National Library of Energy BETA

Sample records for renewable transportation fuels

  1. High Octane Fuels Can Make Better Use of Renewable Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Octane Fuels Can Make Better Use of Renewable Transportation Fuels High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Breakout Session 1C-Fostering...

  2. Making Better Use of Ethanol as a Transportation Fuel With "Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Breakout...

  3. Renewable Transportation Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFURecentCenterPrivateInternational

  4. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  5. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    carbon policies on the renewable fuels standard: economicreport: 2009 update. REN21 Renewable Energy Policy Networktransportation fuels: Comparing renewable fuel mandates and

  6. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    update. REN21 Renewable Energy Policy Network and Worldwatchconclusion Policies such as renewable energy mandates arerenewable fuels standard: economic and greenhouse gas implications. Energy Policy

  7. Review of Transportation Issues & Comparison of Infrastructure Costs for a Renewable Fuels Standard

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes the inter-regional transportation issues and associated costs for increased distribution of renewable fuels with the assumption that ethanol will be used to meet the standards.

  8. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    2010. Measuring energy security: can the United StatesCBO, 2010. Energy Independence and Security Act of 2010: Achange Transportation Energy security Renewable energy

  9. Renewable Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners *ReindustrializationEnergyWind Energy Wind Energy Renewable

  10. List of Renewable Transportation Fuels Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedList of Refueling StationsIncentivesList

  11. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    gas emissions from petroleum-based fuels and impactson low carbon fuel policies. Environ. Sci. Technol. 450 (1),effects of low carbon fuel policies. AgBioforum 150 (1), 1–

  12. High Octane Fuels Can Make Better Use of Renewable Transportation Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡ ¢HelpHighJianDepartment of

  13. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  14. FUEL CELLS FOR TRANSPORTATION

    E-Print Network [OSTI]

    for Fuel Cells for Transportation Energy Efficiency and Renewable Energy Office of Transportation............................................................................................. 101 A. R&D of a 50-kW, High-Efficiency, High-Power-Density, CO-Tolerant PEM Fuel Cell Stack SystemFUEL CELLS FOR TRANSPORTATION 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department

  15. Making Better Use of Ethanol as a Transportation Fuel With "Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.LeadershipLumiledsofEnergy MaintenanceSlide 1Super

  16. EPA's Renewable Fuels Standard Web page

    SciTech Connect (OSTI)

    2011-12-30

    The Renewable Fuel Standard (RFS) program regulations were developed in collaboration with refiners, renewable fuel producers, and many other stakeholders.

  17. Renewable Fuels and Vehicles Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Developsfor UCNIEnvironmentalAHRIRemote DuctRenewable EnergyRenewable

  18. State Clean Energy Practices: Renewable Fuel Standards

    SciTech Connect (OSTI)

    Mosey, G.; Kreycik, C.

    2008-07-01

    The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, renewable fuel standards (RFS) policies are a mechanism for developing a market for renewable fuels in the transportation sector. This flexible market-based policy, when properly executed, can correct for market failures and promote growth of the renewable fuels industry better than a more command-oriented approach. The policy attempts to correct market failures such as embedded fossil fuel infrastructure and culture, risk associated with developing renewable fuels, consumer information gaps, and lack of quantification of the non-economic costs and benefits of both renewable and fossil-based fuels. This report focuses on renewable fuel standards policies, which are being analyzed as part of this project.

  19. Renewable Fuels Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.

  20. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / Transforming Y-12Capacity-Forum

  1. Renewable Fuels Module

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars1.840 2.318 3.119

  2. Renewable Fuels Module

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars1.840 2.318 3.1195) Model Documentation

  3. Renewable Fuels Module

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars1.840 2.318 3.1195) Model

  4. Alcohol Transportation Fuels Demonstration Program

    SciTech Connect (OSTI)

    Kinoshita, C.M. (ed.)

    1990-01-01

    Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii's Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

  5. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01

    comparison of fuel policies: Renewable fuel mandate, fuelcomparison of fuel policies: Renewable fuel mandate, fuel121, 2011. C. Fischer. Renewable Portfolio Standards: When

  6. The Promise of Renewable Gaseous Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsThe Promise of Renewable Gaseous FuelsJeffrey Reed, Director of Business Strategy and Development, Southern California Gas Company/San Diego Gas &...

  7. EISA 2007: Focus on Renewable Fuels Standard Program

    Broader source: Energy.gov [DOE]

    At the November 6, 2008 joint Web conference of DOE's Biomass and Clean Cities programs, Paul Argyropoulos (U.S. Environmental Protection Agency, Office of Transportation and Air Quality) explained the EISA 2007, Renewable Fuel Standards.

  8. An Update on Alternative Fuels & the Renewable Fuel

    E-Print Network [OSTI]

    Pennycook, Steve

    An Update on Alternative Fuels & the Renewable Fuel Standard (RFS2) Center for Bio Fuel Standard 0 5 10 15 20 25 30 35 40 2012 2015 2022 Renewable Fuel Standard Production Targets (billions of gallons) · The Renewable Fuel Standard (RFS) sets aggressive goals

  9. Transportation fuels from wood

    SciTech Connect (OSTI)

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  10. Renewable Fuels and Lubricants (ReFUEL) Laboratory

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    Fact sheet describing NREL's Renewable Fuels and Lubricants Laboratory (ReFUEL). ReFUEL is a world-class research and testing facility dedicated to future fuels and advanced heavy-duty vehicle research, located in Denver, Colorado.

  11. Fuel Cells and Renewable Portfolio Standards

    Broader source: Energy.gov [DOE]

    Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells and Renewable Portfolio Standards, June 9, 2011.

  12. Recovery Act: Beneficial CO{sub 2} Capture in an Integrated Algal Biorefinery for Renewable Generation and Transportation Fuels

    SciTech Connect (OSTI)

    Lane, Christopher; Hampel, Kristin; Rismani-Yazdi, Hamid; Kessler, Ben; Moats, Kenneth; Park, Jonathan; Schwenk, Jacob; White, Nicholas; Bakhit, Anis; Bargiel, Jeff; Allnutt, F.C.

    2014-03-31

    DOE DE-FE0001888 Award, Phase 2, funded research, development, and deployment (RD&D) of Phycal’s pilot-scale, algae to biofuels, bioproducts, and processing facility in Hawai’i. Phycal’s algal-biofuel and bioproducts production system integrates several novel and mature technologies into a system that captures and reuses industrially produced carbon dioxide emissions, which would otherwise go directly to the atmosphere, for the manufacture of renewable energy products and bioproducts from algae (note that these algae are not genetically engineered). At the end of Phase 2, the project as proposed was to encompass 34 acres in Central Oahu and provide large open ponds for algal mass culturing, heterotrophic reactors for the Heteroboost™ process, processing facilities, water recycling facilities, anaerobic digestion facilities, and other integrated processes. The Phase 2 award was divided into two modules, Modules 1 & 2, where the Module 1 effort addressed critical scaling issues, tested highest risk technologies, and set the overall infrastructure needed for a Module 2. Phycal terminated the project prior to executing construction of the first Module. This Final Report covers the development research, detailed design, and the proposed operating strategy for Module 1 of Phase 2.

  13. Renewable Fuel Standard Potential Economic and Environmental

    E-Print Network [OSTI]

    Renewable Fuel Standard Potential Economic and Environmental Effects of U.S. Biofuel Policy Wallace. Burke (Cochair)2--Ecology Wallace E. Tyner (Cochair)2--Energy Economics Virginia H. Dale. Miranowski--Agricultural Economics Aristides Patrinos--Renewable Fuel Production Jerald L. Schnoor3--Water

  14. Mandating green: On the design of renewable fuel policies and cost containment mechanisms

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    Mandating green: On the design of renewable fuel policies and cost containment mechanisms Gabriel E Energy Efficiency Center Sustainable Transportation Seminar, and the Berkeley Bioeconomy Conference. Lin

  15. Fuel Cells & Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells & Renewable Portfolio Standards Fuel Cells & Renewable Portfolio Standards Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel...

  16. Alcohol Transportation Fuels Demonstration Program. Phase 1

    SciTech Connect (OSTI)

    Kinoshita, C.M. [ed.

    1990-12-31

    Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii`s Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

  17. Renewable Fuels and Lubricants Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  18. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Not Available

    2006-11-01

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  19. Missouri Renewable Fuel Standard Brochure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlenderBusiness Case forbutton highlighted DoE/NREL/EPAJuly

  20. Engineered fuel: Renewable fuel of the future?

    SciTech Connect (OSTI)

    Tomczyk, L.

    1997-01-01

    The power generation and municipal solid waste management industries share an interest in the use of process engineered fuel (PEF) comprised mainly of paper and plastics as a supplement to conventional fuels. PEF is often burned in existing boilers, making PEF an alternative to traditional refuse derived fuels (RDF). This paper describes PEF facilities and makes a comparison of PEF and RDF fuels.

  1. Spent Fuel Transportation Risk Assessment

    Office of Environmental Management (EM)

    Spent Fuel Transportation Risk Assessment (SFTRA) Draft NUREG-2125 Overview for National Transportation Stakeholders Forum John Cook Division of Spent Fuel Storage and...

  2. Renewable Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: Energy ResourcesProducts LLC JumpTechSupply

  3. Property:RenewableFuelStandard/RenewableBiofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuel JumpRenewableBiofuel

  4. Patriot Renewable Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Patriot Renewable Fuels, LLC Place: Geneseo, Illinois Zip: 61254 Product: An Illinois-based firm developing a 378m-litre (100m-gallon) per...

  5. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Hedstrom, James C. (Los Alamos, NM)

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  6. The Future of Low Carbon Transportation Fuels

    E-Print Network [OSTI]

    Kammen, Daniel M.

    of Sustainable Energy: Efficiency and Renewables, University of California, Berkeley #12;University of California's Transportation Fuels 5 The externalities of fossil fuels were addressed by the previous panel thus" Gas processing" Coal/Gas PP/CHP" Solar PV/thermal" Biomass PP/CHP" Nuclear" Wind converter" Ethanol

  7. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    Gas Reductions under Low Carbon Fuel Standards? Americanto Implement the Low Carbon Fuel Standard, Volume I Sta?Paper Series Multi-objective fuel policies: Renewable fuel

  8. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >Transportation currently accounts for

  9. Renewable Motor Fuel Production Capacity Under H.R.4

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes renewable motor fuel production capacity with the assumption that ethanol will be used to meet the renewable fuels standard.

  10. Transportation Deployment; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    Automakers, commercial fleet operators, component manufacturers, and government agencies all turn to the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) to help put more green vehicles on the road. The lab’s independent analysis and evaluation pinpoint fuel-efficient and low-emission strategies to support economic and operational goals, while breaking down barriers to widespread adoption. Customized assessment of existing equipment and practices, energy-saving alternatives, operational considerations, and marketplace realities factor in the multitude of variables needed to ensure meaningful performance, financial, and environmental benefits. NREL provides integrated, unbiased, 360-degree sustainable transportation deployment expertise encompassing alternative fuels, advanced vehicles, and related infrastructure. Hands-on support comes from technical experts experienced in advanced vehicle technologies, fleet operations, and field data collection coupled with extensive modeling and analysis capabilities. The lab’s research team works closely with automakers and vehicle equipment manufacturers to test, analyze, develop, and evaluate high-performance fuel-efficient technologies that meet marketplace needs.

  11. Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  12. Renewable Fuel Standard Schedule | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPsLtd RES GroupStandard Schedule

  13. Renewable Fuel Vehicles | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPsLtd RES GroupStandard

  14. Nanostructured Basic Catalysts: Opportunities for Renewable Fuels

    SciTech Connect (OSTI)

    Conner, William C; Huber, George; Auerbach, Scott

    2009-06-30

    This research studied and developed novel basic catalysts for production of renewable chemicals and fuels from biomass. We focused on the development of unique porous structural-base catalysts zeolites. These catalysts were compared to conventional solid base materials for aldol condensation, that were being commercialized for production of fuels from biomass and would be pivotal in future biomass conversion to fuels and chemicals. Specifically, we had studied the aldolpyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our research has indicated that the base strength of framework nitrogen in nitrogen substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

  15. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Broader source: Energy.gov (indexed) [DOE]

    presentation slides from the DOE Fuel Cell Technologies Office webinar "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies" held on August 19,...

  16. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies held on August 19, 2014.

  17. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01

    is only one type of fossil fuel and one alternative fuel andGHG emissions and reducing fossil fuel use, and ?nd biofuelin GHG intensity of both fossil fuels and renewable fuels,

  18. Technology Mapping of the Renewable Energy, Buildings and Transport...

    Open Energy Info (EERE)

    Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL...

  19. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    SciTech Connect (OSTI)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  20. Renewable Energy: Solar Fuels GRC and GRS

    SciTech Connect (OSTI)

    Nathan Lewis Nancy Ryan Gray

    2010-02-26

    This Gordon Research Conference seeks to bring together chemists, physicists, materials scientists and biologists to address perhaps the outstanding technical problem of the 21st Century - the efficient, and ultimately economical, storage of energy from carbon-neutral sources. Such an advance would deliver a renewable, environmentally benign energy source for the future. A great technological challenge facing our global future is energy. The generation of energy, the security of its supply, and the environmental consequences of its use are among the world's foremost geopolitical concerns. Fossil fuels - coal, natural gas, and petroleum - supply approximately 90% of the energy consumed today by industrialized nations. An increase in energy supply is vitally needed to bring electric power to the 25% of the world's population that lacks it, to support the industrialization of developing nations, and to sustain economic growth in developed countries. On the geopolitical front, insuring an adequate energy supply is a major security issue for the world, and its importance will grow in proportion to the singular dependence on oil as a primary energy source. Yet, the current approach to energy supply, that of increased fossil fuel exploration coupled with energy conservation, is not scaleable to meet future demands. Rising living standards of a growing world population will cause global energy consumption to increase significantly. Estimates indicate that energy consumption will increase at least two-fold, from our current burn rate of 12.8 TW to 28 - 35 TW by 2050. - U.N. projections indicate that meeting global energy demand in a sustainable fashion by the year 2050 will require a significant fraction of the energy supply to come carbon free sources to stabilize atmospheric carbon dioxide levels at twice the pre-anthropogenic levels. External factors of economy, environment, and security dictate that this global energy need be met by renewable and sustainable sources from a carbon-neutral source. Sunlight is by far the most abundant global carbon-neutral energy resource. More solar energy strikes the surface of the earth in one hour than is obtained from all of the fossil fuels consumed globally in a year. Sunlight may be used to power the planet. However, it is intermittent, and therefore it must be converted to electricity or stored chemical fuel to be used on a large scale. The 'grand challenge' of using the sun as a future energy source faces daunting challenges - large expanses of fundamental science and technology await discovery. A viable solar energy conversion scheme must result in a 10-50 fold decrease in the cost-to-efficiency ratio for the production of stored fuels, and must be stable and robust for a 20-30 year period. To reduce the cost of installed solar energy conversion systems to $0.20/peak watt of solar radiation, a cost level that would make them economically attractive in today's energy market, will require revolutionary technologies. This GRC seeks to present a forum for the underlying science needed to permit future generations to use the sun as a renewable and sustainable primary energy source. Speakers will discuss recent advances in homoogeneous and heterogeneous catalysis of multi-electron transfer processes of importance to solar fuel production, such as water oxidation and reduction, and carbon dioxide reduction. Speakers will also discuss advances in scaleably manufacturable systems for the capture and conversion of sunlight into electrical charges that can be readily coupled into, and utilized for, fuel production in an integrated system.

