SciTech Connect

Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences.

Fang, J.M.

1997-09-01T23:59:59.000Z

353

Hydrogen from renewable resources research  

DOE Green Energy (OSTI)

In 1986 the Hawaii Natural Energy Institute (HNEI) and the Florida Solar Energy Center (FSEC) were contracted by the Solar Energy Research Institute (SERI) to conduct an assessment of hydrogen production technologies and economic feasibilities of the production and use of hydrogen from renewable resources. In the 1989/90 period all monies were directed toward research and development with an emphasis on integration of tasks, focusing on two important issues, production and storage. The current year's efforts consisted of four tasks, one task containing three subtasks: Hydrogen Production by Gasification of Glucose and Wet Biomass in Supercritical Water; Photoelectrochemical Production of Hydrogen; Photoemission and Photoluminescence Studies of Catalyzed Photoelectrode Surfaces for Hydrogen Production; Solar Energy Chemical Conversion by Means of Photoelectrochemical (PEC) Methods Using Coated Silicon Electrodes; Assessment of Impedance Spectroscopy Methods for Evaluation of Semiconductor-Electrolyte Interfaces; Solar Energy Conversion with Cyanobacteria; Nonclassical Polyhydride Metal Complexes as Hydrogen Storage Materials. 61 refs., 22 figs., 11 tabs.

Takahashi, P.K.; McKinley, K.R.

1990-07-01T23:59:59.000Z

354

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

Energy Laboratory Renewable Hydrogen Website http://www.nrel.gov/hydrogen/proj_production_ delivery.html Iowa State

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

355

Biodiesel and Other Renewable Diesel Fuels  

DOE Green Energy (OSTI)

Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

Not Available

2006-11-01T23:59:59.000Z

356

Columbia- Renewables Portfolio Standard  

Energy.gov (U.S. Department of Energy (DOE))

In November 2004, voters in Columbia, Missouri approved a proposal to adopt a local renewables portfolio standard (RPS).* The initiative requires the city's municipal utility, Columbia Water &...

357

Renewables Portfolio Standard Overview  

DOE Green Energy (OSTI)

A Renewables Portfolio Standard (RPS) is a requirement on electric utilities and other electric suppliers to supply a minimum percentage or amount of their load with eligible sources of renewable energy. The RPS has become increasingly popular because of its benefits and the public benefits of renewable energy. A well-designed state RPS can effectively deliver a renewable energy supply and associated benefits, at a low cost or even with consumer savings. This fact sheet provides an overview of an effective RPS design.

Not Available

2005-02-01T23:59:59.000Z

358

Careers in Renewable Energy  

DOE Green Energy (OSTI)

This publication describes the job opportunities, technologies, and market for each of the major renewable energy fields (wind power, solar power, bioenergy, geothermal energy, and hydropower).

Waggoner, T.

2001-01-15T23:59:59.000Z

359

Renewable Energy: An Overview  

DOE Green Energy (OSTI)

This fact sheet provides an introduction to renewable energy technologies: hydropower, bioenergy, geothermal energy, solar energy, wind energy, hydrogen, and ocean energy.

Tromly, K.

2001-03-14T23:59:59.000Z

360

10. Renewable Energy  

U.S. Energy Information Administration (EIA)

Hydroelectric Powerb Otherc Renewable Energy a See Table 10.1 for definition. b Conventional hydroelectric power. c Geothermal, solar/PV, and wind.

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Renewable Energy Economic Development  

E-Print Network (OSTI)

: · Renewable energy / Smart grid · Electric/hybrid vehicles 38 Proprietary & Confidential Global utility ­ Who Are We? · Industry leader in planning, architecture, engineering, procurement, construction

362

Renewable Hydrogen Generation and Fueling Project  

Science Conference Proceedings (OSTI)

In its efforts to promote hydrogen as an alternative transportation fuel, the New York Power Authority (NYPA) is implementing a renewable hydrogen fueling demonstration project. The project involves hydrogen production by electrolysis using NYPA's large renewable hydropower generating resources. An earlier EPRI report (1014383) provides background and results from a preliminary engineering and feasibility study. This report provides an update on the project and the refueling station bid and procurement p...

2008-03-27T23:59:59.000Z

363

RP-5 Renewable Energy Efficiency Project  

Science Conference Proceedings (OSTI)

This is the final technical report for the RP-5 Renewable Energy Efficiency Project (REEP). The report summarizes, in a comprehensive manner, all the work performed during the award period extending between July 12, 2002 and June 30, 2007. This report has been prepared in accordance with the Department of Energy (DOE) Guidelines and summarizes all of the activities that occurred during the award period. The RP-5 Renewable Energy Efficiency Project, under development by the Inland Empire Utilities Agency (IEUA), is comprised of a series of full-scale demonstration projects that will showcase innovative combinations of primary and secondary generation systems using methane gas derived from local processing of biosolids, dairy manure and other organic material. The goal of the project is to create renewable energy-based generation systems with energy efficiencies 65% or more. The project was constructed at the 15 MGD Regional Wastewater Treatment Plant No. 5 located in the City of Chino in California where the Agency has constructed its new energy-efficient (platinum-LEED rating) headquarters building. Technologies that were featured in the project include internal combustion engines (ICE), absorption chillers, treatment plant secondary effluent cooling systems, heat recovery systems, thermal energy storage (TES), Organic Rankine Cycle (ORC) secondary power generation system, the integration of a future fuel cell system, gas cleaning requirements, and other state-of-the-art design combinations. The RP-5 REEP biogas source is coming from three manure digesters which are located within the RP-5 Complex and are joined with the RP-5 REEP through gas conveyance pipelines. Food waste is being injected into the manure digesters for digester gas production enhancement. The RP-5 REEP clearly demonstrates the biogas production and power generation viability, specifically when dealing with renewable and variable heating value (Btu) fuel. The RP-5 REEP was challenged with meeting stringent utility, gas, power, and air quality rules and regulations. Coordination with the Southern California Gas Company (SCGC), Southern California Edison (SCE), and South Coast Air Quality Management District (SCAQMD) was continuous and extensive. The interconnecting agreement and the permit to construct and operate were major obstacles despite the early start and coordination with the utility companies and regulatory agencies. The RP-5 REEP is part of a unique RP-5 Complex approach where several facilities are tied and connected with each other; where energy and gas can be transferred from one facility to another (see attached RP-5 Complex Ultimate Energy Balance Diagram). The REEP also incorporated new technologies, such as TES and ORC, along with using heat recovery for the platinum-LEED headquarter buildings heating and cooling via efficient absorption chillers. Through the conceptual design phase, numerous innovative technologies were researched and evaluated, with the most proven and efficient selected to be part of the RP-5 REEP.

Neil Clifton; Dave Wall; Jamal Zughbi

2007-06-30T23:59:59.000Z

364

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

Hand, M.

2012-10-01T23:59:59.000Z

365

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

Hand, M. M.

2012-08-01T23:59:59.000Z

366

Renewable Energy in Alaska  

SciTech Connect

This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

Not Available

2013-03-01T23:59:59.000Z

367

Renewable Energy Technology Characterizations  

Science Conference Proceedings (OSTI)

Renewable energy technologies span the range from developmental to commercially available. Some can make significant contributions now to electricity supply with zero or reduced environmental emissions. This report describes the technical and economic status of the major emerging renewable options and offers projections for their future performance and cost.

1997-12-30T23:59:59.000Z

368

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

Mai, T.

