National Library of Energy BETA

Sample records for renewable sources hydroelectric

  1. Tribal Renewable Energy Foundational Course: Hydroelectric | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hydroelectric Tribal Renewable Energy Foundational Course: Hydroelectric Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on hydroelectric renewable energy by clicking on the .swf link below. You can also download the PowerPoint slides and a text version of the audio. See the full list of DOE Office of Indian Energy educational webinars and provide your feedback on the National Training & Education Resource (NTER) website. hydroelectric.swf

  2. DOE Office of Indian Energy Foundational Course on Hydroelectric Renewable Energy Text Version

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foundational Courses Renewable Energy Technologies: Hydroelectric Webinar (text version) Below is the text version of the Webinar titled "DOE Office of Indian Energy Foundational Courses Renewable Energy Technologies: Hydroelectric." Amy Hollander: Hello. I'm Amy Hollander with the National Renewable Energy Laboratory. Welcome to today's webinar on hydroelectricity as a renewable energy, sponsored by the U.S. Department of Energy Office of Indian Energy Policy and Programs. This

  3. City of Aspen- Renewable Energy Goal

    Broader source: Energy.gov [DOE]

    Note: As of September 2015, Aspen obtains 100% of its electricity from renewable sources (46% hydroelectric, 53% wind, 1% landfill gas).

  4. higher penetration of renewable energy sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    higher penetration of renewable energy sources - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ...

  5. List of Small Hydroelectric Incentives | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes Alternative Energy Development...

  6. Small-scale hydroelectric power in the Pacific Northwest: new impetus for an old energy source

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    Energy supply is one of the most important issues facing Northwestern legislators today. To meet the challenge, state legislatures must address the development of alternative energy sources. The Small-Scale Hydroelectric Power Policy Project of the National Conference of State Legislators (NCSL) was designed to assist state legislators in looking at the benefits of one alternative, small-scale hydro. Because of the need for state legislative support in the development of small-scale hydroelectric, NCSL, as part of its contract with the Department of Energy, conducted the following conference on small-scale hydro in the Pacific Northwest. The conference was designed to identify state obstacles to development and to explore options for change available to policymakers. A summary of the conference proceedings is presented.

  7. Assumption to the Annual Energy Outlook 2014 - Renewable Fuels...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind 1. Some renewables, such as landfill gas...

  8. Aparna Renewable Energy Sources Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Aparna Renewable Energy Sources Pvt Ltd Jump to: navigation, search Name: Aparna Renewable Energy Sources Pvt. Ltd. Place: Bangalore, Karnataka, India Zip: 56003 Sector: Wind...

  9. Hydrogen production from fossil and renewable sources using an...

    Office of Scientific and Technical Information (OSTI)

    from fossil and renewable sources using an oxygen transport membrane. Citation Details In-Document Search Title: Hydrogen production from fossil and renewable sources using an ...

  10. U.S. Energy Information Administration | Renewable Energy...

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 1.15 Renewable electric power sector net generation by energy source and State, ... NonHydroelectric 36 U.S. Energy Information Administration | Renewable Energy Annual 2009 ...

  11. U.S. Energy Information Administration | Renewable Energy...

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 1.18 Renewable electric power sector net generation by energy source and State, ... NonHydroelectric 42 U.S. Energy Information Administration | Renewable Energy Annual 2009 ...

  12. U.S. Energy Information Administration | Renewable Energy...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 Table 1.21 Renewable electric power sector net summer capacity by energy source and ... NonHydroelectric 48 U.S. Energy Information Administration | Renewable Energy Annual 2009 ...

  13. U.S. Energy Information Administration | Renewable Energy...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 Table 1.24 Renewable electric power sector net summer capacity by energy source and ... NonHydroelectric 54 U.S. Energy Information Administration | Renewable Energy Annual 2009 ...

  14. Small-scale hydroelectric power in the southeast: new impetus for an old energy source

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The Southeastern conference, Small-Scale Hydroelectric Power: New Impetus for an Old Energy Source, was convened to provide a forum for state legislators and other interested persons to discuss the problems facing small-scale hydro developers, and to recommend appropriate solutions to resolve those problems. During the two-day meeting state legislators and their staffs, along with dam developers, utility and industry representatives, environmentalists and federal/state officials examined and discussed the problems impeding small-scale hydro development at the state level. Based upon the problem-oriented discussions, alternative policy options were recommended for consideration by the US Department of Energy, state legislatures and the staff of the National Conference of State Legislatures (NCSL). Emphasis was placed on the legal, institutional, environmental and economic barriers at the state level, as well as the federal delays associated with licensing small-scale hydro projects. Whereas other previously held conferences have emphasized the identification and technology of small-scale hydro as an alternative energy source, this conference stressed legislative resolution of the problems and delays in small-scale hydro licensing and development. Panel discussions and workshops are summarized. Papers on the environmental, economic, and legal aspects of small-scale hydropower development are presented. (LCL)

  15. Renewable Resource Standard

    Broader source: Energy.gov [DOE]

    Eligible Technologies Eligible renewable resources include wind; solar; geothermal; existing hydroelectric projects (10 megawatts or less); certain new hydroelectric projects (up to 15 megawatts...

  16. Hydroelectric Webinar Presentation Slides and Text Version

    Broader source: Energy.gov [DOE]

    Download presentation slides and a text version of the audio from the DOE Office of Indian Energy webinar on hydroelectric renewable energy. 

  17. US Navy Tactical Fuels From Renewable Sources Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy US Navy Tactical Fuels From Renewable Sources Program US Navy Tactical Fuels From Renewable Sources Program Rick Kamin, Navy Fuels Lead, on US Navy Tactical Fuels From Renewable Sources Program. 5_kamin_roundtable.pdf (1.07 MB) More Documents & Publications U.S. Department of the Navy: Driving Alternative Fuels Adoption Department of the Navy Bioeconomy Activity HEFA and Fischer-Tropsch Jet Fuel Cost Analyses

  18. June 2014 Most Viewed Documents for Renewable Energy Sources...

    Office of Scientific and Technical Information (OSTI)

    June 2014 Most Viewed Documents for Renewable Energy Sources Chapter 6. Drilling and Well Construction Culver, Gene (1998) 426 Chapter 11. Heat Exchangers Rafferty, Kevin D.; ...

  19. List of Fuel Cells using Renewable Fuels Incentives | Open Energy...

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes Alternative Energy Conservation...

  20. List of Renewable Fuels Incentives | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes Alternative Energy Personal...

  1. Renewable source controls for grid stability.

    SciTech Connect (OSTI)

    Byrne, Raymond Harry; Elliott, Ryan Thomas; Neely, Jason C.; Silva Monroy, Cesar Augusto; Schoenwald, David Alan; Grant, Lisa

    2012-12-01

    The goal of this study was to evaluate the small signal and transient stability of the Western Electric- ity Coordinating Council (WECC) under high penetrations of renewable energy, and to identify control technologies that would improve the system performance. The WECC is the regional entity responsible for coordinating and promoting bulk electric system reliability in the Western Interconnection. Transient stability is the ability of the power system to maintain synchronism after a large disturbance while small signal stability is the ability of the power system to maintain synchronism after a small disturbance. Tran- sient stability analysis usually focuses on the relative rotor angle between synchronous machines compared to some stability margin. For this study we employed generator speed relative to system speed as a metric for assessing transient stability. In addition, we evaluated the system transient response using the system frequency nadir, which provides an assessment of the adequacy of the primary frequency control reserves. Small signal stability analysis typically identi es the eigenvalues or modes of the system in response to a disturbance. For this study we developed mode shape maps for the di erent scenarios. Prony analysis was applied to generator speed after a 1.4 GW, 0.5 second, brake insertion at various locations. Six di erent WECC base cases were analyzed, including the 2022 light spring case which meets the renewable portfolio standards. Because of the di culty in identifying the cause and e ect relationship in large power system models with di erent scenarios, several simulations were run on a 7-bus, 5-generator system to isolate the e ects of di erent con gurations. Based on the results of the study, for a large power system like the WECC, incorporating frequency droop into wind/solar systems provides a larger bene t to system transient response than replacing the lost inertia with synthetic inertia. From a small signal stability

  2. Renewable energy: an overview

    SciTech Connect (OSTI)

    Not Available

    1984-09-01

    Renewable energy technologies use the energy from non-depletable sources: sunshine, water flow and vegatation. The most common renewable energy devices are solar collectors, windmills, woodburning stoves, and hydroelectric turbines. Variations of some of these devices have been used for decades. Today, efficient versions are being developed to reduce our use of non-renewable resources, such as oil, natural gas and coal. Many of the systems utilizing renewable energy require a large initial investment but can offer long-term savings over the life of the system.

  3. Opportunities for renewable energy sources in Central Asia countries

    SciTech Connect (OSTI)

    Obozov, A.J.; Loscutoff, W.V.

    1998-07-01

    This report presents an overview of the state of conventional energy sources and the potential for development of renewable energy sources in the Central Asia countries of Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan. The region has a population of about 50 million in an area of more than four million square kilometers. The per capita gross internal product is more than $2,500, although the economy has been declining the past five years. The area has substantial coal, oil, uranium, and natural gas reserves, although they are not distributed equally among the five countries. Energy production is such that the countries do not have to rely heavily on imports. One of the problems in Central Asia is that the energy prices are substantially below the world prices. This is a factor in development of renewable energy sources. The primary renewable energy resources available are wind in Kazakhstan, solar in the entire region, biomass in Kyrgyzstan, and micro-hydropower stations in Kazakhstan and Kyrgyzstan. All of these have the potential to provide a significant amount of the required energy for the region. However, all of the countries have an abundance of various renewable energy resources. To effectively use these resources, however, a number of barriers to their development and commercialization must be overcome. These include low prices of conventional energy sources, absence of legislative support, lack of financing for new technologies, and lack of awareness of renewable energy sources by the population. A number of specific actions are proposed to overcome these barriers. These include establishment of a Central Asia coordinating council for renewable energy, development of a regional renewable energy program, and setting up a number of large demonstration projects. 16 figs.