  1. World Renewable Energy Congress 2011 Sweden Sustainable Transport (ST) 8-11 May 2011, Linkping, Sweden

    E-Print Network [OSTI]

    World Renewable Energy Congress 2011 ­ Sweden Sustainable Transport (ST) 8-11 May 2011, Linköping: Renewable fuels, Biodiesel, Vehicle emissions, Regulated air pollutants, Hazardous air pollutants 1 in an attempt to reduce greenhouse gas emissions and to improve the energy security of the country. Biodiesel

  2. ,"Energy","Water","Renewable","Petroleum","Alt. Fuel",,"On-Line...

    Broader source: Energy.gov (indexed) [DOE]

    Energy","Water","Renewable","Petroleum","Alt. Fuel",,"On-Line Data Collection System",,"Report Period","Due In",,,"Primary","Secondary","Secondary" 2003,,,"EMS4","Environmental...

  3. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies" on Tuesday, August 19, from 12:00 to 1:00 p.m. Eastern Daylight Time (EDT). The webinar will feature representatives from the National Renewable Energy Laboratory presenting a unique opportunity for the integration of multiple sectors including transportation, industrial, heating fuel, and electric sectors on hydrogen.

  4. Alternatives to Traditional Transportation Fuels: An Overview

    Reports and Publications (EIA)

    1994-01-01

    Provides background information on alternative transportation fuels and replacement fuels, and furnishes preliminary estimates of the use of these fuels and of alternative fueled vehicles.

  5. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol.1, Issue 4 (July 2015) Archived Editions: Coal...

  6. Methods of producing transportation fuel

    DOE Patents [OSTI]

    Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Cherrillo, Ralph Anthony (Houston, TX); Bauldreay, Joanna M. (Chester, GB)

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  7. California Energy Commission Alternative and Renewable Fuel and Vehicle Technology

    E-Print Network [OSTI]

    California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program Advisory, Statutes of 2007) created the Alternative and Renewable Fuel and Vehicle Technology Program (hereinafter "Program") to be administered by the California Energy Commission (Energy Commission).1 AB 118 authorizes

  8. California Energy Commission Alternative and Renewable Fuel and Vehicle Technology

    E-Print Network [OSTI]

    California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program Advisory by the Energy Commission. Under the Program, the following shall be eligible for funding: 3 · Alternative, Statutes of 2007) created the Alternative and Renewable Fuel and Vehicle Technology Program (hereinafter

  9. Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels

    E-Print Network [OSTI]

    generation of combined heat andcombined heat and power ­Clean Power with natural gas f lfuel ­Renewable Gas 30 ­ 42% Turbines * Combined Heat & Power 25 ­35% Micro- (CHP)) fuel cell applications( pp z ETHANOL z WASTE METHANE z BIOGASz BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency ­ High

  10. Bioenergy Impacts Â… Renewable Jet Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Researchof Energy|Make Fuels andfor itsEnergy Department's

  11. Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on as Reliable Fleet FuelAbout

  12. Fuel Cells & Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuel Cells &

  13. Transportation Electrification Load Development For a Renewable Future Analysis

    SciTech Connect (OSTI)

    Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

    2010-09-30

    Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

  14. Southeast Renewable Fuels LLC SRF | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergyHouston,Windsor,Southchase,Renewable Fuels LLC SRF

  15. Renewable Fuel Vehicle Modeling and Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTIRegulatoryResidentialRenewable Fuel Vehicle

  16. Renewable Jet Fuel Is Taking Flight | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudgetFinancialReliabilityEnergyRenewable Jet Fuel Is

  17. Fuel Cells and Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuelgreen h y dFueland

  18. Renewable Fuels Consulting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: Energy ResourcesProducts LLC JumpTechSupply Ltd

  19. Renewable Fuel Standards Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTIRegulatoryResidential

  20. Timing for Startup of the Renewable Fuel Standard

    Reports and Publications (EIA)

    2002-01-01

    This paper responds to whether or not moving the start date of the Renewable Fuel Standard (RFS) from its currently proposed January 2004 to October 2004 would improve the chances of a smooth transition.

  1. American Renewable Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, search Name:AmbataSkiesPowerNet (Maine)Fuels

  2. Dairy Biomass as a Renewable Fuel Source 

    E-Print Network [OSTI]

    Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

    2008-03-19

    biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

  3. Elastomer Compatibility Testing of Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Frame, E.; McCormick, R. L.

    2005-11-01

    In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

  4. Iowa Renewable Fuels Association IRFA | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13Renewable PowerMismatch

  5. Renewable Fuel Standards Program Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTIRegulatoryResidential SavingsEnergyofRenewable

  6. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  7. Renewable Fuels Limited RFL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: Energy ResourcesProducts LLC JumpTechSupply LtdLimited

  8. Renewable Fuels Assocation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETEREFURecentCenterPrivate Sector |OpenAssocation

  9. Victory Renewable Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZUtility RatesComercioElectricElectric CoopLLC

  10. Calgren Renewable Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy ResourcesCRED:Calendar Home2015 Next »

  11. U.S. Fuel Ethanol (Renewable) Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November18.5 385.5Dry

  12. 35 Alternative Transportation Fuels in California ALTERNATIVE TRANSPORTATION

    E-Print Network [OSTI]

    potential means for diversifying an energy resource base for the transportation sector. Largely as a result, there is a potential for the entrance of an estimated one million alternative fuel vehicles (AFVs) into the California35 Alternative Transportation Fuels in California Chapter 4 ALTERNATIVE TRANSPORTATION FUELS

  13. Methods of making transportation fuel

    DOE Patents [OSTI]

    Roes, Augustinus Wilhelmus Maria (Houston, TX); Mo, Weijian (Sugar Land, TX); Muylle, Michel Serge Marie (Houston, TX); Mandema, Remco Hugo (Houston, TX); Nair, Vijay (Katy, TX)

    2012-04-10

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation. The alkylated hydrocarbons may be blended with one or more components to produce transportation fuel.

  14. Understanding and Informing the Policy Environment: State-Level Renewable Fuels Standards

    SciTech Connect (OSTI)

    Brown, E.; Cory, K.; Arent, D.

    2007-01-01

    Renewable fuels standard (RFS) policies are becoming a popular public policy mechanism for developing the market for renewable fuels in the transportation sector. During the past decade, U.S. states and several countries began implementing these more market-based (less command and control) policies to support increased biofuels production and use. This paper presents an overview of current and proposed U.S. state-level policies, as well as selected electric sector policies and international fuel standard policies. Current U.S. state-level renewable fuel policies list drivers including an improved economy and environment, as well as fuel self-sufficiency. Best practices and experience from an evaluation of renewable portfolio standards (RPS) in the United States and international RFS policies can inform U.S. state-level policy by illustrating the importance of policy flexibility, binding targets, effective cost caps, and tradable permits. Understanding and building on the experiences from these previous policies can improve the policy mechanism and further develop a market for renewable fuels to meet the goals of improved economy, environment, and fuel self-sufficiency.

  15. INL Site Executable Plan for Energy and Transportation Fuels Management

    SciTech Connect (OSTI)

    Ernest L. Fossum

    2008-11-01

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  16. The Promise of Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    drop-in fuel by 2025 16 Opportunity Areas Use of dedicated energy crops to produce methane Co-production of methane and hydrogen with other products Joint deployment...

  17. Fuel Cells and Renewable Gaseous Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuelgreen h y dFuel

  18. Fuel Cells using Renewable Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlex FuelsEnergyInc| OpenFuMA TechFuel Cells using

  19. A Biennially Renewable Fuel Resource: Woodchips 

    E-Print Network [OSTI]

    Krantz, B.

    1983-01-01

    there are additional merits to be realized by growing your own woodfuel. Like money in the bank, fuel may be withdrawn from the forest bank 'as needed' while the reserves accrue growth. The nutrient rich ash 'remains' can be utilized to sustain the yield of an energy...

  20. List of Fuel Cells using Renewable Fuels Incentives | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressed air IncentivesEquipmentFuel

  1. Template:Set RenewableFuelStandard | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation JumpSet RenewableFuelStandard Jump to: navigation,

  2. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S....

  3. The Renewable and Low Carbon Fuel Requirement Regulation

    E-Print Network [OSTI]

    for emissions released during production (e.g. growing biofuel crops and refining them for fuel) and consumption.6% of transportation energy consumption. This uptake of alternative fuels, which has been supported by the RLCFRR, has by increasing the consumption of low carbon fuels (offsetting the use of fossil fuels). For example

  4. Project Information Form Project Title Accelerating Commercialization of Alternative and Renewable Fuels and

    E-Print Network [OSTI]

    California at Davis, University of

    and renewable vehicle stakeholders Alternative and renewable fueled vehicle stakeholders, including governmentsProject Information Form Project Title Accelerating Commercialization of Alternative and Renewable Fuels and Vehicles University UC Davis Principal Investigator Ken Kurani PI Contact Information Ph. (530

  5. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  6. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits the Bill SomeofMathematicianThings toBalance

  7. Transportation fuels from biomass via fast pyrolysis and hydroprocessing

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2013-09-21

    Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Biomass is the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (non-bioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems.

  8. Fuel removal, transport, and storage

    SciTech Connect (OSTI)

    Reno, H.W.

    1986-01-01

    The March 1979 accident at Unit 2 of the Three Mile Island Nuclear Power Station (TMI-2) which damaged the core of the reactor resulted in numerous scientific and technical challenges. Some of those challenges involve removing the core debris from the reactor, packaging it into canisters, loading canisters into a rail cask, and transporting the debris to the Idaho National Engineering Laboratory (INEL) for storage, examination, and preparation for final disposal. This paper highlights how some challenges were resolved, including lessons learned and benefits derived therefrom. Key to some success at TMI was designing, testing, fabricating, and licensing two rail casks, which each provide double containment of the damaged fuel. 10 refs., 12 figs.

  9. Microbial Fuel Cell Coupling: Clean, renewable energy generated from wastewater amongst other potential uses

    E-Print Network [OSTI]

    Reynolds, Mark

    2014-01-01

    1 2014 Microbial Fuel Cell Coupling: Clean, renewable energyin microbial electrolysis cells. Int. J. Hydrogen Energy.

  10. Alternatives to traditional transportation fuels: An overview

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

  11. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Revised)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  12. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations. 47505.pdf More Documents & Publications Fuel Economy and Emmissions...

  13. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice

    SciTech Connect (OSTI)

    Clean Cities

    2010-03-01

    Flexible fuel vehicles can operate on either gasoline or E85, a mixture of 85% ethanol and 15% gasoline. The fact sheet discusses the costs, benefits, and vehicle performance of using E85.

  14. NREL: Hydrogen and Fuel Cells Research - Renewable Electrolysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorking withHydrogenRenewable

  15. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    E-Print Network [OSTI]

    Strogen, Bret

    2012-01-01

    Efficiency & Renewable Energy, Alternative Fuels & AdvancedEfficiency & Renewable Energy, Alternative Fuels & AdvancedEfficiency & Renewable Energy, Alternative Fuels & Advanced

  16. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    SciTech Connect (OSTI)

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  17. Alternatives to traditional transportation fuels 1996

    SciTech Connect (OSTI)

    1997-12-01

    Interest in alternative transportation fuels (ATF`s) has increased in recent years due to the drives for cleaner air and less dependence upon foreign oil. This report, Alternatives to Traditional Transportation Fuels 1996, provides information on ATFs, as well as the vehicles that consume them.

  18. Transportation Services Fueling Operation Transportation Services has installed a software system that will facilitate fueling of

    E-Print Network [OSTI]

    Transportation Services Fueling Operation Transportation Services has installed a software system that will facilitate fueling of vehicles. Operational changes are being made to facilitate the transition into this system. All University vehicles that wish to fuel at UH M noa Transportation Services will be required

  19. National Transportation Fuels Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic Solar

  20. Project Information Form Project Title Designing and Analyzing Policies for Renewable Fuels

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Designing and Analyzing Policies for Renewable Fuels the utilization of clean, renewable fuel sources in the production of finished motor gasoline. Many are the renewable fuel standard (RFS) at the national level and California's Low Carbon Fuels Standard (LCFS). Both

  1. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect (OSTI)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

  2. Guidance. Requirements for Installing Renewable Fuel Pumps at Federal Fleet Fueling Centers under EISA Section 246

    SciTech Connect (OSTI)

    none,

    2011-04-01

    On December 19, 2007, the Energy Independence and Security Act of 2007 (EISA) was signed into law as Public Law 110-140. Section 246(a) of EISA directs Federal agencies to install at least one renewable fuel pump at each Federal fleet fueling center under their jurisdiction by January 1, 2010. Section 246(b) requires the President to submit an annual report to Congress on Federal agency progress in meeting this renewable fuel pump installation mandate. This guidance document provides guidelines to help agencies understand these requirements and how to comply with EISA Section 246.

  3. Used Fuel Testing Transportation Model

    SciTech Connect (OSTI)

    Ross, Steven B.; Best, Ralph E.; Maheras, Steven J.; Jensen, Philip J.; England, Jeffery L.; LeDuc, Dan

    2014-09-24

    This report identifies shipping packages/casks that might be used by the Used Nuclear Fuel Disposition Campaign Program (UFDC) to ship fuel rods and pieces of fuel rods taken from high-burnup used nuclear fuel (UNF) assemblies to and between research facilities for purposes of evaluation and testing. Also identified are the actions that would need to be taken, if any, to obtain U.S. Nuclear Regulatory (NRC) or other regulatory authority approval to use each of the packages and/or shipping casks for this purpose.

  4. NREL: Transportation Research - Fuels Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking With Us

  5. PADD 5 Transportation Fuels Markets

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+Elements) Gas6 February 1999 PricePADD 5

  6. On the Path to Low Cost Renewable Fuels, an Important Breakthrough...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On the Path to Low Cost Renewable Fuels, an Important Breakthrough On the Path to Low Cost Renewable Fuels, an Important Breakthrough April 18, 2013 - 4:10pm Addthis NREL Scientist...