2012-08-01T23:59:59.000Z

369

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

Mai, T.

2012-08-01T23:59:59.000Z

370

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

Hand, M.; Mai, T.

2012-08-01T23:59:59.000Z

371

Energy Conservation Renewable Energy  

E-Print Network (OSTI)

Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

Delgado, Mauricio

372

California Integrated Renewable Energy Systems Report California Renewable Energy Collaborative  

E-Print Network (OSTI)

1 California Integrated Renewable Energy Systems Report California Renewable Energy Collaborative UC Davis Energy Institute University of California I Shields Avenue Davis, California 95616 California Renewable Energy Center: Vision and Development Metrics Principal Author: Gerald Braun CREC

Islam, M. Saif

373

Saskatchewan Renewable Diesel Program (Saskatchewan, Canada)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Diesel Program (Saskatchewan, Canada) Saskatchewan Renewable Diesel Program (Saskatchewan, Canada) Eligibility Agricultural Maximum Rebate 40 million litres of renewable...

374

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

Scale Renewable Energy Integration . . . . . . . . . . .Impacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

375

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

Renewable energy spillage, operating costs and capacityfocused on renewable energy utilization, cost of operationssystem operating costs, renewable energy utilization,

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

376

Pacific Biodiesel: Renewable and Sustainable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting Meeting April 20-21, 2011 Pacific Biodiesel, Inc. Kelly King, VP Renewable and Sustainable The Pacific Biodiesel Ohana  A fuel for any diesel engine  Non-toxic and Biodegradable  Non-flammable  100% renewable / recycled  Superior lubrication  Low emissions  Ultra Low Sulfur (15 ppm)  Meets or exceeds ASTM D6751 What is Biodiesel? What biodiesel is not: * Biodiesel is not vegetable oil that has simply been filtered * Biodiesel is not a fuel that requires costly modifications to your diesel engine * Biodiesel itself does not contain any fossil fuel product (although it can be mixed with petroleum diesel at any percentage rate) * Biodiesel does not involve gasification, micro-waves or pyrolysis * Not made from starchy feedstock (ethanol)

377

Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 167 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the

378

Renewable Fuels Module This  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Module Fuels Module This page inTenTionally lefT blank 175 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve

379

RenewablesRenewables Challenges and opportunities  

E-Print Network (OSTI)

proposition, ready to be finalised and presented to investors. #12;Marine renewables Offshore windOffshore wind Tid lTidal Wave #12;Offshore wind ­ market size #12;Offshore Wind Costs per MW Current Offshore Wind Capital Cost O&M Annual Cost Component % of Cost £m/MW Wind Turbine 44% 1.3 Component % of Cost £m

Strathclyde, University of

380

Soybeans as Functional Foods and Ingredients  

Science Conference Proceedings (OSTI)

Soybeans as Functional Foods and Ingredients is written to serve as a reference for food product developers, food technologists, nutritionists, plant breeders, academic and government professionals, college graduates, and anyone who is interested in learni

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural Innovative Renewable Energy formerly Northwest Iowa Renewable...  

Open Energy Info (EERE)

Search Page Edit with form History Facebook icon Twitter icon Natural Innovative Renewable Energy formerly Northwest Iowa Renewable Energy Jump to: navigation, search Name...

382

Who Owns Renewable Energy Certificates?  

E-Print Network (OSTI)

Who Owns Renewable Energy Certificates? Edward Holt, RyanME 04079 edholt@igc.org Renewable energy certificates (RECs)convey the attributes of a renewable energy generator and

Holt, Edward; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

383

STAFF REPORT RENEWABLE POWER IN  

E-Print Network (OSTI)

, landfill gas, levelized cost, local government, natural gas, permitting, Public Interest Energy Research, cogeneration, competitive renewable energy zones, Desert Renewable Energy Conservation Plan, digester gas, financing, geothermal, greenhouse gas emissions, renewable integration, interconnection, land use planning

384

Renewables for TransportationTransportation  

E-Print Network (OSTI)

thermal biomass Tank to Wheel Example renewable fuel options: Biofuels biogas Process heat/steam: Solar)) Biofuels, biogas Renewable electricity Renewable H2 sequestration (CCS)) Electricity: solar PV, wind

California at Davis, University of

385

Financing Renewable Energy - No Pain, No Gain  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

newresourcebank.com newresourcebank.com Financing Renewable Energy "No Pain, No Gain" New Resource Bank: A Radical Idea Our mission is to promote sustainable living in our community with everything we do. Where Does Your Money Spend The Night? 9/4/2012 2 Renewable Energy Projects Anaerobic Manure Digester This anaerobic manure digester improves manure management and sustainability for partner dairies while generating renewable electricity for sale to a local public utility. Anaerobic digestion is a natural process that converts a portion of the organic carbon in manure (and other waste streams) into methane and carbon dioxide. o Production of renewable energy (Biogas) o Carbon offsets o Reduction of greenhouse gas emissions o Potential pathogen reduction in manure

386

Advanced Renewables LLC | Open Energy Information  

Open Energy Info (EERE)

Renewables LLC Renewables LLC Place Philadelphia, Pennsylvania Zip PA 19118 Sector Renewable Energy Product A renewable energy company focused on building a portfolio of assets in North America. Coordinates 39.95227°, -75.162369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.95227,"lon":-75.162369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply Rosborne318 Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Posted by: Rosborne318 2 Dec 2013 - 11:06 The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. Tags: pv land use, Solar, solar land use, Solar Power LShapton Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT Posted by: LShapton 28 Aug 2013 - 15:09 Portland General Electric has issued an RFP for marketing and supply for

388

Solectria Renewables LLC | Open Energy Information  

Open Energy Info (EERE)

Solectria Renewables LLC Solectria Renewables LLC Jump to: navigation, search Name Solectria Renewables LLC Address 360 Merrimack Street Place Lawrence, Massachusetts Zip 01843 Sector Solar Product Power electronics and system for renewable energy power generation Website http://www.solren.com/ Coordinates 42.70371°, -71.142444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.70371,"lon":-71.142444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Emerald Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Name Emerald Renewable Energy Name Emerald Renewable Energy Place Minneapolis, Minnesota Zip 55401-2374 Sector Renewable Energy Product A privately held limited liability company formed by agribusiness giant Cargill to develop and invest in renewable energy projects in the US. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Development of a Renewable Hydrogen Energy Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Renewable Development of a Renewable Hydrogen Energy Station Edward C. Heydorn - Air Products and Chemicals, Inc. Pinakin Patel - FuelCell Energy, Inc. Fred Jahnke - FuelCell Energy, Inc. "Delivering Renewable Hydrogen - A Focus on Near-Term Applications" Palm Springs, CA 16 November 2009 Presentation Outline * Hydrogen Energy Station Technology Overview * Process Description * Performance and Economic Parameters * Proposed Demonstration on Renewable Feedstock * Status of Shop Validation Test * Conclusion 2 Objectives * Determine the economic and technical viability of a hydrogen energy station designed to co-produce power and hydrogen Utilize technology development roadmap to provide deliverables and go/no-go decision

391

Renewable Energy RFPs | OpenEI Community  

Open Energy Info (EERE)