  4. Fact #840: September 29, 2014 World Renewable Electricity Consumption is Growing

    Broader source: Energy.gov [DOE]

    Electricity generated from sources that are renewablehydroelectric power, bio-fuels, geothermal, solar, wind, wood, waste – have grown 150% from 1980 to 2011 (latest year available). Of the...

  5. Connecting renewable power sources into the system

    SciTech Connect (OSTI)

    Wetzler, F.U.

    1982-11-01

    The many technical, legal, and economic issues that must be overcome before windmills, fuel cells, and photovoltaics can serve existing grids ae discusssed. Distributed storage and generation sources (DSGs) consist of energy converters to transform sun, wind, or chemical energy into electricity; a power conditioner to convert dc to ac; relays, breakers, and fuses for equipment protection and personnel safety; and appropriate load-metering equipment for billing customers. Aside from windmills and windfarms, there are few utility owned DSGs. The Public Utilities Regulatory Policy Act (1978) requires utilities to permit the connection to their power grids of private DSGs with capacities of up to 80 MW. In addition, the utilities must purchase the power from the DSG owned at ''just and reasonable rates'' and offer to supply backup power if the owner's facility malfunctions. Before connecting to a utility line, a DSG entrepreneur must meet certain specifications spelled out by the participating utility. Long-range power-distribution strategies will be needed to assess various automated distribution schemes that have been proposed, together with communication techniques to control and coordinate the small and large DSG within a highly complex power grid.

  6. Renewable Energy Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    Eligible renewable resources include wind, solar, biomass, landfill gas, anaerobic digestion, hydroelectricity, and geothermal energy. Facilities must use renewable energy to produce electricity...

  7. Philippines: Small-scale renewable energy update

    SciTech Connect (OSTI)

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  8. September 2013 Most Viewed Documents for Renewable Energy Sources | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information September 2013 Most Viewed Documents for Renewable Energy Sources Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 362 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 Chapter 17. Engineering cost analysis Higbee, Charles V. (1998) 79 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi; Norman Turnquist; Farshad Ghasripoor (2012) 79 A study of

  9. September 2015 Most Viewed Documents for Renewable Energy Sources | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information September 2015 Most Viewed Documents for Renewable Energy Sources Calculation of brine properties. [Above 80/sup 0/F and for salt content between 5 and 25%] Dittman, G.L. (1977) 257 Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines Sheldahl, R E; Klimas, P C (1981) 217 Thermal conductivity of aqueous NaCl solutions

  10. Most Viewed Documents for Renewable Energy Sources: December 2014 | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information Most Viewed Documents for Renewable Energy Sources: December 2014 Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 339 Generalized displacement correlation method for estimating stress intensity factors Fu, P; Johnson, S M; Settgast, R R; Carrigan, C R (2011) 107 Seventh Edition Fuel Cell Handbook NETL (2004) 96 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi; Norman

  11. Most Viewed Documents for Renewable Energy Sources: September 2014 | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information Most Viewed Documents for Renewable Energy Sources: September 2014 Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 224 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi; Norman Turnquist; Farshad Ghasripoor (2012) 179 Generalized displacement correlation method for estimating stress intensity factors Fu, P; Johnson, S M; Settgast, R R; Carrigan, C R (2011) 138 Hybrid Cooling

  12. Stochastic Optimal Scheduling of Residential Appliances with Renewable Energy Sources

    SciTech Connect (OSTI)

    Wu, Hongyu; Pratt, Annabelle; Chakraborty, Sudipta

    2015-07-03

    This paper proposes a stochastic, multi-objective optimization model within a Model Predictive Control (MPC) framework, to determine the optimal operational schedules of residential appliances operating in the presence of renewable energy source (RES). The objective function minimizes the weighted sum of discomfort, energy cost, total and peak electricity consumption, and carbon footprint. A heuristic method is developed for combining different objective components. The proposed stochastic model utilizes Monte Carlo simulation (MCS) for representing uncertainties in electricity price, outdoor temperature, RES generation, water usage, and non-controllable loads. The proposed model is solved using a mixed integer linear programming (MILP) solver and numerical results show the validity of the model. Case studies show the benefit of using the proposed optimization model.

  13. The Promise and Challenge of Algae as Renewable Sources of Biofuels

    Broader source: Energy.gov (indexed) [DOE]

    The Promise and Challenge of Algae as Renewable Sources of Biofuels Biomass Program ... Biomass Program and our emerging algal biofuels initiative (25 minutes) 2. Overview of ...

  14. Renewable

    Office of Scientific and Technical Information (OSTI)

    and Sustainable Energy V v y Jo ur na l Renewable Electronic structural and electroch em ... Duan Citation: J. Renewable Sustainable Energy 3, 013102 (2011); doi: 10.10631.3529427 ...

  15. Energy 101: Hydroelectric Power

    Broader source: Energy.gov [DOE]

    Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

  16. Green energy: The implementation and utilization of renewable energy in the United States

    SciTech Connect (OSTI)

    Murry, N.L.

    1998-12-31

    Renewable energy has become a viable solution for the United States (US) increasing demand for energy. Often referred to as Green Energy, renewable energy uses the earth`s natural resources to create energy. The wind, sun, water, and the earth`s molten core each offer an attainable form of energy. Hydroelectricity uses running water, wind power uses high speed winds, solar panels collect solar energy as heat, and geothermal energy uses the earth`s molten core to heat water. The Department of Energy classifies Renewable Energy into the following sections: Geothermal Energy, Fuel from Biomass, and Solar Electric. Solar Electric is further subdivided into Solar Thermal Electric, Photovoltaics (Solar Cells), Wind/Windmills, Ocean Thermal Electric and Hydropower/Hydroelectric Dams. Currently, renewable energy provides only 12% of the US electricity supply. Approximately 10% of this is supplied by hydroelectric sources, 1% of this is supplied by hydroelectric sources, 1% is supplied by biomass, and less than 1% is supplied by geothermal, wind and solar combined. Nationally, the generating capacity of renewable energy has increased slightly during the 1990`s. Renewable energy generation contributes to approximately 94 thousand Megawatts of electricity compared to approximately 682 thousand Megawatts of electricity generated from nonrenewables in the year 1996. The continued implementation and utilization of renewable energy in the US are dependent upon several variables. These variables include: the support from Federal and State governments, utility purchase requirements if utility deregulation is passed, and consumer education on the environmental benefits of renewable energy.

  17. Hydroelectric energy | Open Energy Information

    Open Energy Info (EERE)

    Hydroelectric energy Jump to: navigation, search TODO: Add description List of Hydroelectric Incentives Retrieved from "http:en.openei.orgwindex.php?titleHydroelectricenergy&...

  18. Small Hydroelectric | Open Energy Information

    Open Energy Info (EERE)

    Small Hydroelectric Jump to: navigation, search TODO: Add description List of Small Hydroelectric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSmallHydroelect...

  19. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect (OSTI)

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L.; Lawler, J.S.

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  20. Feasibility Study of Economics and Performance of a Hydroelectric Installation at the Jeddo Mine Drainage Tunnel. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2013-02-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Jeddo Tunnel discharge site for a feasibility study of renewable energy potential. The purpose of this report is to assess technical and economic viability of the site for hydroelectric and geothermal energy production. In addition, the report outlines financing options that could assist in the implementation of a system.

  1. "The Promise and Challenge of Algae as Renewable Sources of Biofuels"

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9-8-2010 - Transcript | Department of Energy "The Promise and Challenge of Algae as Renewable Sources of Biofuels" 9-8-2010 - Transcript "The Promise and Challenge of Algae as Renewable Sources of Biofuels" 9-8-2010 - Transcript This focused on the Office's approach to algal biofuels research and development and included presentations from four representatives of its recently funded consortia. This session also discussed highlights from the National Algal Biofuels

  2. Renewable Energy Systems Exemption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Wind (All) Hydroelectric Geothermal Heat Pumps Fuel Cells using Non-Renewable Fuels Landfill Gas Solar Pool Heating Wind (Small) Geothermal Direct-Use Fuel Cells...

  3. Progress report on renewable energy in Hawaii

    SciTech Connect (OSTI)

    Troy, M.; Brown, N.E.

    1982-04-01

    Renewable energy projects in Hawaii are reviewed as follows: geothermal energy, ocean energy, biomass, wind energy, direct solar energy, hydroelectric and other energy.

  4. A Stochastic Power Network Calculus for Integrating Renewable Energy Sources into the Power Grid

    SciTech Connect (OSTI)

    Wang, K; Ciucu, F; Lin, C; Low, SH

    2012-07-01

    Renewable energy such as solar and wind generation will constitute an important part of the future grid. As the availability of renewable sources may not match the load, energy storage is essential for grid stability. In this paper we investigate the feasibility of integrating solar photovoltaic (PV) panels and wind turbines into the grid by also accounting for energy storage. To deal with the fluctuation in both the power supply and demand, we extend and apply stochastic network calculus to analyze the power supply reliability with various renewable energy configurations. To illustrate the validity of the model, we conduct a case study for the integration of renewable energy sources into the power system of an island off the coast of Southern California. In particular, we asses the power supply reliability in terms of the average Fraction of Time that energy is Not-Served (FTNS).