  7. Fuel Cell Power Plants Renewable and Waste Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy Loftus GlobalEfficient FuelRenewable and

  8. Integration of renewable energy into the transport and electricity sectors through V2G

    E-Print Network [OSTI]

    Firestone, Jeremy

    Integration of renewable energy into the transport and electricity sectors through V2G Henrik Lund Renewable energy Wind powerQ1 a b s t r a c t Large-scale sustainable energy systems will be necessary replace oil in the transportation sector, and (2) since today's inexpensive and abundant renewable energy

  9. The Quest for Sustainable Energy Renewable fuel is at the heart of

    E-Print Network [OSTI]

    The Quest for Sustainable Energy Renewable fuel is at the heart of Government energy policy be cheaper than other fuels The Quest for Sustainable Energy Renewable fuel is at the heart of Government renewable energy targets. · Woodfuel businesses create and sustain rural jobs. Woodfuel technology is energy

  10. Market Cost of Renewable Jet Fuel Adoption in the United States

    E-Print Network [OSTI]

    Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester, Dominic Mc on recycled paper #12;1 Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation

  11. Alternatives to traditional transportation fuels 1993

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    In recent years, gasoline and diesel fuel have accounted for about 80 percent of total transportation fuel and nearly all of the fuel used in on-road vehicles. Growing concerns about the environmental effects of fossil fuel use and the Nation`s high level of dependence on foreign oil are providing impetus for the development of replacements or alternatives for these traditional transportation fuels. (The Energy Policy Act of 1992 definitions of {open_quotes}replacement{close_quotes} and {open_quotes}alternative{close_quotes} fuels are presented in the following box.) The Alternative Motor Fuels Act of 1988, the Clean Air Act Amendments of 1990 (CAAA90) and the Energy Policy Act of 1992 (EPACT) are significant legislative forces behind the growth of replacement fuel use. Alternatives to Traditional Transportation Fuels 1993 provides the number of on-road alternative fueled vehicles in use in the United States, alternative and replacement fuel consumption, and information on greenhouse gas emissions resulting from the production, delivery, and use of replacement fuels for 1992, 1993, and 1995.

  12. Renewables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout UsRegionalScientificRenewables Sign In About |

  13. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    SciTech Connect (OSTI)

    2010-01-01

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  14. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema (OSTI)

    None

    2013-05-29

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  15. Alternatives to traditional transportation fuels 1995

    SciTech Connect (OSTI)

    1996-12-01

    This report provides information on transportation fuels other than gasoline and diesel, and the vehicles that use these fuels. The Energy Information Administration (EIA) provides this information to support the U.S. Department of Energy`s reporting obligations under Section 503 of the Energy Policy Act of 1992 (EPACT). The principal information contained in this report includes historical and year-ahead estimates of the following: (1) the number and type of alterative-fueled vehicles (AFV`s) in use; (2) the consumption of alternative transportation fuels and {open_quotes}replacement fuels{close_quotes}; and (3) the number and type of alterative-fueled vehicles made available in the current and following years. In addition, the report contains some material on special topics. The appendices include a discussion of the methodology used to develop the estimates (Appendix A), a map defining geographic regions used, and a list of AFV suppliers.

  16. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, Romesh (Naperville, IL); Ahmed, Shabbir (Evanston, IL); Krumpelt, Michael (Naperville, IL); Myles, Kevin M. (Downers Grove, IL)

    1993-01-01

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  17. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  18. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This article investigates upgrading biomass pyrolysis vapors to form hydrocarbon fuels and chemicals using catalysts with different concentrations of acid sites. It shows that greater separation of acid sites makes catalysts more efficient at producing hydrocarbon fuels and chemicals. The conversion of biomass into liquid transportation fuels has attracted significant attention because of depleting fossil fuel reserves and environmental concerns resulting from the use of fossil fuels. Biomass is a renewable resource, which is abundant worldwide and can potentially be exploited to produce transportation fuels that are less damaging to the environment. This renewable resource consists of cellulose (40–50%), hemicellulose (25–35%), and lignin (16–33%) biopolymers in addition to smaller quantities of inorganic materials such as silica and alkali and alkaline earth metals (calcium and potassium). Fast pyrolysis is an attractive thermochemical technology for converting biomass into precursors for hydrocarbon fuels because it produces up to 75 wt% bio-oil,1 which can be upgraded to feedstocks and/or blendstocks for further refining to finished fuels. Bio-oil that has not been upgraded has limited applications because of the presence of oxygen-containing functional groups, derived from cellulose, hemicellulose and lignin, which gives rise to high acidity, high viscosity, low heating value, immiscibility with hydrocarbons and aging during storage. Ex situ catalytic vapor phase upgrading is a promising approach for improving the properties of bio-oil. The goal of this process is to reject oxygen and produce a bio-oil with improved properties for subsequent downstream conversion to hydrocarbons.

  19. Normal Conditions of Transport Truck Test of a Surrogate Fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. Citation Details In-Document Search Title: Normal Conditions of Transport Truck Test of a Surrogate Fuel...

  20. Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines

    SciTech Connect (OSTI)

    Sullivan, Neal P

    2012-08-06

    The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.

  1. Full-fuel-cycle modeling for alternative transportation fuels

    SciTech Connect (OSTI)

    Bell, S.R.; Gupta, M. [Univ. of Alabama, Tuscaloosa, AL (United States); Greening, L.A. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1995-12-01

    Utilization of alternative fuels in the transportation sector has been identified as a potential method for mitigation of petroleum-based energy dependence and pollutant emissions from mobile sources. Traditionally, vehicle tailpipe emissions have served as sole data when evaluating environmental impact. However, considerable differences in extraction and processing requirements for alternative fuels makes evident the need to consider the complete fuel production and use cycle for each fuel scenario. The work presented here provides a case study applied to the southeastern region of the US for conventional gasoline, reformulated gasoline, natural gas, and methanol vehicle fueling. Results of the study demonstrate the significance of the nonvehicle processes, such as fuel refining, in terms of energy expenditure and emissions production. Unique to this work is the application of the MOBILE5 mobile emissions model in the full-fuel-cycle analysis. Estimates of direct and indirect greenhouse gas production are also presented and discussed using the full-cycle-analysis method.

  2. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  3. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION

    SciTech Connect (OSTI)

    Bunting, Bruce G

    2012-01-01

    Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

  4. Analysis of Fuel Ethanol Transportation Activity and Potential Distribution Constraints

    SciTech Connect (OSTI)

    Das, Sujit; Peterson, Bruce E; Chin, Shih-Miao

    2010-01-01

    This paper provides an analysis of fuel ethanol transportation activity and potential distribution constraints if the total 36 billion gallons of renewable fuel use by 2022 is mandated by EPA under the Energy Independence and Security Act (EISA) of 2007. Ethanol transport by domestic truck, marine, and rail distribution systems from ethanol refineries to blending terminals is estimated using Oak Ridge National Laboratory s (ORNL s) North American Infrastructure Network Model. Most supply and demand data provided by EPA were geo-coded and using available commercial sources the transportation infrastructure network was updated. The percentage increases in ton-mile movements by rail, waterways, and highways in 2022 are estimated to be 2.8%, 0.6%, and 0.13%, respectively, compared to the corresponding 2005 total domestic flows by various modes. Overall, a significantly higher level of future ethanol demand would have minimal impacts on transportation infrastructure. However, there will be spatial impacts and a significant level of investment required because of a considerable increase in rail traffic from refineries to ethanol distribution terminals.

  5. Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System

    E-Print Network [OSTI]

    Victoria, University of

    Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System by Alvin Peter, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability of the author. #12;ii Supervisory Committee Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel

  6. RTP Green Fuel: A Proven Path to Renewable Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Envergent Technologies 2009 Envergent Technologies 2009 Renewable Fuel Oil - A Commercial Perspective Steve Lupton Technical Information Exchange on Pyrolysis Oil: Potential for...

  7. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies," originally presented on August 19, 2014.

  8. Impact of Renewable Fuels Standard/MTBE Provisions of S. 517 Requested by Sens. Daschle & Murkowski

    Reports and Publications (EIA)

    2002-01-01

    Additional analysis of the impact of the Renewable Fuels Standard (RFS) and methyl tertiary butyl ether (MTBE) ban provisions of S. 517.

  9. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    of proof to show world fossil fuel price decreases under anya RFS while world fossil fuel price is the same or lowerf f denote the world fossil fuel price and p the world price

  10. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    of both biofuel and fossil fuel and thereby increases totalof proof to show world fossil fuel price decreases under anyGHG intensity among fossil fuels. We ?nd that the relative

  11. Transportation Electrification Load Development For A Renewable Future Analysis: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Mai, T.; Kintner-Meyer, M.

    2010-12-01

    The transition to electricity as a transportation fuel will create a new load for electricity generation. A set of regional hourly load profiles for electrified vehicles was developed for the 2010 to 2050 timeframe. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Market saturation scenarios of 30% and 50% of sales of PEVs consuming on average approx. 6 kWh per day were considered. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across four daily time slices under optimal control from the utility?s perspective. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios.

  12. Climate policy and the airline industry : emissions trading and renewable jet fuel

    E-Print Network [OSTI]

    McConnachie, D. (Dominic Alistair)

    2012-01-01

    In this thesis, I assess the impact of the current EU Emissions Trading Scheme and a hypothetical renewable jet fuel mandate on US airlines. I find that both the EU Scheme up until 2020 and a renewable jet fuel mandate of ...

  13. Impact of Renewable Fuels Standard/MTBE Provisions of S. 1766

    Reports and Publications (EIA)

    2002-01-01

    This service report addresses the Renewable Fuels Standard (RFS)/methyl tertiary butyl ether (MTBE) provisions of S. 1766. The 'S. 1766' Case reflects provisions of S. 1766 including a renewable fuels standard (RFS) reaching five billion gallons by 2012, a complete phase-out of MTBE within four years, and the option for states to waive the oxygen requirement for reformulated gasoline (RFG).

  14. Ris Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector

    E-Print Network [OSTI]

    of energy, rising oil prices and future security of supply have created strong efforts to find new transportRisř Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector 8 Energy consumption for transport accounts for approxi- mately 20% of all energy used worldwide [1

  15. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization Part of a 100 million fuel cell award...

  16. Fuel Cells For Transportation - 1999 Annual Progress Report Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1999 Annual Progress Report Energy Conversion Team Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Developing Advanced PEM Fuel Cell Technologies...

  17. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    SciTech Connect (OSTI)

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  18. Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols

    SciTech Connect (OSTI)

    None

    2010-07-01

    Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteria are genetically engineered to convert the formic acid into liquid fuel—in this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLA’s electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

  19. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    impacts of alberta’s oil sands. canadian energy researchLife cycle assessment of oil sands tech- nologies. InstituteElasticity of demand for fuel Oil sand capacity and growth

  20. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    non-crude oil fuels (i.e, oilsand and biofuel) when comparedthe primary feedstock (oilsand, coal or gas) into usefulthe blending obligation for oilsand is higher under the FGIS

  1. Alternative Fuels Data Center: Hydrogenation-Derived Renewable Diesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender Pump DispensersEmerging Fuels Printable Version

  2. City of Tulare Renewable Biogas Fuel Cell Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|Programs |Chart of breakoutCincinnatiMadison

  3. Alternative Fuels Data Center: Renewable Natural Gas (Biomethane)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More placesNatural GasPublications

  4. Environmental Law and Fossil Fuels: Barriers to Renewable Energy

    E-Print Network [OSTI]

    Outka, Uma

    2012-01-01

    This article is concerned with renewable energy’s too-slow transition and with how existing legal regimes work to preserve fossil energy dominance. It develops from two related claims: that an implicit support structure for fossil energy is written...

  5. Production of Renewable Fuels from Biomass by FCC Co-processing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Production of Renewable Fuels from Biomass by FCC Co-processing Raymond Wissinger, Manager, Renewable Energy & Chemicals, Research & Development, UOP

  6. Economic and emissions impacts of renewable fuel goals for aviation in the US*

    E-Print Network [OSTI]

    for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR renewable oils. Our approach employs an economy-wide model of economic activity and energy systemsEconomic and emissions impacts of renewable fuel goals for aviation in the US* Niven Winchester

  7. Driving it home: choosing the right path for fueling North America's transportation future

    SciTech Connect (OSTI)

    Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas; Elizabeth Martin-Perera; Melanie Nakagawa; Bob Randall; Dan Woynillowicz

    2007-06-15

    North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Table of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.

  8. Fuel Cells and Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuelgreen h y

  9. Environmental and economic assessment of alternative transportation fuels

    E-Print Network [OSTI]

    Withers, Mitch Russell

    2014-01-01

    Alternative fuels have the potential to mitigate transportation's impact on the environment and enhance energy security. In this work, we investigate two alternative fuels: liquefied natural gas (LNG) as an aviation fuel, ...

  10. Renewable Fuel Supply Ltd RFSL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York: Energy ResourcesProducts LLC JumpTechSupply Ltd RFSL

  11. Property:RenewableFuelStandard/AdvancedBiofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuel Jump to: navigation,

  12. Property:RenewableFuelStandard/CellulosicBiofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuel Jump

  13. Property:RenewableFuelStandard/Total | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuel

  14. Property:RenewableFuelStandard/UndifferentiatedAdvancedBiofuel | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuelEnergy

  15. DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL EDUCATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department of EnergyCyrus Wadia About UsAwardDEPARTMENT OFPROGRAM |

  16. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingREnergyDepartment ofJanuaryAnalysis

  17. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingREnergyDepartment ofJanuaryAnalysisHydrogen Energy

  18. US Navy Tactical Fuels From Renewable Sources Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateofEnergyof EnergyEnergy US Navy Tactical

  19. Economic and emissions impacts of renewable fuel goals for aviation in the US

    E-Print Network [OSTI]

    McConnachie, Dominic

    The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the economic and emissions impacts of this goal ...

  20. Market Cost of Renewable Jet Fuel Adoption in the United States

    E-Print Network [OSTI]

    Winchester, N.

    The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines of meeting this goal ...

  1. What Has the Federal Renewable Fuels Standard Accomplished - A National Perspective (Presentation)

    SciTech Connect (OSTI)

    Schwab, A.

    2013-04-01

    This presentation provides an overview of the nation's biofuels industry accomplishments and a perspective on the challenges and implications of reaching goals set in the Renewable Fuel Standard (RFS).