Renewable Energy RFPs Renewable Energy RFPs Home > Renewable Energy RFPs > Posts by term Content Group Activity By term Q & A Feeds pv land use (1) Solar (1) solar land use (1) Solar Power (1) Groups Menu You must login in order to post into this group. Recent content Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Portland General Electic RFP--deadline for intent to bid September 3, 2013 at 5:00 PM PDT DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST WAPA REC RFP - Deadline: August 9, 2013 - 4:30 p.m. PT Group members (21) Managers: Graham7781 Recent members: Rosborne318 Fishntinsean Andrew Truitt Brion Navendranp LShapton Lucintel Amelia Gdavis Jim.leyshon Martinschutz Jveytia Epaul Lichter Benjaminpeters

392

Partnership for Renewables | Open Energy Information  

Open Energy Info (EERE)

Partnership for Renewables Partnership for Renewables Place London, United Kingdom Zip WC2A 2AZ Sector Renewable Energy Product Organisation aiming to develop small-scale renewable energy projects on public sector land. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Renewable Energy Development Institute REDI | Open Energy Information  

Open Energy Info (EERE)

Development Institute REDI Development Institute REDI Jump to: navigation, search Name Renewable Energy Development Institute (REDI) Place Willits, California Zip 95490 Sector Renewable Energy Product An US nonprofit 501c3 charitable, educational and scientific corporation started in 1989 with the primary goal of promoting the use of renewable energy and clean air transportation technologies. References Renewable Energy Development Institute (REDI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Development Institute (REDI) is a company located in Willits, California . References ↑ "Renewable Energy Development Institute (REDI)" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Development_Institute_REDI&oldid=350320"

394

Transmark Renewables Green Giraffe JV | Open Energy Information  

Open Energy Info (EERE)

Transmark Renewables Green Giraffe JV Transmark Renewables Green Giraffe JV Jump to: navigation, search Name Transmark Renewables & Green Giraffe JV Place Netherlands Sector Solar, Wind energy Product Netherland-based JV, wind and solar project developer. References Transmark Renewables & Green Giraffe JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Transmark Renewables & Green Giraffe JV is a company located in Netherlands . References ↑ "[ Transmark Renewables & Green Giraffe JV]" Retrieved from "http://en.openei.org/w/index.php?title=Transmark_Renewables_Green_Giraffe_JV&oldid=352373" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

395

Powered by Renewables formerly Nevada Wind | Open Energy Information  

Open Energy Info (EERE)

formerly Nevada Wind formerly Nevada Wind Jump to: navigation, search Name Powered by Renewables (formerly Nevada Wind) Place Las Vegas, Nevada Zip 89102 Sector Renewable Energy Product PBR develops, manages and sells utility-scale renewable energy projects. References Powered by Renewables (formerly Nevada Wind)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Powered by Renewables (formerly Nevada Wind) is a company located in Las Vegas, Nevada . References ↑ "Powered by Renewables (formerly Nevada Wind)" Retrieved from "http://en.openei.org/w/index.php?title=Powered_by_Renewables_formerly_Nevada_Wind&oldid=349890" Categories: Clean Energy Organizations Companies

396

Synergy Renewable Energy Pvt Ltd SREPL | Open Energy Information  

Open Energy Info (EERE)

Synergy Renewable Energy Pvt Ltd SREPL Synergy Renewable Energy Pvt Ltd SREPL Jump to: navigation, search Name Synergy Renewable Energy Pvt. Ltd (SREPL) Place Kolkatta, West Bengal, India Zip 700020 Sector Solar Product Kolkatta-based manufacturer of Energy saver, solar water heating systems, solar cookers, solar home lighting, street lighting systems, solar lamps, solar photo voltaic modules. References Synergy Renewable Energy Pvt. Ltd (SREPL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Synergy Renewable Energy Pvt. Ltd (SREPL) is a company located in Kolkatta, West Bengal, India . References ↑ "[ Synergy Renewable Energy Pvt. Ltd (SREPL)]" Retrieved from "http://en.openei.org/w/index.php?title=Synergy_Renewable_Energy_Pvt_Ltd_SREPL&oldid=351982"

397

Allco Renewable Energy Group Limited LLC | Open Energy Information  

Open Energy Info (EERE)

Allco Renewable Energy Group Limited LLC Allco Renewable Energy Group Limited LLC Jump to: navigation, search Name Allco Renewable Energy Group Limited, LLC Place New York, New York Zip 10005 Sector Biomass, Solar, Wind energy Product A New York City-based wind, solar, and biomass project developer that no longer has any direct ties to Allco Finance Group of Australia or its subsidiaries. References Allco Renewable Energy Group Limited, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Allco Renewable Energy Group Limited, LLC is a company located in New York, New York . References ↑ "Allco Renewable Energy Group Limited, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Allco_Renewable_Energy_Group_Limited_LLC&oldid=3420

398

Technological Institute of Renewable Energy ITER | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy ITER Renewable Energy ITER Jump to: navigation, search Name Technological Institute of Renewable Energy (ITER) Place Santa Cruz de Tenerife, Spain Zip 38611 Sector Solar, Wind energy Product Spain-based, technological research and development institute focused on the solar and wind sectors. References Technological Institute of Renewable Energy (ITER)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Technological Institute of Renewable Energy (ITER) is a company located in Santa Cruz de Tenerife, Spain . References ↑ "Technological Institute of Renewable Energy (ITER)" Retrieved from "http://en.openei.org/w/index.php?title=Technological_Institute_of_Renewable_Energy_ITER&oldid=352069

399

BPRe Biopower Renewable Energy Inc | Open Energy Information  

Open Energy Info (EERE)

BPRe Biopower Renewable Energy Inc BPRe Biopower Renewable Energy Inc Jump to: navigation, search Name BPRe Biopower Renewable Energy Inc. Place Bad Nauheim, Hessen, Germany Zip 61231 Sector Biomass Product BPRe focusses on electricity generation from biomass. With its partners the company is active throughout the value chain. BPRe's headquarter is in Oregon, Aloha; the operating office in Germany. References BPRe Biopower Renewable Energy Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. BPRe Biopower Renewable Energy Inc. is a company located in Bad Nauheim, Hessen, Germany . References ↑ "BPRe Biopower Renewable Energy Inc." Retrieved from "http://en.openei.org/w/index.php?title=BPRe_Biopower_Renewable_Energy_Inc&oldid=342998"

400

Renewable Energy Association UK REA | Open Energy Information  

Open Energy Info (EERE)

UK REA UK REA Jump to: navigation, search Name Renewable Energy Association UK (REA) Place London, United Kingdom Zip SW1Y 4AR Sector Renewable Energy Product Trade association open to all companies involved in the UK renewable energy industry. References Renewable Energy Association UK (REA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Association UK (REA) is a company located in London, United Kingdom . References ↑ "Renewable Energy Association UK (REA)" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Association_UK_REA&oldid=350314" Categories: Clean Energy Organizations Companies Organizations Stubs

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Mulk Renewable Energy Aditya Solar Power Industries JV | Open Energy  

Open Energy Info (EERE)

Mulk Renewable Energy Aditya Solar Power Industries JV Mulk Renewable Energy Aditya Solar Power Industries JV Jump to: navigation, search Name Mulk Renewable Energy & Aditya Solar Power Industries JV Place United Arab Emirates Sector Solar Product UAE-based company that is developing a 200MW solar thermal plant in Sharjah. References Mulk Renewable Energy & Aditya Solar Power Industries JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mulk Renewable Energy & Aditya Solar Power Industries JV is a company located in United Arab Emirates . References ↑ "Mulk Renewable Energy & Aditya Solar Power Industries JV" Retrieved from "http://en.openei.org/w/index.php?title=Mulk_Renewable_Energy_Aditya_Solar_Power_Industries_JV&oldid=348970"