  5. Renewable Energy Sources - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Sources Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for

  6. Summary for Policy Makers: Intergovernmental Panel on Climate Change Special Report Renewable Energy Sources (SRREN)

    SciTech Connect (OSTI)

    Arvizu, Dan; Bruckner, Thomas; Christensen, John; Devernay, Jean-Michel; Faaij , Andre; Fischedick, Manfred; Goldstein, Barry; Hansen, Gerrit; Huckerby , John; Jager-Waldau, Arnulf; Kadner, Susanne; Kammen, Daniel; Krey, Volker; Kumar, Arun; Lewis , Anthony; Lucon, Oswaldo; Matschoss, Patrick; Maurice, Lourdes; Mitchell , Catherine; Moomaw, William; Moreira, Jose; Nadai, Alain; Nilsson, Lars J.; Nyboer, John; Rahman, Atiq; Sathaye, Jayant; Sawin, Janet; Schaeffer, Roberto; Schei, Tormod; Schlomer, Steffen; Sims, Ralph; von Stechow, Christoph; Verbruggen, Aviel; Urama, Kevin; Wiser, Ryan; Yamba, Francis; Zwickel, Timm

    2011-05-08

    The Working Group III Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) presents an assessment of the literature on the scientific, technological, environmental, economic and social aspects of the contribution of six renewable energy (RE) sources to the mitigation of climate change. It is intended to provide policy relevant information to governments, intergovernmental processes and other interested parties. This Summary for Policymakers provides an overview of the SRREN, summarizing the essential findings. The SRREN consists of 11 chapters. Chapter 1 sets the context for RE and climate change; Chapters 2 through 7 provide information on six RE technologies, and Chapters 8 through 11 address integrative issues.

  7. Alabama Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",7252,4136,6136,12535,8704 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",3865,3784,3324,3035,2365 "MSW Biogenic/Landfill

  8. Oklahoma Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",624,3066,3811,3553,2809 "Solar","-","-","-","-","-" "Wind",1712,1849,2358,2698,3808 "Wood/Wood Waste",297,276,23,68,255 "MSW Biogenic/Landfill Gas","-",4,5,"-","-" "Other

  9. Oregon Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",37850,33587,33805,33034,30542 "Solar","-","-","-","-","-" "Wind",931,1247,2575,3470,3920 "Wood/Wood Waste",799,843,717,674,632 "MSW Biogenic/Landfill Gas",71,100,131,128,205 "Other

  10. Pennsylvania Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",2844,2236,2549,2683,2332 "Solar","-","-","s",4,8 "Wind",361,470,729,1075,1854 "Wood/Wood Waste",683,620,658,694,675 "MSW Biogenic/Landfill Gas",1411,1441,1414,1577,1706 "Other Biomass",18,16,2,3,3

  11. Ohio Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",632,410,386,528,429 "Solar","-","-","-","-",13 "Wind",14,15,15,14,13 "Wood/Wood Waste",410,399,418,410,399 "MSW Biogenic/Landfill Gas",24,11,183,198,264 "Other Biomass",10,10,8,11,12 "Total",1091,846,1010,1161,1

  12. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect (OSTI)

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  13. Hydro-electric generator

    SciTech Connect (OSTI)

    Vauthier, P.

    1980-06-03

    The efficiency of a hydro-electric generator is improved by providing open-ended hollow tubes having influx ends proximate the axis and efflux ends proximate the periphery of a fan-bladed turbine. The jets of water developed by rotation of the fanbladed turbine are directed against turbine vanes at the periphery of the fan blades. The device is particularly suitable for mounting in a water current such as in an ocean current or river.

  14. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    SciTech Connect (OSTI)

    Haas, Reinhard; Meyer, Niels I.; Held, Anne; Finon, Dominique; Lorenzoni, Arturo; Wiser, Ryan; Nishio, Ken-ichiro

    2007-06-01

    The promotion of electricity generated from Renewable Energy Sources (RES) has recently gained high priority in the energy policy strategies of many countries in response to concerns about global climate change, energy security and other reasons. This chapter compares and contrasts the experience of a number of countries in Europe, states in the US as well as Japan in promoting RES, identifying what appear to be the most successful policy measures. Clearly, a wide range of policy instruments have been tried and are in place in different parts of the world to promote renewable energy technologies. The design and performance of these schemes varies from place to place, requiring further research to determine their effectiveness in delivering the desired results. The main conclusions that can be drawn from the present analysis are: (1) Generally speaking, promotional schemes that are properly designed within a stable framework and offer long-term investment continuity produce better results. Credibility and continuity reduce risks thus leading to lower profit requirements by investors. (2) Despite their significant growth in absolute terms in a number of key markets, the near-term prognosis for renewables is one of modest success if measured in terms of the percentage of the total energy provided by renewables on a world-wide basis. This is a significant challenge, suggesting that renewables have to grow at an even faster pace if we expect them to contribute on a significant scale to the world's energy mix.

  15. DOE Office of Indian Energy Foundational Course: Hydroelectric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foundational Courses Renewable Energy Technologies Hydroelectric Presented by the National Renewable Energy Laboratory Course Outline What we will cover...  About the DOE Office of Indian Energy Education Initiative  Course Introduction  Resource Map & Project Scales  Technology Overview: - Siting - Costs  Successful Project Examples  Policies Relevant to Project Development  Additional Information & Resources Introduction The U.S. Department of Energy (DOE) Office

  16. BETO Deputy Director Publishes Commentary on Development of Algae as Renewable Energy Source

    Broader source: Energy.gov [DOE]

    Bioenergy Technologies Office (BETO) Deputy Director Dr. Valerie Sarisky-Reed’s commentary, “Algal Progress Report,” was published in the February edition of the bimonthly research journal Industrial Biotechnology. Her commentary details the promise of algae as a renewable energy source and describes how many BETO-funded research, development, and demonstration (RD&D) projects have resulted in significant technological advances to help overcome challenge of using algae for biofuel production.

  17. April 2013 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information April 2013 Most Viewed Documents for Renewable Energy Sources Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 1252 Seventh Edition Fuel Cell Handbook NETL (2004) 628 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 290 Chapter 17. Engineering cost analysis Higbee, Charles V. (1998) 223 Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Rafferty, K.

  18. December 2015 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information December 2015 Most Viewed Documents for Renewable Energy Sources Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines Sheldahl, R E; Klimas, P C (1981) 307 Calculation of brine properties. [Above 80/sup 0/F and for salt content between 5 and 25%] Dittman, G.L. (1977) 228 Temperature coefficients for PV modules and arrays:

  19. January 2013 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information January 2013 Most Viewed Documents for Renewable Energy Sources Photovoltaic Materials Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A. High Efficiency CdTe and CIGS Thin Film Solar Cells: Highlights of the Technologies Challenges (Presentation) Noufi, R. Accelerated UV Test Methods for Encapsulants of Photovoltaic Modules

  20. July 2013 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information July 2013 Most Viewed Documents for Renewable Energy Sources Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 484 Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens Sandercock, Brett K. [Kansas State University] (2013) 184 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 154 A study of lead-acid battery efficiency near top-of-charge

  1. June 2014 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information June 2014 Most Viewed Documents for Renewable Energy Sources Chapter 6. Drilling and Well Construction Culver, Gene (1998) 426 Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 300 Seventh Edition Fuel Cell Handbook NETL (2004) 118 Chapter 17. Engineering cost analysis Higbee, Charles V. (1998) 115 Generalized displacement correlation method for estimating stress intensity factors Fu, P; Johnson, S M; Settgast, R

  2. March 2014 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information March 2014 Most Viewed Documents for Renewable Energy Sources Chapter 6. Drilling and Well Construction Culver, Gene (1998) 299 Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 184 Chapter 17. Engineering cost analysis Higbee, Charles V. (1998) 124 Solar radiation data manual for flat-plate and concentrating collectors Dunlap, M.A. [ed.]; Marion, W.; Wilcox, S. (null) 74 Advanced Electric Submersible Pump Design

  3. March 2015 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information March 2015 Most Viewed Documents for Renewable Energy Sources Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 386 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 234 Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines Sheldahl, R E; Klimas, P C (1981) 159 Calculation of

  4. Large Scale Renewable Energy Property Tax Abatement (Nevada State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Solar Photovoltaics Wind (All) Biomass Hydroelectric Municipal Solid Waste Fuel Cells using Non-Renewable Fuels Landfill Gas Wind (Small) Anaerobic Digestion Fuel Cells...

  5. United States Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",2274,2214,2229,2382,2405 "Hydro Conventional",77821,77885,77930,78518,78825 "Solar",411,502,536,619,941 "Wind",11329,16515,24651,34296,39135 "Wood/Wood Waste",6372,6704,6864,6939,7037 "MSW/Landfill Gas",3166,3536,3644,3645,3690

  6. Lushui County Quande Hydroelectrical Power Development Ltd |...

    Open Energy Info (EERE)

    County Quande Hydroelectrical Power Development Ltd Jump to: navigation, search Name: Lushui County Quande Hydroelectrical Power Development Ltd. Place: Yunnan Province, China...

  7. Potential Hydroelectric Development at Existing Federal Facilities...

    Open Energy Info (EERE)

    Potential Hydroelectric Development at Existing Federal Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Potential Hydroelectric Development at...

  8. Lessons Learned: Pangue Hydroelectric | Open Energy Information

    Open Energy Info (EERE)

    Learned: Pangue Hydroelectric Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Lessons Learned: Pangue Hydroelectric AgencyCompany Organization: International Finance...

  9. June 2015 Most Viewed Documents for Renewable Energy Sources | OSTI, US

    Office of Scientific and Technical Information (OSTI)

    Dept of Energy Office of Scientific and Technical Information June 2015 Most Viewed Documents for Renewable Energy Sources Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 240 Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines Sheldahl, R E; Klimas, P C (1981) 192 Calculation of brine properties. [Above 80/sup 0/F and for salt content between 5 and 25%]

  10. U.S. electricity generation from renewables to increase in 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. electricity generation from renewables to increase in 2016 The amount of U.S. electricity generated by hydropower, wind, solar, and other renewable energy sources is expected to grow in 2016. In its new monthly forecast, the U.S. Energy Information Administration said hydroelectric generation is expected to increase by 9.2% this year while wind power is forecast to grow by over 16% and solar power by 34%. All renewables combined are expected to account for 15% of total U.S. electricity

  11. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  12. Renewable Energy

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department's investments in clean, renewable energy technologies -- including wind, solar and geothermal sources -- are helping strengthen the American economy.