  2. Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities

    E-Print Network [OSTI]

    Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

  3. A techno-economic and environmental assessment of hydroprocessed renewable distillate fuels

    E-Print Network [OSTI]

    Pearlson, Matthew Noah

    2011-01-01

    This thesis presents a model to quantify the economic costs and environmental impacts of producing fuels from hydroprocessed renewable oils (HRO) process. Aspen Plus was used to model bio-refinery operations and supporting ...

  4. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleets: Frequently Asked Questions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    This brochure provides answers to frequently asked questions about the EPAct Alternative Fuel Transportation Program's State and Alternative Fuel Provider Fleets.

  5. Fuel Cells & Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits theSunShot Prize:4Fuel Celland Battery

  6. California: Agricultural Residues Produce Renewable Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETOof Energy Office04 Calendar

  7. Sustainable Transportation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  8. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01

    U.S. Electricity Generation Refining Fuel Transportation,Region Electricity Generation Refining Fuel Transportation,Region Electricity Generation Refining Fuel Transportation,

  9. Water Transport Exploratory Studies Office of Hydrogen, Fuel Cells, and

    E-Print Network [OSTI]

    - transportation) · Develop a better understanding of the effects of freeze/thaw cycles and operation ­ Help guideWater Transport Exploratory Studies Office of Hydrogen, Fuel Cells, and Infrastructure understanding of water transport in PEM Fuel Cells (non-design-specific) · Evaluate structural and surface

  10. DOI: 10.1002/cssc.201200016 A Light-Assisted Biomass Fuel Cell for Renewable

    E-Print Network [OSTI]

    Osterloh, Frank

    DOI: 10.1002/cssc.201200016 A Light-Assisted Biomass Fuel Cell for Renewable Electricity Generation that convert solar energy into electricity[3] or as fuel-producing cells that generate hydrogen via the water-assisted biomass fuel cell" that converts biomass into electricity, with only sunlight and air required

  11. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01

    policies, the world price of fossil fuel, domestic fossilreduce the world price of fossil fuel except when the supplywhich case the world price of fossil fuel is unchanged. The

  12. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01

    order for the low carbon fuel standard, 2012. URL http://mediated e?ects of low carbon fuel policies. AgBioForum, 15(Gas Reductions under Low Carbon Fuel Standards? American

  13. Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations

    SciTech Connect (OSTI)

    Shi, Fan; Wang, Ping; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-08-02

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize “food versus fuel” concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  14. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNatural GasFuels andBasicsRefuse Vehicles

  15. NREL: State and Local Governments - Renewable Fuel Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS - Simple Model ofData andWorkingDIYEnergyFuel

  16. Safe Renewable Corporation formerly Safe Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,EnergyEastCarbon Development |SMCHarbor Water Power Corp

  17. Property:RenewableFuelStandard/Year | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report Url Jump to:ProgrammableYear Jump to: navigation, search This

  18. Baylor University - Renewable Aviation Fuels Development Center | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminexInformationArkansas: EnergyCounty, Wisconsin:Energy

  19. List of Renewable Fuel Vehicles Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedList of Refueling Stations

  20. List of Renewable Fuels Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedList of Refueling StationsIncentives

  1. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  2. Assumption to the Annual Energy Outlook 2014 - Renewable Fuels Module

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProved Reserves (BillionTechnical InformationDecade Year-0 2Market ModuleOil and Gas

  3. Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith Propane Florida Schools FirstIdleof EVUse

  4. COLLOQUIUM: Renewable Fuels and Chemicals | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pm ColloquiaPhysicsPlasma Physics

  5. Renewable & Alternative Fuels - U.S. Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners *ReindustrializationEnergy RemoteNanostructures -Renee M.

  6. Renewable Fuels Module of the National Energy Modeling System

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars1.840 2.318 3.1195) Model8) Model

  7. Fuel Cell Electric Vehicle Evaluation; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris; Saur, Genevieve

    2015-06-10

    This presentation provides a summary of NREL's FY15 fuel cell electric vehicle evaluation project activities and accomplishments. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting on June 10, 2015, in Arlington, Virginia.

  8. 21st Century Renewable Fuels, Energy, and Materials

    SciTech Connect (OSTI)

    Berry, K. Joel; Das, Susanta K.

    2012-11-29

    The objectives of this project were multi-fold: (i) conduct fundamental studies to develop a new class of high temperature PEM fuel cell material capable of conducting protons at elevated temperature (180°C), (ii) develop and fabricate a 5k We novel catalytic flat plate steam reforming process for extracting hydrogen from multi-fuels and integrate with high-temperature PEM fuel cell systems, (iii) research and develop improved oxygen permeable membranes for high power density lithium air battery with simple control systems and reduced cost, (iv) research on high energy yield agriculture bio-crop (Miscanthus) suitable for reformate fuel/alternative fuel with minimum impact on human food chain and develop a cost analysis and production model, and (v) develop math and science alternative energy educator program to include bio-energy and power.

  9. Visualization of Fuel Cell Water Transport and Performance Characteriz...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization under Freezing Conditions Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions Part of a 100 million...

  10. Fuel-Neutral Studies of Particulate Matter Transport Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Annual Merit Review and Peer Evaluation ace056stewart2011o.pdf More Documents & Publications Fuel-Neutral Studies of Particulate Matter Transport Emissions...

  11. Normal Conditions of Transport Truck Test of a Surrogate Fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. McConnell, Paul E.; Wauneka, Robert; Saltzstein, Sylvia J.; Sorenson, Ken B. Abstract not provided. Sandia...

  12. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil Raymond G. Wissinger...

  13. Visualization of Fuel Cell Water Transport and Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies Fundamental Issues in Subzero PEMFC Startup and Operation Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization...

  14. Water Transport in PEM Fuel Cells: Advanced Modeling, Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, and Design Optimization Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization This presentation, which focuses on...

  15. Nuclear Fuels Storage and Transportation Planning Project (NFST...

    Office of Environmental Management (EM)

    Nuclear Fuel Storage and Transportation Planning Project Overview DOE Office of Nuclear Energy Task Force for Strategic Developments to Blue Ribbon Commission Recommendations...

  16. Fuel Cells for Transportation - Research and Development: Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development: Program Abstracts Fuel Cells for Transportation - Research and Development: Program Abstracts Remarkable progress has been achieved in the development of...

  17. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    SciTech Connect (OSTI)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  18. 2011 RENEWABLE ENERGY: SOLAR FUELS GORDON RESEARCH CONFERENCE

    SciTech Connect (OSTI)

    Joseph Hupp

    2011-01-21

    The conference will present and discuss current science that underlies solar fuels production, and will focus on direct production pathways for production. Thus, recent advances in design and understanding of molecular systems and materials for light capture and conversion of relevance for solar fuels will be discussed. An important set of topics will be homogeneous, heterogeneous and biological catalysts for the multi-electron processes of water oxidation, hydrogen production and carbon dioxide reduction to useful fuels. Also, progress towards integrated and scalable systems will be presented. Attached is a copy of the formal schedule and speaker program and the poster program.

  19. Technology Mapping of the Renewable Energy, Buildings and Transport

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLC JumpJump to:

  20. Used Fuel Disposition Used Nuclear Fuel Storage and Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs Search TheChlamydomonasMaterial fromRev.

  1. Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News

    E-Print Network [OSTI]

    Lovley, Derek

    Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News TUESDAY 25 MAY, 2010 | | Solar Power To Help Convert Carbon Dioxide Into Fuel by Energy Matters Microbiologist Derek Lovley of energy, the solar panels, can also harvest energy 100 times more effectively than plants. Other

  2. California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program

    E-Print Network [OSTI]

    California at Davis, University of

    1 California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program infrastructure awards ($83,467,422) b. Fuel standards development ($4,001,990) c. Demonstration projects ($8,489,590 was provided by the Energy Commission.) Total anticipated project match is $2.7 million. ABAG will contract

  3. Alternative Fuels Data Center: Transportation System Efficiency

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More placesNaturalState InformationTools

  4. Transportation Fuel Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail Canyonsource History

  5. Integrated transport and renewable energy systems B. V. Mathiesen*

    E-Print Network [OSTI]

    on second generation biofuel production for the substitution of oil products [4]. Worldwide, the focus it. Biomass is a limited resource and it is important to avoid effecting the production, transport gains increasing international attention due to its large oil dependency of app. 95 per cent

  6. Transportation Fuel | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)OpenEnergyTrail Canyonsource HistoryFuel Home There are

  7. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect (OSTI)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  8. GREET 1.0 -- Transportation fuel cycles model: Methodology and use

    SciTech Connect (OSTI)

    Wang, M.Q.

    1996-06-01

    This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, Co, NOx, SOx, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

  9. Used Fuel Disposition Used Nuclear Fuel Storage and Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lead Idaho National Laboratory NEET ASI Review Meeting September 17, 2014 Used Fuel Disposition Today's Discussion n Our R&D Objectives n What Guides Our Work n...

  10. Integration of renewable energy into the transport and electricity sectors through V2G

    E-Print Network [OSTI]

    Firestone, Jeremy

    Integration of renewable energy into the transport and electricity sectors through V2G Henrik Lund, DE 19716, USA a r t i c l e i n f o Article history: Received 18 March 2008 Accepted 2 June 2008 Keywords: V2G Vehicle to grid Energy system analysis Sustainable energy systems Electric vehicle EV

  11. Railroad transportation of spent nuclear fuel

    SciTech Connect (OSTI)

    Wooden, D.G.

    1986-03-01

    This report documents a detailed analysis of rail operations that are important for assessing the risk of transporting high-level nuclear waste. The major emphasis of the discussion is towards ''general freight'' shipments of radioactive material. The purpose of this document is to provide a basis for selecting models and parameters that are appropriate for assessing the risk of rail transportation of nuclear waste.

  12. 2009 Fuel Cell Market Report, November 2010, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -EnergyEnergySenior2007 AnnualofRenewable Energy 2009

  13. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2E:\BILLS\H6.PP91:Finding ofAssessmentRenewable

  14. NREL: Technology Deployment - Fuels, Vehicles, and Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS - SimpleProject:Deployment Fuels,

  15. Liquid Transportation Fuels from Coal and Biomass | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on CleanUp GeorgiaLinacLiquefactionTransportation

  16. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    of Energy National Renewable Energy Laboratory Dieseland Specifications. Renewable and Sustainable Energy Reviewstheir Reduction Approaches. Renewable and Sustainable Energy

  17. NREL's ReFUEL Laboratory: Center for Transportation Technologies and Systems (CTTS) Fact Sheet

    SciTech Connect (OSTI)

    Not Available

    2002-09-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  18. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 20082 P r o jJ. linnCellulosic7Coal

  19. NREL: Transportation Research - Alternative Fuels Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking With Us NREL works withAlternative

  20. EPAct Alternative Fuel Transportation Program: Success Story (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    This success story highlights the EPAct Alternative Fuel Transportation Program's series of workshops that bring fleets regulated under the Energy Policy Act of 1992 (EPAct) together with Clean Cities stakeholders and fuel providers to form and strengthen regional partnerships and initiate projects that will deploy more alternative fuel infrastructure.

  1. Liquid Transportation Fuels from Coal and Biomass

    E-Print Network [OSTI]

    fuels from coal and biomass have potential to supply 2-3 MBPD of oil equivalent fuels with significantly and a carbon price, and on accelerated federal investment in essential technologies #12;BIOMASS SUPPLY by Milbrandt (2005) and Perlack et al. (2005). · Hay and wheat straws--Yield increase over time = historic

  2. Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2014

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic Feet)6984 ForRenewable

  3. Spent Fuel Transportation Package Performance Study - Experimental Design Challenges

    SciTech Connect (OSTI)

    Snyder, A. M.; Murphy, A. J.; Sprung, J. L.; Ammerman, D. J.; Lopez, C.

    2003-02-25

    Numerous studies of spent nuclear fuel transportation accident risks have been performed since the late seventies that considered shipping container design and performance. Based in part on these studies, NRC has concluded that the level of protection provided by spent nuclear fuel transportation package designs under accident conditions is adequate. [1] Furthermore, actual spent nuclear fuel transport experience showcase a safety record that is exceptional and unparalleled when compared to other hazardous materials transportation shipments. There has never been a known or suspected release of the radioactive contents from an NRC-certified spent nuclear fuel cask as a result of a transportation accident. In 1999 the United States Nuclear Regulatory Commission (NRC) initiated a study, the Package Performance Study, to demonstrate the performance of spent fuel and spent fuel packages during severe transportation accidents. NRC is not studying or testing its current regulations, a s the rigorous regulatory accident conditions specified in 10 CFR Part 71 are adequate to ensure safe packaging and use. As part of this study, NRC currently plans on using detailed modeling followed by experimental testing to increase public confidence in the safety of spent nuclear fuel shipments. One of the aspects of this confirmatory research study is the commitment to solicit and consider public comment during the scoping phase and experimental design planning phase of this research.

  4. EPAct Alternative Fuel Transportation Program (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2012/fiscal year 2013.

  5. Review of Used Nuclear Fuel Storage and Transportation Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis While both wet and dry storage have been shown to be safe options for storing used nuclear...

  6. INL Site FY 2010 Executable Plan for Energy and Transportation Fuels Management with the FY 2009 Annual Report

    SciTech Connect (OSTI)

    Ernest L. Fossum

    2009-12-01

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  7. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14,EnergyFinancingWIPPFixed Monthly1Industry - Factan

  8. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melaina, Marc; Saur, Genevieve; Ramsden, Todd; Eichman, Joshua

    2015-05-28

    This presentation summarizes NREL's hydrogen and fuel cell analysis work in three areas: resource potential, greenhouse gas emissions and cost of delivered energy, and influence of auxiliary revenue streams. NREL's hydrogen and fuel cell analysis projects focus on low-­carbon and economic transportation and stationary fuel cell applications. Analysis tools developed by the lab provide insight into the degree to which bridging markets can strengthen the business case for fuel cell applications.

  9. Reimagining liquid transportation fuels : sunshine to petrol.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Hogan, Roy E., Jr.; McDaniel, Anthony H.; Siegel, Nathan Phillip; Dedrick, Daniel E.; Stechel, Ellen Beth; Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D.; Ambrosini, Andrea; Coker, Eric Nicholas; Staiger, Chad Lynn; Chen, Ken Shuang; Ermanoski, Ivan; Kellog, Gary L.