402

Saran Renewable Energy Ltd SRE | Open Energy Information  

Open Energy Info (EERE)

Saran Renewable Energy Ltd SRE Saran Renewable Energy Ltd SRE Jump to: navigation, search Name Saran Renewable Energy Ltd. (SRE) Place Saran, Bihar, India Zip 841301 Sector Biomass Product Bihar-based biomass project developer. Plans to expand into electricity trade and retail distribution. References Saran Renewable Energy Ltd. (SRE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Saran Renewable Energy Ltd. (SRE) is a company located in Saran, Bihar, India . References ↑ "Saran Renewable Energy Ltd. (SRE)" Retrieved from "http://en.openei.org/w/index.php?title=Saran_Renewable_Energy_Ltd_SRE&oldid=350624" Categories: Clean Energy Organizations Companies Organizations

403

Alteris Renewables Inc formerly Solar Works Inc | Open Energy Information  

Open Energy Info (EERE)

Solar Works Inc Solar Works Inc Jump to: navigation, search Name Alteris Renewables, Inc. (formerly Solar Works Inc) Place Wilton, Connecticut Sector Renewable Energy, Solar Product Connecticut-based renewable energy systems integrator and project developer formed through the merger between Solar Works and SolarWrights. References Alteris Renewables, Inc. (formerly Solar Works Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alteris Renewables, Inc. (formerly Solar Works Inc) is a company located in Wilton, Connecticut . References ↑ "Alteris Renewables, Inc. (formerly Solar Works Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Alteris_Renewables_Inc_formerly_Solar_Works_Inc&oldid=342052

404

SeaEnergy PLC formerly Seaenergy Renewables | Open Energy Information  

Open Energy Info (EERE)

SeaEnergy PLC formerly Seaenergy Renewables SeaEnergy PLC formerly Seaenergy Renewables Jump to: navigation, search Name SeaEnergy PLC (formerly Seaenergy Renewables) Place United Kingdom Sector Wind energy Product Subsidiary of Aberdeen based energy investment firm Ramco Energy Plc, set up to develop, own and operate offshore wind farms. References SeaEnergy PLC (formerly Seaenergy Renewables)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SeaEnergy PLC (formerly Seaenergy Renewables) is a company located in United Kingdom . References ↑ "SeaEnergy PLC (formerly Seaenergy Renewables)" Retrieved from "http://en.openei.org/w/index.php?title=SeaEnergy_PLC_formerly_Seaenergy_Renewables&oldid=35070

405

West Clare Renewable Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Ltd Renewable Energy Ltd Jump to: navigation, search Name West Clare Renewable Energy Ltd Place United Kingdom Sector Wind energy Product A wind project developer established to build the Mount Callan wind farm in County Clare Ireland. References West Clare Renewable Energy Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. West Clare Renewable Energy Ltd is a company located in United Kingdom . References ↑ "West Clare Renewable Energy Ltd" Retrieved from "http://en.openei.org/w/index.php?title=West_Clare_Renewable_Energy_Ltd&oldid=352997" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

406

Programs in Renewable Energy  

DOE Green Energy (OSTI)

Our nation faces significant challenges as we enter the 1990s: securing a reliable supply of competitively priced energy, improving the quality of our environment, and increasing our share of foreign markets for goods and services. The US Department of Energy's (DOE) Programs in Renewable Energy are working toward meeting these challenges by developing the technologies that make use of our nation's largest energy resource: renewable energy. The sunlight, wind biomass, flowing water, ocean energy, and geothermal energy that make up the renewable energy resource can be found throughout our nation. These resources can provide all the forms of energy our nation needs: liquid fuels, electricity, and heating and cooling. Renewable energy meets about 10% of our need for these forms of energy today, yet the potential contribution is many times greater. DOE's Programs in Renewable Energy are working side-by-side with American industry to develop the technologies that convert renewable energy resources into practical, cost-competitive energy. After a decade of progress in research, several of these technologies are poised to make large contributions during the 1990s and beyond. This booklet provides an overview of the renewable energy programs and their plans for FY 1990. Sources of additional information are listed at the back of the booklet. 48 figs., 4 tabs.

Not Available

1990-01-01T23:59:59.000Z

407

Renewable Fuels | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Renewable Fuels Jump to: navigation, search TODO: Add description List of Renewable Fuels...

408

Renewable Funding | Open Energy Information  

Open Energy Info (EERE)

Funding Jump to: navigation, search Name Renewable Funding Place Oakland, CA Website https:www.renewfund.com References Renewable Funding1 Information About Partnership with...

409

Renewable Analytics | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Renewable Analytics Jump to: navigation, search Name Renewable Analytics Place San Francisco,...

410

First Renewables | Open Energy Information  

Open Energy Info (EERE)

development projects, ranging from wind to biomass using a variety of renewable fuel sources. Absorbed into EPR in 2002. References First Renewables1 LinkedIn Connections...

411

Western Renewable Energy Zones (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes recent developments and trends pertaining to competitive renewable energy zones, transmission planning and the integration of renewable generation resources.

Hein, J.

2011-06-01T23:59:59.000Z

412

EERE: Renewable Electricity Generation - Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy Search Search Search Help | A-Z Subject Index EERE Geothermal Renewable Electricity Generation EERE plays a key role in advancing America's "all...

413

Nautilus Renewables | Open Energy Information  

Open Energy Info (EERE)

based private equity and investment banking firm, in order to break into the renewable energy and waste management markets. References Nautilus Renewables1 LinkedIn...

414

Renewable Electricity Generation (Fact Sheet)  

DOE Green Energy (OSTI)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

Not Available

2012-09-01T23:59:59.000Z

415

Renewable Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Energy Sources Renewable Energy Renewable Energy Watch as these fourth grade students go from learning about electricity to making their own electricity...

416

NREL: State and Local Activities - Renewable Portfolio Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Portfolio Standards Renewable Portfolio Standards A renewable portfolio standard (RPS) is a regulatory mandate to increase production of energy from renewable sources such as wind, solar, biomass and other alternatives to fossil and nuclear electric generation. It's also known as a renewable electricity standard. Background An RPS is most successful in driving renewable energy projects when combined with the federal production tax credit. States often design them to drive a particular technology by providing "carve out" provisions that mandate a certain percentage of electricity generated comes from a particular technology (e.g. solar or biomass). States can choose to apply the RPS requirement to all its utilities or only the investor owned utilities. States can also define what technologies are eligible to count

417

Energy Department Issues Tribal Renewable Energy Purchase Guidance and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Issues Tribal Renewable Energy Purchase Guidance Energy Department Issues Tribal Renewable Energy Purchase Guidance and Project Development Resources Energy Department Issues Tribal Renewable Energy Purchase Guidance and Project Development Resources December 5, 2012 - 4:40pm Addthis News Media Contact (202) 586-4940 WASHINGTON - At the White House Tribal Nations Conference today, the Energy Department announced two new initiatives aimed at driving increased energy production and sustainable economic development in Indian Country. As part of the Energy Department's efforts to support Tribal renewable energy production, Energy Secretary Steven Chu issued a policy statement and guidance that gives preference to Indian tribes when its facilities contract to purchase renewable energy products or by products, based on