  13. Microsoft PowerPoint - AECC Hydroelectric Generation 2010.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AECC H d l i AECC Hydroelectric Generation Facilities Generation Facilities Arkansas ... E i ti H d l t i Existing Hydroelectric Generating Resources g * Ellis Hydroelectric ...

  14. District of Columbia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source - Primary Renewable Energy Generation Source - ... Total Net Summer Renewable Capacity - - Geothermal - - Hydro Conventional - - Solar - - ...

  15. Loan Programs | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Hydrogen Microturbines Ocean Thermal Photovoltaics Renewable Fuels Small Hydroelectric...

  16. EIS-0456: Cushman Hydroelectric Project, Tacoma, Washington

    Broader source: Energy.gov [DOE]

    This EIS is for the design and construction of certain components of the Cushman Hydroelectric Project in Mason County, Washington.

  17. Energy 101: Hydroelectric Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric Power Energy 101: Hydroelectric Power Addthis Description Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. Topic Water Text Version Below is the text version for the Energy 101: Hydroelectric Power video: The video opens with the words "Energy 101: Hydroelectric Power." This is followed by a montage of rivers and streams, then a shot of an older water wheel. People have been capturing the energy

  18. Techno-economic analysis of renewable energy source options for a district heating project

    SciTech Connect (OSTI)

    Ghafghazi, S.; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2009-09-01

    With the increased interest in exploiting renewable energy sources for district heating applications, the economic comparison of viable options has been considered as an important step in making a sound decision. In this paper, the economic performance of several energy options for a district heating system in Vancouver, British Columbia, is studied. The considered district heating system includes a 10 MW peaking/ backup natural gas boiler to provide about 40% of the annual energy requirement and a 2.5 MW base-load system. The energy options for the base-load system include: wood pellet, sewer heat, and geothermal heat. Present values of initial and operating costs of each system were calculated over 25-year service life of the systems, considering depreciation and salvage as a negative cost item. It was shown that the wood pellet heat producing technologies provided less expensive energy followed by the sewer heat recovery, geothermal and natural gas systems. Among wood pellet technologies, the grate burner was a less expensive option than powder and gasifier technologies. It was found that using natural gas as a fuel source for the peaking/backup system accounted for more than 40% of the heat production cost for the considered district heating center. This is mainly due to the high natural gas prices which cause high operating costs over the service life of the district heating system. Variations in several economic inputs did not change the ranking of the technology options in the sensitivity analysis. However, it was found that the results were more sensitive to changes in operating costs of the system than changes in initial investment. It is economical to utilize wood pellet boilers to provide the base-load energy requirement of district heating systems Moreover, the current business approach to use natural gas systems for peaking and backup in district heating systems could increase the cost of heat production significantly.

  19. Kansas Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source ... Total Net Summer Renewable Capacity 1,082 8.6 Geothermal - - Hydro Conventional 3 * Solar ...

  20. Thayer Creek Hydroelectric Update - 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thayer Creek Hydroelectric Update - 2015 2015 Program Review Meeting DOE Tribal Energy Program Denver, Colorado May 5, 2015 Sharon Love General Manger/President Kootznoowoo, Inc. Harold Frank, Jr., M.S. Land and Environmental Planner Kootznoowoo, Inc. Angoon, Alaska Vicinity Map Angoon, Alaska * City of Angoon - 457 people (2013) * Angoon Community Association (IRA tribe) * Kootznoowoo, Inc. - 1,000(+) shareholders (629 original) - ANCSA village corporation * Angoon area inhabited at least

  1. Determination of biogas generation potential as a renewable energy source from supermarket wastes

    SciTech Connect (OSTI)

    Alkanok, Gizem; Demirel, Burak Onay, Turgut T.

    2014-01-15

    Highlights: Disposal of supermarket wastes in landfills may contribute to environmental pollution. High methane yields can be obtained from supermarket wastes by anaerobic co-digestion. Fruit and vegetable wastes or dairy products wastes could individually be handled by a two-stage anaerobic process. Buffering capacity, trace metal and C/N ratio are essential for digestion of supermarket wastes. - Abstract: Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH{sub 4}/g VS{sub added} was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH{sub 4}) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH{sub 4}/g VS{sub added}, respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH{sub 4}/g VS{sub added} was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly.

  2. 1,"John Day","Hydroelectric","USACE Northwestern Division",2160

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"John Day","Hydroelectric","USACE Northwestern Division",2160 2,"The Dalles","Hydroelectric","USACE Northwestern Division",1822.7 3,"Bonneville","Hydroelectric","USACE Northwestern Division",1153.9 4,"McNary","Hydroelectric","USACE Northwestern

  3. China Hydroelectric Corp | Open Energy Information

    Open Energy Info (EERE)

    Corp Jump to: navigation, search Name: China Hydroelectric Corp Place: Beijing, Beijing Municipality, China Zip: 100010 Sector: Hydro Product: Engaged in the acquisition of small...

  4. Hebei Hydroelectric Company Limited | Open Energy Information

    Open Energy Info (EERE)

    Place: Shijiazhuang, Hebei Province, China Zip: 50011 Sector: Hydro Product: China-based small hydro project developer. References: Hebei Hydroelectric Company Limited1 This...

  5. Marine Hydroelectric Company | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Marine Hydroelectric Company Address: 24040 Camino Del Avion A 107 Place: Monarch Beach Sector: Marine and Hydrokinetic Year Founded: 1983 Phone...

  6. List of Hydroelectric Incentives | Open Energy Information

    Open Energy Info (EERE)

    Coal with CCS Concentrating Solar Power Energy Storage Fuel Cells Geothermal Electric Natural Gas Nuclear Tidal Energy Wave Energy Wind energy BiomassBiogas Hydroelectric...

  7. Vermont Water Quality Certification Application for Hydroelectric...

    Open Energy Info (EERE)

    Water Quality Certification Application for Hydroelectric Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Vermont Water Quality Certification...

  8. Huaiji Hydroelectric Power Project | Open Energy Information

    Open Energy Info (EERE)

    Power Project Jump to: navigation, search Name: Huaiji Hydroelectric Power Project Place: Guangzhou, Guangdong Province, China Zip: 510620 Product: The Huaiji project involves nine...

  9. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    Generation by Energy Source: Independent Power Producers, 2004 - 2014 (Thousand ... Gas Nuclear Hydroelectric Conventional Solar Renewable Sources Excluding Hydroelectric ...

  10. Longyang Zone Hongqiang Hydroelectric Power Development Co Ltd...

    Open Energy Info (EERE)

    Longyang Zone Hongqiang Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Longyang Zone Hongqiang Hydroelectric Power Development Co., Ltd. Place: Baoshan...

  11. Yingjiang County Binglang River Hydroelectric Power Co Ltd |...

    Open Energy Info (EERE)

    Yingjiang County Binglang River Hydroelectric Power Co Ltd Jump to: navigation, search Name: Yingjiang County Binglang River Hydroelectric Power Co., Ltd. Place: Dehong Dai-Jingpo...

  12. Bihar State Hydroelectric Power Corp BSHPC | Open Energy Information

    Open Energy Info (EERE)

    Hydroelectric Power Corp BSHPC Jump to: navigation, search Name: Bihar State Hydroelectric Power Corp (BSHPC) Place: Patna, Bihar, India Sector: Hydro Product: Patna-based nodal...

  13. Ningguo Liucunba Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ningguo Liucunba Hydroelectric Co Ltd Jump to: navigation, search Name: Ningguo Liucunba Hydroelectric Co., Ltd. Place: Ningguo, Anhui Province, China Zip: Ningguo Sector: Hydro...

  14. Hunan Mayang Hengyuan Hydroelectric Development Co Ltd | Open...

    Open Energy Info (EERE)

    Hengyuan Hydroelectric Development Co Ltd Jump to: navigation, search Name: Hunan Mayang Hengyuan Hydroelectric Development Co. Ltd. Place: Huaihua, Hunan Province, China Zip:...

  15. Wuxi Longshui Hydroelectric Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Longshui Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Wuxi Longshui Hydroelectric Power Development Co. Ltd Place: Chongqing, Chongqing Municipality,...

  16. Xinhuang Xincun Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xinhuang Xincun Hydroelectric Co Ltd Jump to: navigation, search Name: Xinhuang Xincun Hydroelectric Co. Ltd. Place: Huaihua, Hunan Province, China Zip: 419200 Sector: Hydro...

  17. Shangri La County Minhe Hydroelectric Development Co Ltd | Open...

    Open Energy Info (EERE)

    Minhe Hydroelectric Development Co Ltd Jump to: navigation, search Name: Shangri-La County Minhe Hydroelectric Development Co., Ltd. Place: Yunnan Province, China Zip: 650051...

  18. Zixing Liyujiang Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zixing Liyujiang Hydroelectric Co Ltd Jump to: navigation, search Name: Zixing Liyujiang Hydroelectric Co., Ltd Place: Hunan Province, China Zip: 423402 Sector: Hydro Product:...

  19. Sangzhi Zhongyuan Hydroelectric Power Station | Open Energy Informatio...

    Open Energy Info (EERE)

    Zhongyuan Hydroelectric Power Station Jump to: navigation, search Name: Sangzhi Zhongyuan Hydroelectric Power Station Place: Zhangjiajie, Hunan Province, China Zip: 427100 Sector:...

  20. Jinping Guoneng Hydroelectric Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Hydroelectric Development Co Ltd Jump to: navigation, search Name: Jinping Guoneng Hydroelectric Development Co., Ltd Place: Jinping, Yunnan Province, China Zip: 661507 Sector:...