    2012-01-01

    Two of the most daunting problems facing humankind in the twenty-first century are energy security and climate change. This report summarizes work accomplished towards addressing these problems through the execution of a Grand Challenge LDRD project (FY09-11). The vision of Sunshine to Petrol is captured in one deceptively simple chemical equation: Solar Energy + xCO{sub 2} + (x+1)H{sub 2}O {yields} C{sub x}H{sub 2x+2}(liquid fuel) + (1.5x+.5)O{sub 2} Practical implementation of this equation may seem far-fetched, since it effectively describes the use of solar energy to reverse combustion. However, it is also representative of the photosynthetic processes responsible for much of life on earth and, as such, summarizes the biomass approach to fuels production. It is our contention that an alternative approach, one that is not limited by efficiency of photosynthesis and more directly leads to a liquid fuel, is desirable. The development of a process that efficiently, cost effectively, and sustainably reenergizes thermodynamically spent feedstocks to create reactive fuel intermediates would be an unparalleled achievement and is the key challenge that must be surmounted to solve the intertwined problems of accelerating energy demand and climate change. We proposed that the direct thermochemical conversion of CO{sub 2} and H{sub 2}O to CO and H{sub 2}, which are the universal building blocks for synthetic fuels, serve as the basis for this revolutionary process. To realize this concept, we addressed complex chemical, materials science, and engineering problems associated with thermochemical heat engines and the crucial metal-oxide working-materials deployed therein. By project's end, we had demonstrated solar-driven conversion of CO{sub 2} to CO, a key energetic synthetic fuel intermediate, at 1.7% efficiency.

  10. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is andFederal Test

  11. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect (OSTI)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  12. Spent Fuel Transportation Risk Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4EnergySolidof2 SpecialSpent Fuel Transportation Risk

  13. Fuel Cell Systems Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency and Renewable Energy Office of Transportation Technologies TRANSPORTATION FUEL CELL POWER SYSTEMS TRANSPORTATION FUEL CELL POWER SYSTEMS A C K N O W L E D G E M E N T...

  14. A smooth transition to hydrogen transportation fuel

    SciTech Connect (OSTI)

    Berry, G.D.; Smith, J.R.; Schock, R.N.

    1995-04-14

    The goal of this work is to examine viable near-term infrastructure options for a transition to hydrogen fueled vehicles and to suggest profitable directions for technology development. The authors have focused in particular on the contrasting options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Delivered costs have been estimated using best available industry cost and deliberately conservative economic assumptions. The sensitivities of these costs have then been examined for three small-scale scenarios: (1) electrolysis at the home for one car, and production at the small station scale (300 cars/day), (2) conventional alkaline electrolysis and (3) steam reforming of natural gas. All scenarios assume fueling a 300 mile range vehicle with 3.75 kg. They conclude that a transition appears plausible, using existing energy distribution systems, with home electrolysis providing fuel costing 7.5 to 10.5{cents}/mile, station electrolysis 4.7 to 7.1{cents}/mile, and steam reforming 3.7 to 4.7{cents}/mile. The average car today costs about 6{cents}/mile to fuel. Furthermore, analysis of liquid hydrogen delivered locally by truck from central processing plants can also be competitive at costs as low as 4{cents}/mile. These delivered costs are equal to $30 to $70 per GJ, LHV. Preliminary analysis indicates that electricity transmission costs favor this method of distributing energy, until very large (10 GW) hydrogen pipelines are installed. This indicates that significant hydrogen pipeline distribution will be established only when significant markets have developed.

  15. Model documentation: Renewable Fuels Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

  16. Flexible Fuel Vehicles: Powered by a Renewable U.S. Fuel

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    Clean Cities fact sheet describing aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It includes discussion on performance and how to identify these vehicles as well as listing additional resources.

  17. Analysis Insights, August 2015: Sustainable Transportation; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-08-01

    NREL Analysis Insights mines our body of analysis work to synthesize topical insights and key findings. In this issue, we examine transportation systems, alternative fuels, and implications of increasing electrification of transit. Moving people and goods from point A to B has never been easier, but our current transportation systems also take a toll on our environment. Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation’s total carbon emissions. With new technology, can we make our transportation system cleaner and more cost effective? NREL is applying its analytical expertise and imagination to do just that. Solutions start with systems thinking. Connecting the dots between physical components - vehicles, fueling stations, and highways - and institutional components - traffic laws, regulations, and vehicle standards - helps illuminate solutions that address the needs of the transportation system's many stakeholders.

  18. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Development Plan for Renewable Energy. In India, a NationalDevelopment Plan for Renewable Energy. In India, a National

  19. Solar Energy for Transportation Fuel (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Lewis, Nate

    2011-04-28

    Nate Lewis' talk looks at the challenge of capturing solar energy and storing it as an affordable transportation fuel - all on a scale necessary to reduce global warming. Overcoming this challenge will require developing new materials that can use abundant and inexpensive elements rather than costly and rare materials. He discusses the promise of new materials in the development of carbon-free alternatives to fossil fuel.

  20. Optimal Intercity Transportation Services with Heterogeneous Demand and Variable Fuel Price

    E-Print Network [OSTI]

    Ryerson, Megan S.

    2010-01-01

    Simkins, B. J. (2004, July). Fuel Hedging in the AirlineTesting New Turboprops, Just as Fuel Costs Renew Interest inW. (2006). Airline Jet Fuel Hedging: Theory and Practice.

  1. Tuning the transport properties of layer-by-layer thin films for fuel cell applications

    E-Print Network [OSTI]

    Ashcraft, James Nathan

    2009-01-01

    The increasing global focus on alternative energy sources has led to a renewed interest in fuel cells. For low power, portable applications, direct methanol fuel cells (DMFCs) are the most promising type of fuel cell. DMFCs ...

  2. Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels

    SciTech Connect (OSTI)

    Wang, M.Q.

    1996-03-01

    This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

  3. BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS

    E-Print Network [OSTI]

    BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

  4. Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel

    E-Print Network [OSTI]

    landfill biomethane to liquefied natural gas for use as transportation fuel. The aim is to develop, and liquefaction of biomethane. The resulting liquefied natural gas will consist of cryogenically liquefied. This project will also serve as a model for similar facilities in California to use native biogas resources

  5. Off-Highway Transportation-Related Fuel Use

    SciTech Connect (OSTI)

    Davis, S.C.

    2004-05-08

    The transportation sector includes many subcategories--for example, on-highway, off-highway, and non-highway. Use of fuel for off-highway purposes is not well documented, nor is the number of off-highway vehicles. The number of and fuel usage for on-highway and aviation, marine, and rail categories are much better documented than for off-highway land-based use. Several sources document off-highway fuel use under specific conditions--such as use by application (e.g., recreation) or by fuel type (e.g., gasoline). There is, however, no single source that documents the total fuel used off-highway and the number of vehicles that use the fuel. This report estimates the fuel usage and number of vehicles/equipment for the off-highway category. No new data have been collected nor new models developed to estimate the off-highway data--this study is limited in scope to using data that already exist. In this report, unless they are being quoted from a source that uses different terminology, the terms are used as listed below. (1) ''On-highway/on-road'' includes land-based transport used on the highway system or other paved roadways. (2) ''Off-highway/off-road'' includes land-based transport not using the highway system or other paved roadways. (3) ''Non-highway/non-road'' includes other modes not traveling on highways such as aviation, marine, and rail. It should be noted that the term ''transportation'' as used in this study is not typical. Generally, ''transportation'' is understood to mean the movement of people or goods from one point to another. Some of the off-highway equipment included in this study doesn't transport either people or goods, but it has utility in movement (e.g., a forklift or a lawn mower). Along these lines, a chain saw also has utility in movement, but it cannot transport itself (i.e., it must be carried) because it does not have wheels. Therefore, to estimate the transportation-related fuel used off-highway, transportation equipment is defined to include all devices that have wheels, can move or be moved from one point to another, and use fuel. An attempt has been made to exclude off-highway engines that do not meet all three of these criteria (e.g., chain saws and generators). The following approach was used to determine the current off-highway fuel use. First, a literature review was conducted to ensure that all sources with appropriate information would be considered. Secondly, the fuel use data available from each source were compiled and compared in so far as possible. Comparable data sets (i.e., same fuel type; same application) were evaluated. Finally, appropriate data sets were combined to provide a final tally.

  6. Byrne, et al., 2008. In Peter Droege eds. Urban Energy Transition: From Fossil Fuels to Renewable Power.

    E-Print Network [OSTI]

    Delaware, University of

    Byrne, et al., 2008. In Peter Droege eds. Urban Energy Transition: From Fossil Fuels to Renewable. Researchers at the Center for Energy and Environmental Policy (CEEP) have investi gated scenarios for large CO

  7. ULTRACLEAN FUELS PRODUCTION AND UTILIZATION FOR THE TWENTY-FIRST CENTURY: ADVANCES TOWARDS SUSTAINABLE TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    Fox, E.

    2013-06-17

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  8. Fuels generated from renewable energy: a possible solution for large scale energy storage

    E-Print Network [OSTI]

    Franssen, Michael

    To perform leading fundamental research in the fields of fusion energy and solar fuels, New Mission DIFFER, energy infrastructure essential #12;4/22/2012 3 Theoretical potential energy sources Solar energy....... solar generation ...energy demand Storage and transport is part of the challenge! #12;4/22/2012 6 PV

  9. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01

    of hydrogen, methanol and gasoline as fuels for fuel cellon Environmental Quality (TCEQ). Gasoline Vapor Recovery (Quality Impacts of Hydrogen and Gasoline Transportation Fuel

  10. Transportation Energy Futures: Project Overview and Findings (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >Transportation currently accounts for 71% of

  11. Vehicle Technologies Office Merit Review 2014: EPAct State and Alternative Fuel Transportation Program

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EPAct...

  12. EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1)

    Broader source: Energy.gov [DOE]

    Draft Supplemental Environmental Assessment This EA will evaluate the environmental impacts of a proposal to make improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of regional wood sources.

  13. HYDROGEN COMMERCIALIZATION: TRANSPORTATION FUEL FOR THE 21ST CENTURY

    SciTech Connect (OSTI)

    APOLONIO DEL TORO

    2008-05-27

    Since 1999, SunLine Transit Agency has worked with the U.S. Department of Energy (DOE), U.S. Department of Defense (DOD), and the U.S. Department of Transportation (DOT) to develop and test hydrogen infrastructure, fuel cell buses, a heavy-duty fuel cell truck, a fuel cell neighborhood electric vehicle, fuel cell golf carts and internal combustion engine buses operating on a mixture of hydrogen and compressed natural gas (CNG). SunLine has cultivated a rich history of testing and demonstrating equipment for leading industry manufacturers in a pre-commercial environment. Visitors to SunLine's "Clean Fuels Mall" from around the world have included government delegations and agencies, international journalists and media, industry leaders and experts and environmental and educational groups.

  14. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  15. Compositional and Agronomic Evaluation of Sorghum Biomass as a Potential Feedstock for Renewable Fuels

    SciTech Connect (OSTI)

    Dahlberg, J.; Wolfrum, E.; Bean, B.; Rooney, W. L.

    2011-12-01

    One goal of the Biomass Research and Development Technical Advisory Committee was to replace 30% of current U.S. petroleum consumption with biofuels by 2030. This will take mixtures of various feedstocks; an annual biomass feedstock such as sorghum will play an important role in meeting this goal. Commercial forage sorghum samples collected from field trials grown in Bushland, TX in 2007 were evaluated for both agronomic and compositional traits. Biomass compositional analysis of the samples was performed at the National Renewable Energy Lab in Golden, CO following NREL Laboratory Analytical Procedures. Depending on the specific cultivar, several additional years of yield data for this location were considered in establishing agronomic potential. Results confirm that sorghum forages can produce high biomass yields over multiple years and varied growing conditions. In addition, the composition of sorghum shows significant variation, as would be expected for most crops. Using theoretical estimates for ethanol production, the sorghum commercial forages examined in this study could produce an average of 6147 L ha{sup -1} of renewable fuels. Given its genetic variability, a known genomic sequence, a robust seed industry, and biomass composition, sorghum will be an important annual feedstock to meet the alternative fuel production goals legislated by the US Energy Security Act of 2007.

  16. Salt transport extraction of transuranium elements from lwr fuel

    DOE Patents [OSTI]

    Pierce, R. Dean (Naperville, IL); Ackerman, John P. (Downers Grove, IL); Battles, James E. (Oak Forest, IL); Johnson, Terry R. (Wheaton, IL); Miller, William E. (Naperville, IL)

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including Mg Cl.sub.2 to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy.

  17. Salt transport extraction of transuranium elements from LWR fuel

    DOE Patents [OSTI]

    Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.

    1992-11-03

    A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.

  18. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    Reports and Publications (EIA)

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  19. Hydrogen as a near-term transportation fuel

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Smith, J.R.; Rambach, G.D.

    1995-06-29

    The health costs associated with urban air pollution are a growing problem faced by all societies. Automobiles burning gasoline and diesel contribute a great deal to this problem. The cost to the United States of imported oil is more than US$50 billion annually. Economic alternatives are being actively sought. Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range (>480 km) with emissions well below the ultra-low emission vehicle standards being required in California. These vehicles can also be manufactured without excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining engine and other component efficiencies, the overall vehicle efficiency should be about 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to what US vehicle operators pay today. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing low-cost, large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus can be in place when fuel cells become economical for vehicle use.

  20. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    Supply elasticity — Conventional crude oil (H) Supplyelasticity — Conventional crude oil (R) Supply elasticity —of alternatives to crude oil (see Martinot and Sawin, 2009

  1. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    10%), and the average world oil price increased from $73 togrowing demand, world oil price increases from $73/barrel (Despite an increase in oil prices from 2007 to 2015, global

  2. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    that, due to growing demand, world oil price increases fromdiesel (R) Demand elasticity — other oil products. (H) Demand elasticity — other oil products (R) Supply

  3. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    diesel (R) Demand elasticity — other oil products. (elasticity — other oil products (R) Supply elasticity — cornsuppliers of oil and oil products. Gasoline consumers bene?t

  4. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    ethanol Gasoline Diesel Oil sands crude Conventional crudeshuf?ing of GHG-intensive oil sands from the home region inconventional crude oil, oil sands, corn ethanol and cane

  5. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    369 Table 2 Base year (2007) data used in model calibration.c Table 10 Base year (2010) data used in model calibration.

  6. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    Production Home Rest of World Conventional crude Corn ethanol Ethanol Cane ethanol Gasoline Diesel OilUnits World US ROW Oil Total production Conv. crude prod.Units World US ROW Oil Total production Conv. crude Prod.