418

Renewable Energy Finance Workshop  

Open Energy Info (EERE)

Agenda - December 10 Agenda - December 10 th , 2012 Renewable Energy Finance Workshop 12:00 - 12:15 WELCOME AND INTRODUCTIONS- Richard Kauffman 12:15 - 12:25 PRESIDENTIAL PRIORITIES - Jon Powers & Rick Duke 12:25 - 12:35 INDUSTRY OVERVIEW - Lisa Jacobson & John Stanton Presentation of common themes and emerging trends from industry members. 12:35 - 1:00 MAJOR BARRIERS TO SECURITIZATION - Richard Kauffman & Trevor D'Olier-Lees Facilitated discussion on barriers to renewable energy deployment, such as data and standardized contracts. 1:00 - 1:20 BREAK 1:20 - 2:00 DATA AND RENEWABLE ENERGY RESOURCES - Ian Kalin & Chris Lohmann Open data, tools and programs that seek to support renewable energy financing. 2:00-2:20 BREAK

419

National Renewable Energy Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

RENEWABLE ENERGY RENEWABLE ENERGY AND ENERGY EFFICIENCY SCIENCE PROJECTS 1 SCIENCE PROECTS IN RENEWABLE ENERGY AND ENERGY EFFICIENCY A guide for Secondary School Teachers Authors and Acknowledgements: This second edition was produced at the National Renewable Energy Laboratory (NREL), through the laboratory's Office of Education Programs, under the leadership of the Manager, Dr. Cynthia Howell and guidance of the Program Coordinators, Matt Kuhn and Linda Lung. The contents are the result of contributions by a select group of teacher researchers that were invited to NREL as part of the Department of Energy's Teacher Research Programs. During the summers between 2003 and 2007, fifty four secondary pre-service and experienced teachers came to NREL to do real research in

420

Renewable Electricity Generation  

Energy.gov (U.S. Department of Energy (DOE))

Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems....

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Custom Renewable Energy Projects  

Energy.gov (U.S. Department of Energy (DOE))

Energy Trust of Oregon offers cash incentives and project development assistance for renewable energy projects that are 20 megawatts (MW) or less in capacity. These custom incentives are part of...

422

APS Renewal White Paper  

NLE Websites -- All DOE Office Websites (Extended Search)

| 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed APS Renewal White Paper NOVEMBER 21, 2008 Bookmark and Share The white paper prepared for the...

423

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Per Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Energy Consumption Per Person...

424

Renewable Electricity Futures (Presentation)  

Science Conference Proceedings (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

Hand, M. M.

2012-08-01T23:59:59.000Z

425

High Performance Buildings - Alternative/Renewable Energy  

Science Conference Proceedings (OSTI)

... Buildings - Alternative/Renewable Energy. High Performance Buildings - Alternative/Renewable Energy Information at NIST. ...

2010-09-23T23:59:59.000Z

426

Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy,  

E-Print Network (OSTI)

of Energy Efficiency, Renewable Energy, and Small-Scale Cogeneration from electricity generation. Renewable energy, energy efficiency, and energy, where performance is measured relative to three objectives: energy production

427

Renewable energy perspectives in the  

E-Print Network (OSTI)

Renewable energy perspectives in the mediterranean countries - the Mediterranean Solar Plan Dr 600 800 1000 1200 1400 1990 2009 CS2030 PS2030 Mtoe Renewables & Waste Hydro Nuclear Gas Oil Coal #12 - hydro Renewables Hydro Nuclear Gas Oil Coal 2009 2030 PS2030 CS #12;RENEWABLE ELECTRICITY GENERATION 0

Canet, Léonie

428

2008 Renewable Energy Data Book  

DOE Green Energy (OSTI)

This Renewable Energy Data Book for 2008 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

Not Available

2009-07-01T23:59:59.000Z

429

RENEWABLE ENERGY RESEARCH August 2010  

E-Print Network (OSTI)

RENEWABLE ENERGY RESEARCH August 2010 CERTS Smart Grid Demonstration with Renewable Energy Integration PIER Renewable Energy Research The Issue Researchers at the Santa Rita Jail, in Dublin, California will be demonstated. This demonstration will enable future applications under a Renewable-Based Energy Secure

430

XL Renewables Inc | Open Energy Information  

Open Energy Info (EERE)

XL Renewables Inc XL Renewables Inc Jump to: navigation, search Name XL Renewables Inc Place Phoenix, Arizona Zip 85009 Product Arizona based biorefinery developer, also involved in the diary production business. Coordinates 33.44826°, -112.075774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.44826,"lon":-112.075774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Mold susceptibility of rapidly renewable materials used in wall construction  

E-Print Network (OSTI)

Since 1998, the United States Green Building Council, via the Leadership in Energy and Environmental Design (LEED) standards, has established the premiere set of guidelines for construction ethics from the standpoint of eco-friendliness and occupant safety and health in the U.S. and around the world. These guidelines are skyrocketing in use due in part to two reasons: increased awareness of a need for reducing, reusing, and recycling in order to save resources and natural areas for future generations; and, increased amount of time spent indoors in work places and homes. The LEED guidelines encourage sustainable and responsible use of land, water, energy, and materials, and promote a safe and healthy environment through use of innovative designs and technology. As part of the responsible use of materials, the LEED guidelines encourage the use of rapidly renewable materials such as cotton, straw, wool, and cork as insulation products. Although these products can be produced naturally and quickly from nature, they are also cellulose or carbohydrate based products. Cellulose and carbohydrate based materials are typically optimal food sources for mold in the presence of moisture, ironically destroying facilities and creating poor living and work environments. Samples of wool, cork, straw, and cotton--rapidly renewable materials used as exterior wall insulation products--were exposed to different moisture amounts in an encapsulated environment, representing the environment within a wall cavity when exposed to water from pipes, leaks, condensation and absorption, or from initial construction. The samples were monitored over time for mold growth. The data logged from the samples were analyzed to determine the degree of mold susceptibility of each material. In addition, samples with increased amounts of moisture were examined to determine increased promotion of mold growth. The results from this study showed that all of the above mentioned materials were highly susceptible to mold growth and that the moisture amount did not increase the rate of mold growth. Based on the data collected from this study, recommendations were made to review the current use of rapidly renewable and other cellulose and carbohydrate based materials in wall construction.

Cooper, Aaron McGill

2007-12-01T23:59:59.000Z

432

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Supply Disposition Ending Stocks; Field Production Renewable Fuels & Oxygenate Plant New Production Refinery & Blender Net Production Imports Net Receipts

433

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Supply Disposition Ending Stocks; Field Production Renewable Fuels & Oxygenate Plant Net Production Refinery & Blender Net Production Imports Net Receipts

434

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Supply Disposition Ending Stocks; Field Production Renewable Fuels & Oxygenate Plant New Production Refinery & Blender Net Production Imports ...

435

Renewable and nuclear heresies  

E-Print Network (OSTI)

Abstract: Renewables are not green. To reach the scale at which they would contribute importantly to meeting global energy demand, renewable sources of energy, such as wind, water and biomass, cause serious environmental harm. Measuring renewables in watts per square metre that each source could produce smashes these environmental idols. Nuclear energy is green. However, in order to grow, the nuclear industry must extend out of its niche in baseload electric power generation, form alliances with the methane industry to introduce more hydrogen into energy markets, and start making hydrogen itself. Technologies succeed when economies of scale form part of their conditions of evolution. Like computers, to grow larger, the energy system must now shrink in size and cost. Considered in watts per square metre, nuclear has astronomical advantages over its competitors.