  1. Hunan Zhexi hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhexi hydroelectric Co Ltd Jump to: navigation, search Name: Hunan Zhexi hydroelectric Co., Ltd. Place: Shaoyang, Hunan Province, China Zip: 422200 Sector: Hydro Product:...

  2. Sichuan Bahe Hydroelectric Development Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Bahe Hydroelectric Development Co Ltd Jump to: navigation, search Name: Sichuan Bahe Hydroelectric Development Co. Ltd. Place: Bazhong, Sichuan Province, China Zip: 635400 Sector:...

  3. Cangxi Jianghe Hydroelectric Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    Cangxi Jianghe Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Cangxi Jianghe Hydroelectric Power Development Co., Ltd. Place: Guanyuan, Sichuan Province,...

  4. Guangxi Shenghui Haihe Hydroelectric Development Co Ltd | Open...

    Open Energy Info (EERE)

    Shenghui Haihe Hydroelectric Development Co Ltd Jump to: navigation, search Name: Guangxi Shenghui Haihe Hydroelectric Development Co., Ltd Place: Hechi, Guangxi Autonomous Region,...

  5. Shimen Boyuan Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shimen Boyuan Hydroelectric Co Ltd Jump to: navigation, search Name: Shimen Boyuan Hydroelectric Co. Ltd. Place: Changsha, Hunan Province, China Zip: 410004 Sector: Hydro Product:...

  6. Lintan Luertai Hydroelectric Power Company Ltd | Open Energy...

    Open Energy Info (EERE)

    Luertai Hydroelectric Power Company Ltd Jump to: navigation, search Name: Lintan Luertai Hydroelectric Power Company, Ltd Place: Lintan County, Gansu Province, China Sector: Hydro...

  7. Qiyang Yangguang Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydroelectric Co Ltd Jump to: navigation, search Name: Qiyang Yangguang Hydroelectric Co., Ltd Place: Yongzhou, Hunan Province, China Zip: 426100 Sector: Hydro Product: Hunan-based...

  8. Guangxi Baise City Chenyu Hydroelectric Development Co Ltd |...

    Open Energy Info (EERE)

    Baise City Chenyu Hydroelectric Development Co Ltd Jump to: navigation, search Name: Guangxi Baise City Chenyu Hydroelectric Development Co., Ltd. Place: Baise, Guangxi Autonomous...

  9. Hunan Caishi Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Caishi Hydroelectric Co Ltd Jump to: navigation, search Name: Hunan Caishi Hydroelectric Co., Ltd Place: Hunan Province, China Zip: 427221 Sector: Hydro Product: Hunan-based small...

  10. Qiyang Haojie Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Haojie Hydroelectric Co Ltd Jump to: navigation, search Name: Qiyang Haojie Hydroelectric Co., Ltd Place: Yongzhou City, Hunan Province, China Zip: 426100 Sector: Hydro Product:...

  11. Shaowu Jinwei Hydroelectric Power Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Shaowu Jinwei Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Shaowu Jinwei Hydroelectric Power Development Co., Ltd. Place: Shaowu City, Fujian Province,...

  12. Golmud Kunlun Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Golmud Kunlun Hydroelectric Co Ltd Jump to: navigation, search Name: Golmud Kunlun Hydroelectric Co., Ltd. Place: Qinghai Province, China Sector: Hydro Product: China-based small...

  13. Zhijiang Peace Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhijiang Peace Hydroelectric Co Ltd Jump to: navigation, search Name: Zhijiang Peace Hydroelectric Co. Ltd Place: Huaihua City, Hunan Province, China Sector: Hydro Product:...

  14. Dongkou Zhexiang hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhexiang hydroelectric Co Ltd Jump to: navigation, search Name: Dongkou Zhexiang hydroelectric Co. Ltd. Place: Shaoyang, Hunan Province, China Zip: 422300 Sector: Hydro Product:...

  15. Xuan en Tongziying Hydroelectric Power Development Co Ltd | Open...

    Open Energy Info (EERE)

    Tongziying Hydroelectric Power Development Co Ltd Jump to: navigation, search Name: Xuan(tm)en Tongziying Hydroelectric Power Development Co., Ltd. Place: Enshi Prefecture,...

  16. Winter Hydroelectric Dam Feasibility Assessment: The Lac Courte...

    Broader source: Energy.gov (indexed) [DOE]

    WINTER HYDROELECTRIC DAM FEASIBILITY ASSESSMENT THE LAC COURTE OREILLES BAND OF LAKE ... IN 1920 AND COMPLETED BY 1923 THE HYDROELECTRIC FACILITY WAS BUILT IN 1988. ISSUES ...

  17. 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric...

    Broader source: Energy.gov (indexed) [DOE]

    In 2016, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered ...

  18. Hunan Jishou Sanlian Hydroelectric Investment Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Jishou Sanlian Hydroelectric Investment Co Ltd Jump to: navigation, search Name: Hunan Jishou Sanlian Hydroelectric Investment Co., Ltd Place: Jishou, Hunan Province, China Zip:...

  19. S ENERGY POLICY ACT OF 2005 SECTION 242 HYDROELECTRIC INCENTIVE...

    Broader source: Energy.gov (indexed) [DOE]

    Project Albany Engineering Corporation (AEC) Stuyvesant Falls Hydroelectric Project ... Hydro Green Mountain Power Corp. Essex Hydroelectric Station Unit 9 Hydrodynamics Inc. ...

  20. Wind and Hydroelectric Feasibility Study - Bristol Bay Native...

    Broader source: Energy.gov (indexed) [DOE]

    Wind and Wind and Hydroelectric Hydroelectric Feasibility Feasibility Study Study Tiel Smith Tiel Smith - - BBNC BBNC Doug Vaught, PE Doug Vaught, PE - - Consultant Consultant A ...

  1. Mississippi Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary Renewable Energy Capacity Source WoodWood Waste Primary Renewable Energy ... Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - ...

  2. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy The WIPP Site Holds Promise as an Ideal Source of Renewable Energy Encompassing 16 square miles of open Chihuahuan desert with abundant sunshine and minimal surface roughness, the WIPP site is ideal for either solar- or wind-generated electricity production, demonstration or testing. In fact, WIPP is striving to take advantage of its abundance of sunshine and wind. The Department of Energy's Office of Environmental Management has created what is being called the Energy Park

  3. Yacyreta hydroelectric project contract signed

    SciTech Connect (OSTI)

    Not Available

    1987-09-01

    On June 26, 1987 the $270 million contract for the supply of 20 large hydraulic turbines for the Yacyreta Hydroelectric Project was signed by the Entidad Binacional Yacyreta, (a binational agency created by the governments of Argentina and Paraguay for the development of Yacyreta), and by Voith Hydro, Inc., of York, Pennsylvania, and Canadian General Electric of Montreal, Canada. Under the terms of the contract, 9 turbine units will be supplied by Voith Hydro, Inc. from its York, Pennsylvania plant, 4 units by Canadian General Electric of Montreal, and 7 units by Metanac, a consortium of Argentine manufacturers, who will utilize technology and technical assistance from Voith and CGE. The Yacyreta Project is being built on the Parana River on the border between Argentina and Paraguay. Construction at the site commenced in late 1983. Voith's portion of this contrast represents approximately $130 million dollars worth of business for its York, Pennsylvania facility.

  4. Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric...

    Open Energy Info (EERE)

    United States Agency for International Development Sector: Energy Resource Type: Training materials Website: www.energytoolbox.orggcremod4index.shtml Grid-Connected...

  5. Following Nature's Current HYDROELECTRIC POWER IN THE NORTHWEST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Environmental Protection, Mitigation and Enhancement at Hydroelectric Projects ----10 Fish Passage Tour ---...

  6. Indian River Hydroelectric Project Grant

    SciTech Connect (OSTI)

    Rebecca Garrett

    2005-04-29

    This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

  7. 2013 Electrical Production: EPAct 2005 Section 242 Hydroelectric Incentive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy 3 Electrical Production: EPAct 2005 Section 242 Hydroelectric Incentive Program 2013 Electrical Production: EPAct 2005 Section 242 Hydroelectric Incentive Program In 2014, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric generating device-may receive up to 1.8

  8. 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy 5 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program In 2016, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric generating device-may receive up to 1.8

  9. 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric Incentive Program In 2016, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric generating device-may receive up to

  10. New Hampshire Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New Hampshire Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State ...

  11. New Hampshire Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent ...

  12. Renewable/Alternative | Open Energy Information

    Open Energy Info (EERE)

    16. Renewable Energy Generating Capacity and Generation Table 17. Renewable Energy Consumption by Sector and Source Table 21. Carbon Dioxide Emissions by Sector and Source - New...