  7. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    in global crude oil consumption, which accounts for almostcauses a rebound in oil consumption. For currently availableData Source Oil price Oil consumption (US, Global) Canadian

  8. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    Rajagopal and Plevin, 2013 oilsand supply was ?xed), the twoand abroad while crude from oilsand is supplied only by theRatio of GHG intensity of oilsand products relative products

  9. Algae as a Feedstock for Transportation Fuels. The Future of Biofuels?

    SciTech Connect (OSTI)

    McGill, Ralph

    2008-05-15

    Events in world energy markets over the past several years have prompted many new technical developments as well as political support for alternative transportation fuels, especially those that are renewable. We have seen dramatic rises in the demand for and production of fuel ethanol from sugar cane and corn and biodiesel from vegetable oils. The quantities of these fuels being used continue to rise dramatically, and their use is helping to create a political climate for doing even more. But, the quantities are still far too small to stem the tide of rising crude prices worldwide. In fact, the use of some traditional crops (corn, sugar, soy, etc.) in making fuels instead of food is apparently beginning to impact the cost of food worldwide. Thus, there is considerable interest in developing alternative biofuel feedstocks for use in making fuels -- feedstocks that are not used in the food industries. Of course, we know that there is a lot of work in developing cellulosic-based ethanol that would be made from woody biomass. Process development is the critical path for this option, and the breakthrough in reducing the cost of the process has been elusive thus far. Making biodiesel from vegetable oils is a well-developed and inexpensive process, but to date there have been few reasonable alternatives for making biodiesel, although advanced processes such as gasification of biomass remain an option.

  10. Energy 101 | Algae-to-Fuel

    Office of Energy Efficiency and Renewable Energy (EERE)

    A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel.

  11. Renewable Natural Gas (Biomethane)

    E-Print Network [OSTI]

    California at Davis, University of

    to Landfill Owner $6.18 Total Cost Per MMBtu #12;Index Price of Natural Gas NYMEX Natural Gas Futures PricesRenewable Natural Gas (Biomethane) #12;Critical Barriers Impeding RNG as a Transportation Fuel-developer of largest RNG production project in U.S. at McCommas Bluff Landfill in Dallas, Texas · Chairman and co

  12. Advanced fuel cells for transportation applications. Final report

    SciTech Connect (OSTI)

    1998-02-10

    This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

  13. Fischer-Tropsch slurry catalysts for selective transportation fuel production

    SciTech Connect (OSTI)

    Carroll, W.E.; Cilen, N.; Withers, H.P. Jr.

    1986-01-01

    The future use of coal as a source of conventional transportation fuel will depend on the development of an economical and energy efficient liquefaction process. Technologies that have been commercially proven or that are close to commercialization include the fixed- and fluidized-bed Fischer-Tropsch (FT) synthesis, methanol synthesis (fixed-bed and slurry-phase) and the Mobil methanol-to-gasoline process. Of these technologies, the Fischer-Tropsch hydrocarbon synthesis produces the widest slate of products and has been in operation for the longest period.

  14. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications by Richard J Friedman Fall 2010 #12;Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications Copyright 2010 by Richard J. Plevin #12;1 Abstract Life Cycle Regulation of Transportation Fuels

  15. Transportation in Community Strategic Energy Plans

    Broader source: Energy.gov [DOE]

    This presentation features Caley Johnson, a fuel and vehicle market analyst with the National Renewable Energy Laboratory. Johnson provides an overview of how and why to incorporate transportation...

  16. Spent Fuel and High-Level Radioactive Waste Transportation Report

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  17. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  18. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  19. COGEMA operating experience in the transportation of spent fuel, nuclear materials and radioactive waste

    SciTech Connect (OSTI)

    Bernard, H. [COGEMA, Velizy-Villacoublay (France)

    1993-12-31

    Were a spent fuel transportation accident to occur, no matter how insignificant, the public outcry could jeopardize both reprocessing operations and power plant operations for utilities that have elected to reprocess their spent fuel. Aware of this possibility, COGEMA has become deeply involved in spent fuel transportation to ensure that it is performed according to the highest standards of transportation safety. Spent fuel transportation is a vital link between the reactor site and the reprocessing plant. This paper gives an overview of COGEMA`s experience in the transportation of spent fuel.

  20. Development of a Low NOx Medium-Sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    2009-11-01

    Solar Turbines Inc., in collaboration with Pennsylvania State University and the University of Southern California, will develop injector technologies for gas turbine use of high-hydrogen content renewable and opportunity fuels derived from coal, biomass, industrial process waste, or byproducts. This project will develop low-emission technology for alternate fuels with high-hydrogen content, thereby reducing natural gas requirements and lowering carbon intensity.

  1. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-10-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

  2. Fuel Cell Demonstration Project - 200 kW - Phosphoric Acid Fuel Cell Power Plant Located at the National Transportation Research Center: FINAL REPORT

    SciTech Connect (OSTI)

    Berry, JB

    2005-05-06

    Oak Ridge National Laboratory (ORNL) researches and develops distributed generation technology for the Department of Energy, Energy Efficiency and Renewable Energy Distributed Energy Program. This report describes installation and operation of one such distributed generation system, a United Technology Corporation fuel cell located at the National Transportation Research Center in Knoxville, Tennessee. Data collected from June 2003 to June of 2004, provides valuable insight regarding fuel cell-grid compatibility and the cost-benefit of the fuel cell operation. The NTRC fuel cell included a high-heat recovery option so that use of thermal energy improves project economics and improves system efficiency to 59% year round. During the year the fuel cell supplied a total of 834MWh to the NTRC and provided 300MBtu of hot water. Installation of the NTRC fuel cell was funded by the Distributed Energy Program with partial funding from the Department of Defense's Climate Change Fuel Cell Buy Down Program, administered by the National Energy Technology Laboratory. On-going operational expenses are funded by ORNL's utility budget and are paid from operational cost savings. Technical information and the benefit-cost of the fuel cell are both evaluated in this report and sister reports.

  3. Refiner/marketer targets production of transportation fuels and distillates

    SciTech Connect (OSTI)

    Thompson, J.E.

    1997-01-01

    Citgo Petroleum Corp., the wholly owned subsidiary of Petroleos de Venezuela, S.A. (PDVSA), the Venezuelan national oil company, owns two gasoline producing refineries, a 305,000-b/d system in Lake Charles, La., and a 130,000-b/d facility in Corpus Christi, Texas. Each is considered a deep conversion facility capable of converting heavy, sour crudes into a high percentage of transportation fuels and distillates. Two smaller refineries, one in Paulsboro, N.J., and one in Savannah, GA., have the capacity to process 40,000 b/d and 28,000 b/d of crude, respectively, for asphalt products. In the past two years, Citgo`s light oils refineries operated safely and reliably with a minimum of unscheduled shutdowns. An ongoing emphasis to increase reliability has resulted in extended run lengths at the refineries. Citgo has invested $314 million at its facilities in 1995, much of this toward environmental and regulatory projects, such as the new waste water treatment unit at the Lake Charles refinery. Over the next few years, Citgo expects to complete $1.5 billion in capital spending for major processing units such as a 60,000-b/d FCC feed hydrotreater unit at the Lake Charles refinery and crude expansion at the Corpus Christi refinery. Product exchanges and expanded transport agreements are allowing Citgo to extend its marketing reach.

  4. Simulations of Thermal and Oxygen Transport in UO2 Fuels Marius Stan1

    E-Print Network [OSTI]

    Mihaila, Bogdan

    Simulations of Thermal and Oxygen Transport in UO2 Fuels Marius Stan1 and Bogdan Mihaila2 1 Argonne properties of nuclear fuels and predicting the behavior of nuclear fuel elements (ceramic fuel pellets or metallic fuel rods) under normal and accident conditions are major challenges for the nuclear fuel

  5. Economic analysis of using excess renewable electricity to displace heating fuels

    E-Print Network [OSTI]

    Firestone, Jeremy

    -penetration renewable electricity systems, it is less expensive to install higher capacity of renewables and to allow cases, a natural gas fired boiler (NGB) was modeled to be installed in the building for back-up heat for human related activities (the solar radiation alone on the earth's surface is more than three orders

  6. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-07-30

    Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

  7. PG&E's Renewable Portfolio Standard & Greenhouse Gas Compliance

    E-Print Network [OSTI]

    Electric Transportation Natural Gas Capped at 334 MMT 80 MMT #12;(MMT CO2e Business as Usual ­ 2020 507 Electric and Natural Gas Sectors Energy Efficiency 12 Renewables 11 Other 2 Transportation Low Carbon FuelPG&E's Renewable Portfolio Standard & Greenhouse Gas Compliance Fong Wan Senior Vice President

  8. A Microfluidic Pore Network Approach to Investigate Water Transport in Fuel Cell Porous Transport Layers

    E-Print Network [OSTI]

    Bazylak, A; Markicevic, B; Sinton, D; Djilali, N

    2008-01-01

    Pore network modelling has traditionally been used to study displacement processes in idealized porous media related to geological flows, with applications ranging from groundwater hydrology to enhanced oil recovery. Very recently, pore network modelling has been applied to model the gas diffusion layer (GDL) of a polymer electrolyte membrane (PEM) fuel cell. Discrete pore network models have the potential to elucidate transport phenomena in the GDL with high computational efficiency, in contrast to continuum or molecular dynamics modelling that require extensive computational resources. However, the challenge in studying the GDL with pore network modelling lies in defining the network parameters that accurately describe the porous media as well as the conditions of fluid invasion that represent realistic transport processes. In this work, we discuss the first stage of developing and validating a GDL-representative pore network model. We begin with a two-dimensional pore network model with a single mobile pha...

  9. 12/17/12 Policymaking Considering Interdependent Transportation

    E-Print Network [OSTI]

    Ginzel, Matthew

    by transportation ­ Mainly petroleum · New shifts to other energy sources ­ Natural Gas ­ Electricity ­ Biofuels · We require fuel to transport ­ Petroleum ­ Biofuel ­ Electricity ­ Natural Gas · We require energy to produce electricity ­ Coal ­ Natural Gas ­ Nuclear ­ Renewables · We require transport for energy

  10. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  11. Two-phase microfluidics, heat and mass transport in direct methanol fuel cells

    E-Print Network [OSTI]

    CHAPTER 9 Two-phase microfluidics, heat and mass transport in direct methanol fuel cells G. Lu & C, including two-phase microfluidics, heat and mass transport. We explain how the better understanding

  12. Thermal Transport in Porous Media with Application to Fuel Cell Diffusion Media and Metal Foams

    E-Print Network [OSTI]

    Victoria, University of

    Thermal Transport in Porous Media with Application to Fuel Cell Diffusion Media and Metal Foams to Fuel Cell Diffusion Media and Metal Foams by Ehsan Sadeghi B.Sc., Sharif University of Technology, Iran of thermal transport phenomena in fuel cell gas diffusion layers (GDLs) and metal foams and describes new

  13. A non-isothermal PEM fuel cell model including two water transport mechanisms in the

    E-Print Network [OSTI]

    Münster, Westfälische Wilhelms-Universität

    A non-isothermal PEM fuel cell model including two water transport mechanisms in the membrane K Freiburg Germany A dynamic two-phase flow model for proton exchange mem- brane (PEM) fuel cells and the species concentrations. In order to describe the charge transport in the fuel cell the Poisson equations

  14. Alternative Fuels Data Center: Oregon Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentivesFuelsPublications »FuelsFuels and

  15. Alternative Fuels Data Center: Pennsylvania Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentivesFuelsPublications »FuelsFuels

  16. Microbial Fuel Cell Coupling: Clean, renewable energy generated from wastewater amongst other potential uses

    E-Print Network [OSTI]

    Reynolds, Mark

    2014-01-01

    Bruce. ”Microbial Fuel Cells: Methodology and Technology. ”a flat plate microbial fuel cell. Environ. Sci. Technol. 38(Korneel, et al. ”Microbial fuel cells: performances and

  17. Fuel Cells For Transportation - 2001 Annual Progress Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuel

  18. Alternative Fuels Data Center: Nevada Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentivesFuels andNaturalFuels and

  19. Alternative Fuels Data Center: New Hampshire Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentivesFuels andNaturalFuelsAlternative

  20. Alternative Fuels Data Center: Ohio Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentivesFuelsPublications »Fuels and

  1. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Deployment of Renewable Energy and Energy Efficiency. LBNL-Can Deployment of Renewable Energy Put Downward Pressure onScientists. ________. 2004a. Renewable Energy Can Help Ease

  2. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    potential hedge benefit of renewable energy – the value ofpotential hedge benefit of renewable energy – the value ofexpected consumer benefit of renewable energy in reducing

  3. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    different renewable energy potential and cost assumptions.the first potential hedge benefit of renewable energy – thethe second potential hedge benefit of renewable energy – the

  4. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Can Deployment of Renewable Energy Put Downward Pressure onDeployment of Renewable Energy and Energy Efficiency. LBNL-Efficiency and Renewable Energy Practices and Policies.

  5. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    recent studies of renewable energy policies have estimatedand Renewable Energy Practices and Policies. Report Numberand the policy scenario of increased renewable energy

  6. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Deployment of Renewable Energy and Energy Efficiency. LBNL-Effects of Energy Efficiency and Renewable Energy PracticesCan Deployment of Renewable Energy Put Downward Pressure on

  7. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Analysis of a 10-Percent Renewable Portfolio Standard. SR/Impacts of a 15-Percent Renewable Portfolio Standard. SR/through Increased Deployment of Renewable Energy and Energy

  8. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    different renewable energy potential and cost assumptions.and negative impacts and costs of renewable energy on otherany incremental cost of renewable energy (relative to

  9. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    GDP Effect to Support Renewables Deployment. SPRU Workingmitigation provided by renewables – by comparing natural gasthe impact that increased renewables penetration might be

  10. The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory

    E-Print Network [OSTI]

    Bolinger, Mark A

    2009-01-01

    Deployment of Renewable Energy and Energy Efficiency. LBNL-Can Deployment of Renewable Energy Put Downward Pressure onEfficiency and Renewable Energy Practices and Policies.

  11. Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis

    E-Print Network [OSTI]

    Scora, George Alexander

    2011-01-01

    Model for Heavy Duty Diesel Vehicles. TransportationAir Contaminant Emissions from Diesel- fueled Engines. Factfor Measuring Emissions from Diesel Engines. 1. Regulated

  12. Natural Gas as a Transportation Fuel: Benefits, Challenges, and Implementation (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2007-07-01

    Presentation for the Clean Cities Website highlighting the benefits, challenges, and implementation considerations when utilizing natural gas as a transportation fuel.