Jesse H. Ausubel

2011-01-01T23:59:59.000Z

436

Renewable & Alternative Fuels - U.S. Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Renewable & Alternative Fuels Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative Transportation Fuels All Renewable & Alternative Fuels Data Reports Analysis & Projections Most Requested Alternative Fuels Capacity and Generation Consumption Environment Industry Characteristics Prices Production Projections Renewable Energy Type All Reports Don't miss: EIA's Alternative Fuel Vehicle Data. Including two interactive data viewers that provide custom data views of Alternative Fuel Vehicle data for both User & Fuel Data and Supplier Data. EIA's latest Short-Term Energy Outlook for renewables › chart showing U.S. renewable energy supply Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly.

437

Renewable Energy Institute International REII | Open Energy Information  

Open Energy Info (EERE)

Institute International REII Institute International REII Jump to: navigation, search Name Renewable Energy Institute International (REII) Place McClellan, California Zip 95652 Sector Renewable Energy Product California-based non-profit that supports research, development, demonstration, and deployment programmes on renewable energy and alternative fuels in collaboration with government, industry, academia, institutes and non-government organizations. References Renewable Energy Institute International (REII)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Institute International (REII) is a company located in McClellan, California . References ↑ "Renewable Energy Institute International (REII)"

438

Chinese Renewable Energy Society CRES formerly Chinese Solar Energy Society  

Open Energy Info (EERE)

CRES formerly Chinese Solar Energy Society CRES formerly Chinese Solar Energy Society Jump to: navigation, search Name Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy Society) Place Beijing, Beijing Municipality, China Sector Renewable Energy, Solar Product National academic association in renewable energy industry, formerly China Solar Energy society. References Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy Society)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Chinese Renewable Energy Society (CRES) (formerly Chinese Solar Energy Society) is a company located in Beijing, Beijing Municipality, China . References ↑ "Chinese Renewable Energy Society (CRES) (formerly Chinese

439

Renewable Energy Development Group Ltd RED | Open Energy Information  

Open Energy Info (EERE)

RED RED Jump to: navigation, search Name Renewable Energy Development Group Ltd (RED) Place Edinburgh, United Kingdom Zip EH1 2DP Sector Biomass, Hydro, Wind energy Product Developer of wind farms. It is also active in the development of other types of renewably powered electricity generation including hydro-electric and biomass power projects. References Renewable Energy Development Group Ltd (RED)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Development Group Ltd (RED) is a company located in Edinburgh, United Kingdom . References ↑ "Renewable Energy Development Group Ltd (RED)" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Development_Group_Ltd_RED&oldid=350319

440

Renewable energy and utility regulation  

DOE Green Energy (OSTI)

This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC`S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

Not Available

1991-04-10T23:59:59.000Z

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Renewable energy and utility regulation  

DOE Green Energy (OSTI)

This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC'S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

Not Available

1991-04-10T23:59:59.000Z

442

Renewable Electricity Futures (Presentation)  

DOE Green Energy (OSTI)

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

DeMeo, E.

2012-08-01T23:59:59.000Z

443

Renewable Electricity Futures (Presentation)  

SciTech Connect

This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

Mai, T.

2012-08-01T23:59:59.000Z

444

Cationically polymerizable monomers derived from renewable sources  

DOE Green Energy (OSTI)

The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

Crivello, J.V.

1992-10-01T23:59:59.000Z

445

Production  

E-Print Network (OSTI)

There are serious concerns about the greenhouse gas (GHG) emissions, energy and nutrient and water use efficiency of large-scale, first generation bio-energy feedstocks currently in use. A major question is whether biofuels obtained from these feedstocks are effective in combating climate change and what impact they will have on soil and water resources. Another fundamental issue relates to the magnitude and nature of their impact on food prices and ultimately on the livelihoods of the poor. A possible solution to overcome the current potentially large negative effects of large-scale biofuel production is developing second and third generation conversion techniques from agricultural residues and wastes and step up the scientific research efforts to achieve sustainable biofuel production practices. Until such sustainable techniques are available governments should scale back their support for and promotion of biofuels. Multipurpose feedstocks should be investigated making use of the bio-refinery concept (bio-based economy). At the same time, the further development of non-commercial, small scale

Science Council Secretariat

2008-01-01T23:59:59.000Z

446

Renewable Energy Business Partnerships in China: Renewable Energy in China  

DOE Green Energy (OSTI)

China has rich potential for renewable energy development including wind energy, solar, biomass, hydropower, and geothermal. Fact sheet describes Chinas policy for attracting foreign investment, Chinas tax policy, import duties, currency exchange, and renewable joint ventures in China.

Not Available

2004-04-01T23:59:59.000Z

447

Renewable Energy Policy in China: Overview; Renewable Energy in China  

DOE Green Energy (OSTI)

China has rich potential for renewable energy development including wind energy, solar, biomass, hydropower, and geothermal. Fact sheet describes Chinas policy for developing renewable energy, policy objectives, subsidies, tax incentives, custom duties, and contact information.

Not Available

2004-04-01T23:59:59.000Z

448

Energy Basics: Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

449

INFORMATION FOR RENEWABLE ENERGY  

E-Print Network (OSTI)

to be 150 GW of wind power by 2020 and 20 GW of solar PV by 2020. The official targets in the 2007 RE Medium wind capacity before 2020. 8 New renewables account for biomass, solar, small hydro and wind power announced yet), to include a wind power target of 150 GW and a solar PV target of 20 GW by 2020

450

Renewables for Energy Conservation  

E-Print Network (OSTI)

) Massflowrate(kg/h) Hot Water Usage Patterns Selected #12;Monthly variation in energy requirement for electricalRenewables for Energy Conservation Rangan Banerjee Energy Systems Engineering IIT Bombay National Conference on "Energy Efficiency", Pune , 28th June2005 #12;ENERGY FLOW DIAGRAM PRIMARY ENERGY ENERGY

Banerjee, Rangan

451

Renewable Energy for Microenterprise  

DOE Green Energy (OSTI)

This guide provides readers with a broad understanding of the potential benefits that current renewable energy technologies can offer rural microenterprises. It also introduces the institutional approaches that have been developed to make RE technologies accessible to microentrepreneurs and the challenges that these entrepreneurs have encountered.

Allderdice, A.; Rogers, J.H.

2000-11-28T23:59:59.000Z

452

Offshore Renewable Energy Solutions  

E-Print Network (OSTI)

and sustainable energy supply. The UK is uniquely placed to harness its natural resources ­ wind, wave and tidalOffshore Renewable Energy Solutions #12;Cefas: meeting complex requirements The Centre science centre, Cefas provides a bridge between government and industry. We have unprecedented links

453

Energy Efficiency & Renewable Energy  

E-Print Network (OSTI)

's buildings and will provide hot water. Table 7: Summary of UTC Power 2009 Projects Source: Fuel Cells 2000Energy Efficiency & Renewable Energy 2009 FUEL CELL MARKET REPORT NOVEMBER 2010 #12;Authors was the result of hard work and valuable contributions from government staff and the fuel cell industry

454

EIA Renewable Energy- The Role of Renewable Energy Consumption in ...  