  13. Utah Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",23,33,34,34,42 "Hydro Conventional",255,255,256,256,255 "Solar","-","-","-","-","-" "Wind","-","-",19,222,222 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill Gas",4,5,5,9,9 "Other

  14. Vermont Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",309,308,322,322,324 "Solar","-","-","-","-","-" "Wind",5,5,5,5,5 "Wood/Wood Waste",76,76,76,76,76 "MSW/Landfill Gas","-","-",3,3,3 "Other

  15. Virginia Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",671,675,677,716,866 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",410,418,422,409,331 "MSW/Landfill Gas",170,254,269,278,290 "Other

  16. Washington Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",21156,21333,21203,21088,21181 "Solar","-",1,1,1,1 "Wind",821,1162,1365,2006,2296 "Wood/Wood Waste",326,296,314,369,368 "MSW/Landfill Gas",35,36,36,41,39 "Other Biomass",4,"-","-","-","-"

  17. West Virginia Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",264,264,264,264,285 "Solar","-","-","-","-","-" "Wind",66,66,330,330,431 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  18. Wisconsin Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",476,488,485,492,492 "Solar","-","-","-","-","-" "Wind",53,44,231,430,449 "Wood/Wood Waste",220,232,208,208,239 "MSW/Landfill Gas",62,71,72,72,76 "Other Biomass",1,1,8,11,12

  19. Wyoming Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",303,303,303,304,307 "Solar","-","-","-","-","-" "Wind",287,287,680,1104,1415 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  20. Alabama Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",3271,3272,3272,3272,3272 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",581,574,593,591,583 "MSW/Landfill

  1. Texas Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",681,673,673,689,689 "Solar","-","-","-","-",14 "Wind",2738,4490,7427,9378,9952 "Wood/Wood Waste",130,130,180,180,215 "MSW/Landfill Gas",42,72,73,79,88 "Other Biomass",16,21,29,28,28

  2. New York Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",4307,4301,4299,4310,4314 "Solar","-","-","-","-","-" "Wind",370,425,707,1274,1274 "Wood/Wood Waste",37,37,87,86,86 "MSW/Landfill Gas",313,324,340,344,359 "Other

  3. North Carolina Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1954,1960,1952,1952,1956 "Solar","-","-",3,3,35 "Wind","-","-","-","-","-" "Wood/Wood Waste",324,324,318,318,481 "MSW/Landfill Gas",14,18,20,20,27 "Other

  4. North Dakota Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",443,486,486,508,508 "Solar","-","-","-","-","-" "Wind",164,383,776,1202,1423 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  5. Ohio Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",101,101,101,101,101 "Solar","-","-","-","-",13 "Wind",7,7,7,7,7 "Wood/Wood Waste",64,64,65,65,60 "MSW/Landfill Gas",4,41,41,41,48 "Other Biomass","-","-","-",1,2

  6. Oklahoma Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",851,851,851,854,858 "Solar","-","-","-","-","-" "Wind",594,689,708,1130,1480 "Wood/Wood Waste",63,63,63,58,58 "MSW/Landfill Gas",16,16,16,16,16 "Other

  7. Oregon Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",8374,8385,8364,8430,8425 "Solar","-","-","-","-","-" "Wind",399,885,1059,1659,2004 "Wood/Wood Waste",195,215,230,241,221 "MSW/Landfill Gas",14,20,20,26,31 "Other Biomass",3,18,3,3,3

  8. Pennsylvania Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",748,748,751,747,747 "Solar","-","-",2,2,9 "Wind",150,293,361,696,696 "Wood/Wood Waste",108,108,108,108,108 "MSW/Landfill Gas",359,379,397,419,424 "Other Biomass","-","-","-","-","-"

  9. Rhode Island Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",4,4,3,3,3 "Solar","-","-","-","-","-" "Wind","-","-","-","-",2 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  10. South Carolina Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1345,1337,1337,1337,1340 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",220,220,220,220,255 "MSW/Landfill Gas",29,29,35,23,29 "Other

  11. South Dakota Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1516,1463,1463,1594,1594 "Solar","-","-","-","-","-" "Wind",43,43,193,320,629 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  12. Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Technical Report NREL/TP-5500-52251 July 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 The

  13. FEMP Renewable Energy Overview

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    This four-page overview describes how Federal agencies can contact the Department of Energy's Federal Energy Management Program (FEMP) to obtain assistance in acquiring renewable energy systems, renewable fuels, and renewable ("green") power for use in their facilities and vehicles. Renewable resources, technologies, and fuels are described, as well as Federal goals for using clean, sustainable renewable energy; the current goal is to supply 2.5% of the Federal Government's energy with renewable sources by 2005. Also included is a description of the resources and technologies themselves and associated benefits.

  14. 2,"Big Bend Dam","Hydroelectric","USCE-Missouri River District",520

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Oahe","Hydroelectric","USCE-Missouri River District",714 2,"Big Bend Dam","Hydroelectric","USCE-Missouri River District",520 3,"Big Stone","Coal","Otter Tail Power Co",475.6 4,"Fort Randall","Hydroelectric","USCE-Missouri River District",360

  15. RELATIVE ECONOMIC INCENTIVES FOR HYDROGEN FROM NUCLEAR, RENEWABLE, AND FOSSIL ENERGY SOURCES

    SciTech Connect (OSTI)

    Gorensek, M; Charles W. Forsberg, C

    2008-08-04

    The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because 'free' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen.

  16. Relative Economic Incentives for Hydrogen from Nuclear, Renewable, and Fossil Energy Sources

    SciTech Connect (OSTI)

    Forsberg, Charles W [ORNL] [ORNL; Gorensek, M. B. [Savannah River National Laboratory (SRNL)] [Savannah River National Laboratory (SRNL)

    2007-01-01

    The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because 'free' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen.

  17. Managing water temperatures below hydroelectric facilities

    SciTech Connect (OSTI)

    Johnson, P.L.; Vermeyen, T.B.; O`Haver, G.G.

    1995-05-01

    Due to drought-related water temperature problems in the Bureau of Reclamation`s California Central Valley Project in the early 1990`s, engineers were forced to bypass water from the plants during critical periods. This was done at considerable cost in the form of lost revenue. As a result, an alternative method of lowering water temperature was developed and it has successfully lowered water temperatures downstream from hydroelectric facilities by using flexible rubber curtains. This innovative technology is aiding the survival of endangered fish populations. This article outlines the efforts and discusses the implementation of this method at several hydroelectric facilities in the area.

  18. Title 16 USC 823a Conduit Hydroelectric Facilities | Open Energy...

    Open Energy Info (EERE)

    a Conduit Hydroelectric Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 16 USC 823a Conduit Hydroelectric...

  19. 2015 Electrical Production: EPACT 2005 Section 242 Hydroelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric ...

  20. 2013 Electrical Production: EPAct 2005 Section 242 Hydroelectric...

    Broader source: Energy.gov (indexed) [DOE]

    Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric ...

  1. Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive...

    Broader source: Energy.gov (indexed) [DOE]

    Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric ...

  2. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Renewable Electricity Profile 2010 Alabama profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 32,417 100.0 Total Net Summer Renewable Capacity 3,855 11.9 Geothermal - - Hydro Conventional 3,272 10.1 Solar - - Wind - - Wood/Wood Waste 583 1.8 MSW/Landfill

  3. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Renewable Electricity Profile 2010 Alaska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,067 100.0 Total Net Summer Renewable Capacity 422 20.4 Geothermal - - Hydro Conventional 414 20.1 Solar - - Wind 7 0.4 Wood/Wood Waste - - MSW/Landfill Gas - -

  4. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Renewable Electricity Profile 2010 Arizona profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,392 100.0 Total Net Summer Renewable Capacity 2,901 11.9 Geothermal - - Hydro Conventional 2,720 10.1 Solar 20 - Wind 128 - Wood/Wood Waste 583 1.8

  5. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Renewable Electricity Profile 2010 Connecticut profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,284 100.0 Total Net Summer Renewable Capacity 281 3.4 Geothermal - - Hydro Conventional 122 1.5 Solar - - Wind - -

  6. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Renewable Electricity Profile 2010 Delaware profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,389 100.0 Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - Wind 2 0.1 Wood/Wood

  7. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Renewable Electricity Profile 2010 District of Columbia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source - Primary Renewable Energy Generation Source - Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 790 100.0 Total Net Summer Renewable Capacity - - Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  8. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Renewable Electricity Profile 2010 Georgia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 36,636 100.0 Total Net Summer Renewable Capacity 2,689 7.3 Geothermal - - Hydro Conventional 2,052 5.6 Solar - - Wind - - Wood/Wood Waste 617 1.7 MSW/Landfill Gas

  9. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Renewable Electricity Profile 2010 Kansas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,543 100.0 Total Net Summer Renewable Capacity 1,082 8.6 Geothermal - - Hydro Conventional 3 * Solar - - Wind 1,072 8.5 Wood/Wood Waste - - MSW/Landfill Gas 7 0.1 Other Biomass - -

  10. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Renewable Electricity Profile 2010 Louisiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,744 100.0 Total Net Summer Renewable Capacity 517 1.9 Geothermal - - Hydro Conventional 192 0.7 Solar - - Wind - - Wood/Wood Waste 311 1.2 MSW/Landfill Gas - -

  11. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Renewable Electricity Profile 2010 Maryland profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,516 100.0 Total Net Summer Renewable Capacity 799 6.4 Geothermal - - Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 Wood/Wood Waste 3 * MSW/Landfill Gas

  12. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Renewable Electricity Profile 2010 Massachusetts profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,697 100.0 Total Net Summer Renewable Capacity 566 4.1 Geothermal - - Hydro Conventional 262 1.9 Solar 4 * Wind 10 0.1 Wood/Wood

  13. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Renewable Electricity Profile 2010 Mississippi profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 15,691 100.0 Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste 235 1.5 MSW/Landfill Gas - -

  14. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Renewable Electricity Profile 2010 Missouri profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,739 100.0 Total Net Summer Renewable Capacity 1,030 4.7 Geothermal - - Hydro Conventional 564 2.6 Solar - - Wind 459 2.1 Wood/Wood Waste - - MSW/Landfill Gas

  15. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Renewable Electricity Profile 2010 Montana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 5,866 100.0 Total Net Summer Renewable Capacity 3,085 52.6 Geothermal - - Hydro Conventional 2,705 46.1 Solar - - Wind 379 6.5 Wood/Wood Waste - - MSW/Landfill

  16. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Renewable Electricity Profile 2010 Nebraska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,857 100.0 Total Net Summer Renewable Capacity 443 5.6 Geothermal - - Hydro Conventional 278 3.5 Solar - - Wind 154 2.0 Wood/Wood Waste - - MSW/Landfill Gas 6

  17. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Renewable Electricity Profile 2010 New Hampshire profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 4,180 100.0 Total Net Summer Renewable Capacity 671 16.1 Geothermal - - Hydro Conventional 489 11.7 Solar - - Wind 24 0.6 Wood/Wood Waste 129 3.1