  13. A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    of Alternative Fuel Vehicles: Emissions, Energy, and Costof Transport, Vehicle Emissions Trends, Organization forvehicles) Motor-vehicle emissions (light-duty and heavy-

  14. A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    of Alternative Fuel Vehicles: Emissions, Energy, and Costof Transport, Vehicle Emissions Trends, Organization forvehicles) Motor-vehicle emissions (light-duty and heavy-

  15. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    effects, driven by fuel chemistry and fluid dynamics, andeffects, driven by fuel chemistry and fluid dynamics, and

  16. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  17. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Adam Calihman; Andy Girard; Pamela M. Van Calcar; Richard Mackay; Tom Barton; Sara Rolfe

    2001-01-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. Membranes testing during this reporting period were greater than 1 mm thick and had the general perovskite composition AB{sub 1-x}B'{sub x}O{sub 3-{delta}}, where 0.05 {<=} x {<=} 0.3. These materials demonstrated hydrogen separation rates between 1 and 2 mL/min/cm{sup 2}, which represents roughly 20% of the target goal for membranes of this thickness. The sintered membranes were greater than 95% dense, but the phase purity decreased with increasing dopant concentration. The quantity of dopant incorporated into the perovskite phase was roughly constant, with excess dopant forming an additional phase. Composite materials with distinct ceramic and metallic phases, and thin film perovskites (100 {micro}m) also were successfully prepared, but have not yet been tested for hydrogen transport. Finally, porous platinum was identified as a excellent catalyst for evaluation of membrane materials, however, lower cost nickel catalyst systems are being developed.

  18. Alternative Fuels Data Center: Iowa Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsasIdle Reduction ProgramsFuels and

  19. Alternative Fuels Data Center: Kentucky Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsasIdle Reduction ProgramsFuels

  20. Alternative Fuels Data Center: Maryland Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentives Gonatural-gas GopropaneFuels and

  1. Alternative Fuels Data Center: Massachusetts Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentives Gonatural-gasAlternative Fuels and

  2. Alternative Fuels Data Center: Missouri Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentivesFuels and Vehicles Missouri

  3. Alternative Fuels Data Center: Multi-Modal Transportation

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentivesFuels and Vehicles

  4. Alternative Fuels Data Center: New Mexico Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentivesFuels

  5. Alternative Fuels Data Center: North Dakota Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentivesFuelsPublications »

  6. Alternative Fuels Data Center: South Carolina Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on as ReliableAlternative Fuels and

  7. Alternative Fuels Data Center: South Dakota Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on as ReliableAlternative Fuels

  8. Assessment of Future Vehicle Transportation Options and Their...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the United States while simultaneously reducing GHGs through the expanded use of renewable electricity-fueled transportation and reduced emissions per vehicle-mile (VMT). On a...

  9. Fact #699: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009

    Broader source: Energy.gov [DOE]

    Highway vehicles are responsible for most of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in med/heavy trucks...

  10. Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels

    SciTech Connect (OSTI)

    McIlroy, A.; McRae, G.; Sick, V.; Siebers, D. L.; Westbrook, C. K.; Smith, P. J.; Taatjes, C.; Trouve, A.; Wagner, A. F.; Rohlfing, E.; Manley, D.; Tully, F.; Hilderbrandt, R.; Green, W.; Marceau, D.; O'Neal, J.; Lyday, M.; Cebulski, F.; Garcia, T. R.; Strong, D.

    2006-11-01

    To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions.

  11. Alternative Fuels Data Center: Oklahoma Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentivesFuelsPublications »Fuels andFuels

  12. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; M.K. Ferber; Aaron L. Wagner; Jon P. Wagner

    2002-07-30

    Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if it demonstrates improved chemical or mechanical stability. Ceramic/ceramic composite membranes also were fabricated and tested; however, some reaction did occur between the proton- and electron-conducting phases, which likely compromised conductivity. This sample only achieved a H{sub 2} transport rate of {approx} 0.006 mL/min/cm{sup 2} and an ambipolar conductivity of {approx}4 x 10{sup -4} S/cm. Chemical stability tests were continued, and candidate ceramic membranes were found to react slightly with carbon monoxide under extreme testing conditions. A cermet compositions did not show any reaction with carbon monoxide, but a thick layer of carbon formed on the membrane surface. The most significant technical accomplishment this quarter was a new high-pressure seal composition. This material maintained a pressure differential across the membrane of {approx} 280 psi at 800 C, and is still in operation.

  13. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Energy Efficiency & Renewable Energy 2010 Fuel Cell Project Kick-off Dr. Dimitrios, 2010September 28, 2010 #12;Administration's Clean Energy Goals Double Renewable Energy Capacity by 2012

  14. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Energy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Richard Farmer Hydrogen Business Council September 14, 2010 #12; Double Renewable Energy Capacity by 2012 Invest $150

  15. Fuel-Neutral Studies of Particulate Matter Transport Emissions | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuelDepartmentUnveiledof|Alteringof

  16. Fuel-Neutral Studies of Particulate Matter Transport Emissions | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuelDepartmentUnveiledof|Alteringofof

  17. Transportation Fuels: The Future is Today (6 Activities) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavingsTransmissionin PEMFC Stacks09Fuel Cell

  18. Alternative Fuels Data Center: California Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a VehicleNatural Gas Printable

  19. Alternative Fuels Data Center: Hawaii Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas aEthanolAFDC Printable Version

  20. Alternative Fuels Data Center: Indiana Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsasIdle Reduction Programs

  1. Alternative Fuels Data Center: Minnesota Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentives Gonatural-gasAlternativeAlternative

  2. Alternative Fuels Data Center: Mississippi Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentives

  3. Alternative Fuels Data Center: State Fees as Transportation Funding

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on as ReliableAlternative

  4. Alternative Fuels Data Center: Tennessee Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on asPublications »

  5. Alternative Fuels Data Center: Propane Vans Keep Kansas City Transportation

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehicles andProduction and

  6. Alternative Fuels Used in Transportation: Science Projects in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are making their ways to the market. These alternative fuels include such things as propane, natural gas, electric hybrids, hydrogen fuel cells, and biodiesel. Students will...

  7. Fuel Cells For Transportation - 1999 Annual Progress Report Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuel CellsCells

  8. Alternative Fuels Data Center: Arkansas Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanolStateLocate StationsFuelsFuels

  9. Alternative Fuels Data Center: Kansas Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsasIdle Reduction ProgramsFuels andofFuels

  10. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    with a 10% aromatic, ultra-low sulfur diesel fuel used inequivalent 10% aromatic ultra-low sulfur diesel fuel used inx emissions compared to ultra-low sulfur diesel fuel (ULSD).

  11. National Fuel Cell Technology Evaluation Center (NFCTEC); (NREL) National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Sprik, Sam

    2014-03-11

    This presentation gives an overview of the National Fuel Cell Technology Evaluation Center (NFCTEC), describes how NFCTEC benefits the hydrogen and fuel cell community, and introduces a new fuel cell cost/price aggregation project.

  12. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Effects of Methyl Ester Biodiesel Blends on NOx Emissions.Increase When Burning Biodiesel; A New (Old) Theory. FuelE. ; Natarajan, M. Effects of Biodiesel Fuels Upon Criteria

  13. Motor Fuel Excise Taxes (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Letter to Science of

  14. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    improvements tot he RFHP consisting of construction and operation of an onsite woodchip fuel storage silo and an expansion of woodchip fuel sources to a regional scale....

  15. Proton Transport and the Water Environment in Nafion Fuel Cell Membranes and AOT Reverse Micelles

    E-Print Network [OSTI]

    Fayer, Michael D.

    Proton Transport and the Water Environment in Nafion Fuel Cell Membranes and AOT Reverse Micelles D channels of Nafion fuel cell membranes at various hydration levels are compared to water in a series by its use as a proton conducting membrane in fuel cells. Nafion membranes in fuel cells allow protons

  16. Liquid water transport in fuel cell gas diffusion layers Aimy Ming Jii Bazylak

    E-Print Network [OSTI]

    Victoria, University of

    Liquid water transport in fuel cell gas diffusion layers by Aimy Ming Jii Bazylak Bachelor means, without the permission of the author. #12;ii Liquid water transport in fuel cell gas diffusion State University) Abstract Liquid water management has a major impact on the performance and durability

  17. Analysis of Mass Transport of Methanol at the Anode of a Direct Methanol Fuel Cell

    E-Print Network [OSTI]

    Zhao, Tianshou

    Analysis of Mass Transport of Methanol at the Anode of a Direct Methanol Fuel Cell C. Xu,a Y. L. He transport of methanol at the anode of a direct methanol fuel cell DMFC and show that the overall mass current density of an in-house-fabricated DMFC with different flow fields for various methanol

  18. Alternative Fuels Used in Transportation (5 Activities) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at NRELDepartmentJune 2,2-13) AllEnergyEnergy Fuels

  19. Fuel Cells for Transportation - FY 2001 Progress Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuelgreen hfor

  20. Fuel Cells for Transportation - Research and Development: Program Abstracts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuelgreen hfor|

  1. Alternative Fuels Data Center: Alaska Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPorts USAEthanolStateLocate StationsFuels and

  2. Alternative Fuels Data Center: Vermont Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on asPublicationsFuels and Vehicles

  3. Fuel Cells for Transportation: 2001 Annual Progress Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is andFederalFuel Cell

  4. Review of Used Nuclear Fuel Storage and Transportation Technical Gap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7,BreakoutRetoolingREVIEW OF SELECTED HOMEAnalyses |

  5. Review of Used Nuclear Fuel Storage and Transportation Technical Gap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7,BreakoutRetoolingREVIEW OF SELECTED HOMEAnalyses

  6. Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavingsTransmission

  7. Transportation and Stationary Power Integration with Hydrogen and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavingsTransmissionin PEMFC27, 2008,Technology in

  8. Visualization of Fuel Cell Water Transport and Characterization under

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvancedVeteran LeadershipVision for RolloutFreezing

  9. Visualization of Fuel Cell Water Transport and Performance Characterization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvancedVeteran LeadershipVision for RolloutFreezingunder

  10. Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at ArmyusingPeerTesting and Design

  11. Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects at ArmyusingPeerTesting and

  12. Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation - 13042

    SciTech Connect (OSTI)

    Li, Zhian; Rahimi, Meraj; Tang, David; Aissa, Mourad; Flaganan, Michelle; Wagner, John C.

    2013-07-01

    The recent experiments conducted by Argonne National Laboratory on high burnup fuel cladding material property show that the ductile to brittle transition temperature of high burnup fuel cladding is dependent on: (1) cladding material, (2) irradiation conditions, and (3) drying-storage histories (stress at maximum temperature) [1]. The experiment results also show that the ductile to brittle temperature increases as the fuel burnup increases. These results indicate that the current knowledge in cladding material property is insufficient to determine the structural performance of the cladding of high burnup fuel after it has been stored in a dry cask storage system for some time. The uncertainties in material property and the elevated ductile to brittle transition temperature impose a challenge to the storage cask and transportation packaging designs because the cask designs may not be able to rely on the structural integrity of the fuel assembly for control of fissile material, radiation source, and decay heat source distributions. The fuel may reconfigure during further storage and/or the subsequent transportation conditions. In addition, the fraction of radioactive materials available for release from spent fuel under normal condition of storage and transport may also change. The spent fuel storage and/or transportation packaging vendors, spent fuel shippers, and the regulator may need to consider this possible fuel reconfiguration and its impact on the packages' ability to meet the safety requirements of Part 72 and Part 71 of Title 10 of the Code of Federal Regulations. The United States Nuclear Regulatory Commission (NRC) is working with the scientists at Oak Ridge National Laboratory (ORNL) to assess the impact of fuel reconfiguration on the safety of the dry storage systems and transportation packages. The NRC Division of Spent Fuel Storage and Transportation has formed a task force to work on the safety and regulatory concerns in relevance to high burnup fuel storage and transportation. This paper discusses the staff's preliminary considerations on the safety implication of fuel reconfiguration with respect to nuclear safety (subcriticality control), radiation shielding, containment, the performance of the thermal functions of the packages, and the retrievability of the contents from regulatory perspective. (authors)

  13. Microbial Fuel Cell Coupling: Clean, renewable energy generated from wastewater amongst other potential uses

    E-Print Network [OSTI]

    Reynolds, Mark

    2014-01-01

    energy generated from wastewater amongst other potential uses Mark Reynolds May 20, 2014 Abstract Microbial fuel

  14. City of Tulare Renewable Biogas Fuel Cell Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power,5 BUDGETU SStateAnnounceofEconomyAlexandria'sDepartment

  15. Property:RenewableFuelStandard/BiomassBasedDiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuel Jump to:

  16. National Renewable Energy Laboratory (NREL): Hydrogen and Fuel Cell Capabilities Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIXConcentrating Solar PowerParks Clean Up withEnergyIs

  17. On the Path to Low Cost Renewable Fuels, an Important Breakthrough |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and ReduceNovemberDOE'sManagement ofOh,

  18. 2010 Fuel Cell Technologies Market Report, June 2011, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014Conference Presentations | Department of

  19. Green Racing Series Revs Engines with Renewable Fuel from INEOS Bio |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergyGetDepartment of| Department

  20. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Energy Efficiency & Renewable Energy An Introduction to the 2010 Fuel Cell Pre a d t ade o a to educe Advancing Presidential Priorities Energy efficiency and renewable energy, cleanest, Recovery Act energy projectsfastest energy source ­ energy efficiency · Double renewable energy

  1. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Energy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Dr. Sunita Energy efficiency and renewable energy research, development, and deployment activities help the Nation Presidential Priorities Economic · Create green jobs through Recovery Act energy projects · Double renewable

  2. Alternative Fuels Data Center: Arizona Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional KnowledgeAgendaNational CleanAbout theVehiclesFuelsFuels and

  3. Alternative Fuels Data Center: Maine Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith Propane Florida Schools FirstIdleofAlternative FuelsFuels

  4. Alternative Fuels Data Center: Michigan Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith Propane Floridasystem-efficiency GoFuelsMethanol toFuels

  5. Alternative Fuels Data Center: New York Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNatural Gas PrintableAlternative FuelsFuels and

  6. Alternative Fuels Data Center: Rhode Island Transportation Data for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNatural GasFuels andBasicsRefuseAlternative Fuels

  7. Alternative Fuels Data Center: Utah Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTest Your Alternative Fuel IQ toFuels and

  8. Alternatives to Traditional Transportation Fuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, search Name: Alliance'Novel' FinancingFuels

  9. Nuclear Fuels Storage & Transportation Planning Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWind CareerEnergy Nuclear Fuels Storage

  10. Alternative Fuels Data Center: Delaware Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a VehicleNatural GasDeKalb

  11. Lessons Learned from Alternative Transportation Fuels: Modeling Transition Dynamics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat IsHeavy-DutyCELLsLessons

  12. The impact of fuel price volatility on transportation mode choice

    E-Print Network [OSTI]

    Kim, Eun Hie

    2009-01-01

    In recent years, the price of oil has driven large fluctuations in the price of diesel fuel, which is an important cost component in freight logistics. This thesis explores the impact of fuel price volatility on supply ...

  13. Is Methanol the Transportation Fuel of the Future?

    E-Print Network [OSTI]

    Sperling, Daniel; DeLuchi, Mark A.