U.S. Energy Information Administration (EIA)

Pie graph and bar graph showing the percentage of renewable energy consumption in the Nation's overall energy supply

455

EIA Renewable Energy- Renewable Portfolio Standards by State  

U.S. Energy Information Administration (EIA)

Source: North Carolina Solar Center, Database of State Incentives for Renewable Energy (DSIRE) website: http://www.dsireusa.org ...

456

Utility Scale Renewables: Renewable and Efficiency Technology Integration (Presentation)  

Science Conference Proceedings (OSTI)

PowerPoint presentation given by Dave Mooney at the NREL Industry Forum on renewable and efficiency technology integration.

Mooney, D.

2009-11-04T23:59:59.000Z

457

RWE npower renewables | Open Energy Information  

Open Energy Info (EERE)

npower renewables npower renewables Jump to: navigation, search Name RWE npower renewables Place Wiltshire, England, United Kingdom Zip SN5 6PB Sector Hydro, Wind energy Product Develops wind generating assets in the UK which are then sold to Zephyr Investments. Operates a number of hydro plants in Scotland and Wales. Coordinates 51.324131°, -1.9257° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.324131,"lon":-1.9257,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Pathfinder Renewable Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Pathfinder Renewable Wind Energy Pathfinder Renewable Wind Energy Jump to: navigation, search Name Pathfinder Renewable Wind Energy Place Casper, Wyoming Zip 82601 Sector Wind energy Product Wyoming-based wind project developer. Coordinates 42.850095°, -106.327734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.850095,"lon":-106.327734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Eolian Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Eolian Renewable Energy LLC Eolian Renewable Energy LLC Jump to: navigation, search Name Eolian Renewable Energy LLC Place Portsmouth, New Hampshire Zip 3801 Sector Solar, Wind energy Product New Hampshire-based clean energy project developer, with focus on community wind and solar. Coordinates 36.832642°, -76.297715° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.832642,"lon":-76.297715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Alderney Renewable Energy ARE | Open Energy Information  

Open Energy Info (EERE)

Alderney Renewable Energy ARE Alderney Renewable Energy ARE Jump to: navigation, search Name Alderney Renewable Energy (ARE) Place Alderney, Channel Islands, United Kingdom Zip GY9 3XY Product AREl develops Alderneyâ€(tm)s marine resource, including tidal and wave power. Coordinates 49.72303°, -2.20238° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.72303,"lon":-2.20238,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Jefferson Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Renewable Energy Jump to: navigation, search Name Jefferson Renewable Energy Place Warwick, Rhode Island Zip 2886 Product Rhode Island-based waste-to-energy and biofuel project developer. Coordinates 41.698591°, -71.461686° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.698591,"lon":-71.461686,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Patriot Renewable Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Fuels LLC Renewable Fuels LLC Jump to: navigation, search Name Patriot Renewable Fuels, LLC Place Geneseo, Illinois Zip 61254 Product An Illinois-based firm developing a 378m-litre (100m-gallon) per year ethanol plant near Annaway, Illinois. Coordinates 42.793381°, -77.81616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.793381,"lon":-77.81616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Liberty Green Renewables LLC | Open Energy Information  

Open Energy Info (EERE)

Renewables LLC Renewables LLC Jump to: navigation, search Name Liberty Green Renewables, LLC Place Georgetown, Indiana Zip 47122 Sector Biomass Product Biomass power plant developer with offices in southern Indiana and Houston, Texas. Coordinates 6.80461°, -58.154831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":6.80461,"lon":-58.154831,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

Hawi Renewable Development LLC | Open Energy Information  

Open Energy Info (EERE)

Hawi Renewable Development LLC Hawi Renewable Development LLC Jump to: navigation, search Name Hawi Renewable Development LLC Place CHICO, California Zip 95927 Sector Wind energy Product JV formed for the development of the Hawi wind farm. Coordinates 33.29657°, -97.794116° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.29657,"lon":-97.794116,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

8minutenergy Renewables, LLC | Open Energy Information  

Open Energy Info (EERE)

minutenergy Renewables, LLC minutenergy Renewables, LLC Jump to: navigation, search Name 8minutenergy Renewables, LLC Address 111 Woodmere Road, Suite 190 Place Folsom, California Zip 95630 Sector Solar Product California based project developer Website http://www.8minutenergy.com Coordinates 38.655295°, -121.184607° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.655295,"lon":-121.184607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Homeland Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Homeland Renewable Energy LLC Homeland Renewable Energy LLC Jump to: navigation, search Name Homeland Renewable Energy LLC Place Langhorne, Pennsylvania Zip 19047 Product Holding company for Fibrowatt LLC and its subsidiaries, which develop poultry litter-fuelled power plants in the US. Coordinates 40.176396°, -74.918884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.176396,"lon":-74.918884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

Agency of Renewable Resources | Open Energy Information  

Open Energy Info (EERE)

Resources Resources Jump to: navigation, search Name Agency of Renewable Resources Place Gulzow, Germany Zip 18276 Sector Renewable Energy Product In 1993 the FNR was initiated by the Federal Ministry of Nourishment, Agriculture and Forestry in order to support research and development in the subject area of renewable resources. Coordinates 54.033298°, 13.1167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.033298,"lon":13.1167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

Cinco Renewable Energy Services | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Services Renewable Energy Services Jump to: navigation, search Name Cinco Renewable Energy Services Address 9235 Katy Freeway Place Houston, Texas Zip 77024 Sector Services Product GIS mapping, land acquisition and database development Website http://www.cincorenewable.com/ Coordinates 29.7837474°, -95.5185221° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7837474,"lon":-95.5185221,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Boreal Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Place Acton, Massachusetts Zip 1720 Sector Hydro, Renewable Energy, Solar, Wind energy Product Renewable Energy Development implements land-based wind, solar, hydroelectric, and other renewable energy projects from inception to commissioning and beyond. Coordinates 45.930212°, -108.678303° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.930212,"lon":-108.678303,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Vigor Renewables Ltd | Open Energy Information  

Open Energy Info (EERE)

Vigor Renewables Ltd Vigor Renewables Ltd Jump to: navigation, search Name Vigor Renewables Ltd Place London, Greater London, United Kingdom Zip W1W7TH Sector Solar, Wind energy Product London-based wind and solar project developer. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Solartech Renewables LLC | Open Energy Information  

Open Energy Info (EERE)

Renewables LLC Renewables LLC Jump to: navigation, search Name Solartech Renewables LLC Place Kingston, New York Zip 12401 Product New York-based limited liability company formed in 2009 to establish a PV module manufacturing facility in the state. Coordinates 18.015711°, -76.79731° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":18.015711,"lon":-76.79731,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Ocean Renewable Power Company | Open Energy Information  

Open Energy Info (EERE)

Power Company Power Company Jump to: navigation, search Name Ocean Renewable Power Company LLC Place Portland, Maine Zip 4101 Sector Ocean, Renewable Energy Product Ocean Renewable Power Company, LLC was founded in 2004 for the purpose of generating reliable, competitive, emission-free electricity from the energy resources of the oceans. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

Mainstream Renewable Power | Open Energy Information  

Open Energy Info (EERE)

Renewable Power Renewable Power Jump to: navigation, search Name Mainstream Renewable Power Place Dublin, Ireland Zip 18 Sector Ocean, Solar, Wind energy Product Developer of wind farms, solar, thermal and ocean stream projects. Coordinates 53.34807°, -6.248274° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.34807,"lon":-6.248274,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Falck Renewables Ltd | Open Energy Information  

Open Energy Info (EERE)

Falck Renewables Ltd Falck Renewables Ltd Jump to: navigation, search Name Falck Renewables Ltd Place London, Greater London, United Kingdom Zip W1G 6EB Sector Wind energy Product The wind energy subsidiary of the Falck Group that is building a portfolio of wind energy projects across Europe. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

Renewable Energy Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Technologies Renewable Energy Technologies Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind, plants, and...