  18. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Renewable Electricity Profile 2010 New Jersey profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 18,424 100.0 Total Net Summer Renewable Capacity 230 1.2 Geothermal - - Hydro Conventional 4 * Solar 28 0.2 Wind 8 * Wood/Wood

  19. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Renewable Electricity Profile 2010 North Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,674 100.0 Total Net Summer Renewable Capacity 2,499 9.0 Geothermal - - Hydro Conventional 1,956 7.1 Solar 35 0.1 Wind - - Wood/Wood Waste 481 1.7

  20. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Renewable Electricity Profile 2010 Pennsylvania profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 45,575 100.0 Total Net Summer Renewable Capacity 1,984 4.4 Geothermal - - Hydro Conventional 747 1.6 Solar 9 * Wind 696 1.5 Wood/Wood Waste 108 0.2

  1. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Renewable Electricity Profile 2010 Rhode Island profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,782 100.0 Total Net Summer Renewable Capacity 28 1.6 Geothermal - - Hydro Conventional 3 0.2 Solar - - Wind 2 0.1

  2. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Renewable Electricity Profile 2010 South Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 23,982 100.0 Total Net Summer Renewable Capacity 1,623 6.8 Geothermal - - Hydro Conventional 1,340 5.6 Solar - - Wind - - Wood/Wood Waste 255 1.1

  3. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Renewable Electricity Profile 2010 South Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - -

  4. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Renewable Electricity Profile 2010 Tennessee profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,417 100.0 Total Net Summer Renewable Capacity 2,847 13.3 Geothermal - - Hydro Conventional 2,624 12.3 Solar - - Wind 29 0.1 Wood/Wood Waste 185 0.9

  5. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Renewable Electricity Profile 2010 Vermont profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,128 100.0 Total Net Summer Renewable Capacity 408 36.2 Geothermal - - Hydro Conventional 324 28.7 Solar - - Wind 5 0.5 Wood/Wood Waste 76 6.7 MSW/Landfill Gas 3

  6. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Renewable Electricity Profile 2010 Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 24,109 100.0 Total Net Summer Renewable Capacity 1,487 6.2 Geothermal - - Hydro Conventional 866 3.6 Solar - - Wind - - Wood/Wood Waste 331 1.4 MSW/Landfill Gas

  7. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Renewable Electricity Profile 2010 West Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 16,495 100.0 Total Net Summer Renewable Capacity 715 4.3 Geothermal - - Hydro Conventional 285 1.7 Solar - - Wind 431 2.6 Wood/Wood Waste - - MSW/Landfill Gas - -

  8. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Renewable Electricity Profile 2010 Wisconsin profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 17,836 100.0 Total Net Summer Renewable Capacity 1,267 7.1 Geothermal - - Hydro Conventional 492 2.8 Solar - - Wind 449 2.5 Wood/Wood Waste 239 1.3

  9. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Renewable Electricity Profile 2010 Wyoming profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,986 100.0 Total Net Summer Renewable Capacity 1,722 21.6 Geothermal - - Hydro Conventional 307 3.8 Solar - - Wind 1,415 17.7 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  10. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Alaska Renewable Electricity Profile 2010 Alaska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 2,067 100.0 Total Net Summer Renewable Capacity 422 20.4 Geothermal - - Hydro Conventional 414 20.1 Solar - - Wind 7 0.4 Wood/Wood Waste - - MSW/Landfill Gas - -

  11. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Arizona Renewable Electricity Profile 2010 Arizona profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,392 100.0 Total Net Summer Renewable Capacity 2,901 11.9 Geothermal - - Hydro Conventional 2,720 10.1 Solar 20 - Wind 128 - Wood/Wood Waste 583 1.8

  12. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Connecticut Renewable Electricity Profile 2010 Connecticut profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 8,284 100.0 Total Net Summer Renewable Capacity 281 3.4 Geothermal - - Hydro Conventional 122 1.5 Solar - - Wind - -

  13. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Delaware Renewable Electricity Profile 2010 Delaware profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,389 100.0 Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - Wind 2 0.1 Wood/Wood

  14. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    District of Columbia Renewable Electricity Profile 2010 District of Columbia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source - Primary Renewable Energy Generation Source - Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 790 100.0 Total Net Summer Renewable Capacity - - Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  15. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Georgia Renewable Electricity Profile 2010 Georgia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 36,636 100.0 Total Net Summer Renewable Capacity 2,689 7.3 Geothermal - - Hydro Conventional 2,052 5.6 Solar - - Wind - - Wood/Wood Waste 617 1.7 MSW/Landfill Gas

  16. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Kansas Renewable Electricity Profile 2010 Kansas profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,543 100.0 Total Net Summer Renewable Capacity 1,082 8.6 Geothermal - - Hydro Conventional 3 * Solar - - Wind 1,072 8.5 Wood/Wood Waste - - MSW/Landfill Gas 7 0.1 Other Biomass - -

  17. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Louisiana Renewable Electricity Profile 2010 Louisiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,744 100.0 Total Net Summer Renewable Capacity 517 1.9 Geothermal - - Hydro Conventional 192 0.7 Solar - - Wind - - Wood/Wood Waste 311 1.2 MSW/Landfill Gas - -

  18. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Maryland Renewable Electricity Profile 2010 Maryland profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 12,516 100.0 Total Net Summer Renewable Capacity 799 6.4 Geothermal - - Hydro Conventional 590 4.7 Solar 1 * Wind 70 0.6 Wood/Wood Waste 3 * MSW/Landfill Gas

  19. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Massachusetts Renewable Electricity Profile 2010 Massachusetts profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 13,697 100.0 Total Net Summer Renewable Capacity 566 4.1 Geothermal - - Hydro Conventional 262 1.9 Solar 4 * Wind 10 0.1 Wood/Wood

  20. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi Renewable Electricity Profile 2010 Mississippi profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 15,691 100.0 Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste 235 1.5 MSW/Landfill Gas - -

  1. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Missouri Renewable Electricity Profile 2010 Missouri profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,739 100.0 Total Net Summer Renewable Capacity 1,030 4.7 Geothermal - - Hydro Conventional 564 2.6 Solar - - Wind 459 2.1 Wood/Wood Waste - - MSW/Landfill Gas

  2. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Montana Renewable Electricity Profile 2010 Montana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 5,866 100.0 Total Net Summer Renewable Capacity 3,085 52.6 Geothermal - - Hydro Conventional 2,705 46.1 Solar - - Wind 379 6.5 Wood/Wood Waste - - MSW/Landfill

  3. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Nebraska Renewable Electricity Profile 2010 Nebraska profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,857 100.0 Total Net Summer Renewable Capacity 443 5.6 Geothermal - - Hydro Conventional 278 3.5 Solar - - Wind 154 2.0 Wood/Wood Waste - - MSW/Landfill Gas 6

  4. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Hampshire Renewable Electricity Profile 2010 New Hampshire profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 4,180 100.0 Total Net Summer Renewable Capacity 671 16.1 Geothermal - - Hydro Conventional 489 11.7 Solar - - Wind 24 0.6 Wood/Wood Waste 129 3.1

  5. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Jersey Renewable Electricity Profile 2010 New Jersey profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 18,424 100.0 Total Net Summer Renewable Capacity 230 1.2 Geothermal - - Hydro Conventional 4 * Solar 28 0.2 Wind 8 * Wood/Wood

  6. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Renewable Electricity Profile 2010 North Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 27,674 100.0 Total Net Summer Renewable Capacity 2,499 9.0 Geothermal - - Hydro Conventional 1,956 7.1 Solar 35 0.1 Wind - - Wood/Wood Waste 481 1.7

  7. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Pennsylvania Renewable Electricity Profile 2010 Pennsylvania profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 45,575 100.0 Total Net Summer Renewable Capacity 1,984 4.4 Geothermal - - Hydro Conventional 747 1.6 Solar 9 * Wind 696 1.5 Wood/Wood Waste 108 0.2

  8. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Rhode Island Renewable Electricity Profile 2010 Rhode Island profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,782 100.0 Total Net Summer Renewable Capacity 28 1.6 Geothermal - - Hydro Conventional 3 0.2 Solar - - Wind 2 0.1

  9. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Renewable Electricity Profile 2010 South Carolina profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 23,982 100.0 Total Net Summer Renewable Capacity 1,623 6.8 Geothermal - - Hydro Conventional 1,340 5.6 Solar - - Wind - - Wood/Wood Waste 255 1.1

  10. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Dakota Renewable Electricity Profile 2010 South Dakota profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - -

  11. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Tennessee Renewable Electricity Profile 2010 Tennessee profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,417 100.0 Total Net Summer Renewable Capacity 2,847 13.3 Geothermal - - Hydro Conventional 2,624 12.3 Solar - - Wind 29 0.1 Wood/Wood Waste 185 0.9

  12. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Vermont Renewable Electricity Profile 2010 Vermont profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 1,128 100.0 Total Net Summer Renewable Capacity 408 36.2 Geothermal - - Hydro Conventional 324 28.7 Solar - - Wind 5 0.5 Wood/Wood Waste 76 6.7 MSW/Landfill Gas 3

  13. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Virginia Renewable Electricity Profile 2010 Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 24,109 100.0 Total Net Summer Renewable Capacity 1,487 6.2 Geothermal - - Hydro Conventional 866 3.6 Solar - - Wind - - Wood/Wood Waste 331 1.4 MSW/Landfill Gas

  14. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    West Virginia Renewable Electricity Profile 2010 West Virginia profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 16,495 100.0 Total Net Summer Renewable Capacity 715 4.3 Geothermal - - Hydro Conventional 285 1.7 Solar - - Wind 431 2.6 Wood/Wood Waste - - MSW/Landfill Gas - -