    1989-01-01

    Gasoline and diesel fuel distributors would lose control of fuel marketing if natural gas, currently distributed by a network of pipeline-transmission companies,gasoline a far more promising alternative than methanol. They argued that oil companies

  14. RTP Green Fuel: A Proven Path to Renewable Heat and Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7, 2011REMSViewEnergy RTP Green Fuel: A Proven Path

  15. Alternative Fuels Data Center: Plug-In Vehicles to Harness Renewable Energy

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehicles and Infrastructurein Hawaii

  16. Fuel-Neutral Studies of Particulate Matter Transport Emissions

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Betting on Science Disruptive Technologies in Transport Fuels

    E-Print Network [OSTI]

    Kammen, Daniel M.

    gasoline-fueled and diesel-fueled light-duty vehicles often depends on regional policies and fuel prices vehicles retain a gasoline (or biofuels) tank for use when the battery is sufficiently depleted. However conventional vehicles lack the expensive battery investment and involve gasoline suppliers rather than electric

  18. The role of natural gas as a vehicle transportation fuel

    E-Print Network [OSTI]

    Murphy, Paul Jarod

    2010-01-01

    This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

  19. Transportation Fuels: The Future is Today (6 Activities)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than a century, petroleum has been the lifeblood of our transportation system. In the United States alone, we use more than13 million barrels of oil each day to keep us on the...

  20. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This fact sheet describes opportunities for interested stationary fuel cell developers and end users to participate in an objective and credible analysis of stationary fuel cell systems to benchmark the current state of the technology and support industry growth.

  1. Alternative Fuels Data Center: Michigan Transports Students in Hybrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMaryland Conserves Fuel WithElectric School

  2. Alternative Fuels Data Center: New Orleans Provides Green Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMaryland Conserves FuelStationNew HampshireOrleans

  3. Production Costs of Alternative Transportation Fuels | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975)Energy Technology JumpWilliam County,|ProarkInformation

  4. Alternative Fuels Data Center: Colorado Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional KnowledgeAgendaNationalBiodiesel Vehicle EmissionsMoreFuels and

  5. Alternative Fuels Data Center: Connecticut Transportation Data for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional KnowledgeAgendaNationalBiodiesel Vehicle EmissionsMoreFuels

  6. Alternative Fuels Data Center: District of Columbia Transportation Data for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional KnowledgeAgendaNationalBiodiesel VehicleDeKalbAlternative Fuels

  7. Alternative Fuels Data Center: Georgia Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith Propane Florida Schools First in State to PowerFuels and

  8. Alternative Fuels Data Center: Idaho Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith Propane Florida Schools First inProductionFuels and

  9. Alternative Fuels Data Center: Illinois Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith Propane Florida Schools FirstIdle Reduction ResearchFuels

  10. Alternative Fuels Data Center: Louisiana Transportation Data for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith Propane Florida Schools FirstIdleofAlternative Fuels and

  11. Alternative Fuels Data Center: Montana Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith Propane Floridasystem-efficiencyTraining WithFuels

  12. Alternative Fuels Data Center: New Jersey Transportation Data for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNatural Gas PrintableAlternative Fuels and

  13. Alternative Fuels Data Center: Texas Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTest Your Alternative Fuel IQ to someone

  14. Alternative Fuels Data Center: Virginia Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTest Your Alternative FuelandAFDC »Fuels

  15. Alternative Fuels Data Center: Wisconsin Transportation Data for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTest Your AlternativeAboutAlternative Fuels

  16. NREL: Transportation Research - Fuel Combustion and Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking With Us NRELVehicleResearchFleetFuel

  17. Alternatives to Traditional Transportation Fuels 2009 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, search Name: Alliance'Novel' Financing

  18. APEC-Alternative Transport Fuels: Implementation Guidelines | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgramInformation ALLETE, Inc.EnergyPlcAOS Solar

  19. Diamond Green Diesel: Diversifying Our Transportation Fuel Supply |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy2 DOE| DepartmentEnergyDepartment

  20. Nuclear Fuel Storage and Transportation Planning Project Overview |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t e OfficeResearch andFacts:

  1. Comments on: Hydrogen Fuel-Cell Unit to Provide Renewable Power to Honolulu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C

  2. Alternative Fuels Data Center

    SciTech Connect (OSTI)

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  3. Project Information Form Project Title Assessment of Critical Barriers to Alternative and Renewable Fuel and

    E-Print Network [OSTI]

    California at Davis, University of

    Fuel and Vehicle Deployment University UC Davis Principal Investigator Amy Jaffe Andrew Burke PI and clean fuels and ensure that associated infrastructure becomes available at a sufficient pace and scale to meet AB118/AB8 goals. Our research in this area will consider the synergies of incumbent fueling

  4. Alternatives to traditional transportation fuels 1994. Volume 1

    SciTech Connect (OSTI)

    1996-02-01

    In this report, alternative and replacement fuels are defined in accordance with the EPACT. Section 301 of the EPACT defines alternative fuels as: methanol, denatured ethanol, and other alcohols; mixtures containing 85% or more (or such other percentage, but not less than 70%, as determined by the Secretary of Energy, by rule, to provide for requirements relating to cold start, safety, or vehicle functions) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials; electricity (including electricity from solar energy); and any other fuel the Secretary determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. The EPACT defines replacement fuels as the portion of any motor fuel that is methanol, ethanol, or other alcohols, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels (other than alcohol) derived from biological materials, electricity (including electricity from solar energy), ethers, or any other fuel the Secretary of Energy determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. This report covers only those alternative and replacement fuels cited in the EPACT that are currently commercially available or produced in significant quantities for vehicle demonstration purposes. Information about other fuels, such as hydrogen and biodiesel, will be included in later reports as those fuels become more widely used. Annual data are presented for 1992 to 1996. Data for 1996 are based on plans or projections for 1996.

  5. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 1, Final report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This report documents a portion of the work performed Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective for development is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near- and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

  6. Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2004-07-17

    Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

  7. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  8. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text

    SciTech Connect (OSTI)

    DeLuchi, M.A. [California Univ., Davis, CA (United States)

    1991-11-01

    This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

  9. Direct Conversion of Biomass into Transportation Fuels - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent BondingMeetingDifferences BetweenDirac Charge

  10. Fuel-Neutral Studies of Particulate Matter Transport Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace056stewart2012o.pdf More Documents & Publications...

  11. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION...

    Office of Scientific and Technical Information (OSTI)

    can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy...

  12. Fuel Cell System Cost for Transportation-2008 Cost Estimate (Book)

    SciTech Connect (OSTI)

    Not Available

    2009-05-01

    Independent review prepared for the U.S. Department of Energy (DOE) Hydrogen, Fuel Cells and Infrastructure Technologies (HFCIT) Program Manager.

  13. Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I NLoans The

  14. Alternative Fuels Data Center: Leadership in CNG Propels Paper Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I NLoansAFDCHydrogeninReduce OperatingtoInc.

  15. Alternative Fuels Data Center: Pittsburgh Livery Company Transports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMaryland ConservesElectricSurpasses 1

  16. Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropane Texas Law

  17. Coal Gasification and Transportation Fuels Magazine | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 20082 P r o jJ. linnCellulosic7CoalCoal

  18. Alternative Fuels Data Center: Alabama Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional KnowledgeAgendaNational CleanAbout theVehicles

  19. Alternative Fuels Data Center: Florida Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith Propane Florida Schools First in State to Power up

  20. Alternative Fuels Data Center: Nebraska Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNatural Gas Printable VersionVehicle

  1. Alternative Fuels Data Center: North Carolina Transportation Data for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNatural Gas PrintableAlternative

  2. Alternative Fuels Data Center: Washington Transportation Data for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTest Your Alternative

  3. Alternative Fuels Data Center: West Virginia Transportation Data for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTest Your AlternativeAbout

  4. Alternative Fuels Data Center: Wyoming Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTest Your AlternativeAboutAlternative

  5. Nuclear Fuels Storage & Transportation Planning Project Documents |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 News enDepartment of Energy101 isillustration

  6. NREL: Transportation Research - Alternative Fuel Fleet Vehicle Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking With Us NREL works with

  7. NREL: Transportation Research - Emissions and Fuel Economy Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking With Us NRELVehicle

  8. Addressing the Need for Alternative Transportation Fuels: The Joint

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563Abuse Tolerance(Conference) | SciTechstochasticBioEnergy Institute

  9. Addressing the Need for Alternative Transportation Fuels: The Joint

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563Abuse Tolerance(Conference) | SciTechstochasticBioEnergy

  10. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeedingConnect Pulse energy(Conference) |SciTech Connect

  11. Integrated Used Nuclear Fuel Storage, Transportation, and Disposal Canister

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity aOverviewISM Integrated SafetyCooling -System

  12. PADD 5 Transportation Fuels Markets - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets16 (next20,

  13. Visualization of Fuel Cell Water Transport and Characterization under Freezing Conditions

    E-Print Network [OSTI]

    Visualization of Fuel Cell Water Transport and Characterization under Freezing Conditions Fundamentals to Component-level research #12;3 year, $3.5 Million Program Visualization of Fuel Cell Water systems · faster commercialization · US technological leadership in fuel cell industry technical

  14. Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing,

    E-Print Network [OSTI]

    Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff MeetingWater Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design fuel cell design and operation; Demonstrate improvements in water management resulting in improved

  15. Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell

    E-Print Network [OSTI]

    Victoria, University of

    Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell by Torsten or other means, without permission of the author. #12;Supervisor: Dr. N. Djilali Abstract Fuel cells-isothermal computational model of a proton exchange membrane fuel cell (PEMFC). The model was developed to improve

  16. A SHARP INTERFACE REDUCTION FOR MULTIPHASE TRANSPORT IN A POROUS FUEL CELL ELECTRODE

    E-Print Network [OSTI]

    Stockie, John

    A SHARP INTERFACE REDUCTION FOR MULTIPHASE TRANSPORT IN A POROUS FUEL CELL ELECTRODE KEITH exchange membrane fuel cell is a highly porous material which acts to distribute reactant gases uniformly perturbation, fuel cell electrodes, free surface. AMS subject classifications. 35B40, 35K55, 76R99, 76S05 1

  17. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    of vegetable oils, animal fats, and waste cooking oils, withof vegetable oils, animal fats, and waste cooking oils.Fuel Wobbe Number Waste Vegetable Oil xxiv Chapter One:

  18. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    of Biodiesel Chemistry, Carbon Footprint and Regional Fuelof Biodiesel Chemistry, Carbon Footprint and Regional Fuelof Biodiesel Chemistry, Carbon Footprint and Regional Fuel

  19. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Biodiesel Blends on NOx Emissions. SAE Technical Paper 2008,Energy Laboratory Diesel Emissions Control - Sulfur Effectsbetween NOx, Particulate Emission, and Fuel Consumption of a

  20. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Natural Gas Liquids Natural Gas Vehicle Ammonia Non-methanein emissions for natural gas vehicles (NGVs), emissions for226. Timmons, S. Natural Gas Fuel Effects on Vehicle Exhaust

  1. Renewable Diesel Fuels: Status of Technology and R&D Needs |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications New Diesel Feedstocks and Future Fuels Return Condensate to the Boiler Analysis of the Efficiency of the U.S. Ethanol Industry 2007...

  2. renewable sources of power. Demand for fossil fuels surely will overrun supply s

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions |discussed howCommercialemail notf.IOE/MA-0001 -08 '9g Electric

  3. DOE/EIA-M069(2010) Model Documentation Renewable Fuels Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions1 0 0 0 09)6)8) The9)

  4. DOE/EIA-M069(2011) Model Documentation Renewable Fuels Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions1 0 0 0 09)6)8) The9)69(2011)

  5. Sweet Smell of Renewable Fuel | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D-NicholasReportsSolarSunil K. Sinha, 1996Science

  6. Sandia Energy - Hydrogen Fuel-Cell Unit to Provide Renewable Power to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)Geothermal Energy & DrillingNanomaterials Hongyou FanHonolulu

  7. Light-Powered Microbial Fuel Cell Offering Clean, Renewable Hydrogen-Based

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N13,CenterCenter

  8. Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars1.840 2.318 3.1195) Model8) Model Model

  9. Renewable Fuels Module of the National Energy Modeling System: Model Documentation 2012

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars1.840 2.318 3.1195) Model8) Model

  10. Life-Cycle Analysis of Transportation Fuels and Vehicle Technologies

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    ;U.S. transportation energy production trends U.S. domestic oil and natural gas production continues gas ­ Tight oil (mainly shale oil) production accounts for 45% of total US oil production ­ U.S. net oil import accounts for 39.5% of its consumption Ethanol production was 13.3 billion gallons in 2013

  11. ETHANOL FROM CORN: CLEAN RENEWABLE FUEL FOR THE FUTURE, OR DRAIN ON OUR RESOURCES AND POCKETS?

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    by agricultural and chemical companies for many reasons. However, ethanol does not mix well with gasoline that one burns 1 gallon of gasoline equivalent in fossil fuels to pro- duce 1 gallon of gasoline equivalent as ethanol from corn. When this corn ethanol is burned as a gasoline additive or fuel, its use amounts

  12. Hydrogen as a transportation fuel: Costs and benefits

    SciTech Connect (OSTI)

    Berry, G.D.

    1996-03-01

    Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

  13. Policy Shocks and Market-Based Regulations: Evidence from the Renewable Fuel Standard

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    at the University of Michigan Transportation, Energy, Economics and the Environment Conference; Camp Resources XXI of California, Davis May 7, 2015 Corresponding author: gelade@ucdavis.edu Gabriel E. Lade is a PhD candidate, C and Resource Economics, University of California, Davis. Lin and Smith are members of the Giannini Foundation

  14. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect (OSTI)

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

  15. Systems Approach to New Transportation Fuels | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006deerbrinkman.pdf More Documents & Publications Vehicle...

  16. Beyond Diesel - Renewable Diesel

    SciTech Connect (OSTI)

    Not Available

    2002-07-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  17. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Energy Efficiency & Renewable Energy 2009 FUEL CELL MARKET REPORT NOVEMBER 2010 #12;Authors-Jerram of Fuel Cell Today Consulting, Rachel Gelman of the National Renewable Energy Laboratory, Jennifer Gangi

  18. Modeling the Transport Sector: The Role of Existing Fuel Taxes in Climate Policy

    E-Print Network [OSTI]

    Paltsev, Sergey.

    Existing fuel taxes play a major role in determining the welfare effects of exempting the transportation sector from measures to control greenhouse gases. To study this phenomenon we modify the MIT Emissions Prediction and ...

  19. Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout Â… Sustainable Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartmentSitesUMTRCA3Energy Office ofApril 30, 2013 Office ofDr.

  20. Opportunities for the Use of Renewable Energy in Road Transport | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon:OGEProjects/Definitions Jump to:PublicOpenXC