476

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

1.2 Limitations to Large-Scale Renewable EnergyImpacts of Renewable Energy Supply . . . . . . . . . . . . .1.3 Coupling Renewable Energy with Deferrable

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

477

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

2004,ACOREPower?GenRenewable Energy,LasVegas,NVthe International Renewable Hydrogen TransmissionNovember 1998, National Renewable Energy Laboratory, NREL/

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

478

Tribal Renewable Energy Advanced Course: Project Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Process Tribal Renewable Energy Advanced Course: Project Development Process Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable...

479

Tribal Renewable Energy Advanced Course: Project Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy...

480

PPL Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon PPL Renewable Energy Jump to: navigation, search Name PPL Renewable Energy Sector Renewable Energy...

Note: This page contains sample records for the topic "renewables food products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Harvesting a renewable resource under uncertainty  

E-Print Network (OSTI)

Consider a valuable renewable resource whose biomass X2003. Harvesting a renewable resource under uncertainty,Harvesting a Renewable Resource under Uncertainty 1 (with

Saphores, Jean-Daniel M

2003-01-01T23:59:59.000Z

482

Renewable Portfolio Standards by State, 2007  

U.S. Energy Information Administration (EIA)

Renewable Portfolio Standards and State Mandates by State, 2007 State. Title: Renewable Portfolio Standards by State, 2007 Subject: Renewable Energy Author: Louise ...

483

Tribal Renewable Energy Advanced Course: Project Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Advanced Course: Project Development Concepts Tribal Renewable Energy Advanced Course: Project Development Concepts Watch the DOE Office of Indian Energy renewable...

484

Renewable Energy Case Studies | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Case Studies Jump to: navigation, search Tool Summary Name: Renewable Energy Case Studies AgencyCompany Organization: National Renewable Energy Laboratory...

485

Renewable Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Technology Basics Renewable Energy Technology Basics Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind,...

486

Alternative Trading Arrangements for Intermittent Renewable Power...  

Open Energy Info (EERE)

Trading Arrangements for Intermittent Renewable Power: A Centralised Renewables Market and Other Concepts Focus Area: Other Renewable Electricity Topics: Socio-Economic...

487

Community Renewable Energy Success Stories Webinar: District...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

District Heating with Renewable Energy (text version) Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version) Below is the text...

488

Renewable Energy Project Assistance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Renewable Energy Renewable Energy Project Assistance Renewable Energy Project Assistance October 7, 2013 - 9:41am Addthis The Federal Energy Management Program...

489

Ridgewood Renewable Power LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Power LLC Renewable Power LLC Jump to: navigation, search Name Ridgewood Renewable Power LLC Place Ridgewood, New Jersey Zip NJ 07450 Sector Biomass, Hydro, Renewable Energy Product An international owner and operator of renewable electric power and infrastructure projects in the United States, United Kingdom, and Egypt. Projects developed include hydro, biomass, natural gas and landfill methane gas power plants. Coordinates 40.700725°, -73.895329° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.700725,"lon":-73.895329,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

490

GDI Renewable Power | Open Energy Information  

Open Energy Info (EERE)

GDI Renewable Power GDI Renewable Power Jump to: navigation, search Name GDI Renewable Power Place Watertown, Connecticut Sector Biomass, Renewable Energy Product Developing a 15.0MW biomass power plant in Watertown, Connecticut. The initiative is a joint venture between Tamarack Energy of Essex and Gemma Development of Glastonbury and is called GDI Renewable Power. Coordinates 43.197366°, -88.720469° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.197366,"lon":-88.720469,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

491

Rainier Renewable Energy | Open Energy Information  

Open Energy Info (EERE)

Rainier Renewable Energy Rainier Renewable Energy Jump to: navigation, search Logo: Rainier Renewable Energy Name Rainier Renewable Energy Address 1037 NE 65th Street #152 Place Seattle, Washington Zip 98115 Sector Geothermal energy Product Renewable energy systems design, consultation and installation Year founded 2008 Number of employees 1-10 Phone number (206) 354-3150 Website http://www.rainier-energy.com Coordinates 47.675791°, -122.315941° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.675791,"lon":-122.315941,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

492

US Renewables Group (California) | Open Energy Information  

Open Energy Info (EERE)

Renewables Group (California) Renewables Group (California) Jump to: navigation, search Logo: US Renewables Group (California) Name US Renewables Group (California) Address 2425 Olympic Boulevard, Suite 4050 West Place Santa Monica, California Zip 90404 Region Southern CA Area Product Private equity firm investing exclusively in renewable energy. Phone number (310) 586-3900 Website http://www.usregroup.com/ Coordinates 34.028262°, -118.471066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.028262,"lon":-118.471066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

493

Managing R&D Risk in Renewable Energy  

E-Print Network (OSTI)

to the decline in fossil energy production costs. 3.renewable energy for fossil-based energy have intensified.by the price of fossil-based energy sources, the private

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

494

Renewable Energy Solutions Inc RESI | Open Energy Information  

Open Energy Info (EERE)

Solutions Inc RESI Jump to: navigation, search Name Renewable Energy Solutions Inc (RESI) Place Ewing, New Jersey Zip 08638-2400 Product US-based developer of PV manufacturing...

495

Hybrid simulation of renewable energy generation and storage grids  

Science Conference Proceedings (OSTI)

The share of renewable energy sources in energy production is growing steadily. Domestic homes can be equipped with solar panels, micro combined heat and power systems, batteries, and they can become adaptive consumers. They can also deliver energy to ...

Peter Bazan; Reinhard German

2012-12-01T23:59:59.000Z

496

Why Cogeneration? 24MW of local renewable energy  

E-Print Network (OSTI)

Why Cogeneration? · 24MW of local renewable energy · Reduced emissions and cleaner air · Retain 300 Wood Chips Sawdust Pulp Paper Emissions Production #12;Port Townsend Paper - Cogeneration Biomass

497

Southeast Renewable Fuels LLC SRF | Open Energy Information  

Open Energy Info (EERE)

Lauderdale, Florida Zip 33309 Product South Florida-based owner and developer of sweet sorghum-to-ethanol plants. References Southeast Renewable Fuels LLC (SRF)1 LinkedIn...

498

Energy, Treasury Now Accepting Applications for Funding For Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 billion in financial support to approximately 5,000 bio-mass, solar, wind, and other types of renewable energy production facilities. The funding for this effort is made...

499

Electric resonance-rectifier circuit for renewable energy conversion  

Science Conference Proceedings (OSTI)

Variable speed generators are used more frequently for converting the energy from renewable energy sources to electric energy. The power production form a variable speed generator is dependent on the electrical damping of the generator. In this paper

C. Bostrm; B. Ekergrd; M. Leijon

2012-01-01T23:59:59.000Z

500

Industrial Applications for Renewable Resources  

Science Conference Proceedings (OSTI)

This CD-ROM contains the PowerPoint presentations from the presenters from Industrial Applications of Renewable Resources: A Conference on Sustainable Technologies. Industrial Applications for Renewable Resources Biofuels and Bioproducts and Biodiesel DV