  15. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wisconsin Renewable Electricity Profile 2010 Wisconsin profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 17,836 100.0 Total Net Summer Renewable Capacity 1,267 7.1 Geothermal - - Hydro Conventional 492 2.8 Solar - - Wind 449 2.5 Wood/Wood Waste 239 1.3

  16. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming Renewable Electricity Profile 2010 Wyoming profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 7,986 100.0 Total Net Summer Renewable Capacity 1,722 21.6 Geothermal - - Hydro Conventional 307 3.8 Solar - - Wind 1,415 17.7 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - -

  17. Comprehensive Renewable Energy Feasibility Study for Sealaska Corporation

    SciTech Connect (OSTI)

    Robert Lynette; John Wade: Larry Coupe

    2006-06-30

    The purposes of this project were: (1) to conduct a comprehensive feasibility study to determine the potential sustainability of wind and/or small hydroelectric power plants on Southeast Alaska native village lands, and (2) to provide the villages with an understanding of the requirements, costs, and benefits of developing and operating wind or small hydroelectric power plants. The program was sponsored by the Tribal Energy program, Office of Energy Efficiency and Renewable Energy, US Department of Energy. The Contractor was Sealaska Corporation, the Regional Native Corporation for Southeast Alaska that includes 12 village/urban corporations. Most villages are isolated from any central electric transmission and use diesel-electric systems for power generation, making them prime candidates for deploying renewable energy sources. Wind Energy - A database was assembled for all of the candidate sites in SE Alaska, including location, demographics, electricity supply and demand, existing and planned transmission interties with central generation, topographical maps, macro wind data, and contact personnel. Field trips were conducted at the five candidate villages that were deemed most likely to have viable wind resources. Meetings were held with local village and utility leaders and the requirements, costs, and benefits of having local renewable energy facilities were discussed. Two sites were selected for anemometry based on their needs and the probability of having viable wind resources – Yakutat and Hoonah. Anemometry was installed at both sites and at least one year of wind resource data was collected from the sites. This data was compared to long-term data from the closest weather stations. Reports were prepared by meteorologist John Wade that contains the details of the measured wind resources and energy production projections. Preliminary financial analysis of hypothetical wind power stations were prepared to gauge the economic viability of installing such

  18. Community Renewable Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Renewable Resources Community Renewable Resources Community renewable programs provide community members with a renewable alternative to conventional energy sources in the form of power and/or financial benefit generated by renewable energy systems. Find community renewable resources below. DOE Resource A Guide to Community Shared Solar: Utility, Private, and NonProfit Project Development. Other Resource Interstate Renewable Energy Council: Community Renewables: Model Program Rules.

  19. What is the role of hydroelectric power in the United States?

    Reports and Publications (EIA)

    2011-01-01

    The importance of hydropower as a source of electricity generation varies by geographic region. While hydropower accounted for 6% of total U.S. electricity generation in 2010, it provided over half of the electricity in the Pacific Northwest. Because hydroelectric generation relies on precipitation, it varies widely from month to month and year to year.

  20. Planning for Energy Development: Strategic Energy Planning REnewable...

    Broader source: Energy.gov (indexed) [DOE]

    November 18, 2011 Strategic Energy Planning Renewable Energy Demonstration Center Concept ... sources Could a Renewable Energy Demonstration Center (REDC) attract renewable energy ...

  1. Pinoleville Pomo Nation Renewable Energy Feasibility Study Status Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pinoleville Pomo Nation Renewable Energy Feasibility Study Lenora Steele Status Report Self-Governance Coordinator David Edmunds Environmental Director PPN Mission and Vision Renewable Energy Feasibility Study: Overview Project Duration: May 2010- September 2011 Focus areas: - micro-hydroelectric, - geothermal heat pumps, * * - wind, - solar electric, - solar thermal * Primary Objective: - Deployment and development plan that has the renewable energy options and designs that meets the PPN's

  2. Hydroelectric power in Hawaii. A report on the statewide survey of potential hydroelectric sites

    SciTech Connect (OSTI)

    Beck, C. A.

    1981-02-01

    An assessment was made of the hydropower potential in Hawaii. The major conclusion of this study is that hydropower resources in the State of Hawaii are substantial, and they offer the potential for major increases in hydropower generating capacity. Hydropower resources on all islands total about 50 MW of potential generating capacity. Combined with the 18 MW of existing hydropower capacity, hydropower resources potentially could generate about 307 million kWh of electric energy annually. This represents about 28% of the present combined electricity needs of the Neighbor Islands, Kauai, Molokai, Maui, and the Big Island. Hydropower resources on Kauai equal 72% of that island's electricity needs; on Molokai, 40%, on the Big Island, 20%; and on Maui, 18%. The island of Oahu, however, has only small hydropower resources, and could only generate a negligible portion of its electricity needs from this energy source. A summary of existing and future (potential) hydropower capacities and estimated annual outputs for each island is presented. How much of the potential capacity is being actively considered for development and how much is only tentatively proposed at the time is indicated. The economics of hydropower at specific sites were analyzed. The major conclusion of this analysis is that hydropower development costs vary widely among the different sites, but that generally the cost of hydroelectric power is either less than or comparable to the cost of oil-fired power.

  3. Energy Sources: Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why Hydrogen? * Fossil fuels release CO 2 , SO X , NO X SO X , NO X * Declining reserves, national security security GM Hydrogen Energy Hydrogen- the use of Hydrogen gas in...

  4. Renewable energy generation sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology. The result is a reliable, competitive solution that optimizes CLFR technology benefits by ensuring that the energy harvested can be dispatched night or day through the...

  5. Renewable energy generation sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    With the Molten Salt Test Loop (MSTL), Sandia and its industry partners are working to address a major barrier to cost-effectively incorporating more solar thermal power generation...

  6. District of Columbia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity Source","-" "Primary Renewable Energy Generation Source","-" "Capacity ... " Hydro Conventional","-","-" " Solar","-","-" " Wind","-","-" " WoodWood ...

  7. Financing Mechanisms for Renewable Energy Projects | Department...

    Broader source: Energy.gov (indexed) [DOE]

    A variety of renewable energy financing mechanisms are available for federal agencies to help meet the 30% of electricity from renewable energy sources by 2025 target established...

  8. Wyoming Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",307,3.8 " Solar","-","-" " Wind",1415,17.7 " WoodWood ...

  9. Missouri Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... Geothermal - - Hydro Conventional 564 2.6 Solar - - Wind 459 2.1 WoodWood Waste - - MSW...

  10. Kansas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",3,"*" " Solar","-","-" " Wind",1072,8.5 " WoodWood ...

  11. Texas Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",689,0.6 " Solar",14,"*" " Wind",9952,9.2 " WoodWood ...

  12. Nebraska Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... Geothermal - - Hydro Conventional 278 3.5 Solar - - Wind 154 2.0 WoodWood Waste - - MSW...

  13. Alaska Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... - - Hydro Conventional 414 20.1 Solar - - Wind 7 0.4 WoodWood Waste - - MSW...

  14. Minnesota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",193,1.3 " Solar","-","-" " Wind",2009,13.7 " WoodWood ...

  15. New Jersey Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste... Total Net Summer Renewable Capacity 230 1.2 Geothermal - - Hydro Conventional 4 * Solar 28 ...

  16. West Virginia Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",285,1.7 " Solar","-","-" " Wind",431,2.6 " WoodWood ...

  17. Kentucky Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy ... Geothermal - - Hydro Conventional 824 4.0 Solar - - Wind - - WoodWood Waste 52 0.3 MSW...

  18. Indiana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",60,0.2 " Solar","-","-" " Wind",1340,4.8 " WoodWood ...

  19. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste... Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - ...

  20. Illinois Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",34,0.1 " Solar",9,"*" " Wind",1946,4.4 " WoodWood ...

  1. Iowa Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy ... " Hydro Conventional",144,1 " Solar","-","-" " Wind",3569,24.5 " WoodWood ...

  2. Database of State Incentives for Renewables & Efficiency

    Broader source: Energy.gov [DOE]

    The Database of State Incentives for Renewables & Efficiency (DSIRE) is the most comprehensive source of information on incentives and policies that support renewables and energy efficiency in...

  3. Maricopa County- Renewable Energy Systems Zoning Ordinance

    Broader source: Energy.gov [DOE]

    The Maricopa County Zoning Ordinance contains provisions for siting renewable energy systems. The ordinance defines renewable energy as "energy derived primarily from sources other than fossil...

  4. Renewable energy annual 1995

    SciTech Connect (OSTI)

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  5. Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Renewable Energy is energy obtained from sources which are practically...

  6. Environmental Impacts of Increased Hydroelectric Development at Existing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dams | Department of Energy Impacts of Increased Hydroelectric Development at Existing Dams Environmental Impacts of Increased Hydroelectric Development at Existing Dams This report describes the environmental impacts of a proposed U.S. Department of Energy (DOE) initiative to promote the development of hydropower resources at existing dams. enviro_impacts_hydroelectric_dev_existing_dams.pdf (2.77 MB) More Documents & Publications EA-2017: Final Environmental Assessment Hydropower Vision

  7. Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy reve

    SciTech Connect (OSTI)

    Jager, Yetta; Smith, Brennan T

    2008-02-01

    Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow.

  8. FERC Handbook for Hydroelectric Project Licensing and 5 MW Exemptions...

    Open Energy Info (EERE)

    Handbook for Hydroelectric Project Licensing and 5 MW Exemptions from Licensing Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  9. Forest Service Handbook 2709.15 - Hydroelectric Handbook | Open...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Forest Service Handbook 2709.15 - Hydroelectric HandbookPermitting...

  10. Asia Power Leibo Hydroelectricity Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Province, China Sector: Hydro Product: China-based developer and operator of small hydro plants. References: Asia Power (Leibo) Hydroelectricity Co Ltd1 This article is a...